Secure Generalization through Stochastic Bidirectional Parameter Updates Using Dual-Gradient Mechanism

Shourya Goel, Himanshi Tibrewal, Anant Jain, Anshul Pundhir, Pravendra Singh
Department of Computer Science and Engineering
Indian Institute of Technology Roorkee, Uttarakhand, India
{shourya_g, anant_j, himanshi_t, anshul_p, pravendra.singh}@cs.iitr.ac.in
Abstract

Federated learning (FL) has gained increasing attention due to privacy-preserving collaborative training on decentralized clients, mitigating the need to upload sensitive data to a central server directly. Nonetheless, recent research has underscored the risk of exposing private data to adversaries, even within FL frameworks. In general, existing methods sacrifice performance while ensuring resistance to privacy leakage in FL. We overcome these issues and generate diverse models at a global server through the proposed stochastic bidirectional parameter update mechanism. Using diverse models, we improved the generalization and feature representation in the FL setup, which also helped to improve the robustness of the model against privacy leakage without hurting the model’s utility. We use global models from past FL rounds to follow systematic perturbation in parameter space at the server to ensure model generalization and resistance against privacy attacks. We generate diverse models (in close neighborhoods) for each client by using systematic perturbations in model parameters at a fine-grained level (i.e., altering each convolutional filter across the layers of the model) to improve the generalization and security perspective. We evaluated our proposed approach on four benchmark datasets to validate its superiority. We surpassed the state-of-the-art methods in terms of model utility and robustness towards privacy leakage. We have proven the effectiveness of our method by evaluating performance using several quantitative and qualitative results.

1 Introduction

In recent years, Federated Learning (FL) [26] has gained wide attention across various domains, including healthcare [12, 24, 15], autonomous driving [34], etc., since FL allow clients to locally train data and share only model parameters (not sensitive data) to the global server for aggregation. Current studies [10, 8, 36, 39] highlighted the issue of privacy leakage through shared model parameters, which offers vulnerability to adversaries in the form of different types of attacks. Several attempts have been made to solve the privacy-leakage issues and provide enhanced protection, which includes homomorphic encryption [2, 16], differential privacy [1, 22], and gradient perturbation [30]. These methods attempt to secure the privacy of sensitive data at the cost of computational overhead or sacrifice the model’s efficiency. Researchers aim to maintain utility without sacrificing the model’s accuracy and encrypt the training data [5, 14]. These approaches require sharing classifier model parameters to perform model aggregation at the server and defend against image reconstruction attacks in FL. Following these attempts, Researchers have proven the vulnerability of clients in these methods for label inference attacks and membership inference attacks, and hence not suitable to provide adequate security [29, 10].

Recently, Yutin et al. [25] provided a theoretical analysis of different attacks in FL and highlighted the concerns of privacy leakage due to the sharing of classifier parameters. To overcome the privacy leakage issue, Yutin et al. [25] proposed a Generative Adversarial Network (GAN) based privacy-preserving image distribution sharing scheme (PPIDSG) in FL, which does not require the sharing of classifier model parameters. To secure federated learning, PPIDSG employs GAN-based parameter sharing to learn the distribution of encrypted images and update client models with an aggregated model. However, learning in the encrypted domain involves a trade-off between utility and security. Also, the same global update to different clients limits the generalization of clients. Moreover, the gradients communicated from the global server to clients are also susceptible to various attacks, which can be improved to make the model more secure. Particularly, to avoid privacy leakage, researchers have proposed differential privacy (DP) [1, 22, 31] and gradient perturbation-based methods [40, 30]. The aforementioned approaches ensure resistance to privacy leakage but also sacrifice the performance of FL due to a lack of systematic perturbation in gradients.

Motivated by these observations and considering these gaps, we found scope to improve the utility and security perspectives in FL. Particularly, we focus on: 1) How to retain the model utility when focusing on security by not sharing classifier model parameters in FL communications. 2) How to improve the robustness of the FL setup against different attacks without sacrificing the utility of the model in terms of its classification accuracy. To achieve these objectives, we proposed a novel approach that provides a more generalized and robust update from the global model to clients during FL, which improves the robustness of the model against the different attacks and does not sacrifice the model’s utility while making the model secure. Our stochastic bidirectional update approach uses a dual-gradient mechanism to generate diverse models (in close neighborhoods) for each client, which improves the generalization and security perspective of FL. After obtaining diverse global models, we do not make any further alterations that help retain utility and generalization.

Our Contributions: We propose a novel approach that follows our stochastic bidirectional parameter update mechanism to generate diverse and generalizable global models for different clients. The proposed approach improves the robustness of clients in FL against different data attacks without sacrificing the model’s utility. Our approach makes systematic alterations to the global model using a dual gradient mechanism to make multiple diverse models by using global models from previous FL rounds. The diverse models generated by our method are in a close neighborhood so that clients can improve generalization as well as robustness against privacy attacks. We validated the superiority of our approach using four datasets against state-of-the-art (SOTA) methods. Our method is evaluated considering the model’s utility and robustness against attacks and surpasses the SOTA methods.

2 Related work

Several optimization approaches have been proposed to improve the utility of FL methods. The various optimization methods for FL can be categorized into global variable-based [20, 17], device grouping-based [7, 4, 19] knowledge distillation-based [27, 23, 41]. In FedProx [20], a proximal term is calculated as a squared distance of a global model with local models that helps in regularizing local loss and helps in model convergence. SCAF-FOLD [17] improves local training through global control variables to adjust optimization direction in each round of FL. The device-grouping FL approaches optimize local training by heuristic-based selection of local devices from the device groups for local training, which are grouped based on the specific similarity metric (model similarity). CluSamp [7] performs the client grouping based on sample size or model similarity. FedCluster [4] follows cyclic FL, wherein in each FL round, clients are grouped into multiple groups that perform FL.

Knowledge distillation-based methods help to improve the inference of the FL by using knowledge of the teacher network to teach the student network. FedAUX [27] makes use of an auxiliary dataset for knowledge distillation and initialize server model. FedDF [23] accelerates the FL by using the ensemble model as a teacher model and unlabelled data for knowledge distillation. The global variable-based methods are computationally demanding in terms of additional communication of global variables and proximal term computation over clients. The device grouping methods need to access all local methods to estimate similarity for grouping, which leads to vulnerability for privacy leakage. On the other hand, the knowledge distillation-based methods need additional overhead for computations and datasets for the distillation process.

To ensure security in FL, researchers have proposed various types of defense mechanisms against the attacks. The common attacks in FL include property inference attacks, membership inference attacks, and image reconstruction attacks. In the property inference attack, the adversary aims to determine the specific attributes that belong to a subset of the training data [8]. In a label inference attack, the adversary aims to determine the label attribute. In an image reconstruction attack, the adversary uses gradients sent from the client to the server model to reconstruct the original image. The authors attempted to perform minimization optimization using gradient difference for the original image and dummy image DLG [40], which was further enhanced through the extraction of ground truth labels in iDLG [38]. Gradient Inversion [35] is proposed to reconstruct complex and high-fidelity images using group consistency regularization.

To make secure FL, researchers have also utilized GAN-based methods. The Generative Adversarial Network (GAN) was proposed to generate images resembling real ones using min-max optimization and adversarial loss between the generator and discriminator network [11]. GAN can also be used for image translation, which has also been explored by researchers for defense or attack. The adversary can use GAN to generate the target distribution images in real time [13]. To perform a model extraction attack through a substitute network trained using GAN [38]. Conditional GANs were utilized in FedCG to resist the image reconstruction attack for privacy preservation [32]. Recently, GAN has been used to establish secure FL by using GAN parameters instead of sharing classifier parameters to avoid privacy leakage since GAN holds encrypted domain distribution [25]. To ensure security against attacks, researchers commonly employ DP-based methods [1, 22, 31] or follow gradient pruning, gradient perturbation-based methods [40, 30]. These methods sacrifice performance to resist privacy leakage due to non-systematic gradient alteration in the form of a defense mechanism, which also affects the overall learning of the FL setup.

Considering the aforementioned limitations, our approach improves the utility-security trade-off in FL. To achieve this, we propose a stochastic bidirectional learning approach that allows generalized learning in local clients through diverse updates/ models from the global server such that these diverse solution updates are in close neighborhoods. Using diverse but close neighborhood updates, the clients follow generalized solutions and hence improve the classification accuracy to improve the utility of FL. To ensure security without hurting utility, our approach follows systematic updates in gradients of the diverse solutions sent from the global server to different clients so that updates are optimally closer.

3 Preliminaries

3.1 Overview of Federated Learning

FL follows a cloud-server architecture, which consists of a global server and multiple local clients. In this paper, we consider the FL system to consist of homogenous local client models, i.e., using similar data distribution and having a model structure as of the global model. Assume our FL aims to map input space 𝒳𝒳\mathcal{X}caligraphic_X to output space 𝒴𝒴\mathcal{Y}caligraphic_Y using global model, 𝒮𝒮\mathcal{S}caligraphic_S and 𝒩𝒩\mathcal{N}caligraphic_N local models represented as {c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, c2subscript𝑐2c_{2}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, …, cNsubscript𝑐𝑁c_{N}italic_c start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT}. We denote the local dataset for each client i𝑖iitalic_i as 𝒟isubscript𝒟𝑖\mathcal{D}_{i}caligraphic_D start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = {xi,1subscript𝑥𝑖1x_{i,1}italic_x start_POSTSUBSCRIPT italic_i , 1 end_POSTSUBSCRIPT, xi,2subscript𝑥𝑖2x_{i,2}italic_x start_POSTSUBSCRIPT italic_i , 2 end_POSTSUBSCRIPT, …, xi,nisubscript𝑥𝑖subscript𝑛𝑖x_{i,n_{i}}italic_x start_POSTSUBSCRIPT italic_i , italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT} such that xi,jsubscript𝑥𝑖𝑗x_{i,j}italic_x start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = (𝒳,𝒴)𝒳×𝒴𝒳𝒴𝒳𝒴(\mathcal{X},\mathcal{Y})\in\mathcal{X}\times\mathcal{Y}( caligraphic_X , caligraphic_Y ) ∈ caligraphic_X × caligraphic_Y. In FL, global model weights wglbsubscript𝑤𝑔𝑙𝑏w_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT are trained collaboratively by local clients by sharing their learning (local models) with the global server. The conventional method to generate a global model by aggregating the local models is FedAvg [3]. We can formulate the primary objective of FL using Eq. 1.

min𝑤(w)=1Ni=1Nfi(w),where,fi(w)=1nij=1nil(w;xi,j)\begin{split}\underset{w}{\text{min}}~{}~{}\mathcal{L}(w)&=\frac{1}{N}\sum_{i=% 1}^{N}f_{i}(w),\\ \text{where},\quad f_{i}(w)&=\frac{1}{n_{i}}\sum_{j=1}^{n_{i}}l(w;x_{i,j})\end% {split}start_ROW start_CELL underitalic_w start_ARG min end_ARG caligraphic_L ( italic_w ) end_CELL start_CELL = divide start_ARG 1 end_ARG start_ARG italic_N end_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ) , end_CELL end_ROW start_ROW start_CELL where , italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ) end_CELL start_CELL = divide start_ARG 1 end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_l ( italic_w ; italic_x start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ) end_CELL end_ROW (1)

where, \mathcal{L}caligraphic_L denotes the loss terms for the global model, l𝑙litalic_l denotes loss for individual samples, fisubscript𝑓𝑖f_{i}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT comprises the loss of all samples for local client i𝑖iitalic_i.

3.2 Privacy Leakage Using Attacks in FL

In our work, we hold the assumption that the adversary does not corrupt the training. The client models share their parameters (weights or gradients) with the global model. When all local clients train their models for just one local epoch between two global aggregation operations, using their complete training datasets, we assume these parameters are equivalent. This scenario results in a white-box attack where model parameters and structure are accessible to the adversary.
Label Inference Attack (LIA): Assume each client Cksubscript𝐶𝑘C_{k}italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT with local dataset 𝒟k={(xi,yi)}i=1nksubscript𝒟𝑘superscriptsubscriptsubscript𝑥𝑖subscript𝑦𝑖𝑖1subscript𝑛𝑘\mathcal{D}_{k}=\{(x_{i},y_{i})\}_{i=1}^{n_{k}}caligraphic_D start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = { ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) } start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUPERSCRIPT where xisubscript𝑥𝑖x_{i}italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, yisubscript𝑦𝑖y_{i}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT denotes the i𝑖iitalic_i-th sample and its ground truth label respectively. Consider local training with batch size, bs𝑏𝑠bsitalic_b italic_s with cross-entropy loss, \mathcal{L}caligraphic_L for the classification task; we can define the gradient of \mathcal{L}caligraphic_L with respect to (wrt) w𝑤witalic_w using Eq. 2

w(𝐱,𝐲)=1bsi=1bsj=1ncw[yi(j)logyi(j)]subscript𝑤𝐱𝐲1𝑏𝑠superscriptsubscript𝑖1𝑏𝑠superscriptsubscript𝑗1subscript𝑛𝑐subscript𝑤subscript𝑦𝑖𝑗superscriptsubscript𝑦𝑖𝑗\nabla_{w}\mathcal{L}(\mathbf{x},\mathbf{y})=-\frac{1}{bs}\sum_{i=1}^{bs}\sum_% {j=1}^{n_{c}}\nabla_{w}[y_{i}(j)\log y_{i}^{\prime}(j)]∇ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT caligraphic_L ( bold_x , bold_y ) = - divide start_ARG 1 end_ARG start_ARG italic_b italic_s end_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b italic_s end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∇ start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT [ italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j ) roman_log italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_j ) ] (2)

where, ncsubscript𝑛𝑐n_{c}italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT denotes the number of class labels, yisuperscriptsubscript𝑦𝑖y_{i}^{\prime}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT denotes the predicted logit. yi(j)subscript𝑦𝑖𝑗y_{i}(j)italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j )=1 if output index j𝑗jitalic_j matches ground truth else yi(j)subscript𝑦𝑖𝑗y_{i}(j)italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j )=0. In LIA, our aim is to count images present in a batch (i=1bsyi(j)superscriptsubscript𝑖1𝑏𝑠subscript𝑦𝑖𝑗\sum_{i=1}^{bs}y_{i}(j)∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b italic_s end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j )) for each class type j𝑗jitalic_j. For each input xisubscript𝑥𝑖x_{i}italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, we can compute gradient wrt network output zisubscript𝑧𝑖z_{i}italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT at index j𝑗jitalic_j as suggested in (Yin et al. 2021) as shown in Eq. 3:

zi(j)(𝐱𝐢,𝐲𝐢)=yi(j)yi(j)subscriptsubscript𝑧𝑖𝑗subscript𝐱𝐢subscript𝐲𝐢superscriptsubscript𝑦𝑖𝑗subscript𝑦𝑖𝑗\nabla_{z_{i}(j)}\mathcal{L}(\mathbf{x_{i}},\mathbf{y_{i}})=y_{i}^{\prime}(j)-% y_{i}(j)∇ start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j ) end_POSTSUBSCRIPT caligraphic_L ( bold_x start_POSTSUBSCRIPT bold_i end_POSTSUBSCRIPT , bold_y start_POSTSUBSCRIPT bold_i end_POSTSUBSCRIPT ) = italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_j ) - italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j ) (3)

Further, we can use the uploaded gradient from the classifier model to perform LIA by multiple passes of random samples to the classifier to compute each category count j𝑗jitalic_j, which leads to privacy leakage [25]. We do not share the classifier parameters, so our method is resistant to LIA. Membership Inference Attack (MIA): In our work, we consider the enhanced MIA [25], defined as follows: Suppose attacker Cadvsubscript𝐶𝑎𝑑𝑣C_{adv}italic_C start_POSTSUBSCRIPT italic_a italic_d italic_v end_POSTSUBSCRIPT has shadow dataset 𝒟superscript𝒟\mathcal{D^{*}}caligraphic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT which contains some images with target distribution but not in the target dataset. To improve attacks, shadow models are rebuilt for victims and other users. Using model parameters from clients, Cadvsubscript𝐶𝑎𝑑𝑣C_{adv}italic_C start_POSTSUBSCRIPT italic_a italic_d italic_v end_POSTSUBSCRIPT generates a copy of victim model Mvictimsuperscript𝑀𝑣𝑖𝑐𝑡𝑖𝑚{M^{victim}}italic_M start_POSTSUPERSCRIPT italic_v italic_i italic_c italic_t italic_i italic_m end_POSTSUPERSCRIPT and other models Motherssuperscript𝑀𝑜𝑡𝑒𝑟𝑠{M^{others}}italic_M start_POSTSUPERSCRIPT italic_o italic_t italic_h italic_e italic_r italic_s end_POSTSUPERSCRIPT (aggregate if other users >>> 2). The adversary Cadvsubscript𝐶𝑎𝑑𝑣C_{adv}italic_C start_POSTSUBSCRIPT italic_a italic_d italic_v end_POSTSUBSCRIPT produces non-overlapping datasets randomly using 𝒟superscript𝒟\mathcal{D^{*}}caligraphic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT as 𝒟victimsubscriptsuperscript𝒟victim\mathcal{D}^{*}_{\text{victim}}caligraphic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT victim end_POSTSUBSCRIPT and 𝒟otherssubscriptsuperscript𝒟others\mathcal{D}^{*}_{\text{others}}caligraphic_D start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT others end_POSTSUBSCRIPT, which are fed as input toMvictimsuperscript𝑀𝑣𝑖𝑐𝑡𝑖𝑚{M^{victim}}italic_M start_POSTSUPERSCRIPT italic_v italic_i italic_c italic_t italic_i italic_m end_POSTSUPERSCRIPT, Motherssuperscript𝑀𝑜𝑡𝑒𝑟𝑠{M^{others}}italic_M start_POSTSUPERSCRIPT italic_o italic_t italic_h italic_e italic_r italic_s end_POSTSUPERSCRIPT respectively. The obtained predictions Pvictimsubscriptsuperscript𝑃𝑣𝑖𝑐𝑡𝑖𝑚{P^{*}_{victim}}italic_P start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_v italic_i italic_c italic_t italic_i italic_m end_POSTSUBSCRIPT, Potherssubscriptsuperscript𝑃𝑜𝑡𝑒𝑟𝑠{P^{*}_{others}}italic_P start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_o italic_t italic_h italic_e italic_r italic_s end_POSTSUBSCRIPT are manually considered with labels as in𝑖𝑛initalic_i italic_n (member) and out𝑜𝑢𝑡outitalic_o italic_u italic_t (non-member) respectively. Using obtained predictions and their labels, an inference model Mattacksubscript𝑀𝑎𝑡𝑡𝑎𝑐𝑘{M_{attack}}italic_M start_POSTSUBSCRIPT italic_a italic_t italic_t italic_a italic_c italic_k end_POSTSUBSCRIPT is trained by the adversary. Since the adversary has a skeptical dataset, it becomes difficult to determine whether the data comes from the victim or other users. Cadvsubscript𝐶𝑎𝑑𝑣C_{adv}italic_C start_POSTSUBSCRIPT italic_a italic_d italic_v end_POSTSUBSCRIPT fed this dataset to Mattacksubscript𝑀𝑎𝑡𝑡𝑎𝑐𝑘{M_{attack}}italic_M start_POSTSUBSCRIPT italic_a italic_t italic_t italic_a italic_c italic_k end_POSTSUBSCRIPT to perform MIA to infer data samples, and its success is determined based on correct inferences.
Image Reconstruction Attack (IR): During IR, the adversary attempts to recover the original image through the encrypted image to perform privacy leakage. To achieve this, optimization aimed to minimize the gradient difference obtained through the dummy images xdummysubscript𝑥𝑑𝑢𝑚𝑚𝑦x_{dummy}italic_x start_POSTSUBSCRIPT italic_d italic_u italic_m italic_m italic_y end_POSTSUBSCRIPT having labels ydummysubscript𝑦𝑑𝑢𝑚𝑚𝑦y_{dummy}italic_y start_POSTSUBSCRIPT italic_d italic_u italic_m italic_m italic_y end_POSTSUBSCRIPT and gradients shared by victim w𝑤\nabla w∇ italic_w. We can formally denote IR using Eq. 4.

xdummy=argmin𝑥(x,ydummy;w)ww2subscript𝑥𝑑𝑢𝑚𝑚𝑦𝑥𝑚𝑖𝑛superscriptnorm𝑥subscript𝑦𝑑𝑢𝑚𝑚𝑦𝑤𝑤𝑤2x_{dummy}=\arg\underset{x}{min}\left\|\frac{\partial\mathcal{L}\left(x,y_{% dummy};w\right)}{\partial w}-\nabla w\right\|^{2}italic_x start_POSTSUBSCRIPT italic_d italic_u italic_m italic_m italic_y end_POSTSUBSCRIPT = roman_arg underitalic_x start_ARG italic_m italic_i italic_n end_ARG ∥ divide start_ARG ∂ caligraphic_L ( italic_x , italic_y start_POSTSUBSCRIPT italic_d italic_u italic_m italic_m italic_y end_POSTSUBSCRIPT ; italic_w ) end_ARG start_ARG ∂ italic_w end_ARG - ∇ italic_w ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (4)

4 Methodology

We propose a stochastic bidirectional parameter update mechanism to improve the utility of clients as well as improve their defense against different attacks. To achieve this, our approach generates diverse and generalizable global models through systematic perturbations using a dual gradient mechanism such that the diverse global models for different clients are in close neighborhoods. Our approach improves the robustness of clients against different attacks without sacrificing model utility.

To validate the effectiveness of our method, we followed the setup similar to PPIDSG [25] and did not share the classifier (C𝐶Citalic_C) parameters and used GAN to share the parameters from generator (G𝐺Gitalic_G) parameters in FL, where G𝐺Gitalic_G learns the image distribution in the encrypted domain. We augment training data and encrypt it by utilizing the image distribution scheme proposed by PPIDSG, where we encrypt training images through several transformations like Rotation and augmentation using a pseudo-random bit, image block flipping, and pixel value exchange across channels. We learn target distribution in G𝐺Gitalic_G by adversarial training with Discriminator, D𝐷Ditalic_D. We used auto-encoder [28] to build a feature extractor F𝐹Fitalic_F and used a separate classifier network C𝐶Citalic_C to train it. The obtained classifier loss is fed to G𝐺Gitalic_G to help in learning class specific distributions to improve classification.

Our FL setup consists of K𝐾Kitalic_K clients (Cksubscript𝐶𝑘C_{k}italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT) having their local dataset 𝒟ksubscript𝒟k\mathcal{D}_{\text{k}}caligraphic_D start_POSTSUBSCRIPT k end_POSTSUBSCRIPT with N𝑁Nitalic_N samples in total. During FL𝐹𝐿FLitalic_F italic_L, clients update their model locally and share the generator parameters w𝑤witalic_w with the central/global server. The central server takes updates sent from the local clients and aggregate model parameters as shown in Eq. 5, where α𝛼\alphaitalic_α and \mathcal{L}caligraphic_L denote the learning rate and loss function, respectively.

wt+1k=1KnkN(wtαL(wt;Dk))superscript𝑤𝑡1superscriptsubscript𝑘1𝐾subscript𝑛𝑘𝑁superscript𝑤𝑡𝛼𝐿superscript𝑤𝑡subscript𝐷𝑘w^{t+1}\leftarrow\sum_{k=1}^{K}\frac{n_{k}}{N}\left(w^{t}-\alpha\nabla L(w^{t}% ;D_{k})\right)italic_w start_POSTSUPERSCRIPT italic_t + 1 end_POSTSUPERSCRIPT ← ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT divide start_ARG italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG start_ARG italic_N end_ARG ( italic_w start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - italic_α ∇ italic_L ( italic_w start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ; italic_D start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) (5)

To generate a diverse global model for each client, we proposed a Stochastic Bidirectional Parameter Updates (SBPU𝑆𝐵𝑃𝑈SBPUitalic_S italic_B italic_P italic_U) strategy, which utilizes the global models from previous FL rounds. We elaborate on our proposed approach as follows:

Refer to caption
Figure 1: Visualization of diverse global models obtained using proposed approach (SBPU𝑆𝐵𝑃𝑈SBPUitalic_S italic_B italic_P italic_U). We generate diverse models in close neighborhoods through systematic updates. It is important to note that we do not make perturbations after generating the diverse models, which helps to retain utility and generalization.

4.1 Stochastic Bidirectional Parameter Updates using Dual-Gradient Mechanism

Our novelty lies in proposing generalized updates for local clients to improve the utility and resist privacy leakage in FL. We validated the superiority of our method over the recent state-of-the-art method [25] (PPIDSG) by following a similar FL set-up (except using the proposed approach to generate diverse global solutions) and a further improvement in model utility and defense across the attacks. To achieve this, we propose a stochastic bidirectional learning mechanism that helps to generate diverse solutions at the global server to update local clients. The generated models at the server are in the neighborhood to provide generalized solutions for FL clients (refer to Fig. 1).

Our approach makes bidirectional systematic alterations in the gradients by modification in model parameters at a fine-grained level (i.e., altering each convolutional filter across the layers of the model), which improves the defense against attacks. These systematic updates provide a diverse model for each client and help them with generalized learning to improve the utility of the model (refer Fig. 1). The overview of the proposed method is provided in Fig. 2.

The overall FL round mainly consists of four steps: 1) The global model sends a diverse model to each client, as shown in Algo. 1. 2) With the received diverse model, each client undergoes local training and then uploads the model parameters (in our case, G𝐺Gitalic_G) to the global model. 3) The global model aggregates the received models from the clients as shown in Eq. 5 to obtain the updated global model. 4) Using the current global model and previous global models, we perform Stochastic Bidirectional Parameter Updates (SBPU𝑆𝐵𝑃𝑈SBPUitalic_S italic_B italic_P italic_U) to generate diverse models as shown in Algo. 2. For each client, the global model sends one diverse model to assist in its learning in the next round. Finally, we update the global models (wglbsubscript𝑤𝑔𝑙𝑏w_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT, wglbsubscriptsuperscript𝑤𝑔𝑙𝑏w^{\prime}_{glb}italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT, wglb′′subscriptsuperscript𝑤′′𝑔𝑙𝑏w^{\prime\prime}_{glb}italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT) for the next stochastic update.

Please note that, for the initial two FL rounds, we initialize wglbsubscriptsuperscript𝑤𝑔𝑙𝑏w^{\prime}_{glb}italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT and wglb′′subscriptsuperscript𝑤′′𝑔𝑙𝑏w^{\prime\prime}_{glb}italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT with wglbsubscript𝑤𝑔𝑙𝑏w_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT.To perform SBPU𝑆𝐵𝑃𝑈SBPUitalic_S italic_B italic_P italic_U, we use StochasticList𝑆𝑡𝑜𝑐𝑎𝑠𝑡𝑖𝑐𝐿𝑖𝑠𝑡StochasticListitalic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t as [-1, \dots, -1, 1, \dots, 1, -2, \dots, -2, 2, …, 2], where the frequency of each stochastic term, i.e., {-1, 1, -2, 2}, equals to f4𝑓4\left\lfloor\frac{f}{4}\right\rfloor⌊ divide start_ARG italic_f end_ARG start_ARG 4 end_ARG ⌋ where f𝑓fitalic_f denotes the number of filters present in layer i𝑖iitalic_i of global model wglbsubscript𝑤𝑔𝑙𝑏w_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT. The StochasticList𝑆𝑡𝑜𝑐𝑎𝑠𝑡𝑖𝑐𝐿𝑖𝑠𝑡StochasticListitalic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t is randomly shuffled to create diverse models by performing bidirectional parameter updates in filter j𝑗jitalic_j from layer i𝑖iitalic_i. If StochasticList[j]==±1StochasticList[j]==\pm 1italic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t [ italic_j ] = = ± 1, we perform the update under diversity rate β1subscript𝛽1\beta_{1}italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT as shown in Line 9 of Algo. 2, else we update under diversity rate β2subscript𝛽2\beta_{2}italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT as shown in Line 11 of Algo. 2, where gglb.i.jformulae-sequencesubscript𝑔𝑔𝑙𝑏𝑖𝑗g_{glb}.i.jitalic_g start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT . italic_i . italic_j, gglb.i.jformulae-sequencesubscriptsuperscript𝑔𝑔𝑙𝑏𝑖𝑗g^{\prime}_{glb}.i.jitalic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT . italic_i . italic_j denotes the gradient computed for j𝑗jitalic_j-th filter of i𝑖iitalic_i-th layer using global models from previous and previous to previous FL rounds, respectively; and wloc.i.jformulae-sequencesubscript𝑤𝑙𝑜𝑐𝑖𝑗w_{loc}.i.jitalic_w start_POSTSUBSCRIPT italic_l italic_o italic_c end_POSTSUBSCRIPT . italic_i . italic_j denotes the diverse model obtained after SBPU𝑆𝐵𝑃𝑈SBPUitalic_S italic_B italic_P italic_U for j𝑗jitalic_j-th filter of i𝑖iitalic_i-th layer.

Algorithm 1 Diverse Models Generation

Input: i) wglbsubscript𝑤𝑔𝑙𝑏w_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT, the global model, ii) wglbsubscriptsuperscript𝑤𝑔𝑙𝑏w^{\prime}_{glb}italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT, the previous global model, iii) wglb′′subscriptsuperscript𝑤′′𝑔𝑙𝑏w^{\prime\prime}_{glb}italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT, the previous to previous global model,
iv) K𝐾Kitalic_K, # clients for FL.
Output: i) wdiversesubscript𝑤𝑑𝑖𝑣𝑒𝑟𝑠𝑒w_{diverse}italic_w start_POSTSUBSCRIPT italic_d italic_i italic_v italic_e italic_r italic_s italic_e end_POSTSUBSCRIPT, the list of diverse models
Intermediate: (wglb,wglb,wglb′′subscript𝑤𝑔𝑙𝑏subscriptsuperscript𝑤𝑔𝑙𝑏subscriptsuperscript𝑤′′𝑔𝑙𝑏w_{glb},w^{\prime}_{glb},w^{\prime\prime}_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT , italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT , italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT)

1:gglbwglbwglbsubscript𝑔𝑔𝑙𝑏subscript𝑤𝑔𝑙𝑏subscriptsuperscript𝑤𝑔𝑙𝑏g_{glb}\leftarrow w_{glb}-w^{\prime}_{glb}italic_g start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT ← italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT - italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT \triangleright gradients using previous model
2:gglbwglbwglb′′subscriptsuperscript𝑔𝑔𝑙𝑏subscript𝑤𝑔𝑙𝑏subscriptsuperscript𝑤′′𝑔𝑙𝑏g^{\prime}_{glb}\leftarrow w_{glb}-w^{\prime\prime}_{glb}italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT ← italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT - italic_w start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT \triangleright gradients using previous to previous model
3:for i1,,K𝑖1𝐾i\leftarrow 1,\ldots,Kitalic_i ← 1 , … , italic_K do
4:     wdiverse.append(SBPU(wglb,gglb,gglb))formulae-sequencesubscript𝑤𝑑𝑖𝑣𝑒𝑟𝑠𝑒append𝑆𝐵𝑃𝑈subscript𝑤𝑔𝑙𝑏subscript𝑔𝑔𝑙𝑏subscriptsuperscript𝑔𝑔𝑙𝑏w_{diverse}.\text{append}(SBPU(w_{glb},g_{glb},g^{\prime}_{glb}))italic_w start_POSTSUBSCRIPT italic_d italic_i italic_v italic_e italic_r italic_s italic_e end_POSTSUBSCRIPT . append ( italic_S italic_B italic_P italic_U ( italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT , italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT ) )
5:end for
6:return wdiversesubscript𝑤𝑑𝑖𝑣𝑒𝑟𝑠𝑒w_{diverse}italic_w start_POSTSUBSCRIPT italic_d italic_i italic_v italic_e italic_r italic_s italic_e end_POSTSUBSCRIPT
Algorithm 2 Stochastic Bidirectional Parameter Updates (SBPU𝑆𝐵𝑃𝑈SBPUitalic_S italic_B italic_P italic_U)

Input: i) wglbsubscript𝑤𝑔𝑙𝑏w_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT: global model, ii) gglbsubscript𝑔𝑔𝑙𝑏g_{glb}italic_g start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT: gradients using previous run, iii) gglbsubscriptsuperscript𝑔𝑔𝑙𝑏g^{\prime}_{glb}italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT: gradients using previous to previous run, iv) β1subscript𝛽1\beta_{1}italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, β2subscript𝛽2\beta_{2}italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT: diversity rates
Output: i) wlocsubscript𝑤𝑙𝑜𝑐w_{loc}italic_w start_POSTSUBSCRIPT italic_l italic_o italic_c end_POSTSUBSCRIPT, the mutated weights
SBPU𝑆𝐵𝑃𝑈SBPUitalic_S italic_B italic_P italic_U(wglb,gglb,gglbsubscript𝑤𝑔𝑙𝑏subscript𝑔𝑔𝑙𝑏subscriptsuperscript𝑔𝑔𝑙𝑏w_{glb},g_{glb},g^{\prime}_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT , italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT)

1:wlocsubscript𝑤𝑙𝑜𝑐absentw_{loc}\leftarrowitalic_w start_POSTSUBSCRIPT italic_l italic_o italic_c end_POSTSUBSCRIPT ← copy(wglb)𝑐𝑜𝑝𝑦subscript𝑤𝑔𝑙𝑏copy(w_{glb})italic_c italic_o italic_p italic_y ( italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT )
2:L𝐿absentL\leftarrowitalic_L ← the number of layers of wglbsubscript𝑤𝑔𝑙𝑏w_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT
3:for i1,,L𝑖1𝐿i\leftarrow 1,\ldots,Litalic_i ← 1 , … , italic_L do
4:     fwglb[i].sizeformulae-sequence𝑓subscript𝑤𝑔𝑙𝑏delimited-[]𝑖sizef\leftarrow w_{glb}[i].\text{size}italic_f ← italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT [ italic_i ] . size \triangleright number of filters
5:     StochasticList[1,1,,1,1,1,,1,2,2,,2,2,2,,2]𝑆𝑡𝑜𝑐𝑎𝑠𝑡𝑖𝑐𝐿𝑖𝑠𝑡111111222222{StochasticList}\leftarrow\left[-1,-1,\ldots,-1,1,1,\ldots,1,-2,-2,\ldots,-2,2% ,2,\ldots,2\right]italic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t ← [ - 1 , - 1 , … , - 1 , 1 , 1 , … , 1 , - 2 , - 2 , … , - 2 , 2 , 2 , … , 2 ] \triangleright each type of stochastic element counts to f4𝑓4\left\lfloor\frac{f}{4}\right\rfloor⌊ divide start_ARG italic_f end_ARG start_ARG 4 end_ARG ⌋
6:     StochasticListShuffle(StochasticList)𝑆𝑡𝑜𝑐𝑎𝑠𝑡𝑖𝑐𝐿𝑖𝑠𝑡Shuffle𝑆𝑡𝑜𝑐𝑎𝑠𝑡𝑖𝑐𝐿𝑖𝑠𝑡StochasticList\leftarrow\text{Shuffle}(StochasticList)italic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t ← Shuffle ( italic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t )
7:     for j1,,f𝑗1𝑓j\leftarrow 1,\ldots,fitalic_j ← 1 , … , italic_f do
8:         if StochasticList[j]==±1StochasticList[j]==\pm 1italic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t [ italic_j ] = = ± 1 then
9:              wloc[i][j]wglb[i][j]+β1×StochasticList[j]×gglb[i][j]subscript𝑤𝑙𝑜𝑐delimited-[]𝑖delimited-[]𝑗subscript𝑤𝑔𝑙𝑏delimited-[]𝑖delimited-[]𝑗subscript𝛽1𝑆𝑡𝑜𝑐𝑎𝑠𝑡𝑖𝑐𝐿𝑖𝑠𝑡delimited-[]𝑗subscript𝑔𝑔𝑙𝑏delimited-[]𝑖delimited-[]𝑗w_{loc}[i][j]\leftarrow w_{glb}[i][j]+\beta_{1}\times{StochasticList}[j]\times g% _{glb}[i][j]italic_w start_POSTSUBSCRIPT italic_l italic_o italic_c end_POSTSUBSCRIPT [ italic_i ] [ italic_j ] ← italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT [ italic_i ] [ italic_j ] + italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t [ italic_j ] × italic_g start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT [ italic_i ] [ italic_j ]
10:         else
11:              wloc[i][j]wglb[i][j]+β2×StochasticList[j]×gglb[i][j]subscript𝑤𝑙𝑜𝑐delimited-[]𝑖delimited-[]𝑗subscript𝑤𝑔𝑙𝑏delimited-[]𝑖delimited-[]𝑗subscript𝛽2𝑆𝑡𝑜𝑐𝑎𝑠𝑡𝑖𝑐𝐿𝑖𝑠𝑡delimited-[]𝑗subscriptsuperscript𝑔𝑔𝑙𝑏delimited-[]𝑖delimited-[]𝑗w_{loc}[i][j]\leftarrow w_{glb}[i][j]+\beta_{2}\times{StochasticList}[j]\times g% ^{\prime}_{glb}[i][j]italic_w start_POSTSUBSCRIPT italic_l italic_o italic_c end_POSTSUBSCRIPT [ italic_i ] [ italic_j ] ← italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT [ italic_i ] [ italic_j ] + italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × italic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t [ italic_j ] × italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT [ italic_i ] [ italic_j ]
12:         end if
13:     end for
14:end for
15:return wlocsubscript𝑤𝑙𝑜𝑐w_{loc}italic_w start_POSTSUBSCRIPT italic_l italic_o italic_c end_POSTSUBSCRIPT
Refer to caption
Figure 2: The schematic architecture diagram of the proposed approach.

4.2 Overall Architecture

In the GAN setup, G𝐺Gitalic_G captures the distribution in encrypted space and shares its parameters to perform FL. The original image is fed to G𝐺Gitalic_G instead of noise as it improves privacy. The generator network, G𝐺Gitalic_G, consists of the encoder, ResNet blocks, and a decoder. To extract features from the original image, the encoder is used, which is fed into the ResNet block to maintain and align the image features into the target domain. Finally, the decoder helps to restore the features of the image. The discriminator network D𝐷Ditalic_D utilizes the adversarial loss (without conditional labels), advsubscriptadv\mathcal{L}_{\text{adv}}caligraphic_L start_POSTSUBSCRIPT adv end_POSTSUBSCRIPT for effective conversion into the encrypted domain. Consider original image domain (X𝑋Xitalic_X) with distribution xipdata(x)similar-tosubscript𝑥𝑖subscript𝑝data𝑥x_{i}\sim p_{\text{data}}(x)italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ italic_p start_POSTSUBSCRIPT data end_POSTSUBSCRIPT ( italic_x ) and target domain X^^𝑋\hat{X}over^ start_ARG italic_X end_ARG with distribution xi^pdata(x^)similar-to^subscript𝑥𝑖subscript𝑝data^𝑥\hat{x_{i}}\sim p_{\text{data}}(\hat{x})over^ start_ARG italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ∼ italic_p start_POSTSUBSCRIPT data end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ). For training images with batch size bs𝑏𝑠bsitalic_b italic_s, we can express the objective using Eq. 4.2 where G𝐺Gitalic_G and D𝐷Ditalic_D tires to maximize and minimize the objective, respectively.

adv=subscriptadvabsent\displaystyle\mathcal{L}_{\text{adv}}=caligraphic_L start_POSTSUBSCRIPT adv end_POSTSUBSCRIPT = 𝔼x^ipdata(x^)[logD({x^i}i=1bs)]subscript𝔼similar-tosubscript^𝑥𝑖subscript𝑝data^𝑥delimited-[]𝐷superscriptsubscriptsubscript^𝑥𝑖𝑖1subscript𝑏𝑠\displaystyle\ \mathbb{E}_{\hat{x}_{i}\sim p_{\text{data}}(\hat{x})}\left[\log D% \left(\{\hat{x}_{i}\}_{i=1}^{b_{s}}\right)\right]blackboard_E start_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ italic_p start_POSTSUBSCRIPT data end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) end_POSTSUBSCRIPT [ roman_log italic_D ( { over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ]
+𝔼xipdata(x)[log(1D(G({xi}i=1bs)))]subscript𝔼similar-tosubscript𝑥𝑖subscript𝑝data𝑥delimited-[]1𝐷𝐺superscriptsubscriptsubscript𝑥𝑖𝑖1subscript𝑏𝑠\displaystyle+\mathbb{E}_{x_{i}\sim p_{\text{data}}(x)}\left[\log\left(1-D% \left(G\left(\{x_{i}\}_{i=1}^{b_{s}}\right)\right)\right)\right]+ blackboard_E start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ italic_p start_POSTSUBSCRIPT data end_POSTSUBSCRIPT ( italic_x ) end_POSTSUBSCRIPT [ roman_log ( 1 - italic_D ( italic_G ( { italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) ) ) ] (6)

To retain semantic information, we use semantic loss using l1subscript𝑙1l_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT norm as shown in Eq. 7, where θGsubscript𝜃𝐺\theta_{G}italic_θ start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT denotes the generator parameters.

sem=i=1bsGXX^(xi;θG)x^isubscriptsemsuperscriptsubscript𝑖1𝑏𝑠normsubscript𝐺𝑋^𝑋subscript𝑥𝑖subscript𝜃𝐺subscript^𝑥𝑖\mathcal{L}_{\text{sem}}=\sum_{i=1}^{bs}\left\|G_{X\rightarrow\hat{X}}(x_{i};% \theta_{G})-\hat{x}_{i}\right\|caligraphic_L start_POSTSUBSCRIPT sem end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b italic_s end_POSTSUPERSCRIPT ∥ italic_G start_POSTSUBSCRIPT italic_X → over^ start_ARG italic_X end_ARG end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ; italic_θ start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∥ (7)
Refer to caption
Figure 3: High-level representation of different components in the overall architecture.

To improve distribution learning in G𝐺Gitalic_G towards the class-specific features, we used classification loss clssubscriptcls\mathcal{L_{\text{cls}}}caligraphic_L start_POSTSUBSCRIPT cls end_POSTSUBSCRIPT into G𝐺Gitalic_G. With training epochs, G𝐺Gitalic_G learns to align generated images into the encrypted domain, and then generator parameters can be shared to the global server by different clients to facilitate FL. To improve the feature learning, we use feature extractor F𝐹Fitalic_F, which consists of Encoder (Enc𝐸𝑛𝑐Encitalic_E italic_n italic_c) and decoder Dec𝐷𝑒𝑐Decitalic_D italic_e italic_c networks. The features extracted by Enc𝐸𝑛𝑐Encitalic_E italic_n italic_c are converted into images using Dec𝐷𝑒𝑐Decitalic_D italic_e italic_c. To extract efficient features, F𝐹Fitalic_F tries to minimize the feature distance between the image generated by G𝐺Gitalic_G and Dec𝐷𝑒𝑐Decitalic_D italic_e italic_c as shown in Eq. 8 where xi~~subscript𝑥𝑖\tilde{x_{i}}over~ start_ARG italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG denotes the generated image. The classifier C𝐶Citalic_C consists of a simple convolutional network and takes features from F𝐹Fitalic_F to minimize the classification error (clssubscriptcls\mathcal{L_{\text{cls}}}caligraphic_L start_POSTSUBSCRIPT cls end_POSTSUBSCRIPT) for ncsubscript𝑛𝑐n_{c}italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT classes as described in Eq. 9. We compute total loss totalsubscripttotal\mathcal{L}_{\text{total}}caligraphic_L start_POSTSUBSCRIPT total end_POSTSUBSCRIPT as shown in Eq. 10 where λsemsubscript𝜆𝑠𝑒𝑚\lambda_{sem}italic_λ start_POSTSUBSCRIPT italic_s italic_e italic_m end_POSTSUBSCRIPT and λclssubscript𝜆𝑐𝑙𝑠\lambda_{cls}italic_λ start_POSTSUBSCRIPT italic_c italic_l italic_s end_POSTSUBSCRIPT are hyperparameters to control the influence of semsubscriptsem\mathcal{L}_{\text{sem}}caligraphic_L start_POSTSUBSCRIPT sem end_POSTSUBSCRIPT and clssubscriptcls\mathcal{L}_{\text{cls}}caligraphic_L start_POSTSUBSCRIPT cls end_POSTSUBSCRIPT respectively.

fea=i=1bsDec(Enc(x~i))x~i2subscriptfeasuperscriptsubscript𝑖1𝑏𝑠superscriptnormDecEncsubscript~𝑥𝑖subscript~𝑥𝑖2\mathcal{L}_{\text{fea}}=\sum_{i=1}^{bs}\left\|\text{Dec}(\text{Enc}(\tilde{x}% _{i}))-\tilde{x}_{i}\right\|^{2}caligraphic_L start_POSTSUBSCRIPT fea end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b italic_s end_POSTSUPERSCRIPT ∥ Dec ( Enc ( over~ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) - over~ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (8)
cls=i=1bsj=1ncyi(j)logyi(j)subscriptclssuperscriptsubscript𝑖1𝑏𝑠superscriptsubscript𝑗1subscript𝑛𝑐subscript𝑦𝑖𝑗subscriptsuperscript𝑦𝑖𝑗\mathcal{L}_{\text{cls}}=-\sum_{i=1}^{bs}\sum_{j=1}^{n_{c}}y_{i}(j)\log y^{% \prime}_{i}(j)caligraphic_L start_POSTSUBSCRIPT cls end_POSTSUBSCRIPT = - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b italic_s end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j ) roman_log italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_j ) (9)
total=adv+λsemsem+λclsclssubscripttotalsubscriptadvsubscript𝜆𝑠𝑒𝑚subscriptsemsubscript𝜆𝑐𝑙𝑠subscriptcls\mathcal{L}_{\text{total}}=\mathcal{L}_{\text{adv}}+\lambda_{sem}~{}\mathcal{L% }_{\text{sem}}+\lambda_{cls}~{}\mathcal{L}_{\text{cls}}caligraphic_L start_POSTSUBSCRIPT total end_POSTSUBSCRIPT = caligraphic_L start_POSTSUBSCRIPT adv end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_s italic_e italic_m end_POSTSUBSCRIPT caligraphic_L start_POSTSUBSCRIPT sem end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_c italic_l italic_s end_POSTSUBSCRIPT caligraphic_L start_POSTSUBSCRIPT cls end_POSTSUBSCRIPT (10)

4.3 Convergence Analysis

Our global model is aggregated from all the trained local models similar to FedAvg. Let t𝑡titalic_t denote the tthsuperscript𝑡𝑡t^{th}italic_t start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT SGD iteration on the local client, and each local client undergoes E𝐸Eitalic_E SGD training iterations, wglbsubscript𝑤𝑔𝑙𝑏w_{glb}italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT denotes the aggregated model. For i=1,2,,K𝑖12𝐾i=1,2,\dots,Kitalic_i = 1 , 2 , … , italic_K, our method satisfies the following property:

α2wglbnwglbn12wi,nlocwglbn24α2wglbnwglbn12superscript𝛼2superscriptnormsuperscriptsubscript𝑤𝑔𝑙𝑏𝑛superscriptsubscript𝑤𝑔𝑙𝑏𝑛12superscriptnormsuperscriptsubscript𝑤𝑖𝑛𝑙𝑜𝑐superscriptsubscript𝑤𝑔𝑙𝑏𝑛24superscript𝛼2superscriptnormsuperscriptsubscript𝑤𝑔𝑙𝑏𝑛superscriptsubscript𝑤𝑔𝑙𝑏𝑛12\alpha^{2}\|{w}_{{glb}}^{n}-{w}_{{glb}}^{n-1}\|^{2}\leq\|{w}_{{i,n}}^{loc}-{w}% _{{glb}}^{n}\|^{2}\leq 4\alpha^{2}\|{w}_{{glb}}^{n}-{w}_{{glb}}^{n-1}\|^{2}italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≤ ∥ italic_w start_POSTSUBSCRIPT italic_i , italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l italic_o italic_c end_POSTSUPERSCRIPT - italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≤ 4 italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∥ italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - italic_w start_POSTSUBSCRIPT italic_g italic_l italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (11)

where 𝐰i,nlocsuperscriptsubscript𝐰𝑖𝑛𝑙𝑜𝑐\mathbf{w}_{i,n}^{{loc}}bold_w start_POSTSUBSCRIPT italic_i , italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l italic_o italic_c end_POSTSUPERSCRIPT denotes the ithsuperscript𝑖𝑡i^{th}italic_i start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT mutated weights in the nthsuperscript𝑛𝑡n^{th}italic_n start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT round. Inspired by [21], the following assumptions on the loss functions of local clients (i.e., f1,f2,,fKsubscript𝑓1subscript𝑓2subscript𝑓𝐾f_{1},f_{2},\dots,f_{K}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_f start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT) can be considered.
Assumption 1: For i{1,2,,K}𝑖12𝐾i\in\{1,2,\dots,K\}italic_i ∈ { 1 , 2 , … , italic_K }, fisubscript𝑓𝑖f_{i}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is L𝐿Litalic_L-smooth, where fi(v)fi(w)+(vw)Tfi(w)+L2vw22subscript𝑓𝑖𝑣subscript𝑓𝑖𝑤superscript𝑣𝑤𝑇subscript𝑓𝑖𝑤𝐿2superscriptsubscriptnorm𝑣𝑤22f_{i}(v)\leq f_{i}(w)+(v-w)^{T}\nabla f_{i}(w)+\frac{L}{2}\|v-w\|_{2}^{2}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_v ) ≤ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ) + ( italic_v - italic_w ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∇ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ) + divide start_ARG italic_L end_ARG start_ARG 2 end_ARG ∥ italic_v - italic_w ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.
Assumption 2: For i{1,2,,K}𝑖12𝐾i\in\{1,2,\dots,K\}italic_i ∈ { 1 , 2 , … , italic_K }, fisubscript𝑓𝑖f_{i}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is μ𝜇\muitalic_μ-strongly convex, where fi(v)fi(w)+(vw)Tfi(w)+μ2vw22subscript𝑓𝑖𝑣subscript𝑓𝑖𝑤superscript𝑣𝑤𝑇subscript𝑓𝑖𝑤𝜇2superscriptsubscriptnorm𝑣𝑤22f_{i}(v)\geq f_{i}(w)+(v-w)^{T}\nabla f_{i}(w)+\frac{\mu}{2}\|v-w\|_{2}^{2}italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_v ) ≥ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ) + ( italic_v - italic_w ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∇ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ) + divide start_ARG italic_μ end_ARG start_ARG 2 end_ARG ∥ italic_v - italic_w ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.
Assumption 3: The variance of stochastic gradients is bounded by σi2superscriptsubscript𝜎𝑖2\sigma_{i}^{2}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, i.e., 𝔼fi(w;ξ)fi(w)2σi2𝔼superscriptnormsubscript𝑓𝑖𝑤𝜉subscript𝑓𝑖𝑤2superscriptsubscript𝜎𝑖2\mathbb{E}\|\nabla f_{i}(w;\xi)-\nabla f_{i}(w)\|^{2}\leq\sigma_{i}^{2}blackboard_E ∥ ∇ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ; italic_ξ ) - ∇ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ) ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≤ italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, where ξ𝜉\xiitalic_ξ is a data batch of the ithsuperscript𝑖𝑡i^{th}italic_i start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT client in the tthsuperscript𝑡𝑡t^{th}italic_t start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT FL round.
Assumption 4: The expected squared norm of stochastic gradients is bounded by G2superscript𝐺2G^{2}italic_G start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, i.e., 𝔼fi(w;ξ)2G2𝔼superscriptnormsubscript𝑓𝑖𝑤𝜉2superscript𝐺2\mathbb{E}\|\nabla f_{i}(w;\xi)\|^{2}\leq G^{2}blackboard_E ∥ ∇ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_w ; italic_ξ ) ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≤ italic_G start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.
Based on these assumptions, our convergence can be obtained as:
Theorem 1. (Convergence of SBPU) Let Assumption 1-4 hold. If there are n𝑛nitalic_n FL rounds during the FL training process. Let T=n×E𝑇𝑛𝐸T=n\times Eitalic_T = italic_n × italic_E denotes total number of SGD iterations and ηt=2μ(t+γ)subscript𝜂𝑡2𝜇𝑡𝛾\eta_{t}=\frac{2}{\mu(t+\gamma)}italic_η start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = divide start_ARG 2 end_ARG start_ARG italic_μ ( italic_t + italic_γ ) end_ARG is learning rate. Let κ=Lμ𝜅𝐿𝜇\kappa=\frac{L}{\mu}italic_κ = divide start_ARG italic_L end_ARG start_ARG italic_μ end_ARG, γ=max(8κ,E)𝛾8𝜅𝐸\gamma=\max(8\kappa,E)italic_γ = roman_max ( 8 italic_κ , italic_E ). We have

𝔼[f(wT)f]4κγ+T(B2μ+Lw1w2)𝔼delimited-[]𝑓subscript𝑤𝑇superscript𝑓4𝜅𝛾𝑇𝐵2𝜇𝐿superscriptnormsubscript𝑤1superscript𝑤2\mathbb{E}[f({w}_{T})-f^{*}]\leq\frac{4\kappa}{\gamma+T}(\frac{B}{2\mu}+L\|{w}% _{1}-{w}^{*}\|^{2})blackboard_E [ italic_f ( italic_w start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) - italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ] ≤ divide start_ARG 4 italic_κ end_ARG start_ARG italic_γ + italic_T end_ARG ( divide start_ARG italic_B end_ARG start_ARG 2 italic_μ end_ARG + italic_L ∥ italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_w start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (12)

where B=1K2i=1Kσi2+32α214α2(E1)2G2𝐵1superscript𝐾2superscriptsubscript𝑖1𝐾superscriptsubscript𝜎𝑖232superscript𝛼214superscript𝛼2superscript𝐸12superscript𝐺2B=\frac{1}{K^{2}}\sum_{i=1}^{K}\sigma_{i}^{2}+\frac{32\alpha^{2}}{1-4\alpha^{2% }}(E-1)^{2}G^{2}italic_B = divide start_ARG 1 end_ARG start_ARG italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 32 italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 1 - 4 italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_E - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_G start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Theorem 1 computes loss for SBPU between fsuperscript𝑓f^{*}italic_f start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT (optimal weight) and f(wT)𝑓subscript𝑤𝑇f({w}_{T})italic_f ( italic_w start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) in the Tthsuperscript𝑇𝑡T^{th}italic_T start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT interaction and indicates a convergence rate similar to FedAvg (detailed in [21]). We have provided full proof of convergence analysis of SBPU in the supplementary material.

5 Experimental Setup and Results Obtained

5.1 Dataset Used and Implementation Setup

We implemented the proposed approach using the PyTorch programming framework using NVIDIA RTX A5000 GPU with 24GB GPU memory. We evaluated our model on four datasets MNIST [6], FMNIST [33], CIFAR10 [18], and SVHN [37] as per official train-test split. To perform different attacks, we randomly select any one client as a victim.

5.2 Implementation Details

For a fair comparison with recent benchmark PPIDSG [25], we followed a similar setting, i.e., homogeneous distribution across clients in the FL system [26] having 10 clients with equal training data access. We followed a batch size of 64 for GAN. We used block sizes (Bxsubscript𝐵𝑥B_{x}italic_B start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT and Bysubscript𝐵𝑦B_{y}italic_B start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT) for image encryption as 4. The generator and discriminator network have been trained using Adam optimizer with a learning rate (lr) of 0.0002. For the feature extractor (F𝐹Fitalic_F) and classifier (C𝐶Citalic_C), we used an SGD optimizer with an lr of 0.01 and weight decay of 0.001. We keep the initial lr constant for the first 20 global iterations and then follow linear decrement until it converges to 0. In Eq. 10, we used λsemsubscript𝜆𝑠𝑒𝑚\lambda_{sem}italic_λ start_POSTSUBSCRIPT italic_s italic_e italic_m end_POSTSUBSCRIPT=1 and λclssubscript𝜆𝑐𝑙𝑠\lambda_{cls}italic_λ start_POSTSUBSCRIPT italic_c italic_l italic_s end_POSTSUBSCRIPT=2 and train model for 100 rounds. We used β𝛽\betaitalic_β = 0.025, 0.25, 0.15, and 1.1 in our learning rule for MNIST, FMIST, CIFAR10, and SVHN datasets, respectively. We defined β1subscript𝛽1\beta_{1}italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and β2subscript𝛽2\beta_{2}italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT as β𝛽\betaitalic_β and β2superscript𝛽2\beta^{2}italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, respectively. For further details, please refer to the supplementary material.

5.3 Defense Baselines

To evaluate the robustness of our model against different attacks, we compared it against several defense mechanisms, i.e., 1) ATS [9] (to find optimal image transformation through automatic transformation search) 2) EtC [5] (encrypt image using block-based image transformation) 3) DP [31] (use clipped gradient with gaussian noise during model training) 4) GC [40] follows gradient pruning to avoid privacy leakage 5) FedCG [32] use conditional GANs for privacy preservation in FL 6) PPIDSG [25] (share GAN parameters during FL rather than classifier to ensure privacy preservation). For differential privacy (DP), we kept the privacy budget as ϵ/Titalic-ϵ𝑇\epsilon/Titalic_ϵ / italic_T for T𝑇Titalic_T global training epochs with clipping hyperparameter C𝐶Citalic_C and denoted as DP <<<ϵ,Citalic-ϵ𝐶\epsilon,Citalic_ϵ , italic_C>>>.

5.4 Utility and Robustness Against Attacks

To validate the utility of the model, we select a random user to evaluate classification performance since our approach doesn’t have a global classification model. We provide the highest classification accuracy obtained by our model and compare it with different techniques in Table 1. Our method surpassed the state-of-the-art (SOTA) methods and obtained the highest classification accuracy. For CIFAR10, we observed significant improvement in classification accuracy. It is important to note that ATS and EtC defense policies utilize ResNet-18 as a classifier, which mainly determines the model utility and affects the classification accuracy. Our model uses a simple classifier network and is able to improve model utility mainly due to diverse and generalized updates to clients. To ensure effectiveness against attacks, our approach does not share the classifier parameter. Since we do not share the classifier model, our model becomes robust against Label Inference Attack (LIA). We have shown the robustness of other defense methods against LIA using different activation functions and architecture in the supplementary material. We considered enhanced Membership Inference Attack (MIA) as proposed in [25] for evaluation. We compared our defense accuracy against MIA with other defense mechanisms in Table 2.

Due to page limit constraints, we provided additional results, such as model utility and its robustness against MIA under Part𝑃𝑎𝑟𝑡Partitalic_P italic_a italic_r italic_t and All𝐴𝑙𝑙Allitalic_A italic_l italic_l settings for the remaining datasets in the supplementary material. For Reconstruction Attack (RA), we do not share the classifier model parameters with the global model, so the adversary fails to perform RA on our approach and attempts to reconstruct the image using generator parameters. In Fig. 4, we provide the quantitative and qualitative comparison of different mechanisms with the proposed approach against RA.

Refer to caption
Figure 4: Comparative analysis under reconstruction attack. Here, a small PSNR value denotes privacy preservation, i.e., the robustness of the model against IR attack. Through histogram plots, we can see that the generated image for a given CIFAR10 sample is encrypted and does not reveal visual information (either visually or through pixel distribution), which affirms the effectiveness of our method.
Refer to caption
Figure 5: Comparison with PPIDSG using CIFAR10 and FMNIST.
Method CIFAR10 \uparrow SVHN \uparrow
ATS 59.67 85.22
EtC 53.34 78.7
DP1 49.29 82.7
DP2 44.43 80.28
GC1 54.07 84.36
GC2 50.91 79.96
FedCG 53.2 79.71
PPIDSG 70.56 91.53
Ours 75.06 92.36
Table 1: Comparison of classification accuracy (%) obtained for different policies on various datasets. Here, DP1: DP<<<5,10>>>, DP2: DP<<<20,5>>>, GC1: GC (10%), GC2: GC (40%).
Method CIFAR10 SVHN
Part \downarrow All \downarrow Part \downarrow All \downarrow
ATS 84.3 73.51 54.78 52.41
EtC 55.84 46.83 50.04 63.89
DP1 69.6 68.74 56.37 63.55
DP2 70.28 65.95 59.37 55.76
DP3 87.17 75.47 62.21 55.19
DP4 73.71 56.44 59.31 57.53
DP5 74.29 66.64 58.66 58.66
GC1 75.56 72.43 60.74 58.31
GC2 67.41 61.18 56.37 56.01
GC3 83.71 84.16 58.13 54.24
FedCG 49.84 70.03 51.18 53.72
PPIDSG 54.39 52.54 52.35 47.21
Ours 40.31 36.11 49.44 39.52
Table 2: The MIA accuracy (%) obtained for different defense mechanisms on CIFAR10 and SVHN dataset under Part𝑃𝑎𝑟𝑡Partitalic_P italic_a italic_r italic_t and All𝐴𝑙𝑙Allitalic_A italic_l italic_l settings. Here, lower accuracy shows the robustness of the model in resisting the privacy leakage against the MIA. Here, DP1, DP2, DP3, DP4, DP5, GC1, GC2, and GC3 denote DP<<<5,10>>>, DP<<<10,10>>>, DP<<<20,10>>>, DP<<<20,5>>>, DP<<<20,20>>>, GC(10%), GC(20%), and GC(40%).
DatatSet β𝛽\betaitalic_β SingleGrad DualGrad TripleGrad
CIFAR10 0.15 0.17(0.62) 0.17(0.54) 0.19(0.59)
0.25 0.15(0.66) 0.15(0.56) 0.20(0.60)
0.5 0.16(0.71) 0.16(0.59) 0.10(0.67)
1.5 0.16(0.67) 0.15(0.67) 0.24(0.78)
Table 3: Ablation study to decide stochastic bidirectional update mechanism under different global models consideration. The values present outside and inside the brackets denote the F1-score obtained by member and non-member, respectively.

.

Dataset Train (seconds) Test (×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT seconds)
PPIDSG Proposed PPIDSG Proposed
MNIST 111.76 112.90 2.592.592.592.59 2.622.622.622.62
CIFAR10 123.52 125.26 2.582.582.582.58 2.652.652.652.65
SVHN 186.73 187.99 2.562.562.562.56 2.642.642.642.64
FMNIST 111.30 111.79 2.542.542.542.54 2.602.602.602.60
Table 4: Comparison of training time (per epoch) and testing time (per image) for PPIDSG and the proposed method (SBPU) across different datasets.

5.5 Ablation Study

To decide the proposed stochastic bidirectional parameter update strategy, we performed ablation to analyze the effect of varying the number of global models (one, two, three, i.e., SingleGrad, DualGrad, and TripleGrad) to consider from previous FL rounds. SingleGrad, DualGrad, and TripleGrad consider stochastic terms for StochasticList𝑆𝑡𝑜𝑐𝑎𝑠𝑡𝑖𝑐𝐿𝑖𝑠𝑡StochasticListitalic_S italic_t italic_o italic_c italic_h italic_a italic_s italic_t italic_i italic_c italic_L italic_i italic_s italic_t as {±plus-or-minus\pm± 1} with diversity rate: β𝛽\betaitalic_β; {±plus-or-minus\pm± 1, ±plus-or-minus\pm± 2} with diversity rate: β𝛽\betaitalic_β, β2superscript𝛽2\beta^{2}italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT; and {±plus-or-minus\pm± 1, ±plus-or-minus\pm± 2, ±plus-or-minus\pm± 3} with diversity rate: β𝛽\betaitalic_β, β2,β3superscript𝛽2superscript𝛽3\beta^{2},\beta^{3}italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, respectively. We provided these ablations in Table 3. We performed ablation to analyze the effect of i) block size for image encryption, ii) the number of clients, and iii) the Effect of varying diversity rates, iv) compared the defense accuracy of our approach with SOTA settings: original image and no update; and provided results in the supplementary material. While comparing our method over PPIDSG using different numbers of clients, we found our method better, confirming its reliability and practical utility. We have shown the effect of increasing clients for both methods using CIFAR10 and FMNIST datasets in Fig. 5.

Comparison of train and test time: Our proposed method (SBPU) takes almost the same time as PPIDSG during the training and testing phase and offers significant performance improvement. We provide a comparative analysis of the time taken by both methods on different datasets in Table 4, which supports its practical utility.

6 Conclusion and Future Work

Our work makes a significant contribution to generate diverse global models for clients to improve the generalization and robustness against different privacy attacks. Our method follows the stochastic bidirectional update mechanism, which offers systematic perturbations to the global model in the parameter space of the model to generate diverse updates for clients. We validated the significance and utility of the proposed method through extensive experimentation on four datasets and surpassed the available SOTA methods. While improving privacy leakage issues during attacks, our method does not sacrifice the performance and improves the utility-security trade-off in FL. Our method offers an opportunity for future researchers to optimize existing marginal computation overhead in SBPU and explore more sophisticated bidirectional update methods. In the future, we can validate SBPU robustness across diverse data types in security-critical areas like healthcare, social media, and surveillance.

References

  • Abadi et al. [2016] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages 308–318, 2016.
  • Aono et al. [2017] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-preserving deep learning via additively homomorphic encryption. IEEE transactions on information forensics and security, 13(5):1333–1345, 2017.
  • Bonawitz et al. [2017] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 1175–1191, 2017.
  • Chen et al. [2020] Cheng Chen, Ziyi Chen, Yi Zhou, and Bhavya Kailkhura. Fedcluster: Boosting the convergence of federated learning via cluster-cycling. In 2020 IEEE International Conference on Big Data (Big Data), pages 5017–5026. IEEE, 2020.
  • Chuman et al. [2018] Tatsuya Chuman, Warit Sirichotedumrong, and Hitoshi Kiya. Encryption-then-compression systems using grayscale-based image encryption for jpeg images. IEEE Transactions on Information Forensics and security, 14(6):1515–1525, 2018.
  • Deng [2012] Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.
  • Fraboni et al. [2021] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-variance and improved representativity for clients selection in federated learning. In International Conference on Machine Learning, pages 3407–3416. PMLR, 2021.
  • Fu et al. [2022] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X Liu, and Ting Wang. Label inference attacks against vertical federated learning. In 31st USENIX security symposium (USENIX Security 22), pages 1397–1414, 2022.
  • Gao et al. [2021] Wei Gao, Shangwei Guo, Tianwei Zhang, Han Qiu, Yonggang Wen, and Yang Liu. Privacy-preserving collaborative learning with automatic transformation search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 114–123, 2021.
  • Geng et al. [2021] Jiahui Geng, Yongli Mou, Feifei Li, Qing Li, Oya Beyan, Stefan Decker, and Chunming Rong. Towards general deep leakage in federated learning. arXiv preprint arXiv:2110.09074, 2021.
  • Goodfellow et al. [2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.
  • Guo et al. [2021] Pengfei Guo, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, and Vishal M Patel. Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2423–2432, 2021.
  • Hitaj et al. [2017] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: information leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pages 603–618, 2017.
  • Huang et al. [2020] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-hiding schemes for private distributed learning. In International conference on machine learning, pages 4507–4518. PMLR, 2020.
  • Jiang et al. [2022] Meirui Jiang, Zirui Wang, and Qi Dou. Harmofl: Harmonizing local and global drifts in federated learning on heterogeneous medical images. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 1087–1095, 2022.
  • Jin et al. [2023] Weizhao Jin, Yuhang Yao, Shanshan Han, Carlee Joe-Wong, Srivatsan Ravi, Salman Avestimehr, and Chaoyang He. Fedml-he: An efficient homomorphic-encryption-based privacy-preserving federated learning system. arXiv preprint arXiv:2303.10837, 2023.
  • Karimireddy et al. [2020] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International conference on machine learning, pages 5132–5143. PMLR, 2020.
  • Krizhevsky et al. [2009] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
  • Li et al. [2021] Anran Li, Lan Zhang, Junhao Wang, Feng Han, and Xiang-Yang Li. Privacy-preserving efficient federated-learning model debugging. IEEE Transactions on Parallel and Distributed Systems, 33(10):2291–2303, 2021.
  • Li et al. [2020] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.
  • Li et al. [2019] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.
  • Liao et al. [2023] Xinting Liao, Weiming Liu, Xiaolin Zheng, Binhui Yao, and Chaochao Chen. Ppgencdr: A stable and robust framework for privacy-preserving cross-domain recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 4453–4461, 2023.
  • Lin et al. [2020] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363, 2020.
  • Liu et al. [2021] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1013–1023, 2021.
  • Ma et al. [2024] Yuting Ma, Yuanzhi Yao, and Xiaohua Xu. Ppidsg: A privacy-preserving image distribution sharing scheme with gan in federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 14272–14280, 2024.
  • McMahan et al. [2017] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.
  • Sattler et al. [2021] Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. Fedaux: Leveraging unlabeled auxiliary data in federated learning. IEEE Transactions on Neural Networks and Learning Systems, 34(9):5531–5543, 2021.
  • Sellami and Tabbone [2022] Akrem Sellami and Salvatore Tabbone. Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recognition, 121:108224, 2022.
  • Shokri et al. [2017] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pages 3–18. IEEE, 2017.
  • Sun et al. [2021] Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Provable defense against privacy leakage in federated learning from representation perspective. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9311–9319, 2021.
  • Wei et al. [2020] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance analysis. IEEE transactions on information forensics and security, 15:3454–3469, 2020.
  • Wu et al. [2021] Yuezhou Wu, Yan Kang, Jiahuan Luo, Yuanqin He, and Qiang Yang. Fedcg: Leverage conditional gan for protecting privacy and maintaining competitive performance in federated learning. arXiv preprint arXiv:2111.08211, 2021.
  • Xiao et al. [2017] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
  • Xie et al. [2022] Kan Xie, Zhe Zhang, Bo Li, Jiawen Kang, Dusit Niyato, Shengli Xie, and Yi Wu. Efficient federated learning with spike neural networks for traffic sign recognition. IEEE Transactions on Vehicular Technology, 71(9):9980–9992, 2022.
  • Yin et al. [2021] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16337–16346, 2021.
  • Yu et al. [2023] Yang Yu, Qi Liu, Likang Wu, Runlong Yu, Sanshi Lei Yu, and Zaixi Zhang. Untargeted attack against federated recommendation systems via poisonous item embeddings and the defense. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 4854–4863, 2023.
  • Yuval [2011] Netzer Yuval. Reading digits in natural images with unsupervised feature learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
  • Zhao et al. [2020] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients. arXiv preprint arXiv:2001.02610, 2020.
  • Zhu et al. [2023] Junyi Zhu, Ruicong Yao, and Matthew B Blaschko. Surrogate model extension (sme): A fast and accurate weight update attack on federated learning. arXiv preprint arXiv:2306.00127, 2023.
  • Zhu et al. [2019] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information processing systems, 32, 2019.
  • Zhu et al. [2021] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated learning. In International conference on machine learning, pages 12878–12889. PMLR, 2021.