Using “Failure Costs” to Guarantee Execution Quality in Competitive and Permissionless Order Flow Auctions

(February 14, 2025)
Abstract

In the context of decentralized blockchains, accurately simulating the outcome of order flow auctions (OFAs) off-chain is challenging due to adversarial sequencing, encrypted bids, and frequent state changes. Existing approaches, such as deterministic sorting via consensus layer modifications (e.g., MEV taxes) (Robinson and White 2024)[1] and BRAID (Resnick 2024)[2] or atomic execution of aggregated bids (e.g., Atlas) (Watts et al. 2024)[3], remain vulnerable in permissionless settings where limited throughput allows rational adversaries to submit ”spoof” bids that block their competitors’ access to execution.

We propose a new failure cost penalty that applies only when a solution is executed but does not pay its bid or fulfill the order. Combined with an on-chain escrow system, this mechanism empowers applications to asynchronously issue their users a guaranteed minimum outcome before the execution results are finalized. It implies a direct link between blockchain throughput, censorship resistance, and the capital efficiency of auction participants (e.g., solvers), which intuitively extends to execution quality. At equilibrium, bids fully reflect the potential for price improvement between bid submission and execution, but only partially reflect the potential for price declines. This asymmetry—unbounded upside for winning bids, limited downside for failed bids, and no loss for losing bids—ultimately benefits users.

Alex Watts
FastLane Labs
[email protected]
Davide Sinesi
FastLane Labs
[email protected]
Jacob Greene
FastLane Labs
[email protected]

1. Background

Order flow auctions (OFAs) have gained prominence in blockchain ecosystems as a means to improve transaction execution by allowing third-party participants (i.e., solvers or market makers) to compete for the right to fulfill orders. Commonly, OFAs grant these exclusive fulfillment rights at an initial time t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, while the actual on-chain execution of the trade occurs later at time t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Ensuring that the participant who wins at t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT will indeed execute the promised trade at t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is nontrivial. Without proper enforcement, a malicious actor could submit multiple high-value bids at t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and then simply refuse to fulfill them at t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, undermining the auction’s reliability. Even if basic execution simulations are performed at t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, market conditions can change between t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT in ways that invalidate those simulations, allowing participants to exploit the gap and sidestep their commitments.

Current OFA implementations have developed various methods to enforce execution, including stateful simulations provided by block builders, reputation-based systems, and upfront payment schemes. Although stateful simulations—designed to model future execution conditions—are conceptually sound, they are not widely available across different blockchain ecosystems and often rely on relatively centralized block builder infrastructures. Reputation-based approaches (e.g., UniswapX) (Adams et al. 2023)[4] limit the number of times a participant can cancel their bids between t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Exceeding a cancellation threshold leads to exclusion from the set of authorized participants. However, such reputation-based strategies restrict the auction’s permissionless nature since they limit who can participate.

As discussed by Resnick (2023)[5], another challenge is that current penalty structures do not adequately incorporate the opportunity cost of failing to execute. If the market price moves unfavorably between t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, a participant may find it more profitable to cancel their order, even at the risk of reputation damage, rather than honor a trade that has become disadvantageous. While this behavior might still comply with formal reputation rules, it erodes the integrity of the auction. Designing penalties that fully capture this opportunity cost is difficult. Furthermore, in a permissionless environment, excluded participants can easily generate new identities to re-enter the system, negating the intended effects of reputation-based exclusions.

1.1 Mechanism Context

This analysis proposes a new on-chain settlement approach for OFAs. Unlike traditional models that grant exclusive execution rights at t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, this framework allows multiple participants to be selected at t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and then settled at execution time, t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, based on their bid values and execution outcome. Such on-chain settlement preserves the capital efficiency of reputation-based methods while achieving properties similar to those of upfront payment systems.

This approach is well-suited to environments where trusting transaction sequencers (e.g., block builders) or relying on off-chain simulations is undesirable. We assume that bidders cannot be censored by either the auctioneer or the block builder—an outcome achievable via censorship-resistant blockchain architectures such as the multiple concurrent proposer model proposed by Fox, Pai, and Resnick (2023)[6], or through trusted execution environments combined with cryptographic bundling protocols (e.g., the Atlas CallChainHash𝐶𝑎𝑙𝑙𝐶𝑎𝑖𝑛𝐻𝑎𝑠CallChainHashitalic_C italic_a italic_l italic_l italic_C italic_h italic_a italic_i italic_n italic_H italic_a italic_s italic_h mechanism) (Watts et al. 2024)[3]. We acknowledge finite blockspace constraints at t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, which naturally limit the number of contending participants. Although our primary focus is the Atlas OFA framework, these principles apply broadly to any on-chain implementation of OFAs that defer winner selection until execution time and allow atomic execution of multiple bids.

1.2 Atlas

Unlike many infrastructure-driven solutions that depend on the accuracy of stateful simulations and the power to exclude conflicting transactions, Atlas is an application-specific sequencer that pairs users and solvers on-chain at execution time. As described in Section 3.3 of the Atlas white paper, (Watts et al. 2024)[3], each Atlas transaction includes a user’s UserOperation𝑈𝑠𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛UserOperationitalic_U italic_s italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n followed by multiple SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns. These solver bids are typically aggregated without pre-execution simulations, sorted optimistically by bid amount, and submitted to the blockchain as a single, large transaction. Once the transaction is included in a block, each SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n is executed in the sequence of their bid amounts until a solver successfully pays its bid and fulfills the user’s order.

This direct, on-chain approach removes non-performing solvers even when simulations are unreliable. However, it also ties the discovery of counterparties to the blockchain’s throughput constraints (e.g., gas limits) due to the resources consumed by each SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n during execution.

1.3 Atlas Structure

An Atlas transaction is composed of UserOperations𝑈𝑠𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠UserOperationsitalic_U italic_s italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s (oiOusersubscript𝑜𝑖subscript𝑂𝑢𝑠𝑒𝑟o_{i}\in O_{user}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_O start_POSTSUBSCRIPT italic_u italic_s italic_e italic_r end_POSTSUBSCRIPT) and SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s (oiOsolversubscript𝑜𝑖subscript𝑂𝑠𝑜𝑙𝑣𝑒𝑟o_{i}\in O_{solver}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_O start_POSTSUBSCRIPT italic_s italic_o italic_l italic_v italic_e italic_r end_POSTSUBSCRIPT). Let G(t)𝐺𝑡G(t)italic_G ( italic_t ) be the gas limit of the transaction. The number of SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s is limited by the total gas limit and the gas consumed by user operations. Let g(oi)𝑔subscript𝑜𝑖g(o_{i})italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) denote the gas reserved for an operation oisubscript𝑜𝑖o_{i}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, and g(oi)superscript𝑔subscript𝑜𝑖g^{*}(o_{i})italic_g start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) the actual gas consumed. We have:

oiOsolverg(oi)G(t)oiOuserg(oi)subscriptsubscript𝑜𝑖subscript𝑂𝑠𝑜𝑙𝑣𝑒𝑟𝑔subscript𝑜𝑖𝐺𝑡subscriptsubscript𝑜𝑖subscript𝑂𝑢𝑠𝑒𝑟superscript𝑔subscript𝑜𝑖\sum_{o_{i}\in O_{solver}}g(o_{i})\;\leq\;G(t)\;-\;\sum_{o_{i}\in O_{user}}g^{% *}(o_{i})∑ start_POSTSUBSCRIPT italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_O start_POSTSUBSCRIPT italic_s italic_o italic_l italic_v italic_e italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≤ italic_G ( italic_t ) - ∑ start_POSTSUBSCRIPT italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_O start_POSTSUBSCRIPT italic_u italic_s italic_e italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )

Maintaining this limit ensures that the gas needed to execute SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s does not exceed the remaining available gas after executing the UserOperations𝑈𝑠𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠UserOperationsitalic_U italic_s italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s. The total gas available to all SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s, ΓΓ\Gammaroman_Γ, is:

Γ=G(t)oiOsolverg(oi)Γ𝐺𝑡subscriptsubscript𝑜𝑖subscript𝑂𝑠𝑜𝑙𝑣𝑒𝑟𝑔subscript𝑜𝑖\Gamma=G(t)-\sum_{o_{i}\notin O_{solver}}g(o_{i})roman_Γ = italic_G ( italic_t ) - ∑ start_POSTSUBSCRIPT italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∉ italic_O start_POSTSUBSCRIPT italic_s italic_o italic_l italic_v italic_e italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )

SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s are sorted in descending order by their bid amount b(oi)𝑏subscript𝑜𝑖b(o_{i})italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) and executed in sequence until one succeeds. To succeed, a SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n must pay its bid to the designated beneficiary and cover its own execution gas costs (minus the costs of any previously failed SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s). If it cannot, the operation reverts but still pays for its consumed gas.

To disincentivize double-spend attacks, each solver can only submit one SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n per block and must escrow at least ϕtg(o)subscriptitalic-ϕ𝑡𝑔𝑜\phi_{t}\cdot g(o)italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ⋅ italic_g ( italic_o ) of collateral, where ϕtsubscriptitalic-ϕ𝑡\phi_{t}italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is the gas price of the transaction t𝑡titalic_t.

1.4 The Censorship Vector

In a permissionless setting, a malicious solver isuperscript𝑖i^{\prime}italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT can submit ”spoof” bids designed purely to consume the available gas limit, ΓΓ\Gammaroman_Γ, rather than to win. By doing so, solver isuperscript𝑖i^{\prime}italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT incurs a cost proportional to the gas consumed (ϕtΓsubscriptitalic-ϕ𝑡Γ\phi_{t}\Gammaitalic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Γ, where ϕtsubscriptitalic-ϕ𝑡\phi_{t}italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is the gas price) but gains access to any value (e.g. MEV) (Phil Daian et al. 2019) [9] visubscript𝑣superscript𝑖v_{i^{\prime}}italic_v start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT left by the user’s operation. Note that even if all solutions fail, the user’s operation might still create value that is then open to extraction. Since all other solvers’ solutions are effectively blocked from executing, the app’s designated beneficiary - typically the user - is never compensated. When the value visubscript𝑣superscript𝑖v_{i^{\prime}}italic_v start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT exceeds the cost of censorship ϕtΓsubscriptitalic-ϕ𝑡Γ\phi_{t}\Gammaitalic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Γ, it becomes rational for solver isuperscript𝑖i^{\prime}italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT to engage in this censorship strategy.

2. Proposed Mechanism

We introduce a new cost, referred to as the failure cost, which applies only when a SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n attempts execution but fails to pay its full bid or fulfill the user’s order. To calculate this cost, take the difference between the bid of the failing solver and the bid of the successful solver (if any), then multiply that difference by the fraction of the total gas allocated to the operation of the failing solver. Unlike bids in an all-pay auction, the failure cost is incurred only by a solver who secured the opportunity to execute and consumed some of the blockchain’s throughput resources but did not meet their bid commitment or fulfill the user’s order.

2.1 The Failure Cost Mechanism

The formula for the failure cost cfail(oi)subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖c_{fail}(o_{i})italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) of a SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n oisubscript𝑜𝑖o_{i}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is dependent on whether the array of SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns includes another solver’s successful operation, denoted as b(oj)𝑏superscriptsubscript𝑜𝑗b(o_{j}^{\checkmark})italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ). Here, b(oj)𝑏superscriptsubscript𝑜𝑗b(o_{j}^{\checkmark})italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ) represents a successful solver operation—that is, an operation that executes and manages to pay its bid.

cfail(oi)={(b(oi)b(oj))g(oi)ΓSolver j Succeeded, b(oj)<b(oi)b(oi)g(oi)ΓNo Solver Succeededsubscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖cases𝑏subscript𝑜𝑖𝑏superscriptsubscript𝑜𝑗𝑔subscript𝑜𝑖ΓSolver 𝑗 Succeeded, 𝑏subscript𝑜𝑗𝑏subscript𝑜𝑖𝑏subscript𝑜𝑖𝑔subscript𝑜𝑖ΓNo Solver Succeededc_{fail}(o_{i})=\begin{cases}\left(b(o_{i})-b(o_{j}^{{\checkmark}})\right)% \frac{g(o_{i})}{\Gamma}&\text{Solver }j\text{ Succeeded, }\ b(o_{j})<b(o_{i})% \\ b(o_{i})\frac{g(o_{i})}{\Gamma}&\text{No Solver Succeeded}\end{cases}italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = { start_ROW start_CELL ( italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ) ) divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG end_CELL start_CELL Solver italic_j Succeeded, italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) < italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG end_CELL start_CELL No Solver Succeeded end_CELL end_ROW (1)

By combining the failure cost with actual the gas units consumed during execution g()superscript𝑔g^{*}(\cdot)italic_g start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( ⋅ ) and the gas price ϕtsubscriptitalic-ϕ𝑡\phi_{t}italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, we can describe the payoff function Visubscript𝑉𝑖V_{i}italic_V start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for solver i𝑖iitalic_i:

Vi={vib(oi)ϕt(G(t)Og(o))Solver i Succeeded(b(oi)b(oj))g(oi)Γϕtg(oi)Solver i Failed, Solver j Succeeded, b(oj)<b(oi)b(oi)g(oi)Γϕtg(oi)Solver i Failed, No Solver Succeeded0Solver j Succeeded, b(oj)>b(oi)subscript𝑉𝑖casessubscript𝑣𝑖𝑏subscript𝑜𝑖subscriptitalic-ϕ𝑡superscript𝐺𝑡subscriptsuperscript𝑂superscript𝑔𝑜Solver 𝑖 Succeeded𝑏subscript𝑜𝑖𝑏superscriptsubscript𝑜𝑗𝑔subscript𝑜𝑖Γsubscriptitalic-ϕ𝑡superscript𝑔subscript𝑜𝑖Solver 𝑖 Failed, Solver 𝑗 Succeeded, 𝑏subscript𝑜𝑗𝑏subscript𝑜𝑖𝑏subscript𝑜𝑖𝑔subscript𝑜𝑖Γsubscriptitalic-ϕ𝑡superscript𝑔subscript𝑜𝑖Solver 𝑖 Failed, No Solver Succeeded0Solver 𝑗 Succeeded, 𝑏subscript𝑜𝑗𝑏subscript𝑜𝑖V_{i}=\begin{cases}v_{i}-b(o_{i})-\phi_{t}\left(G^{*}(t)-\sum_{O^{\rotatebox[o% rigin={c}]{180.0}{$\circlearrowleft$}}}g^{*}(o)\right)&\text{Solver }i\text{ % Succeeded}\\ -\left(b(o_{i})-b(o_{j}^{\checkmark})\right)\frac{g(o_{i})}{\Gamma}-\phi_{t}% \cdot g^{*}(o_{i})&\text{Solver }i\text{ Failed, Solver }j\text{ Succeeded, }% \ b(o_{j})<b(o_{i})\\ -b(o_{i})\frac{g(o_{i})}{\Gamma}-\phi_{t}\cdot g^{*}(o_{i})&\text{Solver }i% \text{ Failed, No Solver Succeeded}\\ 0&\text{Solver }j\text{ Succeeded, }\ b(o_{j})>b(o_{i})\end{cases}italic_V start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = { start_ROW start_CELL italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_G start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) - ∑ start_POSTSUBSCRIPT italic_O start_POSTSUPERSCRIPT ↺ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_g start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_o ) ) end_CELL start_CELL Solver italic_i Succeeded end_CELL end_ROW start_ROW start_CELL - ( italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ) ) divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG - italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ⋅ italic_g start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL start_CELL Solver italic_i Failed, Solver italic_j Succeeded, italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) < italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL - italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG - italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ⋅ italic_g start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL start_CELL Solver italic_i Failed, No Solver Succeeded end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL Solver italic_j Succeeded, italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) > italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW (2)

Where G(t)superscript𝐺𝑡G^{*}(t)italic_G start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) is the total gas used in the transaction t𝑡titalic_t and Osuperscript𝑂O^{\circlearrowleft}italic_O start_POSTSUPERSCRIPT ↺ end_POSTSUPERSCRIPT denotes the set of operations that reverted.

The payoff for the auction beneficiary isuperscript𝑖i^{*}italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, denoted by W𝑊Witalic_W, is defined as follows:

Wi={b(oi)First Solver Succeededb(oi)+ojO(b(oj)b(oi))g(oj)ΓMixojOb(oj)g(oj)ΓAll Solvers Failedsubscript𝑊superscript𝑖cases𝑏superscriptsubscript𝑜𝑖First Solver Succeeded𝑏superscriptsubscript𝑜𝑖subscriptsubscript𝑜𝑗superscript𝑂𝑏subscript𝑜𝑗𝑏superscriptsubscript𝑜𝑖𝑔subscript𝑜𝑗ΓMixsubscriptsubscript𝑜𝑗superscript𝑂𝑏subscript𝑜𝑗𝑔subscript𝑜𝑗ΓAll Solvers FailedW_{i^{*}}=\begin{cases}b(o_{i}^{\checkmark})&\text{First Solver Succeeded}\\ b(o_{i}^{\checkmark})+\sum_{o_{j}\in O^{\rotatebox[origin={c}]{180.0}{$% \circlearrowleft$}}}\left(b(o_{j})-b(o_{i}^{\checkmark})\right)\frac{g(o_{j})}% {\Gamma}&\text{Mix}\\ \sum_{o_{j}\in O^{\rotatebox[origin={c}]{180.0}{$\circlearrowleft$}}}b(o_{j})% \frac{g(o_{j})}{\Gamma}&\text{All Solvers Failed}\end{cases}italic_W start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = { start_ROW start_CELL italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ) end_CELL start_CELL First Solver Succeeded end_CELL end_ROW start_ROW start_CELL italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ) + ∑ start_POSTSUBSCRIPT italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ italic_O start_POSTSUPERSCRIPT ↺ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) - italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ) ) divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG end_CELL start_CELL Mix end_CELL end_ROW start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ italic_O start_POSTSUPERSCRIPT ↺ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG end_CELL start_CELL All Solvers Failed end_CELL end_ROW (3)
Refer to caption
Figure 1: An example of value flowing through the failure cost mechanism, with the total gas available ΓΓ\Gammaroman_Γ for SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s equal to 1,000,00010000001,000,0001 , 000 , 000 and the gas price ϕtsubscriptitalic-ϕ𝑡\phi_{t}italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT equal to 7.5e77.5𝑒77.5e-77.5 italic_e - 7.

2.2 The Guaranteed Minimum Outcome

An essential property of the failure cost mechanism is that it enables the auctioneer in a competitive order flow auction to guarantee the beneficiary a predictable minimum payout—even in the worst-case scenario where all solvers fail. Specifically, the worst-case outcome in a competitive auction corresponds to receiving a gas-weighted average of all the bids.

i=1N(bi×g(oi)Γ)=Wiworst casesuperscriptsubscript𝑖1𝑁subscript𝑏𝑖𝑔subscript𝑜𝑖Γsuperscriptsubscript𝑊𝑖worst case\sum_{i=1}^{N}\left(b_{i}\times\frac{g(o_{i})}{\Gamma}\right)=W_{i}^{\text{% worst case}}∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT × divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG ) = italic_W start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT worst case end_POSTSUPERSCRIPT

Here, N𝑁Nitalic_N denotes the finite set of solvers participating in the auction.

2.3 Escrow and Engineering Considerations

Atlas is designed for blockchain settings where simulations that predict order fulfillment and bid payment can be unreliable. This unreliability may arise because block times are too short relative to network latency, transactions can be asynchronously sequenced by consensus before execution (Monad 2024)[7], adversarial entities can insert conflicting transactions between simulation and inclusion (Robinson and Konstantopoulos 2020)[8], or the blockchain’s state may be subject to reorganization.

While Atlas mitigates these issues by selecting the highest-bidding solution atomically at execution time, the capital backing failure costs remains vulnerable. For example, an adversarial solver could front-run (Oz et al. 2024)[10] the Atlas transaction with its own transaction that depletes its balance before the failure penalty is applied.

To address this, we propose extending Atlas’s gas escrow to also include bid balances. Recall that this mechanism’s auctioneers are responsible allocating their auction’s limited throughput resources, which they do by choosing the set of SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s executed on-chain - they do not select the winning solution. Since the auctioneers cannot predict which solver solutions will succeed, each solver must maintain an escrow covering their worst-case penalty b(oi)g(oi)Γ𝑏subscript𝑜𝑖𝑔subscript𝑜𝑖Γb(o_{i})\frac{g(o_{i})}{\Gamma}italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG and their potential gas costs for all unexecuted, pending SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns. Formally:

ei,a(oi)oiOi,a?b(oi)g(oi)Γ+ϕtg(oi)subscript𝑒𝑖𝑎subscript𝑜𝑖subscriptsubscript𝑜𝑖superscriptsubscript𝑂𝑖𝑎?𝑏subscript𝑜𝑖𝑔subscript𝑜𝑖Γsubscriptitalic-ϕ𝑡𝑔subscript𝑜𝑖e_{i,a}(o_{i})\ \geq\sum_{o_{i}\in O_{i,a}^{?}}\ b(o_{i})\frac{g(o_{i})}{% \Gamma}\ +\ \phi_{t}\cdot g(o_{i})italic_e start_POSTSUBSCRIPT italic_i , italic_a end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≥ ∑ start_POSTSUBSCRIPT italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_O start_POSTSUBSCRIPT italic_i , italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ? end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG + italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ⋅ italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )

where a𝑎aitalic_a is the auctioneer, Oi,a?superscriptsubscript𝑂𝑖𝑎?O_{i,a}^{?}italic_O start_POSTSUBSCRIPT italic_i , italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ? end_POSTSUPERSCRIPT is the set of SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns from solver i𝑖iitalic_i handled by auctioneer a𝑎aitalic_a whose execution outcomes are unknown, and ei,a(oi)subscript𝑒𝑖𝑎subscript𝑜𝑖e_{i,a}(o_{i})italic_e start_POSTSUBSCRIPT italic_i , italic_a end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) is the required escrow for operation oisubscript𝑜𝑖o_{i}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.

The auctioneer can pre-fetch and cache each solver’s escrow balances. With local ”in flight” accounting of potential expenditures and a direct mapping of escrowed balances to auctioneers, the auctioneer can sequence SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns without querying the blockchain or performing simulations during the live auction.

2.4 Asynchronous User Experience

The failure cost mechanism, combined with the “in flight” accounting system, allows applications to provide a guaranteed minimum outcome without relying on additional blockchain reads or writes between receiving a user’s order and issuing the guarantee. This greatly improves the user experience (UX):

  • At t2subscript𝑡2t_{-2}italic_t start_POSTSUBSCRIPT - 2 end_POSTSUBSCRIPT or earlier, the auctioneer pre-fetches and caches each solver’s escrow balances.

  • At t1subscript𝑡1t_{-1}italic_t start_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT, the auctioneer receives a user’s order, initiates the order flow auction and begins collecting bids from solvers.

  • At t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, once bidding ends, the auctioneer can immediately compute and provide the user with a guaranteed minimum outcome while simultaneously submitting the transaction to the blockchain.

  • At t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, the blockchain executes the transaction and finalizes the actual outcome.

Because no on-chain operations are needed during the auction itself, the user’s waiting time is limited only by network and auction durations. For example, if user-to-auctioneer latency is 50ms50𝑚𝑠50ms50 italic_m italic_s and the auction lasts 300ms300𝑚𝑠300ms300 italic_m italic_s, the user can view their guaranteed minimum outcome within about 400ms400𝑚𝑠400ms400 italic_m italic_s of placing the order, providing a fast and responsive experience comparable to off-chain trading environments.

3. Mechanism Properties

The mechanism’s design ensures that participants behave in ways that maximize user value, discourage censorship, and maintain overall market integrity. Specifically, we identify the following desirable properties:

  1. 1.

    User-oriented value maximization: The user’s payoff is highest when the top-bidding solver completes its operation successfully. Since users do not gain additional value if solvers fail, their optimal outcome is always to secure a successful, well-priced solution. This aligns user incentives with the mechanism’s fundamental objective—efficient and reliable order execution.

  2. 2.

    Incentives for subsequent solver success: If a solver fails, it becomes that solver’s interest for the next solver to succeed. Because SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns are executed in descending order of their bid amounts, each subsequent solver’s success reduces the failure cost borne by the previously failing solvers. In other words, when a solver fails, it does not benefit from further failures; instead, it prefers that a successor solver succeed to minimize its own penalty.

  3. 3.

    Penalties scale with resource usage: Solvers reserving more gas resources are effectively penalized more in the event of failure. As a solver’s relative gas consumption g(oi)Γ𝑔subscript𝑜𝑖Γ\frac{g(o_{i})}{\Gamma}divide start_ARG italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG roman_Γ end_ARG increases, so does its potential failure cost. This creates a natural deterrent against unnecessarily large or gas-intensive operations that would otherwise crowd out other participants.

  4. 4.

    Censorship requires comprehensive dominance: Consider a solver isuperscript𝑖i^{\prime}italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT aiming to censor all other solvers. To do so, isuperscript𝑖i^{\prime}italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT must (1) outbid every other solver, and (2) reserve the entire (or nearly entire) block of gas (ΓΓ\Gammaroman_Γ) allocated to SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns:

    b(oi)>b(oi)oO,andg(oi)Γformulae-sequence𝑏subscript𝑜superscript𝑖𝑏subscript𝑜𝑖formulae-sequencefor-all𝑜𝑂and𝑔subscript𝑜superscript𝑖Γb(o_{i^{\prime}})>b(o_{i})\quad\forall o\in O,\quad\text{and}\quad\sum g(o_{i^% {\prime}})\geq\Gammaitalic_b ( italic_o start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) > italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ∀ italic_o ∈ italic_O , and ∑ italic_g ( italic_o start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) ≥ roman_Γ

    Under these conditions, the cost to the censoring solver is:

    b(oi)+ϕtg(oi)𝑏subscript𝑜superscript𝑖subscriptitalic-ϕ𝑡superscript𝑔subscript𝑜superscript𝑖b(o_{i^{\prime}})+\phi_{t}\cdot g^{*}(o_{i^{\prime}})italic_b ( italic_o start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) + italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ⋅ italic_g start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT )

    which strictly exceeds the combined bids of the censored solvers. If the censoring solver values its chance of winning the auction (and thereby capturing visubscript𝑣superscript𝑖v_{i^{\prime}}italic_v start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT) at least as much as it values the act of censorship, it is always more profitable in expectation to execute successfully rather than revert and censor others. This dynamic ensures that censorship, while theoretically possible, is made less attractive by the mechanism’s incentive structure. Moreover, if the censoring solver does succeed, the user’s payoff corresponds to b(oi)𝑏subscript𝑜superscript𝑖b(o_{i^{\prime}})italic_b ( italic_o start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ), which is strictly greater than the user’s payoff in the absence of censorship, thereby preserving user welfare.

3.1 Escrow and Capital Efficiency

The capital efficiency of the auction participants depends on ΓΓ\Gammaroman_Γ the total gas allocated to solvers. Increasing ΓΓ\Gammaroman_Γ reduces the share of total gas reserved by any single solver, thereby lowering their worst-case penalty and the failure cost’s escrow requirements. As solvers often act as counterparties or market makers, the intuition is that blockchains with higher throughput are more capital efficient.

Conversely, decreasing ΓΓ\Gammaroman_Γ forces solvers to escrow more capital, reducing efficiency. However, higher ΓΓ\Gammaroman_Γ not only enhances efficiency but also strengthens censorship resistance, as solvers have more room to operate, increasing competition. The gap between required escrow and failure cost remains fixed at ϕt×g(oi)subscriptitalic-ϕ𝑡𝑔subscript𝑜𝑖\phi_{t}\times g(o_{i})italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT × italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), a term independent of ΓΓ\Gammaroman_Γ.

Refer to caption
Figure 2: Combined Plots of Gas Availability and Costs

In addition to directly lowering the maximum failure cost cfail(oi)subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖c_{fail}(o_{i})italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) for each SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n as throughput ΓΓ\Gammaroman_Γ grows, an increase in ΓΓ\Gammaroman_Γ also indirectly reduces the expected failure cost 𝔼[cfail(oi)]𝔼delimited-[]subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖\mathbb{E}[c_{fail}(o_{i})]blackboard_E [ italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ]. This secondary effect occurs because larger ΓΓ\Gammaroman_Γ values allow more SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns to be included, increasing the likelihood that at least one succeeds and thus diminishes the expected penalty faced by any failing solver.

Example: Suppose a SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n oisubscript𝑜𝑖o_{i}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT uses g(oi)=100,000𝑔subscript𝑜𝑖100000g(o_{i})=100{,}000italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 100 , 000 gas and bids bi(vi)=$100subscript𝑏𝑖subscript𝑣𝑖currency-dollar100b_{i}(v_{i})=\$100italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = $ 100. If Γ1=1,000,000subscriptΓ11000000\Gamma_{1}=1{,}000{,}000roman_Γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 , 000 , 000, then:

max[cfail(oi)]=100,0001,000,000×100=$10.subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖1000001000000100currency-dollar10\max[c_{fail}(o_{i})]=\frac{100{,}000}{1{,}000{,}000}\times 100=\$10.roman_max [ italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] = divide start_ARG 100 , 000 end_ARG start_ARG 1 , 000 , 000 end_ARG × 100 = $ 10 .

If the gas usage is similar across solvers, we might expect around 10 SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns in the transaction. As a median bid, if oisubscript𝑜𝑖o_{i}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT fails, about 5 other operations remain to succeed and mitigate cfail(oi)subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖c_{fail}(o_{i})italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ).

Now consider Γ2=10,000,000subscriptΓ210000000\Gamma_{2}=10{,}000{,}000roman_Γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 10 , 000 , 000:

max[cfail(oi)]=100,00010,000,000×100=$1.subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖10000010000000100currency-dollar1\max[c_{fail}(o_{i})]=\frac{100{,}000}{10{,}000{,}000}\times 100=\$1.roman_max [ italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] = divide start_ARG 100 , 000 end_ARG start_ARG 10 , 000 , 000 end_ARG × 100 = $ 1 .

With this higher throughput, we might now expect around 100 SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns. If oisubscript𝑜𝑖o_{i}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT fails as a median bid, about 50 other operations can succeed and further reduce 𝔼[cfail(oi)]𝔼delimited-[]subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖\mathbb{E}[c_{fail}(o_{i})]blackboard_E [ italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ].

Thus, two factors lower 𝔼[cfail(oi)]𝔼delimited-[]subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖\mathbb{E}[c_{fail}(o_{i})]blackboard_E [ italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] when ΓΓ\Gammaroman_Γ increases:

  1. 1.

    The maximum possible failure cost per operation decreases proportionally to ΓΓ\Gammaroman_Γ.

  2. 2.

    The probability that at least one other solver succeeds (and thereby reduces the penalty) increases as more SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns fit into a single auction.

Define N=𝐜𝐚𝐫𝐝{oj:b(oj)<b(oi)}superscript𝑁𝐜𝐚𝐫𝐝conditional-setsubscript𝑜𝑗𝑏subscript𝑜𝑗𝑏subscript𝑜𝑖N^{*}=\mathbf{card}\{o_{j}:b(o_{j})<b(o_{i})\}italic_N start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = bold_card { italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT : italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) < italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) } as the number of strictly lower-bidding SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns than oisubscript𝑜𝑖o_{i}italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. As ΓΓ\Gamma\to\inftyroman_Γ → ∞:

𝔼[N],𝔼delimited-[]superscript𝑁\mathbb{E}[N^{*}]\to\infty,blackboard_E [ italic_N start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ] → ∞ ,
P(ojOoiO)1,𝑃subscript𝑜𝑗conditionalsuperscript𝑂subscript𝑜𝑖superscript𝑂1P\left(\exists\,o_{j}\in O^{\checkmark}\mid o_{i}\in O^{\rotatebox[origin={c}]% {180.0}{$\circlearrowleft$}}\right)\to 1,italic_P ( ∃ italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ italic_O start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ∣ italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_O start_POSTSUPERSCRIPT ↺ end_POSTSUPERSCRIPT ) → 1 ,
b(oi)𝔼[b(oj)oiO]0.𝑏subscript𝑜𝑖𝔼delimited-[]conditional𝑏subscript𝑜𝑗subscript𝑜𝑖superscript𝑂0b(o_{i})-\mathbb{E}[b(o_{j})\mid o_{i}\in O^{\rotatebox[origin={c}]{180.0}{$% \circlearrowleft$}}]\to 0.italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - blackboard_E [ italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ∣ italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_O start_POSTSUPERSCRIPT ↺ end_POSTSUPERSCRIPT ] → 0 .

Since the failure cost depends on the difference between b(oi)𝑏subscript𝑜𝑖b(o_{i})italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) and the successful bids b(oj)𝑏superscriptsubscript𝑜𝑗b(o_{j}^{\checkmark})italic_b ( italic_o start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ✓ end_POSTSUPERSCRIPT ), and this difference approaches zero, the expected failure cost also approaches zero. Formally:

limΓ𝔼[cfail(oi)]=0.subscriptΓ𝔼delimited-[]subscript𝑐𝑓𝑎𝑖𝑙subscript𝑜𝑖0\lim_{\Gamma\to\infty}\mathbb{E}[c_{fail}(o_{i})]=0.roman_lim start_POSTSUBSCRIPT roman_Γ → ∞ end_POSTSUBSCRIPT blackboard_E [ italic_c start_POSTSUBSCRIPT italic_f italic_a italic_i italic_l end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] = 0 .

3.2 Censorship Resistance

The cost-of-censorship expression derived earlier over-simplifies the problem and assumes that the censoring solver must reserve all available gas. In practice, a censoring solver need only reserve:

ΓminO{g(o)}Γsubscript𝑂𝑔𝑜\Gamma-\min_{O}\{g(o)\}roman_Γ - roman_min start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT { italic_g ( italic_o ) }

where minO{g(o)}subscript𝑂𝑔𝑜\min_{O}\{g(o)\}roman_min start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT { italic_g ( italic_o ) } is the smallest gas allocation among the other solvers. By reserving just enough gas to exclude all other solvers, the censoring solver reduces its cost of censorship by:

minO(g(o))Γsubscript𝑂𝑔𝑜Γ\frac{\min_{O}(g(o))}{\Gamma}divide start_ARG roman_min start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT ( italic_g ( italic_o ) ) end_ARG start_ARG roman_Γ end_ARG

This adjustment is critical for understanding how to choose an optimal ΓΓ\Gammaroman_Γ and how to relate blockchain throughput directly to censorship resistance. To analyze this further, define:

Γi=ΓminO{g(oi):ii}superscriptsubscriptΓsuperscript𝑖Γsubscript𝑂:𝑔subscript𝑜𝑖𝑖superscript𝑖\Gamma_{i^{\prime}}^{\prime}=\Gamma-\min_{O}\{g(o_{i}):i\neq i^{\prime}\}roman_Γ start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = roman_Γ - roman_min start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT { italic_g ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) : italic_i ≠ italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT }
Bi=maxO{b(oi):ii}subscript𝐵superscript𝑖subscript𝑂:𝑏subscript𝑜𝑖𝑖superscript𝑖B_{i^{\prime}}=\max_{O}\{b(o_{i}):i\neq i^{\prime}\}\\ italic_B start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = roman_max start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT { italic_b ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) : italic_i ≠ italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT }

Here, ΓisuperscriptsubscriptΓsuperscript𝑖\Gamma_{i^{\prime}}^{\prime}roman_Γ start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT represents the effective gas limit after accounting for the smallest SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n’s gas usage, and B𝐵Bitalic_B represents the largest competing bid. The censorship threshold can now be expressed as:

Censorship Resistance=Γi(ϕt+BΓ)viCensorship ResistancesuperscriptsubscriptΓsuperscript𝑖subscriptitalic-ϕ𝑡𝐵Γsubscript𝑣superscript𝑖\text{Censorship Resistance}=\Gamma_{i^{\prime}}^{\prime}\left(\phi_{t}+\frac{% B}{\Gamma}\right)-v_{i^{\prime}}Censorship Resistance = roman_Γ start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + divide start_ARG italic_B end_ARG start_ARG roman_Γ end_ARG ) - italic_v start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT (4)

This refined formulation provides a more nuanced perspective on how increasing blockchain throughput (ΓΓ\Gammaroman_Γ) enhances censorship resistance. As ΓΓ\Gammaroman_Γ grows, censorship resistance improves, making it more difficult and less profitable for adversaries to censor competing operations. Figure 3 illustrates how variations in gas price and gas available to solvers (throughput), highlighting throughput as a crucial design lever for maintaining a robust and equitable auction environment.

Refer to caption
Figure 3: Relationship between Censorship Resistance, Gamma, and Gas Price

4. Bidding Strategies

Solvers choose their bids based on expectations about future values and the behavior of others. Because the final outcome depends on everyone’s decisions, no single solver can simply choose a strategy without considering the likely actions of others. The mechanism is therefore not strongly incentive compatible.

Instead, the mechanism leads to a Bayes-Nash equilibrium. Although this equilibrium ensures that no solver can profit by changing their own strategy once the equilibrium is established, it does not mean that solvers simply bid their true values. A rational solver would adjust their bid in light of the probabilities of winning, potential penalties, and anticipated moves by competitors. Strongly dominant strategies are unlikely given the complexity, uncertainties, and strategic interactions between participants.

4.1 Theoretical Framework

Consider a setting in which solvers, unaware of their counterparts’ bids, must select a strategy that maps their private valuation visubscript𝑣𝑖v_{i}italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to an optimal bid bi(vi)subscript𝑏𝑖subscript𝑣𝑖b_{i}(v_{i})italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ).

To review the operational sequence:

  • -

    Let n𝑛n\in\mathbb{N}italic_n ∈ blackboard_N denote the (finite) number of solvers participating in a given auction. Note that n𝑛nitalic_n is not predetermined but depends on factors such as the available throughput and the gas consumption of user operations.

  • -

    Each solver must escrow sufficient funds to guarantee coverage of potential failure costs.

  • -

    SolverOperations𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠SolverOperationsitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n italic_s are executed in descending order of their bids until one operation is successfully completed.

  • -

    A SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n is deemed successful if it pays its own bid, its associated gas costs, and fulfills the user’s order by the conclusion of its execution.

  • -

    Any SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_n that is executed but fails to cover its bid, fulfill the order, or pay its gas costs is penalized via the specified failure cost mechanism.

We consider an environment where each participant (i.e., bidder) faces an independent probability q(0,1)𝑞01q\in(0,1)italic_q ∈ ( 0 , 1 ) from M. Resnick (2003) [5] that their operation fails to fulfill its obligation, and there are n>1𝑛1n>1italic_n > 1 active bidders in a sealed-bid, first-price auction. Each bidder’s valuation of winning the auction is the commonly known quantity v𝑣vitalic_v. Suppose we focus on a symmetric profile where all other bidders bid a common amount b𝑏bitalic_b. We aim to determine the best response for a single bidder under this assumption—specifically, whether it is profitable to deviate from b𝑏bitalic_b by a small increment ε>0𝜀0\varepsilon>0italic_ε > 0.

While these assumptions are strong - especially q𝑞qitalic_q being independent between solvers - they serve as a useful benchmark. If valuations and all public signals truly remained fixed, simulations would yield deterministic outcomes, leaving no incentive for a winner to default on their promised bid. Yet, real-world conditions are more complex, and the proposed mechanism must accommodate the possibility of unexpected failures at execution time.

When all bidders, including the focal bidder i𝑖iitalic_i, submit the same bid b𝑏bitalic_b, the expected utility is:

U(b)=v(1qn)b.𝑈𝑏𝑣1superscript𝑞𝑛𝑏U(b)\;=\;v\,(1-q^{n})\;-\;b.italic_U ( italic_b ) = italic_v ( 1 - italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) - italic_b .

This arises because, with probability (1qn)1superscript𝑞𝑛(1-q^{n})( 1 - italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ), the bidder’s bid “succeeds” and they pay b𝑏bitalic_b to secure value v𝑣vitalic_v, thereby obtaining a net utility of vb𝑣𝑏v-bitalic_v - italic_b.

By bidding slightly more, b+ε𝑏𝜀b+\varepsilonitalic_b + italic_ε, the expected payoff changes according to the probabilities of bid success or failure. Intuitively, this is because bidder i𝑖iitalic_i will have the highest bid in the array and will be executed first. When all players other than i𝑖iitalic_i bid b𝑏bitalic_b, we model the utility to i𝑖iitalic_i of bidding b+ϵ𝑏italic-ϵb+\epsilonitalic_b + italic_ϵ:

Ui(bi=b+ε,bi=b)=(1q)[v(b+ε)]+qεn+qnbn.subscript𝑈𝑖formulae-sequencesubscript𝑏𝑖𝑏𝜀subscript𝑏𝑖𝑏1𝑞delimited-[]𝑣𝑏𝜀𝑞𝜀𝑛superscript𝑞𝑛𝑏𝑛U_{i}\bigl{(}b_{i}=b+\varepsilon,b_{-i}=b\bigr{)}\;=\;(1-q)\,\bigl{[}v-(b+% \varepsilon)\bigr{]}\;+\;q\,\frac{-\,\varepsilon}{n}\;+\;q^{n}\,\frac{-\,b}{n}.italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_b + italic_ε , italic_b start_POSTSUBSCRIPT - italic_i end_POSTSUBSCRIPT = italic_b ) = ( 1 - italic_q ) [ italic_v - ( italic_b + italic_ε ) ] + italic_q divide start_ARG - italic_ε end_ARG start_ARG italic_n end_ARG + italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT divide start_ARG - italic_b end_ARG start_ARG italic_n end_ARG .

Intuitively, with probability (1q)1𝑞(1-q)( 1 - italic_q ), the bidder wins and pays b+ε𝑏𝜀b+\varepsilonitalic_b + italic_ε while receiving v𝑣vitalic_v. In the complementary states of failure, the bidder pays only a fraction of the submitted amount, depending on how many other bidders fail simultaneously. To find the symmetric-equilibrium bid b𝑏bitalic_b, we set up the difference

Δ(ε)=U(b+ε)U(b),Δ𝜀𝑈𝑏𝜀𝑈𝑏\Delta(\varepsilon)\;=\;U\bigl{(}b+\varepsilon\bigr{)}\;-\;U(b),roman_Δ ( italic_ε ) = italic_U ( italic_b + italic_ε ) - italic_U ( italic_b ) ,

and examine the limit of Δ(ε)Δ𝜀\Delta(\varepsilon)roman_Δ ( italic_ε ) as ε0𝜀0\varepsilon\to 0italic_ε → 0. At equilibrium, we require limε0Δ(ε)= 0,subscript𝜀0Δ𝜀 0\lim_{\varepsilon\to 0}\Delta(\varepsilon)\;=\;0,roman_lim start_POSTSUBSCRIPT italic_ε → 0 end_POSTSUBSCRIPT roman_Δ ( italic_ε ) = 0 , so that the bidder is indifferent between bidding b𝑏bitalic_b and slightly deviating to b+ε𝑏𝜀b+\varepsilonitalic_b + italic_ε.

By equating that limit to zero and performing straightforward algebraic manipulation, we obtain the following closed-form expression for the symmetric equilibrium bid, denoted bsuperscript𝑏b^{*}italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT:

b=vn(1qn1)nqn1.superscript𝑏𝑣𝑛1superscript𝑞𝑛1𝑛superscript𝑞𝑛1b^{*}\;=\;v\,\cdot\frac{\,n\,\bigl{(}1-q^{\,n-1}\bigr{)}}{\,n-q^{\,n-1}\!}.italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_v ⋅ divide start_ARG italic_n ( 1 - italic_q start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_n - italic_q start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT end_ARG .

The factor n(1qn1)nqn1𝑛1superscript𝑞𝑛1𝑛superscript𝑞𝑛1\frac{n\,(1-q^{\,n-1})}{\,n-q^{\,n-1}\!}divide start_ARG italic_n ( 1 - italic_q start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_n - italic_q start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT end_ARG reflects how the failure probability q𝑞qitalic_q and the number of bidders n𝑛nitalic_n jointly affect the bid level in this probabilistic, first-price mechanism. Note that while a bid of zero might appear to have utility at first glance by paying nothing to capture the expectation of all other bidders failing, in practical applications of this design this is a non-issue due to the existence of gas costs and the presence of >nabsent𝑛>n> italic_n bids - only the top n𝑛nitalic_n are included in the array.

This result, though derived under generous assumptions, provides a powerful intuition: as the number of solvers n𝑛nitalic_n increases, the geometric influence of qnsuperscript𝑞𝑛q^{n}italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ensures that even substantial probabilities of failure are tempered. A higher n𝑛nitalic_n can offset a higher q𝑞qitalic_q, maintaining incentives to bid more assertively than one might expect from a large failure probability alone. The resulting relationship offers a theoretically sound baseline for understanding how the scale of competition (reflected in n𝑛nitalic_n) and the underlying risk (reflected in q𝑞qitalic_q) jointly shape equilibrium bidding behavior in complex, dynamically evolving blockchain ecosystems.

4.2 Extending the Model with Discrete Time

In the previous analysis, we assumed that private valuations and public information remained fixed from the moment bids are placed (t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT) until the auction settles (t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT). In practice, this is rarely the case. Valuations can evolve, external signals may arrive, and clever adversaries can exploit changing conditions. To capture these complexities more faithfully, we now extend our model to incorporate the potential for valuations to change over time and the strategic implications this creates.

Previously, we introduced a single probability of failure q𝑞qitalic_q, treating it as an exogenous factor, but in a truly permissionless setting we must acknowledge the presence of adversarial solvers and asymmetric information. A solver cannot alter its posted solution ex post, but it can undertake minimal-cost actions—such as toggling an “off switch” in a smart contract or rapidly reallocating un-escrowed resources—to force an ostensibly winning solution to fail. This potential for strategic manipulation complicates the relationship between posted bids and realized outcomes, particularly as time and state evolve.

As a solver’s relative bid increases, it indirectly creates more “attempts” from lower-bidding solvers to succeed and thereby mitigate its own potential penalty. In other words, the higher a solver’s bid relative to its competition, the greater its expectation of the number of solutions available to execute should it fail and backstop its failure penalty. This interplay heightens the strategic complexity: the marginal incentive to bid higher depends not only on expected value and risk but also on the dynamic interaction between other solvers’ future actions and the evolving price distribution.

We define v𝑣vitalic_v as the commonly known value of the asset at t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, while at t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT the asset’s price follows a normal distribution XN(v,σ2)similar-to𝑋𝑁𝑣superscript𝜎2X\sim N(v,\sigma^{2})italic_X ∼ italic_N ( italic_v , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) with mean v𝑣vitalic_v, standard deviation σ𝜎\sigmaitalic_σ, CDF FX(x)subscript𝐹𝑋𝑥F_{X}(x)italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x ), and PDF fX(x)subscript𝑓𝑋𝑥f_{X}(x)italic_f start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x ). Solvers must commit their bids at t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT based solely on the expected distribution of X𝑋Xitalic_X, yet at t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT each solver privately observes its own realization of X𝑋Xitalic_X—but not that of its competitors. This observational asymmetry enables a winning solver to extract positive slippage when X>v𝑋𝑣X>vitalic_X > italic_v, while providing a cushion against losses due to the bounded failure penalty b(v)n𝑏𝑣𝑛\frac{b(v)}{n}divide start_ARG italic_b ( italic_v ) end_ARG start_ARG italic_n end_ARG.

If at the time of execution t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT the solver observes Xi<b(vi)subscript𝑋𝑖𝑏subscript𝑣𝑖X_{i}<b(v_{i})italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_b ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), it will cancel rather than incur a larger loss. We can incorporate this concept into our utility framework by replacing X𝑋Xitalic_X in the payoff calculations with its conditional expectation given X>b(v)𝑋𝑏𝑣X>b(v)italic_X > italic_b ( italic_v ):

𝔼[XX>b(v)]=b(v)xfX(x)1FX(b(v))𝑑x𝔼delimited-[]𝑋ket𝑋𝑏𝑣superscriptsubscript𝑏𝑣𝑥subscript𝑓𝑋𝑥1subscript𝐹𝑋𝑏𝑣differential-d𝑥\mathbb{E}[X\mid X>b(v)]=\int_{b(v)}^{\infty}\frac{xf_{X}(x)}{1-F_{X}(b(v))}dxblackboard_E [ italic_X ∣ italic_X > italic_b ( italic_v ) ] = ∫ start_POSTSUBSCRIPT italic_b ( italic_v ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_x italic_f start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_x ) end_ARG start_ARG 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) end_ARG italic_d italic_x

Note that the decision threshold for profitability remains firmly at X>b(v)𝑋𝑏𝑣X>b(v)italic_X > italic_b ( italic_v ), not Xpenalty>b(v)𝑋penalty𝑏𝑣X-\text{penalty}>b(v)italic_X - penalty > italic_b ( italic_v ). This is because b(v)𝑏𝑣b(v)italic_b ( italic_v ) already addresses the expectation of the failure penalty, which informs the solver’s choice to cancel but does not redefine the fundamental break-even point for profitable trade execution. Substituting in this conditional expectation of X𝑋Xitalic_X and recalling the normality assumption for X𝑋Xitalic_X yields our utility function Ui[bi(v),bi(v)]subscript𝑈𝑖subscript𝑏𝑖𝑣subscript𝑏𝑖𝑣U_{i}\left[b_{i}(v),\ b_{-i}(v)\right]italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_v ) , italic_b start_POSTSUBSCRIPT - italic_i end_POSTSUBSCRIPT ( italic_v ) ]:

n[v(1FX(b(v)))+σfX(b(v))b(v)(1FX(b(v)))1[FX(b(v))]n]𝑛delimited-[]𝑣1subscript𝐹𝑋𝑏𝑣𝜎subscript𝑓𝑋𝑏𝑣𝑏𝑣1subscript𝐹𝑋𝑏𝑣1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛\displaystyle n\left[v(1-F_{X}(b(v)))+\sigma f_{X}(b(v))-\frac{b(v)(1-F_{X}(b(% v)))}{1-[F_{X}(b(v))]^{n}}\right]italic_n [ italic_v ( 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) + italic_σ italic_f start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) - divide start_ARG italic_b ( italic_v ) ( 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ]

Unlike simpler models, no neat closed-form solution emerges. Instead, the equilibrium depends on the entire distribution of future values and on strategic cancellation options that arise as solvers observe their private realization of X𝑋Xitalic_X.

4.3 Numerical Analysis

The equilibrium bid b(v)superscript𝑏𝑣b^{*}(v)italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_v ) is found by setting the derivative of Ui[b(v)]subscript𝑈𝑖delimited-[]𝑏𝑣U_{i}[b(v)]italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ italic_b ( italic_v ) ] with respect to b(v)𝑏𝑣b(v)italic_b ( italic_v ) to zero. Letting z=b(v)vσ𝑧𝑏𝑣𝑣𝜎z=\frac{b(v)-v}{\sigma}italic_z = divide start_ARG italic_b ( italic_v ) - italic_v end_ARG start_ARG italic_σ end_ARG and recognizing that Φ(z)Φ𝑧\Phi(z)roman_Φ ( italic_z ) and ϕ(z)italic-ϕ𝑧\phi(z)italic_ϕ ( italic_z ) represent the normal CDF and PDF respectively, we derive a complex condition for equilibrium (as shown in Appendix I).

When using numerical optimization solutions to solve for the optimal bid, we observe that b(v)superscript𝑏𝑣b^{*}(v)italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_v ) exceeds v𝑣vitalic_v, and that it increases with both σ𝜎\sigmaitalic_σ and n𝑛nitalic_n. This matches our expectations given the assumptions - as long as the solver sampling in X𝑋Xitalic_X is independent, additional solvers act to reduce the expectation of a failure penalty, and as the standard deviation increases, the solvers return in expectation increases with their expectation of positive slippage augmented by a lower bound on the penalty.

Refer to caption
Figure 4: The optimal bid ratio, b(v)vsuperscript𝑏𝑣𝑣\frac{b^{*}(v)}{v}divide start_ARG italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_v ) end_ARG start_ARG italic_v end_ARG, as a function of n𝑛nitalic_n and σ𝜎\sigmaitalic_σ, with an initial value of v=$3,500𝑣currency-dollar3500v=\$3,500italic_v = $ 3 , 500 and a range of [$0,$12.00]currency-dollar0currency-dollar12.00[\$0,\$12.00][ $ 0 , $ 12.00 ] for σ𝜎\sigmaitalic_σ.

4.4 Model Limitations

It is important to note that the model proposed in this section assumes that solver valuations sampled from X𝑋Xitalic_X are independent. In reality, however, these valuations are highly covariant, and solver competition often results in congestion costs that reduce the overall welfare of participants (Chitra, Kulkarni, Pai, and Diamandis 2024) [11].

Another important caveat is the simplifying assumption that the expectation of solver bids are rank-agnostic: 𝔼[b(vi)]𝔼[b(vj)|b(vj)<b(vi)]𝔼delimited-[]𝑏subscript𝑣𝑖𝔼delimited-[]conditional𝑏subscript𝑣𝑗𝑏subscript𝑣𝑗𝑏subscript𝑣𝑖\mathbb{E}[b(v_{i})]\approx\mathbb{E}[b(v_{j})\,|\,b(v_{j})<b(v_{i})]blackboard_E [ italic_b ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] ≈ blackboard_E [ italic_b ( italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) | italic_b ( italic_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) < italic_b ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ]. If all solvers bid the same b(v)𝑏𝑣b(v)italic_b ( italic_v ) then one solver’s success fully offsets the failure cost of all the others. In reality, differences in the private valuations at t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT would lead to a distribution of bids, which would increase the expectation of failure costs. A model treating each bid as an order statistic may lead to a more applicable framework for deriving an optimal bid formula.

While the assumptions of independent X𝑋Xitalic_X samples and rank-agnostic bid expectations are likely resulting in inflated optimal bid values, the potential for the failure cost mechanism to unlock a path towards users internalizing a portion of the expectation of positive slippage is promising. Understanding how correlated or covarying valuations affect equilibrium bidding behavior, the distribution of failure costs, and the dynamics of censorship resistance would significantly deepen our theoretical understanding and practical guidance. Future research that incorporates these complexities would improve the model’s predictive power and deepen our knowledge of the mechanism.

5. Implications & Observations

Beyond its primary role in enhancing censorship resistance, the failure cost mechanism also encourages more responsible bidding behavior. Without a penalty for failed bids, solvers might submit numerous low-quality or speculative solutions (i.e., high bid, low probability of payment), consuming valuable resources. Here, the financial penalty for failure motivates solvers to ensure their solutions are valid and likely to succeed.

5.1 Permissionlessness

The failure cost mechanism allows solvers to participate in order flow auctions (OFAs) without relying on a reputation system. As long as they maintain the required escrow balances, their bids can be considered. This makes the OFA inherently permissionless unless the auctioneer chooses to impose additional restrictions.

While permissionless bidding may influence execution quality, achieving optimal execution is not the only goal. Fundamentally, permissionlessness aligns with the core principles of decentralized blockchains and their applications. We believe this attribute is inherently valuable, and we hope readers appreciate its importance in fostering open, accessible, and censorship-resistant ecosystems.

5.2 Blockchain Throughput

Intuitively, a blockchain’s throughput (total gas per block) is an upper bound for an on-chain auction’s throughput (total gas per OFA), which directly influences both censorship resistance and execution quality. Increasing the throughput makes censorship more resource-intensive and less economically viable, encouraging legitimate solvers to participate and submit robust solutions. A higher throughput allows more SolverOperation𝑆𝑜𝑙𝑣𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛SolverOperationitalic_S italic_o italic_l italic_v italic_e italic_r italic_O italic_p italic_e italic_r italic_a italic_t italic_i italic_o italic_ns to fit into a block, increasing competition and pushing bids upward, ultimately improving the beneficiary’s payoff.

Reduced censorship risk and greater solver participation lead to more frequent successful executions and lower failure costs in expectation, prompting solvers to bid more aggressively. This dynamic reduces the amount of capital each solver must escrow, which reduces barriers to entry, improves execution outcomes, and increases capital efficiency of market makers - the blockchain’s primary active liquidity providers.

5.3 Applications to Cross-Chain Orders

Beyond enhancing UX in a single-chain context, the ability to offer a guaranteed minimum outcome without on-chain state checks has potential implications for cross-chain interactions. In cross-chain swaps (also known as intent-based bridging or chain abstraction), transactions may span multiple chains, introducing delays as information and assets move through bridges.

If the guaranteed minimum outcome can be computed asynchronously—without waiting for confirmations or state changes on the destination chain—users might receive timely assurance on their eventual outcome even when assets have not yet crossed the bridge. This early assurance could reduce uncertainty, encourage participation in multi-chain strategies, and improve overall efficiency in cross-chain trades. For complex orders requiring multiple interdependent cross-chain interactions, the guaranteed minimum outcomes of each step could be calculated and used as the foundation of the following step, enabling multiple solvers to trustlessly coordinate while executing the steps in parallel.

These potential benefits highlight the need for further research. How might this asynchronous guarantee interact with various bridging protocols, liquidity conditions, or complex multi-chain topologies? Investigating these questions could uncover valuable insights into extending the mechanism’s application.

Conclusion

In this work, we introduced and analyzed a novel on-chain settlement mechanism for order flow auctions centered around the concept of a failure cost. This mechanism imposes a structured penalty on solvers who gain the right to execute but fail to pay their bid, ensuring that participants bear real consequences for low-quality, manipulative, or obstructive bidding tactics. By doing so, it strengthens censorship resistance, discourages spam or spoof bids, and guarantees the beneficiary a predictable minimum payout—even under worst-case conditions.

Our analysis demonstrates that the mechanism leads participants toward a Bayes-Nash equilibrium, where no single solver can profitably deviate from their chosen strategy once the equilibrium is established. While the mechanism does not ensure strict incentive compatibility or dominant strategies, it does encourage bidding behavior guided by rational, forward-looking expectations. Solvers must carefully weigh private valuations against the risk of failure, adjusting their bids to maximize their expected payoff in a competitive and uncertain environment.

In a more dynamic scenario where valuations and external information evolve between bid submission and execution, the complexity and strategic considerations deepen. Nonetheless, the key principles remain: the failure cost mechanism aligns economic incentives, encourages meaningful engagement from solvers, and fosters an environment in which quality, reliability, and well-informed bidding become the norm. As decentralized finance and blockchain-based auctions continue to mature, these insights—rooted in equilibrium analysis, throughput considerations, and the interplay of risk, valuation, and competitive strategies—offer a robust theoretical and practical foundation for designing next-generation auction protocols that serve both solvers and end-users more effectively.

Acknowledgements

We would like to thank Tom Mroz, Christian Saur, Nagu Thogiti and the FastLane team for their advice, input, and support in the creation of this paper.

References

Appendix I - Math

Foundational Strategy

Solving for the utility function:

Background: bidder i𝑖-i- italic_i bids b𝑏bitalic_b
Scenario 1: ”If I want to bid more than b𝑏bitalic_b I will go first, so I bid b+ϵ𝑏italic-ϵb+\epsilonitalic_b + italic_ϵ

Ui(bi=b+ϵ)=(1q)[vbϵ]+qϵn+qnbnsubscript𝑈𝑖subscript𝑏𝑖𝑏italic-ϵ1𝑞delimited-[]𝑣𝑏italic-ϵ𝑞italic-ϵ𝑛superscript𝑞𝑛𝑏𝑛\displaystyle U_{i}(b_{i}=b+\epsilon)=(1-q)[v-b-\epsilon]\ +\ q\frac{-\epsilon% }{n}\ +\ q^{n}\frac{-b}{n}italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_b + italic_ϵ ) = ( 1 - italic_q ) [ italic_v - italic_b - italic_ϵ ] + italic_q divide start_ARG - italic_ϵ end_ARG start_ARG italic_n end_ARG + italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT divide start_ARG - italic_b end_ARG start_ARG italic_n end_ARG

Scenario 2: ”I want to bid the same as everyone else, so I bid b𝑏bitalic_b

Ui(bi=b+ϵ)subscript𝑈𝑖subscript𝑏𝑖𝑏italic-ϵ\displaystyle U_{i}(b_{i}=b+\epsilon)italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_b + italic_ϵ ) =k=0n1[(1qk)0+qk(1q)(vb)+qkq(bn)+qkq(1qnk1)(bn)]absentsuperscriptsubscript𝑘0𝑛1delimited-[]1superscript𝑞𝑘0superscript𝑞𝑘1𝑞𝑣𝑏superscript𝑞𝑘𝑞𝑏𝑛superscript𝑞𝑘𝑞1superscript𝑞𝑛𝑘1𝑏𝑛\displaystyle=\sum_{k=0}^{n-1}\Bigl{[}(1-q^{k})\cdot 0\;+\;q^{k}(1-q)(v-b)\;+% \;q^{k}\,q\,\Bigl{(}\tfrac{-b}{n}\Bigr{)}\;+\;q^{k}\,q\,\Bigl{(}1-q^{\,n-k-1}% \Bigr{)}\Bigl{(}\tfrac{b}{n}\Bigr{)}\Bigr{]}= ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT [ ( 1 - italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) ⋅ 0 + italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( 1 - italic_q ) ( italic_v - italic_b ) + italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_q ( divide start_ARG - italic_b end_ARG start_ARG italic_n end_ARG ) + italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_q ( 1 - italic_q start_POSTSUPERSCRIPT italic_n - italic_k - 1 end_POSTSUPERSCRIPT ) ( divide start_ARG italic_b end_ARG start_ARG italic_n end_ARG ) ]
=k=0n1[qk(1q)(vb)bnqk+1+bnqk+1(1qnk1)]absentsuperscriptsubscript𝑘0𝑛1delimited-[]superscript𝑞𝑘1𝑞𝑣𝑏𝑏𝑛superscript𝑞𝑘1𝑏𝑛superscript𝑞𝑘11superscript𝑞𝑛𝑘1\displaystyle=\;\sum_{k=0}^{n-1}\Bigl{[}q^{k}(1-q)(v-b)\;-\;\tfrac{b}{n}\,q^{k% +1}\;+\;\tfrac{b}{n}\,q^{k+1}\Bigl{(}1-q^{\,n-k-1}\Bigr{)}\Bigr{]}= ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT [ italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( 1 - italic_q ) ( italic_v - italic_b ) - divide start_ARG italic_b end_ARG start_ARG italic_n end_ARG italic_q start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT + divide start_ARG italic_b end_ARG start_ARG italic_n end_ARG italic_q start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT ( 1 - italic_q start_POSTSUPERSCRIPT italic_n - italic_k - 1 end_POSTSUPERSCRIPT ) ]
=k=0n1qk(1q)(vb)+bnk=0n1[qk+1+qk+1(1qnk1)]absentsuperscriptsubscript𝑘0𝑛1superscript𝑞𝑘1𝑞𝑣𝑏𝑏𝑛superscriptsubscript𝑘0𝑛1delimited-[]superscript𝑞𝑘1superscript𝑞𝑘11superscript𝑞𝑛𝑘1\displaystyle=\;\sum_{k=0}^{n-1}q^{k}(1-q)(v-b)\;+\;\tfrac{b}{n}\,\sum_{k=0}^{% n-1}\Bigl{[}-\,q^{k+1}\;+\;q^{k+1}\bigl{(}1-q^{\,n-k-1}\bigr{)}\Bigr{]}= ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( 1 - italic_q ) ( italic_v - italic_b ) + divide start_ARG italic_b end_ARG start_ARG italic_n end_ARG ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT [ - italic_q start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT + italic_q start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT ( 1 - italic_q start_POSTSUPERSCRIPT italic_n - italic_k - 1 end_POSTSUPERSCRIPT ) ]
=(1q)(vb)k=0n1qk+bnk=0n1[qk+1+qk+1qk+1qnk1]absent1𝑞𝑣𝑏superscriptsubscript𝑘0𝑛1superscript𝑞𝑘𝑏𝑛superscriptsubscript𝑘0𝑛1delimited-[]superscript𝑞𝑘1superscript𝑞𝑘1superscript𝑞𝑘1superscript𝑞𝑛𝑘1\displaystyle=\;(1-q)(v-b)\,\sum_{k=0}^{n-1}q^{k}\;+\;\tfrac{b}{n}\,\sum_{k=0}% ^{n-1}\Bigl{[}-\,q^{k+1}\;+\;q^{k+1}-q^{k+1}q^{\,n-k-1}\Bigr{]}= ( 1 - italic_q ) ( italic_v - italic_b ) ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_q start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + divide start_ARG italic_b end_ARG start_ARG italic_n end_ARG ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT [ - italic_q start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT + italic_q start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT - italic_q start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT italic_q start_POSTSUPERSCRIPT italic_n - italic_k - 1 end_POSTSUPERSCRIPT ]
=(1q)(vb)1qn1q+bnk=0n1[qn]absent1𝑞𝑣𝑏1superscript𝑞𝑛1𝑞𝑏𝑛superscriptsubscript𝑘0𝑛1delimited-[]superscript𝑞𝑛\displaystyle=\;(1-q)(v-b)\,\frac{1-q^{n}}{1-q}\;+\;\tfrac{b}{n}\sum_{k=0}^{n-% 1}\bigl{[}-\,q^{n}\bigr{]}= ( 1 - italic_q ) ( italic_v - italic_b ) divide start_ARG 1 - italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG start_ARG 1 - italic_q end_ARG + divide start_ARG italic_b end_ARG start_ARG italic_n end_ARG ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT [ - italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ]
=(vb)(1qn)bn[nqn]absent𝑣𝑏1superscript𝑞𝑛𝑏𝑛delimited-[]𝑛superscript𝑞𝑛\displaystyle=\;(v-b)\,\bigl{(}1-q^{n}\bigr{)}\;-\;\tfrac{b}{n}\;\bigl{[}n\,q^% {n}\bigr{]}= ( italic_v - italic_b ) ( 1 - italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) - divide start_ARG italic_b end_ARG start_ARG italic_n end_ARG [ italic_n italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ]
=(vb)(1qn)bqnabsent𝑣𝑏1superscript𝑞𝑛𝑏superscript𝑞𝑛\displaystyle=\;(v-b)\,\bigl{(}1-q^{n}\bigr{)}\;-\;b\,q^{n}= ( italic_v - italic_b ) ( 1 - italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) - italic_b italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT
=v(1qn)b.absent𝑣1superscript𝑞𝑛𝑏\displaystyle=\;v\,\bigl{(}1-q^{n}\bigr{)}\;-\;b.= italic_v ( 1 - italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) - italic_b .

Discrete Time Strategy

Ui[b(vi),b(vi)]=subscript𝑈𝑖𝑏subscript𝑣𝑖𝑏subscript𝑣𝑖absentU_{i}\left[b(v_{i}),b(v_{-i})\right]\ =\ italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ italic_b ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , italic_b ( italic_v start_POSTSUBSCRIPT - italic_i end_POSTSUBSCRIPT ) ] =

nj=1n[FX(b(v))]njsum of P(execute) for all isubscript𝑛superscriptsubscript𝑗1𝑛superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑗sum of 𝑃execute for all 𝑖\displaystyle\underbrace{\frac{n}{\sum_{j=1}^{n}\left[F_{X}(b(v))\right]^{n-j}% }}_{\text{sum of }P(\text{execute})\text{ for all }i}under⏟ start_ARG divide start_ARG italic_n end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT end_ARG end_ARG start_POSTSUBSCRIPT sum of italic_P ( execute ) for all italic_i end_POSTSUBSCRIPT
×r=1n([FX(b(v))]nrP(executei=r)\displaystyle\quad\times\sum_{r=1}^{n}\Bigg{(}\underbrace{\left[F_{X}(b(v))% \right]^{n-r}}_{P(\text{execute}\mid i=r)}× ∑ start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( under⏟ start_ARG [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT end_ARG start_POSTSUBSCRIPT italic_P ( execute ∣ italic_i = italic_r ) end_POSTSUBSCRIPT
×[[1FX(b(v))]P(successexecute)×[vb(v)]𝔼[success]\displaystyle\quad\times\bigg{[}\underbrace{\left[1-F_{X}(b(v))\right]}_{\text% {$P(\text{success}\mid\text{execute})$}}\times\underbrace{\left[v-b(v)\right]}% _{\mathbb{E}[\text{success}]}× [ under⏟ start_ARG [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] end_ARG start_POSTSUBSCRIPT italic_P ( success ∣ execute ) end_POSTSUBSCRIPT × under⏟ start_ARG [ italic_v - italic_b ( italic_v ) ] end_ARG start_POSTSUBSCRIPT blackboard_E [ success ] end_POSTSUBSCRIPT
+[FX(b(v))]P(failexecute)×[b(v)n(b(v)n[1(FX(b(v)))r1])]max[failure cost]𝔼[cost reduction]×Pi(wini<r)))\displaystyle\quad+\underbrace{\left[F_{X}(b(v))\right]}_{\text{$P(\text{fail}% \mid\text{execute})$}}\times\underbrace{-\left[\frac{b(v)}{n}-\left(\frac{b(v)% }{n}\left[1-\left(F_{X}(b(v))\right)^{r-1}\right]\right)\right]}_{\text{$\max[% \textit{failure cost}]-\mathbb{E}[\textit{cost reduction}]\times P_{-i}(\text{% win}\mid-i<r)$}}\bigg{)}\Bigg{)}+ under⏟ start_ARG [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] end_ARG start_POSTSUBSCRIPT italic_P ( fail ∣ execute ) end_POSTSUBSCRIPT × under⏟ start_ARG - [ divide start_ARG italic_b ( italic_v ) end_ARG start_ARG italic_n end_ARG - ( divide start_ARG italic_b ( italic_v ) end_ARG start_ARG italic_n end_ARG [ 1 - ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT ] ) ] end_ARG start_POSTSUBSCRIPT roman_max [ failure cost ] - blackboard_E [ cost reduction ] × italic_P start_POSTSUBSCRIPT - italic_i end_POSTSUBSCRIPT ( win ∣ - italic_i < italic_r ) end_POSTSUBSCRIPT ) )
=nj=1n([FX(b(v))]nj)×r=1n(\displaystyle=\frac{n}{\sum^{n}_{j=1}\left(\left[F_{X}\left(b(v)\right)\right]% ^{n-j}\right)}\times\sum^{n}_{r=1}\Bigg{(}\ = divide start_ARG italic_n end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT ) end_ARG × ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT ( [FX(b(v))]nr×[\displaystyle\left[F_{X}\left(b(v)\right)\right]^{n-r}\times\bigg{[}[ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT × [
([1FX(b(v))]×[vb(v)])delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]𝑣𝑏𝑣\displaystyle\left(\left[1-F_{X}\left(b(v)\right)\right]\times\left[v-b(v)% \right]\right)( [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ italic_v - italic_b ( italic_v ) ] )
+\displaystyle++ ([FX(b(v))]×[b(v)n×(FX(b(v)))r1])delimited-[]subscript𝐹𝑋𝑏𝑣delimited-[]𝑏𝑣𝑛superscriptsubscript𝐹𝑋𝑏𝑣𝑟1\displaystyle\left(\left[F_{X}\left(b(v)\right)\right]\times\left[-\frac{b(v)}% {n}\times\left(F_{X}\left(b(v)\right)\right)^{r-1}\right]\right)( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ - divide start_ARG italic_b ( italic_v ) end_ARG start_ARG italic_n end_ARG × ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT ] )
])\displaystyle\bigg{]}\Bigg{)}] )
=nj=1n([FX(b(v))]nj)×r=1n(\displaystyle=\ \frac{n}{\sum^{n}_{j=1}\left(\left[F_{X}\left(b(v)\right)% \right]^{n-j}\right)}\times\sum^{n}_{r=1}\Bigg{(}\ = divide start_ARG italic_n end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT ) end_ARG × ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT (
[(FX(b(v)))nr×([1FX(b(v)))×(vb(v))]\displaystyle\left[\left(F_{X}\left(b(v)\right)\right)^{n-r}\times\left([1-F_{% X}\left(b(v)\right)\right)\times\left(v-b(v)\right)\right][ ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT × ( [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) × ( italic_v - italic_b ( italic_v ) ) ]
\displaystyle-- [(FX(b(v)))nr×(FX(b(v)))r×b(v)n]delimited-[]superscriptsubscript𝐹𝑋𝑏𝑣𝑛𝑟superscriptsubscript𝐹𝑋𝑏𝑣𝑟𝑏𝑣𝑛\displaystyle\left[\left(F_{X}\left(b(v)\right)\right)^{n-r}\times\left(F_{X}% \left(b(v)\right)\right)^{r}\times\frac{b(v)}{n}\right][ ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT × ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT × divide start_ARG italic_b ( italic_v ) end_ARG start_ARG italic_n end_ARG ]
))\displaystyle\Bigg{)})
=n×r=1n([(FX(b(v)))nr×([1FX(b(v)))×(vb(v))][(FX(b(v)))n×b(v)n])j=1n([FX(b(v))]nj)\displaystyle=\frac{n\times\sum^{n}_{r=1}\left(\left[\left(F_{X}\left(b(v)% \right)\right)^{n-r}\times\left([1-F_{X}\left(b(v)\right)\right)\times\left(v-% b(v)\right)\right]\ -\ \left[\left(F_{X}\left(b(v)\right)\right)^{n}\times% \frac{b(v)}{n}\right]\right)}{\sum^{n}_{j=1}\left(\left[F_{X}\left(b(v)\right)% \right]^{n-j}\right)}= divide start_ARG italic_n × ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT ( [ ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT × ( [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) × ( italic_v - italic_b ( italic_v ) ) ] - [ ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × divide start_ARG italic_b ( italic_v ) end_ARG start_ARG italic_n end_ARG ] ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT ) end_ARG
=n×r=1n([FX(b(v))]nr×[[1FX(b(v))]×[vb(v)])j=1n([FX(b(v))]nj)n×[n×[(FX(b(v)))n×b(v)n]]j=1n([FX(b(v))]nj)\displaystyle=\frac{n\times\sum^{n}_{r=1}\left(\left[F_{X}\left(b(v)\right)% \right]^{n-r}\times\left[[1-F_{X}\left(b(v)\right)\right]\times\left[v-b(v)% \right]\right)}{\sum^{n}_{j=1}\left(\left[F_{X}\left(b(v)\right)\right]^{n-j}% \right)}\ -\ \frac{n\times\left[n\ \times\ \left[\left(F_{X}\left(b(v)\right)% \right)^{n}\times\frac{b(v)}{n}\right]\right]}{\sum^{n}_{j=1}\left(\left[F_{X}% \left(b(v)\right)\right]^{n-j}\right)}= divide start_ARG italic_n × ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT × [ [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ italic_v - italic_b ( italic_v ) ] ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT ) end_ARG - divide start_ARG italic_n × [ italic_n × [ ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × divide start_ARG italic_b ( italic_v ) end_ARG start_ARG italic_n end_ARG ] ] end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT ) end_ARG
=n×[1FX(b(v))]×[vb(v)]×r=1n([FX(b(v))]nr)j=1n([FX(b(v))]nj)n×(FX(b(v)))n×b(v)j=1n([FX(b(v))]nj)absent𝑛delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]𝑣𝑏𝑣subscriptsuperscript𝑛𝑟1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑟subscriptsuperscript𝑛𝑗1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑗𝑛superscriptsubscript𝐹𝑋𝑏𝑣𝑛𝑏𝑣subscriptsuperscript𝑛𝑗1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑗\displaystyle=\frac{n\times\left[1-F_{X}\left(b(v)\right)\right]\times\left[v-% b(v)\right]\times\sum^{n}_{r=1}\left(\left[F_{X}\left(b(v)\right)\right]^{n-r}% \right)}{\sum^{n}_{j=1}\left(\left[F_{X}\left(b(v)\right)\right]^{n-j}\right)}% \ -\ \frac{n\ \times\ \left(F_{X}\left(b(v)\right)\right)^{n}\times b(v)}{\sum% ^{n}_{j=1}\left(\left[F_{X}\left(b(v)\right)\right]^{n-j}\right)}= divide start_ARG italic_n × [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ italic_v - italic_b ( italic_v ) ] × ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT ) end_ARG - divide start_ARG italic_n × ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × italic_b ( italic_v ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_j end_POSTSUPERSCRIPT ) end_ARG
=n×([1FX(b(v))]×[vb(v)]×r=1n[(FX(b(v)))nr])([FX(b(v))]n×b(v))r=1n([FX(b(v))]nr)absent𝑛delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]𝑣𝑏𝑣subscriptsuperscript𝑛𝑟1delimited-[]superscriptsubscript𝐹𝑋𝑏𝑣𝑛𝑟superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑏𝑣subscriptsuperscript𝑛𝑟1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑟\displaystyle=n\times\frac{\left(\left[1-F_{X}\left(b(v)\right)\right]\times% \left[v-b(v)\right]\times\sum^{n}_{r=1}\left[\left(F_{X}\left(b(v)\right)% \right)^{n-r}\right]\right)\ -\ \left(\left[F_{X}\left(b(v)\right)\right]^{n}% \times b(v)\right)}{\sum^{n}_{r=1}\left(\left[F_{X}\left(b(v)\right)\right]^{n% -r}\right)}= italic_n × divide start_ARG ( [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ italic_v - italic_b ( italic_v ) ] × ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT [ ( italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT ] ) - ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × italic_b ( italic_v ) ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT ) end_ARG
=n×[([1FX(b(v))]×[vb(v)])(b(v)×[FX(b(v))]nr=1n([FX(b(v))]nr))]absent𝑛delimited-[]delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]𝑣𝑏𝑣𝑏𝑣superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛subscriptsuperscript𝑛𝑟1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑟\displaystyle=n\times\left[\left(\left[1-F_{X}\left(b(v)\right)\right]\times% \left[v-b(v)\right]\right)\ -\ \left(b(v)\times\frac{\left[F_{X}\left(b(v)% \right)\right]^{n}}{\sum^{n}_{r=1}\left(\left[F_{X}\left(b(v)\right)\right]^{n% -r}\right)}\right)\right]= italic_n × [ ( [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ italic_v - italic_b ( italic_v ) ] ) - ( italic_b ( italic_v ) × divide start_ARG [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_r = 1 end_POSTSUBSCRIPT ( [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n - italic_r end_POSTSUPERSCRIPT ) end_ARG ) ]
=n×[([1FX(b(v))]×[vb(v)])(b(v)×[FX(b(v))]n1[FX(b(v))]n1[FX(b(v))])]absent𝑛delimited-[]delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]𝑣𝑏𝑣𝑏𝑣superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛1delimited-[]subscript𝐹𝑋𝑏𝑣\displaystyle=n\times\left[\left(\left[1-F_{X}\left(b(v)\right)\right]\times% \left[v-b(v)\right]\right)\ -\ \left(b(v)\times\frac{\left[F_{X}\left(b(v)% \right)\right]^{n}}{\frac{1-\left[F_{X}\left(b(v)\right)\right]^{n}}{1-\left[F% _{X}\left(b(v)\right)\right]}}\right)\right]= italic_n × [ ( [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ italic_v - italic_b ( italic_v ) ] ) - ( italic_b ( italic_v ) × divide start_ARG [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG start_ARG divide start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] end_ARG end_ARG ) ]
=n×[([1FX(b(v))]×[vb(v)])(b(v)×[FX(b(v))]n×(1[FX(b(v))])1[FX(b(v))]n)]absent𝑛delimited-[]delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]𝑣𝑏𝑣𝑏𝑣superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛1delimited-[]subscript𝐹𝑋𝑏𝑣1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛\displaystyle=n\times\left[\left(\left[1-F_{X}\left(b(v)\right)\right]\times% \left[v-b(v)\right]\right)\ -\ \left(b(v)\times\frac{\left[F_{X}\left(b(v)% \right)\right]^{n}\times\left(1-\left[F_{X}\left(b(v)\right)\right]\right)}{1-% \left[F_{X}\left(b(v)\right)\right]^{n}}\right)\right]= italic_n × [ ( [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ italic_v - italic_b ( italic_v ) ] ) - ( italic_b ( italic_v ) × divide start_ARG [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × ( 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] ) end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ) ]
=n×[1FX(b(v))]×[(vb(v))(b(v)×[FX(b(v))]n1[FX(b(v))]n)]absent𝑛delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]𝑣𝑏𝑣𝑏𝑣superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛\displaystyle=n\times\left[1-F_{X}\left(b(v)\right)\right]\times\left[\left(v-% b(v)\right)\ -\ \left(\frac{b(v)\times\left[F_{X}\left(b(v)\right)\right]^{n}}% {1-\left[F_{X}\left(b(v)\right)\right]^{n}}\right)\right]= italic_n × [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ ( italic_v - italic_b ( italic_v ) ) - ( divide start_ARG italic_b ( italic_v ) × [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ) ]
=n×[1FX(b(v))]×[([(1[FX(b(v))]n)×(vb(v))](b(v)×[FX(b(v))]n)1[FX(b(v))]n)]absent𝑛delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]delimited-[]1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑣𝑏𝑣𝑏𝑣superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛\displaystyle=n\times\left[1-F_{X}\left(b(v)\right)\right]\times\left[\left(% \frac{\left[\left(1-\left[F_{X}\left(b(v)\right)\right]^{n}\right)\times\left(% v-b(v)\right)\right]\ -\ \left(b(v)\times\left[F_{X}\left(b(v)\right)\right]^{% n}\right)}{1-\left[F_{X}\left(b(v)\right)\right]^{n}}\right)\right]= italic_n × [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ ( divide start_ARG [ ( 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) × ( italic_v - italic_b ( italic_v ) ) ] - ( italic_b ( italic_v ) × [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ) ]
=n×[1FX(b(v))]×[([v×(1[FX(b(v))]n)](b(v)×(1[FX(b(v))]n)+[FX(b(v))]n)1[FX(b(v))]n)]absent𝑛delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]delimited-[]𝑣1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑏𝑣1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛\displaystyle=n\times\left[1-F_{X}\left(b(v)\right)\right]\times\left[\left(% \frac{\left[v\times\left(1-\left[F_{X}\left(b(v)\right)\right]^{n}\right)% \right]\ -\ \left(b(v)\times\left(1-\left[F_{X}\left(b(v)\right)\right]^{n}% \right)+\left[F_{X}\left(b(v)\right)\right]^{n}\right)}{1-\left[F_{X}\left(b(v% )\right)\right]^{n}}\right)\right]= italic_n × [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ ( divide start_ARG [ italic_v × ( 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ] - ( italic_b ( italic_v ) × ( 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) + [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ) ]
=n×[1FX(b(v))]×[([v×(1[FX(b(v))]n)]b(v)1[FX(b(v))]n)]absent𝑛delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]delimited-[]𝑣1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛𝑏𝑣1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛\displaystyle=n\times\left[1-F_{X}\left(b(v)\right)\right]\times\left[\left(% \frac{\left[v\times\left(1-\left[F_{X}\left(b(v)\right)\right]^{n}\right)% \right]\ -\ b(v)}{1-\left[F_{X}\left(b(v)\right)\right]^{n}}\right)\right]= italic_n × [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ ( divide start_ARG [ italic_v × ( 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ] - italic_b ( italic_v ) end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ) ]
Ui[b(vi),b(vi)]=n×[1FX(b(v))]×[vb(v)1[FX(b(v))]n]subscript𝑈𝑖𝑏subscript𝑣𝑖𝑏subscript𝑣𝑖𝑛delimited-[]1subscript𝐹𝑋𝑏𝑣delimited-[]𝑣𝑏𝑣1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛\displaystyle U_{i}\left[b(v_{i}),b(v_{-i})\right]\ =\ n\times\left[1-F_{X}% \left(b(v)\right)\right]\times\left[v-\frac{b(v)}{1-\left[F_{X}\left(b(v)% \right)\right]^{n}}\right]italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ italic_b ( italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , italic_b ( italic_v start_POSTSUBSCRIPT - italic_i end_POSTSUBSCRIPT ) ] = italic_n × [ 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] × [ italic_v - divide start_ARG italic_b ( italic_v ) end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ]

Numerical Analysis

The equilibrium bid b(v)superscript𝑏𝑣b^{*}(v)italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_v ) is found by setting the derivative of Ui[b(v)]subscript𝑈𝑖delimited-[]𝑏𝑣U_{i}[b(v)]italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ italic_b ( italic_v ) ] with respect to b(v)𝑏𝑣b(v)italic_b ( italic_v ) to zero. Assume XN(v,σ2)similar-to𝑋𝑁𝑣superscript𝜎2X\sim N(v,\sigma^{2})italic_X ∼ italic_N ( italic_v , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ). Letting z=b(v)vσ𝑧𝑏𝑣𝑣𝜎z=\frac{b(v)-v}{\sigma}italic_z = divide start_ARG italic_b ( italic_v ) - italic_v end_ARG start_ARG italic_σ end_ARG and recognizing that Φ(z)Φ𝑧\Phi(z)roman_Φ ( italic_z ) and ϕ(z)italic-ϕ𝑧\phi(z)italic_ϕ ( italic_z ) represent the normal CDF and PDF respectively, we derive a complex condition for equilibrium:

Ui[b(v)]subscript𝑈𝑖delimited-[]𝑏𝑣\displaystyle U_{i}[b(v)]italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ italic_b ( italic_v ) ] =n[v(1FX(b(v)))+σfX(b(v))b(v)(1FX(b(v)))1[FX(b(v))]n]absent𝑛delimited-[]𝑣1subscript𝐹𝑋𝑏𝑣𝜎subscript𝑓𝑋𝑏𝑣𝑏𝑣1subscript𝐹𝑋𝑏𝑣1superscriptdelimited-[]subscript𝐹𝑋𝑏𝑣𝑛\displaystyle=n\biggl{[}v(1-F_{X}(b(v)))+\sigma f_{X}(b(v))-\frac{b(v)(1-F_{X}% (b(v)))}{1-[F_{X}(b(v))]^{n}}\biggr{]}= italic_n [ italic_v ( 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) + italic_σ italic_f start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) - divide start_ARG italic_b ( italic_v ) ( 1 - italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ) end_ARG start_ARG 1 - [ italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_b ( italic_v ) ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ]
=n[v(1Φ(z))+σϕ(z)σb(v)(1Φ(z))1[Φ(z)]n]absent𝑛delimited-[]𝑣1Φ𝑧𝜎italic-ϕ𝑧𝜎𝑏𝑣1Φ𝑧1superscriptdelimited-[]Φ𝑧𝑛\displaystyle=n\left[v(1-\Phi(z))+\sigma\frac{\phi(z)}{\sigma}-\frac{b(v)(1-% \Phi(z))}{1-[\Phi(z)]^{n}}\right]= italic_n [ italic_v ( 1 - roman_Φ ( italic_z ) ) + italic_σ divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG - divide start_ARG italic_b ( italic_v ) ( 1 - roman_Φ ( italic_z ) ) end_ARG start_ARG 1 - [ roman_Φ ( italic_z ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ]
=n[v(1Φ(z))+ϕ(z)b(v)(1Φ(z))1[Φ(z)]n]absent𝑛delimited-[]𝑣1Φ𝑧italic-ϕ𝑧𝑏𝑣1Φ𝑧1superscriptdelimited-[]Φ𝑧𝑛\displaystyle=n\left[v(1-\Phi(z))+\phi(z)-\frac{b(v)(1-\Phi(z))}{1-[\Phi(z)]^{% n}}\right]= italic_n [ italic_v ( 1 - roman_Φ ( italic_z ) ) + italic_ϕ ( italic_z ) - divide start_ARG italic_b ( italic_v ) ( 1 - roman_Φ ( italic_z ) ) end_ARG start_ARG 1 - [ roman_Φ ( italic_z ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ]
ddb(v)[v(1Φ(z))]=v(ϕ(z)σ)𝑑𝑑𝑏𝑣delimited-[]𝑣1Φ𝑧𝑣italic-ϕ𝑧𝜎\frac{d}{db(v)}[v(1-\Phi(z))]=v(-\frac{\phi(z)}{\sigma})divide start_ARG italic_d end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG [ italic_v ( 1 - roman_Φ ( italic_z ) ) ] = italic_v ( - divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG )
ddb(v)[ϕ(z)]𝑑𝑑𝑏𝑣delimited-[]italic-ϕ𝑧\displaystyle\frac{d}{db(v)}[\phi(z)]divide start_ARG italic_d end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG [ italic_ϕ ( italic_z ) ] =dϕ(z)db(v)absent𝑑italic-ϕ𝑧𝑑𝑏𝑣\displaystyle=\frac{d\phi(z)}{db(v)}= divide start_ARG italic_d italic_ϕ ( italic_z ) end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG
=zϕ(z)σabsent𝑧italic-ϕ𝑧𝜎\displaystyle=\frac{-z\phi(z)}{\sigma}= divide start_ARG - italic_z italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG
Q(b(v))=b(v)(1Φ(z))1[Φ(z)]n𝑄𝑏𝑣𝑏𝑣1Φ𝑧1superscriptdelimited-[]Φ𝑧𝑛Q(b(v))=\frac{b(v)(1-\Phi(z))}{1-[\Phi(z)]^{n}}italic_Q ( italic_b ( italic_v ) ) = divide start_ARG italic_b ( italic_v ) ( 1 - roman_Φ ( italic_z ) ) end_ARG start_ARG 1 - [ roman_Φ ( italic_z ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG
ddb(v)[b(v)(1Φ(z))]=(1Φ(z))+b(v)(ϕ(z)σ)𝑑𝑑𝑏𝑣delimited-[]𝑏𝑣1Φ𝑧1Φ𝑧𝑏𝑣italic-ϕ𝑧𝜎\frac{d}{db(v)}[b(v)(1-\Phi(z))]=(1-\Phi(z))+b(v)(-\frac{\phi(z)}{\sigma})divide start_ARG italic_d end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG [ italic_b ( italic_v ) ( 1 - roman_Φ ( italic_z ) ) ] = ( 1 - roman_Φ ( italic_z ) ) + italic_b ( italic_v ) ( - divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG )
ddb(v)[1(Φ(z))n]=n(Φ(z))n1ϕ(z)σ𝑑𝑑𝑏𝑣delimited-[]1superscriptΦ𝑧𝑛𝑛superscriptΦ𝑧𝑛1italic-ϕ𝑧𝜎\frac{d}{db(v)}[1-(\Phi(z))^{n}]=-n(\Phi(z))^{n-1}\frac{\phi(z)}{\sigma}divide start_ARG italic_d end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG [ 1 - ( roman_Φ ( italic_z ) ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ] = - italic_n ( roman_Φ ( italic_z ) ) start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG
dQdb(v)𝑑𝑄𝑑𝑏𝑣\displaystyle\frac{dQ}{db(v)}divide start_ARG italic_d italic_Q end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG =(1[Φ(z)]n)ddb(v)[b(v)(1Φ(z))]b(v)(1Φ(z))ddb(v)[1[Φ(z)]n][1(Φ(z))n]2absent1superscriptdelimited-[]Φ𝑧𝑛𝑑𝑑𝑏𝑣delimited-[]𝑏𝑣1Φ𝑧𝑏𝑣1Φ𝑧𝑑𝑑𝑏𝑣delimited-[]1superscriptdelimited-[]Φ𝑧𝑛superscriptdelimited-[]1superscriptΦ𝑧𝑛2\displaystyle=\frac{(1-[\Phi(z)]^{n})\frac{d}{db(v)}[b(v)(1-\Phi(z))]-b(v)(1-% \Phi(z))\frac{d}{db(v)}[1-[\Phi(z)]^{n}]}{[1-(\Phi(z))^{n}]^{2}}= divide start_ARG ( 1 - [ roman_Φ ( italic_z ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) divide start_ARG italic_d end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG [ italic_b ( italic_v ) ( 1 - roman_Φ ( italic_z ) ) ] - italic_b ( italic_v ) ( 1 - roman_Φ ( italic_z ) ) divide start_ARG italic_d end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG [ 1 - [ roman_Φ ( italic_z ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ] end_ARG start_ARG [ 1 - ( roman_Φ ( italic_z ) ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
=(1(Φ(z))n)[(1Φ(z))ϕ(z)σb(v)]b(v)(1Φ(z))[n(Φ(z))n1ϕ(z)σ][1(Φ(z))n]2absent1superscriptΦ𝑧𝑛delimited-[]1Φ𝑧italic-ϕ𝑧𝜎𝑏𝑣𝑏𝑣1Φ𝑧delimited-[]𝑛superscriptΦ𝑧𝑛1italic-ϕ𝑧𝜎superscriptdelimited-[]1superscriptΦ𝑧𝑛2\displaystyle=\frac{(1-(\Phi(z))^{n})[(1-\Phi(z))-\frac{\phi(z)}{\sigma}b(v)]-% b(v)(1-\Phi(z))[-n(\Phi(z))^{n-1}\frac{\phi(z)}{\sigma}]}{[1-(\Phi(z))^{n}]^{2}}= divide start_ARG ( 1 - ( roman_Φ ( italic_z ) ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) [ ( 1 - roman_Φ ( italic_z ) ) - divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG italic_b ( italic_v ) ] - italic_b ( italic_v ) ( 1 - roman_Φ ( italic_z ) ) [ - italic_n ( roman_Φ ( italic_z ) ) start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG ] end_ARG start_ARG [ 1 - ( roman_Φ ( italic_z ) ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
dUidb(v)𝑑subscript𝑈𝑖𝑑𝑏𝑣\displaystyle\frac{dU_{i}}{db(v)}divide start_ARG italic_d italic_U start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG =n[ddb(v)[v(1Φ(z))]+ddb(v)[ϕ(z)]dQdb(v)]absent𝑛delimited-[]𝑑𝑑𝑏𝑣delimited-[]𝑣1Φ𝑧𝑑𝑑𝑏𝑣delimited-[]italic-ϕ𝑧𝑑𝑄𝑑𝑏𝑣\displaystyle=n\Biggl{[}\frac{d}{db(v)}[v(1-\Phi(z))]+\frac{d}{db(v)}[\phi(z)]% -\frac{dQ}{db(v)}\Biggr{]}= italic_n [ divide start_ARG italic_d end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG [ italic_v ( 1 - roman_Φ ( italic_z ) ) ] + divide start_ARG italic_d end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG [ italic_ϕ ( italic_z ) ] - divide start_ARG italic_d italic_Q end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG ]
=n[vϕ(z)σzϕ(z)σdQdb(v)]absent𝑛delimited-[]𝑣italic-ϕ𝑧𝜎𝑧italic-ϕ𝑧𝜎𝑑𝑄𝑑𝑏𝑣\displaystyle=n\Biggl{[}-\frac{v\phi(z)}{\sigma}-\frac{z\phi(z)}{\sigma}-\frac% {dQ}{db(v)}\Biggr{]}= italic_n [ - divide start_ARG italic_v italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG - divide start_ARG italic_z italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG - divide start_ARG italic_d italic_Q end_ARG start_ARG italic_d italic_b ( italic_v ) end_ARG ]
=n[vΦ(z)σzΦ(z)+1ϕ(z)b(v)Φ(z)σ1(ϕ(z)σ)n+(1ϕ(z)σ)b(v)n(ϕ(z)σ)n1Φ(z)/σ(1(ϕ(z)σ)n)2]absent𝑛delimited-[]𝑣Φ𝑧𝜎𝑧Φ𝑧1italic-ϕ𝑧𝑏𝑣Φ𝑧𝜎1superscriptitalic-ϕ𝑧𝜎𝑛1italic-ϕ𝑧𝜎𝑏𝑣𝑛superscriptitalic-ϕ𝑧𝜎𝑛1Φ𝑧𝜎superscript1superscriptitalic-ϕ𝑧𝜎𝑛2\displaystyle=n\left[-\frac{v\cdot\Phi(z)}{\sigma}-z\cdot\Phi(z)+\frac{1-\frac% {\phi(z)-b(v)\cdot\Phi(z)}{\sigma}}{1-(\frac{\phi(z)}{\sigma})^{n}}+\frac{(1-% \frac{\phi(z)}{\sigma})b(v)n(\frac{\phi(z)}{\sigma})^{n-1}\Phi(z)/\sigma}{(1-(% \frac{\phi(z)}{\sigma})^{n})^{2}}\right]= italic_n [ - divide start_ARG italic_v ⋅ roman_Φ ( italic_z ) end_ARG start_ARG italic_σ end_ARG - italic_z ⋅ roman_Φ ( italic_z ) + divide start_ARG 1 - divide start_ARG italic_ϕ ( italic_z ) - italic_b ( italic_v ) ⋅ roman_Φ ( italic_z ) end_ARG start_ARG italic_σ end_ARG end_ARG start_ARG 1 - ( divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG + divide start_ARG ( 1 - divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG ) italic_b ( italic_v ) italic_n ( divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT roman_Φ ( italic_z ) / italic_σ end_ARG start_ARG ( 1 - ( divide start_ARG italic_ϕ ( italic_z ) end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ]