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Abstract

This study extends Blackwell’s (1953) comparison of information to a

sequential social learning model, where agents make decisions sequentially

based on both private signals and the observed actions of others. In this

context, we introduce a new binary relation over information structures:

An information structure is more socially valuable than another if it yields

higher expected payoffs for all agents, regardless of their preferences. First,

we establish that this binary relation is strictly stronger than the Blackwell

order. Then, we provide a necessary and sufficient condition for our binary

relation and propose a simpler sufficient condition that is easier to verify.
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1 Introduction

In classical decision theory, an information source is considered more valuable

than another if it enables an individual decision-maker to make better choices

under uncertainty. This is established by Blackwell’s (1953) comparison of in-

formation structures, which evaluates information structures based on whether

a single agent would always prefer one over another, regardless of their prefer-

ences.

However, in many real-world settings, decision-makers acquire information

not only from their private signals but also from the observed actions of others.

This creates an information externality: an individual’s decision not only affects

their own outcome but also serves as a source of information for future decision-

makers. Because of this externality, simply comparing information structures

solely based on their value for individual decision-making is no longer sufficient

to evaluate the value of information structure in the society. This raises a

fundamental question: When is one information structure more socially valuable

than another?

To address this question, we extend Blackwell’s (1953) comparison of infor-

mation structures to the classical sequential social learning model (Banerjee,

1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000). In this model, ho-

mogeneous agents make decisions sequentially based on the past actions of

others and their own private signals. These private signals are drawn inde-

pendently from an identical information structure depending on binary payoff-

relevant states. Within this framework, we introduce a binary relation over

information structures: An information structure is more socially valuable than

another if it yields higher expected payoffs for all agents, regardless of their

preferences, in the presence of social learning.

We first observe that our binary relation is strictly stronger than Blackwell’s
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order (Proposition 1). This is intuitive because the history of past actions garbles

signal realizations depending on the underlying decision problem. Thus, our

binary relation requires a sufficiently informative signal to ensure that the joint

value of history and the private signal increases. This highlights an essential

feature of settings where past signals are not directly observable. If agents

could observe past signal realizations instead of actions, then a Blackwell more

informative signal would always be more socially valuable.

Next, Proposition 2 provides a necessary and sufficient condition for our

binary relation. Specifically, one information structure is more socially valu-

able than another if and only if it yields higher expected payoffs for all agents,

decision problems, and equilibria, even when past signals (rather than actions)

are observable under the alternative information structure. The necessary con-

dition, combined with classical results, indicates that an information structure

is more socially valuable than another only if it induces unbounded (private)

beliefs. Thus, if an information structure induces an information cascade, then

it is no longer more socially valuable than any other information structure.

Even if one information structure induces unbounded beliefs, verifying the

sufficiency part in Proposition 2 is challenging, as it depends on the underlying

decision problem. To address this, we provide a clear and simple sufficient

condition. Specifically, Proposition 3 states that an information structure is

more socially valuable than another if it has a sufficiently high probability of

revealing convincing signals.

This sufficient condition follows from the intrinsic properties of mixtures of

two extreme information structures. First, our sufficient condition is equivalent

to ensuring the existence of a mixture of full and no information between two

information structures in Blackwell order. Moreover, under any such mixture,

any equilibrium expected payoffs match those in a setting where agents observe

past signals rather than actions. Finally, any such mixture respects the Black-
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well order: If an information structure is Blackwell more informative than the

mixture, it is also more socially valuable. If it is Blackwell dominated by the

mixture, it is less socially valuable. Thus, if a mixture of full and no informa-

tion exists between two information structures in Blackwell order, they are also

comparable in our order.

1.1 Related Literature

Pioneered by Blackwell (1951), numerous studies have extended Blackwell’s

comparison of experiments.1 Two strands of literature are closely related to

our study: one focuses on game-theoretic settings (Lehrer et al., 2010, 2013;

Gossner, 2000; Pęski, 2008; Cherry and Smith, 2012; Bergemann and Morris,

2016), and the other examines on large i.i.d. samples (Stein, 1951; Torgersen,

1970; Moscarini and Smith, 2002; Azrieli, 2014; Mu et al., 2021). In contrast, we

extend the comparison to accommodate any number of i.i.d. draws within a

game-theoretic setting without payoff externalities. The key challenge lies in

garbling past signals through (coarser) actions, where the extent of this garbling

crucially depends on the underlying decision problem.

Starting from Banerjee (1992); Bikhchandani et al. (1992); Smith and Sørensen

(2000),2 a fundamental question in the social learning literature is whether

agents can eventually learn the true state under various settings, such as lim-

ited observations of past actions (Çelen and Kariv, 2004; Acemoglu et al., 2011;

Lobel and Sadler, 2015; Arieli and Mueller-Frank, 2019, 2021; Kartik et al., 2024),3

1Some studies investigate Blackwell’s comparison by restricting decision problems or ex-

periments (Lehmann, 1988; Persico, 2000; Athey and Levin, 2018; Ben-Shahar and Sulganik,

2024), while others incorporate correlated signals or dynamic settings (Brooks et al., 2024;

Renou and Venel, 2024; Whitmeyer and Williams, 2024).

2For a comprehensive survey, see Bikhchandani et al. (2024).

3See also Banerjee and Fudenberg (2004), Gale and Kariv (2003), Callander and Hörner

(2009), and Smith and Sorensen (2013) for studies on observational learning where agents ob-

serve only summary statistics of past actions.
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costly acquisition of private signal (Mueller-Frank and Pai, 2016; Ali, 2018), and

costly observation of past actions (Kultti and Miettinen, 2006, 2007; Song, 2016;

Xu, 2023).4 To the best of our knowledge, the comparison of experiments, which

is the focus of this study, remains largely unexplored in the literature. The

main technical difficulty arises from the complex expression of expected pay-

offs without restricting attention to asymptotic agents. Our approach addresses

this issue by leveraging the properties of mixtures of full and no information.

2 Model

There is an infinite sequence of ordered agents 8 = 1, 2, . . . . Agents decide their

actions sequentially. There is a binary state space Ω = {!, �} with a common

prior. Let�0 ∈ (0, 1)be the prior of$ = �. The periods are discrete (C = 0, 1, . . . ),

and each agent 8 takes an action at period 8 from a finite action set �. A common

payoff function D : � × Ω → R determines each agent’s payoff. The payoff of

agent 8 depends solely on their own action and the state, independent of the

actions taken by other agents.

The timing of this game is as follows: At period 0, nature first determines the

true state, which remains unchanged in the future. In each period 8, agent 8 first

observes the actions taken by the previous agents (1, 2, . . . , 8 − 1). Furthermore,

agent 8 observes a private signal B ∈ (, which is drawn independently from an

information structure � : Ω → Δ((). For simplicity, we assume that ( is finite.5

Following these observations, agent 8 selects an action from the action set �.

Given the decision problem D = (D, �) and the information structure � :

4Other important questions include social learning with correlated information

structures (Liang and Mu, 2020; Awaya and Krishna, 2025), speed/efficiency of learning

(Hann-Caruthers et al., 2018; Rosenberg and Vieille, 2019), and learning about informativeness

(Huang, 2024).

5Although the proof remains largely the same when both � and ( are countable, we impose

this assumption to simplify notation.
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Ω → Δ((), the strategy of the agent 8 is denoted by �8 : �
8−1 × ( → Δ(�). Given

D = (D, �), �, and strategy profile σ = (�8)8∈N, let $
≤8
(�,σ) ∈ Δ(�8) be the

distribution of actions taken by agents 1, 2, . . . , 8 when the state is $, i.e.,

$
≤8(a|�,σ) =

∑

(B1 ,... ,B8 )∈(8

8∏

:=1

�(B: |$)�:(0: |01, . . . , 0:−1, B:).

Similarly, let $
8
(�,σ) ∈ Δ(�) be the distribution of actions taken by agent 8

when the state is $, i.e.,

$
8 (0 |�,σ) =

∑

(0′
1
,... ,0′

8−1
)∈�8−1

$
≤8(0

′
1
, . . . , 0′8−1 , 0 |�,σ).

Note that $
8
(�,σ) does not depend on the strategies of agents after 8. Let

+D
8
(�,σ) be the ex-ante expected payoff for agent 8. Precisely,

+D
8 (�,σ) = E$

[
∑

0∈�

$
8 (0 |�,σ)D(0, $)

]

.

We say that strategy profile σ
∗ is a Bayes-Nash Equilibrium (hereafter referred

to simply as an equilibrium) under (D ,�) if

+D
8 (�,σ∗) ≥ +D

8 (�, (�8 , �
∗
−8))

for all �8 and 8.

For two information structures � : Ω → Δ(() and �′ : Ω → Δ((′), define

their product � ⊗ �′ : Ω → Δ(( × (′) as

(� ⊗ �′)((B, B′)|$) = �(B |$)�′(B′|$)

for all B ∈ (, B′ ∈ (′, and $ ∈ Ω. We denote

�⊗8
= � ⊗ · · · ⊗ �.

as the information structure generated by 8 conditionally independent observa-

tions from �. Define +8
D
(�) as

+8
D
(�) = max

�8 :(8→Δ(�)
E$

[
∑

0∈�

∑

s∈(8

�8(0 |s)�
⊗8(s|$)D(0, $)

]

.
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In other words, this represents the maximized expected payoff when agent 8

conditionally independently observes the signal drawn from � for 8 times.

Given the information structure � : Ω → Δ((), define � ∈ Δ[0, 1] as the

private belief distribution induced by �. More precisely, for G ∈ [0, 1],

�(G) =
∑

B∈((G)

[�0�(B |�) + (1 − �0)�(B |!)],

where ((G) = {B ∈ ( |
�0�(B |�)

�0�(B |�)+(1−�0)�(B |!)
= G}. For abuse of notation, define

�(� = G |�) =
∑

B∈((G)

�(B |�)

�(� = G |!) =
∑

B∈((G)

�(B |!).

We say signal B is a conclusive signal about $ = � (resp. $ = !) if B ∈ ((1)

(resp. B ∈ ((0)). We say information structure � discloses no information if

supp(�) = {�0}, and � discloses full information if supp(�) = {0, 1}. Given �, σ,

and 8 ≥ 2, define �8 ∈ Δ[0, 1] as the public belief distribution:

�8(G) =
∑

a∈�8−1(G)

(
�0

�
≤8−1(a|�,σ) + (1 − �0)

!
≤8−1(a|�,σ)

)
,

where

�8−1(G) =

{

a ∈ �8−1

�����
�0

�
≤8−1

(a|�,σ)

�0
�
≤8−1

(a|�,σ) + (1 − �0)
!
≤8−1

(a|�,σ)
= G

}

.

Given public belief G and private belief H, the posterior belief is calculated as

GH

GH +
�0

1−�0
(1 − G)(1 − H)

.

3 Results

We say an information structure � is more socially valuable than �′ if for any

action set � and payoff function D, the ex-ante expected payoffs for all agents

in any equilibrium under � are weakly higher than those in any equilibrium
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under �′, that is, +D
8
(�,σ∗) ≥ +D

8
(�′,σ∗∗) for any decision problem D = (D, �),

equilibrium σ
∗ under (D ,�), and equilibrium σ

∗∗ under (D ,�′).6 We denote

� %( �′ when � is more socially valuable than �′ and � %� �′ when � is

Blackwell more informative than �′, that is, when �′ is a garbling of �.

Our first observation establishes that our binary relation is stronger than the

Blackwell order, as stated below.

Proposition 1. %( is a strictly stronger binary relation than %�.

Proof. If � %( �′, then � %� �′ as agent 1 prefers � over �′ for all decision

problems. We now show that there exists �,�′ such that � %� �′ and � is not

more socially valuable than�′. Let information structure� : Ω → Δ({B0 , B1, B2})

defined by �(B1 |�) = 1 − �, �(B2 |�) = �, �(B0 |!) = 1 − �, and �(B2 |!) = �.

Suppose � > �. Now, take �′ ∈ (�, 1) and define �′ : Ω → Δ({B0 , B1, B2})

as �′(B1 |�) = 1 − �′, �′(B2 |�) = �′, �′(B0 |!) = 1 − �, and �′(B2 |!) = �. Then

we have � %� �′. Now, consider the following decision problem D = (D, �):

� = {00 , 01}, D(00 , �) = D(00 , !) = 0, D(01 , �) = 1 − A, and D(01 , !) = −A, where

A ∈ (
�0�

�0�+(1−�0)�
,min{

�0�
′

�0�′+(1−�0)�
,

�0�
2

�0�2+(1−�0)�2
}).7 Take any equilibriumσ

∗ under

(D ,�). From Lemma 5 in Appendix, agent 8’s expected payoff is

+D
8 (�,σ∗) = �0(1 − �8)(1 − A).

Under (D ,�′), an equilibrium exists where agent 8 takes 00 if and only if he

receives B0 or at least one agent before 8 takes 00 since
�0�

′

�0�′+(1−�0)�
> A. Let

σ
∗∗ denote this equilibrium strategy. In this equilibrium, the ex-ante expected

payoff of agent 8 (≥ 2) is

+D
8 (�′,σ∗∗) = �0(1 − A) − (1 − �0)�

8A.

6We discuss a weaker version of this binary relation regarding the equilibrium selection rule

in Section 4.

7Note that
�0�

8

�0�8+(1−�0)�8
>

�0�

�0�+(1−�0)�
since � > �.
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Thus, the difference in payoffs is

+D
8 (�′,σ∗∗) −+D

8 (�,σ∗) =�0�
8(1 − A) − (1 − �0)�

8A

=�0�
8

(
1 −

�0�
8 + (1 − �0)�

8

�0�8
A

)

≥�0�
8

(
1 −

�0�
2 + (1 − �0)�

2

�0�2
A

)

>0.

Therefore, � %� �′ but not � %( �′. �

Intuitively, this results follows because past actions provide coarser infor-

mation than signal realizations. As a result, our binary relation requires the

signal to be sufficiently informative to ensure that the joint value of history and

the signal increases. In contrast, if agents could observe past signal realizations

instead of actions, then a Blackwell more informative signal would always be

more socially valuable. In the setting provided in the proof of Proposition 1,

when signals are observable, the expected payoffs under � and �′ are the same

in this example. If past signals were observable, agent 8 with B = B2 chooses 01 if

B = B2 for all preceding agents. However, in the observable action setting, agent

8 with B = B2 chooses 00 if all predecessors choose 00, even when all preceding

agents receive B = B2.

We characterize our binary relation as follows:

Proposition 2 (Characterization). � %( �′ holds if and only if

+D
8 (�,σ∗) ≥ +

D

8 (�′)

for any decision problem D and any equilibrium σ
∗ under (D ,�).

By combining the classical result of Smith and Sørensen (2000), we can obtain

a simple necessary condition from Proposition 2. We say that information

structure � induces unbounded beliefs if co(supp(�)) = [0, 1]. Since asymptotic
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learning occurs under an observable signal setting, we obtain the following

necessary condition:

Corollary 1 (Necessary condition). Suppose that �′ does not disclose no infor-

mation. If � %( �′, then � induces unbounded beliefs.

Thus, if an information cascade occurs under some information structure,

then it is no longer more socially valuable than any other information structure,

except in some the trivial cases.

Even if one information structure induces unbounded beliefs, verifying the

sufficiency part in Proposition 2 is challenging as it depends on each decision

problem. We present a simple sufficient condition below which is easily verifi-

able.

Proposition 3 (Sufficient condition). Suppose that � and �′ satisfies

1 −
∑

B∈supp(�′)

min{�′(B |!),�′(B |�)} ≤ min{�(� = 0|!),�(� = 1|�)}.

Then, � %( �′.

Recall that the necessary condition in Proposition 2 requires � induces un-

bounded beliefs if� %( �′. Then, a sufficient condition in Proposition 3 indicates

that � is more socially valuable than �′ if � assigns sufficiently high probability

to private beliefs being both 0 and 1.

The formal proof is complex and is provided in the Appendix. The key

step is derived by focusing on the intrinsic properties of mixtures of extreme

information structures. To demonstrate this, we now present an equivalent

condition for Proposition 3.

Lemma 1. There exists �′′ such that supp(�′′) = {0, �0, 1} and � %� �′′
%� �′ if

and only if

1 −
∑

B∈supp(�′)

min{�′(B |!),�′(B |�)} ≤ min{�(� = 0|!),�(� = 1|�)}.
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Thus, the sufficient condition in Proposition 3 is equivalent to ensure the

existence of a mixture of full and no information such that � %� �′′ %� �′.

The following Lemma 2 forms the cornerstone of the proof of Proposition 3.

Lemma 2 (Lemma 9 and Lemma 10). Suppose � %� �′′ %� �′ and supp(�′′) =

{0, �0, 1}. Then, � %( �′′ %( �′

Specifically, if an information structure is Blackwell more informative than

the mixture, it is also more socially valuable (Lemma 9). Moreover, if it is Black-

well dominated by the mixture, it is less socially valuable (Lemma 10). Thus,

whenever a mixture of full and no information exists between two information

structures in Blackwell order, they remain comparable in our binary relation.

The proof of Lemma 2 proceeds as follows. First, as shown in Lemma 8,

under any mixture of full and no information, all agents can achieve the same

expected payoff as if they had observed past signal realizations. This holds

for any decision problem and equilibrium, even though agents cannot directly

infer their predecessors’ private signals.8 Given the above discussion, if � is

Blackwell more informative than �′ and � consists of a mixture of full and no

information, then the expected payoff of agent 8 is weakly higher than that under

8 conditionally independent observations of �′ (i.e., �′⊗8). Since past signals are

always Blackwell more informative than history (Lemma 7), this expected payoff

remains higher than that under �′.

Lemma 10 constructs a strategy profile under � that achieves the same equi-

librium expected payoff as under �′ when �′ is a mixture of full and no informa-

tion. Additionally, we show that this strategy profile provides a lower bound on

the equilibrium payoffs under �. Intuitively, the construction follows this logic:

Consider any equilibrium strategy under �. First, any other strategy weakly de-

8This feature is nontrivial because even a slight deviation in the support of private beliefs

from that of the mixture can result in decision problems and equilibria that violate this property,

as one can infer from the proof of Proposition 5 in Section 4.
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creases her payoff due to the equilibrium condition. In particular, take a strategy

in which agent 8 behaves as if she observes �′ rather than �. As �′ is a mixture

of full and no information, such a strategy involves choosing the optimal action

upon receiving a conclusive signal and mimicking agent 8−1’s action otherwise.

Given this, we further modify agent 8 − 1’s strategy to follow the same one. This

change decreases agent 8 − 1’s expected payoff, which in turn, decreases agent

8’s (conditional) payoff from mimicking agent 8 − 1. By repeating this process,

we obtain a strategy profile that induces the lower bound of any equilibrium

payoff. This lower bound coincides with the equilibrium payoff under �′ when

it consists of a mixture of full and no information.

4 Discussions

Our definition is too strong, particularly in relation to the equilibrium selection

rule. As a result, our binary relation is not a partial order.

Proposition 4. � %( � if and only if supp(�) ⊆ {0, �0, 1}.

Proof. Suppose supp(�) ⊆ {0, �0, 1}. Then, 1−
∑

B∈supp(�′)min{�′(B |!),�′(B |�)} =

1 − �(� = �0 |!) = �(� = 0|!) = min{�(� = 0|!),�(� = 1|�)}. Therefore, by

Proposition 3, we have � %( �.

Now, we show that � %B � does not hold if supp(�) * {0, �0, 1}. It is suffices

to show for the case where there exists some G > �0 such that G ∈ supp(�). Take

A ∈ [0, 1] that satisfies

G < A <
G2

G2 +
�0

1−�0
(1 − G)2

.

Consider the decision problem D = (D, �): � = {00 , 01} and the payoff function

is defined as D(00 , �) = D(00 , !) = 0, D(01 , �) = 1 − A, and D(01 , !) = −A.

Take any equilibrium σ
∗ = (�∗

8
)8∈N and B1, B2 ∈ ((G). Then, it follows that

�∗
1
(00 |B1) = 1 and �∗

2
(00 |00, B2) = 1. Thus, +D

2
(�,σ∗ |B1, B2) = 0. Additionally,

11



we have +
D

2 (�|B1, B2) > 0 since A < G2

G2+
�0

1−�0
(1−G)2

. Note that for all B′
1
, B′

2
∈ (,

+
D

2 (�|B′
1
) ≥ +D

2
(�,σ∗ |B′

2
).9 Therefore,

+
D

2 (�) > +D
2
(�,σ∗).

By Proposition 2, it follows that � %( � does not hold. �

An alternative, less restrictive, binary relation considers a weaker notion

of comparison. We say that an information structure � is weakly more socially

valuable than �′ if, for any action set � and payoff function D, there exists an

equilibrium under � in which the ex-ante expected payoffs for all agents are

weakly higher than those in any equilibrium under �′. We denote � %, �′

when � is weakly more socially valuable than �′.

Under this definition, it is straightforward to see that � %, � holds. We

highlight the difference between %( and %, .

Example 1. Suppose that �0 =
1

2
. Let � : Ω → Δ({B0 , B1, B2}) as �(B1 |�) = 1 − �,

�(B2 |�) = �, �(B0 |!) = 1 − �, and �(B2 |!) = �. Additionally, let �′ : Ω →

Δ({B′
0
, B′

1
, B′

2
}) as �(B′

1
|�) = 1 − �′, �′(B′

2
|�) = �′, �′(B′

0
|!) = 1 − �′, and �′(B′

2
|!) =

�′. Assume that � < �′ < � < �′. Thus, � %� �′ holds, as this condition is

equivalent to � ≤ �′ and � ≤ �′. Moreover, we assume that �′

�′+�′ <
�

�+� < �′2

�′2+�′2
.10

We now construct a decision problem under which the necessary condition

of Proposition 2 is violated, implying that � %( �′ does not hold. Consider

that decision problem D is as follows: Let G = �
�+� . The action set is given

9This statement follows from the same argument as Lemma 7 in the Appendix.

10Note that this violates the sufficient condition of Proposition 3 as

1 −
∑

B∈supp(�′)

min{�′(B |!),�′(B |�)} = 1 − �′,

and

min{�(� = 0|!),�(� = 1|�)} = 1 − �.
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by � = {00 , 01, 02}, with payoffs specified as follows: D(00 , !) = D(00 , �) =

D(02 , !) = D(02 , �) = 0 and D(01 , �) = 1 − G, D(01 , !) = −G.

Now consider equilibrium strategy σ
∗ under � such that agent 1 chooses

action 00 if B = B0 or B2 and 01 if B = B1. Given this strategy, the posterior belief

of agent 2 when agent 1’s action is 00 and B = B2 is �2

�2+�
, which is lower than

G. Given this, agent 2 optimally chooses action 01 if and only if (i) B = B1 or

(ii) B = B2 and agent 1 chooses action 01. Thus, the expected payoff for agent 2

under this equilibrium is given by +D
2
(�,σ∗) = 1

2
(1 − �2)(1 − G).

However, under �′, when agent 1 chooses action 00 if B′ = B′
0
, 02 if B′ = B′

2
,

and 01 if B′ = B′
1
, agent 2 can perfectly infer agent 1’s private signal. By the

assumption of G = �
�+� < �′2

�′2+�′2
, when agent 2 observes that agent 1 chooses

action 02 and private signal B′ = B′
2
, the optimal action is 01. Thus, agent 2

optimally chooses action 01 if and only if either (i) B′ = B′
1

or (ii) B′ = B′
2

and

agent 1 chooses either action 01 or 02. Let σ∗∗ denote the equilibrium strategy

profile following this tie-breaking rule. Then, the expected payoff of agent 2 is

+D
2
(�′,σ∗∗) = +̄D

2
(�′)

=
1

2
(1 − �′)(1 − G) +

1

2
�′(1 − �′)(1 − G)

+
1

2
(�′2 + �′2)

(
�′2

�′2 + �′2
(1 − G) +

�′2

�′2 + �′2
(−G)

)

=
1

2
(1 − G) −

1

2
�′2G

Since +D
2
(�,σ∗) < +D

2
(�′,σ∗∗) ⇐⇒ �

�+� < �′2

�′2+�′2
, it follows that � %( �′ does

not hold.

Next, we establish that � %, �′. By directly constructing the equilibrium,

we have a slightly more general observation:

Proposition 5. Suppose � %� �′ and supp(�) = {0, G, 1} such that |�0 − G | ≥

|�0 − H | for all H ∈ supp(�′) ∩ (0, 1), where G, H ∈ [0, 1].11 Then, � %, �′

11If G = 0 or G = 1, then supp(�) = {0, 1}.
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By applying Proposition 5, we confirm that in this example, � %, �′ holds.

The key feature is that under �, if agent 1 chooses action 01 when B = B2, then

agent 2 can obtain the expected payoff as if she were able to observe the past

signal realization. �

Beyond this example, we cannot obtain a general characterization or a simple

sufficient condition for%, . The main difficulty arises from the tie-breaking issue

across decision problems. In %(, the strong equilibrium selection rule allows us

to sidestep these complications. Specifically, in the proof of Proposition 2, the

strong requirement of the equilibrium selection rule simplifies the construction

of the decision problem needed to derive the necessary condition. Moreover,

the proof of Proposition 3 relies heavily on the properties of mixtures of full and

no information, where these mixtures are independent of equilibrium selection

rules. Thus, extending our analysis to %, is not straightforward, leaving this as

an avenue for future research.

Appendix

A Omitted Proofs

A.1 Preliminaries

For each 0∗ ∈ � and I ∈ [0, 1], define

�(0∗) =

{
I ∈ [0, 1] | 0∗ ∈ arg max

0∈�
[ID(0, �) + (1 − I)D(0, !)]

}

�−1(I) = {0 ∈ � | I ∈ �(0)} = arg max
0∈�

[ID(0, �) + (1 − I)D(0, !)].

Lemma 3. Fix any D = (D, �). For each 0∗ ∈ �, �(0∗) is closed interval.

Proof. Since ID(0, �) + (1 − I)D(0, !) is continuous with respect to I, �(0∗) is

a closed set. Suppose I1 ∈ �(0∗) and I2 ∈ �(0∗). It follows that I1D(0
∗ , �) +

14



(1 − I1)D(0
∗ , !) ≥ I1D(0, �) + (1 − I1)D(0, !) and I2D(0

∗ , �) + (1 − I2)D(0
∗ , !) ≥

I2D(0, �) + (1 − I2)D(0, !) for any 0 ∈ �. Take any C ∈ [0, 1], then we have

[CI1 + (1 − C)I2]D(0
∗ , �) + [1 − CI1 − (1 − C)I2]D(0

∗ , !)

= C[I1D(0
∗ , �) + (1 − I1)D(0

∗ , !)] + (1 − C)[I2D(0
∗ , �) + (1 − I2)D(0

∗ , !)]

≥ C[I1D(0, �) + (1 − I1)D(0, !)] + (1 − C)[I2D(0, �) + (1 − I2)D(0, !)]

= [CI1 + (1 − C)I2]D(0, �) + [1 − CI1 − (1 − C)I2]D(0, !).

Hence, CI1 + (1 − C)I2 ∈ �(0∗). �

Lemma 4. Fix any D = (D, �). Suppose �−1(I1) ∩ �−1(I2) ≠ ∅ for some 0 ≤ I1 <

I2 ≤ 1. Then, �−1(F) = �−1(I1) ∩ �−1(I2) for all F ∈ (I1, I2).

Proof. Take any 00 ∈ �−1(I1) ∩ �−1(I2). Then I1D(00 , �) + (1 − I1)D(00 , !) ≥

I1D(0, �) + (1 − I1)D(0, !) and I2D(00 , �) + (1 − I2)D(00 , !) ≥ I2D(0, �) + (1 −

I2)D(0, !) for all 0 ∈ �. Note that at least one inequality holds strictly if 0 ∉

�−1(I1) ∩ �−1(I2). Hence, for any F ∈ (I1 , I2),

D(00 , �)F + D(00 , !)(1 − F)

=
F − I2
I1 − I2

[I1D(00 , �) + (1 − I1)D(00 , !)]

+

(
1 −

F − I2
I1 − I2

)
[I2D(00 , �) + (1 − I2)D(00 , !)]

≥
F − I2
I1 − I2

[I1D(0, �) + (1 − I1)D(0, !)]

+

(
1 −

F − I2
I1 − I2

)
[I2D(0, �) + (1 − I2)D(0, !)]

= FD(0, �) + (1 − F)D(0, !)

for all 0 ∈ � and strict inequality holds for all 0 ∉ �−1(I1) ∩ �−1(I2). Thus,

�−1(F) = �−1(I1) ∩ �−1(I2). �

Lemma 5. Suppose (D ,�) satisfies supp(�) ∩ (G, 1) = ∅ and �−1(0) = �−1(G) =

{00} for some G ≥ �0 and 00 ∈ �. Take arbitrary equilibrium σ
∗ under (D ,�).
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Then,

+D
8 (�,σ∗) = �0[(1 − ? 8)D(01 , �) + ? 8D(00 , �)] + (1 − �0)D(00 , !),

where ? = (1 − �(� = 1|�)) and 01 ∈ �−1(1).

Proof. If 00 ∈ �−1(1), the statement holds because

+D
8 (�,σ∗) = �0D(00 , �) + (1 − �0)D(00 , !)

= �0[(1 − ? 8)D(00 , �) + ? 8D(00 , �)] + (1 − �0)D(00 , !)

= �0[(1 − ? 8)D(01 , �) + ? 8D(00 , �)] + (1 − �0)D(00 , !).

Suppose 00 ∉ �−1(1). Take any equilibrium under �. Then, by Lemma 4, agent

1 chooses 00 if and only if he receives B ∉ ((1). Agent 2 chooses an action from

�−1(1) if she receives B ∈ ((1) or agent 1 takes an action other than 00 because

she knows that the state is �. Notably, the public belief after observing 00 is less

than �0 and Lemma 4 implies that �−1(I) = {00} for all I ∈ [0, G]. Hence, agent

2 must choose 00 if she receives B ∉ ((1) and agent 1 chooses 00. Analogously,

agent 8 takes action from �−1(1) if and only if he receives B ∈ ((1) or at least

one previous agent chooses an action other than 00. Otherwise, agent 8 takes 00.

Therefore,

+D
8 (�,σ∗) = �0[(1 − ? 8)D(01 , �) + ? 8D(00 , �)] + (1 − �0)D(00 , !).

�

A.2 Proofs of Proposition 2 and Corollary 1

Lemma 6. If � %� �′ and � %� �′, then � ⊗ � %� �′ ⊗ �′.

Proof. Suppose � %� �′ and � %� �′. Then, there exist Markov kernel �1 and �2

such that

�′(B′ |$) =
∑

B∈supp(�)

�1(B
′|B)�(B |$)
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�′(C′|$) =
∑

C∈supp(�)

�2(C
′ |C)�(C |$)

for all B′ ∈ supp(�′) and C′ ∈ supp(�′). Then, we have

(�′ ⊗ �′)((B′, C′)|$) =�′(B′|$)�′(C′|$)

=

∑

B∈supp(�)

�1(B
′ |B)�(B |$)

∑

C∈supp(�)

�2(C
′ |C)�(C |$)

=

∑

(B,C)∈supp(�⊗�)

�1(B
′ |B)�2(C

′ |C)�(B |$)�(C |$)

=

∑

(B,C)∈supp(�⊗�)

�((B′, C′)|(B, C))(� ⊗ �)((B, C)|$),

where �((B′, C′)|(B, C)) = �1(B
′|B)�2(C

′ |C). Since � is a Markov kernel, �′ ⊗ �′ is a

garbling of � ⊗ �. �

Lemma 7.

+
D

8 (�) ≥ +D
8 (�,σ)

for all 8 ,D ,�, and σ.

Proof of Lemma 7. Take any D ,�, and σ. Note that +
D

1 (�) = +D
1
(�,σ). Fix 8 ≥ 2.

For each B ∈ (8−1, define 58−1(B) ∈ Δ(�8−1) as

58−1(a|B) =

8−1∏

:=1

�:(0: |01, . . . , 0:−1, B:).

Hence, 58−1(0 |B) is the probability that agent 1 to agent 8 − 1 takes action a =

(01 , . . . , 08−1) when agent 1 to agent 8−1 receives private signal s = (B1, . . . , B8−1).

Then,

$
≤8−1(a|�,σ) =

∑

s∈(8−1

8−1∏

:=1

�:(0: |01, . . . , 0:−1, B:)�(B: |$)

=

∑

s∈(8−1

58(a|s)�
⊗8−1(s|$).

Thus, ≤8−1(·|�,σ) is a garbling of �⊗8−1. By Lemma 6, we have

�⊗8−1 ⊗ � %� ≤8−1(·|�,σ) ⊗ �.
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Hence,

+
D

8 (�) ≥ +D
8 (�,σ).

�

Proof of Proposition 2. Since

+
D

8 (�′) ≥ +D
8
(�′,σ′)

for all strategy profile σ
′ by Lemma 7, � %( �′ holds if +D

8
(�,σ∗) ≥ +

D

8 (�′).

Conversely, suppose � %( �′. Take any D = (D, �), equilibrium σ
∗ under

� : Ω → Δ((), and equilibrium σ
∗∗ under �′ : Ω → Δ((′). Then, +D

8
(�,σ∗) ≥

+D
8
(�′,σ∗∗) by � %( �′. Consider the decision problem D̄ = (�̄, D̄), where

�̄ = {(0, :) | 0 ∈ �, : ∈ (′} and D̄((0, :), $) = D(0, $) for all 0 ∈ �, $ ∈ Ω. Fix

B1 ∈ (′ and define strategy profile σ = (�8)8∈N under (D̄ ,�) as following:




�8((0, B1)|(01 , :1), (02 , :2), . . . , (08−1 , :8−1), B) = �∗
8
(0 |01, 02, . . . , 08−1 , B)

�8((0, :)|(01 , :1), (02 , :2), . . . , (08−1 , :8−1), B) = 0,

for all 0 ∈ �, B ∈ (, (01 , . . . , 08−1) ∈ �8−1, :1 , :2, . . . , :8−1 ∈ (′, and : ∈ (′\{B1}.

Note that σ is an equilibrium under (D̄ ,�). Moreover, it follows that

+D̄
8
(�,σ) = +D

8
(�,σ∗).

Under (D̄ ,�′), if we consider the following equilibrium σ
′, the expected playoff

of agent 8 at equilibrium (+D̄
8
(�′,σ′)) coincides with +

D

8 (�′). Specifically, each

agent 8 chooses an action that maximizes his expected payoff on the equilibrium

path, but always chooses an action of the form (0, :) (0 ∈ �) when the received

signal is : ∈ (′. Since each agent can observe signals received by their prede-

cessor on the equilibrium path, it follows that +D̄
8
(�′,σ′) = +

D̄

8 (�′) = +
D

8 (�′).

Therefore,

+D
8 (�,σ∗) = +D̄

8 (�,σ) ≥ +D̄
8 (�′,σ′) = +

D

8 (�′).
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�

Proof of Corollary 1. Prove by contradiction. Suppose co(supp(�)) ≠ [0, 1]. Then,

either 1 ∉ supp(�) or 0 ∉ supp(�). By symmetry, it suffices to consider a

case 1 ∉ supp(�). Since supp(�) is a closed set, there exists A ∈ [�0, 1) such

that supp(�) ⊆ [0, A]. Consider the following decision problem D = (D, �):

� = {01 , 02}, D(01 , !) = D(01 , �) = 0, D(02 , �) = 1 − A and D(02 , !) = −A. Then,

the strategy profile σ
∗ that all agents always choose 01 is an equilibrium under

(D ,�). It follows that

+D
8 (�,σ∗) = 0.

Since �′ does not disclose no information, repeated observations of �′ allow

agents to learn the state in the limit. Hence,

+
D

8 (�′) > 0

for large enough 8. By Proposition 2, � is not more socially valuable than �′. �

A.3 Proof of Proposition 3

The following lemma shows that the expected payoff under the mixture of full

and no information is the same to the one under observable signal setting for

any decision problem and equilibrium.

Lemma 8. Suppose supp(�) = {0, �0, 1}. Fix the decision problem D = (D, �).

Take arbitrary equilibrium σ
∗ under (D ,�). Then,

+D
8 (�,σ∗) = +

D

8 (�)

= �0[(1 − ? 8)*1] + (1 − �0)[(1 − ? 8)*0] + ? 8*�0
,

where *1 = max0 D(0, �), *0 = max0 D(0, !), *�0
= max0[�0D(0, �) + (1 −

�0)D(0, !)], and ? = �(� = �0 |�) = �(� = �0 |!).
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Proof. First, it is easily calculated that

+
D

8 (�) = �0[(1 − ? 8)*1] + (1 − �0)[(1 − ? 8)*0] + ? 8*�0
.

To show that+D
8
(�,σ∗) = +

D

8 (�), we divide the decision problem into five cases.

Case (i): �−1(0) ∩ �−1(�0) = ∅ and �−1(�0) ∩ �−1(1) = ∅. Take any equilibrium

σ
∗ under (D ,�). Then, in σ

∗, agent 8 chooses an action from �−1(0) if and only

if he receives a conclusive signal about $ = ! or at least one agent before 8 takes

an action from �−1(0). Similarly, agent 8 chooses an action from �−1(1) if and

only if he receives a conclusive signal about $ = � or at least one agent before

8 takes an action from �−1(1). Otherwise, he chooses an action from �−1(�0)

because the posterior is always �0. Hence, we have

+D
8 (�,σ∗) = �0[(1 − ? 8)*1] + (1 − �0)[(1 − ? 8)*0] + ? 8*�0

.

Case (ii): �−1(0) ∩ �−1(�0) ∩ �−1(1) ≠ ∅. In this case, it is always optimal for

agent 8 to take an action 0∗ ∈ �−1(0) ∩ �−1(�0) ∩ �−1(1). Hence,

+D
8 (�,σ∗) = �0*1 + (1 − �0)*0

for all equilibrium σ
∗. Since *�0

= �0*1 + (1 − �0)*0, we have

+D
8 (�,σ∗) = �0[(1 − ? 8)*1] + (1 − �0)[(1 − ? 8)*0] + ? 8(�0*1 + (1 − �0)*�0

)

= �0[(1 − ? 8)*1] + (1 − �0)[(1 − ? 8)*0] + ? 8*�0
.

Case (iii): �−1(0) ∩ �−1(�0) = ∅ and �−1(�0) ∩ �−1(1) ≠ ∅. Show that, in any

equilibrium σ
∗, agent 8’s posterior is always in {0} ∪ [�0, 1] and agent 8 chooses

an action from �−1(0) if and only if agent 8 or at least one of the previous ones

receives a conclusive signal about$ = !. Prove by induction. Agent 1’s posterior

is in {0, �0, 1} and he takes an action from �−1(0) if and only if he receives a

conclusive signal about $ = !. Suppose the statement holds for 8 = 1, 2, . . . , :.

Consider agent : + 1. If she receives a conclusive signal about $ = ! or at least

one agent before : + 1 takes an action from �−1(0), she knows $ = ! and takes
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an action from �−1(0). Otherwise, the public belief of agent : + 1 is more than

or equal to �0 from the assumption, and the posterior of agent : + 1 is also more

than or equal to �0. By Lemma 3, we know that �−1(0) ∩ �−1(I) = ∅ for all

I ∈ [�0, 1]. Hence, the statement holds for agent : + 1. Therefore, one of the

optimal strategies for agent 8 is to take an action 00 ∈ �−1(0) if she receives a

conclusive signal about $ = ! or at least one agent before : + 1 takes an action

from �−1(0), and to take an action 01 ∈ �−1(�0) ∩ �−1(1) otherwise. Hence, it

follows that

+D
8 (�,σ∗) = �0*1 + (1 − �0)[(1 − ? 8)*0 + ? 8D(01 , !)].

Since *�0
= �0*1 + (1 − �0)D(01 , !), we have

+D
8 (�,σ∗) = �0*1 + (1 − �0)(1 − ? 8)*0 + ? 8(*�0

− �0*1)

= �0[(1 − ? 8)*1] + (1 − �0)[(1 − ? 8)*0] + ? 8*�0
.

Case (iv): �−1(0) ∩ �−1(�0) ≠ ∅ and �−1(�0) ∩ �−1(1) = ∅. This case is omitted

due to symmetry with Case (iii).

Case (v): �−1(0) ∩ �−1(�0) ≠ ∅, �−1(�0) ∩ �−1(1) ≠ ∅, and �−1(0) ∩ �−1(�0) ∩

�−1(1) = ∅. Fix arbitrary equilibrium σ
∗ under (D ,�). We further divide it into

two cases.

Case (v-i): Suppose that, in σ
∗, no agent preceding agent 8 takes an action

from �−1(0) ∪ �−1(1). Then, it means that all agent before 8 receives a signal

that induces private belief �0. Therefore, it is only optimal for agent 8 to take an

action from �−1(0) if he receives a conclusive signal about $ = !, from �−1(1) if

he receives a conclusive signal about $ = �, and from �−1(�0) otherwise.

Case (v-ii): Suppose that at least one of the previous agents takes an action

from �−1(0) ∪ �−1(1). Let : be the number of the first agent who took action

from �−1(0) ∪ �−1(1) and 0: be the action taken by agent :. Then, by the

similar argument as before, it can be shown that agent 8’s posterior is always in
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{0} ∪ (�0, 1] if 0: ∈ �−1(1) and is always in [0, �0) ∪ {1} if 0: ∈ �−1(0). Hence, it

is the only optimal strategy for agent 8 to take an action from �−1(0) if agent 8 or

at least one agent before 8 takes an action from �−1(0) and to take an action from

�−1(1) otherwise when 0: ∈ �−1(1). Moreover, it is the only optimal strategy

for agent 8 to take an action from �−1(1) if agent 8 or at least one agent before 8

takes an action from �−1(1) and to take an action from �−1(0) otherwise when

0: ∈ �−1(0).12 We further divide into two cases.

Case (v-ii-i): From the above discussion, when the true state is $ = �, if at

least one agent receives a conclusive signal about $ = �, agent 8 necessarily

chooses an action from �−1(1) in equilibrium. This is because if 0: ∈ �−1(1), then

all agents after agent : must choose an action from �−1(1), and if 0: ∈ �−1(0),

then if one agent receives a conclusive signal about $ = � and takes action

from �−1(1), the posterior of the subsequent agents will be 1. Similarly, when

the true state is $ = !, if at least one agent receives a conclusive signal, agent 8

necessarily chooses an action from �−1(0) in equilibrium.

Case (v-ii-ii): Finally, if no agent receives a conclusive signal, agent 8 nec-

essarily chooses an action from �−1(�0) in equilibrium. This is because if

0: ∈ �−1(0) then the posterior of agent 8 is in (0, �0), the optimal action is

�−1(0) ∩ �−1(�0) ⊆ �−1(�0) and if 0: ∈ �−1(1), the posterior of agent 8 is in

(�0, 1), so the optimal action is �−1(1) ∩ �−1(�0) ⊆ �−1(�0).

Thus, by Case (v-i) and Case (v-ii-ii), if no agent in 1, . . . , 8 receive the con-

clusive signals, agent 8 chooses an action from �−1(�0). Additionally, by Case

(v-ii-i), if the true state is $ = � (resp. $ = !) and at least one agent in 1, . . . , 8

receives a conclusive signal about $ = � (resp. $ = !), agent 8 chooses an

action from �−1(1) (resp. �−1(0)). Therefore, we have

+D
8 (�,σ∗) = �0[(1 − ? 8)*1] + (1 − �0)[(1 − ? 8)*0] + ? 8*�0

.

12Here we use Lemma 4. Note that if the posterior is in (�0, 1), the optimal action is �−1(�0) ∩

�−1(1) ⊆ �−1(1).
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�

Utilizing Lemma 8 and Blackwell’s theorem, we can show that the expected

payoff under � is weakly higher than the upper bound under�′ for any decision

problems if � consists of a mixture of full and no information.

Lemma 9. Suppose � %� �′ and supp(�) = {0, �0, 1}. Then, � %( �′.

Proof. Take any D = (D, �). Take arbitrary equilibrium σ
∗ under (D ,�). From

Lemma 8, we have

+D
8 (�,σ∗) = +

D

8 (�).

Hence, an expected payoff of agent 8 in any equilibrium is the same as an

expected payoff of agent 8 when agent 8 can observe not actions taken by past

agents but signals received by past agents.

Next, take any equilibrium σ
∗∗ under (D ,�′). Note that

+
D

8 (�′) ≥ +D
8 (�′,σ∗∗)

by Lemma 7. Since �⊗8 %� �′ ⊗8 by Lemma 6,

+
D

8 (�) ≥ +
D

8 (�′).

Hence, it follows that

+D
8 (�,σ∗) = +

D

8 (�) ≥ +
D

8 (�′) ≥ +D
8 (�′,σ∗∗).

Thus, � %( �′. �

We then construct a strategy profile under � such that it achieves the same

equilibrium expected payoff under �′ when �′ consists of a mixture of full and

no information. Additionally, we show that it provides a lower bound of payoffs

for all agents under �.

Lemma 10. Suppose that � and �′ satisfies supp(�′) = {0, �0, 1} and min{�(� =

0|!),�(� = 1|�)} ≥ ?, where ? = �′(�′ = 0|!) = �′(�′ = 1|�). Then, � %( �′.

23



Proof. Let @! =
�′(�′=0|!)

�(�=0|!)
and @� =

�′(�′=1|�)

�(�=1|�)
. Take anyD and defineσ∗∗ = (�∗∗

8
)8∈N

as the following strategy under (D ,�). Agent 1 chooses 00 ∈ �−1(0) with

probability @! and chooses 02 ∈ �−1(�0) with probability 1 − @! if he receives

conclusive signal about $ = !. Agent 1 chooses 01 ∈ �−1(1) with probability

@� and chooses 02 with probability 1− @� if he receives conclusive signal about

$ = �. Otherwise, agent 1 chooses 02. For 8 ≥ 2, agent 8 chooses 00 with

probability @! and chooses the same action as agent 8 − 1 with probability

1 − @! if he receives a conclusive signal about $ = !. Agent 8 chooses 01 with

probability @� and chooses the same action as agent 8−1 with probability 1− @�

if he receives a conclusive signal about $ = �. Otherwise, agent 8 chooses the

same action as agent 8 − 1. First, note that

+D
8 (�,σ∗∗) = �0[(1 − ? 8)*1] + (1 − �0)[(1 − ? 8)*0] + ? 8*�0

= +
D

8 (�′),

where the last equality comes from Lemma 8.

Fix an equilibrium �∗ under (D ,�) and define σ(:) as

σ(:) = (�∗
1
, �∗

2
, . . . , �∗: , �

∗∗
:+1, �

∗∗
:+2, . . . ).

Show that if 8 ≥ : + 1,

+D
8 (�,σ(:)) = �0?*1 + (1 − �0)?*0 + (1 − ?)+D

8−1(�,σ(:)).

Note that

+D
8−1(�,σ(:)) =�0

∑

0∈�

�
8−1(0 |�,σ(:))D(0, �)

+ (1 − �0)
∑

0∈�

!
8−1(0 |�,σ(:))D(0, !).

Since 8 ≥ : + 1,σ(:)8 = �∗∗
8

. Hence,

+D
8 (�,σ(:)) = �0[�(� = 1|�)@�*1 + (1 − �(� = 1|�)@�)

∑

0∈�

�
8−1(0 |�,σ(:))D(0, �)]
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+ (1 − �0)[�(� = 0|!)@!*0 + (1 − �(� = 0|!)@!)
∑

0∈�

!
8−1(0 |�,σ(:))D(0, !)]

= �0[?*1 + (1 − ?)
∑

0∈�

�
8−1(0 |�,σ(:))D(0, �)]

+ (1 − �0)[?*0 + (1 − ?)
∑

0∈�

!
8−1(0 |�,σ(:))D(0, !)]

= �0?*1 + (1 − �0)?*0 + (1 − ?)+D
8−1

(�,σ(:)).

By the definition of σ(:),




+D
8
(�,σ∗) = +D

8
(�,σ(:)) if 8 < : + 1

+D
8
(�,σ∗) ≥ +D

8
(�,σ(:)) if 8 = : + 1

The second inequality is held by the optimality of �∗
8
. We now show that

+D
8
(�,σ(: + 1)) ≥ +D

8
(�,σ(:))

for all 8 , :. First, if : ≥ 8−1, we have+D
8
(�,σ(:+1)) = +D

8
(�,σ∗) ≥ +D

8
(�,σ(:)).

Next, we have +D
8
(�,σ(8 − 1)) ≥ +D

8
(�,σ(8 − 2)) for 8 ≥ 2 since

+D
8 (�,σ(8 − 2)) = �0?*1 + (1 − �0)?*0 + (1 − ?)+D

8−1(�,σ(8 − 2))

≤ �0?*1 + (1 − �0)?*0 + (1 − ?)+D
8−1(�,σ(8 − 1))

= +D
8 (�,σ(8 − 1)).

Then, we have +8(�,σ(8 − 2)) ≥ +8(�,σ(8 − 3)) for 8 ≥ 3 since

+D
8 (�,σ(8 − 3)) = �0?*1 + (1 − �0)?*0 + (1 − ?)+D

8−1(�,σ(8 − 3))

≤ �0?*1 + (1 − �0)?*0 + (1 − ?)+D
8−1(�,σ(8 − 2))

= +D
8 (�,σ(8 − 2)).

Analogously, it follows that +D
8
(�,σ(8 − <)) ≥ +D

8
(�,σ(8 − < − 1)) for all 8 , <

that satisfies 8 − < − 1 ≥ 0. Hence,

+D
8 (�,σ(: + 1)) ≥ +D

8 (�,σ(:))
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for all 8 , :. Therefore, we have

+D
8 (�,σ∗) = +D

8 (�,σ(8))

≥ +D
8 (�,σ(0))

= +D
8 (�,σ∗∗)

= +8
D
(�′)

�

Proof of Lemma 1. Suppose supp(�′′) = {0, �0, 1}. Then � %� �′′ is equivalent to

�(� = 0|!) ≥ �′′(� = 0|!) and

�(� = 1|�) ≥ �′′(� = 1|�).

Show that �′′ %� �′ is equivalent to

�′′(� = �0 |!) = �′′(� = �0 |�)

≤
∑

B∈(′

min{�′(B |!),�′(B |�)}.

Suppose �′′(� = �0 |!) = �′′(� = �0 |�) ≤
∑

B∈(′ min{�′(B |!),�′(B |�)}. Define

� : Ω → Δ{B0, B1, B2} that satisfies

�(B1 |!) = 0

�(B0 |�) = 0

�(B2 |�) = �(B2 |!) =
∑

B∈(′

min{�′(B |!),�′(B |�)}.

Then, we have �′′ %� � as supp(�′′) = {0, �0, 1}.

If �(B2 |!) = �(B2 |�) = 1, � %� �′ as �′ discloses no information. If �(B2 |!) =

�(B2 |�) = 0, � %� �′ as both � and �′ disclose full information. Otherwise,

�′(B |$) =
max{�′(B |!) − �′(B |�), 0}

�(B0 |!)
�(B0 |$) +

max{�′(B |�) − �′(B |!), 0}

�(B1 |�)
�(B1 |$)

+
min{�′(B |!),�′(B |�)}

�(B2 |!)
�(B2 |$)

26



and

∑

B∈(′

max{�′(B |!) − �′(B |�), 0}

�(B0 |!)
=

∑
B∈(′ max{�′(B |!) − �′(B |�), 0}

1 −
∑

B∈(′ min{�′(B |!),�′(B |�)}
= 1

∑

B∈(′

max{�′(B |�) − �′(B |!), 0}

�(B1 |�)
=

∑
B∈(′ max{�′(B |�) − �′(B |!), 0}

1 −
∑

B∈(′ min{�′(B |!),�′(B |�)}
= 1

∑

B∈(′

min{�′(B |!),�′(B |�)}

�(B2 |!)
= 1.

Hence, �′ is a garbling of � and we have � %� �′. Note that �′′ %� � and

� %� �′ implies �′′ %� �′. Therefore, �′′(� = �0 |�) = �′′(� = �0 |!) ≤

∑
B∈(′ min{�′(B |!),�′(B |�)} is a sufficient condition for �′′ %� �′.

Conversely, suppose �′′
%� �′. Then, there exists probability distribution

�0, �1, ��0
over (′ such that

�′(B |$) = �0(B)�
′′(� = 0|$) + �1(B)�

′′(� = 1|$) + ��0
(B)�′′(� = �0 |$)

for all B ∈ (′ and $ ∈ Ω. Then,

∑

B∈(′

min{�′(B |!),�′(B |�)}

=

∑

B∈(′

min




�0(B)�
′′(� = 0|!) + ��0

(B)�′′(� = �0 |!),

�1(B)�
′′(� = 1|�) + ��0

(B)�′′(� = �0 |�)




=

∑

B∈(′

[
min {�0(B)�

′′(� = 0|!), �1(B)�
′′(� = 1|�)} + ��0

(B)�′′(� = �0 |!)
]

≥
∑

B∈(′

��0
(B)�′′(� = �0 |!)

= �′′(� = �0 |!)

= �′′(� = �0 |�).

Hence, �′′(� = �0 |!) = �′′(� = �0 |�) ≤
∑

B∈(′ min{�′(B |!),�′(B |�)} is a neces-

sary condition for �′′ %� �′. Therefore, �′′ %� �′ is equivalent to �′′(� = �0 |!) =

�′′(� = �0 |�) ≤
∑

B∈(′ min{�′(B |!),�′(B |�)}, or �′′(� = 0|!) = �′′(� = 1|�) ≥

1−
∑

B∈(′ min{�′(B |!),�′(B |�)}. By combining the first half and the second half,
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it can be seen that Lemma 1 holds. �

Proof of Lemma 2. Suppose that � %� �′′
%� �′ and supp(�′′) = {0, �0, 1}. From

Lemma 9, we conclude that �′′ %( �′ holds. From Lemma 10, we also conclude

that � %( �′′ holds. Therefore, we have � %( �′. �

Proof of Proposition 3. We know that there exists�′′ such that supp(�′′) = {0, �0, 1}

and � %� �′′ %� �′ by Lemma 1. Then, Lemma 2 shows � %( �′. �

A.4 Proof of Proposition 5

Proof. Without loss of generality, assume that G > �0, supp(�) = {B0 , B1, B2} and

�(B0 |�) = 0, �(B1 |�) = 1 − �, �(B2 |�) = �, �(B0 |!) = 1 − �, �(B1 |!) = 0, and

�(B2 |!) = �, where � and � satisfy the condition that G =
�0�

�0�+(1−�0)�
. We divide

decision problem D into three cases and construct the following equilibrium

σ
∗ under (D ,�).

Case (i): �−1(0) ∩ �−1(1) ≠ ∅. Fix 0∗ ∈ �−1(0) ∩ �−1(1). In this case, all agents

choose 0∗ regardless of private signal and action histories.

Case (ii): �−1(1) ∩ �−1(G) = ∅, �−1(0) = �−1(G) = {00} for some 00 ∈ �. Fix any

01 ∈ �−1(1). Agent 1 chooses 00 if he receives B0 or B2 and chooses 01 otherwise.

For 8 ≥ 2, agent 8 chooses 00 if she receives B0, or receives B2 and all previous

agent takes 00. Otherwise, 8 chooses 01.

Case (iii): Otherwise. First, fix 00 ∈ �−1(0) such that for all I ∈ [G, 1], �−1(I) ≠

{00}. (Such 00 must exists by Lemma 4.) In this case, agent 1 chooses action 00

if he receives B0, chooses action from �−1(1) if he receives B1, and chooses action

from �−1(G) if he receives B2. For 8 ≥ 2, agent 8 chooses action 00 if she receives

B0 or at least one agent before 8 has taken 00, chooses action from �−1(1) if she

receives B1, and chooses action from �−1( G 8

G 8+(
�0

1−�0
)8−1(1−G)8

)\{00} if she receives B2

and no one before 8 has taken action 00 or action from �−1(1). Otherwise, she

chooses the same action as agent 8 − 1.
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In Case (i), it is always optimal to take 0∗ regardless of the posterior belief.

Hence, this strategy σ
∗ is an equilibrium and we have +D

8
(�,σ∗) = +

D

8 (�). In

Case (iii), action 00 is taken if someone has received the signal B0 in the past,

action from �−1(1) is taken if someone has received the signal B1 in the past,

and action from �−1( G 8

G 8+(
�0

1−�0
)8−1(1−G)8

) or an action that yields the same expected

payoff is taken when everyone has received B2 in the past. Therefore, we have

+D
8
(�,σ∗) = +

D

8 (�). Hence, σ∗ is an equilibrium. Then, in case (i) and case (iii),

by the same argument as Lemma 9,

+D
8 (�,σ∗) = +

D

8 (�) ≥ +
D

8 (�′) ≥ +D
8 (�′,σ∗∗),

for any equilibrium σ
∗∗ under (D ,�′).

The only case left is Case (ii). In Case (ii), from Lemma 5,

+D
8 (�′,σ∗∗) =�0[(1 − (1 − �′(B1 |�))8)D(01 , �)+

(1 − �′(B1 |�))8D(00 , �)] + (1 − �0)D(00 , !),

for any equilibrium σ
∗∗ under (D ,�′). Since �′(B1 |�) ≤ 1 − � (by � %� �′) and

D(01 , �) > D(00 , �), it follows that

�0[(1 − (1 − �′(B1 |�))8)D(01 , �) + (1 − �′(B1 |�))8D(00 , �)] + (1 − �0)D(00 , !)

= �0D(01 , �) − �0(1 − �′(B1 |�))8[D(01 , �) − D(00 , �)] + (1 − �0)D(00 , !)

≤ �0D(01 , �) − �0�
8[D(01 , �) − D(00 , �)] + (1 − �0)D(00 , !)

= +D
8 (�,σ∗),

where σ
∗ is an equilibrium described above. Therefore, � %, �′. �
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