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Abstract. As a unified theory of sentient behaviour, active inference
is formally intertwined with multiple normative theories of optimal be-
haviour. Specifically, we address what we call the subsumption thesis:
The claim that expected utility from economics, as an account of agency,
is subsumed by active inference. To investigate this claim, we present
multiple examples that challenge the subsumption thesis. To formally
compare these two accounts of agency, we analyze the objective functions
for MDPs and POMDPs. By imposing information-theoretic rationality
bounds (ITBR) on the expected utility agent, we find that the resultant
agency is equivalent to that of active inference in MDPs, but slightly
different in POMDPs. Rather than being strictly resolved, the subsump-
tion thesis motivates the construction of a formal bridge between active
inference and expected utility. This highlights the necessary formal as-
sumptions and frameworks to make these disparate accounts of agency
commensurable.

Keywords: Active Inference · Expected Utility · Information-Theoretic
Bounded Rationality · Microeconomics

1 Introduction

Since the middle of the previous century, expected utility has formed the bedrock
of the agency underwriting microeconomics. With early implementations dating
back to Bernoulli in 1713 [37], expected utility has undergone many augmenta-
tions in order to reflect realistic deliberate decision processes. The comprehensive
start of this lineage can be traced to the classic utility theorem [24]; [8], with
earlier applications found in [31]. Subsequent accounts include Bayesian Deci-
sion Theory [34]; [6], Bounded Rationality [36]; [26], Prospect Theory [19], and
many more flavours. The algorithmic implementation of expected utility theory
is found in the Reinforcement Learning literature [3]. While seemingly disparate,
practically all expected utility accounts of agency depict an agent making deci-
sions in a probabilistic setting to attain optimal reward – to pursue utility [5].

Coming from the completely different background of neuroscience, Active
Inference a comparatively new account of agency [12], positioning itself as “a
unifying perspective on action and perception [...] richer than the common op-
timization objectives used in other formal frameworks (e.g., economic theory
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2 Noé Kuhn

and reinforcement learning)” [29, pg. 1;4]. Here the agent seeks to minimize
information-theoretic surprisal expressed as free energy (See Definition 3, 4).
Active inference allows for a realistic modeling of the very neuronal processes
underwriting biological agency [27].

Given the breadth of successful applications [9] combined with its strong fun-
damental first principles [13], some proponents of active inference posited what
we call the Subsumption thesis: Expected utility theory as seen in economics is
subsumed by active inference – it is an edge case. A formulation in the same
vein posits: “Active inference [...] englobes the principles of expected utility the-
ory [...] it is theoretically possible to rewrite any RL algorithm [...] as an active
inference algorithm” [11]. So how does the subsumption thesis hold up in the
given examples? Is it possible to formally delineate how expected utility and
active inference differ? This paper then establishes a firm connection between
microeconomics and active inference, which has scarcely been explored before
[17].

To formally compare the two accounts of agency, we require a commensurable
space for agent-environment interactions: MDPs and POMDPs (Definition 1 and
2). These agent-environment frameworks are the bread and butter of expected
utility applications [4], [3], [20]. Active inference agency has more recently also
been specified for the same frameworks [28], [9], [10], [11]. As such (PO)MDPs
provide a theoretical arena for the subsumption thesis to be evaluated.

What exactly is at stake that motivates this inquiry into the subsumption
thesis? Firstly, expected utility and active inference rest upon different first
principles to substantiate their respective account of agency [11]. Analysis of the
formal relationship between these two accounts could provide insights into how
the first principles of one account might be a specification the other’s first prin-
ciples. Secondly, this inquiry will shed light on how each account handles the
exploration-exploitation dilemma [7]: How should an agent prioritise between
exploring an environment versus exploiting what they already know about the
environment for utility? Finally, if active inference truly subsumed expected util-
ity, then the ramifications for welfarist economics would be enormous: Currently,
the formal mainstream understanding of welfare which informs economic policy
[30] is based on aggregating individual agents acting according to expected util-
ity [23, pg. 45] [32]. The subsumption thesis challenges foundations of ‘optimal’
economic policy if expected utility only captures a sliver of ‘optimal’ behaviour.

To investigate the subsumption thesis, the rest of the paper is structured as
follows. In section 2. the agent-environment frameworks are defined alongside
the relevant accounts of agency and basic concepts in microeconomics. In section
3., some examples are investigated which challenge the subsumption thesis. In
section 4., the formal bridge between expected utility and active inference is
established via Information Theoretic Bounded Rationality (ITBR) [26]. Finally
section 5. provides some concluding and summarizing remarks.
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2 Preliminary Definitions and Microeconomics

2.1 Agent-Environment Frameworks

A finite Markov Decision Process (MDP) is a mathematical model that spec-
ifies the elements involved in agent-environment interaction and development
[3]. This formalization of sequential decision making towards reward maximiza-
tion originates in dynamic programming, and currently enjoys much popularity
in model-based Reinforcement Learning (RL). Although potentially reductive,
employing MDPs and POMDPs allows for formal commensurability between dif-
ferent accounts of agency.

Definition 1 (Finite Horizon MDP). An MDP is defined according to the fol-
lowing given tuple: (S,A, P (s′|a, s), R(s′, a), γ = 1,T)

– S is a finite set of states.
– A is a finite set of actions.
– P (s′|a, s) is the transition probability of posterior state s′ occurring upon

the agent’s selection of action a in the prior state s.
– R(s′, a) ∈ R+ is the reward function taking as arguments the agent’s action

and resulting state. For our purposes, the action taken will be irrelevant to
the resulting reward: R(s′, a) = R(s′).

– γ denotes the discount factor of future rewards. This is set to 1 as this
parameter is not commonly used in the cited active inference literature.

– T = {1, 2, . . . , t, . . . , τ, . . . , T} is a finite set for discrete time periods whereby
t < τ and the horizon is T .

Note that time period subscripts e.g, sτ are sometimes omitted when unneces-
sary.

In a single-step decision problem, an expected reward-maximizing agent would
evaluate the optimal action a∗ as follows:

a∗t = argmax
a∈A

EP (sτ |at,st)R(sτ ) (1)

Further, a Partially Observable Markov Decision Process (POMDP) general-
izes an MDP by introducing observations o that contain incomplete information
about the latent state s of the environment [20,3]. The agent can only infer latent
states via observations. Thus, POMDPs are ideal for modeling action-perception
cycles [13] with the cyclical causal graphical model a → s → o . . .

Definition 2 (Finite Horizon POMDP). A finite horizon POMDP further adds
two elements to the previously given MDP tuple: (O, P (o|s))

– O is a finite set of observations.
– P (o|s) is the probability of observation o occuring to the agent given the

state s.
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2.2 Active Inference Agency

With the environment-agent frameworks established, we can proceed to define
how an active inference agent approaches a (PO)MDP. Although fundamental
and interesting, the Variational Free Energy objective crucial to perception in
active inference will not be examined here; Inference on latent states is assumed
to occur through exact Bayesian inference [10, pg. 16]. The central objective
function for agency in active inference is the Expected Free Energy (EFE), the
formulation of which for (PO)MDPs we will take from [9],[11],[10],[28]. Essen-
tially, the agent takes the action trajectory π = {aτ , . . . , aT } that minimizes the
cumulative expected free energy G, which is roughly the sum of the single-step
EFEs Gτ . By inferring the resultant EFE of policies through Q(·), the optimal
trajectory π∗ corresponds to the most likely trajectory – the path of least action.
[13]. Formally:

π∗ = argmin
π

G(π) (2)

G(π) ≈
T∑
τ

Gτ (π)

Gτ (π) = G(at)

We can then define the EFE for single-step for MDPs and POMDPs. Note that
this could also be scaled up to trajectories/vectors of the relevant elements e.g
st:T . For simplicity we will look at single-step formulations for the remainder of
the paper.

Definition 3: (EFE on MDPs). For an agent in an MDP with preference dis-
tribution P (s|C), the Expected Free Energy of an action for some given current
state st is defined as follows:

Gτ (at) = DKL[P (sτ |at, st)||P (s|C)] (3)
= − H[P (sτ |at, st)]︸ ︷︷ ︸

Entropy of future states

−EP (sτ |at)[logP (s|C)]︸ ︷︷ ︸
Expected Surprise

As seen in the rearranged objective function of the second line, the agent seeks
to keep future options open while meeting preferences; The entropy of future
possible states is to be maximized while the information-theoretic surprisal ac-
cording to the preference distribution is to be minimized. The conditionalisation
on C specifies a parameterized preference distribution [28].

Definition 4: (EFE in POMDPs). For an agent in a POMDP with preference
distribution P (s|C), P (o|C), the Expected Free Energy of an action for some
given current state st is defined as follows:
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Gτ (at) = EP (sτ |ot,at)H[P (oτ |sτ )]︸ ︷︷ ︸
Ambiguity

+DKL[P (sτ |at, ot)|P (s|C)]︸ ︷︷ ︸
Risk

(4)

= −EP (oτ |at)[DKL[P (sτ |oτ )||P (sτ |at)]]︸ ︷︷ ︸
Intrinsic Value

−EP (oτ ,sτ |at)[logP (o|C)]︸ ︷︷ ︸
Extrinsic Value

With some auxiliary assumptions [11, pg. 10] which are admissible for our pur-
poses, the two formulations of EFE in a POMDP are equivalent, and both contain
a curiosity inducing term and an exploitation term [15]. The first formulation
motivates the agent to minimize the expected entropy of observations given un-
known states and to minimize the divergence between actual states and preferred
states. The second formulation motivates the agent to maximize the expected
informational value of observations while also maximizing the expected log prob-
ability of preferred observations – note how the underbrace does not include the
minus.

2.3 Microeconomics

As this paper investigates an intersection between fields which are generally not
in direct contact, a brief introduction to risk attitudes and lotteries in microeco-
nomics is provided. The origin of these studies can be traced back to the gambling
houses of the 18th century; As early as 1713, Bernoulli employed marginally de-
creasing utility functions to resolve the famous St. Petersburg Paradox [37]. This
paradox asks what amount a rational agent would be willing to pay to enter lot-
tery with an infinite expected value. To answer this question, we utilize lotteries
[8] and risk-attitudes [1] from microeconomics:
Definition 5: (Lottery). A (monetary) lottery is a probability distribution over
outcomes x that are the argument of the utility function. Therefore, a lottery
L can be modelled as an integrable random variable defined by the probability
space triplet consisting of a sample space, sigma algebra, and probability mea-
sure: (Ω,F, µ)
A decision maker then evaluates their preference over a set of lotteries according
to their utility function U(x) ∈ R+ where x ∈ F. The expected utility of each
lottery then induces a preference ordering over lotteries. For example, the strong
preference relation L1 ≻ L2 means that lottery L1 is more preferable to lottery
L2. Classically, this ordering is in line with the von Neumann-Morgenstern ax-
ioms of completeness, transitivity, continuity, and independence [24]. Any such
preference ordering is also maintained for any positive affine transformation of
U(x) [8]; [24]. By juxtaposing the expected utility E[U(L)] of a lottery against
the utility of the expectation of the same lottery U(E[L]), risk aversion can be
defined.
Definition 6: (Risk Aversion). An agent with some utility function U(·) is con-
sidered risk averse if for some lottery the following preference relation holds:
U(E[L]) ≻ U(L)



6 Noé Kuhn

This preference relation occurs if an agent’s utility function is concave, i.e the
marginal utility is decreasing. A risk loving agent conversely acts according to
a convex utility function, and a risk neutrality is associated with a linear utility
function. Accordingly, Bernoulli used lotteries and a log-utility function to re-
solve the St. Petersburg paradox, the solution of which is relegated to Appendix
A for readers unfamiliar with the problem – the pertinent point is that concave
utility functions on set rewards are extensively studied in economics.

3 Subsumption Examples

Equipped with an understanding of marginal utility and lotteries, we can now
tackle two manifest exhibits of the subsumption thesis by proponents of active in-
ference. Further, an illustrative MDP demonstrates the divergence in behaviour
between active inference and expected utility. The results of the simulated be-
haviour are directly taken from the discussed papers. These exhibits then moti-
vate the bridging in section 4 later.

The first [33] and second [11] exhibit both concern agency in a classical T-
maze: A simple forked pathway in which the agent can either go left or right
(See Figure 1 below). This environment is also called “Light” in POMDP lit-
erature [20]. The agent-environment dynamics are modeled using a POMDP;
Unbeknownst to the agent, the reward is either in the left or right arm. The
agent can also go down to observe a cue indicating the definite location of the
reward. Going down the ‘wrong’ arm of the fork leads to a punishment equal
to the negative reward, say −1. The performance of the agency is evaluated by
the reward attainment of the agent within a two period horizon. At this point
however, the setup of the first and second exhibit diverge crucially.

Fig. 1. An agent in a T-Maze with unknown context. Illustration from [33]

In the first exhibit [33], the right and left fork are absorbing states – the
agent cannot leave them upon entry. As such, the agent cannot correct going
down the wrong arm in the first period by the second period. Given this setup,
the expected utility agent performs very poorly, while the active inference is
cue-seeking and therefore performs optimally [33, pg. 138]. The expected utility
agent performs so poorly because supposedly “the agent does not care about
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the information inferred and is indifferent about going to the cue location or
remaining at the central location”[33, pg. 137]. This appears reductive, as an
expected utility agent facing two lotteries will behave the same as the active
inference agent. Consider the risky lottery L1 which is the result of a gambling
and non-information seeking strategy. Contrast this lottery with L2, which is the
degenerate lottery of investigating the cue first and going to the reward in the
second period. Assuming even just a linear utility function U(R) = R(s), then
U(L1) = 0.5 · 1 + 0.5 · −1 = 0 and U(L2) = 1 · 1. Clearly, the expected utility
agent holds a preference which motivates cue-seeking behaviour: L2 ≻ L1.

Regarding the second exhibit [11], there is a slight difference in the setup.
The arms of the fork are no longer absorbing states, which allows for mistake
correction and a cumulative reward of 2 over two periods. Now, the focus of [11]
isn’t anymore on performance comparison but instead achieving the desiderata
of risk-aversion and information sensitivity [11, pg. 10]. While the agency ac-
cording to active inference meets the desiderata, the expected utility agent does
not. However, risk aversion and the resulting information sensitivity can easily
be induced by using a concave utility function. Consider again the risky lottery
L1 and a cue-seeking lottery L2. Assuming a utility function taking the reward
as argument U(R) = R(s)c where c ∈ R+, then U(L1) = 0.5 · 0 + 0.5 · 2c and
U(L2) = 1c. Accordingly if c < 1, then L2 ≻ L1, and only if c = 1, then indeed
the agent is indifferent L1 ∼ L2. As is evident, it is the risk-neutral agent who
does not meet the desiderata.

Finally, consider the following single-step MDP created for illustrative pur-
poses. A paraglider stands at the foot of two steep mountains s1, s2 separated
by a chasm s3 and must decide which one to climb. While still risky, the path
up mountain 1 is far more secure than the path up mountain 3. However, moun-
tain 2 is taller than mountain 1 and therefore allows for a more enjoyable flight.
This decision process can aptly be modeled in an MDP (See Figure 2 below).
Note that the subscript here does not relate to the period. Taking a1 gives
{P (s1|a1), P (s2|a1), P (s3|a1)} = {0.6, 0, 0.4}, and a2 gives {P (s1|a2), P (s2|a2),
P (s3|a2)} = {0, 0.4, 0.6}. The height in kilometers gives the reward function
{R(s1), R(s2), R(s3)} = {1, 1.5, 0}. With the MDP sufficiently specified, we can
compare the agency of an active inference agent and an expected utility agent.
See Appendix B for details on the resulting expected utility and free energy.

The active inference agent is indifferent between the two actions as both
actions result in the same EFE – equation (3). For expected utility however,
only the linear utility function agent is indifferent; The risk averse agent prefers
the safer mountain and the risk loving agent prefers the riskier mountain due
to the concavity or convexity of the utility function respectively. As such, this
simple but valid MDP provides a setup in which specified expected utility may
better meet the desiderata than the active inference agent.

It should be clear by now that wrapping a utility function around the rewards
is a well-studied and principled approach which differs from simply including
“ad-hoc exploration bonuses in the reward function” [11, pg. 2]. Introducing
non-linearity over the rewards seems to lead to an impasse in the comparison
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Fig. 2. ‘Paraglider’ MPD with states, actions, transition probabilities, and rewards

between expected utility. The most direct case for comparing and subsuming
expected utility [10] only considers a linear utility function (U(·) = R(·)) for the
expected utility agent. Even if non-linearity for expected utility were considered
in [10], it appears unclear to us as to how the resulting agency – more specifically
the induced careful and explorative aspect – could be compared in a generalized
manner.
To resolve this issue of incommensurability, we would like to draw attention
to physical and biological constraints on agents which have motivated active
inference. For example, tractability is a central concern for active inference as
evidenced by the appeal to variational Bayes. Luckily, there already exists an
account of agency which imbues expected utility with constraints: ITBR [26],[16].
The connection between ITBR and active inference in an MDP has briefly been
explored before [25]. We seek to now clearly establish this conceptual bridge
between microeconomics and active inference for both MDPs and POMDPs.

4 From expected utility to active inference via ITBR

4.1 In MDPs

Let us first establish the bridge between expected utility and active inference in
an MDP. Essentially, both objective functions can both be transformed into the
“Divergence Objective” [21]:

a∗ = argmin
a∈A

DKL[P (sτ |at)||P ∗(s)] (5)

Where a∗ is the optimal action and P ∗(s) is a preference distribution over states,
for example, a softmax or Gibbs distribution. Note the immediate similarity to
the EFE objective function for MDPs (3) – here conditionalisation on the cur-
rent state st is omitted for brevity as we consider a single step.

To get there from expected utility, we can consider the following Lagrangian
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constraints on the utility objective function [16, pg. 3]. Let P (·) be the prior
distribution over relevant elements of the MDP, and Q(·) the posterior distri-
bution after a limited search or ‘bounded deliberation; see [26] for details. The
deliberation bound is given as an information-theoretic quantity e.g nats or bits;
hence the name information-theoretic bounded rationality. Let K ∈ R+ nat –
although the information theoretic unit base nat is arbitrary:

DKL[Q(sτ |at)||P (sτ |at)] ≤ K (6)

The constraint of equation 6 can be interpreted as a bound on the search for the
optimal action. The second constraint of (6) means that the agent is uncertain
about the ‘true’ transition probabilities in the MDP. This constraint gives us the
following ITBR free energy objective function [25]:

FITBR(Q) =
∑
s

Q(s|a)
(
U(s, a)− 1

β
log

Q(s|a)
P (s|a)

)
(7)

This functional is to be maximized (Q∗(s|a)) with given parameter β ∈ R+. See
Appendix C for how the maximizing solution is derived. We can now use the
maximizing argument of the objective function (7) as a ‘goal’ for the agent, or
a preference distribution over states P ∗(s). Like in active inference, we assume
that the preference distribution over states is independent of the action taken to
get there. This preference is given by the Gibbs distribution:

P ∗(s|a) = P (s|a) · eβU(s,a)

Zβ
→ P ∗(s) (8)

We can now solve (8) for U(s, a) and input this into (7) to obtain the divergence
objective (5):

a∗ = argmin
a∈A

−DKL[Q(sτ |at)||P ∗(s)] + constant (9)

Where the constant is irrelevant for optimization purposes. The details of this
derivation relegated to Appendix D. Evidently, the same optimal agency arises
in an MDP for an active inference and ITBR agent. Next, let us bridge expected
utility to active inference in a POMDP.

4.2 In POMDPs

Analogously to the MDP setting, we can transform the ITBR objective to get
to the divergence objective function for POMDPs. Fortunately, this divergence
objective has previously been formulated as the “Free Energy of the Expected
Future” (FEEF): [22, pg. 10]. Again, this objective function motivates a minimal
posterior divergence from a preference distribution, now jointly over states and
observations:

a∗ = argmin
a∈A

DKL[P (oτ , sτ |at)||P ∗(o, s)] (10)
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To attain this expression, we can formulate a new ITBR objective in the POMDP
framework [16] and transform it analogously to the MDP case before. We can
again consider the information-theoretic bound V ∈ R+nat :

DKL[Q(sτ , oτ |at)||P (sτ , oτ |at)] ≤ V (11)

Considering these constraints, we can express the ITBR Free energy objective
function again:

FITBR(Q) =
∑
s

Q(o, s|a)
(
U(o, s, a)− 1

β
log

Q(o, s|a)
P (o, s|a)

)
(12)

Where the solution is again the Gibbs distribution:

P ∗(o, s|a) = P (o, s|a)eβU(o,s,a)

Zβ
(13)

By combining (13) and (12) we get the resultant minimization objective, where
the resultant optimal agency is of course the same as that of the divergence
minimization objective (10):

a∗ = argmin
a∈A

−DKL[Q(oτ , sτ |at)||P ∗(o, s)] + constant (14)

Which again intuitively motivates the agent to have the inferred posterior dis-
tribution given the action be as close as possible to the prior preference distribu-
tion over states. It is crucial to note however that this is not the same objective
function as EFE in POMDPs (4)! To get from the divergence objective (10)
for POMDPs to EFE (4), we can follow the steps taken in [22]; for a detailed
discussion of the relationship between the divergence objective and EFE, the
reader should also consult [21], [22]. Essentially, the divergence objective can
also be decomposed into an exploitative and explorative term. However, while
the explorative term is equal to that of active inference, the divergence objective
additionally further encourages the agent to increase posterior entropy of obser-
vations given latent states – to keep options open. Note that in the formulation
below, both objective functions below (15), (4) are to be minimized.

− FITBR = DKL[Q(o, s|a)||P ∗(o, s)] (15)
= EQ(s|a) [ DKL[Q(o|s)||P ∗(o)] ]︸ ︷︷ ︸

Extrinsic Value

−EQ(o|a) [ DKL[Q(s|o)||Q(s|a)] ]︸ ︷︷ ︸
Intrinsic Value

G = −EQ(o,s|a)[logP (o|C)]︸ ︷︷ ︸
Extrinsic Value

−EQ(o|a) [ DKL[Q(s|o)||Q(s|a)] ]︸ ︷︷ ︸
Intrinsic Value

(4)

Whereby the relationship between G and −FITBR is as follows:

G− EQ(o|a)H[Q(o|s)] = −FITBR (16)
Comparing then the decomposed divergence objective to active inference, in the
pursuit of extrinsic value the boundedly rational utility agent seeks to addi-
tionally keep posterior options open compared to the active inference agent –
similarly to the agency in an MDP.
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4.3 The Bridge summarized

Let us reconsider the entire journey from expected utility to active inference so
as to not lose sight of the forest in front of all the trees. First, simply incor-
porate a utility function into the reward maximizing objective function (1) to
get an expected utility agent. Then, impose information-theoretic deliberation
constraints on the optimization process (6). Consequently, the agent faces a La-
grangian optimization problem (7). The solution to this optimization problem
is taken as a preference distribution for the agent. Combining the preference
distribution and the objective function results in the divergence objective [21],
which can then be compared with the active inference objective function. In an
MDP, the resultant agency is the exact same (5). However, in a POMDP, the
objective functions differ (16).
Bar this difference, one key aspect must be elucidated for the extrinsic value
terms in both MDPs and POMDPs. Although the intrinsic value term is the
same for the different objective functions, the two prior preference distributions
P ∗(s) of ITBR (8) and P (s|C) of active inference (3) are not necessarily the
same. For β = 1, if we consider P (s|C) as a Gibbs distribution as per [10, pg.
9];[28, pg. 134], then the two preference distributions are only equal if either
the utility function is linear, or if active inference admits agent-specific utility
functions (17); An admission which prima facie seems irreconcilable with the
physicalist/nonsubjectivist philosophy behind active inference. This larger dis-
cussion is, however, to be relegated to a later paper.

P ∗(s) =
eU(s)∑
s
eU(s)

and P (s|C) =
eR(s)∑
s
eR(s)

(17)

Where optimal behaviour in an MDP, i.e a∗, is the same for both accounts of
agency only if U(s) is a positive affine transformation of R(s).

5 Conclusion

Having formalized the bridge from expected utility to active inference, we can
re-evaluate the subsumption thesis. Simple reward-oriented agency (U(·) = R(·))
can be effectively subsumed by active inference in MDPs, and if exact Bayesian
inference is used, also in POMDPs [10]. However, as shown in section 2., ex-
pected utility in microeconomics uses utility functions that take rewards as
arguments. As seen in section 3. then, there are various examples where the
subsumption argument does not hold up; Expected utility acts the same as ac-
tive inference, or under specific circumstances, may meet desiderata of agency
even more. In section 4., we establish the formal bridge between expected utility
and active inference. By using ITBR [26], we can directly compare the objective
functions of (bounded) expected utility and active inference. Upon considering
agent-environment assumptions, the divergence objective [21] is used as a refer-
ence point to compare the two accounts of agency. It is demonstrated that in an
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MDP, ITBR and active inference lead to the same agency [25]. In a POMDP,
ITBR is equivalent to the divergence objective, which however differs from the ac-
tive inference objective function [22]. While the explorative/information-seeking
terms are equal, the exploitative/reward-oriented term differs: EQ(o|a)H[Q(o|s)]
must be subtracted from the active inference objective function, and the prefer-
ence distributions are not necessarily equal.

An area where expected utility cannot compete however is in the first prin-
ciples which motivate agency [12], [13] [14], [2], [11]. Still, the debate on what
objective function follows from the first principles is not yet sealed in this flour-
ishing field [22]. Perhaps more intriguing links between brain function and the
physical interpretations of information theory lurk underneath the bridge estab-
lished here. Furthermore, computational simulations [16] and empirical studies
[35] might flesh out the practical comparison between bounded expected utility
and active inference; Computational efficiency has not remotely been addressed
in this paper. Finally, it would be especially interesting for economics to under-
stand how an economy could develop from multiple ITBR or active inference
agents [18]. By integrating interdisciplinary approaches to agency, we aim to
foster a holistic understanding of agency that enriches the roles of both human
and artificial agents in society.
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Appendix

A:

Resolving the St. Petersburg Paradox

Consider a lottery on the outcome of a fair coin toss. Starting at two dollars,
the stake doubles with every subsequent outcome of heads. The game ends once
tails comes up for the first time in the sequence. The expected payout E[L] of
the game is thus infinite:

E[L] =

∞∑
i=1

1

2i
· 2i = ∞

How much would someone pay to participate in this game? Taking a linear utility
function on the payout, the gambler should be willing to pay any amount to enter
the game. Daniel Bernoulli suggested a logarithmic utility function U(x) = ln(x).
Assume the cost of entry is x. Then the expected utility of the lottery has a finite
value; The amount the agent at most would be willing to enter the lottery:

E[U(L)] =

∞∑
i=1

1

2i
· ln(2i) = 2 · ln(2)

Therefore the agent expects finite utility from the payout of the lottery due to
the concavity of the utility function. As such, only a finite amount will be paid
to enter the game.

B:

Expected Utility and Active Inference for the ’Paraglider’ MDP
The single-step MDP is specified as follows. Therefore note that the subscript
does not pertain to the period:

S = s1, s2, s3

A = a1, a2

{P (s1|a1), P (s2|a1), P (s3|a1)} = {0.6, 0, 0.4}
{P (s1|a2), P (s2|a2), P (s3|a2)} = {0, 0.4, 0.6}
{R(s1), R(s2), R(s3)} = {1, 1.5, 0}

Consider an expected utility agent with utility function U(R(s)) = R(s)c where
c ∈ R+. As such,

E[U(a1)] = 0.6 · 1c

E[U(a2)] = 0.4 · 1.5c

For c < 1 → argmax
a∈A

E[U(a)] = a1

For c > 1 → argmax
a∈A

E[U(a)] = a2
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So a risk-averse expected utility agent will scale the smaller but safer mountain.

The active inference agent however is indifferent between the two actions. If we
assume the preference distribution to be a softmax on the rewards, then we can
ignore the normalizing denominator as it is constant w.r.t to action. Therefore
we can write the relevant objective function as:

G(at) = −
∑
s

P (sτ |at) ·R(sτ )−
∑
s

P (sτ |at)log
1

P (sτ |at)

G(a1) = −0.6− 0.3065− 0.366 = G(a2)

→ argmin
a∈A

G(a) = {a1, a2}

Therefore the optimal action of the risk-averse expected utility agent is a subset
of the optimal active inference agency.

C:

Preference distribution derivation

We maximize the ITBR objective function (7) via first order condition.

δFITBR

δQ(s|a)
= U(s, a)− 1

β

(
log

Q(s|a)
P (s|a)

+ 1

)
!
= 0

Solve for Q(s|a), and normalize to attain the Gibbs distribution

Q(s|a) = P (s|a)eβU(s,a)−1 ∝ P (s|a)eβU(s,a)

Q∗(s|a) = P (s|a)eβU(s,a)∑
s
P (s|a)eβU(s,a)

=
P (s|a)eβU(s,a)

Zβ

Which gives us (8)

D:

Getting from ITBR to the divergence objective via the Gibbs distri-
bution.

Solve (8) for U(s, a):

P ∗(s|a) = P (s|a)eβU(s)

Zβ

1

β
ln(P ∗(s|a) · Zβ) = U(s)
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Plug this into the ITBR objective function (12) and consider the maximizing
argument a:

argmax
a∈A

1

β
EQ(s|a)[lnP

∗(s|a) + ln(Zβ)]−
1

β
ln

Q(s|a)
P (s|a)

= argmax
a∈A

EQ(s|a)[lnP
∗(s|a) + ln(Zβ)− lnQ(s|a) + lnP (s|a)]

= argmin
a∈A

EQ(s|a)[−lnP ∗(s|a)− ln(Zβ) + lnQ(s|a)− lnP (s|a)]

= argmin
a∈A

DKL[Q(s|a)||P ∗(s|a)]

Which is the divergence objective for MDPs (5). In a POMDP setting, the deriva-
tion proceeds analogously to obtain the Free Energy of the Expected Future (10).
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