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Abstract

We provide a sound and consistent founda-
tion for the use of nonrandom exploration
data in “contextual bandit” or “partially la-
beled” settings where only the value of a cho-
sen action is learned.

The primary challenge in a variety of settings
is that the exploration policy, in which “of-
fline” data is logged, is not explicitly known.
Prior solutions here require either control
of the actions during the learning process,
recorded random exploration, or actions cho-
sen obliviously in a repeated manner. The
techniques reported here lift these restric-
tions, allowing the learning of a policy for
choosing actions given features from histori-
cal data where no randomization occurred or
was logged.

We empirically verify our solution on a rea-
sonably sized set of real-world data obtained
from an online advertising company.

1. The Problem

Consider the advertisement display problem, where a
search engine company chooses an ad to display which
is intended to interest the user. Revenue is typically
provided to the search engine from the advertiser only
when the user clicks on the displayed ad. This problem
is of intrinsic economic interest, resulting in a substan-
tial fraction of income for several well known compa-
nies such as Google, Yahoo!, and Facebook. Further-

more, existing trends imply this problem is of growing
importance.

Before discussing the approach we propose, it’s impor-
tant to formalize and generalize the problem, and then
consider why more conventional approaches can fail.

The warm start problem for contextual

exploration

Let X be an arbitrary input space, and A = {1, · · · , k}
be a set of actions. An instance of the contextual bandit
problem is specified by a distribution D over tuples
(x,~r) where x ∈ X is an input and ~r ∈ [0, 1]k is a
vector of rewards (Langford & Zhang, 2008). Events
occur on a round by round basis where on each round
t:

1. The world draws (x,~r) ∼ D and announces x.

2. The algorithm chooses an action a ∈ A, possibly
as a function of x and historical information.

3. The world announces the reward ra of action a.

It is critical to understand that this is not a standard
supervised learning problem, because the reward of
other actions a′ 6= a is not revealed.

The standard goal in this setting is to maximize the
sum of rewards ra over the rounds of interaction. In
order to do this well, it is essential to use previously
recorded events to form a good policy on the first
round of interaction. This is known as the “warm
start” problem, and is the subject of this paper. For-
mally, given a dataset of the form S = (x, a, ra)

∗ gen-
erated by the interaction of an uncontrolled logging
policy, we want to construct a policy h maximizing
(or approximately maximizing)

V h := E(x,~r)∼D[rh(x)].

http://arxiv.org/abs/1003.0120v2
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Approaches that fail

There are several approaches that may appear to solve
this problem, but turn out to be inadequate:

1. Supervised learning. We could learn a regres-
sor s : X × A → [0, 1] which is trained to pre-
dict the reward, on observed events conditioned
on the action a and other information x. From
this regressor, a policy is derived according to
h(x) = argmaxa∈A s(x, a). A flaw of this ap-
proach is that the argmax may extend over a set
of choices not included in the training data, and
hence may not generalize at all (or only poorly).
This can be verified by considering some extreme
cases. Suppose that there are two actions a and
b with action a occurring 106 times and action b
occuring 102 times. Since action b occurs only a
10−4 fraction of the time, a learning algorithm
forced to trade off between predicting the ex-
pected value of ra and rb overwhelmingly prefers
to estimate ra well at the expense of accurate es-
timation for rb. And yet, in application, action
b may be chosen by the argmax. This problem
is only worse when action b occurs zero times, as
might commonly occur in exploration situations.

2. Bandit approaches. In the standard setting these
approaches suffer from the curse of dimensional-
ity, because they must be applied conditioned on
X . In particular, applying them requires data lin-
ear in X × A, which is extraordinarily wasteful.
In essence, this is a failure to take advantage of
generalization.

3. Contextual Bandits. Existing approaches to con-
textual bandits such as EXP4 (Auer et al., 2002)
or Epoch Greedy (Langford & Zhang, 2008), re-
quire either interaction to gather data or require
knowledge of the probability the logging policy
chose the action a. In our case the probability is
unknown, and it may in fact always be 1.

4. Exploration Scavenging. It is possible to recover
exploration information from action visitation fre-
quency when a logging policy chooses actions in-
dependent of the input x (but possibly dependent
on history) (Langford et al., 2008). This doesn’t
fit our setting, where the logging policy is surely
dependent on the query.

Our Approach

Our approach naturally breaks down into three steps.

1. For each event (x, a, ra), estimate the probability

π̂(a|x) that the logging policy chooses action a
using regression.

2. For each event, create a synthetic con-
trolled contextual bandit event according to
(x, a, ra, 1/max{π̂(a|x), τ}) where τ > 0 is some
parameter. The fourth element in this tuple,
1/max{π̂(a|x), τ}, is an importance weight that
specifies how important the current event is
for training. The parameter τ may appear
mysterious at first, but is critical for numeric
stability.

3. Apply an offline contextual bandit algorithm to
the set of synthetic contextual bandit events. In
our experimental results a variant of the argmax
regressor is used with two critical modifications:

(a) We limit the scope of the argmax to those
actions with positive probability.

(b) We importance weight events so that the
training process emphasizes good estimation
for each action equally.

It should be emphasized that the theoretical anal-
ysis in this paper applies to any algorithm for
learning on contextual bandit events—we chose
this one because it is a simple modification on ex-
isting (but fundamentally broken) approaches.

Three critical questions arise when considering this ap-
proach.

1. What does π̂(a|x) mean, given that the logging
policy may be deterministically choosing an ac-
tion (ad) a given features x? The essential ob-
servation is that a policy which deterministically
chooses action a on day 1 and then deterministi-
cally chooses action b on day 2 can be treated as
randomizing between actions a and b with proba-
bility 0.5 when the number of events is the same
each day, and the events are IID. Thus π̂(a|x) is
an estimate of the expected frequency with which
action a would be displayed given features x over
the timespan of the logged events. In section 3 we
show that this approach is sound in the sense that
in expectation it provides an unbiased estimate of
the value of new policy.

2. How do the inevitable errors in π̂(a|x) influence
the process? It turns out they have an effect which
is dependent on τ . For very small values of τ , the
estimates of π̂(a|x) must be extremely accurate
to yield good performance while for larger values
of τ less accuracy is required. In Section 3.1, we
prove this robustness property.
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3. What influence does the parameter τ have on the
final result? While creating a bias in the estima-
tion process, it turns out that the form of this bias
is mild and relatively reasonable—actions which
are displayed with low frequency conditioned on
x effectively have an underestimated value. This
is exactly as expected for the limit where actions
have no frequency. In section 3.1 we prove this.

We close with a generalization from policy evaluation
to policy selection with a sample complexity bound in
section 3.2 and then experimental results in section 4
using a real ad dataset.

2. Formal Problem Setup and

Assumptions

Let π1, ..., πT be T policies, where, for each t, πt is
a function mapping an input from X to a (possibly
deterministic) distribution over A. The learning algo-
rithm is given a dataset of T samples, each of the form
(x, a, ra) ∈ X × A × [0, 1], where (x, r) is drawn from
D as described in Section 1, and the action a ∼ πt(x)
is chosen according to the tth policy. We denote this
random process by (x, a, ra) ∼ (D, πt(·|x)). Similarly,
interaction with the T policies results in a sequence
S of T samples, which we denote S ∼ (D, πt(·|x))

T
t=1.

The learner is not given prior knowledge of the πt.

Offline policy estimator

Given a dataset of the form

S = {(xt, at, rt,at
)}Tt=1, (1)

where ∀t, xt ∈ X, at ∈ A, rt,at
∈ [0, 1], we form a pre-

dictor π̂ : X×A → [0, 1] and then use it with a thresh-
old τ ∈ [0, 1] to form an offline estimator for the value
of a policy h.

Formally, given a new policy h : X → A and a dataset
S, define the estimator:

V̂ h
π̂ (S) =

1

|S|

∑

(x,a,r)∈S

raI(h(x) = a)

max{π̂(a|x), τ}
, (2)

where I(·) denotes the indicator function.

The purpose of τ is to upper bound the individual
terms in the sum and is similar to previous methods
(Owen & Zhou, 1998).

3. Theoretical Results

We now present our algorithm and main theoretical
results. The main idea is twofold: first, we have a pol-
icy estimation step, where we estimate the (unknown)

logging policy (analyzed in Subsection 3.1); second,
we have a policy optimization step, where our we uti-
lize our estimated logging policy (analyzed in Subsec-
tion 3.2). Our main result, Theorem 3.2, provides a
generalization bound — addressing the issue of how
both the estimation and optimization error contribute
to the total error.

The logging policy πt may be deterministic, implying
that conventional approaches relying on randomiza-
tion in the logging policy are not applicable. We show
next that this is ok when the world is IID and the pol-
icy varies over its actions. We effectively substitute the
standard approach of randomization in the algorithm
for randomization in the world.

A basic claim is that the estimator is expectation
equivalent to a stochastic policy defined as follows:

π(a|x) = Et∼UNIF(1,...,T )[πt(a|x)], (3)

where UNIF(· · · ) denotes the uniform distribution.
The stochastic policy π chooses an action uniformly
at random over the T policies πt. Our first result is
that the expected value of our estimator is the same
when the world chooses actions according to either π
or to the sequence of policies πt. Although this result
and its proof are straight-forward, it forms the basis
for the rest of the results in our paper. Note that the
policies πt may be arbitrary but we have assumed that
they do not depend on the data used for evaluation.
Allowing for the offline evaluation of policies using the
same data they are trained on is an important open
problem.

Theorem 3.1. For any contextual bandit problem D
with identical draws over T rounds, for any sequence

of possibly stochastic policies πt(a|x) with π derived as

above, and for any predictor π̂,

ES∼(D,πt(·|x))Tt=1

V̂ h
π̂ (S) = E(x,~r)∼D,a∼π(·|x)

raI(h(x) = a)

max{π̂(a|x), τ}
(4)

This theorem relates the expected value of our estima-
tor when T policies are used to the much simpler and
more standard setting where a single fixed stochastic
policy is used.
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Proof.

E(x,~r)∼D,a∼π(·|x)
raI(h(x) = a)

max{π̂(a|x), τ}

= E(x,~r)∼D

∑

a

π(a|x)
raI(h(x) = a)

max{π̂(a|x), τ}

= E(x,~r)∼D

∑

a

1

T

∑

t

πt(a|x)
raI(h(x) = a)

max{π̂(a|x), τ}

= E(x,~r)∼D
1

T

∑

t

∑

a

πt(a|x)
raI(h(x) = a)

max{π̂(a|x), τ}

= E(x,~r)∼D
1

T

∑

t

Ea∼πt(·|x)
raI(h(x) = a)

max{π̂(a|x), τ}

= E(x,~r)T∼DT

1

T

∑

t

Eat∼πt(·|xt)
ri,at

I(h(xt) = at)

max{π̂(at|xt), τ}

= E(x,~r)T∼DT ,at∼πt(·|x)
1

T

∑

t

ri,at
I(h(xt) = at)

max{π̂(at|xt), τ}

= ES∼(D,πt(·|x))Tt=1

1

|S|

∑

(x,a,r)∈S

raI(h(x) = a)

max{π̂(a|x), τ}

Each equality follows form linearity of expectation, re-
labeling, or the definition of expectation. The identical
draws assumption is used in 6th equality.

3.1. Policy Estimation

In this section we show that for a suitable choice of τ
and π̂ our estimator is sufficiently accurate for evalu-
ating new policies h. We aggressively use the simpli-
fication of the previous section, which shows that we
can think of the data as generated by a fixed stochastic
policy π, i.e. πt = π for all t.

For a given estimate π̂ of π define the “regret” to be a
function reg :X → [0, 1] by

reg(x) = max
a∈A

[

(π(a|x) − π̂(a|x))2
]

. (5)

Our first result is that the new estimator is consistent.
In the following theorem statement, I(·) denotes the
indicator function, π(a|x) the probability that the log-
ging policy chooses action a on input x, and V̂ h

π̂ our
estimator as defined by Equation 2 based on parameter
τ .

Lemma 3.1. Let π̂ be any function from X to dis-

tributions over actions A. Let h : X → A be any

deterministic policy. Let V h(x) = Er∼D(·|x)[rh(x)] de-
note the expected value of executing policy h on input

x. We have that

Ex

[

I(π(h(x)|x) ≥ τ) ·

(

V h(x)−

√

reg(x)

τ

)]

≤

E[V̂ h
π̂ ] ≤

V h + Ex

[

I(π(h(x)|x) ≥ τ) ·

√

reg(x)

τ

]

.

In the above, the expectation E[V̂ h
π̂ ] is taken over all

sequences of T tuples (x, a, r) where (x, r) ∼ D and

a ∼ π(·|x).1

This lemma bounds the bias in our estimate of V h(x).
There are two sources of bias—one from the error of
π̂(a|x) in estimating π(a|x), and the other from thresh-
old τ . For the first source, it’s crucial that we analyze
the result in terms of the squared loss rather than (say)
ℓ∞ loss, as reasonable sample complexity bounds on
the regret of squared loss estimates are achievable.

Proof. Consider a fixed x. Define the following quan-
tity

δx =
π(h(x)|x)

max{π̂(h(x)|x), τ}
V h(x)− V h(x).

The quantity δx is the error of our estimator condi-
tioned on x and satisfies Ex[δx] = E[V̂ h

π̂ ] − V h. Note

that |δx| ≤
∣

∣

∣

π(h(x)|x)
max{π̂(h(x)|x),τ} − 1

∣

∣

∣
.

We consider two disjoint cases.

First, suppose that π(h(x)|x) < τ . Then, δx is less
than or equal to zero, due to the max operation in the
denominator and the fact that rewards are positive.
Thus, we have that E[V̂ h

π̂ ] ≤ V h, when the expectation
is taken over the x for which π(h(x)|x) < τ . As an
aside, note that |δx| can have magnitude as large as
1. In other words, in this situation, the estimator may
drastically underestimate the value of policy h but will
never overestimate it.

Second, suppose that π(h(x)|x) ≥ τ . Then, we have
that

|δx|

≤

∣

∣

∣

∣

π(h(x)|x) −max{π̂(h(x)|x), τ}

max{π̂(h(x)|x), τ}

∣

∣

∣

∣

≤

√

reg(x)

τ
.

Expanding δx and taking the expectation over x for
which π(h(x)|x) ≥ τ yields the desired result.

Corollary 3.1. Let π̂ be any function from X to dis-

tributions over actions A. Let h : X → A be any

1Note that varying T does not change the expectation
of our estimator, so T has no effect in the theorem.



Learning from Logged Implicit Exploration Data

deterministic policy. If π(h(x)|x) ≥ τ for all inputs x,
then

|E[V̂ h
π̂ ]− V h| ≤

√

Ex[reg(x)]

τ
. (6)

Proof. Follows from examining the second part of the
proof of Lemma 3.1 and applying Jensen’s inequality.

Lemma 3.1 shows that the expected value of our esti-
mate V̂ h

π of a policy h is an approximation to a lower
bound of the true value of the policy h where the ap-
proximation is due to errors in the estimate π̂ and the
lower bound is due to the threshold τ . When π̂ = π,
then the statement of Lemma 3.1 simplifies to

Ex

[

I(π(h(x)|x) ≥ τ) · V h(x)
]

≤ E[V̂ h
π̂ ] ≤ V h.

Thus, with a perfect predictor of π, the expected value
of the estimator V̂ h

π̂ is a guaranteed lower bound on
the true value of policy h. However, as the left-hand-
side of this statement suggests, it may be a very loose
bound, especially if the action chosen by h often has a
small probability of being chosen by π.

The dependence on 1/τ in Lemma 3.1 is somewhat un-
settling, but unavoidable. Consider an instance of the
bandit problem with a single input x and two actions
a1, a2. Suppose that π(a1|x) = τ + ǫ for some positive
ǫ and h(x) = a1 is the policy we are evaluating. Sup-
pose further that the rewards are always 1 and that
π̂(a1|x) = τ . Then, the estimator satisfies E[V̂ h

π̂ ] =
π(a1|x)/π̂(a1|x) = (τ + ǫ)/τ . Thus, the expected error
in the estimate is E[V̂ h

π̂ ]−V h = |(τ + ǫ)/τ − 1| = ǫ/τ ,
while the regret of π̂ is (π(a1|x)− π̂(a1|x))

2 = ǫ2.

3.2. Policy Optimization

The previous section proves that we can effectively
evaluate a policy h by observing a stochastic policy π,
as long as the actions chosen by h have adequate sup-
port under π, specifically π(h(x)|x) ≥ τ for all inputs
x. However, we are often interested in choosing the
best policy h from a set of policies H after observing
logged data. Furthermore, as described in Section 2,
the logged data are generated from T fixed, possibly
deterministic, policies π1, . . . , πT as described in sec-
tion 2 rather than a single stochastic policy. As in
Section 3 we define the stochastic policy π by Equa-
tion 3,

π(a|x) = Et∼UNIF(1,...,T )[πt(a|x)]

The results of Section 3.1 apply to the policy optimiza-
tion problem. However, note that the data are now
assumed to be drawn from the execution of a sequence

of T policies π1, . . . , πT , rather than by T draws from
π.

Next, we show that it is possible to compete well with
the best hypothesis in H that has adequate support
under π (even though the data are not generated from
π).

Theorem 3.2. Let π̂ be any function from X to dis-

tributions over actions A. Let H be any set of deter-

ministic policies. Define H̃ = {h ∈ H | π(h(x)|x) >

τ, ∀ x ∈ X} and h̃ = argmaxh∈H̃{V h}. Let ĥ =

argmaxh∈H{V̂ h
π̂ } be the hypothesis that maximizes the

empirical value estimator defined in Equation 2. Then,

with probability at least 1− δ,

V ĥ ≥ V h̃ −
2

τ

(

√

Ex[reg(x)] +

√

ln(2|H |/δ)

2T

)

, (7)

where reg(x) is defined, with respect to π, in Equa-

tion 5.

Proof. First, given a dataset (xt, at, rt,at
), t =

1, . . . , T , generated by the process described in Sec-
tion 2, note that it is straight-forward to apply Hoeffd-
ing’s bound (Hoeffding, 1963) to the random variables

Xt =
I(h(xt)=at)rt,at

max{π̂(at|xt),τ}
, to show that |V̂ h

π̂ − E[V̂ h
π̂ ]| ≤

1
τ

√

ln(2/δ)
2T holds with probability at least 1 − δ, for a

fixed policy h. It is important to note here that the
Xt are independent but not identical, since the action
at time t is chosen according to policy πt. The previ-
ous argument can be made to hold for all h ∈ H by
replacing δ with δ/|H | and applying the union bound.

Let Q = (D, πt(·|x))
T
t=1 be the distribution over se-

quences of T samples (x, a, ra) ∈ X ×A× [0, 1] gener-
ated by executing the T logging policies πt in sequence,
as described in section 2. Let Q′ = (D, a ∼ π(·|x)) be
the distribution over samples of the form (x, a, ra) ∈
X × A × [0, 1] such that (x, r) ∼ D and a ∼ π(·|x).
The T samples used in the estimator V̂ h

π are obtained
from a single draw from Q.
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Now, we have that

V ĥ

≥ EQ′ [V̂ ĥ
π̂ ]− Ex

[

I(π(ĥ(x)|x) ≥ τ) ·

√

reg(x)

τ

]

≥ EQ′ [V̂ ĥ
π̂ ]− Ex

[

√

reg(x)

τ

]

≥ EQ′ [V̂ ĥ
π̂ ]−

√

Ex[reg(x)]

τ

= EQ[V̂
ĥ
π̂ ]−

√

Ex[reg(x)]

τ

≥ V̂ ĥ
π̂ −

√

Ex[reg(x)]

τ
−

1

τ

√

ln(2|H |/δ)

2T

≥ V̂ h̃
π̂ −

√

Ex[reg(x)]

τ
−

1

τ

√

ln(2|H |/δ)

2T

≥ EQ[V̂
h̃
π̂ ]−

√

Ex[reg(x)]

τ
−

2

τ

√

ln(2|H |/δ)

2T

= EQ′ [V̂ h̃
π̂ ]−

√

Ex[reg(x)]

τ
−

2

τ

√

ln(2|H |/δ)

2T

≥ V h̃ −
2
√

Ex[reg(x)]

τ
−

2

τ

√

ln(2|H |/δ)

2T
.

The first step follows from Lemma 3.1. The second
from the fact that regret is always non-negative. The
third from an application of Jensen’s inequality. The
forth and eighth from an application of Theorem 3.1.
The fifth and seventh from an application of Hoeffd-
ing’s bound as detailed above. The sixth from the def-
inition of h̃. The final step follows from Corollary 3.1
and observing that h̃ ∈ H̃.

The proof of Theorem 3.2 relies on the lower-bound
property of our estimator (the left-hand side of In-
equality stated in Lemma 3.1). In other words, if H
contains a very good policy that has little support un-
der π, we will not be able to detect that by our esti-
mator. On the other hand, our estimation is safe in
the sense that we will never drastically overestimate
the value of any policy in H. This “underestimate,
but don’t overestimate” property is critical to the ap-
plication of optimization techniques, as it implies we
can use an unrestrained learning algorithm to derive a
warm start policy.

4. Empirical Evaluation

We evaluated our method on a real-world Internet ad-

vertising dataset. We have obtained proprietary data
from an online advertising company, covering a period
of approximately one month. The data are comprised

of logs of events (x, a, y), where each event represents
a visit by a user to a particular web page x, from a set
of web pages X . From a large set of advertisements
A, the commercial system chooses a single ad a for the
topmost, or most prominent position. It also chooses
additional ads to display, but these were ignored in our
test. The output y is an indicator of whether the user
clicked on the ad or not.

The total number of ads in the data set is approxi-
mately 880, 000. The training data consist of 35 mil-
lion events. The test data contain 19 million events
occurring after the events in the training data. The
total number of distinct web pages is approximately
3.4 million.

We trained a policy h to choose an ad, based on the
current page, to maximize the probability of click. For
the purposes of learning, each ad and page was repre-
sented internally as a sparse high-dimensional feature
vector. The features correspond to the words that
appear in the page or ad, weighted by the frequency
with which they appear. Each ad contains, on aver-
age, 30 ad features and each page, approximately 50
page features. The particular form of f was linear
over all features of its input (x, y), which is a sparse
high-dimensional feature vector representing the com-
bination of the page and ad.2 For instance, every pair
of possible words had a corresponding feature. For ex-
ample, given the two words “apple” and “ipod”, the
corresponding feature “apple-ipod” has a value of 0.25
when the first word, “apple”, appeared in the page x
with frequency 0.5 and the second word, “ipod”, ap-
peared in the ad a with frequency 0.5.

Using all the data, we modeled the logging policy using
simple empirical estimation:

π̂(a|x) =
|{t|(at = a) ∧ (xt = x)}|

|{t|xt = x}|
. (8)

In words, for each page and ad pair (x, a), we com-
puted the number of times a appeared on page x in
the data. The decision to use all of the data requires
careful consideration. Some alternatives to consider
are:

1. Training data only. Since the set of ads changes
over time, many ads appearing in the test data
do not occur at all in the training data. Con-
sequently, reliably predicting the performance on
test data is problematic.

2. Training data for training set and test data for
test set. This approach has an inherent bias to-

2Technically the feature vector that the regressor uses
is the Cartesian product of the page and ad vectors.
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wards incorrectly high scores on the test set. In an
extreme case, suppose that only one ad appears
on a (rare) webpage in the test set. Then, any
policy selecting from amongst the set of appear-
ing ads must select this ad.

3. All data. This approach means that policies must
generally select from a larger set of ads than are
available at any moment in time for the live sys-
tem, implying that the policy evaluation is gener-
ally pessimistic. Note that the logging policy in
contrast is optimistically evaluated, because the
set of test-time available ads is smaller than the
set of ads available over both test-time and train-
time ads, implying the frequency estimates for
test-time ads on the train+test dataset are gener-
ally smaller than an estimate using just test-time
ads.3 These smaller-than-necessary frequency es-
timates imply that the logging policy evaluation
is optimistic since events are weighted by the in-
verse frequency. Consequently, this choice pro-
vides a conservative estimate for new policies and
an optimistic choice for the older (logging) policy.

The particular policy that was optimized, had an
argmax form: h(x) = argmaxa∈C(X){f(x, a)}, with
a crucial distinction from previous approaches in how
f(x, a) was trained. Here f : X×A → [0, 1] is a regres-
sion function that is trained to estimate probability of
click, and C(X) = {a ∈ A | π̂(a|x) > 0} is a set of
feasible ads.

The training samples were of the form (x, a, y), where
y = 1 if the ad a was clicked after being shown on
page x or y = 0 if it wasn’t clicked. The regressor
f was chosen to approximately minimize the weighted

squared loss: (y−f(x,a))2

max{π̂(at|xt),τ}
.

Stochastic gradient descent was used to minimize the
squared loss on the training data.

During the evaluation, we computed the estimator on

3As an extreme example, suppose we log data for two
days and we use the first day for training and the second
day for testing. Suppose that only a single ad a1 appears
in the train set, and a single ad a2 appears in the test set,
due to the fact that the budget for ad a1 ran out after the
first day. Our empirical estimate of π̂(a2|x) on the test
set used in the denominator of our estimator (Equation 8)
will be 1/2. In fact the true probability of a2 on the test
set is 1. Thus, the value of the logging policy will be over
estimated by a factor of 2. Suppose further that ad a1

is indeed better than a2. The evaluation of a policy that
always chooses the better ad, a1, using Equation 8 will be
zero, a drastic underestimate of its true value.

the test data (xt, at, yt):

V̂ h
π̂ =

1

T

T
∑

t=1

ytI(h(xt) = at)

max{π̂(at|xt), τ}
. (9)

As mentioned in the introduction, this estimator is
biased due to the use of the parameter τ > 0. As
shown in the analysis of Section 3, this bias typically
results in an underestimate of the true value of the
policy h.

We experimented with different thresholds τ and pa-
rameters of our learning algorithm.4

4.1. Results

Method τ Estimate Interval
Learned 0.01 0.0193 [0.0187,0.0206]
Random 0.01 0.0154 [0.0149,0.0166]
Learned 0.05 0.0132 [0.0129,0.0137]
Random 0.05 0.0111 [0.0109,0.0116]
Naive 0.05 0.0 [0,0.0071]

The Interval column is computed using the relative en-
tropy form of the Chernoff bound with δ = 0.05 which
holds under the assumption that variables, in our case
the samples used in the computation of the estimator
(Equation 9), are IID. Note that this computation is
slightly complicated because the range of the variables
is [0, 1/τ ] rather than [0, 1] as is typical. This is han-
dled by rescaling by τ , applying the bound, and then
rescaling the results by 1/τ .

The “Random” policy is the policy that chooses ran-
domly from the set of feasible ads: Random(x) = a ∼
UNIF(C(X)), where UNIF(·) denotes the uniform dis-
tribution.

The “Naive” policy corresponds to the theoretically
flawed supervised learning approach detailed in the in-
troduction. The evaluation of this policy is quite ex-
pensive, requiring one evaluation per ad per example,
so the size of the test set is reduced to 8373 examples
with a click, which reduces the significance of the re-
sults. We bias the results towards the naive policy by
choosing the chronologically first events in the test set
(i.e. the events most similar to those in the training
set). Nevertheless, the naive policy receives 0 reward,
which is significantly less than all other approaches. A
possible fear with the evaluation here is that the naive
policy is always finding good ads that simply weren’t
explored. A quick check shows that this is not correct–
the naive argmax simply makes implausible choices.

4For stochastic gradient descent, we varied the learning
rate over 5 fixed numbers (0.2, 0.1, 0.05, 0.02, 0.01) using 1
pass over the data. We report on the test results for the
value with the best training error.
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Note that we report only evaluation against τ = 0.05,
as the evaluation against τ = 0.01 is not significant,
although the reward obviously remains 0.

The “Learned” policies do depend on τ . As suggested
by Theorem 3.2, as τ is decreased, the effective set
of hypotheses we compete with is increased, thus al-
lowing for better performance of the learned policy.
Indeed, the estimates for both the learned policy and
the random policy improve when we decrease τ from
0.05 to 0.01.

The empirical click-through rate on the test set was
0.0213, which is slightly larger than the estimate for
the best learned policy. However, this number is not
directly comparable since the estimator provides a
lower bound on the true value of the policy due to
the bias introduced by a nonzero τ and because any
deployed policy chooses from only the set of ads which
are available to display rather than the set of all ads
which might have been displayable at other points in
time.

The empirical results are generally consistent with the
theoretical approach outlined here—they provide a
consistently pessimal estimate of policy value which
nevertheless has sufficient dynamic range to distin-
guish learned policies from random policies, learned
policies over larger spaces (smaller τ) from smaller
spaces (larger τ), and the theoretically unsound
naive approach from sounder approaches which choose
amongst the the explored space of ads.

5. Conclusion

We stated, justified, and evaluated theoretically and
empirically the first method for solving the warm start
problem for exploration from logged data with con-
trolled bias and estimation. This problem is of obvi-
ous interest to applications for internet companies that
recommend content (such as ads, search results, news
stories, etc...) to users.

However, we believe this also may be of interest
for other application domains within machine learn-
ing. For example, in reinforcement learning, the stan-
dard approach to offline policy evaluation is based
on importance weighted samples (Kearns et al., 2000;
Precup et al., 2000). The basic results stated here
could be applied to RL settings, eliminating the need
to know the probability of a chosen action explicitly,
allowing an RL agent to learn from external observa-
tions of other agents.

The main restrictive assumption adopted by the Ex-
ploration Scavenging paper (Langford et al., 2008) is

that the logging policy chooses actions independently
of the input. We have introduced a new method
that works when this assumption is violated. On the
other hand, we have required the logging policy be
a sequence of fixed, possibly deterministic, policies,
whereas the Exploration Scavenging paper allowed for
the use of logging policies that learn and adapt over
time. An interesting situation occurs when you al-
low πt to depend on the history up to time t. In this
setting the policy may both adapt (like in the Explo-
ration Scavenging paper) and choose actions depen-
dent on the current input. Is there an offline policy
estimator which can work in this setting? The most
generic answer is no, but there may exist some natural
constraint which encapsulates the approach discussed
here, as well as in the earlier paper.
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