Paying and Persuading

Daniel Luo 111We are particularly indebted to Zihao Li for many insightful discussions in the early stages of this project, especially concerning Propositions 1 and 4. We also thank Abhijit Banerjee, Eric Gao, Andrew Koh, and Stephen Morris for helpful discussions. Luo acknowledges the NSF Graduate Research Fellowship for financial support. All errors are ours alone. Massachusetts Institute of Technology, [email protected].
(March 8, 2025)
Abstract

We study the joint design of information and transfers when an informed Sender can motivate Receiver by both paying and (Bayesian) persuading. We introduce an augmented concavification method to characterize Sender’s value from jointly designing information and transfers. We use this characterization to show Sender strictly benefits from combining information and payments whenever the actions induced at adjacent kinks in the augmented concavification differ from those in the information-only concavification. When Receiver has an outside option, Sender always first increases the informativeness of their experiment before adjusting transfers—-payments change if and only if full revelation does not meet Receiver’s outside option constraint. Moreover, we show repeated interactions cannot restore ex-post efficiency, even with transfers and arbitrarily patient agents. However, Sender benefits from linking incentives so long as Receiver prefers the stage-game optimal information structure to no information. Our results have implications for platforms such as Uber, where both monetary rewards and strategic information disclosure influence driver behavior.

Keywords: Bayesian Persuasion, Constrained Information Design, Transfers, Platforms.

JEL Codes: D82, D83, D86, L15.

1 Introduction

Consider the problem faced by Uber, who seeks to design a platform such that drivers fulfill ride requests as often as possible (i.e. drivers accept all rides that are suggested to them). Standard economic theory suggests two canonical, potential tools Uber can use to help them attain this goal: either compensate drivers directly with money (Holmström (2017)), or indirectly, with information (Kamenica (2019)). Indeed, a rich literature has studied the nature and limits of each of the two instruments above in isolation. Yet little has been said about how to wield information and transfer together, even though modern platforms often have the ability to do both. For example, while Uber can strategically disclose information about the quality of a specific ride from a driver (and, because the algorithm is set in advance, commit to how this disclosure), they can also simply pay the driver more for accepting a ride222For example, Uber advertises differential tiers for their drivers, and restricts the information lower-tiered drivers can see about their rides: see this explanation.. When both tools are available to Uber, a new host of questions arises: how does Sender optimally trade off information and transfers (and do they even want to use both)? What are the limits of what can be done when Sender can change both drivers’ preferencse and information? How does Sender’s optimal value evolves with the prior belief about the state? Are there qualitative differences between how these tools are used to deliver utility to Receiver in the presence of exogenous outside options?

Motivated by these questions, we embed action and belief-contingent transfers into the canonical finite persuasion model of Kamenica and Gentzkow (2011). Our main result – Theorem 1 – provides a geometric characterization of Sender’s value from persuasion and transfers, which we call the 𝒦𝒦\mathcal{K}caligraphic_K-cavification. To do so, we first show that there exists a unique set of action-contingent transfers, which we call the canonical transfers – which are optimal at every prior and choice of information structure. We then identify a finite set 𝒦𝒦\mathcal{K}caligraphic_K of extremal beliefs – those at which Receiver is maximally indifferent between different actions – which uniquely pin down the value of the 𝒦𝒦\mathcal{K}caligraphic_K-cavification for all possible priors. When Sender faces a moment persuasion problem – as is the case in linear persuasion settings – extremal beliefs partition the space of prior beliefs into finitely many intervals, along which Sender’s decision on how to use information and transfers depends only on the value of their k𝑘kitalic_k-cavification at each extremal belief. We use this condition to derive easily sufficient conditions on which Sender prefers to use both information and transfers (Proposition 2) and show how to use it to compute the 𝒦𝒦\mathcal{K}caligraphic_K-cavification value for all transfers in polynomial time (Corollary 1).

We next turn to the case where Receiver has an exogenous outside option. Again we show the canonical transfers unique motivate Receiver Receiver in the prescence of a utility promise constraint – any constrained optimal transfer rule is exactly the canonical transfer rule modulo a constant. This characterization, combined with a strong duality result for constrained information design (see Doval and Skreta (2023)) implies our second main result (Theorem 2): so long Sender’s optimal payment is not exactly equal to the canonical transfers, the optimal information structure must be full information. We interpret this as a sequencing result on the role of information and transfers in meeting an outside option constraint for Receiver – Sender always prefers to first use information to guarantee Receiver a certain utility, and only turns to augmenting transfers after this channel is completely exhausted.

Finally, we consider the role of repeated interactions. Contrary to standard intuition from repeated games, we show that even with perfectly observable actions and transfers, repetition need not restore ex-post efficiency (c.f. Levin (2003)). In fact, Sender need not benefit from dynamic interaction (Proposition 4). Despite this, we show that a sufficient condition for Sender to benefit from dynamically linking Receiver incentives is for Receiver to strictly prefer Sender’s static-optimal information structure to no information. This condition that is violated in the canonical two-state, two-action example in Kamenica and Gentzkow (2011) but is satisfied in many richer examples. Our characterization applies even when k𝑘kitalic_k is very large (so transfers may never be optimal), and thus provides an independent contribution on the value of repetition in models of only information design.

The rest of this paper proceeds as follows. We next discuss the related literature. Section 2 works through a simple numerical example that highlights the intuition behind our results. Section 3 presents the general model, and Section 4 solves the static persuasion and transfers problem. Section 5 adds an exogenous outside option constraint and compares the solution to the unconstrained solution. Section 6 studies the repeated persuasion problem. Section 7 concludes and discusses promising avenues for future work.

Related Literature

We contribute to a long and rich literature on information design, initiated by Rayo and Segal (2010) and Kamenica and Gentzkow (2011) for the case of a single receiver, and by Bergemann and Morris (2016), Taneva (2019), and Smolin and Yamashita (2023) for the many-receiver case. Surveys of the burgeoning literature are found in Bergemann and Morris (2019) and Kamenica (2019); we refer the reader to these papers for a more comprehensive discussion. One core insight underlying this literature is that information provision, even without transfers, can both change behavior but benefit Sender. This insight motivates our analysis, which seeks to understand Sender’s tradeoff between information provision and transfers when both may be used to motivate an agent.

There are some related models on the joint interaction between transfers and information, albeit in different settings. Bergemann et al. (2015) study the role of varying information on a monopolists’ optimal pricing scheme and the implications for the distribution of welfare, focusing on extremal information structures. Bergemann and Pesendorfer (2007), Eso and Szentes (2007), and Bergemann et al. (2022) study revenue-maximizing information disclosure to bidders who then participate in the auction, while Terstiege and Wasser (2022) and Ravid et al. (2022) study auctions where bidders can choose the information they learn about their type (potentially at a cost). We differ from this work by having both Sender design information but also pay the agent (instead of having the agent pay Sender for a good). Finally, Li (2017) study the effect of limiting transfers on information transmission in a binary-state model where the transfer rule is decided after information. We contribute to all of these models by solving a general finite-state, finite action problem with information and transfers, highlighting the role of extremal beliefs in characterizing the optimal solution.

There has also been significant research in the dynamics of (optimal) information design, starting from the seminal work of Ely (2017) and Renault et al. (2017) who analyze the optimal policy when the state evolves according to a Markov chain. Koh and Sanguanmoo (2022) and Koh et al. (2024) analyze general models of persuasion when the state is persistent and the agent takes an irreversible action. Finally, Ely et al. (2022) study a dynamic moral hazard problem where the principal can release information about a persistent fundamental that affects agents’ work-or-shirk decisions and thus the realized path of transfers. We contribute to this literature by giving a framework in which a principal jointly contributes to the joint path of information and transfers for a transient state.

Along the way, we need to analyze the static persuasion problem subject to an exogenous outside option constraint. To do so, we draw on methods introduced by Doval and Skreta (2023) and Treust and Tomala (2019) for constrained persuasion problems without transfers, and augment their argument to allow for Sender to also pay Receiver. Further afield, Babichenko et al. (2021), Kosenko (2023), and Lorecchio and Monte (2023) all study persuasion problems without transfers; we solve the constrained persuasion problem when Sender can also pay the agent.

Finally, we contribute to the literature that seeks to find geometric characterizations for the value of communication. The concavification theorem – a fundamental result in information design – goes as far back as Aumann and Maschler (1995), and was applied to communication games by Kamenica and Gentzkow (2011). More recent work has found a geometric characterization in games with many players (Mathevet et al. (2020)), for the Bayes welfare set of a game (Doval and Smolin (2024)), for cheap talk with state-independent preferences (Lipnowski and Ravid (2020)), and for general finite cheap talk models (Barros (2025)). We contribute to this literature by providing a geometric characterization of Sender’s joint value from using persuasion and transfers that can be computed in polynomial time.

2 Examples

2.1 The Role of Transfers

We start with the following example based on a one-shot interaction between a driver and Uber. Suppose there are two states of the world: a ride is either good (θ1)subscript𝜃1(\theta_{1})( italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) or bad (θ0)subscript𝜃0(\theta_{0})( italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ). Let μ=(θ=θ1)𝜇𝜃subscript𝜃1\mu=\mathbb{P}(\theta=\theta_{1})italic_μ = blackboard_P ( italic_θ = italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) be the probability the driver thinks the state is good. Given the driver’s belief about the state of the world, they can do one of three things. Reject the ride (a0)subscript𝑎0(a_{0})( italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), accept the ride but then renege and cancel (a1)subscript𝑎1(a_{1})( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), or accept and fulfill the ride request (a2)subscript𝑎2(a_{2})( italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Uber has strict, state-independent preferences: they prefer acceptance to rejection to acceptance and then reneging. The driver wishes to accept good rides and rejects bad ones. However, the driver prefers accepting and then reneging to either accepting a bad ride or rejecting a good one. Formally, we model the above interact with the following state-dependent payoffs.333The specification of cardinal payoffs is not important, and is mostly chosen to simplify the algebra.

S/R a0subscript𝑎0a_{0}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT
θ0subscript𝜃0\theta_{0}italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 0,1010,10 , 1 0.5,00.50-0.5,0- 0.5 , 0 2.5,22.522.5,-22.5 , - 2
θ1subscript𝜃1\theta_{1}italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT 0,2020,-20 , - 2 0.5,00.50-0.5,0- 0.5 , 0 2.5,12.512.5,12.5 , 1

Having fixed cardinal payoffs, we use the concavification theorem of Kamenica and Gentzkow (2011) to graph Sender’s indirect utility function and its concavification in Figure 1.

1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG2323\frac{2}{3}divide start_ARG 2 end_ARG start_ARG 3 end_ARG11110.50.5-0.5- 0.52.52.52.52.5μ𝜇\muitalic_μV(μ)𝑉𝜇V(\mu)italic_V ( italic_μ )
Figure 1: Value of Persuasion

Suppose μ0=16subscript𝜇016\mu_{0}=\frac{1}{6}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 6 end_ARG. Then Sender’s optimal value from persuasion is given by 34(0)+14(52)=58340145258\frac{3}{4}(0)+\frac{1}{4}(\frac{5}{2})=\frac{5}{8}divide start_ARG 3 end_ARG start_ARG 4 end_ARG ( 0 ) + divide start_ARG 1 end_ARG start_ARG 4 end_ARG ( divide start_ARG 5 end_ARG start_ARG 2 end_ARG ) = divide start_ARG 5 end_ARG start_ARG 8 end_ARG. If, instead, Sender could not use persuasion but would pay the agent to induce a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, giving Sender a payoff of 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG.

What happens if Sender could use both transfers and persuasion? Consider the following scheme: with probability 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG, reveal the state is 00 for sure, and pay the agent nothing, allowing them to take a0subscript𝑎0a_{0}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. With probability 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG induce belief 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG, and pay the agent 1111 dollar to take action a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT (noting their expected payoff from a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT at μ=13𝜇13\mu=\frac{1}{3}italic_μ = divide start_ARG 1 end_ARG start_ARG 3 end_ARG is 11-1- 1), This gives Sender a payoff of 12(0)+12(2.51)=34120122.5134\frac{1}{2}(0)+\frac{1}{2}(2.5-1)=\frac{3}{4}divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 0 ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 2.5 - 1 ) = divide start_ARG 3 end_ARG start_ARG 4 end_ARG, which is greater than their value from just persuasion or just transfers. Figure 2 gives a graphical illustration of this joint persuasion and transfer scheme.

μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG2323\frac{2}{3}divide start_ARG 2 end_ARG start_ARG 3 end_ARG11110.50.5-0.5- 0.52.52.52.52.5
Value Function
Persuasion Only
Persuasion + Transfers
μ𝜇\muitalic_μV(μ)𝑉𝜇V(\mu)italic_V ( italic_μ )
Figure 2: Value with Transfers

There are a few features of the above graph worth explicitly flagging. First, the candidate solution strictly outperforms (for sender) the policy where Sender gives full information and then pays to induce the efficient action at each degenerate belief (in which case payments are never used and Sender gets payoffs of 512512\frac{5}{12}divide start_ARG 5 end_ARG start_ARG 12 end_ARG.). This computation shows the ex-post efficient payoff is not attained by information and transfers, which is potentially surprising as actions are perfectly observed and Sender has access to transfers in our model. However, efficiency fails because of Sender’s limited liability constraint: Sender cannot charge Receiver when a state-realization guarantees Receiver positive surplus, and hence Sender may choose to restrict the information they provide. Consequently, Sender may prefer to withhold information about the state in order to relax the limited liability constraint and hold on to more of the surplus.

Second, the optimum features both transfers and persuasion, highlighting that both tools can be useful: in particular, a bang-bang solution where either only transfers or only persuasion are used at some prior belief is strictly suboptimal. Finally, in equilibrium, the induced beliefs are exactly those where either (1) the state is fully revealed or (2) Receiver’s best-response correspondence is multiple-valued. Theorem 1 generalizes this observation and characterizes all beliefs that might be induced at an optimal information and transfer policy.

2.2 The Role of Dynamics

Consider again Example 2.1 but suppose the prior is μ0=12subscript𝜇012\mu_{0}=\frac{1}{2}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG. Here, one candidate optimum is to pay Receiver 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG to take action a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, which yields a payoff of 4444 over both periods. However, this is not optimal444Note that by Theorem 1, this is the static optimum at this prior. In particular, consider the following scheme.

  1. (1)

    At t=1𝑡1t=1italic_t = 1, recommend Receiver take action a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

  2. (2)

    If Receiver follows this recommendation, pay a lump sum of 124124\frac{1}{24}divide start_ARG 1 end_ARG start_ARG 24 end_ARG, and split beliefs into (0,34)034(0,\frac{3}{4})( 0 , divide start_ARG 3 end_ARG start_ARG 4 end_ARG ) with probabilities (13,23)1323(\frac{1}{3},\frac{2}{3})( divide start_ARG 1 end_ARG start_ARG 3 end_ARG , divide start_ARG 2 end_ARG start_ARG 3 end_ARG ) and have Receiver best respond myopically.

  3. (3)

    Else, if Receiver does not follow this recommendation, revert to static optimum.

If Receiver follows the recommendation, then at t=1𝑡1t=1italic_t = 1 Sender attains payoff 5252\frac{5}{2}divide start_ARG 5 end_ARG start_ARG 2 end_ARG. In the second period, Sender gets payoff 00 with probability 1414\frac{1}{4}divide start_ARG 1 end_ARG start_ARG 4 end_ARG and payoff 5212452124\frac{5}{2}-\frac{1}{24}divide start_ARG 5 end_ARG start_ARG 2 end_ARG - divide start_ARG 1 end_ARG start_ARG 24 end_ARG with probability 3434\frac{3}{4}divide start_ARG 3 end_ARG start_ARG 4 end_ARG. Thus, Sender’s expected payoff is 133>41334\frac{13}{3}>4divide start_ARG 13 end_ARG start_ARG 3 end_ARG > 4.

This recommendation policy is incentive compatible for Receiver. This is clearly true at t=2𝑡2t=2italic_t = 2 since recommendations are myopically optimal for Receiver. At t=1𝑡1t=1italic_t = 1, Receiver’s expected payoff is 1212-\frac{1}{2}- divide start_ARG 1 end_ARG start_ARG 2 end_ARG. If they do not follow the recommendation, their continuation payoff is 00. If they follow the recommendation, their expected continuation payoff is 131+23316+124=121312331612412\frac{1}{3}\cdot 1+\frac{2}{3}\cdot\frac{3}{16}+\frac{1}{24}=\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 3 end_ARG ⋅ 1 + divide start_ARG 2 end_ARG start_ARG 3 end_ARG ⋅ divide start_ARG 3 end_ARG start_ARG 16 end_ARG + divide start_ARG 1 end_ARG start_ARG 24 end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG, and hence they cannot profitable deviate. Thus, sender benefits from the ability to dynamically design information and transfers in this model.

The ability to design both is crucial. If Sender only had access to transfers then the static optimum would be optimal. If Sender could only persuade, their optimum must be bounded above by the repeated optimal persuasion value, 154154\frac{15}{4}divide start_ARG 15 end_ARG start_ARG 4 end_ARG, plus Receiver’s total surplus in the first period under the optimal persuasion value, 1414\frac{1}{4}divide start_ARG 1 end_ARG start_ARG 4 end_ARG, which is less than the joint surplus value. Two key mechanisms are at play: first, the ability of Sender to threaten no-information in the future, which relaxes Receiver incentive compatibility constraints, and second, transfers, which help smoothly ensure Receiver IC exactly binds, maximizing Sender potential surplus. Proposition 3 clarifies the extent to which these two forces intertwine to ensure Sender benefits from persuasion and transfers.

3 Model

There are two players, Sender (S)𝑆(S)( italic_S ) and Receiver (R)𝑅(R)( italic_R ). There is a finite, payoff-relevant state of the world θΘ𝜃Θ\theta\in\Thetaitalic_θ ∈ roman_Θ, drawn from a full-support prior μ0Δ(Θ)subscript𝜇0ΔΘ\mu_{0}\in\Delta(\Theta)italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ roman_Δ ( roman_Θ ). Receiver can take one of finitely many actions a𝒜𝑎𝒜a\in\mathcal{A}italic_a ∈ caligraphic_A.

Before Receiver takes their action, Sender can influence Receiver in one of two ways. First, Sender can design Receiver’s informational environment by committing to any Blackwell experiment from states to some messages space, formally555Following the standard belief-based approaches of Kamenica and Gentzkow (2011) and Bergemann and Morris (2016), noting that we omit the exact details, which are spelled out in the above references. a distribution of posterior beliefs τΔ(Δ(Θ))𝜏ΔΔΘ\tau\in\Delta(\Delta(\Theta))italic_τ ∈ roman_Δ ( roman_Δ ( roman_Θ ) ) such that Eτ[μ]=μ0subscript𝐸𝜏delimited-[]𝜇subscript𝜇0{E}_{\tau}[\mu]=\mu_{0}italic_E start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT [ italic_μ ] = italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Second, Sender can designs a transfer scheme, formally a mapping t:Θ×Δ(Θ)×𝒜R+:𝑡ΘΔΘ𝒜subscript𝑅t:\Theta\times\Delta(\Theta)\times\mathcal{A}\to{R}_{+}italic_t : roman_Θ × roman_Δ ( roman_Θ ) × caligraphic_A → italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT from states, messages, and actions into nonnegative real numbers. Let 𝒯=R+|Θ|×|Δ(Θ)|×𝒜𝒯superscriptsubscript𝑅ΘΔΘ𝒜\mathcal{T}={R}_{+}^{|\Theta|\times|\Delta(\Theta)|\times\mathcal{A}}caligraphic_T = italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT | roman_Θ | × | roman_Δ ( roman_Θ ) | × caligraphic_A end_POSTSUPERSCRIPT be the set of all transfer rules. Implicitly, the requirement that the transfer cannot be negative imposes a limited liability constraint: Sender cannot ask the agent to pay them conditional on a good state realization of the world. This constraint prevents Sender from immediately attaining their first best and is a core friction in the paper.

Sender and Receiver have baseline preferences v(a,θ)𝑣𝑎𝜃v(a,\theta)italic_v ( italic_a , italic_θ ) and u(a,θ)𝑢𝑎𝜃u(a,\theta)italic_u ( italic_a , italic_θ ) over the action and state, respectively. Given any realized posterior belief μΔ(Θ)𝜇ΔΘ\mu\in\Delta(\Theta)italic_μ ∈ roman_Δ ( roman_Θ ), transfer rule t𝑡titalic_t, and Receiver action a𝑎aitalic_a, Sender and Receiver realized payoffs are given by

v(a,θ)kt(a,μ,θ) and u(a,θ)+t(a,μ,θ)𝑣𝑎𝜃𝑘𝑡𝑎𝜇𝜃 and 𝑢𝑎𝜃𝑡𝑎𝜇𝜃v(a,\theta)-kt(a,\mu,\theta)\text{ and }u(a,\theta)+t(a,\mu,\theta)italic_v ( italic_a , italic_θ ) - italic_k italic_t ( italic_a , italic_μ , italic_θ ) and italic_u ( italic_a , italic_θ ) + italic_t ( italic_a , italic_μ , italic_θ )

respectively. k>0𝑘0k>0italic_k > 0 is a parameter reflecting the efficiency of transfers. If k=1𝑘1k=1italic_k = 1, then it costs Sender 1111 unit to transfer to the agent 1111 unit of surplus666In principle, k𝑘kitalic_k may not be 1111 because of differences in marginal tax rates, risk aversion, minimum wage laws, etc. We see k𝑘kitalic_k as a reduced form way to model these potential frictions..

Given the above realized utilites, for any posterior belief μ𝜇\muitalic_μ and transfer rule t𝑡titalic_t, define Receiver’s best-response correspondence to be

a(μ,t)=argmaxa𝒜{Eμ[u(a,θ)+t(a,μ,θ)]}.superscript𝑎𝜇𝑡subscript𝑎𝒜subscript𝐸𝜇delimited-[]𝑢𝑎𝜃𝑡𝑎𝜇𝜃a^{\dagger}(\mu,t)=\operatorname*{\arg\!\max}_{a\in\mathcal{A}}\left\{{E}_{\mu% }[u(a,\theta)+t(a,\mu,\theta)]\right\}.italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( italic_μ , italic_t ) = start_OPERATOR roman_arg roman_max end_OPERATOR start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a , italic_θ ) + italic_t ( italic_a , italic_μ , italic_θ ) ] } .

Denote Sender’s optimal selection from Receiver’s best response correspondence is

a(μ,t)=argmaxaa(μ,t){Eμ[v(a,θ)kt(a,μ,θ)]}.superscript𝑎𝜇𝑡subscript𝑎superscript𝑎𝜇𝑡subscript𝐸𝜇delimited-[]𝑣𝑎𝜃𝑘𝑡𝑎𝜇𝜃a^{*}(\mu,t)=\operatorname*{\arg\!\max}_{a\in a^{\dagger}(\mu,t)}\left\{{E}_{% \mu}[v(a,\theta)-kt(a,\mu,\theta)]\right\}.italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t ) = start_OPERATOR roman_arg roman_max end_OPERATOR start_POSTSUBSCRIPT italic_a ∈ italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( italic_μ , italic_t ) end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_a , italic_θ ) - italic_k italic_t ( italic_a , italic_μ , italic_θ ) ] } .

We will use 𝟎0\mathbf{0}bold_0 to denote the baseline without transfers, i.e. there are no payments regardless of the action, state, or belief. Consequently, a(μ,𝟎)superscript𝑎𝜇0a^{*}(\mu,\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) is Receiver’s action given belief μ𝜇\muitalic_μ in the absence of transfers, i.e. as it is defined in Kamenica and Gentzkow (2011). Since Receiver’s payoff depends only on their expected state, it should be clear that it is without loss of generality to suppose the transfer rule t𝑡titalic_t does not condition on the state (in particular, at each belief μ𝜇\muitalic_μ, we can pay Receiver their expected transfer). Consequently, we will drop the dependence of t𝑡titalic_t on the state θ𝜃\thetaitalic_θ in the remainder of the paper to simplify notation. From here, define Sender’s indirect value function given a transfer rule t𝑡titalic_t to be

V(μ,t)=Eμ[v(a(μ,t),θ)kt(a,μ)]𝑉𝜇𝑡subscript𝐸𝜇delimited-[]𝑣superscript𝑎𝜇𝑡𝜃𝑘𝑡𝑎𝜇V(\mu,t)={E}_{\mu}[v(a^{*}(\mu,t),\theta)-kt(a,\mu)]italic_V ( italic_μ , italic_t ) = italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t ) , italic_θ ) - italic_k italic_t ( italic_a , italic_μ ) ]

noting the choice of asuperscript𝑎a^{*}italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT from asuperscript𝑎a^{\dagger}italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT implies V(μ,t)𝑉𝜇𝑡V(\mu,t)italic_V ( italic_μ , italic_t ) is upper semi-continuous in μ𝜇\muitalic_μ for any fixed transfer rule t𝑡titalic_t. A tuple (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) is optimal at prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT if it solves the program

maxτΔ(Δ(Θ)),t𝒯{Eτ(V(μ,t))} such that Eτ[μ]=μ0.subscriptformulae-sequence𝜏ΔΔΘ𝑡𝒯subscript𝐸superscript𝜏𝑉𝜇superscript𝑡 such that subscript𝐸𝜏delimited-[]𝜇subscript𝜇0\max_{\tau\in\Delta(\Delta(\Theta)),t\in\mathcal{T}}\left\{{E}_{\tau^{*}}(V(% \mu,t^{*}))\right\}\text{ such that }{E}_{\tau}[\mu]=\mu_{0}.roman_max start_POSTSUBSCRIPT italic_τ ∈ roman_Δ ( roman_Δ ( roman_Θ ) ) , italic_t ∈ caligraphic_T end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_V ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ) } such that italic_E start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT [ italic_μ ] = italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .

Let V(μ0)superscript𝑉subscript𝜇0V^{*}(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) be the value function that is attained by an optimal tuple (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) at a prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

Recall by the revelation principle of Kamenica and Gentzkow (2011) that it is sufficient for τsuperscript𝜏\tau^{*}italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT to support at most |𝒜|𝒜|\mathcal{A}|| caligraphic_A | many actions; without loss of generality, we will restrict to these straightforward signals for the remainder of the exposition.

4 Static Equilibria

4.1 𝒦𝒦\mathcal{K}caligraphic_K-Concavification

What is the value of persuasion and transfers? Before we explicitly characterize the optimum, it will be useful to restrict the set of transfer rules that are part of an optimal tuple. Define Sender’s favorite actions at a belief μ𝜇\muitalic_μ to be

aS(μ)=argmaxa𝒜Eμ[v(a,θ)k(u(a(μ,𝟎),θ)u(a,θ))].superscript𝑎𝑆𝜇subscript𝑎𝒜subscript𝐸𝜇delimited-[]𝑣𝑎𝜃𝑘𝑢superscript𝑎𝜇0𝜃𝑢𝑎𝜃a^{S}(\mu)=\operatorname*{\arg\!\max}_{a\in\mathcal{A}}{E}_{\mu}[v(a,\theta)-k% (u(a^{*}(\mu,\mathbf{0}),\theta)-u(a,\theta))].italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ) = start_OPERATOR roman_arg roman_max end_OPERATOR start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_a , italic_θ ) - italic_k ( italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ) ] .

This is the set of actions where Sender gets the highest possible utility, assuming they choose payments so that Receiver is exactly indifferent between their default action without payments and action a𝑎aitalic_a. Given this set, define the canonical transfers at a belief μ𝜇\muitalic_μ as

tI(a,μ)=Eμ[u(a(μ,𝟎),θ)u(a,θ)]𝟏{aaS(μ)}.superscript𝑡𝐼𝑎𝜇subscript𝐸𝜇delimited-[]𝑢superscript𝑎𝜇0𝜃𝑢𝑎𝜃1𝑎superscript𝑎𝑆𝜇t^{I}(a,\mu)={E}_{\mu}[u(a^{*}(\mu,\mathbf{0}),\theta)-u(a,\theta)]\mathbf{1}% \left\{a\in a^{S}(\mu)\right\}.italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_a , italic_μ ) = italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ] bold_1 { italic_a ∈ italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ) } .

The canonical transfers are the cheapest way to induce a𝑎aitalic_a when the agent would prefer to take some action a(μ,𝟎)superscript𝑎𝜇0a^{*}(\mu,\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) when they do not have access to transfers; in particular, they pay only if Sender takes an action aaS(μ)𝑎superscript𝑎𝑆𝜇a\in a^{S}(\mu)italic_a ∈ italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ) and not otherwise777Because Sender and Receiver are both indifferent after the transfer procedure, any selection from the correspondence aS(μ)superscript𝑎𝑆𝜇a^{S}(\mu)italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ) is payoff equivalent for both players, and aS(μ)superscript𝑎𝑆𝜇a^{S}(\mu)italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ) is generically single-valued. When it is without loss of ambiguity, we will treat aS(μ)superscript𝑎𝑆𝜇a^{S}(\mu)italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ) as a singleton. Formally, we have the following:

Lemma 1.

For any prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and any optimal (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ), the tuple (τ,tI)superscript𝜏superscript𝑡𝐼(\tau^{*},t^{I})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) is optimal as well.

The proof is given in PROOF OF LEMMA 1 Note one useful property of the canonical transfers is that they are chosen to leave Receiver’s payoff the same both before and after payments:

Eτ[u(a(μ,𝟎),θ)]=Eτ[u(a(μ,tI),θ)+tI(a(μ,tI),μ)].subscript𝐸superscript𝜏delimited-[]𝑢superscript𝑎𝜇0𝜃subscript𝐸superscript𝜏delimited-[]𝑢superscript𝑎𝜇superscript𝑡𝐼𝜃superscript𝑡𝐼superscript𝑎𝜇superscript𝑡𝐼𝜇{E}_{\tau^{*}}[u(a^{*}(\mu,\mathbf{0}),\theta)]={E}_{\tau^{*}}[u(a^{*}(\mu,t^{% I}),\theta)+t^{I}(a^{*}(\mu,t^{I}),\mu)].italic_E start_POSTSUBSCRIPT italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) ] = italic_E start_POSTSUBSCRIPT italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) , italic_θ ) + italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) , italic_μ ) ] .

We can now use the canonical transfers to define the following function.

Definition 1.

The transfer-augmented indirect value function is given by

Vt(μ)=maxa𝒜Eμ[v(a,θ)k(u(a(μ,𝟎),θ)u(a,θ)].V^{t}(\mu)=\max_{a\in\mathcal{A}}{E}_{\mu}[v(a,\theta)-k(u(a^{*}(\mu,\mathbf{0% }),\theta)-u(a,\theta)].italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) = roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_a , italic_θ ) - italic_k ( italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ] .

The structure of the augmented transfer function sheds some insight into the effect of transfers. In particular, we can rewrite the problem as

maxa𝒜{Eμ[v(a,θ)+ku(a,θ)]}kEμ[u(a(μ,0),θ)].subscript𝑎𝒜subscript𝐸𝜇delimited-[]𝑣𝑎𝜃𝑘𝑢𝑎𝜃𝑘subscript𝐸𝜇delimited-[]𝑢superscript𝑎𝜇0𝜃\max_{a\in\mathcal{A}}\left\{{E}_{\mu}[v(a,\theta)+ku(a,\theta)]\right\}-k{E}_% {\mu}[u(a^{*}(\mu,0),\theta)].roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_a , italic_θ ) + italic_k italic_u ( italic_a , italic_θ ) ] } - italic_k italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , 0 ) , italic_θ ) ] .

The first term is a combination of Sender and Receiver payoffs, and is increasing in k𝑘kitalic_k, the cost of transfers to Sender: the more costly it is to change Receiver actions, the more Sender wants to behave “as-if” they are acting in Receiver’s best interest. The second term is a lump sump, independent of the induced action, that models Receiver’s “informational outside option” (their payoff from taking an action when they are not paid). We can now prove the following result about the geometric value of persuasion. Recall that the concavification of a function f𝑓fitalic_f from some topological vector space 𝒳𝒳\mathcal{X}caligraphic_X into R𝑅{R}italic_R, denoted cav(f)cav𝑓\text{cav}(f)cav ( italic_f ), is the smallest concave function such that cav(f)(x)f(x)cav𝑓𝑥𝑓𝑥\text{cav}(f)(x)\geq f(x)cav ( italic_f ) ( italic_x ) ≥ italic_f ( italic_x ) at every x𝒳𝑥𝒳x\in\mathcal{X}italic_x ∈ caligraphic_X.

Proposition 1 (Pointwise Maximization).

The optimal value function from persuasion concavifies the transfer-augmented indirect value function: V(μ0)=cav(Vt)(μ0)superscript𝑉subscript𝜇0cavsuperscript𝑉𝑡subscript𝜇0V^{*}(\mu_{0})=\text{cav}(V^{t})(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = cav ( italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ) ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ).

The proof is deferred until PROOF OF THEOREM 1 A-priori, the joint choice of optimal information structure and transfer scheme might seem hard to compute, since changes in the information structure may cause Sender to want to induce different actions with different payments at different beliefs. Proposition 1 implies this is unnecessary: it is sufficient for Sender to first maximize belief-by-belief their payoff supposing they only had access to transfers at that belief (which yields Vt(μ)superscript𝑉𝑡𝜇V^{t}(\mu)italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ )), and then subsequently optimizing over the resulting pointwise maximized function.

Though Proposition 1 greatly simplifies the problem of finding the optimal value of persuasion and transfers, it still requires an uncountable number of individual computations (one for each belief). Note, however, that in finite persuasion models the optimal value of persuasion is piecewise linear; thus, to compute the value of persuasion, it is sufficient to find each kink of the concavification and then linearly interpolate the intermediate values. Theorem 1 exactly finds a set of extremal beliefs which are sufficient to capture all of the kinks in V(μ)superscript𝑉𝜇V^{*}(\mu)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ ) and hence trace out the entire concavification (and hence, the entire value of persuasion and transfers). Towards defining extremal beliefs, define the sets

𝒪a={μ:aa(μ,𝟎)}subscript𝒪𝑎conditional-set𝜇𝑎superscript𝑎𝜇0\mathcal{O}_{a}=\{\mu:a\in a^{\dagger}(\mu,\mathbf{0})\}caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = { italic_μ : italic_a ∈ italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) }

to be the sets of beliefs at which an action a𝑎aitalic_a is optimal for an agent without transfers. Clearly, a𝒪a=Δ(Θ)subscript𝑎subscript𝒪𝑎ΔΘ\bigcup_{a}\mathcal{O}_{a}=\Delta(\Theta)⋃ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = roman_Δ ( roman_Θ ). In the proof of Theorem 1, we show each 𝒪asubscript𝒪𝑎\mathcal{O}_{a}caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT is a convex, compact polytope contained in Δ(Θ)ΔΘ\Delta(\Theta)roman_Δ ( roman_Θ ), using arguments from Gao and Luo (2025). We have the following definition.

Definition 2.

A belief μ𝜇\muitalic_μ is extremal if there exists a𝒜𝑎𝒜a\in\mathcal{A}italic_a ∈ caligraphic_A such that μext(𝒪a)𝜇extsubscript𝒪𝑎\mu\in\text{ext}(\mathcal{O}_{a})italic_μ ∈ ext ( caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ).

We give an example of extremal beliefs in a three-state, three-action problem below with the extremal beliefs depicted in brown.

θ1subscript𝜃1\theta_{1}italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPTθ2subscript𝜃2\theta_{2}italic_θ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTθ3subscript𝜃3\theta_{3}italic_θ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT𝒪a1subscript𝒪subscript𝑎1\mathcal{O}_{a_{1}}caligraphic_O start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT𝒪a2subscript𝒪subscript𝑎2\mathcal{O}_{a_{2}}caligraphic_O start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT𝒪a3subscript𝒪subscript𝑎3\mathcal{O}_{a_{3}}caligraphic_O start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT
Figure 3: Example of Extremal Beliefs
Definition 3.

Fix a set 𝒦Δ(Θ)𝒦ΔΘ\mathcal{K}\subset\Delta(\Theta)caligraphic_K ⊂ roman_Δ ( roman_Θ ). The 𝒦𝒦\mathcal{K}caligraphic_K-concavification of a function f:Δ(Θ)R:𝑓ΔΘ𝑅f:\Delta(\Theta)\to{R}italic_f : roman_Δ ( roman_Θ ) → italic_R, denoted f𝒦superscript𝑓𝒦f^{\mathcal{K}}italic_f start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT, is the smallest concave function such that f𝒦(μ)f(μ)superscript𝑓𝒦𝜇𝑓𝜇f^{\mathcal{K}}(\mu)\geq f(\mu)italic_f start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) ≥ italic_f ( italic_μ ) for all μ𝒦𝜇𝒦\mu\in\mathcal{K}italic_μ ∈ caligraphic_K.

If 𝒦=Δ(Θ)𝒦ΔΘ\mathcal{K}=\Delta(\Theta)caligraphic_K = roman_Δ ( roman_Θ ), then the concavification is exactly the 𝒦𝒦\mathcal{K}caligraphic_K-cavification. In general, for arbitrary 𝒦𝒦\mathcal{K}caligraphic_K, we only have f𝒦(μ)cav(f)(μ)superscript𝑓𝒦𝜇cav𝑓𝜇f^{\mathcal{K}}(\mu)\leq\text{cav}(f)(\mu)italic_f start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) ≤ cav ( italic_f ) ( italic_μ ). The main mathematical content of Theorem 1 shows, for (the finite set of) extremal beliefs, the inequality holds with equality at all beliefs.

Theorem 1 (Finite 𝒦𝒦\mathcal{K}caligraphic_K-cavification).

There exists a finite set of extremal points 𝒦𝒦\mathcal{K}caligraphic_K such that V𝒦(μ)=V(μ)superscript𝑉𝒦𝜇superscript𝑉𝜇V^{\mathcal{K}}(\mu)=V^{*}(\mu)italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) = italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ ) for every belief μ𝜇\muitalic_μ.

We defer the (somewhat technical) proof to PROOF OF THEOREM 1 . Theorem 1, however, has several useful implications. First, since 𝒦𝒦\mathcal{K}caligraphic_K is independent of the effectiveness of transfers, k𝑘kitalic_k, it implies that regardless of the effectiveness of transfers, there is a finite set of beliefs (independent of k𝑘kitalic_k) which are exactly the ones that might be induced in an equilibrium at some prior belief. As k𝑘kitalic_k grows large (i.e. k𝑘k\to\inftyitalic_k → ∞), it becomes very costly to use transfers, so this procedure recovers exactly the value of persuasion. This implies a “qualitative invariance” property of adding transfers to the information design problem: it will never change the set of beliefs that might be supported in an optimal experiment, regardless of the prior. When k0𝑘0k\to 0italic_k → 0, Receiver preferences become “effectively” aligned with Sender preferences, and full information is optimal.

Second, it gives a fast way to compute the (finite) set of beliefs that an analyst needs to compute to characterize the value of persuasion, since the set of extremal beliefs is often exactly the beliefs at which Receiver’s best response correspondence is multiple-valued. For example, let’s return to the problem in Example 2.1; here, it is easy to see the extremal points are exactly 𝒦={0,13,23,1}𝒦013231\mathcal{K}=\{0,\frac{1}{3},\frac{2}{3},1\}caligraphic_K = { 0 , divide start_ARG 1 end_ARG start_ARG 3 end_ARG , divide start_ARG 2 end_ARG start_ARG 3 end_ARG , 1 }. Applying Theorem 1 implies the proposed information and payment scheme – splitting beliefs into 00 and 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG and paying at 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG to induce a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT – is exactly optimal for Sender. Moreover, this splitting of beliefs (with different weights to satisfy Bayes plausibility) is optimal for any prior μ0(0,13)subscript𝜇0013\mu_{0}\in(0,\frac{1}{3})italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ ( 0 , divide start_ARG 1 end_ARG start_ARG 3 end_ARG ). In general, so long as Receiver’s preferences about the state are unidimensional, there exists a polynomial-time algorithm that delivers the value of persuasion and transfers. We elaborate on this more below in 4.2.

What if instead μ0=12subscript𝜇012\mu_{0}=\frac{1}{2}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG in Example 2.1? Reading off Figure 2 implies the value of persuasion and transfers is then given by V(μ0)=3μ0+12superscript𝑉subscript𝜇03subscript𝜇012V^{*}(\mu_{0})=3\mu_{0}+\frac{1}{2}italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 3 italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG, so the value of persuasion and transfers is 2222. However, at μ0=12subscript𝜇012\mu_{0}=\frac{1}{2}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG, Receiver has value 1212-\frac{1}{2}- divide start_ARG 1 end_ARG start_ARG 2 end_ARG from taking action a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, so Sender can also simply pay receiver 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG and offer no information, which also yields a value of 2222. Thus, while splitting beliefs into 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG and 2323\frac{2}{3}divide start_ARG 2 end_ARG start_ARG 3 end_ARG (and paying for action a2subscript𝑎2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT at 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG) is optimal, it is not uniquely optimal – and in fact Sender does not benefit from the ability to design the information structure at all. This motivates the following question: when is it that Sender benefits strictly from the combination of persuasion and transfers, relative to the baseline of just transfers or just persuasion? We turn to this question next.

4.2 Benefiting From Transfers

To give a complete answer to this question, we will need some control over the convex structure of set of extremal beliefs. When there are many states, this can in general be a complicated problem, since the exact combinatorial structure underpinning the space of extremal beliefs can be quite subtle888See, for example, recent work by Kleiner et al. (2024).. Consequently, to answer the question of when Sender benefits from persuasion and transfers, we focus on the moment persuasion case, where Sender cares about the state only through a one-dimensional summary statistic. Formally,

Definition 4.

Sender faces a moment persuasion problem if there exists a continuous function g:Δ(Θ)[0,1]:𝑔ΔΘ01g:\Delta(\Theta)\to[0,1]italic_g : roman_Δ ( roman_Θ ) → [ 0 , 1 ] and a value function V~:R×𝒯R:~𝑉𝑅𝒯𝑅\tilde{V}:{R}\times\mathcal{T}\to{R}over~ start_ARG italic_V end_ARG : italic_R × caligraphic_T → italic_R such that V~(g(μ),t)=V(μ,t)~𝑉𝑔𝜇𝑡𝑉𝜇𝑡\tilde{V}(g(\mu),t)=V(\mu,t)over~ start_ARG italic_V end_ARG ( italic_g ( italic_μ ) , italic_t ) = italic_V ( italic_μ , italic_t ).

Moment persuasion is satisfied whenever Receiver’s payoff depends only on a moment of the state (i.e. linear persuasion), in all problems with only two states but potentially arbitrarily many actions (i.e. Example 2.1), and problems where Receiver’s best response is linear in the state (i.e. quadratic loss preferences). Thus, it nests many of the standard settings studied by the literature. Note that if a moment persuasion problem exists for t=𝟎𝑡0t=\mathbf{0}italic_t = bold_0, then it exists for all transfers, as transfers enter both Sender and Receiver payoffs linearly. We will often abuse notation and use Vt(g(μ))superscript𝑉𝑡𝑔𝜇V^{t}(g(\mu))italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_g ( italic_μ ) ) and V(g(μ0))superscript𝑉𝑔subscript𝜇0V^{*}(g(\mu_{0}))italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_g ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ) to refer to V~(g(μ),tI)~𝑉𝑔𝜇superscript𝑡𝐼\tilde{V}(g(\mu),t^{I})over~ start_ARG italic_V end_ARG ( italic_g ( italic_μ ) , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) and cav(V~(g(μ),tI))cav~𝑉𝑔𝜇superscript𝑡𝐼\text{cav}(\tilde{V}(g(\mu),t^{I}))cav ( over~ start_ARG italic_V end_ARG ( italic_g ( italic_μ ) , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) ), respectively. Our first result under the moment persuasion condition formalizes the discussion succeeding Theorem 1 that restricting to “extremal” points makes computing the joint value of transfers and persuasion fast.

Corollary 1.

Suppose Sender faces a moment persuasion problem. Then there exists an algorithm in POLY(|Θ|×|𝒜|)POLYΘ𝒜\textbf{POLY}(|\Theta|\times|\mathcal{A}|)POLY ( | roman_Θ | × | caligraphic_A | ) which computes the value of persuasion and transfers.

The idea is to use the fact that the indifference points in moment persuasion are pinned down by indifference points, and hence we need only solve a finite system of linear equalities to characterize 𝒦𝒦\mathcal{K}caligraphic_K, after which finitely many comparisons (scaling linearly in the number of actions) is sufficient to compute the optimal induced action. The formal proof is found in PROOF OF COROLLARY 1 We now turn to the main question of this section.

Definition 5.

Say Sender strictly benefits from information and transfers at μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT if

V(μ0)>max{Vt(μ0),cav(V(μ0,𝟎))}superscript𝑉subscript𝜇0superscript𝑉𝑡subscript𝜇0cav𝑉subscript𝜇00V^{*}(\mu_{0})>\max\{V^{t}(\mu_{0}),\text{cav}(V(\mu_{0},\mathbf{0}))\}italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) > roman_max { italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , cav ( italic_V ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , bold_0 ) ) }

Sender benefits from only transfers if V(μ0)=Vt(μ0)superscript𝑉subscript𝜇0superscript𝑉𝑡subscript𝜇0V^{*}(\mu_{0})=V^{t}(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ).

Proposition 2.

Suppose Sender faces a moment persuasion problem. Let 𝒦={μ𝒦:V𝒦(μ)=Vt(μ)}superscript𝒦conditional-set𝜇𝒦superscript𝑉𝒦𝜇superscript𝑉𝑡𝜇\mathcal{K}^{\prime}=\{\mu\in\mathcal{K}:V^{\mathcal{K}}(\mu)=V^{t}(\mu)\}caligraphic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = { italic_μ ∈ caligraphic_K : italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) = italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) }. Represent 𝒦={μj}j=1Jsuperscript𝒦superscriptsubscriptsubscript𝜇𝑗𝑗1𝐽\mathcal{K}^{\prime}=\{\mu_{j}\}_{j=1}^{J}caligraphic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = { italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_J end_POSTSUPERSCRIPT, J<𝐽J<\inftyitalic_J < ∞, so that j<j𝑗superscript𝑗j<j^{\prime}italic_j < italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT if and only if g(μj)<g(μj)𝑔subscript𝜇𝑗𝑔subscript𝜇superscript𝑗g(\mu_{j})<g(\mu_{j^{\prime}})italic_g ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) < italic_g ( italic_μ start_POSTSUBSCRIPT italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ). For generic preferences {u,v}𝑢𝑣\{u,v\}{ italic_u , italic_v } and priors μ0Δ(Θ)subscript𝜇0ΔΘ\mu_{0}\in\Delta(\Theta)italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ roman_Δ ( roman_Θ ),

  1. (1)

    If a(μj,t)a(μj,𝟎)superscript𝑎subscript𝜇𝑗superscript𝑡superscript𝑎subscript𝜇𝑗0a^{*}(\mu_{j},t^{*})\neq a^{*}(\mu_{j},\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≠ italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_0 ) or a(μj+1,t)a(μj+1,𝟎)superscript𝑎subscript𝜇𝑗1superscript𝑡superscript𝑎subscript𝜇𝑗10a^{*}(\mu_{j+1},t^{*})\neq a^{*}(\mu_{j+1},\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≠ italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , bold_0 ), Sender benefits from transfers.

  2. (2)

    If a(μj,t)a(μj,𝟎)superscript𝑎subscript𝜇𝑗superscript𝑡superscript𝑎subscript𝜇𝑗0a^{*}(\mu_{j},t^{*})\neq a^{*}(\mu_{j},\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≠ italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_0 ) and a(μj+1,t)a(μj+1,𝟎)superscript𝑎subscript𝜇𝑗1superscript𝑡superscript𝑎subscript𝜇𝑗10a^{*}(\mu_{j+1},t^{*})\neq a^{*}(\mu_{j+1},\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≠ italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , bold_0 ) and a(μj,t)a(μj+1,t)superscript𝑎subscript𝜇𝑗superscript𝑡superscript𝑎subscript𝜇𝑗1superscript𝑡a^{*}(\mu_{j},t^{*})\neq a^{*}(\mu_{j+1},t^{*})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≠ italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ), Sender strictly benefits strictly from persuasion and transfers.

  3. (3)

    If a(μj,t)=a(μj,𝟎)superscript𝑎subscript𝜇𝑗superscript𝑡superscript𝑎subscript𝜇𝑗0a^{*}(\mu_{j},t^{*})=a^{*}(\mu_{j},\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_0 ) and a(μj+1,t)=a(μj+1,𝟎)superscript𝑎subscript𝜇𝑗1superscript𝑡superscript𝑎subscript𝜇𝑗10a^{*}(\mu_{j+1},t^{*})=a^{*}(\mu_{j+1},\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , bold_0 ), Sender does not benefit from transfers (though may benefit from only persuasion).

The proof can be found in PROOF OF PROPOSITION 2 The set 𝒦superscript𝒦\mathcal{K}^{\prime}caligraphic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is the set of all extremal beliefs which are supported in some optimal information policy across all possible priors: these are exactly the “kinks” in the 𝒦𝒦\mathcal{K}caligraphic_K-cavification function. The genericity condition only has bite for condition (2), where it implies that the correspondence a(μ0,𝟎)superscript𝑎subscript𝜇00a^{\dagger}(\mu_{0},\mathbf{0})italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , bold_0 ) is single-valued at prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Finally, the assumption a(μj,t)a(μj+1,t)superscript𝑎subscript𝜇𝑗superscript𝑡superscript𝑎subscript𝜇𝑗1superscript𝑡a^{*}(\mu_{j},t^{*})\neq a^{*}(\mu_{j+1},t^{*})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ≠ italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) in Condition (2) ensures the answer to our question is nontrivial: if this was the case, persuasion would be unnecessary as the same action would always be induced at optimum.

Proposition 2 dovetails nicely with Example 2.1. In particular, it gives a justification for why only transfers are useful on the interval (13,23)1323(\frac{1}{3},\frac{2}{3})( divide start_ARG 1 end_ARG start_ARG 3 end_ARG , divide start_ARG 2 end_ARG start_ARG 3 end_ARG ) (since the same action is induced at both beliefs 1313\frac{1}{3}divide start_ARG 1 end_ARG start_ARG 3 end_ARG and 2323\frac{2}{3}divide start_ARG 2 end_ARG start_ARG 3 end_ARG) and also justifies why the optimal solution requires both information and transfers on the interval (0,13)013(0,\frac{1}{3})( 0 , divide start_ARG 1 end_ARG start_ARG 3 end_ARG ). However, the conditions are not exhaustive: it may be possible that Sender benefits from transfers and persuasion even if only the hypotheses of Condition (1) are satisfied (for example, if Sender prefers to pay at the “lower” endpoint on the value function but not the higher one, but the higher action would be induced at the prior under only transfers).

Proposition 2 also implies there is “essentially” an interval structure behind persuasion and transfers. In particular, prior beliefs can be partitioned into finitely many connected sets where (modulo finitely many points), Sender’s decision to either use transfers or use persuasion (and the transfers and beliefs induced) will be constant on each connected set. In the context of the motivating rideshare example, Proposition 2 implies that Uber’s optimal information and transfer policy (1) divides drivers into distinct intervals based on their prior belief about the quality of the ride (i.e. the location of the ride, the driver’s active time, etc.), and (2) within each interval, pursues the same policy by adopting the same information structure (modulo weights to satisfy Bayes plausibility).

5 Exogenous Outside Options

In 4, we have supposed Sender is completely unconstrained in their joint information and transfer scheme. Yet this is often not the case for platforms who can jointly vary both tools; for example, Uber drivers often have outside options, dictated, for example, by their labor-leisure tradeoff or prevailing minimum wage laws. In this section, we adapt our baseline analysis to analyze the problem where Receiver has an exogenous outside option of u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG, and suppose Sender must fulfill this value. In particular, we interpret our results as shedding light on the relative distortions between information and transfers.

Definition 6.

Say V(μ0,u¯)superscript𝑉subscript𝜇0¯𝑢V^{*}(\mu_{0},\bar{u})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ) is the value of the constrained problem with utility promise u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG if it solves the program

Any tuple (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) that solves this program is u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-constrained optimal.

The first constraint is the standard martingale constraint in persuasion; the second is the novel utility promise constraint. What do u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-constrained optimal solutions look like? For a fixed utility promise u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG, we might expect the solution will differ from an optimal solution where u¯=0¯𝑢0\bar{u}=0over¯ start_ARG italic_u end_ARG = 0 in two ways. First, it may affect the structure of transfers paid to the agent, since Sender may want to depart from the canonical transfers at different actions in order to fulfill the utility promise. Second, it may affect the structure of information, as Sender wishes to alleviate the utility promise by increasing Receiver utility through transfers.

Theorem 2.

For any u¯0¯𝑢0\bar{u}\geq 0over¯ start_ARG italic_u end_ARG ≥ 0, there exists a u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-constrained optimal solution of the form (τ,tI+C)superscript𝜏superscript𝑡𝐼superscript𝐶(\tau^{*},t^{I}+C^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) for a constant C0superscript𝐶0C^{*}\geq 0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ 0. Moreover, if C>0superscript𝐶0C^{*}>0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0, then the optimal information policy is full information: τsuperscript𝜏\tau^{*}italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT supports only degenerate beliefs.

Theorem (2) has two important implications. First, it implies that it is without loss of generality to consider the canonical transfers plus a (potentially zero) lump sum payment Csuperscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. Thus, a utility promise constraint never causes Sender to change the qualitative way in which they employ transfers to motivate Receiver actions. Second, it implies there is a sequential nature to how Sender balances their informational and monetary tools in fulfilling their utility promise constraint: they will always first offer Receiver more information before they begin to alter the amount Receiver is paid.

The proof of Theorem (1) proceeds in a few parts. First, we show all u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG optimal transfer rules tsuperscript𝑡t^{*}italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT take the form tI+Csuperscript𝑡𝐼superscript𝐶t^{I}+C^{*}italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for some C0superscript𝐶0C^{*}\geq 0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ 0. The proof is deferred to PROOF OF LEMMA 2

Lemma 2.

Let (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) be u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-constrained optimal. Then there exists a transfer rule t¯=tI+Csuperscript¯𝑡superscript𝑡𝐼superscript𝐶\bar{t}^{*}=t^{I}+C^{*}over¯ start_ARG italic_t end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for some C0superscript𝐶0C^{*}\geq 0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ 0 such that (τ,t¯)superscript𝜏superscript¯𝑡(\tau^{*},\bar{t}^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , over¯ start_ARG italic_t end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) is u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-constrained optimal.

Because the canonical transfers render Receiver completely indifferent to taking their default action a(μ,𝟎)superscript𝑎𝜇0a^{*}(\mu,\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) and the action induced on path, a(μ,tI)superscript𝑎𝜇superscript𝑡𝐼a^{*}(\mu,t^{I})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ), we know Receiver’s utility under the information and transfer policy (τ,tI)superscript𝜏superscript𝑡𝐼(\tau^{*},t^{I})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) is given by

Eτ[u(a(μ,tI),θ)+tI(a(μ,tI),μ)]=Eτ[u(a(μ,𝟎),θ)]subscript𝐸superscript𝜏delimited-[]𝑢superscript𝑎𝜇superscript𝑡𝐼𝜃superscript𝑡𝐼superscript𝑎𝜇superscript𝑡𝐼𝜇subscript𝐸superscript𝜏delimited-[]𝑢superscript𝑎𝜇0𝜃{E}_{\tau^{*}}[u(a^{*}(\mu,t^{I}),\theta)+t^{I}(a^{*}(\mu,t^{I}),\mu)]={E}_{% \tau^{*}}[u(a^{*}(\mu,\mathbf{0}),\theta)]italic_E start_POSTSUBSCRIPT italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) , italic_θ ) + italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) , italic_μ ) ] = italic_E start_POSTSUBSCRIPT italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) ]

That is, less a constant, Receiver only benefits from a utility promise based on the effect of increasing information transmission, not changes in the aggregate payment scheme. We will use this observation above in simplifying the utility promise constraint below.

Suppose strong-duality holds for the constrained problem (this is verified explicitly in Step 1 of the proof of Theorem 2 in PROOF OF THEOREM 2 ) If this is the case, then by arguments in Doval and Skreta (2023) and Lemma 2, we can rewrite Sender’s objective function as

V(μ0,u¯)=supCR+infλR+{cav|μ0{Vt(μ0)kC+λEμ[u(a(μ0,0),θ)]λ(u¯C)}}.superscript𝑉subscript𝜇0¯𝑢subscriptsupremum𝐶subscript𝑅subscriptinfimum𝜆subscript𝑅evaluated-atcavsubscript𝜇0superscript𝑉𝑡subscript𝜇0𝑘𝐶𝜆subscript𝐸𝜇delimited-[]𝑢superscript𝑎subscript𝜇00𝜃𝜆¯𝑢𝐶V^{*}(\mu_{0},\bar{u})=\sup_{C\in{R}_{+}}\inf_{\lambda\in{R}_{+}}\left\{\text{% cav}|_{\mu_{0}}\left\{V^{t}(\mu_{0})-kC+\lambda{E}_{\mu}[u(a^{*}(\mu_{0},0),% \theta)]-\lambda(\bar{u}-C)\right\}\right\}.italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ) = roman_sup start_POSTSUBSCRIPT italic_C ∈ italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_inf start_POSTSUBSCRIPT italic_λ ∈ italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUBSCRIPT { cav | start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT { italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_k italic_C + italic_λ italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 ) , italic_θ ) ] - italic_λ ( over¯ start_ARG italic_u end_ARG - italic_C ) } } .

Supposing a first order approach is valid (e.g. C>0superscript𝐶0C^{*}>0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0) and differentiating in C𝐶Citalic_C implies λ=k𝜆𝑘\lambda=kitalic_λ = italic_k is necessary for an optimal solution. Plugging this back into the formula for the objective and simplifying some terms implies the objective is given by

V(μ0,u¯)=cav{maxa𝒜Eμ[v(a,θ)+ku(a,θ)]}ku¯.superscript𝑉subscript𝜇0¯𝑢cavsubscript𝑎𝒜subscript𝐸𝜇delimited-[]𝑣𝑎𝜃𝑘𝑢𝑎𝜃𝑘¯𝑢V^{*}(\mu_{0},\bar{u})=\text{cav}\left\{\max_{a\in\mathcal{A}}{E}_{\mu}[v(a,% \theta)+ku(a,\theta)]\right\}-k\bar{u}.italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ) = cav { roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_a , italic_θ ) + italic_k italic_u ( italic_a , italic_θ ) ] } - italic_k over¯ start_ARG italic_u end_ARG .

The inner concavification is the maximum of linear functions and hence concave in μ𝜇\muitalic_μ and hence full disclosure must be optimal by Kamenica and Gentzkow (2011)’s concavification theorem. This completes our heuristic proof outline. Details are fleshed out in PROOF OF THEOREM 2

Theorem 2 has a few useful corollaries about properties of the constrained optimum:

Corollary 2.

The following are true about u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-constrained optimal solutions (τ,tI+C)superscript𝜏superscript𝑡𝐼superscript𝐶(\tau^{*},t^{I}+C^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) and the value function V(μ0,u¯)superscript𝑉subscript𝜇0¯𝑢V^{*}(\mu_{0},\bar{u})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ):

  1. (1)

    (Lump-Sum Monotonicity) The lump sum C(u¯)superscript𝐶¯𝑢C^{*}(\bar{u})italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) for u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-constrained optima is increasing in u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG, strictly if C(u¯)>0superscript𝐶¯𝑢0C^{*}(\bar{u})>0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) > 0.

  2. (2)

    (Concavity) V(μ0,u¯)superscript𝑉subscript𝜇0¯𝑢V^{*}(\mu_{0},\bar{u})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ) is concave in μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG.

The proof is in PROOF OF COROLLARY 2 Part (1) further sharpens the intuition lump-sum payments are used to “top-off” Receiver utility up to a point information can feasibly deliver the remaining surplus. Part (2) is useful when C(u¯)=0superscript𝐶¯𝑢0C^{*}(\bar{u})=0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) = 0, since it restricts the effect domain of beliefs on which we need to search to find an optimal policy. Part (3) implies Sender prefers not to spread out utility promises whenever possible; this is particularly useful in the context of the dynamic problem, which we analyze next.

We can interpret Theorem 2 in the context of the motivating example as follows. Suppose drivers’ outside options from being on the platform suddenly increase, for example, because of minimum wage laws, changes in purchasing power parity, ease of regulation among taxi medallions, etc. If this occurs, our model predicts first an increases in match efficiency for drivers – they get more information – followed by not net change in efficiency once the outside option is sufficiently high. While stylized (in particular, we don’t consider the effect of wages on platform demand for drivers), we think that this highlights an important novel channel through which standard minimum wage analysis differs when the employer partially compensates agents through information.

6 Dynamics

6.1 The Dynamic Model

Time is discrete and indexed by t=0,1,2,𝑡012t=0,1,2,\dotsitalic_t = 0 , 1 , 2 , …. In each period, Sender and Receiver play the static game described in 3, with the state drawn i.i.d.

At the beginning of each period, players observe the past history of play consisting of past state realizations, signals, and actions ht=(θs,μs,as)s=1t1subscript𝑡superscriptsubscriptsubscript𝜃𝑠subscript𝜇𝑠subscript𝑎𝑠𝑠1𝑡1h_{t}=(\theta_{s},\mu_{s},a_{s})_{s=1}^{t-1}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( italic_θ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_μ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_s = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT. They then simultaneously choose strategies in the stage game999This implies the state θ𝜃\thetaitalic_θ is perfectly revealed at the end of each period, as is Receiver’s action. In the context of the motivating example, we interpret this as saying the driver sees the true value of the ride after making their acceptance/rejection decision. Let Htsubscript𝐻𝑡H_{t}italic_H start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT be the set of all time-t𝑡titalic_t histories and H=tHt𝐻subscript𝑡subscript𝐻𝑡H=\bigcup_{t}H_{t}italic_H = ⋃ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT be the set of all histories. Strategies are then functions σS:HΔ(Δ(Θ))×𝒯:superscript𝜎𝑆𝐻ΔΔΘ𝒯\sigma^{S}:H\to\Delta(\Delta(\Theta))\times\mathcal{T}italic_σ start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT : italic_H → roman_Δ ( roman_Δ ( roman_Θ ) ) × caligraphic_T and σR:HΔ(𝒜):superscript𝜎𝑅𝐻Δ𝒜\sigma^{R}:H\to\Delta(\mathcal{A})italic_σ start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT : italic_H → roman_Δ ( caligraphic_A ). We use subscripts in σSsuperscript𝜎𝑆\sigma^{S}italic_σ start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT to separate between the choice of experiment and transfer function.

Each pair of strategies (σS,σR)superscript𝜎𝑆superscript𝜎𝑅(\sigma^{S},\sigma^{R})( italic_σ start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT , italic_σ start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) induces a probability measure PσS,σRsuperscript𝑃superscript𝜎𝑆superscript𝜎𝑅{P}^{\sigma^{S},\sigma^{R}}italic_P start_POSTSUPERSCRIPT italic_σ start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT , italic_σ start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT over the set of histories. We say Receiver’s strategy is obedient if there are no profitable one-shot deviations at any on-path history.

A strategy tuple (σS,σR)superscript𝜎𝑆superscript𝜎𝑅(\sigma^{S},\sigma^{R})( italic_σ start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT , italic_σ start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) is optimal for Sender if it solves

max(σS,σR){EPσS,σR[(1δ)t=0[Eσ1S(ht)[Eμ[v(σR(ht),θ)]]]]} s.t. σR is obedient.subscriptsuperscript𝜎𝑆superscript𝜎𝑅subscript𝐸superscript𝑃superscript𝜎𝑆superscript𝜎𝑅delimited-[]1𝛿superscriptsubscript𝑡0delimited-[]subscript𝐸superscriptsubscript𝜎1𝑆subscript𝑡delimited-[]subscript𝐸𝜇delimited-[]𝑣superscript𝜎𝑅subscript𝑡𝜃 s.t. superscript𝜎𝑅 is obedient.\max_{(\sigma^{S},\sigma^{R})}\left\{{E}_{{P}^{\sigma^{S},\sigma^{R}}}\left[(1% -\delta)\sum_{t=0}^{\infty}\left[{E}_{\sigma_{1}^{S}(h_{t})}\left[{E}_{\mu}% \left[v(\sigma^{R}(h_{t}),\theta)\right]\right]\right]\right]\right\}\text{ s.% t. }\sigma^{R}\text{ is obedient.}roman_max start_POSTSUBSCRIPT ( italic_σ start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT , italic_σ start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT italic_σ start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT , italic_σ start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ ( 1 - italic_δ ) ∑ start_POSTSUBSCRIPT italic_t = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT [ italic_E start_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT [ italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_σ start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) , italic_θ ) ] ] ] ] } s.t. italic_σ start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT is obedient.

We are interested in studying the qualitative properties of optimal tuples. It will be useful to cast the problem recursively.

The first constraint is the Bayes plausibility (martingale) constraint; the second is Receiver incentive compatibility, and the final one is the dynamic promise keeping constraint. If a tuple of functions (τ,u(μ),t)(u¯)𝜏superscript𝑢𝜇𝑡¯𝑢(\tau,u^{\prime}(\mu),t)(\bar{u})( italic_τ , italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_μ ) , italic_t ) ( over¯ start_ARG italic_u end_ARG ) solve the above problem, we will refer to the induced value function (starting from u¯=0¯𝑢0\bar{u}=0over¯ start_ARG italic_u end_ARG = 0) to be the value of the δ𝛿\deltaitalic_δ-repeated persuasion problem. Note Sender’s value from dynamic persuasion and transfers is exactly V(μ0,0,δ)𝑉subscript𝜇00𝛿V(\mu_{0},0,\delta)italic_V ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 , italic_δ ), since they start out in the first period at a trivial history without a utility promise constraint.

6.2 Equilibrium Analysis

When might it be that Sender benefits from the ability to intertwine Receiver incentives across time? Fix some static optimum (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) and recall that repeating the static optimum gives Sender a normalized discounted repeated payoff of V(μ0)superscript𝑉subscript𝜇0V^{*}(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) for every discount rate δ𝛿\deltaitalic_δ. However, suppose there was some alternative information structure (τ¯,t¯)¯𝜏¯𝑡(\bar{\tau},\bar{t})( over¯ start_ARG italic_τ end_ARG , over¯ start_ARG italic_t end_ARG ) which gave Sender a payoff (close) to the payoff at (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) but which Receiver preferred to (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) by a lot. Sender could then leverage commitment to (τ¯,t¯)¯𝜏¯𝑡(\bar{\tau},\bar{t})( over¯ start_ARG italic_τ end_ARG , over¯ start_ARG italic_t end_ARG ) in the future to extract more payoffs from Receiver today at a smaller cost tomorrow, increasing Sender payoffs. In Proposition 3 below, we establish surprisingly general conditions under which we could expect such an intuition to be formalized (in particular, for such “nearby” information and transfer schemes to exist).

Definition 7.

Say Sender benefits from dynamics at prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and discount rate δ𝛿\deltaitalic_δ such that V(μ0,0,δ)>V(μ0)superscript𝑉subscript𝜇00𝛿superscript𝑉subscript𝜇0V^{*}(\mu_{0},0,\delta)>V^{*}(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 , italic_δ ) > italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ).

From here, define

V¯(μ0)=Eμ0[maxa𝒜v(a,θ)] and U¯(μ0)=maxa𝒜Eμ0[u(a,θ)]¯𝑉subscript𝜇0subscript𝐸subscript𝜇0delimited-[]subscript𝑎𝒜𝑣𝑎𝜃 and ¯𝑈subscript𝜇0subscript𝑎𝒜subscript𝐸subscript𝜇0delimited-[]𝑢𝑎𝜃\bar{V}(\mu_{0})={E}_{\mu_{0}}\left[\max_{a\in\mathcal{A}}v(a,\theta)\right]% \text{ and }\underline{U}(\mu_{0})=\max_{a\in\mathcal{A}}{E}_{\mu_{0}}[u(a,% \theta)]over¯ start_ARG italic_V end_ARG ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT italic_v ( italic_a , italic_θ ) ] and under¯ start_ARG italic_U end_ARG ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a , italic_θ ) ]

to be Sender’s best possible and Receiver’s worst possible payoff at a prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for some information structure, respectively. If V¯(μ0)>V(μ0)¯𝑉subscript𝜇0superscript𝑉subscript𝜇0\bar{V}(\mu_{0})>V^{*}(\mu_{0})over¯ start_ARG italic_V end_ARG ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) > italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), we say Sender does not attain first best at prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. If Eτ[Eμ[u(a(μ,𝟎)]]>U¯(μ0){E}_{\tau^{*}}[{E}_{\mu}[u(a^{*}(\mu,\mathbf{0})]]>\underline{U}(\mu_{0})italic_E start_POSTSUBSCRIPT italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) ] ] > under¯ start_ARG italic_U end_ARG ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), where (τ,tI)superscript𝜏superscript𝑡𝐼(\tau^{*},t^{I})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) is a static optimal policy, we say Receiver values persuasion. We can now characterize when Receiver benefits from dynamics; the proof of Proposition 3 is deferred until PROOF OF PROPOSITION 3

Proposition 3.

Suppose Sender does not attain first best and Receiver values persuasion at μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Then there exists δ¯>0¯𝛿0\bar{\delta}>0over¯ start_ARG italic_δ end_ARG > 0 such that for all δ>δ¯𝛿¯𝛿\delta>\bar{\delta}italic_δ > over¯ start_ARG italic_δ end_ARG, Sender benefits from dynamics. Moreover,

limδ1V(μ0,0,δ)>V(μ0).subscript𝛿1superscript𝑉subscript𝜇00𝛿superscript𝑉subscript𝜇0\lim\limits_{\delta\to 1}V^{*}(\mu_{0},0,\delta)>V^{*}(\mu_{0}).roman_lim start_POSTSUBSCRIPT italic_δ → 1 end_POSTSUBSCRIPT italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 , italic_δ ) > italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Compare Proposition 3 to Example 2.2: in the candidate optimum there, even though Receiver values persuasion, Sender must still transfer some surplus in order to meet Receiver incentive compatibility constraints conditional on a signal realization. Note the mechanism behind the proof of Proposition 3 is distinct from the asymptotic review policies constructed in PROOF OF PROPOSITION 3 ; this is because of the finite time period, where we use transfers to “smooth out” surplus instead.

One naive intuition for the driving result behind 3 is that the combination of repetition with transfers and a patient Receiver implies the asymptotic information and transfer policy must attain payoffs on the ex-post efficient frontier (i.e. a similar intuition to Levin (2003)). However, this is not the core economic force driving our result – even though there are transfers between one state and another, the limited liability constraint may still bind – thus, if Receiver does not value persuasion at μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, then it may be impossible to reach the efficient frontier. Below, we give an example highlighting this intuition that doubles as an example demonstrating why Proposition 3 requires the assumption Receiver values persuasion.

Consider the following variation of the standard judge-jury example in Kamenica and Gentzkow (2011), where Θ={θ0,θ1}Θsubscript𝜃0subscript𝜃1\Theta=\{\theta_{0},\theta_{1}\}roman_Θ = { italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT }, 𝒜={a0,a1}𝒜subscript𝑎0subscript𝑎1\mathcal{A}=\{a_{0},a_{1}\}caligraphic_A = { italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT }, and μ0=14subscript𝜇014\mu_{0}=\frac{1}{4}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 4 end_ARG is the prior probability θ=θ1𝜃subscript𝜃1\theta=\theta_{1}italic_θ = italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Suppose payoffs are as follows:

S/R a0subscript𝑎0a_{0}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT
θ0subscript𝜃0\theta_{0}italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (0, 1) (1, 0)
θ1subscript𝜃1\theta_{1}italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (0, 0) (1, 1)

Suppose k1𝑘1k\geq 1italic_k ≥ 1, so the optimal joint information and transfer policy is to induce beliefs (0,12)012(0,\frac{1}{2})( 0 , divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) and never pay Receiver, netting Sender a payoff of 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG and Receiver a payoff of 3434\frac{3}{4}divide start_ARG 3 end_ARG start_ARG 4 end_ARG. However efficient allocation here is full information, which guarantees Sender and Receiver a joint payoff of 3232\frac{3}{2}divide start_ARG 3 end_ARG start_ARG 2 end_ARG (1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG for Sender and 1111 for Receiver).

Proposition 4.

In the game above, at μ0=14subscript𝜇014\mu_{0}=\frac{1}{4}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 4 end_ARG, V(μ0,0,δ)=V(μ0)superscript𝑉subscript𝜇00𝛿superscript𝑉subscript𝜇0V^{*}(\mu_{0},0,\delta)=V^{*}(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 , italic_δ ) = italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) for all δ(0,1)𝛿01\delta\in(0,1)italic_δ ∈ ( 0 , 1 ).

Why does Sender not benefit from dynamics here? Note first that if k>1𝑘1k>1italic_k > 1, then Sender never wants to use transfers because compensating Receiver is more expensive than the benefit Sender can get (since Sender’s payoff from increasing the probability that a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is chosen is 1111). Moreover, dynamic information can never be helpful because, conditional on the state θ=θ0𝜃subscript𝜃0\theta=\theta_{0}italic_θ = italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, Receiver and Sender actions are zero-sum. Since the static optimum already always induces a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT whenever θ=θ0𝜃subscript𝜃0\theta=\theta_{0}italic_θ = italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, any further increase in the probability of a1subscript𝑎1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT being chosen would have to be when θ=θ0𝜃subscript𝜃0\theta=\theta_{0}italic_θ = italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, and hence Sender can never relax Receiver’s incentive constraints today by increasing tomorrow’s utility promises without decreasing their own expected utility by the same amount, making a strict improvement impossible.

Unfortunately, finding tight necessary and sufficient conditions remains elusive. In particular, this is because the degree to which transfers can ameliorate or extract surplus from Receiver when they take an action that is better than their no-information action will depend crucially on the cardinal structure of payoffs when Receiver does not value persuasion at μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Finding jointly necessary and sufficient conditions is a promising area for future research.

7 Discussion

In this paper, we analyzed a general model of information design where Sender can also commit to action and belief-contingent transfers. We first showed that transfers do not restore ex-post efficiency in the canonical finite persuasion model. Next, we introduced a geometric argument that characterized Sender’s value from having access to both tools. We then used this characterization to give conditions under which Sender benefits strictly from having access to both informational and monetary tools in terms of their optimal choices at extremal beliefs. From there, we showed that when Receiver had an exogenous (nonzero) outside option, Sender’s optimal action responded in a sequential way: first by providing more information, and then only after all informational tools had been exhausted would they augment their transfer function. Finally, we gave conditions under which Sender could benefit from intertemporal commitment, and interpreted our results in the context of a rideshare platform (our motivating example).

We think that there are several promising directions for future research that our model and results can speak to. Below, we sketch out several of the most promising directions.

Nonlinear Transfers.

Neither Theorem 1 nor Proposition 2 use the linear structure of transfers. Consequently, it may be natural to consider more general settings where Sender takes an action that affects both their own payoff and the payoff of Receiver in a nonlinear way. Understanding whether our extremal characterization generalizes, and if not, what an appropriate geometric characterization would be can help us better understand the core economic forces behind persuasion problems where the state can also engage in repression (Gitmez and Sonin (2023)), persuasion with costly information acquisition (Matysková and Montes (2023)), or persuasion when there is a hold-up problem by Sender (i.e. an information design interpretation of Dworczak and Muir (2025)).

Explicit Dynamics.

Proposition 3 does not explicitly characterize the qualitative structure of the optimal contract. However, given our characterization of the static constrained problem (2) and the fact Bayesian beliefs must be a martingale intertemporally, a natural conjecture would be that the optimal contract asymptotically converges to either (1) the repeated static optimum, or (2) full-information and a transfer that services some utility promise constraint. Moreover, which of these two regimes behavior converges too may depend on whether early signal realizations give Receiver high or low payoff, mirroring the history-dependence of Guo and Hörner (2020). Finally, this conjecture mirrors and would relate to known results in dynamic moral hazard where utilities promises must converge (i.e. Thomas and Worrall (1990)), where (with transfers) Sender may want to explicitly retire Receiver by giving up on leveraging dynamic incentives (i.e. Sannikov (2008)).

Platform Design: Thickness versus Efficiency.

Finally, towards analyzing the platform problem in the motivating example more concretely, we could endogenize consumers and suppose the platform (i.e. Sender) can charge consumers a price to elicit services. Consumers demand different ride attributes and hence different pricing schemes lead to different distributions of ride quality, which in equilibrium would be the prior drivers’ hold about the state of the world (this “endogenous prior” setting is reminiscent of and a potential microfoundation for the setting in Dai and Koh (2024)). Sender now faces an additional tradeoff to the one analyzed in this paper101010A similar tradeoff is studied by Gao (2024): an efficiency benefit, (changing the distribution of consumers by varying consumer prices to induce a more favorable prior belief to drivers) versus a thickness cost (decreasing the total mass of drivers in order to hit the desired prior). This would allow us to speak to some of the recent questions about the role of information and pricing and how they affect platforms more generally (see, for example, Bergemann et al. (2025) and Bergemann and Bonatti (2024)).

Appendix A: Omitted Proofs

PROOF OF LEMMA 1

Proof.

Fix an optimal (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ), and suppose a(μ,t)superscript𝑎𝜇superscript𝑡a^{*}(\mu,t^{*})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) is induced at some belief μsupp(τ)𝜇suppsuperscript𝜏\mu\in\text{supp}(\tau^{*})italic_μ ∈ supp ( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) inducing a(μ,t)superscript𝑎𝜇superscript𝑡a^{*}(\mu,t^{*})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ). First suppose a(μ,t)aS(μ)superscript𝑎𝜇superscript𝑡superscript𝑎𝑆𝜇a^{*}(\mu,t^{*})\in a^{S}(\mu)italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ∈ italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ). Since Receiver takes action asuperscript𝑎a^{*}italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, this implies

Eμ[u(a(μ,t),θ)]+t(a(μ,t),μ)Eμ[u(a,θ)]+t(a,μ) for all a𝒜subscript𝐸𝜇delimited-[]𝑢superscript𝑎𝜇superscript𝑡𝜃superscript𝑡superscript𝑎𝜇superscript𝑡𝜇subscript𝐸𝜇delimited-[]𝑢𝑎𝜃superscript𝑡𝑎𝜇 for all 𝑎𝒜{E}_{\mu}[u(a^{*}(\mu,t^{*}),\theta)]+t^{*}(a^{*}(\mu,t^{*}),\mu)\geq{E}_{\mu}% [u(a,\theta)]+t^{*}(a,\mu)\text{ for all }a\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_θ ) ] + italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_μ ) ≥ italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a , italic_θ ) ] + italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_a , italic_μ ) for all italic_a ∈ caligraphic_A

Taking differences, this tells us that

Eμ[u(a(μ,t),θ)u(a,θ)]t(a(μ,t),μ)t(a,μ) for all a𝒜subscript𝐸𝜇delimited-[]𝑢superscript𝑎𝜇superscript𝑡𝜃𝑢𝑎𝜃superscript𝑡superscript𝑎𝜇superscript𝑡𝜇superscript𝑡𝑎𝜇 for all 𝑎𝒜{E}_{\mu}[u(a^{*}(\mu,t^{*}),\theta)-u(a,\theta)]\geq t^{*}(a^{*}(\mu,t^{*}),% \mu)-t^{*}(a,\mu)\text{ for all }a\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ] ≥ italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_μ ) - italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_a , italic_μ ) for all italic_a ∈ caligraphic_A

Since a(μ,𝟎)superscript𝑎𝜇0a^{*}(\mu,\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) maximizes Receiver’s payoff without transfers, we have that for any aaS(μ)𝑎superscript𝑎𝑆𝜇a\not\in a^{S}(\mu)italic_a ∉ italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ) (so that tI(a,μ)=0superscript𝑡𝐼𝑎𝜇0t^{I}(a,\mu)=0italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_a , italic_μ ) = 0)

Eμ[u(a(μ,t),θ)u(a,θ)]Eμ[u(a(μ,t),θ)u(a(μ,𝟎)),θ)]=tIμ\displaystyle{E}_{\mu}[u(a^{*}(\mu,t^{*}),\theta)-u(a,\theta)]\geq{E}_{\mu}[u(% a^{*}(\mu,t^{*}),\theta)-u(a^{*}(\mu,\mathbf{0})),\theta)]=t^{I}\muitalic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ] ≥ italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) , italic_θ ) - italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) ) , italic_θ ) ] = italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT italic_μ

and so in particular under payments tIsuperscript𝑡𝐼t^{I}italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT Receiver will not want to take any aaS(μ)𝑎superscript𝑎𝑆𝜇a\not\in a^{S}(\mu)italic_a ∉ italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ). Suppose now that a(μ,t)aS(μ)superscript𝑎𝜇superscript𝑡superscript𝑎𝑆𝜇a^{*}(\mu,t^{*})\not\in a^{S}(\mu)italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) ∉ italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ). Then if at belief μ𝜇\muitalic_μ Sender paid tI(a,μ)superscript𝑡𝐼𝑎𝜇t^{I}(a,\mu)italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_a , italic_μ ) for some aaS(μ)𝑎superscript𝑎𝑆𝜇a\in a^{S}(\mu)italic_a ∈ italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ), they could attain a strictly higher payoff then the induced pair under (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) at μ𝜇\muitalic_μ, a contradiction to the optimality of the original tuple. This finishes the proof. ∎

PROOF OF PROPOSITION 1

Proof.

Fix any prior belief μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. We have the following chain of (in)equalities.

The first equality follows from the definition and maximization first over τ𝜏\tauitalic_τ then t𝑡titalic_t; the second from the fact that moving the maximum into the expectation must make the value weakly greater, the third from Lemma 1 since Vtsuperscript𝑉𝑡V^{t}italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT exactly implements the canonical transfers, and the final one from the standard concavification theorem of Kamenica and Gentzkow (2011). ∎

PROOF OF THEOREM 1

Proof.

That each 𝒪asubscript𝒪𝑎\mathcal{O}_{a}caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT is compact and closed follows immediately from Lemma A.1 of Gao and Luo (2025); that 𝒪asubscript𝒪𝑎\mathcal{O}_{a}caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT is a polytope follows by noting

𝒪a=Δ(Θ)(a𝒜{a}{m:u(a,θ)u(a,θ)dm0})subscript𝒪𝑎ΔΘsubscriptsuperscript𝑎𝒜𝑎conditional-set𝑚𝑢𝑎𝜃𝑢superscript𝑎𝜃𝑑𝑚0\mathcal{O}_{a}=\Delta(\Theta)\cap\left(\bigcap_{a^{\prime}\in\mathcal{A}% \setminus\{a\}}\left\{m:\int u(a,\theta)-u(a^{\prime},\theta)dm\geq 0\right\}\right)caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = roman_Δ ( roman_Θ ) ∩ ( ⋂ start_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ caligraphic_A ∖ { italic_a } end_POSTSUBSCRIPT { italic_m : ∫ italic_u ( italic_a , italic_θ ) - italic_u ( italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_θ ) italic_d italic_m ≥ 0 } )

𝒦=aext(𝒪a)𝒦subscript𝑎extsubscript𝒪𝑎\mathcal{K}=\bigcup_{a}\text{ext}(\mathcal{O}_{a})caligraphic_K = ⋃ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ext ( caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ). where m𝑚mitalic_m is any measure (not necessarily a probability measure). This is a finite intersection of half-spaces and thus each 𝒪asubscript𝒪𝑎\mathcal{O}_{a}caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT has finitely many extreme points by Theorem 19.1 of Rockafellar (1996). For any fixed a~~𝑎\tilde{a}over~ start_ARG italic_a end_ARG, we can now write the transfer-augmented indirect value function on Oa~subscript𝑂~𝑎O_{\tilde{a}}italic_O start_POSTSUBSCRIPT over~ start_ARG italic_a end_ARG end_POSTSUBSCRIPT as

Vt(μ)=maxa𝒜{Eμ[v(a,θ)k(u(a~,θ)u(a,θ))]},superscript𝑉𝑡𝜇subscript𝑎𝒜subscript𝐸𝜇delimited-[]𝑣𝑎𝜃𝑘𝑢~𝑎𝜃𝑢𝑎𝜃V^{t}(\mu)=\max_{a\in\mathcal{A}}\left\{{E}_{\mu}[v(a,\theta)-k(u(\tilde{a},% \theta)-u(a,\theta))]\right\},italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) = roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_a , italic_θ ) - italic_k ( italic_u ( over~ start_ARG italic_a end_ARG , italic_θ ) - italic_u ( italic_a , italic_θ ) ) ] } ,

which is the maximum of linear functions over a finite index. This implies Vt(μ)superscript𝑉𝑡𝜇V^{t}(\mu)italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) is convex over the interior of each Oa~subscript𝑂~𝑎O_{\tilde{a}}italic_O start_POSTSUBSCRIPT over~ start_ARG italic_a end_ARG end_POSTSUBSCRIPT. Moreover, Vt(μ)superscript𝑉𝑡𝜇V^{t}(\mu)italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) is globally upper semi-continuous over all of μ𝜇\muitalic_μ since it is the finite upper envelope of continuous functions. Thus, we have that limμμ¯Vt(μ)Vt(μ¯)subscript𝜇¯𝜇superscript𝑉𝑡𝜇superscript𝑉𝑡¯𝜇\lim\limits_{\mu\to\bar{\mu}}V^{t}(\mu)\leq V^{t}(\bar{\mu})roman_lim start_POSTSUBSCRIPT italic_μ → over¯ start_ARG italic_μ end_ARG end_POSTSUBSCRIPT italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) ≤ italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( over¯ start_ARG italic_μ end_ARG ) for any μ¯Δ(Θ)¯𝜇ΔΘ\bar{\mu}\in\Delta(\Theta)over¯ start_ARG italic_μ end_ARG ∈ roman_Δ ( roman_Θ ), with strict inequality only potentially possible on the boundaries of Oasubscript𝑂𝑎O_{a}italic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT.

Now set 𝒦=aextOa𝒦subscript𝑎extsubscript𝑂𝑎\mathcal{K}=\bigcup_{a}\text{ext}O_{a}caligraphic_K = ⋃ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ext italic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT be the set of extremal beliefs; this is finite. By definition, it must be that V𝒦(μ)superscript𝑉𝒦𝜇V^{\mathcal{K}}(\mu)italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) is a concave function such that V𝒦(μ)Vt(μ)superscript𝑉𝒦𝜇superscript𝑉𝑡𝜇V^{\mathcal{K}}(\mu)\geq V^{t}(\mu)italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) ≥ italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) for all μ𝒦𝜇𝒦\mu\in\mathcal{K}italic_μ ∈ caligraphic_K, which itself is piecewise convex and globally upper semi-continuous (with jumps at most on points in 𝒦𝒦\mathcal{K}caligraphic_K). But then because V𝒦(μ)Vt(μ)superscript𝑉𝒦𝜇superscript𝑉𝑡𝜇V^{\mathcal{K}}(\mu)\geq V^{t}(\mu)italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) ≥ italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) on the boundary of each 𝒪asubscript𝒪𝑎\mathcal{O}_{a}caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and affine on the interior (by the definition of the concavification), it must be that V𝒦(μ)Vt(μ)superscript𝑉𝒦𝜇superscript𝑉𝑡𝜇V^{\mathcal{K}}(\mu)\geq V^{t}(\mu)italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) ≥ italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) for each belief μΔ(Θ)𝜇ΔΘ\mu\in\Delta(\Theta)italic_μ ∈ roman_Δ ( roman_Θ ). Since we know also V𝒦(μ)V(μ)superscript𝑉𝒦𝜇superscript𝑉𝜇V^{\mathcal{K}}(\mu)\leq V^{*}(\mu)italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) ≤ italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ ) for all μΔ(Θ)𝜇ΔΘ\mu\in\Delta(\Theta)italic_μ ∈ roman_Δ ( roman_Θ ) (by Proposition 1) it must be that V𝒦(μ)=cav(Vt)(μ)superscript𝑉𝒦𝜇cavsuperscript𝑉𝑡𝜇V^{\mathcal{K}}(\mu)=\text{cav}(V^{t})(\mu)italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ ) = cav ( italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ) ( italic_μ ). This finishes the proof. ∎

PROOF OF COROLLARY 1

Proof.

Since Sender faces a moment persuasion problem, it is without loss of generality to parametricize Receiver’s payoff by the same moment function g𝑔gitalic_g (from Sender’s point of view), in particular by taking equivalence classes of Δ(Θ)ΔΘ\Delta(\Theta)roman_Δ ( roman_Θ ) defined by g𝑔gitalic_g. Second, by the argument in Proposition (3) of Gao and Luo (2025), every extremal belief is either an indifference belief (i.e. a(μ,𝟎)superscript𝑎𝜇0a^{*}(\mu,\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) is multiple valued) or degenerate belief. Thus, since Sender faces a moment persuasion problem, it is sufficient to find one solution μ𝜇\muitalic_μ for each pair (a, a’) to the equation

u(a,θ)𝑑g(μ)=u(a,θ)𝑑g(μ)𝑢𝑎𝜃differential-d𝑔𝜇𝑢superscript𝑎𝜃differential-d𝑔𝜇\int u(a,\theta)dg(\mu)=\int u(a^{\prime},\theta)dg(\mu)∫ italic_u ( italic_a , italic_θ ) italic_d italic_g ( italic_μ ) = ∫ italic_u ( italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_θ ) italic_d italic_g ( italic_μ )

where we abuse notation to mean the transformed problem where we take equivalence classes of beliefs in g𝑔gitalic_g. Because g(μ)𝑔𝜇g(\mu)italic_g ( italic_μ ) is a one-dimensional summary statistic, this equation admits a unique solution which can be computed in polynomial time (recalling 𝒜𝒜\mathcal{A}caligraphic_A and ΘΘ\Thetaroman_Θ are both finite). For each pair (a,a)𝑎superscript𝑎(a,a^{\prime})( italic_a , italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ), this is a simple linear equation with finitely many states and hence can be solved in polynomial time. Varying over all doubletons of (a,a)𝑎superscript𝑎(a,a^{\prime})( italic_a , italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) gives there are at most n(n1)2𝑛𝑛12\frac{n(n-1)}{2}divide start_ARG italic_n ( italic_n - 1 ) end_ARG start_ARG 2 end_ARG possible pairs of beliefs (a,a)𝑎superscript𝑎(a,a^{\prime})( italic_a , italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ), and captures a superset of all extremal beliefs. For each of these extremal beliefs, we need to find the (finite) maximum value aS(μ)superscript𝑎𝑆𝜇a^{S}(\mu)italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_μ ), but this involves comparing finitely many linear equations and thus can be executed in polynomial time. Finally, this gives Vt(μ)superscript𝑉𝑡𝜇V^{t}(\mu)italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) on a superset of 𝒦𝒦\mathcal{K}caligraphic_K, and so the concavification is the linear interpolation of the highest points. Concatenating each of the finitely many (polynomial time) steps together implies the result. ∎

PROOF OF PROPOSITION 2

Proof.

Clearly, Vt(μ)V(μ,𝟎)superscript𝑉𝑡𝜇𝑉𝜇0V^{t}(\mu)\geq V(\mu,\mathbf{0})italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) ≥ italic_V ( italic_μ , bold_0 ), so V(μ)cav(V(μ,0))superscript𝑉𝜇cav𝑉𝜇0V^{*}(\mu)\geq\text{cav}(V(\mu,0))italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ ) ≥ cav ( italic_V ( italic_μ , 0 ) ) (with equality only if transfers are not useful). Throughout, we will use the fact that for any connected set Δ(Θ)ΔΘ\mathcal{B}\subset\Delta(\Theta)caligraphic_B ⊂ roman_Δ ( roman_Θ ), g()𝑔g(\mathcal{B})italic_g ( caligraphic_B ) is connected, so in particular the convex hulls of extremal points are mapped to intervals in the moment persuasion problem. We can thus find extremal beliefs μsuperscript𝜇\mu^{\prime}italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and μ′′superscript𝜇′′\mu^{\prime\prime}italic_μ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT such that g(μ)<g(μ′′)[g(μj),g(μj+1)]𝑔superscript𝜇𝑔superscript𝜇′′𝑔subscript𝜇𝑗𝑔subscript𝜇𝑗1g(\mu^{\prime})<g(\mu^{\prime\prime})\in[g(\mu_{j}),g(\mu_{j+1})]italic_g ( italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) < italic_g ( italic_μ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) ∈ [ italic_g ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , italic_g ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) ] such that cav(V(μ0),𝟎)=αV(μ,𝟎)+(1α)V(μ′′,𝟎)cav𝑉subscript𝜇00𝛼𝑉superscript𝜇01𝛼𝑉superscript𝜇′′0\text{cav}(V(\mu_{0}),\mathbf{0})=\alpha V(\mu^{\prime},\mathbf{0})+(1-\alpha)% V(\mu^{\prime\prime},\mathbf{0})cav ( italic_V ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , bold_0 ) = italic_α italic_V ( italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , bold_0 ) + ( 1 - italic_α ) italic_V ( italic_μ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT , bold_0 ) for some α[0,1]𝛼01\alpha\in[0,1]italic_α ∈ [ 0 , 1 ] and V𝒦(μ0)=αVt(μj)+(1α)Vt(μj+1)superscript𝑉𝒦subscript𝜇0𝛼superscript𝑉𝑡subscript𝜇𝑗1𝛼superscript𝑉𝑡subscript𝜇𝑗1V^{\mathcal{K}}(\mu_{0})=\alpha V^{t}(\mu_{j})+(1-\alpha)V^{t}(\mu_{j+1})italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_α italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) + ( 1 - italic_α ) italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ).

Suppose the first condition holds, and we have picked a generic prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT such that g(μ0)g(𝒦)𝑔subscript𝜇0𝑔superscript𝒦g(\mu_{0})\not\in g(\mathcal{K}^{\prime})italic_g ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∉ italic_g ( caligraphic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ). Because the induced action under transfers is distinct from the induced action without, we know that either Vt(μj)>V(μj,𝟎)superscript𝑉𝑡subscript𝜇𝑗𝑉subscript𝜇𝑗0V^{t}(\mu_{j})>V(\mu_{j},\mathbf{0})italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) > italic_V ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_0 ) or Vt(μj+1)>V(μj+1,𝟎)superscript𝑉𝑡subscript𝜇𝑗1𝑉subscript𝜇𝑗10V^{t}(\mu_{j+1})>V(\mu_{j+1},\mathbf{0})italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) > italic_V ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , bold_0 ). Moreover, for every extremal belief μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG where g(μ~)(g(μj),g(μj+1))𝑔~𝜇𝑔subscript𝜇𝑗𝑔subscript𝜇𝑗1g(\tilde{\mu})\in(g(\mu_{j}),g(\mu_{j+1}))italic_g ( over~ start_ARG italic_μ end_ARG ) ∈ ( italic_g ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , italic_g ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) ), V𝒦(μ~)>Vt(μ~)superscript𝑉𝒦~𝜇superscript𝑉𝑡~𝜇V^{\mathcal{K}}(\tilde{\mu})>V^{t}(\tilde{\mu})italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( over~ start_ARG italic_μ end_ARG ) > italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( over~ start_ARG italic_μ end_ARG ). Combining these observations with the decomposition of μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT into a convex combination of extremal beliefs (and linearly interpolating its values) then implies the argument. Note that if g(μ0)g(𝒦)𝑔subscript𝜇0𝑔superscript𝒦g(\mu_{0})\in g(\mathcal{K}^{\prime})italic_g ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∈ italic_g ( caligraphic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ), a similar argument applies by looking only at the extremal point μj𝒦subscript𝜇𝑗superscript𝒦\mu_{j}\in\mathcal{K}^{\prime}italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ caligraphic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and the induced action at that point.

Now suppose Condition (2) holds. We will pick a generic μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT where μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is on the interior of some 𝒪asubscript𝒪𝑎\mathcal{O}_{a}caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT; in particular, this implies that we can write μ0=αμ+(1α)μ′′subscript𝜇0𝛼superscript𝜇1𝛼superscript𝜇′′\mu_{0}=\alpha\mu^{\prime}+(1-\alpha)\mu^{\prime\prime}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_α italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + ( 1 - italic_α ) italic_μ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT for α(0,1)𝛼01\alpha\in(0,1)italic_α ∈ ( 0 , 1 ). Part (1) already shows Sender benefits from transfers; we want to show they also benefit from persuasion, i.e. it is not optimal to induce the no-information experiment. We now have the following computation.

Suppose not, so that at μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, a(μ,tI)=asuperscript𝑎𝜇superscript𝑡𝐼𝑎a^{*}(\mu,t^{I})=aitalic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) = italic_a is induced and Vt(μ0)=V𝒦(μ0)=V(μ0)superscript𝑉𝑡subscript𝜇0superscript𝑉𝒦subscript𝜇0superscript𝑉subscript𝜇0V^{t}(\mu_{0})=V^{\mathcal{K}}(\mu_{0})=V^{*}(\mu_{0})italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ). Since μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is on the interior of some 𝒪asubscript𝒪𝑎\mathcal{O}_{a}caligraphic_O start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT,

μv(a)kEμ[u(a(μ,𝟎),θ)u(a,θ)]𝜇𝑣𝑎𝑘subscript𝐸𝜇delimited-[]𝑢superscript𝑎𝜇0𝜃𝑢𝑎𝜃\mu\to v(a)-k{E}_{\mu}[u(a^{*}(\mu,\mathbf{0}),\theta)-u(a,\theta)]italic_μ → italic_v ( italic_a ) - italic_k italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ]

is linear on a neighborhood Bε(μ)subscript𝐵𝜀𝜇B_{\varepsilon}(\mu)italic_B start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_μ ). But because a(μ,tI)superscript𝑎𝜇superscript𝑡𝐼a^{*}(\mu,t^{I})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) attains the optimal concavification value, one of two things must be true:

  1. (1)

    There exists μBε(μ0)superscript𝜇subscript𝐵𝜀subscript𝜇0\mu^{\prime}\in B_{\varepsilon}(\mu_{0})italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_B start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) such that V(μ)<v(a)kEμ[u(a(μ,𝟎),θ)u(a,θ)]superscript𝑉superscript𝜇𝑣𝑎𝑘subscript𝐸𝜇delimited-[]𝑢superscript𝑎𝜇0𝜃𝑢𝑎𝜃V^{*}(\mu^{\prime})<v(a)-k{E}_{\mu}[u(a^{*}(\mu,\mathbf{0}),\theta)-u(a,\theta)]italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) < italic_v ( italic_a ) - italic_k italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ], or

  2. (2)

    V(μ)=v(a)+ktI(a,μ)superscript𝑉𝜇𝑣𝑎𝑘superscript𝑡𝐼𝑎𝜇V^{*}(\mu)=v(a)+kt^{I}(a,\mu)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ ) = italic_v ( italic_a ) + italic_k italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_a , italic_μ ) is linear over interval containing [g(μj),g(μj+1)]𝑔subscript𝜇𝑗𝑔subscript𝜇𝑗1[g(\mu_{j}),g(\mu_{j+1})][ italic_g ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , italic_g ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) ].

Case (1) occurs when the slope of the mapping above is not equivalent to the value Vt(μj+1)Vt(μj)g(μj+1)g(μj)superscript𝑉𝑡subscript𝜇𝑗1superscript𝑉𝑡subscript𝜇𝑗𝑔subscript𝜇𝑗1𝑔subscript𝜇𝑗\frac{V^{t}(\mu_{j+1})-V^{t}(\mu_{j})}{g(\mu_{j+1})-g(\mu_{j})}divide start_ARG italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) - italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) end_ARG start_ARG italic_g ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) - italic_g ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) end_ARG, i.e. the slope of the value of the 𝒦𝒦\mathcal{K}caligraphic_K-cavification over the interval [g(μj),g(μj+1)]𝑔subscript𝜇𝑗𝑔subscript𝜇𝑗1[g(\mu_{j}),g(\mu_{j+1})][ italic_g ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , italic_g ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) ]; this is clearly impossible by definition of V(μ0)superscript𝑉subscript𝜇0V^{*}(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ). Next, we show Case (2) is impossible too. Since a(μj,t)superscript𝑎subscript𝜇𝑗superscript𝑡a^{*}(\mu_{j},t^{*})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) and a(μj+1,t)superscript𝑎subscript𝜇𝑗1superscript𝑡a^{*}(\mu_{j+1},t^{*})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) are induced at μjsubscript𝜇𝑗\mu_{j}italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT and μj+1subscript𝜇𝑗1\mu_{j+1}italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT and are distinct, it must be that either v(a)kEμj[u(a(μj,𝟎),θ)u(a,θ)]<Vt(μj)𝑣𝑎𝑘subscript𝐸subscript𝜇𝑗delimited-[]𝑢superscript𝑎subscript𝜇𝑗0𝜃𝑢𝑎𝜃superscript𝑉𝑡subscript𝜇𝑗v(a)-k{E}_{\mu_{j}}[u(a^{*}(\mu_{j},\mathbf{0}),\theta)-u(a,\theta)]<V^{t}(\mu% _{j})italic_v ( italic_a ) - italic_k italic_E start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_0 ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ] < italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) or v(a)kEμj+1[u(a(μj+1,𝟎),θ)u(a,θ)]<Vt(μj+1)𝑣𝑎𝑘subscript𝐸subscript𝜇𝑗1delimited-[]𝑢superscript𝑎subscript𝜇𝑗10𝜃𝑢𝑎𝜃superscript𝑉𝑡subscript𝜇𝑗1v(a)-k{E}_{\mu_{j+1}}[u(a^{*}(\mu_{j+1},\mathbf{0}),\theta)-u(a,\theta)]<V^{t}% (\mu_{j+1})italic_v ( italic_a ) - italic_k italic_E start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , bold_0 ) , italic_θ ) - italic_u ( italic_a , italic_θ ) ] < italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ). But then this implies that

the last equality uses the fact μv(a)kEμ[u(a(μ,𝟎)u(a,θ)]\mu\to v(a)-k{E}_{\mu}[u(a^{*}(\mu,\mathbf{0})-u(a,\theta)]italic_μ → italic_v ( italic_a ) - italic_k italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) - italic_u ( italic_a , italic_θ ) ] is linear on [g(μj),g(μj+1)]𝑔subscript𝜇𝑗𝑔subscript𝜇𝑗1[g(\mu_{j}),g(\mu_{j+1})][ italic_g ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , italic_g ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) ] by Condition (2). This implies V(μ0)>Vt(μ0)superscript𝑉subscript𝜇0superscript𝑉𝑡subscript𝜇0V^{*}(\mu_{0})>V^{t}(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) > italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), a contradiction to our hypothesis. Thus, at μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, it cannot be that V(μ0)=Vt(μ0)superscript𝑉subscript𝜇0superscript𝑉𝑡subscript𝜇0V^{*}(\mu_{0})=V^{t}(\mu_{0})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), so Sender benefits from persuasion and transfers.

Finally, suppose condition (3) holds. This implies that Vt(μ)=V(μ,𝟎)superscript𝑉𝑡𝜇𝑉𝜇0V^{t}(\mu)=V(\mu,\mathbf{0})italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) = italic_V ( italic_μ , bold_0 ) at the extremal points {μj,μj+1}subscript𝜇𝑗subscript𝜇𝑗1\{\mu_{j},\mu_{j+1}\}{ italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT }. Taking the decomposition of the prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, we then have that

cav(V(αμj+(1α)μj+1,𝟎))V𝒦(αμj+(1α)μj+1)=αVt(μj)+(1α)Vt(μj+1)cav𝑉𝛼subscript𝜇𝑗1𝛼subscript𝜇𝑗10superscript𝑉𝒦𝛼subscript𝜇𝑗1𝛼subscript𝜇𝑗1𝛼superscript𝑉𝑡subscript𝜇𝑗1𝛼superscript𝑉𝑡subscript𝜇𝑗1\displaystyle\text{cav}(V(\alpha\mu_{j}+(1-\alpha)\mu_{j+1},\mathbf{0}))\leq V% ^{\mathcal{K}}(\alpha\mu_{j}+(1-\alpha)\mu_{j+1})=\alpha V^{t}(\mu_{j})+(1-% \alpha)V^{t}(\mu_{j+1})cav ( italic_V ( italic_α italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + ( 1 - italic_α ) italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , bold_0 ) ) ≤ italic_V start_POSTSUPERSCRIPT caligraphic_K end_POSTSUPERSCRIPT ( italic_α italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + ( 1 - italic_α ) italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ) = italic_α italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) + ( 1 - italic_α ) italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT )
=αV(μj,𝟎)+(1α)V(μj+1,𝟎)cav(V(αμj+(1α)μj+1,𝟎)).absent𝛼𝑉subscript𝜇𝑗01𝛼𝑉subscript𝜇𝑗10cav𝑉𝛼subscript𝜇𝑗1𝛼subscript𝜇𝑗10\displaystyle=\alpha V(\mu_{j},\mathbf{0})+(1-\alpha)V(\mu_{j+1},\mathbf{0})% \leq\text{cav}(V(\alpha\mu_{j}+(1-\alpha)\mu_{j+1},\mathbf{0})).= italic_α italic_V ( italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , bold_0 ) + ( 1 - italic_α ) italic_V ( italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , bold_0 ) ≤ cav ( italic_V ( italic_α italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + ( 1 - italic_α ) italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT , bold_0 ) ) .

The first inequality is definitional, the second by choice of μjsubscript𝜇𝑗\mu_{j}italic_μ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT and μj+1subscript𝜇𝑗1\mu_{j+1}italic_μ start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT, the third from the hypotheses of Part (3), and the last one again by the definition of concavification. Thus, the 𝒦𝒦\mathcal{K}caligraphic_K-cavification and concavification coincide, so Sender does not benefit from transfers. ∎

PROOF OF LEMMA 2

Proof.

Suppose (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) is u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-optimal. For every μsupp(τ)𝜇supp𝜏\mu\in\text{supp}(\tau)italic_μ ∈ supp ( italic_τ ) and a(μ,t)superscript𝑎𝜇superscript𝑡a^{*}(\mu,t^{*})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ), let C(μ)=t(a,μ)tI(a,μ)𝐶𝜇superscript𝑡𝑎𝜇superscript𝑡𝐼𝑎𝜇C(\mu)=t^{*}(a,\mu)-t^{I}(a,\mu)italic_C ( italic_μ ) = italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_a , italic_μ ) - italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ( italic_a , italic_μ ) be the difference in payoffs between the u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-optimal transfers and the canonical transfers. Each C(μ)𝐶𝜇C(\mu)italic_C ( italic_μ ) must be nonnegative by the definition of tIsuperscript𝑡𝐼t^{I}italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT and the fact a𝑎aitalic_a is chosen on path. Define C=Eτ[C(μ)]𝐶subscript𝐸𝜏delimited-[]𝐶𝜇C={E}_{\tau}[C(\mu)]italic_C = italic_E start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT [ italic_C ( italic_μ ) ], and consider the tuple (τ,tI+C)superscript𝜏superscript𝑡𝐼𝐶(\tau^{*},t^{I}+C)( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT + italic_C ). Clearly, the transfer scheme satisfies the constraints since the expected payment to the principal is the same, but also must induce the same actins on path as and induces the same actions as (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ). Thus, (τ,tI+C)superscript𝜏superscript𝑡𝐼𝐶(\tau^{*},t^{I}+C)( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT + italic_C ) is u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG-constrained optimal. ∎

PROOF OF THEOREM 2

Proof.

We split the proof into two distinct steps to supplement the discussion in the main exposition. Step (1) validates the program written down in the discussion, and Step (2) solves it to prove Theorem 2.

STEP 1: VALIDATING THE LAGRANGIAN APPROACH

For completeness, we introduce some notation from Doval and Skreta (2023). Fix a prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and a utility promise u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG. Let

(u¯C)={μ: There exists τ s.t. Eτ[μ]=μ0 and Eτ[Eμ[u(a(μ,0),θ)]]u¯C\mathcal{F}(\bar{u}-C)=\{\mu:\text{ There exists }\tau\text{ s.t. }{E}_{\tau}[% \mu]=\mu_{0}\text{ and }{E}_{\tau}[{E}_{\mu}[u(a^{*}(\mu,0),\theta)]]\geq\bar{% u}-Ccaligraphic_F ( over¯ start_ARG italic_u end_ARG - italic_C ) = { italic_μ : There exists italic_τ s.t. italic_E start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT [ italic_μ ] = italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and italic_E start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT [ italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , 0 ) , italic_θ ) ] ] ≥ over¯ start_ARG italic_u end_ARG - italic_C

be the set of feasible beliefs at which there exists an information policy that satisfies the utility promise constraint supposing that there is a lump-sum payment of C¯¯𝐶\bar{C}over¯ start_ARG italic_C end_ARG. Let S(u¯C)superscript𝑆¯𝑢𝐶\mathcal{F}^{S}(\bar{u}-C)caligraphic_F start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG - italic_C ) be the set of experiments where the utility promise holds strictly at that belief, noting S(u¯C)¯=(u¯C)¯superscript𝑆¯𝑢𝐶¯𝑢𝐶\overline{\mathcal{F}^{S}(\bar{u}-C)}=\mathcal{F}(\bar{u}-C)over¯ start_ARG caligraphic_F start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG - italic_C ) end_ARG = caligraphic_F ( over¯ start_ARG italic_u end_ARG - italic_C ). Sender’s objective function, Vt(μ)kCsuperscript𝑉𝑡𝜇𝑘𝐶V^{t}(\mu)-kCitalic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ ) - italic_k italic_C, is upper semi-continuous by assumption and Receiver’s objective function at t=𝟎𝑡0t=\mathbf{0}italic_t = bold_0 (which defines our constraint), Eμ(a(μ,𝟎),θ)subscript𝐸𝜇superscript𝑎𝜇0𝜃{E}_{\mu}(a^{*}(\mu,\mathbf{0}),\theta)italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) is the maximum of linear functions and hence continuous. Moreover, both are finite valued. Hence we satisfy all of the necessary assumptions for Theorem (3.1) in Doval and Skreta (2023): restated in our notation, this says exactly that

Theorem (Doval and Skreta, 2023).

For any (μ0,u¯C)subscript𝜇0¯𝑢𝐶(\mu_{0},\bar{u}-C)( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG - italic_C ),

V(μ0,u¯C)=cavμ0,u¯(Vt(μ0)kC+𝟏{Eμ[u(a(μ,0),θ)]u¯C})superscript𝑉subscript𝜇0¯𝑢𝐶subscriptcavsubscript𝜇0¯𝑢superscript𝑉𝑡subscript𝜇0𝑘𝐶superscript1subscript𝐸𝜇delimited-[]𝑢superscript𝑎𝜇0𝜃¯𝑢𝐶V^{*}(\mu_{0},\bar{u}-C)=\text{cav}_{\mu_{0},\bar{u}}\left(V^{t}(\mu_{0})-kC+% \mathbf{1}^{*}\left\{{E}_{\mu}[u(a^{*}(\mu,0),\theta)]\geq\bar{u}-C\right\}\right)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG - italic_C ) = cav start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG end_POSTSUBSCRIPT ( italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_k italic_C + bold_1 start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT { italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , 0 ) , italic_θ ) ] ≥ over¯ start_ARG italic_u end_ARG - italic_C } )

where the concavification is taken in both the prior and utility promise.

This program yields a value of -\infty- ∞ whenever μ0(u¯C)subscript𝜇0¯𝑢𝐶\mu_{0}\not\in\mathcal{F}(\bar{u}-C)italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∉ caligraphic_F ( over¯ start_ARG italic_u end_ARG - italic_C ). The outer supremum over C𝐶Citalic_C in our program follows from the fact u¯C¯𝑢𝐶\bar{u}-Cover¯ start_ARG italic_u end_ARG - italic_C is endogenously chosen by Sender via transfers. Since for any u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG, there exists some C𝐶Citalic_C at which μ0(u¯C)subscript𝜇0¯𝑢𝐶\mu_{0}\in\mathcal{F}(\bar{u}-C)italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ caligraphic_F ( over¯ start_ARG italic_u end_ARG - italic_C ), V(μ0,u¯)>superscript𝑉subscript𝜇0¯𝑢V^{*}(\mu_{0},\bar{u})>-\inftyitalic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ) > - ∞ for all u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG.

We now want to apply Theorem (3.3) in Doval and Skreta (2023), noting that if μ0(u¯C)subscript𝜇0¯𝑢𝐶\mu_{0}\in\mathcal{F}(\bar{u}-C)italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ caligraphic_F ( over¯ start_ARG italic_u end_ARG - italic_C ) then (u¯C)¯𝑢𝐶\mathcal{F}(\bar{u}-C)\neq\varnothingcaligraphic_F ( over¯ start_ARG italic_u end_ARG - italic_C ) ≠ ∅ (a nontriviality assumption required by the theorem).

Theorem (Doval and Skreta, 2023).

For every C𝐶Citalic_C and every μ0(u¯C)subscript𝜇0¯𝑢𝐶\mu_{0}\in\mathcal{F}(\bar{u}-C)italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ caligraphic_F ( over¯ start_ARG italic_u end_ARG - italic_C ),

V(μ0,u¯C)=infλR+[cav(Vt(μ0)kC+λEμ0[u(a(μ0,0),θ)])λ(u¯C)]superscript𝑉subscript𝜇0¯𝑢𝐶subscriptinfimum𝜆subscript𝑅delimited-[]cavsuperscript𝑉𝑡subscript𝜇0𝑘𝐶𝜆subscript𝐸subscript𝜇0delimited-[]𝑢superscript𝑎subscript𝜇00𝜃𝜆¯𝑢𝐶V^{*}(\mu_{0},\bar{u}-C)=\inf_{\lambda\in{R}_{+}}\left[\text{cav}\left(V^{t}(% \mu_{0})-kC+\lambda{E}_{\mu_{0}}[u(a^{*}(\mu_{0},0),\theta)]\right)-\lambda(% \bar{u}-C)\right]italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG - italic_C ) = roman_inf start_POSTSUBSCRIPT italic_λ ∈ italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ cav ( italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_k italic_C + italic_λ italic_E start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 ) , italic_θ ) ] ) - italic_λ ( over¯ start_ARG italic_u end_ARG - italic_C ) ]

What if μ0(u¯C)subscript𝜇0¯𝑢𝐶\mu_{0}\not\in\mathcal{F}(\bar{u}-C)italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∉ caligraphic_F ( over¯ start_ARG italic_u end_ARG - italic_C )? That is, there is no information policy which can guarantee a payoff of at least u¯C¯𝑢𝐶\bar{u}-Cover¯ start_ARG italic_u end_ARG - italic_C under the canonical transfers. In that case, the first part of our result implies that the value of the constraint is at -\infty- ∞. Setting it equal to this value and taking the supremum across all C𝐶Citalic_C then implies the desired equality.

Suppose now we have fixed some C𝐶Citalic_C; substituting in the definition of Vtsuperscript𝑉𝑡V^{t}italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT then implies that the function inside the concavification is given by

maxa𝒜{Eμ[v(a,θ)+ku(a,θ)}+(λk)u(a(μ,𝟎),θ)]kCλ(u¯C).\max_{a\in\mathcal{A}}\left\{{E}_{\mu}[v(a,\theta)+ku(a,\theta)\right\}+(% \lambda-k)u(a^{*}(\mu,\mathbf{0}),\theta)]-kC-\lambda(\bar{u}-C).roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_v ( italic_a , italic_θ ) + italic_k italic_u ( italic_a , italic_θ ) } + ( italic_λ - italic_k ) italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) ] - italic_k italic_C - italic_λ ( over¯ start_ARG italic_u end_ARG - italic_C ) .

Maximizing over C𝐶Citalic_C and infimizing over λ𝜆\lambdaitalic_λ then implies the desired program.


STEP 2: SOLVING THE LAGRANGIAN

To solve the program, note that the value function coincides with the following program at the prior and utility promise tuple (μ0,u¯)subscript𝜇0¯𝑢(\mu_{0},\bar{u})( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ):

sup(C,λ)R+2{cav(maxa𝒜{Eμ(v(a,θ)+ku(a,θ))}+(λk)u(a(μ,𝟎),θ))C(λk)λu¯}subscriptsupremum𝐶𝜆superscriptsubscript𝑅2cavsubscript𝑎𝒜subscript𝐸𝜇𝑣𝑎𝜃𝑘𝑢𝑎𝜃𝜆𝑘𝑢superscript𝑎𝜇0𝜃𝐶𝜆𝑘𝜆¯𝑢\sup_{(C,\lambda)\in{R}_{+}^{2}}\left\{\text{cav}\left(\max_{a\in\mathcal{A}}% \left\{{E}_{\mu}(v(a,\theta)+ku(a,\theta))\right\}+(\lambda-k)u(a^{*}(\mu,% \mathbf{0}),\theta)\right)-C(\lambda-k)-\lambda\bar{u}\right\}roman_sup start_POSTSUBSCRIPT ( italic_C , italic_λ ) ∈ italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT { cav ( roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( italic_v ( italic_a , italic_θ ) + italic_k italic_u ( italic_a , italic_θ ) ) } + ( italic_λ - italic_k ) italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) ) - italic_C ( italic_λ - italic_k ) - italic_λ over¯ start_ARG italic_u end_ARG }

where we pull the constant term kC𝑘𝐶-kC- italic_k italic_C out of the concavification. This objective is differentiable in C𝐶Citalic_C, and hence if the optimal C𝐶Citalic_C is every nonzero, then the first order necessary condition must hold: that is, λ=k𝜆𝑘\lambda=kitalic_λ = italic_k. Plugging this back into the above program implies the value is equivalent to solving (less the constant term ku¯𝑘¯𝑢-k\bar{u}- italic_k over¯ start_ARG italic_u end_ARG)

cav(maxa𝒜{Eμ(v(a,θ)+ku(a,θ))}).cavsubscript𝑎𝒜subscript𝐸𝜇𝑣𝑎𝜃𝑘𝑢𝑎𝜃\text{cav}\left(\max_{a\in\mathcal{A}}\left\{{E}_{\mu}(v(a,\theta)+ku(a,\theta% ))\right\}\right).cav ( roman_max start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT { italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( italic_v ( italic_a , italic_θ ) + italic_k italic_u ( italic_a , italic_θ ) ) } ) .

This is the concavification of a (strictly) convex function in μ𝜇\muitalic_μ for any k0𝑘0k\geq 0italic_k ≥ 0 and hence is attained by full-information. Otherwise, if C=0𝐶0C=0italic_C = 0, then μ0(u¯)subscript𝜇0¯𝑢\mu_{0}\in\mathcal{F}(\bar{u})italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ caligraphic_F ( over¯ start_ARG italic_u end_ARG ), and we apply the Doval and Skreta (2023) theorems to the problem without supremizing over C𝐶Citalic_C. ∎

PROOF OF COROLLARY 2

Proof.

The first part. Fix u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG so that C(u¯)>0superscript𝐶¯𝑢0C^{*}(\bar{u})>0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) > 0 and fix some u¯>u¯superscript¯𝑢¯𝑢\bar{u}^{\prime}>\bar{u}over¯ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT > over¯ start_ARG italic_u end_ARG, and suppose C(u¯)<C(u¯)superscript𝐶superscript¯𝑢superscript𝐶¯𝑢C^{*}(\bar{u}^{\prime})<C^{*}(\bar{u})italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) < italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ). By Theorem 2, this implies τ(u¯)superscript𝜏¯𝑢\tau^{*}(\bar{u})italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) is full-information;

where the first comes from the fact C(u¯)>0superscript𝐶¯𝑢0C^{*}(\bar{u})>0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) > 0, the second from Blackwell’s theorem (since τ(u¯)superscript𝜏¯𝑢\tau^{*}(\bar{u})italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) is full information and hence Blackwell-maximal among all posterior distributions), the third from the fact (τ(u¯),tI)superscript𝜏superscript¯𝑢superscript𝑡𝐼(\tau^{*}(\bar{u}^{\prime}),t^{I})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) is u¯superscript¯𝑢\bar{u}^{\prime}over¯ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT-constrained maximum, and the final one by the fact u¯>u¯superscript¯𝑢¯𝑢\bar{u}^{\prime}>\bar{u}over¯ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT > over¯ start_ARG italic_u end_ARG. This then implies that C(u¯)>C(u¯)superscript𝐶superscript¯𝑢superscript𝐶¯𝑢C^{*}(\bar{u}^{\prime})>C^{*}(\bar{u})italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) > italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ). This implies both parts of the argument once we recall that C(u¯)0superscript𝐶¯𝑢0C^{*}(\bar{u})\geq 0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) ≥ 0 always.

The second part. Clearly for fixed u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG we are concave in μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, since the second representation in the proof of Theorem 2 implies

V(μ0,u¯)=supCR+infλR+{cav|μ0{Vt(μ0)+λEμ[u(a(μ0,0),θ)]kCλ(u¯C)}}.superscript𝑉subscript𝜇0¯𝑢subscriptsupremum𝐶subscript𝑅subscriptinfimum𝜆subscript𝑅evaluated-atcavsubscript𝜇0superscript𝑉𝑡subscript𝜇0𝜆subscript𝐸𝜇delimited-[]𝑢superscript𝑎subscript𝜇00𝜃𝑘𝐶𝜆¯𝑢𝐶V^{*}(\mu_{0},\bar{u})=\sup_{C\in{R}_{+}}\inf_{\lambda\in{R}_{+}}\left\{\text{% cav}|_{\mu_{0}}\left\{V^{t}(\mu_{0})+\lambda{E}_{\mu}[u(a^{*}(\mu_{0},0),% \theta)]-kC-\lambda(\bar{u}-C)\right\}\right\}.italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ) = roman_sup start_POSTSUBSCRIPT italic_C ∈ italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_inf start_POSTSUBSCRIPT italic_λ ∈ italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUBSCRIPT { cav | start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT { italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + italic_λ italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 ) , italic_θ ) ] - italic_k italic_C - italic_λ ( over¯ start_ARG italic_u end_ARG - italic_C ) } } .

The outer supremum is independent of the concavification (and moreover is independent of beliefs) (in particular, supCR{f(x)+C}subscriptsupremum𝐶𝑅𝑓𝑥𝐶\sup_{C\in{R}}\{f(x)+C\}roman_sup start_POSTSUBSCRIPT italic_C ∈ italic_R end_POSTSUBSCRIPT { italic_f ( italic_x ) + italic_C } will be concave in x𝑥xitalic_x for any C𝐶Citalic_C), and the inner infimum is the infimum of functions each of which is concave in μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (and hence concave). This implies Vsuperscript𝑉V^{*}italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is concave in μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

For u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG, there are two cases. First, if we are on the region where C(u¯)>0superscript𝐶¯𝑢0C^{*}(\bar{u})>0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) > 0, then the value of persuasion and transfers in u𝑢uitalic_u exactly is linear with slope k𝑘kitalic_k (since increases in the utility promise must be matched with increases in payments one-to-one). Second, if we are on the interior of the region of promises where C(u¯)=0superscript𝐶¯𝑢0C^{*}(\bar{u})=0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG ) = 0, then

V(μ0,u¯)=infλR+{cav|μ0{Vt(μ0)+λEμ[u(a(μ0,0),θ)]kCλ(u¯C)}}superscript𝑉subscript𝜇0¯𝑢subscriptinfimum𝜆subscript𝑅evaluated-atcavsubscript𝜇0superscript𝑉𝑡subscript𝜇0𝜆subscript𝐸𝜇delimited-[]𝑢superscript𝑎subscript𝜇00𝜃𝑘𝐶𝜆¯𝑢𝐶V^{*}(\mu_{0},\bar{u})=\inf_{\lambda\in{R}_{+}}\left\{\text{cav}|_{\mu_{0}}% \left\{V^{t}(\mu_{0})+\lambda{E}_{\mu}[u(a^{*}(\mu_{0},0),\theta)]-kC-\lambda(% \bar{u}-C)\right\}\right\}italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ) = roman_inf start_POSTSUBSCRIPT italic_λ ∈ italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUBSCRIPT { cav | start_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT { italic_V start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + italic_λ italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 ) , italic_θ ) ] - italic_k italic_C - italic_λ ( over¯ start_ARG italic_u end_ARG - italic_C ) } }

which is the infimum of functions which are linear in u𝑢uitalic_u and hence must be concave.

Finally, global concavity. Let u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG be the unique point at which C(u¯+ε)>0superscript𝐶¯𝑢𝜀0C^{*}(\bar{u}+\varepsilon)>0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG + italic_ε ) > 0 but C(u¯ε)=0superscript𝐶¯𝑢𝜀0C^{*}(\bar{u}-\varepsilon)=0italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over¯ start_ARG italic_u end_ARG - italic_ε ) = 0 for all ε>0𝜀0\varepsilon>0italic_ε > 0. For a small enough compact neighborhood around u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG, λ𝜆\lambdaitalic_λ must be chosen from a compact set, so by Berge’s theorem of the maximum the infimizers for λ𝜆\lambdaitalic_λ are upper hemi-continuous in the utility promise. Since λ(u¯+ε)=k𝜆¯𝑢𝜀𝑘\lambda(\bar{u}+\varepsilon)=kitalic_λ ( over¯ start_ARG italic_u end_ARG + italic_ε ) = italic_k for all ε>0𝜀0\varepsilon>0italic_ε > 0, this implies λ(u¯)=k𝜆¯𝑢𝑘\lambda(\bar{u})=kitalic_λ ( over¯ start_ARG italic_u end_ARG ) = italic_k and hence the subderivative of V(μ,u¯ε)superscript𝑉𝜇¯𝑢𝜀V^{*}(\mu,\bar{u}-\varepsilon)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , over¯ start_ARG italic_u end_ARG - italic_ε ) as ε0𝜀0\varepsilon\to 0italic_ε → 0 must converge to k𝑘kitalic_k (noting a subderivative exists since V(μ,u¯ε)superscript𝑉𝜇¯𝑢𝜀V^{*}(\mu,\bar{u}-\varepsilon)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , over¯ start_ARG italic_u end_ARG - italic_ε ) is concave for all ε>0𝜀0\varepsilon>0italic_ε > 0). This implies a smooth-pasting property must hold so V(μ0,u¯)superscript𝑉subscript𝜇0¯𝑢V^{*}(\mu_{0},\bar{u})italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_u end_ARG ) is globally concave in u¯¯𝑢\bar{u}over¯ start_ARG italic_u end_ARG for fixed prior μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, as desired. ∎

PROOF OF PROPOSITION 3

Proof.

Fix some discount rate δ𝛿\deltaitalic_δ. Normalize payoffs so that U¯(μ)=u¯=0¯𝑈𝜇¯𝑢0\underline{U}(\mu)=\underline{u}=0under¯ start_ARG italic_U end_ARG ( italic_μ ) = under¯ start_ARG italic_u end_ARG = 0. Consider the following strategy for some fixed TN𝑇𝑁T\in{N}italic_T ∈ italic_N for Sender.

  1. (1)

    At periods N𝑁Nitalic_N which are divisible by T𝑇Titalic_T, reveal the state, pay nothing, and recommend aS(θ)={argmaxa𝒜v(a,θ)}superscript𝑎𝑆𝜃subscript𝑎𝒜𝑣𝑎𝜃a^{S}(\theta)=\left\{\operatorname*{\arg\!\max}_{a\in\mathcal{A}}v(a,\theta)\right\}italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_θ ) = { start_OPERATOR roman_arg roman_max end_OPERATOR start_POSTSUBSCRIPT italic_a ∈ caligraphic_A end_POSTSUBSCRIPT italic_v ( italic_a , italic_θ ) }.

  2. (2)

    In all other periods where NmodTmodulo𝑁𝑇N\mod Titalic_N roman_mod italic_T is nonzero, if Receiver listened to Sender’s recommendation at the most recent time N<Nsuperscript𝑁𝑁N^{\prime}<Nitalic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < italic_N where N=nTsuperscript𝑁𝑛𝑇N^{\prime}=nTitalic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_n italic_T, then revert to the static optimal information policy (τ,tI)superscript𝜏superscript𝑡𝐼(\tau^{*},t^{I})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ), and recommend a(μ,tI)superscript𝑎𝜇superscript𝑡𝐼a^{*}(\mu,t^{I})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , italic_t start_POSTSUPERSCRIPT italic_I end_POSTSUPERSCRIPT ) to Receiver.

  3. (3)

    Otherwise, if Receiver deviated at Nsuperscript𝑁N^{\prime}italic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, give no information and recommend a(μ0,𝟎)superscript𝑎subscript𝜇00a^{*}(\mu_{0},\mathbf{0})italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , bold_0 ).

These are strategies that split histories into times T𝑇Titalic_T (i.e. the clock resets every T𝑇Titalic_T periods) and which extract surplus from Receiver at exactly the beginning of each period. If we are in cases (2) or (3), the recommended action is clearly incentive compatible for Receiver since it is myopically optimal and has no affect on Receiver’s continuation value.

Finally, suppose we are in case (1). Define Δ(θ)=u(a(δθ,𝟎),θ)u(aS(θ),θ)Δ𝜃𝑢superscript𝑎subscript𝛿𝜃0𝜃𝑢superscript𝑎𝑆𝜃𝜃\Delta(\theta)=u(a^{*}(\delta_{\theta},\mathbf{0}),\theta)-u(a^{S}(\theta),\theta)roman_Δ ( italic_θ ) = italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT , bold_0 ) , italic_θ ) - italic_u ( italic_a start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT ( italic_θ ) , italic_θ ) to be Receiver’s deviation gain at state θ𝜃\thetaitalic_θ, and let Δ¯=maxθ{Δ(Θ)}¯Δsubscript𝜃ΔΘ\bar{\Delta}=\max_{\theta}\{\Delta(\Theta)\}over¯ start_ARG roman_Δ end_ARG = roman_max start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT { roman_Δ ( roman_Θ ) }. Let

η=Eτ[u(a(μ,𝟎),θ)]u(a(μ0,θ),θ)𝜂subscript𝐸superscript𝜏delimited-[]𝑢superscript𝑎𝜇0𝜃𝑢superscript𝑎subscript𝜇0𝜃𝜃\eta={E}_{\tau^{*}}[u(a^{*}(\mu,\mathbf{0}),\theta)]-u(a^{*}(\mu_{0},\theta),\theta)italic_η = italic_E start_POSTSUBSCRIPT italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ , bold_0 ) , italic_θ ) ] - italic_u ( italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_θ ) , italic_θ )

be the amount by which Receiver benefits from persuasion. Incentive compatibility is then satisfied so long as Δ¯η(1δT+11δ)¯Δ𝜂1superscript𝛿𝑇11𝛿\bar{\Delta}\leq\eta\left(\frac{1-\delta^{T+1}}{1-\delta}\right)over¯ start_ARG roman_Δ end_ARG ≤ italic_η ( divide start_ARG 1 - italic_δ start_POSTSUPERSCRIPT italic_T + 1 end_POSTSUPERSCRIPT end_ARG start_ARG 1 - italic_δ end_ARG ). Pick δ¯¯𝛿\bar{\delta}over¯ start_ARG italic_δ end_ARG sufficiently large so that Δ¯<η(11δ¯)¯Δ𝜂11¯𝛿\bar{\Delta}<{\eta}\left(\frac{1}{1-\bar{\delta}}\right)over¯ start_ARG roman_Δ end_ARG < italic_η ( divide start_ARG 1 end_ARG start_ARG 1 - over¯ start_ARG italic_δ end_ARG end_ARG ), noting this must exist since Δ¯<¯Δ\bar{\Delta}<\inftyover¯ start_ARG roman_Δ end_ARG < ∞. Continuity in T𝑇Titalic_T then implies there exists some T<𝑇T<\inftyitalic_T < ∞ where this inequality holds (strictly) at T𝑇Titalic_T as well. Moreover, since 1δT+11δ1superscript𝛿𝑇11𝛿\frac{1-\delta^{T+1}}{1-\delta}divide start_ARG 1 - italic_δ start_POSTSUPERSCRIPT italic_T + 1 end_POSTSUPERSCRIPT end_ARG start_ARG 1 - italic_δ end_ARG is increasing in δ𝛿\deltaitalic_δ for any fixed T𝑇Titalic_T, this inequality must also hold for all δ>δ¯𝛿¯𝛿\delta>\bar{\delta}italic_δ > over¯ start_ARG italic_δ end_ARG. Thus Receiver cannot have any profitable deviation in the periods where Sender adopts full information. This implies that the recommendation policy for Receiver is incentive compatible at all histories. Finally, since Sender doesn’t attain first best, in periods divisible by T𝑇Titalic_T they outperform their static persuasion payoff.

To see that the limiting inequality holds, recall

limδ1(1δ)t=0δtct=limT1Tt=0TcTsubscript𝛿11𝛿superscriptsubscript𝑡0superscript𝛿𝑡subscript𝑐𝑡subscript𝑇1𝑇superscriptsubscript𝑡0𝑇subscript𝑐𝑇\lim\limits_{\delta\to 1}(1-\delta)\sum_{t=0}^{\infty}\delta^{t}c_{t}=\lim% \limits_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T}c_{T}roman_lim start_POSTSUBSCRIPT italic_δ → 1 end_POSTSUBSCRIPT ( 1 - italic_δ ) ∑ start_POSTSUBSCRIPT italic_t = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = roman_lim start_POSTSUBSCRIPT italic_T → ∞ end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_T end_ARG ∑ start_POSTSUBSCRIPT italic_t = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT

for any bounded sequence of numbers {ct}subscript𝑐𝑡\{c_{t}\}{ italic_c start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT }. In particular, this implies that as δ1𝛿1\delta\to 1italic_δ → 1, the above strategy converges to the average payoff attained in all periods. Since Sender outperforms their static persuasion payoff 1T1𝑇\frac{1}{T}divide start_ARG 1 end_ARG start_ARG italic_T end_ARG of the time by a bounded amount, their total average payoff must also increase and hence we obtain the asymptotic result. ∎

PROOF OF PROPOSITION 4

Proof.

Let νΔ(Θ×𝒜)superscript𝜈ΔΘ𝒜\nu^{*}\in\Delta(\Theta\times\mathcal{A})italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ roman_Δ ( roman_Θ × caligraphic_A ) be the joint distribution over states and actions induced by the static optimum (τ,t)superscript𝜏superscript𝑡(\tau^{*},t^{*})( italic_τ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) at μ0=14superscriptsubscript𝜇014\mu_{0}^{*}=\frac{1}{4}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 4 end_ARG. We start with two observations.

  1. (1)

    ν(θ1,a1)=14superscript𝜈subscript𝜃1subscript𝑎114\nu^{*}(\theta_{1},a_{1})=\frac{1}{4}italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 4 end_ARG and ν(a1|θ1)=1superscript𝜈conditionalsubscript𝑎1subscript𝜃11\nu^{*}(a_{1}|\theta_{1})=1italic_ν start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = 1.

  2. (2)

    Receiver does not benefit from persuasion: that is, at the static optimum, their expected payoff is 3434\frac{3}{4}divide start_ARG 3 end_ARG start_ARG 4 end_ARG, which is the same as their no-information payoff.

  3. (3)

    Conditional on θ=θ0𝜃subscript𝜃0\theta=\theta_{0}italic_θ = italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, Sender and Receiver play a zero-sum game.

Now suppose not. Then there exists some δ>0𝛿0\delta>0italic_δ > 0 where Sender benefits from dynamics. Fix any history htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT at which the static optimum is not played and at which Sender’s continuation payoff starting at htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is higher than their repeated static payoff. Since Receiver does not benefit from persuasion, Sender can only increase their payoff at htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT in a zero-sum way: either by promising a higher probability of choosing a0subscript𝑎0a_{0}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT at θ0subscript𝜃0\theta_{0}italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in the future, or by paying the agent. But since Sender’s payoff and Receiver’s payoff over the static optimum allocation is zero-sum, the utility promise to Receiver necessary to induce this allocation is equal to the benefit Sender attains today, meaning this cannot be profitable over the static optimum. Hence the repeated static allocatin must be optimal. ∎

References

  • (1)
  • Aumann and Maschler (1995) Aumann, Robert J., and Michael B. Maschler. 1995. Repeated Games with Incomplete Information. Cambridge, MA: MIT Press.
  • Babichenko et al. (2021) Babichenko, Yakov, Inbal Talgam-Cohen, and Konstantin Zabarnyi. 2021. “Bayesian Persuasion under Ex Ante and Ex Post Constraints.” arXiv preprint arXiv:2012.03272.
  • Barros (2025) Barros, Lucas. 2025. “Information Acquisition in Cheap Talk.” arXiv preprint.
  • Bergemann and Bonatti (2024) Bergemann, Dirk, and Alessandro Bonatti. 2024. “Data, Competition, and Digital Platforms.” American Economic Review 114 (8): 2553–2595. 10.1257/aer.20230478.
  • Bergemann et al. (2025) Bergemann, Dirk, Alessandro Bonatti, and Nicholas Wu. 2025. “How do Digital Advertising Auctions Impact Product Prices?” The Review of Economic Studies, Extended Abstract (EC ’23).
  • Bergemann et al. (2015) Bergemann, Dirk, Benjamin Brooks, and Stephen Morris. 2015. “The Limits of Price Discrimination.” American Economic Review 105 (3): 921–957. 10.1257/aer.20130436.
  • Bergemann et al. (2022) Bergemann, Dirk, Tibor Heumann, Stephen Morris, Constantine Sorokin, and Eyal Winter. 2022. “Optimal Information Disclosure in Classic Auctions.” American Economic Review: Insights 4 (3): 371–388. 10.1257/aeri.20210307.
  • Bergemann and Morris (2016) Bergemann, Dirk, and Stephen Morris. 2016. “Bayes Correlated Equilibrium and the Comparison of Information Structures in Games.” 10.3982/TE1850.
  • Bergemann and Morris (2019) Bergemann, Dirk, and Stephen Morris. 2019. “Information Design: A Unified Perspective.” Journal of Economic Literature 57 (1): 44–95. 10.1257/jel.20181489.
  • Bergemann and Pesendorfer (2007) Bergemann, Dirk, and Martin Pesendorfer. 2007. “Information Structures in Optimal Auctions.” Journal of Economic Theory 137 (1): 580–609. 10.1016/j.jet.2007.02.001.
  • Dai and Koh (2024) Dai, Yifan, and Andrew Koh. 2024. “Flexible Demand Manipulation.” SSRN Working Paper 4724126, Massachusetts Institute of Technology (MIT). 10.2139/ssrn.4724126.
  • Doval and Skreta (2023) Doval, Laura, and Vasiliki Skreta. 2023. “Constrained Information Design.” Mathematics of Operations Research 49 (1): . 10.1287/moor.2022.1346.
  • Doval and Smolin (2024) Doval, Laura, and Alex Smolin. 2024. “Persuasion and Welfare.” Journal of Political Economy 132 (7): 1234–1267. 10.1086/729067.
  • Dworczak and Muir (2025) Dworczak, P., and E. Muir. 2025. “A Mechanism-Design Approach to Property Rights.”
  • Ely (2017) Ely, Jeffrey C. 2017. “Beeps.” American Economic Review 107 (1): 31–53. 10.1257/aer.20150218.
  • Ely et al. (2022) Ely, Jeffrey C., George Georgiadis, Sina Khorasani, and Luis Rayo. 2022. “Optimal Feedback in Contests.” Review of Economic Studies 0 1–25. 10.1093/restud/rdac074, Advance access publication 28 October 2022.
  • Eso and Szentes (2007) Eso, Peter, and Balazs Szentes. 2007. “Optimal Information Disclosure in Auctions and the Handicap Auction.” Review of Economic Studies 74 (3): 705–731. 10.1111/j.1467-937X.2007.00437.x.
  • Gao and Luo (2025) Gao, Eric, and Daniel Luo. 2025. “Prior-Free Predictions for Persuasion.” arXiv preprint arXiv:2312.02465.
  • Gao (2024) Gao, Ying. 2024. “Inference from Selectively Disclosed Data.”
  • Gitmez and Sonin (2023) Gitmez, A. Arda, and Konstantin Sonin. 2023. “The Dictator’s Dilemma: A Theory of Propaganda and Repression.” University of Chicago, Becker Friedman Institute for Economics Working Paper. 10.2139/ssrn.4451613.
  • Guo and Hörner (2020) Guo, Yingni, and Johannes Hörner. 2020. “Dynamic Allocation without Money.” TSE Working Papers 20-1133, Toulouse School of Economics (TSE).
  • Holmström (2017) Holmström, Bengt. 2017. “Pay for Performance and Beyond.” American Economic Review 107 (7): 1753–1777. 10.1257/aer.107.7.1753.
  • Kamenica (2019) Kamenica, Emir. 2019. “Bayesian Persuasion and Information Design.” Annual Review of Economics 11 (1): 249–272. 10.1146/annurev-economics-080218-025739.
  • Kamenica and Gentzkow (2011) Kamenica, Emir, and Matthew Gentzkow. 2011. “Bayesian Persuasion.” American Economic Review 101 (6): 2590–2615. 10.1257/aer.101.6.2590.
  • Kleiner et al. (2024) Kleiner, Andreas, Benny Moldovanu, Philipp Strack, and Mark Whitmeyer. 2024. “The Extreme Points of Fusions.” arXiv preprint arXiv:2409.10779, https://doi.org/10.48550/arXiv.2409.10779, Last revised February 10, 2025.
  • Koh and Sanguanmoo (2022) Koh, Andrew, and Sivakorn Sanguanmoo. 2022. “Attention Capture.”
  • Koh et al. (2024) Koh, Andrew, Sivakorn Sanguanmoo, and Weijie Zhong. 2024. “Persuasion and Optimal Stopping.”
  • Kosenko (2023) Kosenko, Andrew. 2023. “Constrained Persuasion with Private Information.” The BE Journal of Theoretical Economics 23 (1): 345–370. 10.1515/bejte-2023-0030.
  • Levin (2003) Levin, Jonathan. 2003. “Relational Incentive Contracts.” American Economic Review 93 (3): 835–857. 10.1257/000282803322157035.
  • Li (2017) Li, Cheng. 2017. “A model of Bayesian persuasion with transfers.” Economics Letters 161 93–95. 10.1016/j.econlet.2017.09.036.
  • Lipnowski and Ravid (2020) Lipnowski, Elliot, and Doron Ravid. 2020. “Cheap Talk with Transparent Motives.” Econometrica 88 (4): 1631–1660.
  • Lorecchio and Monte (2023) Lorecchio, Caio, and Daniel Monte. 2023. “Dynamic Information Design under Constrained Communication Rules.” American Economic Journal: Microeconomics 15 (1): 359–398. 10.1257/mic.20200356.
  • Mathevet et al. (2020) Mathevet, Laurent, Jacopo Perego, and Ina Taneva. 2020. “On Information Design in Games.” Journal of Political Economy 128 (4): 1346–1382. 10.1086/705332.
  • Matysková and Montes (2023) Matysková, Ludmila, and Alfonso Montes. 2023. “Bayesian Persuasion with Costly Information Acquisition.” Journal of Economic Theory 211 105678. 10.1016/j.jet.2023.105678.
  • Ravid et al. (2022) Ravid, Doron, Anne-Katrin Roesler, and Balázs Szentes. 2022. “Learning before Trading: On the Inefficiency of Ignoring Free Information.” Journal of Political Economy 130 (2): 431–464. 10.1086/717350.
  • Rayo and Segal (2010) Rayo, Luis, and Ilya Segal. 2010. “Optimal Information Disclosure.” Journal of Political Economy 118 (5): 949–987. 10.1086/657922.
  • Renault et al. (2017) Renault, Jérôme, Eilon Solan, and Nicolas Vieille. 2017. “Optimal dynamic information provision.” Games and Economic Behavior 104 329–349.
  • Rockafellar (1996) Rockafellar, Ralph. 1996. Convex Analysis. Princeton University Press.
  • Sannikov (2008) Sannikov, Yuliy. 2008. “A Continuous-Time Version of the Principal-Agent Problem.” Review of Economic Studies 75 (3): 957–984. 10.1111/j.1467-937X.2008.00492.x.
  • Smolin and Yamashita (2023) Smolin, Alex, and Takuro Yamashita. 2023. “Information Design in Smooth Games.”
  • Taneva (2019) Taneva, Ina. 2019. “Information Design.” American Economic Journal: Microeconomics 11 (4): 151–185. 10.1257/mic.20170152.
  • Terstiege and Wasser (2022) Terstiege, Stefan, and Cédric Wasser. 2022. “Competitive Information Disclosure to an Auctioneer.” American Economic Journal: Microeconomics 14 (3): 622–664. 10.1257/mic.20200027.
  • Thomas and Worrall (1990) Thomas, Jonathan, and Tim Worrall. 1990. “Income Fluctuation and Asymmetric Information: An Example of a Repeated Principal-Agent Problem.” Journal of Economic Theory 51 (2): 367–390. 10.1016/0022-0531(90)90023-D.
  • Treust and Tomala (2019) Treust, Mikaël Le, and Tristan Tomala. 2019. “Persuasion with Limited Communication Capacity.” Journal of Economic Theory 184 104940. 10.1016/j.jet.2019.104940.