The impact of external uncertainties on the extreme return connectedness between food, fossil energy, and clean energy markets

Ting Zhang [email protected] Hai-Chuan Xu [email protected] Wei-Xing Zhou [email protected] School of Business, Hunan University of Science and Technology, Xiangtan 411201, China School of Business, East China University of Science and Technology, Shanghai 200237, China Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
Abstract

We investigate the extreme return connectedness between the food, fossil energy, and clean energy markets using the quantile connectedness approach, which combines the traditional spillover index with quantile regression. Our results show that return connectedness at the tails (57.91% for the right tail and 61.47% for the left tail) is significantly higher than at the median (23.02%). Furthermore, dynamic analysis reveals that connectedness fluctuates over time, with notable increases during extreme events. Among these markets, fossil energy market consistently acts as the net receiver, while clean energy market primarily serves as the net transmitter. Additionally, we use linear and nonlinear ARDL models to examine the role of external uncertainties on return connectedness. We find that climate policy uncertainty (CPU), geopolitical risk (GPR), and the COVID-19 pandemic significantly impact median connectedness, while economic policy uncertainty (EPU), GPR, and trade policy uncertainty (TPU) are crucial drivers of extreme connectedness. Our findings provide valuable insights for investors and policymakers on risk spillover effects between food and energy markets under both normal and extreme market conditions.

keywords:
Extreme spillover , Energy market , Food market , External uncertainty
JEL: G28, C1, Q4, Q1
journal: International Review of Economics & Finance

1 Introduction

Energy and food security are essential for sustainable development and human well-being (Taghizadeh-Hesary et al., 2019; Guo and Tanaka, 2022). With increasing mechanization in agriculture, energy (particularly fossil fuels, like crude oil, coal, and their derivatives) has become a key input in agricultural production, affecting irrigation, transportation, and the production of chemicals and fertilizers (Zimmer and Marques, 2021). Given that energy costs represents a large proportion of production expenses, food prices experienced sharp increases during the periods of energy crisis (Youssef and Mokni, 2021). The connection between energy and food prices is commonly mediated through production costs, a relationship demonstrated by numerous studies (Ericsson et al., 2009; Georgiou et al., 2018). The explosion of global biofuel industry in the second half of 2000s provides a new dimension to this connection, with rising energy prices triggering demand for biofuels made from crops like corn and soybeans (Myers et al., 2014; Yoon, 2022; Tanaka et al., 2023). This, in turn, leads to higher food prices as corn and soybeans compete with other crops for land, water, and profits, and then raise the production costs of other food, like oil, meat and dairy (Atems and Mette, 2024). In addition, broader macroeconomic factors, including inflation and economic policy, contribute to the co-movement of food and energy prices (Adil et al., 2022).

In recent years, climate change has emerged as a global challenge faced by human-beings. Scholars believe that climate change is mainly caused by human activities, among which agricultural production is a typical sector with high energy consumption and high pollution (Hartter et al., 2018). In this context, many governments are embarking on a green transformation of agricultural production. For example, Indian central government has pledged to provide solar power to farms as part of efforts to reduce reliance of agriculture on conventional energy sources (Chatterjee, 2024). The availability and cost of clean energy are increasingly recognized as critical for ensuring food security, with studies highlighting both positive and negative influences of clean energy on agricultural outcomes (Haque and Khan, 2022; Li et al., 2024). Furthermore, Han et al. (2022) take the case of China to study the rural energy transition in developing countries. Their results reveal that urbanization has a positive effect on the usage of clean energy in agriculture. With the energy transformation of the whole society and the development of green agriculture, prices of clean energy and food are increasingly linked.

Research on food-energy nexus is growing (Abdelradi and Serra, 2015; Lucotte, 2016; Diab and Karaki, 2023). On the one hand, since food and energy are essential substances for the development of human society, the interaction between food and energy prices has a noteworthy effect on economic stability (Lucotte, 2016). On the other hand, the financialization of commodities has made food and energy commodities important asset classes for global investors, increasing the vulnerability of commodity prices to financial market factors, such as exchange rate (Adil et al., 2022). Indeed, researchers find that food and energy commodity markets have negative relations with equity markets, and they have positive relations themselves (Han et al., 2015). Therefore, the dependencies of food and energy prices provide important references for investors in portfolio hedging and risk management.

Existing works mainly focus on food-oil nexus and have came to mixed results. Most of these research find a significantly positive relationship between food and oil prices (Mohammed, 2022; Yu et al., 2023), while others find weak linkages (Zmami and Ben-Salha, 2019) or heterogeneous and asymmetric impacts across different food categories (Chen et al., 2022). In addition, there are also studies that examine the relationship between food and other fossil energy, such as coal, natural gas, and gasoline (Diab and Karaki, 2023; Vatsa et al., 2023; Miljkovic and Vatsa, 2023). However, although the energy applied in the agricultural sector is transmitting from fossil energy to clean energy gradually and this process will continue to move forward, there remains a lack of studies that incorporate clean energy into the research framework (Chatterjee, 2024; Haque and Khan, 2022).

In this work, we focus on the interactions between food, fossil energy, and clean energy markets. To begin with, we analysis their return connectedness at normal and extreme market conditions by using a quantile-based spillover approach which combines the Diebold and Yilmaz (2012) spillover index with a quantile regression approach. Our results show that the connectedness between food, fossil energy, and clean energy markets are much stronger at both the extreme upper and lower quantiles than at the conditional median. Moreover, the return connectedness is asymmetric, specifically, it is higher at the left tail than at the right tail. We next conduct the dynamic analysis using the rolling window method to capture the time-varying characteristics of connectedness. The results reveal that the total spillover fluctuates significantly during the sample periods, and it increases notably when extreme events occur, such as the signing and implementation of the Paris Agreement in 2015 and 2016, the withdrawal of the US from the Paris Agreement in 2017 and its return in early 2021, the COVID-19 pandemic in 2020, and the Russia-Ukraine conflict in 2022. The index at tails is less volatile than at the median. In addition, the net spillover analysis indicates that fossil energy market always act as the net receiver, while clean energy market plays more role of a net transmitter. This is consistent with the results of previous research that clean energy has a significant spillover effect to fossil energy as energy consumption transmitting from fossil fuels to clean energy (Raza et al., 2024).

Motivated by the aforementioned results of the fluctuations of connectedness, we consider the effects of external uncertainties, including economic policy uncertainty (Baker et al., 2016), climate policy uncertainty (Gavriilidis, 2021), trade policy uncertainty (Baker et al., 2016), and geopolitical risk index (Caldara and Iacoviello, 2022). Besides, we take COVID-19 as a dummy variable, which takes the value of 1 during the pandemic between January 2020 and December 2020, and 0 otherwise. We apply the linear and nonlinear autoregressive distributed lags (ARDL) models, incorporating the logarithm of these uncertainty indexes as the predictor variables and the total return connectedness index as the dependent variable. We run the regression for the connectedness at the conditional median and the extreme quantiles. For the median connectedness, CPU, GPR, and COVID-19 pandemic has significant impact. For extreme connectedness, EPU, GPR, and TPU are key drivers. Addityonally, the results of NARDL models reveal the asymmetric effects of external uncertainties, specifically, CPU has a short-term asymmetric effect on connectedness at the extreme upper quantile (τ𝜏\tauitalic_τ = 0.95), while for the long-term asymmetry, EPU is significant on the conditional median, and CPU, TPU, and GPR are significant on the extreme lower quantile (τ𝜏\tauitalic_τ = 0.05).

The remainder of the paper is organized as follows. Section 2 reviews the related studies. Section 3 introduces the quantile connectedness methods and describes the data we use. Section 4 provides the empirical results regarding the spillovers between food, fossil energy, and clean energy markets under normal and extreme conditions. Section 5 explores the impacts of external uncertainties on the connectedness between these markets, and Section 6 concludes the work and presents policy implications.

2 Literature Review

The relationship between food and energy markets has been the focus of growing literature. From the spillover effects point of view, existing studies consider the price level (Youssef and Mokni, 2021) and volatility level transmissions (Chatziantoniou et al., 2021). From the perspective of methodologies, the literature includes linear (Roman et al., 2020) and nonlinear methods (Yu et al., 2023).

Early literature is more undertaken the linear framework to study the relationship between food and energy markets (Hassouneh et al., 2012; Roman et al., 2020). Hassouneh et al. (2012) find a long-run equilibrium relationship between agriculture and crude oil prices by using multivariate linear regression method, and they confirm the biofuel channel as the effect mechanism. Roman et al. (2020) employ the cointegration test and Granger causality test to examine the linkage between crude oil and the price indexes of five categories of food. Their findings reveal a long-term relationship between crude oil and meat prices, while shorter-term linkages are observed between crude oil and cereal or oil prices. Additionally, Fasanya and Akinbowale (2019) provide the evidence of the interdependence between crude oil and food prices from the perspective of spillovers by using the Diebold and Yilmaz (2012) method.

In more recent studies, researchers explore the non-linear characteristics of this relationship. They find that the interaction between food and energy prices exhibits diverse features at different market conditions (Youssef and Mokni, 2021). Youssef and Mokni (2021) apply the MRS-QR model to examine how food prices respond to different oil price shocks. Their results confirm that the contagion effect between the two markets during the periods of crisis, but the reaction of food price to oil price shocks changes with the structure of the shocks. Yu et al. (2023) use the quantile-on-quantile estimation method and find that oil and food prices present nonlinear dependences, specifically, the correlation is negative for lower and medium quantiles and positive for higher quantile. Along with Yu et al. (2023), Sun et al. (2023) also employ the quantile-on-quantile method and categorize oil prices into demand and supply shocks. According to their results, food price subindices are correlated with oil price shocks in varying degrees, depending on the quantile and the type of shock. Similarly, Wang et al. (2024) adopt the quantile impulse response approach and find that the speed of food prices adjust to oil price shocks differs across quantiles. Hanif et al. (2021) focus on tail dependence and reveal that oil and food prices are independent at both the left and right tails. Nonlinear autoregressive distributed lags (NARDL) models are also widely used in examining their nonlinear relationship. Almalki et al. (2022) and Chowdhury et al. (2021) adopt this method and confirm the asymmetric effects of energy pricesss on food prices.

Although most existing studies focus on the relationships on price level, several works have also explored the volatility spillover effect between food and energy markets (Chatziantoniou et al., 2021). Chatziantoniou et al. (2021) employ the HAR and MIDAS-HAR approach to examine the out-of-sample predictability of oil price volatility on food price volatility. Their findings indicate that oil price volatility has weak effect in the out-of-sample prediction of food price volatility, which contrasts with the in-sample results from previous studies (Algieri and Leccadito, 2017; Zhang and Broadstock, 2020). Ucak et al. (2022) use the Diebold and Yilmaz (2012) approach to examine the volatility spillover between energy and foods markets, revealing that the volatility spillover is significant from energy prices to vegetable prices but not to fruit prices. Liu and Serletis (2024) adopt the GARCH-in-Mean copula models to study the volatility dynamics and dependence of crude oil and major agricultural commodity prices.

Besides crude oil, the most extensively studied energy category, researchers have also explored the relationship between food and other types of energy. For example, Miljkovic and Vatsa (2023) adopt the dynamic time warping method and find the lead-lag relationship between coal, natural gas prices and six major agricultural commodities. Vatsa et al. (2023) explore the linkages between natural gas and cereals. The authors find that cereal prices respond to natural gas price shocks with slight and transitory characteristics. Moreover, gasoline, as one of the most important derivatives of crude oil, its price shocks also have a significantly positive effect on food prices (Diab and Karaki, 2023).

Our work contributes to the literature on the return connectedness between food, fossil energy, and clean energy markets, and the impacts of external uncertainties. In a similar study, Yousfi and Bouzgarrou (2024) examine the volatility connectedness between these markets by employing the DCC-GARCH approach, and further analysis the effect of EPU and GPR on the connectedness using the quantile-on-quantile model. Their findings reveal that the dynamic volatility spillovers between these markets are sensitive to EPU and GPR. There are three key differences that distinguish our work from theirs. First, while Yousfi and Bouzgarrou (2024) focus on volatility connectedness, we center our analysis on the price level. Second, their study uses sub-indices of fossil and clean energy, while we opt for a more comprehensive index as the representative measure for both fossil and clean energy. Lastly, Yousfi and Bouzgarrou (2024) use the quantile-on-quantile model to analysis the effects of individual uncertainty separately. This method focuses on the impact of single factor and is not suitable for the multivariate case. In contrast, we adopt the linear and nonlinear ARDL model to capture the effects of multiple uncertainties, thus offering a more holistic understanding of the role of external uncertainties.

3 Methodology and Data

3.1 Quantile TVP-VAR-DY approach

Following Koenker and Bassett (1978), for different quantiles τ(0,1)𝜏01\tau\in(0,1)italic_τ ∈ ( 0 , 1 ), the dependence of ytsubscript𝑦𝑡y_{t}italic_y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT on xtsubscript𝑥𝑡x_{t}italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT can be estimated using the following equation:

yt=c(τ)+i=1pBi(τ)yti+et(τ),t=1,,Tformulae-sequencesubscript𝑦𝑡𝑐𝜏subscriptsuperscript𝑝𝑖1subscript𝐵𝑖𝜏subscript𝑦𝑡𝑖subscript𝑒𝑡𝜏𝑡1𝑇y_{t}=c(\tau)+\sum^{p}_{i=1}B_{i}(\tau)y_{t-i}+e_{t}(\tau),t=1,\dots,Titalic_y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_c ( italic_τ ) + ∑ start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_τ ) italic_y start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + italic_e start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_τ ) , italic_t = 1 , … , italic_T (1)

According to Koop et al. (1996) and Pesaran and Shin (1998), the generalized forecast error variance decomposition (GFEVD) with forecast horizon H𝐻Hitalic_H is calculated as follows:

Qijg(H)=σjj1h=0H1(eihhej)2h=0H1(eihhej),subscriptsuperscript𝑄𝑔𝑖𝑗𝐻subscriptsuperscript𝜎1𝑗𝑗subscriptsuperscript𝐻10superscriptsubscriptsuperscript𝑒𝑖subscriptsubscript𝑒𝑗2subscriptsuperscript𝐻10subscriptsuperscript𝑒𝑖subscriptsubscript𝑒𝑗Q^{g}_{ij}(H)=\frac{\sigma^{-1}_{jj}\sum^{H-1}_{h=0}(e^{{}^{\prime}}_{i}h_{h}% \sum e_{j})^{2}}{\sum^{H-1}_{h=0}(e^{{}^{\prime}}_{i}h_{h}\sum e_{j})},italic_Q start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_H ) = divide start_ARG italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT ∑ start_POSTSUPERSCRIPT italic_H - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_h = 0 end_POSTSUBSCRIPT ( italic_e start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ∑ italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_H - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_h = 0 end_POSTSUBSCRIPT ( italic_e start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ∑ italic_e start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) end_ARG , (2)

The normalization of each vector in the decomposition matrix is:

Q~ijg(H)=Qijg(H)j=1NQijg(H).subscriptsuperscript~𝑄𝑔𝑖𝑗𝐻subscriptsuperscript𝑄𝑔𝑖𝑗𝐻subscriptsuperscript𝑁𝑗1subscriptsuperscript𝑄𝑔𝑖𝑗𝐻\widetilde{Q}^{g}_{ij}(H)=\frac{Q^{g}_{ij}(H)}{\sum^{N}_{j=1}Q^{g}_{ij}(H)}.over~ start_ARG italic_Q end_ARG start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_H ) = divide start_ARG italic_Q start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_H ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT italic_Q start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_H ) end_ARG . (3)

Various quantile spillover measures can be defined using the GFEVD method based on the approach of Diebold and Yilmaz (2012):

TSI(τ)=i=1Nj=1,ijNωijh(τ)i=1Nj=1Nωijh(τ)×100.𝑇𝑆𝐼𝜏subscriptsuperscript𝑁𝑖1subscriptsuperscript𝑁formulae-sequence𝑗1𝑖𝑗subscriptsuperscript𝜔𝑖𝑗𝜏subscriptsuperscript𝑁𝑖1subscriptsuperscript𝑁𝑗1subscriptsuperscript𝜔𝑖𝑗𝜏100TSI(\tau)=\frac{\sum^{N}_{i=1}\sum^{N}_{j=1,i\neq j}\omega^{h}_{ij}(\tau)}{% \sum^{N}_{i=1}\sum^{N}_{j=1}\omega^{h}_{ij}(\tau)}\times 100.italic_T italic_S italic_I ( italic_τ ) = divide start_ARG ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 , italic_i ≠ italic_j end_POSTSUBSCRIPT italic_ω start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_τ ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT italic_ω start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_τ ) end_ARG × 100 . (4)
Salli(τ)=j=1,ijNωijh(τ)j=1Nωijh(τ)×100subscript𝑆all𝑖𝜏subscriptsuperscript𝑁formulae-sequence𝑗1𝑖𝑗subscriptsuperscript𝜔𝑖𝑗𝜏subscriptsuperscript𝑁𝑗1subscriptsuperscript𝜔𝑖𝑗𝜏100S_{\text{all}\rightarrow i}(\tau)=\frac{\sum^{N}_{j=1,i\neq j}\omega^{h}_{ij}(% \tau)}{\sum^{N}_{j=1}\omega^{h}_{ij}(\tau)}\times 100italic_S start_POSTSUBSCRIPT all → italic_i end_POSTSUBSCRIPT ( italic_τ ) = divide start_ARG ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 , italic_i ≠ italic_j end_POSTSUBSCRIPT italic_ω start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_τ ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT italic_ω start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_τ ) end_ARG × 100 (5)
Siall(τ)=j=1,ijNωjih(τ)j=1Nωjih(τ)×100subscript𝑆𝑖all𝜏subscriptsuperscript𝑁formulae-sequence𝑗1𝑖𝑗subscriptsuperscript𝜔𝑗𝑖𝜏subscriptsuperscript𝑁𝑗1subscriptsuperscript𝜔𝑗𝑖𝜏100S_{i\rightarrow\text{all}}(\tau)=\frac{\sum^{N}_{j=1,i\neq j}\omega^{h}_{ji}(% \tau)}{\sum^{N}_{j=1}\omega^{h}_{ji}(\tau)}\times 100italic_S start_POSTSUBSCRIPT italic_i → all end_POSTSUBSCRIPT ( italic_τ ) = divide start_ARG ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 , italic_i ≠ italic_j end_POSTSUBSCRIPT italic_ω start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT ( italic_τ ) end_ARG start_ARG ∑ start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT italic_ω start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT ( italic_τ ) end_ARG × 100 (6)
NSi(τ)=Siall(τ)Salli(τ)𝑁subscript𝑆𝑖𝜏subscript𝑆𝑖all𝜏subscript𝑆all𝑖𝜏NS_{i}(\tau)=S_{i\rightarrow\text{all}}(\tau)-S_{\text{all}\rightarrow i}(\tau)italic_N italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_τ ) = italic_S start_POSTSUBSCRIPT italic_i → all end_POSTSUBSCRIPT ( italic_τ ) - italic_S start_POSTSUBSCRIPT all → italic_i end_POSTSUBSCRIPT ( italic_τ ) (7)

TSI𝑇𝑆𝐼TSIitalic_T italic_S italic_I indicates the total spillover index. Sallisubscript𝑆all𝑖S_{\text{all}\rightarrow i}italic_S start_POSTSUBSCRIPT all → italic_i end_POSTSUBSCRIPT and Siallsubscript𝑆𝑖allS_{i\rightarrow\text{all}}italic_S start_POSTSUBSCRIPT italic_i → all end_POSTSUBSCRIPT represent the directional spillover index of index i𝑖iitalic_i received from all indices and transfer to all indices, respectively. NSi𝑁subscript𝑆𝑖NS_{i}italic_N italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the net spillover index that can be calculated by the disparity between Salli(τ)subscript𝑆all𝑖𝜏S_{\text{all}\rightarrow i}(\tau)italic_S start_POSTSUBSCRIPT all → italic_i end_POSTSUBSCRIPT ( italic_τ ) and Siall(τ)subscript𝑆𝑖all𝜏S_{i\rightarrow\text{all}}(\tau)italic_S start_POSTSUBSCRIPT italic_i → all end_POSTSUBSCRIPT ( italic_τ ), wherein a positive (negative) value indicates the net spillover transmitter (recipient).

3.2 Autoregressive Distributed Lag (ARDL) model

In order to test the long-run and short-run effects of uncertainties on the spillovers, we consider the Autoregressive Distributed Lag (ARDL) model proposed by (Pesaran et al., 2001) as follows:

ΔlnTSIt=α0+α1lnTSIt1+α2lnEPUt1+α3lnCPUt1+α4lnTPUt1+α5lnGPRt1+α6COVID19+i=1n1βiΔlnTSIti+i=0n2γiΔlnEPUti+i=0n3λiΔlnCPUti+i=0n4δiΔlnTPUti+i=0n5ωiΔlnGPRti+ϵtΔ𝑙𝑛𝑇𝑆subscript𝐼𝑡subscript𝛼0subscript𝛼1𝑙𝑛𝑇𝑆subscript𝐼𝑡1subscript𝛼2𝑙𝑛𝐸𝑃subscript𝑈𝑡1subscript𝛼3𝑙𝑛𝐶𝑃subscript𝑈𝑡1subscript𝛼4𝑙𝑛𝑇𝑃subscript𝑈𝑡1subscript𝛼5𝑙𝑛𝐺𝑃subscript𝑅𝑡1subscript𝛼6𝐶𝑂𝑉𝐼𝐷19subscriptsuperscriptsubscript𝑛1𝑖1subscript𝛽𝑖Δ𝑙𝑛𝑇𝑆subscript𝐼𝑡𝑖subscriptsuperscriptsubscript𝑛2𝑖0subscript𝛾𝑖Δ𝑙𝑛𝐸𝑃subscript𝑈𝑡𝑖subscriptsuperscriptsubscript𝑛3𝑖0subscript𝜆𝑖Δ𝑙𝑛𝐶𝑃subscript𝑈𝑡𝑖subscriptsuperscriptsubscript𝑛4𝑖0subscript𝛿𝑖Δ𝑙𝑛𝑇𝑃subscript𝑈𝑡𝑖subscriptsuperscriptsubscript𝑛5𝑖0subscript𝜔𝑖Δ𝑙𝑛𝐺𝑃subscript𝑅𝑡𝑖subscriptitalic-ϵ𝑡\Delta ln{TSI_{t}}=\alpha_{0}+\alpha_{1}ln{TSI_{t-1}}+\alpha_{2}lnEPU_{t-1}+% \alpha_{3}lnCPU_{t-1}+\alpha_{4}lnTPU_{t-1}+\alpha_{5}lnGPR_{t-1}+\alpha_{6}% COVID-19\\ +\sum^{n_{1}}_{i=1}\beta_{i}\Delta lnTSI_{t-i}+\sum^{n_{2}}_{i=0}\gamma_{i}% \Delta lnEPU_{t-i}+\sum^{n_{3}}_{i=0}\lambda_{i}\Delta lnCPU_{t-i}+\sum^{n_{4}% }_{i=0}\delta_{i}\Delta lnTPU_{t-i}+\sum^{n_{5}}_{i=0}\omega_{i}\Delta lnGPR_{% t-i}+\epsilon_{t}start_ROW start_CELL roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT italic_C italic_O italic_V italic_I italic_D - 19 end_CELL end_ROW start_ROW start_CELL + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_CELL end_ROW (8)

where ΔΔ\Deltaroman_Δ is the first different operator, nisubscript𝑛𝑖n_{i}italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (i=1,2,5)𝑖125(i=1,2,\dots 5)( italic_i = 1 , 2 , … 5 ) is the optimal lag order determined by the Akaike information criterion (AIC), and ϵtsubscriptitalic-ϵ𝑡\epsilon_{t}italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT refers to the error term.

The existence of long-run cointegration can be examined by using the bound test (Pesaran et al., 2001). The null hypothesis of no cointegration among underlying variables is H0:α1=α2=α3=α4=α5=α6=0:subscript𝐻0subscript𝛼1subscript𝛼2subscript𝛼3subscript𝛼4subscript𝛼5subscript𝛼60H_{0}:\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=\alpha_{6}=0italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT : italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_α start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = italic_α start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT = italic_α start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT = 0 against the alternative hypothesis H1:α1α2α3α4α5α60:subscript𝐻1subscript𝛼1subscript𝛼2subscript𝛼3subscript𝛼4subscript𝛼5subscript𝛼60H_{1}:\alpha_{1}\neq\alpha_{2}\neq\alpha_{3}\neq\alpha_{4}\neq\alpha_{5}\neq% \alpha_{6}\neq 0italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≠ italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≠ italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≠ italic_α start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ≠ italic_α start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ≠ italic_α start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ≠ 0. If the long-run cointegration exists, then we can construct an error correction term (ECT) and model (8) can be converted to:

ΔlnTSItΔ𝑙𝑛𝑇𝑆subscript𝐼𝑡\displaystyle\Delta ln{TSI_{t}}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT =α0+i=1n1βiΔlnTSIti+i=0n2γiΔlnEPUti+i=0n3λiΔlnCPUtiabsentsubscript𝛼0subscriptsuperscriptsubscript𝑛1𝑖1subscript𝛽𝑖Δ𝑙𝑛𝑇𝑆subscript𝐼𝑡𝑖subscriptsuperscriptsubscript𝑛2𝑖0subscript𝛾𝑖Δ𝑙𝑛𝐸𝑃subscript𝑈𝑡𝑖subscriptsuperscriptsubscript𝑛3𝑖0subscript𝜆𝑖Δ𝑙𝑛𝐶𝑃subscript𝑈𝑡𝑖\displaystyle=\alpha_{0}+\sum^{n_{1}}_{i=1}\beta_{i}\Delta lnTSI_{t-i}+\sum^{n% _{2}}_{i=0}\gamma_{i}\Delta lnEPU_{t-i}+\sum^{n_{3}}_{i=0}\lambda_{i}\Delta lnCPU% _{t-i}= italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT
+i=0n4δiΔlnTPUti+i=0n5ωiΔlnGPRti+ϕECTt1+ϵtsubscriptsuperscriptsubscript𝑛4𝑖0subscript𝛿𝑖Δ𝑙𝑛𝑇𝑃subscript𝑈𝑡𝑖subscriptsuperscriptsubscript𝑛5𝑖0subscript𝜔𝑖Δ𝑙𝑛𝐺𝑃subscript𝑅𝑡𝑖italic-ϕ𝐸𝐶subscript𝑇𝑡1subscriptitalic-ϵ𝑡\displaystyle+\sum^{n_{4}}_{i=0}\delta_{i}\Delta lnTPU_{t-i}+\sum^{n_{5}}_{i=0% }\omega_{i}\Delta lnGPR_{t-i}+\phi ECT_{t-1}+\epsilon_{t}+ ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + italic_ϕ italic_E italic_C italic_T start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT + italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT (9)

Furthermore, we construct nonlinear autoregressive distributed lag (NARDL) model of Shin et al. (2014). In NARDL model, the exogenous variables are decomposed into positive and negative partial sum series to capture the asymmetric relationships between total spillovers and the external uncertainties:

Xt+=j=1tΔXj+=j=1tmax(ΔXj,0)superscriptsubscript𝑋𝑡subscriptsuperscript𝑡𝑗1Δsuperscriptsubscript𝑋𝑗subscriptsuperscript𝑡𝑗1Δsubscript𝑋𝑗0\displaystyle X_{t}^{+}=\sum^{t}_{j=1}\Delta X_{j}^{+}=\sum^{t}_{j=1}\max(% \Delta X_{j},0)italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = ∑ start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT roman_Δ italic_X start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = ∑ start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT roman_max ( roman_Δ italic_X start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , 0 ) (10)
Xt=j=1tΔXj=j=1tmin(ΔXj,0)superscriptsubscript𝑋𝑡subscriptsuperscript𝑡𝑗1Δsuperscriptsubscript𝑋𝑗subscriptsuperscript𝑡𝑗1Δsubscript𝑋𝑗0\displaystyle X_{t}^{-}=\sum^{t}_{j=1}\Delta X_{j}^{-}=\sum^{t}_{j=1}\min(% \Delta X_{j},0)italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = ∑ start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT roman_Δ italic_X start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = ∑ start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT roman_min ( roman_Δ italic_X start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , 0 ) (11)

where X𝑋Xitalic_X refer to the external uncertainty index. Then, we compute the decomposition of lnEPU𝑙𝑛𝐸𝑃𝑈lnEPUitalic_l italic_n italic_E italic_P italic_U, lnCPU𝑙𝑛𝐶𝑃𝑈lnCPUitalic_l italic_n italic_C italic_P italic_U, lnTPU𝑙𝑛𝑇𝑃𝑈lnTPUitalic_l italic_n italic_T italic_P italic_U, and lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R and represent them into the NARDL model as follows:

ΔlnTSItΔ𝑙𝑛𝑇𝑆subscript𝐼𝑡\displaystyle\Delta ln{TSI_{t}}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT =α0+α1lnTSIt1+i=1n1βiΔlnTSItiabsentsubscript𝛼0subscript𝛼1𝑙𝑛𝑇𝑆subscript𝐼𝑡1subscriptsuperscriptsubscript𝑛1𝑖1subscript𝛽𝑖Δ𝑙𝑛𝑇𝑆subscript𝐼𝑡𝑖\displaystyle=\alpha_{0}+\alpha_{1}ln{TSI_{t-1}}+\sum^{n_{1}}_{i=1}\beta_{i}% \Delta lnTSI_{t-i}= italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT
+α2+lnEPUt1++α2lnEPUt1+i=0n2(γi+ΔlnEPUti++γiΔlnEPUti)superscriptsubscript𝛼2𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡1superscriptsubscript𝛼2𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡1subscriptsuperscriptsubscript𝑛2𝑖0superscriptsubscript𝛾𝑖Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡𝑖superscriptsubscript𝛾𝑖Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡𝑖\displaystyle+\alpha_{2}^{+}lnEPU_{t-1}^{+}+\alpha_{2}^{-}lnEPU_{t-1}^{-}+\sum% ^{n_{2}}_{i=0}(\gamma_{i}^{+}\Delta lnEPU_{t-i}^{+}+\gamma_{i}^{-}\Delta lnEPU% _{t-i}^{-})+ italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT ( italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT )
+α3+lnCPUt1++α3lnCPUt1+i=0n3(λi+ΔlnCPUti++λiΔlnCPUti)superscriptsubscript𝛼3𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡1superscriptsubscript𝛼3𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡1subscriptsuperscriptsubscript𝑛3𝑖0superscriptsubscript𝜆𝑖Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡𝑖superscriptsubscript𝜆𝑖Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡𝑖\displaystyle+\alpha_{3}^{+}lnCPU_{t-1}^{+}+\alpha_{3}^{-}lnCPU_{t-1}^{-}+\sum% ^{n_{3}}_{i=0}(\lambda_{i}^{+}\Delta lnCPU_{t-i}^{+}+\lambda_{i}^{-}\Delta lnCPU% _{t-i}^{-})+ italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_α start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT )
+α4+lnTPUt1++α4lnTPUt1+i=0n4(δi+ΔlnTPUti++δiΔlnTPUti)superscriptsubscript𝛼4𝑙𝑛𝑇𝑃superscriptsubscript𝑈𝑡1superscriptsubscript𝛼4𝑙𝑛𝑇𝑃superscriptsubscript𝑈𝑡1subscriptsuperscriptsubscript𝑛4𝑖0superscriptsubscript𝛿𝑖Δ𝑙𝑛𝑇𝑃superscriptsubscript𝑈𝑡𝑖superscriptsubscript𝛿𝑖Δ𝑙𝑛𝑇𝑃superscriptsubscript𝑈𝑡𝑖\displaystyle+\alpha_{4}^{+}lnTPU_{t-1}^{+}+\alpha_{4}^{-}lnTPU_{t-1}^{-}+\sum% ^{n_{4}}_{i=0}(\delta_{i}^{+}\Delta lnTPU_{t-i}^{+}+\delta_{i}^{-}\Delta lnTPU% _{t-i}^{-})+ italic_α start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_α start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT )
+α5+lnGPRt1++α5lnGPRt1+i=0n5(ωi+ΔlnGPRti++ωiΔlnGPRti)superscriptsubscript𝛼5𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡1superscriptsubscript𝛼5𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡1subscriptsuperscriptsubscript𝑛5𝑖0superscriptsubscript𝜔𝑖Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡𝑖superscriptsubscript𝜔𝑖Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡𝑖\displaystyle+\alpha_{5}^{+}lnGPR_{t-1}^{+}+\alpha_{5}^{-}lnGPR_{t-1}^{-}+\sum% ^{n_{5}}_{i=0}(\omega_{i}^{+}\Delta lnGPR_{t-i}^{+}+\omega_{i}^{-}\Delta lnGPR% _{t-i}^{-})+ italic_α start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_α start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT ( italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT )
+α6COVID19+ϵtsubscript𝛼6𝐶𝑂𝑉𝐼𝐷19subscriptitalic-ϵ𝑡\displaystyle+\alpha_{6}COVID-19+\epsilon_{t}+ italic_α start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT italic_C italic_O italic_V italic_I italic_D - 19 + italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT (12)

Accordingly, the ECT form NARDL model can be written as:

ΔlnTSItΔ𝑙𝑛𝑇𝑆subscript𝐼𝑡\displaystyle\Delta ln{TSI_{t}}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT =α0+i=1n1βiΔlnTSIti+i=0n2(γi+ΔlnEPUti++γiΔlnEPUti)absentsubscript𝛼0subscriptsuperscriptsubscript𝑛1𝑖1subscript𝛽𝑖Δ𝑙𝑛𝑇𝑆subscript𝐼𝑡𝑖subscriptsuperscriptsubscript𝑛2𝑖0superscriptsubscript𝛾𝑖Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡𝑖superscriptsubscript𝛾𝑖Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡𝑖\displaystyle=\alpha_{0}+\sum^{n_{1}}_{i=1}\beta_{i}\Delta lnTSI_{t-i}+\sum^{n% _{2}}_{i=0}(\gamma_{i}^{+}\Delta lnEPU_{t-i}^{+}+\gamma_{i}^{-}\Delta lnEPU_{t% -i}^{-})= italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT ( italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT )
+i=0n3(λi+ΔlnCPUti++λiΔlnCPUti)+i=0n4(δi+ΔlnTPUti++δiΔlnTPUti)subscriptsuperscriptsubscript𝑛3𝑖0superscriptsubscript𝜆𝑖Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡𝑖superscriptsubscript𝜆𝑖Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡𝑖subscriptsuperscriptsubscript𝑛4𝑖0superscriptsubscript𝛿𝑖Δ𝑙𝑛𝑇𝑃superscriptsubscript𝑈𝑡𝑖superscriptsubscript𝛿𝑖Δ𝑙𝑛𝑇𝑃superscriptsubscript𝑈𝑡𝑖\displaystyle+\sum^{n_{3}}_{i=0}(\lambda_{i}^{+}\Delta lnCPU_{t-i}^{+}+\lambda% _{i}^{-}\Delta lnCPU_{t-i}^{-})+\sum^{n_{4}}_{i=0}(\delta_{i}^{+}\Delta lnTPU_% {t-i}^{+}+\delta_{i}^{-}\Delta lnTPU_{t-i}^{-})+ ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) + ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT )
+i=0n5(ωi+ΔlnGPRti++ωiΔlnGPRti)+ϕECTt1+ϵtsubscriptsuperscriptsubscript𝑛5𝑖0superscriptsubscript𝜔𝑖Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡𝑖superscriptsubscript𝜔𝑖Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡𝑖italic-ϕ𝐸𝐶subscript𝑇𝑡1subscriptitalic-ϵ𝑡\displaystyle+\sum^{n_{5}}_{i=0}(\omega_{i}^{+}\Delta lnGPR_{t-i}^{+}+\omega_{% i}^{-}\Delta lnGPR_{t-i}^{-})+\phi ECT_{t-1}+\epsilon_{t}+ ∑ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT ( italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) + italic_ϕ italic_E italic_C italic_T start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT + italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT (13)

If αi+αisuperscriptsubscript𝛼𝑖superscriptsubscript𝛼𝑖\alpha_{i}^{+}\neq\alpha_{i}^{-}italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ≠ italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT (i=2,3,,5)𝑖235(i=2,3,\dots,5)( italic_i = 2 , 3 , … , 5 ), we would conclude that the effect is asymmetric in the long-run. Similarly, if γi+γisuperscriptsubscript𝛾𝑖superscriptsubscript𝛾𝑖\gamma_{i}^{+}\neq\gamma_{i}^{-}italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ≠ italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, λi+λisuperscriptsubscript𝜆𝑖superscriptsubscript𝜆𝑖\lambda_{i}^{+}\neq\lambda_{i}^{-}italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ≠ italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, δi+δisuperscriptsubscript𝛿𝑖superscriptsubscript𝛿𝑖\delta_{i}^{+}\neq\delta_{i}^{-}italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ≠ italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, or ωi+ωisuperscriptsubscript𝜔𝑖superscriptsubscript𝜔𝑖\omega_{i}^{+}\neq\omega_{i}^{-}italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ≠ italic_ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, then the asymmetric effect exists for the corresponding variable in the short-run. We also examine the long-run cointegration by using the bound test (Pesaran et al., 2001).

3.3 Data description

To track the price changes in the food market, we adopt the Food Price Index (FPI) released by the Food and Agricultural Organization (FAO).111We obtain FPI from https://www.fao.org/. For the fossil energy market, we use the iShares US Oil & Gas Exploration & Production ETF (IEO), which tracks US-based companies involved in the exploration and production of oil and gas. For the clean energy market, we use the iShares Global Clean Energy ETF (ICLN), which tracks companies involved in the production of renewable energy sources like solar and wind.222Data on these ETFs is extracted from the Wind Database (https://www.wind.com.cn/). The sample period spans from January 2012 to December 2023, and all data are at a monthly frequency. Fig. 1 depicts the evolution of the monthly log returns of the FPI, IEO, and ICLN ETFs. Notably, the food price index peaked in early 2022 due to the Russia-Ukraine conflict, followed by a sharp decline. Both fossil energy and clean energy ETFs experienced a rapid drop in early 2020 due to the COVID-19 pandemic, followed by a subsequent rebound.

Panel A of Table 1 reports the descriptive statistics and results of the unit root test for the log returns of the variables. The mean returns are negative for food price and clean energy, and positive for fossil energy. The fossil energy market exhibits the highest volatility, with a standard deviation of 0.1020, followed by clean energy at 0.0898, both exceeding the food market’s standard deviation of 0.0238. The food price index is positively skewed, while both fossil energy and clean energy are negatively skewed. The kurtosis of all variables are larger than three, indicating the thick tails of the distributions. Moreover, Jarque-Bera’s statistics show that the variables are not normally distributed. The ADF test results indicate that all variables are stationary. Panel B of Table 1 presents the Pearson correlation coefficients, highlighting a significantly positive correlation between the food and fossil energy market. However, the correlation is not significant between food and clean energy markets. Fossil energy and clean energy markets also exhibit positive correlation at 0.231.

Table 1: Descriptive statistics.
Variable Mean Std. Dev. Skewness Kurtosis Jarque-Bera ADF
Panel A: Descriptive statistics
Food Price -0.0002 0.0238    0.6564   8.2797 176.3627superscript176.3627absent176.3627^{***}176.3627 start_POSTSUPERSCRIPT ∗ ∗ ∗ end_POSTSUPERSCRIPT 3.6251superscript3.6251absent-3.6251^{**~{}}- 3.6251 start_POSTSUPERSCRIPT ∗ ∗ end_POSTSUPERSCRIPT
Fossil Energy  0.0037 0.1020 0.75420.7542-0.7542- 0.7542 10.1492 318.0887superscript318.0887absent318.0887^{***}318.0887 start_POSTSUPERSCRIPT ∗ ∗ ∗ end_POSTSUPERSCRIPT 4.7320superscript4.7320absent-4.7320^{***}- 4.7320 start_POSTSUPERSCRIPT ∗ ∗ ∗ end_POSTSUPERSCRIPT
Clean Energy -0.0005 0.0898 1.78731.7873-1.7873- 1.7873 12.9431 665.1999superscript665.1999absent665.1999^{***}665.1999 start_POSTSUPERSCRIPT ∗ ∗ ∗ end_POSTSUPERSCRIPT 4.9140superscript4.9140absent-4.9140^{***}- 4.9140 start_POSTSUPERSCRIPT ∗ ∗ ∗ end_POSTSUPERSCRIPT
Food Price Fossil Energy Clean Energy
Panel B: Correlations
Food Price 1.000
Fossil Energy 0.263superscript0.263absent0.263^{***}0.263 start_POSTSUPERSCRIPT ∗ ∗ ∗ end_POSTSUPERSCRIPT 1.000
Clean Energy 0.107 0.231superscript0.231absent0.231^{***}0.231 start_POSTSUPERSCRIPT ∗ ∗ ∗ end_POSTSUPERSCRIPT 1.000
  • 1.

    Note: The superscripts ∗∗∗, ∗∗, and denote the statistical significance at the levels of 1%, 5%, and 10%, respectively.

Refer to caption
Refer to caption
Refer to caption
Figure 1: Retruns of food price index, fossil energy, and clean energy ETFs.

4 Results and discussion

4.1 Static quantile spillovers

Table 4.1 reports the static spillover index between food, fossil energy, and clean energy markets. Panel A shows the results estimated at the conditional median (τ=0.5𝜏0.5\tau=0.5italic_τ = 0.5). Food market is the least affected by other markets, as it predominantly comprises its own spillover effects, accounting for 81.33% of the total. In addition, food market also makes the least contributions to the other markets, with a proportion of 16.90%. In contrast, fossil energy market receives the largest impact from the other markets (26.99%), while the clean energy market is the largest contributor to others (29.43%). As for the net spillovers, clean energy market stands out as the primary transmitter of spillover effects, which is consistent with the results of Ahmad (2017) and Saeed et al. (2021) who reported that return shocks always transmit from clean energy market to fossil energy market. The larger spillover contributions of the clean energy market may reflect its role in the energy transition, which, in turn, influences both fossil energy and food prices. The total return connectedness between these markets is 23.02%, indicating a moderate level of spillovers between food and energy markets.

Table 2: Static return spillovers at different quantiles.
      Food Price       Clean Energy       Fossil Energy       From
      Panel A: Median quantile τ=0.5𝜏0.5\tau=0.5italic_τ = 0.5
      Food Price       81.33       10.76       7.91       18.67
      Clean Energy       8.58       76.59       14.83       23.41
      Fossil Energy       8.32       18.67       73.01       26.99
      To       16.90       29.43       22.73       69.07
      Inc. Own       98.24       106.02       95.74       TSI=𝑇𝑆𝐼absentTSI=italic_T italic_S italic_I = 23.02
      Net       -1.76       6.02       -4.26
      Panel B: Extreme lower quantile τ=0.05𝜏0.05\tau=0.05italic_τ = 0.05
      Food Price       37.26       31.68       31.06       62.74
      Clean Energy       28.39       40.00       31.61       60.00
      Fossil Energy       28.62       33.07       38.31       61.69
      To       57.01       64.75       62.66       184.42
      Inc. Own       94.28       104.75       100.98       TSI=𝑇𝑆𝐼absentTSI=italic_T italic_S italic_I = 61.47
      Net       -5.72       4.75       0.98
      Panel C: Extreme upper quantile τ=0.95𝜏0.95\tau=0.95italic_τ = 0.95
       Food Price       45.57       28.30       26.13       54.43
      Clean Energy       28.61       41.61       29.78       58.39
      Fossil Energy       29.27       31.64       39.09       60.91
      To       57.88       59.94       55.91       173.72
      Inc. Own       103.45       101.55       95.00       TSI=𝑇𝑆𝐼absentTSI=italic_T italic_S italic_I = 57.91
      Net       3.45       1.55       -5.00
  • 1.

    Note: ‘To’ indicates the spillover effects that the market transmits to other markets except itself. ‘Inc. Own’ indicates the spillover effects that the market transmits to other markets including itself. ‘From’ indicates the spillover effects of the market received from other markets. ‘Net’ is the disparity between ‘To’ and ‘From’. ‘TSI𝑇𝑆𝐼TSIitalic_T italic_S italic_I’ indicates the total spillover index between food, clean energy, and fossil energy markets.

To explore the spillover effects associate with positive and negative return shocks, we assess the connectedness between these markets at the extreme quantiles (τ=0.05𝜏0.05\tau=0.05italic_τ = 0.05 and τ=0.95𝜏0.95\tau=0.95italic_τ = 0.95). The results are presented in Panel B and Panel C of Table 4.1. Notably, return spillovers at the tails are significantly higher than that at the median. Specifically, the total spillover index is 61.4% at the extreme lower quantile and 57.91% at the extreme upper quantile, both of which are considerably higher than the 23.02% spillover observed at the median. The ‘To’ and ‘From’ indexes at the extreme quantiles are also stronger than those at the median. Moreover, clean energy market remains the net transmitter across all market conditions. Compared to the results at the median, fossil energy market shifts from being a net receiver to a net transmitter at the extremely negative market conditions, while food market changes from a net receiver to a net transmitter under extremely positive shocks.

Moreover, Fig. 2 illustrates that the total spillover index at various quantiles follows a U-shape, presenting clear evidence that the total spillover index varies across quantiles and is stronger at the tails. The figure also reveals an asymmetrical pattern, with the index at the left tail being higher than that at the right tail.

Refer to caption
Figure 2: Variation in the TSI𝑇𝑆𝐼TSIitalic_T italic_S italic_I across various quantiles.

4.2 Dynamic quantile spillovers

To further capture the time-varying characteristics of the connectedness between food and energy markets, we estimate the dynamic spillover effects using the rolling window method, with window size of 36 and forecast horizon of 12.

The left panel of Fig. 3 shows that the total spillovers estimated at the median quantile, which fluctuate between 7.87% and 42.79%, with a standard deviation of 8.95. Moreover, the variation trend of the spillover index indicates that the connectedness between food and energy markets increases significantly during extreme events, such as the signing and implementation of the Paris Agreement in 2015 and 2016, the withdrawal of the US from the Paris Agreement in 2017 and its return in early 2021, the COVID-19 pandemic in 2020, and the Russia-Ukraine conflict in 2022. This result is consistent with the finding of Cao and Xie (2024) that extreme events strengthen the connectedness between markets. Furthermore, we analyze the dynamic spillovers between these markets at the extreme quantiles, and the results are presented in the right panel of Fig. 3. The total spillovers at the tails are substantially higher compared to the median. The total spillover index fluctuates less at the tails, varying between 56.18% and 75.00% with standard deviation of 5.15 at the right tail and between 56.05% and 75.78% with standard deviation of 5.39 at the left tail. These findings highlight that spillovers are not only stronger at the extremes but also more stable in comparison to the median, underscoring the heightened market interdependence during periods of significant positive or negative shocks.

Refer to caption
Refer to caption
Figure 3: Total return spillovers for median quantile τ=0.5𝜏0.5\tau=0.5italic_τ = 0.5 (left panel) and extreme lower and upper quantiles τ=0.05𝜏0.05\tau=0.05italic_τ = 0.05 and τ=0.95𝜏0.95\tau=0.95italic_τ = 0.95 (right panel).

To assess the potential presence of asymmetry as shown in Fig. 2, we calculate the relative tail dependence (RTD𝑅𝑇𝐷RTDitalic_R italic_T italic_D, TSIτ=0.95TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.95𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.95}-TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT - italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT) (Saeed et al., 2021). Fig. 4 shows that 5% RTD𝑅𝑇𝐷RTDitalic_R italic_T italic_D varies between positive and negative values. A greater proportion of the values are negative, indicating that the spillovers are stronger at the left tail than at the right tail.

Refer to caption
Figure 4: Relative tail dependence (TSIτ=0.95TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.95𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.95}-TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT - italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT).

The net spillover effects estimated at the median, extreme upper, and extreme lower quantiles are shown in the left, middle, and right panels of Fig. 5, respectively. The left panel shows that food market alternates between serving as a net transmitter and a net receiver. Clean energy market acts as a net transmitter, as its net spillover index is positive throughout most of the sample period. Conversely, the net return spillover index for fossil energy market are predominantly negative, indicating they are net recipients. This aligns with the view that the spillover effects from the clean energy market to the other markets increase as energy consumption shifting from fossil fuels to clean energy (Raza et al., 2024). The median and right panels of Fig. 5 show that the patterns of net spillovers are not identical for the left and right tails. The estimates fluctuate significantly at tails, indicating that fossil energy, clean energy, and food markets are changing between net transmitters and net recipients under extreme market conditions.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Net return spillovers. The left, meddle, and right panels correspond to τ=0.5𝜏0.5\tau=0.5italic_τ = 0.5, τ=0.05𝜏0.05\tau=0.05italic_τ = 0.05, and τ=0.95𝜏0.95\tau=0.95italic_τ = 0.95, respectively.

4.3 Robustness tests

On the one hand, we assess the robustness of the aforementioned results by varying the rolling-window size and the forecast horizon. First, we consider window sizes of 48 months or 60 months while keeping the forecast horizon fixed at 12. The results, as reported in left panel of Fig. 6, show that the pattern of the spillover is not shaped by the window size. Second, we adjust the forecast horizon to 8 or 14. The results presented in the right panel of Fig. 6 show that the spillovers are still robust when the forecast horizon is changed.

On the other hand, we examine the 0.01 and 0.99 quantiles for extreme positive and negative conditions, respectively. When compared with the right panel of Fig. 3, the results in Fig. 7 for the 1% extreme quantiles are similar to the previous trends.

Refer to caption
Refer to caption
Figure 6: Total return spillovers in quantile VAR. Left: Window size = 48 or 60, forecast horizon = 12; Right: Window size = 36, forecast horizon = 8 or 14.
Refer to caption
Figure 7: Total return spillovers in quantile VAR (Extreme lower quantile τ=0.01𝜏0.01\tau=0.01italic_τ = 0.01 and extreme upper quantile τ=0.99𝜏0.99\tau=0.99italic_τ = 0.99.)

5 The role of external uncertainties

According to Fig. 3, the total spillover indexes are prominently affected by the external uncertainties, such as climate policy uncertainty (e.g., the signing and implementation of the Paris Agreement) and geopolitical risks (e.g., the Russia-Ukraine Conflict). In this section, we examine the impact of external uncertainties on the spillover effects between food and energy markets.

We examine five key types of external uncertainties in this study333We obtain the data from https://www.policyuncertainty.com.. The first is economic policy uncertainty (EPU), which is computed from the GDP-weighted average of 21 nations’ economic policy uncertainty indices (Baker et al., 2016). Researchers conclude that EPU complicates the food-energy cross-market return spillovers through direct and indirect channels (Cao et al., 2023). On the one hand, from the commodity attributes of food and energy, high EPU leads producers to lower investments and also reduces demands for commodities as raw materials. On the other hand, from the financial properties, high EPU prompts investors to hedge risks by investing financialized commodity markets. The second type is climate policy uncertainty (CPU), which is developed by analyzing newspaper articles on climate (Engle et al., 2020).The nexus between CPU and energy markets stems from the fact that climate policies have boosted the clean energy industry since the government introduced development goals and policies aimed at reducing greenhouse gas emissions, stimulating investors to switch the investment from traditional fossil energy to clean energy market (Uddin et al., 2023; Syed et al., 2023). For the CPU-food market nexus, climate policy works on the global climate environment and then affects food production (Liu et al., 2023; Chandio et al., 2023). The third one is trade policy uncertainty, which is constructed by integrating information related to trade policy on US newspaper articles (Baker et al., 2016). In the context of global trade war, the connectedness between food and energy market are affected by channels of commodity trading and risk hedging (Mei and Xie, 2022; Yang et al., 2024). Geopolitical risk (GPR) is the forth uncertainty since food, fossil energy, and clean energy markets are sensitive to both geopolitical threats and acts (Yousfi and Bouzgarrou, 2024). Lastly, we introduce COVID-19 as a dummy variable, where it takes a value of 1 between January 2020 and December 2020 and 0 otherwise.

We reveal the effect of these external uncertainties on the total spillovers at the conditional median (TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT), extreme lower quantile (TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT), and extreme upper quantile (TSIτ=0.95𝑇𝑆subscript𝐼𝜏0.95TSI_{\tau=0.95}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT). First of all, we examine the existence of unit roots for each variable by using ADF test (Dickey and Fuller, 1979), PP test (Phillips and Perron, 1988), and KPSS test (Kwiatkowski et al., 1992). As the results presented in Table 3, all variables are either I(0)𝐼0I(0)italic_I ( 0 ) or I(1)𝐼1I(1)italic_I ( 1 ) processes. It is find that the application of ARDL and NARDL models is valid.

5.1 Results of ARDL models

According to the Akaike information criterion, we obtain (n1,n2,n3,n4,n5subscript𝑛1subscript𝑛2subscript𝑛3subscript𝑛4subscript𝑛5n_{1},n_{2},n_{3},n_{4},n_{5}italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_n start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_n start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_n start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT) as (1, 1, 4, 1, 2, 0), (1, 1, 1, 3, 3, 0), and (1, 3, 3, 1, 2, 0) in ARDL models when the dependent variable is TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT, and TSIτ=0.95𝑇𝑆subscript𝐼𝜏0.95TSI_{\tau=0.95}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT, respectively. Results of ARDL models are presented in Table 4. The statistics of bound F𝐹Fitalic_F test shown as FPSSsubscript𝐹𝑃𝑆𝑆F_{PSS}italic_F start_POSTSUBSCRIPT italic_P italic_S italic_S end_POSTSUBSCRIPT are 3.382, 4.265, and 4.252 for TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT, and TSIτ=0.95𝑇𝑆subscript𝐼𝜏0.95TSI_{\tau=0.95}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT, respectively. They are all significant at either 10% or 5% levels, indicating the existence of long-run cointegration between the spillovers and external uncertainties under both normal and extreme market conditions.

For TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, the short-run results show that contemporaneous ΔlnEPUΔ𝑙𝑛𝐸𝑃𝑈\Delta lnEPUroman_Δ italic_l italic_n italic_E italic_P italic_U has a positive effect on ΔlnTSIτ=0.5Δ𝑙𝑛𝑇𝑆subscript𝐼𝜏0.5\Delta lnTSI_{\tau=0.5}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, while ΔlnCUPΔ𝑙𝑛𝐶𝑈𝑃\Delta lnCUProman_Δ italic_l italic_n italic_C italic_U italic_P, ΔlnTUPΔ𝑙𝑛𝑇𝑈𝑃\Delta lnTUProman_Δ italic_l italic_n italic_T italic_U italic_P, and ΔlnGPRΔ𝑙𝑛𝐺𝑃𝑅\Delta lnGPRroman_Δ italic_l italic_n italic_G italic_P italic_R each has a negative effect. However, the contemporaneous effects are not statistically significant, as indicated by the corresponding P𝑃Pitalic_P-values. The coefficients for the first and third lags of ΔlnCUPΔ𝑙𝑛𝐶𝑈𝑃\Delta lnCUProman_Δ italic_l italic_n italic_C italic_U italic_P are significantly positive. The magnitude of coefficients indicate that a 1% increase in the first and third lags of lnCPU𝑙𝑛𝐶𝑃𝑈lnCPUitalic_l italic_n italic_C italic_P italic_U, leads to a 0.096% and 0.112% increase in lnTSIτ=0.5𝑙𝑛𝑇𝑆subscript𝐼𝜏0.5lnTSI_{\tau=0.5}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, respectively. The coefficient of first lag of lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R is significantly negative, with a magnitude of 0.176%. The long-run results are reported in Panel B of Table 4. lnCPU𝑙𝑛𝐶𝑃𝑈lnCPUitalic_l italic_n italic_C italic_P italic_U has a significantly negative long-run impact on lnTSIτ=0.5𝑙𝑛𝑇𝑆subscript𝐼𝜏0.5lnTSI_{\tau=0.5}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, with a magnitude of 0.548%, while lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R and COVID19𝐶𝑂𝑉𝐼𝐷19COVID-19italic_C italic_O italic_V italic_I italic_D - 19 have significantly positive long-rung impacts, with magnitudes of 0.712% and 0.969%, respectively.

We also examine the relationships between spillovers and external uncertainties at the extreme quantiles. For TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT, the coefficients for ΔlnEPUΔ𝑙𝑛𝐸𝑃𝑈\Delta lnEPUroman_Δ italic_l italic_n italic_E italic_P italic_U, ΔlnCPUΔ𝑙𝑛𝐶𝑃𝑈\Delta lnCPUroman_Δ italic_l italic_n italic_C italic_P italic_U, ΔlnTPUΔ𝑙𝑛𝑇𝑃𝑈\Delta lnTPUroman_Δ italic_l italic_n italic_T italic_P italic_U, and ΔlnGPRΔ𝑙𝑛𝐺𝑃𝑅\Delta lnGPRroman_Δ italic_l italic_n italic_G italic_P italic_R are all positive, but only significant for ΔlnEPUΔ𝑙𝑛𝐸𝑃𝑈\Delta lnEPUroman_Δ italic_l italic_n italic_E italic_P italic_U and ΔlnGPRΔ𝑙𝑛𝐺𝑃𝑅\Delta lnGPRroman_Δ italic_l italic_n italic_G italic_P italic_R. specifically, a 1% increase in lnEPU𝑙𝑛𝐸𝑃𝑈lnEPUitalic_l italic_n italic_E italic_P italic_U and lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R contributes to the change of lnTSIτ=0.05𝑙𝑛𝑇𝑆subscript𝐼𝜏0.05lnTSI_{\tau=0.05}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT in 0.048% and -0.051%, respectively. The coefficients of first and second lags of ΔlnTPUΔ𝑙𝑛𝑇𝑃𝑈\Delta lnTPUroman_Δ italic_l italic_n italic_T italic_P italic_U and ΔlnGPRΔ𝑙𝑛𝐺𝑃𝑅\Delta lnGPRroman_Δ italic_l italic_n italic_G italic_P italic_R are significantly positive. A 1% increase in the first and second lags of lnTPU𝑙𝑛𝑇𝑃𝑈lnTPUitalic_l italic_n italic_T italic_P italic_U results in change of 0.017% and 0.015% in lnTSIτ=0.05𝑙𝑛𝑇𝑆subscript𝐼𝜏0.05lnTSI_{\tau=0.05}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT, while the percentages for the first and second lags of lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R are 0.046% and 0.051%. The long-run results reveal that lnEPU𝑙𝑛𝐸𝑃𝑈lnEPUitalic_l italic_n italic_E italic_P italic_U has a significantly positive impacts to the total spillover at the lower quantile with a magnitude of 0.137, while lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R has a significantly negative impact with a magnitude of 0.205. For the spillover at the upper quantile, contemporaneous ΔlnEPUΔ𝑙𝑛𝐸𝑃𝑈\Delta lnEPUroman_Δ italic_l italic_n italic_E italic_P italic_U and ΔlnTPUΔ𝑙𝑛𝑇𝑃𝑈\Delta lnTPUroman_Δ italic_l italic_n italic_T italic_P italic_U have coefficients of 0.074 and -0.02 respectively, with statistical significance at 1% level. Moreover, the first and second lagged ΔlnEPUΔ𝑙𝑛𝐸𝑃𝑈\Delta lnEPUroman_Δ italic_l italic_n italic_E italic_P italic_U and the first lagged ΔlnGPRΔ𝑙𝑛𝐺𝑃𝑅\Delta lnGPRroman_Δ italic_l italic_n italic_G italic_P italic_R have significantly negative impacts on lnTSIτ=0.95𝑙𝑛𝑇𝑆subscript𝐼𝜏0.95lnTSI_{\tau=0.95}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT, while second lagged ΔlnCPUΔ𝑙𝑛𝐶𝑃𝑈\Delta lnCPUroman_Δ italic_l italic_n italic_C italic_P italic_U has a significant positive impact. It is noted that all of the coefficients of ECT𝐸𝐶𝑇ECTitalic_E italic_C italic_T are significantly negative. The magnitudes of the coefficients of ECT𝐸𝐶𝑇ECTitalic_E italic_C italic_T imply the speed of adjustment toward long-run equilibrium from the short-run uncertainty shocks.

Additionally, We take residual diagnostics tests to approve the adequacy of the selected ARDL models, including the Breusch-Godfrey LM test (Breusch, 1978; Godfrey, 1978) for the autocorrelation, the Breusch-Pagan test (Breusch and Pagan, 1979) for the heteroskedasticity, the Ramsey RESET statistics test regress specification error (Ramsey, 1969) for the normality, and CUSUM test (Brown et al., 1975) for the model stability. The results outlined in Panel C of Table 4 provide the evidence that models pass these diagnostics except for the heteroskedasticity and normality of models for TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT.

Table 3: Results of conventional unit root tests
Variable ADF PP KPSS
Intercept Trend & intercept Intercept Trend & intercept Intercept Trend & intercept
Panel A: Level
lnTSIτ=0.5𝑙𝑛𝑇𝑆subscript𝐼𝜏0.5lnTSI_{\tau=0.5}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT -1.1794absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT -3.4292{}^{*~{}~{}}start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT -1.1794absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT -3.5138absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT 1.1230∗∗∗ 0.1801absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT
lnTSIτ=0.05𝑙𝑛𝑇𝑆subscript𝐼𝜏0.05lnTSI_{\tau=0.05}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT -4.1716∗∗∗ -4.5447∗∗∗ -4.2001∗∗∗ -4.6347∗∗∗ 0.4845absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT 0.1599absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT
lnTSIτ=0.95𝑙𝑛𝑇𝑆subscript𝐼𝜏0.95lnTSI_{\tau=0.95}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT -3.3966absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT -3.8563absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT -3.2652absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT -3.7664absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT 0.4882absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT 0.1942absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT
lnEPU𝑙𝑛𝐸𝑃𝑈lnEPUitalic_l italic_n italic_E italic_P italic_U -2.2226absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT -4.7694∗∗∗ -2.5217absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT -4.6378∗∗∗ 1.1591∗∗∗ 0.1172absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT
lnCPU𝑙𝑛𝐶𝑃𝑈lnCPUitalic_l italic_n italic_C italic_P italic_U -10.0305∗∗∗ absent{}^{~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT -10.2271∗∗∗ -10.0952∗∗∗ -10.2163∗∗∗ 0.3140absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT 0.0595absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT
lnTPU𝑙𝑛𝑇𝑃𝑈lnTPUitalic_l italic_n italic_T italic_P italic_U -2.5755absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT -2.4557absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT -3.9257∗∗∗ -3.9042absent{}^{**~{}}start_FLOATSUPERSCRIPT ∗ ∗ end_FLOATSUPERSCRIPT 0.3782{}^{*~{}~{}}start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT 0.2721∗∗∗
lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R -5.1127∗∗∗ -5.4250∗∗∗ -5.0112∗∗∗ -5.3600∗∗∗ 0.3014absent{}^{~{}~{}~{}}start_FLOATSUPERSCRIPT end_FLOATSUPERSCRIPT 0.1211{}^{*~{}~{}}start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT
Panel B: First difference
ΔlnTSIτ=0.5Δ𝑙𝑛𝑇𝑆subscript𝐼𝜏0.5\Delta lnTSI_{\tau=0.5}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT -11.6171∗∗∗ -11.6192∗∗∗ -11.6145∗∗∗ -11.6167∗∗∗ 0.1028 0.0794
ΔlnTSIτ=0.05Δ𝑙𝑛𝑇𝑆subscript𝐼𝜏0.05\Delta lnTSI_{\tau=0.05}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT -14.0546∗∗∗ -13.9868∗∗∗ -17.6571∗∗∗ -17.5518∗∗∗ 0.1188 0.1187
ΔlnTSIτ=0.95Δ𝑙𝑛𝑇𝑆subscript𝐼𝜏0.95\Delta lnTSI_{\tau=0.95}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT -7.2782∗∗∗ -7.1848∗∗∗ -14.1296∗∗∗ -14.0499∗∗∗ 0.0576 0.0581
ΔlnEPUΔ𝑙𝑛𝐸𝑃𝑈\Delta lnEPUroman_Δ italic_l italic_n italic_E italic_P italic_U -15.8287∗∗∗ -15.7716∗∗∗ -20.8516∗∗∗ -20.7548∗∗∗ 0.0724 0.0721
ΔlnCPUΔ𝑙𝑛𝐶𝑃𝑈\Delta lnCPUroman_Δ italic_l italic_n italic_C italic_P italic_U -9.0234∗∗∗ -8.9968∗∗∗ -51.9466∗∗∗ -51.6527∗∗∗ 0.1100 0.0928
ΔlnTPUΔ𝑙𝑛𝑇𝑃𝑈\Delta lnTPUroman_Δ italic_l italic_n italic_T italic_P italic_U -18.0481∗∗∗ -18.0336∗∗∗ -23.5253∗∗∗ -27.5122∗∗∗ 0.4475 0.3034∗∗∗
ΔlnGPRΔ𝑙𝑛𝐺𝑃𝑅\Delta lnGPRroman_Δ italic_l italic_n italic_G italic_P italic_R -15.3510∗∗∗ -15.3029∗∗∗ -23.5435∗∗∗ -23.5737∗∗∗ 0.1065 0.0833
  • 1.

    Note: The unit root tests are performed on the log levels of the series. For ADF test (Dickey and Fuller, 1979, 1981), the optimal lag length is chosen according to the smallest Schwarz information criterion (SIC). For both PP (Phillips and Perron, 1988) and KPSS (Kwiatkowski et al., 1992) tests, the bandwidth is selected using the Newey-West Bartlett kernel. ΔΔ\Deltaroman_Δ refers to the first difference. The superscripts ∗∗∗, ∗∗, and denote the statistical significance at the levels of 1%, 5%, and 10%, respectively.

5.2 Results of NARDL models

Following Shin et al. (2014), we use the Wald test to capture the long- and short-run asymmetric effects of the uncertainties on the total spillovers. The results shown in Table 5 reveal significant short-run asymmetric effects of lnCPU𝑙𝑛𝐶𝑃𝑈lnCPUitalic_l italic_n italic_C italic_P italic_U on lnTSIτ=0.95𝑙𝑛𝑇𝑆subscript𝐼𝜏0.95lnTSI_{\tau=0.95}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT. For long-run asymmetric effects, lnEPU𝑙𝑛𝐸𝑃𝑈lnEPUitalic_l italic_n italic_E italic_P italic_U is significant to TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, and lnCPU𝑙𝑛𝐶𝑃𝑈lnCPUitalic_l italic_n italic_C italic_P italic_U, lnTPU𝑙𝑛𝑇𝑃𝑈lnTPUitalic_l italic_n italic_T italic_P italic_U, and lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R are significant to TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT.

We select lag orders of NARDL models as (1, 1, 1, 1, 1, 0), (3, 1, 1, 1, 3, 0), and (1, 3, 3, 1, 1, 0) for TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT, and TSIτ=0.95𝑇𝑆subscript𝐼𝜏0.95TSI_{\tau=0.95}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT, respectively. The FPSSsubscript𝐹𝑃𝑆𝑆F_{PSS}italic_F start_POSTSUBSCRIPT italic_P italic_S italic_S end_POSTSUBSCRIPT statistics indicate significant long-run cointegration. Results are shown in Table 6. For TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, contemporaneous ΔlnEPU+Δ𝑙𝑛𝐸𝑃superscript𝑈\Delta lnEPU^{+}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, ΔlnCPU+Δ𝑙𝑛𝐶𝑃superscript𝑈\Delta lnCPU^{+}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, and ΔlnTPUΔ𝑙𝑛𝑇𝑃superscript𝑈\Delta lnTPU^{-}roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT have significant impacts on ΔlnTSIτ=0.5Δ𝑙𝑛𝑇𝑆subscript𝐼𝜏0.5\Delta lnTSI_{\tau=0.5}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, with the coefficients are 0.17, -0.113, and -0.051, respectively. The long-run results demonstrate that lnEPU𝑙𝑛𝐸𝑃superscript𝑈lnEPU^{-}italic_l italic_n italic_E italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and COVID19𝐶𝑂𝑉𝐼𝐷19COVID-19italic_C italic_O italic_V italic_I italic_D - 19 are positively related to lnTSIτ=0.5𝑙𝑛𝑇𝑆subscript𝐼𝜏0.5lnTSI_{\tau=0.5}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT, while lnTPU+𝑙𝑛𝑇𝑃superscript𝑈lnTPU^{+}italic_l italic_n italic_T italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and lnTPU𝑙𝑛𝑇𝑃superscript𝑈lnTPU^{-}italic_l italic_n italic_T italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT are negatively related to lnTSIτ=0.5𝑙𝑛𝑇𝑆subscript𝐼𝜏0.5lnTSI_{\tau=0.5}italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT. When move to the results of TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT, we find that the coefficients of contemporaneous variables are not statistically significant. The first lag of ΔlnGPR+Δ𝑙𝑛𝐺𝑃superscript𝑅\Delta lnGPR^{+}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and the second lag of ΔlnGPRΔ𝑙𝑛𝐺𝑃superscript𝑅\Delta lnGPR^{-}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT have significant impact on ΔlnTSIτ=0.05Δ𝑙𝑛𝑇𝑆subscript𝐼𝜏0.05\Delta lnTSI_{\tau=0.05}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT. Meanwhile, the long-run results show that the coefficient is significantly positive for lnTPU𝑙𝑛𝑇𝑃superscript𝑈lnTPU^{-}italic_l italic_n italic_T italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and significantly negative for lnGPR+𝑙𝑛𝐺𝑃superscript𝑅lnGPR^{+}italic_l italic_n italic_G italic_P italic_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and lnGPR𝑙𝑛𝐺𝑃superscript𝑅lnGPR^{-}italic_l italic_n italic_G italic_P italic_R start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT. For TSIτ=0.95𝑇𝑆subscript𝐼𝜏0.95TSI_{\tau=0.95}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT, coefficients of contemporaneous and first lag ΔlnEPU+Δ𝑙𝑛𝐸𝑃superscript𝑈\Delta lnEPU^{+}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT are significant. As with ΔlnCPUΔ𝑙𝑛𝐶𝑃𝑈\Delta lnCPUroman_Δ italic_l italic_n italic_C italic_P italic_U, the coefficients of the contemporaneous and all the lags of ΔlnCPU+Δ𝑙𝑛𝐶𝑃superscript𝑈\Delta lnCPU^{+}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT are negative, while they are all positive for the contemporaneous and all the lags of ΔlnCPUΔ𝑙𝑛𝐶𝑃superscript𝑈\Delta lnCPU^{-}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT. This is consistent with the asymmetric test in Table 5. Both ΔlnTPU+Δ𝑙𝑛𝑇𝑃superscript𝑈\Delta lnTPU^{+}roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and ΔlnTPUΔ𝑙𝑛𝑇𝑃superscript𝑈\Delta lnTPU^{-}roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT have significant negative coefficients, with similar magnitudes of 0.020 and 0.021. Additionally, panel C of Table 6 reports the results of residual diagnostics tests, which approve the adequacy of the selected NARDL models.

Table 4: Results of ARDL models.
Variables TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT TSIτ=0.95𝑇𝑆subscript𝐼𝜏0.95TSI_{\tau=0.95}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT
Coeff. p𝑝pitalic_p-val. Coeff. p𝑝pitalic_p-val. Coeff. p𝑝pitalic_p-val.
Panel A: Short-run results
Intercept𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡Interceptitalic_I italic_n italic_t italic_e italic_r italic_c italic_e italic_p italic_t 0.705 0.000∗∗∗ 1.699 0.000∗∗∗ 0.871 0.000∗∗∗
ΔlnEPUtΔ𝑙𝑛𝐸𝑃subscript𝑈𝑡\Delta lnEPU_{t}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT 0.051 0.410 0.048 0.092 0.074 0.003∗∗∗
ΔlnEPUt1Δ𝑙𝑛𝐸𝑃subscript𝑈𝑡1\Delta lnEPU_{t-1}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT -0.070 0.009∗∗∗
ΔlnEPUt2Δ𝑙𝑛𝐸𝑃subscript𝑈𝑡2\Delta lnEPU_{t-2}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT -0.047 0.063
ΔlnCPUtΔ𝑙𝑛𝐶𝑃subscript𝑈𝑡\Delta lnCPU_{t}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT -0.036 0.312 -0.001 0.926 -0.014 0.290
ΔlnCPUt1Δ𝑙𝑛𝐶𝑃subscript𝑈𝑡1\Delta lnCPU_{t-1}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT 0.096 0.010∗∗ 0.007 0.649
ΔlnCPUt2Δ𝑙𝑛𝐶𝑃subscript𝑈𝑡2\Delta lnCPU_{t-2}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT 0.056 0.135 0.026 0.058
ΔlnCPUt3Δ𝑙𝑛𝐶𝑃subscript𝑈𝑡3\Delta lnCPU_{t-3}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 3 end_POSTSUBSCRIPT 0.112 0.002∗∗∗
ΔlnTPUtΔ𝑙𝑛𝑇𝑃subscript𝑈𝑡\Delta lnTPU_{t}roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT -0.015 0.302 0.001 0.950 -0.020 0.000∗∗∗
ΔlnTPUt1Δ𝑙𝑛𝑇𝑃subscript𝑈𝑡1\Delta lnTPU_{t-1}roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT 0.017 0.043∗∗
ΔlnTPUt2Δ𝑙𝑛𝑇𝑃subscript𝑈𝑡2\Delta lnTPU_{t-2}roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT 0.015 0.037∗∗
ΔlnGPRtΔ𝑙𝑛𝐺𝑃subscript𝑅𝑡\Delta lnGPR_{t}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT -0.041 0.432 -0.051 0.040∗∗ 0.028 0.158
ΔlnGPRt1Δ𝑙𝑛𝐺𝑃subscript𝑅𝑡1\Delta lnGPR_{t-1}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT -0.176 0.001∗∗∗ 0.046 0.087 -0.039 0.060
ΔlnGPRt2Δ𝑙𝑛𝐺𝑃subscript𝑅𝑡2\Delta lnGPR_{t-2}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT 0.051 0.041∗∗
ECT𝐸𝐶𝑇ECTitalic_E italic_C italic_T -0.173 0.000∗∗ -0.348 0.000∗∗∗ -0.293 0.000∗∗∗
Panel B: Long-run results
Intercept𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡Interceptitalic_I italic_n italic_t italic_e italic_r italic_c italic_e italic_p italic_t 4.075 0.031∗∗ 4.873 0.000∗∗∗ 2.973 0.000∗∗∗
lnEPU𝑙𝑛𝐸𝑃𝑈lnEPUitalic_l italic_n italic_E italic_P italic_U -0.257 0.485 0.137 0.083 0.267 0.009∗∗∗
lnCPU𝑙𝑛𝐶𝑃𝑈lnCPUitalic_l italic_n italic_C italic_P italic_U -0.548 0.059 -0.005 0.928 -0.122 0.121
lnTPU𝑙𝑛𝑇𝑃𝑈lnTPUitalic_l italic_n italic_T italic_P italic_U -0.042 0.486 -0.024 0.100 -0.037 0.009∗∗∗
lnGPR𝑙𝑛𝐺𝑃𝑅lnGPRitalic_l italic_n italic_G italic_P italic_R 0.712 0.051 -0.205 0.015∗∗ 0.185 0.019∗∗
COVID19𝐶𝑂𝑉𝐼𝐷19COVID-19italic_C italic_O italic_V italic_I italic_D - 19 0.969 0.001∗∗∗ -0.015 0.796 -0.007 0.902
Panel C: Diagnostics tests
FPSSsubscript𝐹𝑃𝑆𝑆F_{PSS}italic_F start_POSTSUBSCRIPT italic_P italic_S italic_S end_POSTSUBSCRIPT 3.382 0.096 4.265 0.023∗∗ 4.252 0.024∗∗
BG 0.007 0.933 1.037 0.308 0.088 0.767
BP 28.893 0.011∗∗ 15.562 0.341 20.828 0.142
Ramsey RESET 2.335 0.009∗∗∗ 1.037 0.427 0.998 0.467
CUSUM 0.486 0.659 0.619 0.377 0.643 0.335
  • 1.

    The superscripts ∗∗∗, ∗∗, and denote the statistical significance at the levels of 1%, 5%, and 10%, respectively.

Table 5: Results of the Wald test for asymmetric effects.
      Variables       TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT       TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT       TSIτ=0.95𝑇𝑆subscript𝐼𝜏0.95TSI_{\tau=0.95}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT
      Coeff.       p𝑝pitalic_p-val.       Coeff.       p𝑝pitalic_p-val.       Coeff.       p𝑝pitalic_p-val.
      Panel A: Short-run results
      WEPUsubscript𝑊𝐸𝑃𝑈W_{EPU}italic_W start_POSTSUBSCRIPT italic_E italic_P italic_U end_POSTSUBSCRIPT       0.010       0.922       0.855       0.358       0.508       0.478
      WCPUsubscript𝑊𝐶𝑃𝑈W_{CPU}italic_W start_POSTSUBSCRIPT italic_C italic_P italic_U end_POSTSUBSCRIPT       1.219       0.273       0.172       0.679       4.384       0.040∗∗
      WTPUsubscript𝑊𝑇𝑃𝑈W_{TPU}italic_W start_POSTSUBSCRIPT italic_T italic_P italic_U end_POSTSUBSCRIPT       0.438       0.510       0.201       0.655       0.005       0.942
      WGPRsubscript𝑊𝐺𝑃𝑅W_{GPR}italic_W start_POSTSUBSCRIPT italic_G italic_P italic_R end_POSTSUBSCRIPT       1.507       0.223       0.047       0.830       0.455       0.502
      Panel B: Long-run results
      WEPUsubscript𝑊𝐸𝑃𝑈W_{EPU}italic_W start_POSTSUBSCRIPT italic_E italic_P italic_U end_POSTSUBSCRIPT       4.360       0.016∗∗       1.638       0.201       2.954       0.058
      WCPUsubscript𝑊𝐶𝑃𝑈W_{CPU}italic_W start_POSTSUBSCRIPT italic_C italic_P italic_U end_POSTSUBSCRIPT       0.920       0.402       2.937       0.059       1.728       0.184
      WTPUsubscript𝑊𝑇𝑃𝑈W_{TPU}italic_W start_POSTSUBSCRIPT italic_T italic_P italic_U end_POSTSUBSCRIPT       2.209       0.116       5.291       0.007∗∗∗       1.798       0.172
      WGPRsubscript𝑊𝐺𝑃𝑅W_{GPR}italic_W start_POSTSUBSCRIPT italic_G italic_P italic_R end_POSTSUBSCRIPT       0.131       0.877       4.795       0.011∗∗       0.656       0.522
  • 1.

    The superscripts ∗∗∗, ∗∗, and denote the statistical significance at the levels of 1%, 5%, and 10%, respectively.

Table 6: Results of NARDL models.
      Variables       TSIτ=0.5𝑇𝑆subscript𝐼𝜏0.5TSI_{\tau=0.5}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.5 end_POSTSUBSCRIPT       TSIτ=0.05𝑇𝑆subscript𝐼𝜏0.05TSI_{\tau=0.05}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.05 end_POSTSUBSCRIPT       TSIτ=0.95𝑇𝑆subscript𝐼𝜏0.95TSI_{\tau=0.95}italic_T italic_S italic_I start_POSTSUBSCRIPT italic_τ = 0.95 end_POSTSUBSCRIPT
      Coeff.       p𝑝pitalic_p-val.       Coeff.       p𝑝pitalic_p-val.       Coeff.       p𝑝pitalic_p-val.
      Panel A: Short-run results
      Inetrcept𝐼𝑛𝑒𝑡𝑟𝑐𝑒𝑝𝑡Inetrceptitalic_I italic_n italic_e italic_t italic_r italic_c italic_e italic_p italic_t       1.507       0.000∗∗∗       2.354       0.000∗∗∗       1.700       0.000∗∗∗
      ΔlnTSIt1Δ𝑙𝑛𝑇𝑆subscript𝐼𝑡1\Delta lnTSI_{t-1}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT       0.036       0.700
      ΔlnTSIt2Δ𝑙𝑛𝑇𝑆subscript𝐼𝑡2\Delta lnTSI_{t-2}roman_Δ italic_l italic_n italic_T italic_S italic_I start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT       0.170       0.036∗∗
      ΔlnEPUt+Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡\Delta lnEPU_{t}^{+}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       0.170       0.080       -0.002       0.958       0.132       0.001∗∗∗
      ΔlnEPUt1+Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡1\Delta lnEPU_{t-1}^{+}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       -0.088       0.027∗∗
      ΔlnEPUt2+Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡2\Delta lnEPU_{t-2}^{+}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       -0.049       0.211
      ΔlnEPUtΔ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡\Delta lnEPU_{t}^{-}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.149       0.205       0.081       0.110       0.047       0.340
      ΔlnEPUt1Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡1\Delta lnEPU_{t-1}^{-}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       -0.034       0.470
      ΔlnEPUt2Δ𝑙𝑛𝐸𝑃superscriptsubscript𝑈𝑡2\Delta lnEPU_{t-2}^{-}roman_Δ italic_l italic_n italic_E italic_P italic_U start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       -0.010       0.836
      ΔlnCPUt+Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡\Delta lnCPU_{t}^{+}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       -0.113       0.049∗∗       0.006       0.831       -0.059       0.019∗∗
      ΔlnCPUt1+Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡1\Delta lnCPU_{t-1}^{+}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       -0.029       0.237
      ΔlnCPUt2+Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡2\Delta lnCPU_{t-2}^{+}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       -0.011       0.633
      ΔlnCPUtΔ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡\Delta lnCPU_{t}^{-}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.010       0.865       -0.015       0.556       0.017       0.477
      ΔlnCPUt1Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡1\Delta lnCPU_{t-1}^{-}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.054       0.049∗∗
      ΔlnCPUt2Δ𝑙𝑛𝐶𝑃superscriptsubscript𝑈𝑡2\Delta lnCPU_{t-2}^{-}roman_Δ italic_l italic_n italic_C italic_P italic_U start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.064       0.028∗∗
      ΔlnTPUt+Δ𝑙𝑛𝑇𝑃superscriptsubscript𝑈𝑡\Delta lnTPU_{t}^{+}roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       -0.017       0.499       -0.007       0.546       -0.021       0.034∗∗
      ΔlnTPUtΔ𝑙𝑛𝑇𝑃superscriptsubscript𝑈𝑡\Delta lnTPU_{t}^{-}roman_Δ italic_l italic_n italic_T italic_P italic_U start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       -0.051       0.074       0.003       0.779       -0.020       0.091
      ΔlnGPRt+Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡\Delta lnGPR_{t}^{+}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       -0.126       0.118       -0.029       0.395       -0.001       0.989
      ΔlnGPRt1+Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡1\Delta lnGPR_{t-1}^{+}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       0.128       0.002∗∗∗
      ΔlnGPRt2+Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡2\Delta lnGPR_{t-2}^{+}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       0.031       0.416
      ΔlnGPRtΔ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡\Delta lnGPR_{t}^{-}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.102       0.311       -0.038       0.395       0.050       0.194
      ΔlnGPRt1Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡1\Delta lnGPR_{t-1}^{-}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.019       0.688
      ΔlnGPRt2Δ𝑙𝑛𝐺𝑃superscriptsubscript𝑅𝑡2\Delta lnGPR_{t-2}^{-}roman_Δ italic_l italic_n italic_G italic_P italic_R start_POSTSUBSCRIPT italic_t - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.117       0.005∗∗∗
      ECT𝐸𝐶𝑇ECTitalic_E italic_C italic_T       -0.392       0.000∗∗∗       -0.527       0.000∗∗∗       -0.375       0.000∗∗∗
      Panel B: Long-run results
      Intercept𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡Interceptitalic_I italic_n italic_t italic_e italic_r italic_c italic_e italic_p italic_t       3.839       0.000∗∗∗       4.466       0.000∗∗∗       4.537       0.000∗∗∗
      lnEPU+𝑙𝑛𝐸𝑃superscript𝑈lnEPU^{+}italic_l italic_n italic_E italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       0.186       0.441       0.001       0.997       0.293       0.042∗∗
      lnEPU𝑙𝑛𝐸𝑃superscript𝑈lnEPU^{-}italic_l italic_n italic_E italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.634       0.007∗∗∗       0.096       0.220       0.265       0.048∗∗
      lnCPU+𝑙𝑛𝐶𝑃superscript𝑈lnCPU^{+}italic_l italic_n italic_C italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       0.094       0.447       0.057       0.141       -0.124       0.109
      lnCPU𝑙𝑛𝐶𝑃superscript𝑈lnCPU^{-}italic_l italic_n italic_C italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       -0.025       0.872       -0.016       0.743       -0.151       0.102
      lnTPU+𝑙𝑛𝑇𝑃superscript𝑈lnTPU^{+}italic_l italic_n italic_T italic_P italic_U start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       -0.122       0.017∗∗       -0.012       0.451       -0.038       0.095
      lnTPU𝑙𝑛𝑇𝑃superscript𝑈lnTPU^{-}italic_l italic_n italic_T italic_P italic_U start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       -0.120       0.014∗∗       0.027       0.080       -0.039       0.068
      lnGPR+𝑙𝑛𝐺𝑃superscript𝑅lnGPR^{+}italic_l italic_n italic_G italic_P italic_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT       0.082       0.621       -0.124       0.078       0.031       0.704
      lnGPR𝑙𝑛𝐺𝑃superscript𝑅lnGPR^{-}italic_l italic_n italic_G italic_P italic_R start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT       0.027       0.890       -0.232       0.005∗∗∗       0.102       0.293
      COVID19𝐶𝑂𝑉𝐼𝐷19COVID-19italic_C italic_O italic_V italic_I italic_D - 19       0.402       0.003∗∗∗       -0.018       0.703       -0.063       0.256
      Panel C: Diagnostics tests
      FPSSsubscript𝐹𝑃𝑆𝑆F_{PSS}italic_F start_POSTSUBSCRIPT italic_P italic_S italic_S end_POSTSUBSCRIPT       3.218       0.062       3.569       0.027∗∗       3.044       0.091
      BG       0.841       0.359       0.798       0.372       0.123       0.726
      BP       31.849       0.023∗∗       28.498       0.240       30.123       0.263
      Ramsey RESET       0.718       0.781       0.827       0.688       0.885       0.624
      CUSUM       0.373       0.891       0.680       0.278       1.011       0.031∗∗
  • 1.

    The superscripts ∗∗∗, ∗∗, and denote the statistical significance at the levels of 1%, 5%, and 10%, respectively.

6 Conclusion and policy implications

This paper use a quantile regression-based Diebold and Yilmaz (2012, 2014) spillover measure to explore the return connectedness between food, fossil energy, and clean energy markets at the median and extreme quantiles. Additionally, we examine the role of external uncertainties on the spillover effects under different market conditions.

Our empirical results show that the return connectedness between these markets is much stronger at the tails (61.47% for left tail and 57.91% for right tail) than at the median (23.02%). The total spillover index presents a U-shaped curve across quantiles, indicating that returns between these markets are more tightly connected during the extreme market conditions. The net spillover analysis reveals that fossil energy market always act as the net receiver, while clean energy market primarily serves as the net transmitter. The dynamic analysis shows that spillover effects vary over time and intensify during period of extreme events, such as the signing and implementation of the Paris Agreement, and the COVID-19 pandemic. Furthermore, results from the ARDL and NARDL models show that external uncertainties have statistically significant impacts on total spillovers. At the median quantile, CPU, GPR, and the COVID-19 pandemic are the important drivers of spillovers. At the extreme quantiles, EPU, TPU, and GPR act as main drivers. In addition, the results of NARDL models reveal the asymmetric effects of external uncertainties.

Our findings have several practical implications for cross-market investments in food and energy markets. First, the significant return spillovers, particularly under extreme market conditions, highlight the risk contagions between these markets. Investors should carefully monitor these risks and implement strategies to manage cross-market exposures. Second, as fossil energy primarily acts as a net receiver of shocks, investors in fossil energy markets need to track developments in food and clean energy markets and diversify their portfolios by incorporating food and clean energy assets. Third, given the significant influence of external uncertainties, investors should adjust their strategies during periods of heightened uncertainty related to EPU, CPU, TPU, or GPR to mitigate potential risks.

The results also carry critical implications for policymakers. First, the transition from fossil energy to clean energy is an important issue, which requires well-designed policies that account for the interconnectedness between these markets under varying conditions. Second, our research reveals the significant impact of external uncertainties on the connectedness between food and energy markets. Therefore, policymakers should closely monitor the changes in external uncertainties and employ useful policy tools to achieve policy coordination when uncertainty shocks occur, which is of great importance to ensuring the stability of food and energy markets.

Acknowledgment

This work was supported by the Excellent Youth Project of Hunan Provincial Department of Education (Grant Number: 23B0425) and the Youth Project of Hunan Provincial Social Science Fund (Grant Number: 23YBQ080)

References

  • Abdelradi and Serra (2015) Abdelradi, F., Serra, T., 2015. Food-energy nexus in Europe: Price volatility approach. Energy Econ. 48, 157–167. doi:10.1016/j.eneco.2014.11.022.
  • Adil et al. (2022) Adil, S., Bhatti, A.A., Waqar, S., Amin, S., 2022. Unleashing the indirect influence of oil prices on food prices via exchange rate: New evidence from Pakistan. J. Public Aff. 22, e2615. doi:10.1002/pa.2615.
  • Ahmad (2017) Ahmad, W., 2017. On the dynamic dependence and investment performance of crude oil and clean energy stocks. Res. Int. Bus. Financ. 42, 376–389. doi:10.1016/j.ribaf.2017.07.140.
  • Algieri and Leccadito (2017) Algieri, B., Leccadito, A., 2017. Assessing contagion risk from energy and non-energy commodity markets. Energy Econ. 62, 312–322. doi:10.1016/j.eneco.2017.01.006.
  • Almalki et al. (2022) Almalki, A.M., Hassan, M.u., Bin Amin, M.F., 2022. The asymmetric relationship between structural oil shocks and food prices: Evidence from Saudi Arabia. Appl. Econ. 54, 6216–6233. doi:10.1080/00036846.2022.2083065.
  • Atems and Mette (2024) Atems, B., Mette, J., 2024. The impact of biomass consumption on US food prices. J. Environ. Plan. Manag. 67, 2459–2476. doi:10.1080/09640568.2023.2192383.
  • Baker et al. (2016) Baker, S.R., Bloom, N., Davis, S.J., 2016. Measuring economic policy uncertainty. Quart. J. Econ. 131, 1593–1636. doi:10.1093/qje/qjw024.
  • Breusch (1978) Breusch, T.S., 1978. Testing for autocorrelation in dynamic linear models. Aust. Econ. Pap. 17, 334–355. doi:10.1111/j.1467-8454.1978.tb00635.x.
  • Breusch and Pagan (1979) Breusch, T.S., Pagan, A.R., 1979. A simple test for heteroscedasticity and random coefficient variation. Econometrica 47, 1287–1294. doi:10.2307/1911963.
  • Brown et al. (1975) Brown, R.L., Durbin, J., Evans, J.M., 1975. Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. B 37, 149–163. doi:10.1111/j.2517-6161.1975.tb01532.x.
  • Caldara and Iacoviello (2022) Caldara, D., Iacoviello, M., 2022. Measuring Geopolitical Risk. Am. Econ. Rev. 112, 1194–1225. doi:10.1257/aer.20191823.
  • Cao and Xie (2024) Cao, G., Xie, F., 2024. Extreme risk spillovers across energy and carbon markets: Evidence from the quantile extended joint connectedness approach. Int. J. Financ. Econ. 29, 2155–2175. doi:10.1002/ijfe.2781.
  • Cao et al. (2023) Cao, Y., Cheng, S., Li, X., 2023. How economic policy uncertainty affects asymmetric spillovers in food and oil prices: Evidence from wavelet analysis. Resour. Policy 86, 104086. doi:10.1016/j.resourpol.2023.104086.
  • Chandio et al. (2023) Chandio, A.A., Jiang, Y., Akram, W., Ozturk, I., Rauf, A., Mirani, A.A., Zhang, H., 2023. The impact of R&D investment on grain crops production in China: Analysing the role of agricultural credit and CO2 emissions. Int. J. Financ. Econ. 28, 4120–4138. doi:10.1002/ijfe.2638.
  • Chatterjee (2024) Chatterjee, R., 2024. How state governance can offer a new paradigm to energy transition in Indian agriculture? Energy Policy 185, 113965. doi:10.1016/j.enpol.2023.113965.
  • Chatziantoniou et al. (2021) Chatziantoniou, I., Degiannakis, S., Filis, G., Lloyd, T., 2021. Oil price volatility is effective in predicting food price volatility. Or is it? Energy J. 42, 25–48. doi:10.5547/01956574.42.6.icha.
  • Chen et al. (2022) Chen, Z., Yan, B., Kang, H., 2022. Dynamic correlation between crude oil and agricultural futures markets. Rev. Dev. Econ. 26, 1798–1849. doi:10.1111/rode.12885.
  • Chowdhury et al. (2021) Chowdhury, M.A.F., Meo, M.S., Uddin, A., Haque, M.M., 2021. Asymmetric effect of energy price on commodity price: New evidence from NARDL and time frequency wavelet approaches. Energy 231, 120934. doi:10.1016/j.energy.2021.120934.
  • Diab and Karaki (2023) Diab, S., Karaki, M.B., 2023. Do increases in gasoline prices cause higher food prices? Energy Econ. 127, 107066. doi:10.1016/j.eneco.2023.107066.
  • Dickey and Fuller (1979) Dickey, D.A., Fuller, W.A., 1979. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431.
  • Dickey and Fuller (1981) Dickey, D.A., Fuller, W.A., 1981. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49, 1057–1072.
  • Diebold and Yilmaz (2012) Diebold, F.X., Yilmaz, K., 2012. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 28, 57–66. doi:10.1016/j.ijforecast.2011.02.006.
  • Diebold and Yilmaz (2014) Diebold, F.X., Yilmaz, K., 2014. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 182, 119–134. doi:10.1016/j.jeconom.2014.04.012.
  • Engle et al. (2020) Engle, R.F., Giglio, S., Kelly, B., Lee, H., Stroebel, J., 2020. Hedging climate change news. Rev. Financ. Stud. 33, 1184–1216. doi:10.1093/rfs/hhz072.
  • Ericsson et al. (2009) Ericsson, K., Rosenqvist, H., Nilsson, L.J., 2009. Energy crop production costs in the EU. Biomass Bioenerg. 33, 1577–1586. doi:10.1016/j.biombioe.2009.08.002.
  • Fasanya and Akinbowale (2019) Fasanya, I., Akinbowale, S., 2019. Modelling the return and volatility spillovers of crude oil and food prices in Nigeria. Energy 169, 186–205. doi:10.1016/j.energy.2018.12.011.
  • Gavriilidis (2021) Gavriilidis, K., 2021. Measuring climate policy uncertainty. doi:10.2139/ssrn.3847388. https://ssrn.com/abstract=3847388.
  • Georgiou et al. (2018) Georgiou, S., Acha, S., Shah, N., Markides, C.N., 2018. A generic tool for quantifying the energy requirements of glasshouse food production. J. Clean Prod. 191, 384–399. doi:10.1016/j.jclepro.2018.03.278.
  • Godfrey (1978) Godfrey, L.G., 1978. Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica 46, 1293–1301. doi:10.2307/1913829.
  • Guo and Tanaka (2022) Guo, J., Tanaka, T., 2022. Energy security versus food security: An analysis of fuel ethanol- related markets using the spillover index and partial wavelet coherence approaches. Energy Econ. 112, 106142. doi:10.1016/j.eneco.2022.106142.
  • Han et al. (2022) Han, J., Zhang, L., Li, Y., 2022. Spatiotemporal analysis of rural energy transition and upgrading in developing countries: The case of China. Appl. Energy 307, 118225. doi:10.1016/j.apenergy.2021.118225.
  • Han et al. (2015) Han, L., Zhou, Y., Yin, L., 2015. Exogenous impacts on the links between energy and agricultural commodity markets. Energy Econ. 49, 350–358. doi:10.1016/j.eneco.2015.02.021.
  • Hanif et al. (2021) Hanif, W., Hernandez, J.A., Shahzad, S.J.H., Yoon, S.M., 2021. Tail dependence risk and spillovers between oil and food prices*. Q. Rev. Econ. Financ. 80, 195–209. doi:10.1016/j.qref.2021.01.019.
  • Haque and Khan (2022) Haque, M.I., Khan, M.R., 2022. Impact of climate change on food security in Saudi Arabia: A roadmap to agriculture-water sustainability. J. Agribus. Dev. Emerg. Econ. 12, 1–18. doi:10.1108/JADEE-06-2020-0127.
  • Hartter et al. (2018) Hartter, J., Hamilton, L.C., Boag, A.E., Stevens, F.R., Ducey, M.J., Christoffersen, N.D., Oester, P.T., Palace, M.W., 2018. Does it matter if people think climate change is human caused? Clim. Serv. 10, 53–62. doi:10.1016/j.cliser.2017.06.014.
  • Hassouneh et al. (2012) Hassouneh, I., Serra, T., Goodwin, B.K., Gil, J.M., 2012. Non-parametric and parametric modeling of biodiesel, sunflower oil, and crude oil price relationships. Energy Econ. 34, 1507–1513. doi:10.1016/j.eneco.2012.06.027.
  • Koenker and Bassett (1978) Koenker, R., Bassett, G., 1978. Regression quantiles. Econometrica 46, 33–50.
  • Koop et al. (1996) Koop, G.M., Pesaran, H., Potter, S.M., 1996. Impulse response analysis in nonlinear multivariate models. J. Econom. 74, 119–147. doi:10.1016/0304-4076(95)01753-4.
  • Kwiatkowski et al. (1992) Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y.C., 1992. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econometr. 54, 159–178.
  • Li et al. (2024) Li, N., Agene, D., Gu, L., Osabohien, R., Jaaffar, A.H., 2024. Promoting clean energy adoption for enhanced food security in Africa. Front. Sustain. Food Syst. 8, 1269160. doi:10.3389/fsufs.2024.1269160.
  • Liu et al. (2023) Liu, G., Luo, K., Xu, P., Zhang, S., 2023. Climate policy uncertainty and its impact on major grain futures. Financ. Res. Lett. 58, 104412. doi:10.1016/j.frl.2023.104412.
  • Liu and Serletis (2024) Liu, J., Serletis, A., 2024. Volatility and dependence in crude oil and agricultural commodity markets. Appl. Econ. doi:10.1080/00036846.2024.2312260.
  • Lucotte (2016) Lucotte, Y., 2016. Co-movements between crude oil and food prices: A post-commodity boom perspective. Econ. Lett. 147, 142–147. doi:10.1016/j.econlet.2016.08.032.
  • Mei and Xie (2022) Mei, D., Xie, Y., 2022. US grain commodity futures price volatility: Does trade policy uncertainty matter? Financ. Res. Lett. 48, 103028. doi:10.1016/j.frl.2022.103028.
  • Miljkovic and Vatsa (2023) Miljkovic, D., Vatsa, P., 2023. On the linkages between energy and agricultural commodity prices: A dynamic time warping analysis. Int. Rev. Financ. Anal. 90, 102834. doi:10.1016/j.irfa.2023.102834.
  • Mohammed (2022) Mohammed, R., 2022. The impact of crude oil price on food prices in Iraq. OPEC Energy Rev. 46, 106–122. doi:10.1111/opec.12225.
  • Myers et al. (2014) Myers, R.J., Johnson, S.R., Helmar, M., Baumes, H., 2014. Long-run and short-run co-movements in energy prices and the prices of agricultural feedstocks for biofuel. Am. J. Agr. Econ. 96, 991–1008. doi:10.1093/ajae/aau003.
  • Pesaran and Shin (1998) Pesaran, H.H., Shin, Y., 1998. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 58, 17–29. doi:10.1016/S0165-1765(97)00214-0.
  • Pesaran et al. (2001) Pesaran, M.H., Shin, Y., Smith, R.J., 2001. Bounds testing approaches to the analysis of level relationships. J. Appl. Economet. 16, 289–326. doi:10.1002/jae.616.
  • Phillips and Perron (1988) Phillips, P.C.B., Perron, P., 1988. Testing for a unit root in time series regression. Biometrika 75, 335–346.
  • Ramsey (1969) Ramsey, J.B., 1969. Tests for specification errors in classical linear least-squares regression analysis. J. R. Stat. Soc. B 31, 350–371. doi:10.1111/j.2517-6161.1969.tb00796.x.
  • Raza et al. (2024) Raza, S.A., Khan, K.A., Benkraiem, R., Guesmi, K., 2024. The importance of climate policy uncertainty in forecasting the green, clean and sustainable financial markets volatility. Int. Rev. Financ. Anal. 91, 102984. doi:10.1016/j.irfa.2023.102984.
  • Roman et al. (2020) Roman, M., Gorecka, A., Domagala, J., 2020. The linkages between crude oil and food prices. Energies 13, 6545. doi:10.3390/en13246545.
  • Saeed et al. (2021) Saeed, T., Bouri, E., Alsulami, H., 2021. Extreme return connectedness and its determinants between clean/green and dirty energy investments. Energy Econ. 96, 105017. doi:10.1016/j.eneco.2020.105017.
  • Shin et al. (2014) Shin, Y., Yu, B., Greenwood-Nimmo, M., 2014. Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. Festschrift in honor of Peter Schmidt. Springer, New York.
  • Sun et al. (2023) Sun, Y., Gao, P., Raza, S.A., Shah, N., Sharif, A., 2023. The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach. Energy 270, 126812. doi:10.1016/j.energy.2023.126812.
  • Syed et al. (2023) Syed, Q.R., Apergis, N., Goh, S.K., 2023. The dynamic relationship between climate policy uncertainty and renewable energy in the US: Applying the novel fourier augmented autoregressive distributed lags approach. Energy 275, 127383. doi:10.1016/j.energy.2023.127383.
  • Taghizadeh-Hesary et al. (2019) Taghizadeh-Hesary, F., Rasoulinezhad, E., Yoshino, N., 2019. Energy and food security: Linkages through price volatility. Energy Policy 128, 796–806. doi:10.1016/j.enpol.2018.12.043.
  • Tanaka et al. (2023) Tanaka, T., Guo, J., Wang, X., 2023. Price interconnection of fuel and food markets: Evidence from biodiesel in the United States. GCB Bioenergy 15, 886–899. doi:10.1111/gcbb.13055.
  • Ucak et al. (2022) Ucak, H., Yelgen, E., Ari, Y., 2022. The role of energy on the price volatility of fruits and vegetables: Evidence from Turkey. Bio-based Appl. Econ. 11, 37–54. doi:10.36253/bae-10896.
  • Uddin et al. (2023) Uddin, G.S., Sahamkhadam, M., Yahya, M., Tang, O., 2023. Investment opportunities in the energy market: What can be learnt from different energy sectors. Int. J. Financ. Econ. 28, 3611–3636. doi:10.1002/ijfe.2610.
  • Vatsa et al. (2023) Vatsa, P., Miljkovic, D., Baek, J., 2023. Linkages between natural gas, fertiliser and cereal prices: A note. J. Agric. Econ. 74, 935–940. doi:10.1111/1477-9552.12532.
  • Wang et al. (2024) Wang, L., Chavas, J.P., Li, J., 2024. Dynamic linkages in agricultural and energy markets: A quantile impulse response approach. Agric. Econ. 55, 639–676. doi:10.1111/agec.12837.
  • Yang et al. (2024) Yang, C., Zhang, H., Qin, Y., Niu, Z., 2024. Partisan conflict, trade policy uncertainty, and the energy market. Res. Int. Bus. Financ. 71, 102450. doi:10.1016/j.ribaf.2024.102450.
  • Yoon (2022) Yoon, S.M., 2022. On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests. Renew. Energy 199, 536–545. doi:10.1016/j.renene.2022.08.136.
  • Yousfi and Bouzgarrou (2024) Yousfi, M., Bouzgarrou, H., 2024. Geopolitical risk, economic policy uncertainty, and dynamic connectedness between clean energy, conventional energy, and food markets. Environ. Sci. Pollut. Res. 31, 4925–4945. doi:10.1007/s11356-023-31379-7.
  • Youssef and Mokni (2021) Youssef, M., Mokni, K., 2021. On the nonlinear impact of oil price shocks on the world food prices under different markets conditions. Int. Econ. J. 35, 73–95. doi:10.1080/10168737.2020.1870524.
  • Yu et al. (2023) Yu, Y., Peng, C., Zakaria, M., Mahmood, H., Khalid, S., 2023. Nonlinear effects of crude oil dependency on food prices in China: Evidence from quantile-on-quantile approach. J. Bus. Econ. Manag. 24, 696–711. doi:10.3846/jbem.2023.20192.
  • Zhang and Broadstock (2020) Zhang, D., Broadstock, D.C., 2020. Global financial crisis and rising connectedness in the international commodity markets. Int. Rev. Financ. Anal. 68, 101239. doi:10.1016/j.irfa.2018.08.003.
  • Zimmer and Marques (2021) Zimmer, Y., Marques, Giulio, V., 2021. Energy cost to produce and transport crops-The driver for crop prices? Case study for Mato Grosso, Brazil. Energy 225, 120260. doi:10.1016/j.energy.2021.120260.
  • Zmami and Ben-Salha (2019) Zmami, M., Ben-Salha, O., 2019. Does oil price drive world food prices? Evidence from linear and nonlinear ARDL modeling. Economies 7, 12. doi:10.3390/economies7010012.