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Abstract

We explore a broad class of values for cooperative games in characteristic function form, known
as compromise values. �ese values efficiently allocate payoffs by linearly combining well-
specified upper and lower bounds on payoffs. We identify subclasses of games that admit
non-trivial efficient allocations within the considered bounds, which we call bound-balanced
games. Subsequently, we define the associated compromise value. We also provide an axioma-
tisation of this class of compromise values using a combination of the minimal-rights property
and a variant of restricted proportionality.

We construct and axiomatise various well-known and new compromise values based on
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1 Introduction

In the theory of cooperative games with transferable utility (TU-games), the analysis of values has

resulted in a large, prominent literature has been developed. A value on a particular class of TU-

games assigns to every game in this class an efficient allocationof the proceeds of the grand coalition

to the individual members of the population. Most prominent is the Shapley value (Shapley, 1953)

and its variations, which is firmly rooted in well-accepted axiomatic characterisations. Other values

are founded on selecting Core imputations, if the Core (Edgeworth, 1881; Gillies, 1959) is non-empty,

such as the Nucleolus (Schmeidler, 1969). In this paper, we investigate an alternative class of values,

known as compromise values.

A compromise value assigns the efficient balance of a given upper bound and lower bound to

any TU-game for which the stated upper and lower bounds are well-defined. �emain precedent of

such a compromise value is the g-value (Tijs, 1981), based on balancing the marginal contributions

as an upper bound and the minimal rights payoffs as a lower bound. �e g-value is well-defined on

the class of semi-balanced games (Tijs, 1981). Further analysis of the g-value as a compromise value

and its axiomatisationon the class of quasi-balanced games has been developed in Driessen and Tijs

(1985); Tijs and Driessen (1987); Tijs (1987); Calvo et al. (1995); Bergantiños and Massó (1996); Bilbao et al.

(2001) and González Dı́az et al. (2005).

Although we restrict our definitions and analysis of compromise values to the realm of cooper-

ative games in characteristic function form with transferable utility, O�en (1990); Borm et al. (1992)

as well as Tijs and O�en (1993) extend the concept of compromise values to other realms such as

non-transferable utility games and bargaining problems.

We investigate the broad class of compromise values that are based on so-called bound pairs

composed of two functionals on the space of all TU-games that satisfy three regularity properties.

�ese three regularity properties are naturally to be expected to be satisfied by functionals that

represent upper and lower bounds on allocations in a TU-game. �is general approach encompasses

the construction method introduced in Sánchez-Soriano (2000), which imposes a more restrictive

covariance property on the upper bound functional.

Our approach allows the identification of a rather broad class of compromise values including

well-known values such as the g-, j-, Egalitarian Division, Gately, Centre of the Imputation Set

(CIS), Proportional Allocation of Non-Separable Contributions (PANSC), and Equal Allocation of

Non-Separable Contributions (EANSC) values. We also introduce a new compromise value, the

Kikuta-Milnor (KM) value based on a lower bound function introduced by Kikuta (1980) and an

upper bound functional considered by Milnor (1952).

Compromise values for a given bound pair are only well-defined on the subclass of bound-

balanced TU-games corresponding to the TU-games that admit efficient allocations between the

given upper and lower bounds. With reference to the g-value introduced by Tijs (1981), this subclass

is that of quasi- and semi-balanced games. We show that the KM-bound pair—based on the bound

functionals introduced by Kikuta (1980) andMilnor (1952)—admits the complete space of TU-games

as the corresponding KM-bound-balanced games. �e other compromise values considered here

usually refer to strict subclasses of the space of all TU-games.

1



We also consider an axiomatisation of any compromise value. �e compromise value with re-

spect to some bound pair is the unique allocation rule that—besides the standard efficiency property—

satisfies two main properties: a form of covariance, known as theMinimal Rights property, and the

Restricted Proportionality property.

Constructing bound pairs and their associated compromise values. We introduce two con-

struction methods for compromise values based on a single, fixed functional. First, we consider

constructing compromise values based on a lower bound functional that adheres to a regularity

property. Specifically, the allocation functional that assigns each player the remaining value a�er

paying all other players their lower bound forms a bound pair with the given lower bound func-

tional. Consequently, the resulting compromise value is entirely determined by the chosen lower

bound. We demonstrate that the Egalitarian Division rule, the CIS-value, and the EANSC-value are

compromise values that can be constructed in this way using appropriately selected lower bound

functionals for the specified construction method.

We show that these lower bound based compromise values can be axiomatised by the Minimal

Rights property as well as an Egalitarian Allocation property that imposes the assignment of an

equal share to all players for lower bound normalised games. �e introduced EgalitarianAllocation

property is more restrictive than the Restricted Proportionality property.

Second, we consider the construction of compromise values based on a given upper bound

functional only. �is construction method follows the framework set out by Tijs (1981) for the g-

value. �is method identifies a minimal rights payoff vector based on the given upper bound on the

payoffs in the TU-game. We show that if the upper bound functional is translation covariant, the

constructed minimal rights payoff vector indeed defines an appropriate lower bound functional to

form a bound pair with the given upper bound functional.

�e considered covariance property on the upper bound functional is less stringent than the

covariance property introduced by Sánchez-Soriano (2000). �is paper considers the same con-

struction method for a corresponding lower bound, which is the minimal rights payoff vector for

the given upper bound. �erefore, our construction method generalizes the construction method

introduced by Sánchez-Soriano (2000). We demonstrate that the g-value and the CIS-value can be

constructed using this method. �is implies that the CIS-value can be constructed from its charac-

teristic lower bound functional as well as its characteristic upper bound functional. �is highlights

the singular nature of the CIS-value as a value that can be constructed from both a lower bound as

well as an upper bound.

Structure of the paper. �e paper first discusses in Section 2 the necessary preliminaries includ-

ing a discussion of the g-value before the main concepts in the definition of compromise values are

introduced.

Section 3 introduces well defined lower- and upper bound pairs, and applies the method of Tijs

(1981) to define the value that assigns to every game on an appropriate subclass of TU-games the

unique efficient allocation on the line segment between these two bounds. �is section also extends

the axiomatisation of the g-value given in Tijs (1987) to the class of all those compromise values, and
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discusses the PANSC-, Gately and KM-values as examples of such compromise values that cannot

be constructed in this way from appropriately chosen lower or upper bounds.

Section 4 introduces the construction of compromise values based on regular lower bound func-

tionals and shows that the Egalitarian Division rule, the CIS-value and the EANSC-value can be

constructed through this method. We provide an axiomatisation of these Lower Bound based Com-

promise (LBC) values that is a variant of the axiomatisation for compromise values in general.

Section 5 discusses the construction of compromise values based on translation covariant upper

bound functionals. We show that the g-value as well as the CIS-value are such Upper Bound based

Compromise (UBC) values.

2 Preliminaries: Cooperative games and values

We first discuss the foundational concepts of cooperative games and solution concepts. Let # =

{1, . . . , =} be an arbitrary finite set of players and let 2# = {( | ( ⊆ # } be the corresponding set

of all (player) coalitions in # . For ease of notation we usually refer to the singleton {8} simply as

8. Furthermore, we use the simplified notation ( − 8 = ( \ {8} for any ( ∈ 2# and 8 ∈ ( as well as

( + 8 = ( ∪ {8} for any ( ∈ 2# and 8 ∈ # \ ( .

A cooperative game with transferable utility—shortly referred to as a cooperative game, or sim-

ply as a game—on # is a function E : 2# → R such that E (∅) = 0. A game assigns to every coalition

a value or “worth” that this coalition can generate through the cooperation of its members. We

refer to E (() as the worth of coalition ( ⊆ # in the game E .

�e class of all cooperative games in the player set # is denoted by

V
#
=

{
E

�� E : 2# → R such that E (∅) = 0
}

(1)

�e class V# forms an (2= − 1)-dimensional linear real vector space.

�e dual of a game E ∈ V# is the game E∗ ∈ V# defined by E∗(() = E (# ) − E (# \ () for all

( ⊆ # .

We use the natural ordering of the Euclidean space V# to compare different cooperative games.

In particular, we denote E 6 F if and only if E (() 6 F (() for all ( ≠ ∅; E < F if and only if E 6 F

and E ≠ F ; and, finally, E ≪ F if and only if E (() < F (() for all ( ≠ ∅.1

One can consider several bases of this linear vector space. For the study of compromise values

the so-called standard base is the most useful. Formally, the standard base is given by the finite

collection of games {1( | ( ⊆ # } ⊂ V# , for every coalition ( ⊆ # defined by2

1( () ) =




1 if ) = (

0 if ) ≠ (

For every player 8 ∈ # let E8 = E ({8}) be their individually feasible worth in the game E . We refer

1We use the same notational convention to compare vectors in arbitrary Euclidean spaces.
2As such the standard base corresponds to the standard base of unit vectors in the Euclidean vector space V# .
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to the game E as being zero-normalised if E8 = 0 for all 8 ∈ # . �e collection of all zero-normalised

games is denoted by V#
0 ⊂ V# .

For any vector of payoffs G ∈ R# we denote G (() =
∑

8∈( G8 for any coalition of players ( ∈ 2# as

the total assigned payoff to a certain coalition of players. As such, G ∈ R# defines a corresponding

trivial additive game G ∈ V# . Hence, the game G ∈ V# assigns to every coalition the sum of

the individual contributions of its members; there are no cooperative effects from bringing players

together in that coalition.

For any cooperative game E ∈ V# and vector G ∈ R# , we now denote by E + G ∈ V# the

cooperative game defined by (E + G) (() = E (() + G (() = E (() +
∑

8∈( G8 for every coalition ( ∈ 2# .

If for some cooperative game E ∈ V# , we let a (E) = (E1, . . . E=) ∈ R
# , then clearly E − a (E) ∈ V#

0 ,

which denotes the zero-normalisation of the game E .

2.1 Game properties and values

We explore well-known properties of games that are required in our analysis. We refer to a game

E ∈ V# as (i) monotonic if E (() 6 E () ) for all (,) ⊆ # with ( ⊆ ) and (ii) superadditive if for all

(,) ⊆ # with ( ∩) = ∅ it holds that E (( ∪) ) > E (() + E () ).

�e marginal contribution—also known as the “utopia” value (Tijs, 1981; Branzei et al., 2008)—of an

individual player 8 ∈ # in the game E ∈ V# is defined by their marginal or “separable” contribution

(Moulin, 1985) to the grand coalition in this game, i.e.,

"8 (E) = E (# ) − E (# − 8). (2)

We call a cooperative game E ∈ V# essential if it holds that

∑

9 ∈#

E 9 6 E (# ) 6
∑

9 ∈#

"9 (E) (3)

�e class of essential games is denoted as V#
�

⊂ V# . �e class of essential game V#
�
is also a linear

subspace of V# .3

A game E ∈ V# is called convex if for all coalitions (,) ∈ 2# it holds that E (( ∪ ) ) + E (( ∩ ) ) >

E (() + E () ) (Shapley, 1971). Driessen (1985) pointed out that a game E ∈ V# is convex if and only

if for all 8 ∈ ( ⊂ ) : E (() − E (( − 8) 6 E () ) − E () − 8). We denote the subclass of convex games by

V
#
�

⊂ V# .

An allocation—also known as a “pre-imputation”—in the game E ∈ V# is any point G ∈ R# such

that G (# ) = E (# ). We denote the class of all allocations for the game E ∈ V# byA(E) = {G ∈ R# |

G (# ) = E (# )} ≠ ∅. We emphasise that allocations can assign positive as well as negative payoffs

to individual players in a game. Furthermore, the set of allocationsA(E) ⊂ R# is a linear subspace

or manifold in the Euclidean vector space R# .

3We remark that in the literature, the term “weakly essential” or “essential” frequently pertains solely to the first

inequality in (3).
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An imputation in the game E ∈ V# is an allocation G ∈ A(E) that is individually rational in the

sense that G8 > E8 for every player 8 ∈ # . �e corresponding imputation set of E ∈ V# is given

by I(E) = {G ∈ A(E) | G8 > E8 for all 8 ∈ # }. We remark that I(E) is a polytope in A(E) for any

cooperative game E ∈ V# . Furthermore, I(E) ≠ ∅ if and only if E (# ) >
∑

8∈# E8 . In particular, this

is the case for essential games.

Definition 2.1 Let V ⊆ V# be some subclass of cooperative games on player set # . A value on V is

a function 5 : V→ R# such that 5 (E) ∈ A(E) for every E ∈ V.

Note that, since every allocation in a game E ∈ V# distributes the total worth E (# ) that is created

in that game, a value is defined to be efficient in the sense that
∑

8∈# 58 (E) = E (# ) for all E ∈ V.

We remark that a value assigns an allocation to every game in the selected subclass, but not nec-

essarily an imputation. We call a value 5 : V→ R# individually rational if for every E ∈ V : 5 (E) ∈

I(E). Hence, an individually rational value on a subclass of games explicitly assigns an imputation

to every game in that subclass. We remark that many of the compromise values considered in this

paper are actually individually rational.

Finally, for some class of gamesV ⊆ V# , a value 5 : V→ R# is translation covariant if 5 (E+G) =

5 (E) + G for any game E ∈ V and vector G ∈ R# .4

2.2 �e g-value

Tijs (1981, 1987) seminally introduced the quintessential compromise value, the g-value. �is value

is explicitly constructed as an allocation that is the balance of a natural upper bound and a con-

structed lower bound. In particular, the considered upper bound is the marginal contribution"8 of

an individual player 8 ∈ # defined by (2). �e marginal contribution vector " (E) forms a natural

upper bound on the payoff to any player in many cooperative games E .

Using the marginal contribution vector" (E) as an upper bound, Tijs (1981) constructed a nat-

ural, corresponding lower bound given by

<8 (E) = max
(⊆# : 8∈(

'8 ((, E) where '8 ((, E) = E (() −
∑

9 ∈(−8

"9 (E) (4)

Tijs (1987) refers to<(E) as the “minimal rights” vector for the game E .

Semi-balanced games Following Tijs (1981), we call a game E ∈ V# semi-balanced if for every

coalition ( ⊆ # it holds that

E (() +
∑

9 ∈(

E (# − 9) 6 |( | E (# ) (5)

�e class of semi-balanced games is denoted by V#
(

⊂ V# .

�e upper bound" and the lower bound< defined above form a bound pair (<,") in the sense

that for every semi-balanced game E ∈ V#
(
: <(E) 6 " (E),<(E −<(E)) = 0 and " (E −<(E)) =

" (E) −<(E).

4�is property is referred to as S-equivalence by Tijs (1981).
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Tijs (1981) already showed that there is a close relationship between semi-balanced games and

the introduced bound pair (<,"). Indeed, he showed that

V
#
( =

{
E ∈ V#

�����
∑

8∈#

<8 (E) 6 E (# ) 6
∑

8∈#

"8 (E)

}

Tijs defined the g-value as the value on the class of semi-balanced games V#
(

as the allocation

that balances < and " . Hence, the g-value of a semi-balanced game E ∈ V#
(

is now given by

g (E) = _E<(E) + (1 − _E)" (E), where _E ∈ [0, 1] is determined such that
∑

8∈# g8 (E) = E (# ). It can

be computed that for every E ∈ V#
(
and 8 ∈ # :

g8 (E) =<8 (E) +
"8 (E) −<8 (E)∑

9 ∈#

(
"9 (E) −< 9 (E)

)
(
E (# ) −

∑

9 ∈#

< 9 (E)

)
(6)

In this paper we set out to develop a generalisation of the notion introduced by Tijs (1981) to general

compromise values based on a large class of bound pairs. �is is discussed in the next section.

An interesting and successful application of the g-value is that to two-sided assignment games.

Núñez and Rafels (2002) show that the g-value corresponds exactly to the fair division point—defined

as the average of the buyer and seller optimal Core payoff vectors.

3 Compromise Values

We aim to generalise the construction method on which the g-value is founded to arbitrary bound

pairs on well-defined subclasses of cooperative games. In particular, we aim to find bound pairs for

which this method results in meaningful compromise values. �e determinants of this construction

are the chosen lower and upper bounds, which are determined by well-chosen functionals on the

relevant class of cooperative games.

3.1 Bound pairs

�e next definition incorporates such a construction over the broadest possible collection of classes

of cooperative games for which the resulting compromise value is feasible.

Definition 3.1 Let V ⊆ V# be some class of games on player set # . A pair of functions (`, [) : V→

R
# × R# is a bound pair on V if these functions satisfy the following properties:

(i) For every E ∈ V : ` (E) 6 [ (E), and

(ii) For every E ∈ V : E − ` (E) ∈ V and the following two properties hold:

(a) For every E ∈ V : ` (E − ` (E)) = 0, and

(b) For every E ∈ V : [ (E − ` (E)) = [ (E) − ` (E).

A bound pair (`, [) is proper on V if there exists at least one game E ∈ V with ` (E) < [ (E) and it is

strict on V if there exists at least one game E ∈ V with ` (E) ≪ [ (E).
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�is definition of a bound pair introduces a pair of bound functionals on the vector space of coop-

erative games. �e function ` can be interpreted as a lower bound for every game in the subclass

V ⊆ V# , while the function [ assigns an upper bound. �e three properties introduced in the

definition of a bound pair ensure that these functions behave as expected from representing lower

and upper bounds.

�e first property (i) imposes the natural order that an upper bound is at least as large as the

lower bound. Properties (ii-a) and (ii-b) are versions of covariance. �ese properties restrict the

choice of bound pairs considerably.

�e intuition of property (ii-a) is based on the interpretation of ` as a proper lower bound. For

any E ∈ V, the derived game E − ` (E) ∈ V# is defined by (E − ` (E)) (() = E (() −
∑

9 ∈( ` 9 (E) for

coalition ( ⊆ # . Hence, E − ` (E) assigns to a coalition the originally generated worth minus the

assigned worth of the lower bound to all members of that coalition. It is natural to require that the

natural lower bound of 0 ∈ R# is assigned to this reduced game. It excludes the assignment of a

constant non-zero allocation as a lower bound.

Example 3.2 Consider any<0 ∈ R# and let<0 : V# → R# be the corresponding constant func-

tion given by <0 (E) = <0 for every E ∈ V# . We remark that the function <0 does not define a

properly configured lower bound as defined above unless<0
= 0. Indeed,<(E −<(E)) =<0

≠ 0 if

and only if<0
≠ 0. Hence, we conclude that a constant lower bound violates property (ii-a) in the

definition above, unless it is the zero lower bound.

On the other hand, the zero lower bound `0 defined by `0 (E) = 0 for all E ∈ V# is a natural lower

bound that can be part of a proper bound pair such as is the case for the PANSC value discussed in

Section 3.3.1. �

Property (ii-b) in the definition of a bound pair links the upper bound to the lower bound in its

functionality. In particular, the upper bound of the derived game E−` (E) ∈ V is simply the assigned

upper bound to the original game E minus the allocated lower bound payoffs. We remark that this

property can be interpreted as a specific form of (translation) covariance.

Example 3.3 With reference to Example 3.2, we note that for the zero lower bound `0 any upper

bound [ : V# → R# with [ (E) > 0 for all E ∈ V# forms a proper bound pair on the whole game

space V# as defined in Definition 3.1. �is allows non-linear upper bounds to be combined with

this particular zero lower bound. �

On the other hand, some rather natural pairs of bounds might not form proper bound pairs.

Example 3.4 Consider the lower bound a that assigns to every game E ∈ V# the vector of individ-

ual worths a (E) = (E1, . . . , E=).

Considering the upper bound" with" (E) = ("1 (E), . . . , "= (E) ) that assigns the vector ofmarginal

contributions to E , (a,") is a proper bound pair on the class of essential games V#
�
satisfying all

properties of Definition 3.1.

On the other hand, the natural upper bound [0 (E) = (E (# ), . . . , E (# ) ) does not form a proper

bound pair with a on many meaningful classes of games. Although properties (i) and (ii-a) might

7



be satisfied for a large class of games, (a, [0) fails property (ii-b) for any non zero-normalised game

E ∈ V# , since a (E) ≠ 0,

[0 (E − a (E) ) =

(
E (# ) −

∑

8∈#

E8, . . . , E (# ) −
∑

8∈#

E8

)

≠ (E (# ) − E1, . . . , E (# ) − E=) = [0 (E) − a (E).

�is example shows that even natural lower and upper bounds cannot necessarily always be com-

bined properly into bound pairs. �

Linear bound pairs All bound pairs considered in this paper are actually linear in the sense that

they are linear functionals on the space of all games V# . �is simply means that these bounds can

be wri�en as weighted sums of coalitional worths assigned in the particular game E ∈ V# under

consideration.

Formally, a function 5 : V# → R is linear if for every game E ∈ V# and every player 8 ∈

# : 58 (E) = U8 · E for some U8 ∈ V# and the operator “·” refers to the inner product on V# as a

Euclidean vector space. Hence, we can also write 58 (E) =
∑

(⊆# U8
(
E (() for every 8 ∈ # and E ∈ V# ,

using the notation U8
(
= U8 (() for every ( ⊆ # .

Definition 3.5 A pair of functions (`, [) : V# → R# ×R# is a linear bound pair if for every 8 ∈ #

there exist `8 , [8 ∈ V# with `8 (E) = `8 · E and [8 (E) = [8 · E such that

`8 =
∑

9 ∈#

[ ∑

) : 9 ∈)

`8)

]
` 9 =

∑

9 ∈#

[ ∑

) : 9 ∈)

[8)

]
` 9 (7)

�e next proposition shows that the naming of a pair of linear functions as a “bound pair” in the

definition above is justified since for every linear bound pair there is a nonempty linear subspace

of +# such that this pair is indeed a bound pair.

Proposition 3.6 Every linear bound pair (`, [) is a bound pair on the non-empty linear subspace

V(`, [) = {E ∈ V# | ` (E) 6 [ (E)} ≠ ∅ of V# .

Proof. Let (`, [) be a linear bound pair satisfying the properties as given.

First, we note that linearity of the two functions ` and [ implies that for every E,F ∈ V(`, [)

and _ ∈ R it holds that for every player 8 ∈ # : `8 (_E + F ) = `8 · (_E + F ) = _`8 · E + `8 · F =

_`8 (E) + `8 (F ) 6 _[8 (E) +[8 (F ) = [8 (_E +F ), which shows the linearity of V(`,[) as a subspace of

V
# . Non-emptiness follows from E0 = 0 ∈ V(`,[). �is shows that (`, [) indeed satisfies Definition

3.1(i) on V(`, [).

Second, we show that (`, [) satisfies Definition 3.1(ii-a) on V# . Due to the linearity of ` we only

have to show the desired property for every standard base game 1( ∈ V# , ( ∈ 2# .
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Let ( ⊆ # . �en we derive for every player 8 ∈ # that

`8 (1( − ` (1( ) ) = `8 · 1( − `8 · ` (1( ) = `8( −
∑

) ⊆#

`8)

(∑

9 ∈)

`
9
(

)

= `8( −
∑

9 ∈#

[ ∑

) ⊆# : 9 ∈)

`8)

]
`
9
(
= `8( − `8( = 0

using (7).

�ird, to show that (`, [) satisfies Definition 3.1(ii-b) on V# , we again can restrict ourselves to

checking this property for all base games. Take 1( ∈ V# for some ( ∈ 2# . Now, for every player

8 ∈ # :

[8 (1( − ` (1( ) ) = [8 · 1( − [8 · ` (1( ) = [8( −
∑

) ⊆#

[8)

(∑

9 ∈)

`
9
(

)

= [8( −
∑

9 ∈#

[ ∑

) ⊆# : 9 ∈)

[8)

]
`
9
(
= [8( − `8( = [8 (1( ) − `8 (1( )

using (7). �is shows property (ii-b) of Definition 3.1 on V# .

Bound balanced games �e following proposition clarifies further when bound pairs are mean-

ingful. Consider (`, [) : V→ R# × R# to be a bound pair on some class of games V ⊆ V# and let

E ∈ V. �en we define

Q(E ; `, [) = {G ∈ A(E) | ` (E) 6 G 6 [ (E) } (8)

as the class of allocations of E that are bound by ` (E) and [ (E).

Proposition 3.7 Let (`, [) : V→ R# ×R# be a bound pair on V ⊆ V# and let E ∈ V. For the game

E the set of (` (E), [ (E))-bound allocations is non-empty if and only if the sums of the lower bound- and

upper bound payoffs are lower- and upper bounds for E (# ), i.e.,

Q(E ; `, [) ≠ ∅ if and only if
∑

8∈#

`8 (E) 6 E (# ) 6
∑

8∈#

[8 (E). (9)

Proof. Let (`, [) be a bound pair on V ⊆ V# and let E ∈ V.

First, assume that Q(E ; `,[) ≠ ∅. Let G ∈ Q(E ; `, [). �en ` (E) 6 G 6 [ (E). Moreover, G ∈ �(E)

implies that G (# ) = E (# ). �erefore,
∑

8∈# `8 (E) 6 G (# ) = E (# ) 6
∑

8∈# [8 (E).

Second, assume that
∑

8∈# `8 (E) 6 E (# ) 6
∑

8∈# [8 (E). By Definition 3.1(i), ` (E) 6 [ (E).

�en it is obvious that there exists some G ∈ R# such that (i)
∑

8∈# G8 = E (# ) and (ii) ` (E) 6 G 6

[ (E). Clearly, G ∈ & (E ; `, [) and, thus, & (E ; `, [) ≠ ∅.

Together, this shows (9).

Proposition 3.7 gives rise to the introduction of the subclass of cooperative games for which the set

9



of bound allocations is non-empty for a given bound pair.

Definition 3.8 Let (`, [) be a bound pair on V ⊆ V# . �e subclass of (`, [)-balanced games is

defined by

B(`, [) =

{
E ∈ V

�����
∑

8∈#

`8 (E) 6 E (# ) 6
∑

8∈#

[8 (E)

}
(10)

Equivalently, by Proposition 3.7, the class of (`, [)-balanced games consists of those games E ∈ V for

which Q(E ; `, [) ≠ ∅.

�e introduction of the subspace of (`, [)-balanced games gives rise to the question whether com-

promise points define a value on this class that assigns the corresponding compromise point to each

game.

Proposition 3.9 Let (`, [) be a bound pair onV ⊆ V# such that the corresponding subclass of (`, [)-

balanced games B(`, [) ⊆ V is non-empty. �en for every (`, [)-balanced game E ∈ B(`, [) :

If ` (E) < [ (E), it holds that

W (E ; `, [) =
E (# ) −

∑
8∈# `8 (E)∑

8∈# ([8 (E) − `8 (E) )
[ (E) +

∑
8∈# [8 (E) − E (# )∑

8∈# ([8 (E) − `8 (E) )
` (E) ∈ Q(E ; ` (E), [ (E) ) (11)

and, if ` (E) = [ (E), it holds that

W (E ; `, [) = ` (E) = [ (E) ∈ Q(E ; ` (E),[ (E) ) (12)

�e map W (·; `, [) : B(`,[) → R
# defines a value on B(`, [), satisfying

∑
8∈# W8 (E ; `,[) = E (# ) for

every E ∈ B(`,[).

�e proof of Proposition 3.9 is trivial and is, therefore, omi�ed.5 We refer to the value W (·; `, [) on

B(`, [) introduced in Proposition 3.9 as the (`, [)-compromise value.

3.2 An axiomatic characterisation of compromise values

We continue our discussion of compromise values by constructing an axiomatic characterisation of

all compromise values based on bound pairs as introduced in Definition 3.1.

In particular, we are able to show that the axiomatisation of the g-value seminally developed

by Tijs (1981) can be extended to any arbitrary compromise value. �e next theorem provides a

complete characterisation of compromise values in terms of the associated bound pair.

�eorem 3.10 Let (`, [) be a bound pair on V ⊆ V# and let B(`, [) ⊆ V be the corresponding

subclass of (`, [)-balanced games.

�en the (`, [)-compromise value W (·; `, [) is the unique value 5 : B(`, [) → R
# which satisfies the

following two properties:

5�e proof can be obtained from the authors on request.

10



(i) Minimal rights property:

For every E ∈ B(`, [) : 5 (E) = 5 (E − ` (E)) + ` (E).

(ii) Restricted proportionality:

For every game E ∈ B(`, [) with ` (E) = 0 there exists some _E ∈ R such that 5 (E) = _E [ (E).

Proof. Let (`, [) be a bound pair on V ⊆ V# and let B(`, [) ⊆ V be the corresponding subclass of

(`, [)-balanced games.

We show that W (·; `, [) satisfies the properties stated in the assertion. First, note that W (·; `, [) is a

value, since it is efficient, i.e.,
∑

8∈# W8 (E ; `,[) = E (# ) for every E ∈ B(`, [).

Second, with reference to Proposition 3.9, W (·; `, [) satisfies restricted proportionality on B(`,[) ⊆

V
# . Indeed, if ` (E) = 0 for E ∈ B(`, [), it follows that

W (E ; `, [) =
E (# )∑

8∈# [8 (E)
[ (E)

�ird, to show the minimal rights property, let E ∈ B(`, [). �en by Definition 3.1, ` (E − ` (E)) = 0

and [ (E − ` (E)) = [ (E) − ` (E). We distinguish two cases:

If ` (E) = [ (E), then [ (E − ` (E)) = 0 = ` (E − ` (E)). Hence, by definition of W , for some _1 ∈ [0, 1] :

W (E − ` (E); `, [) = _1[ (E − ` (E)) + (1 − _1)` (E − ` (E)) = 0

�erefore, W (E ; `, [) = ` (E) = W (E − ` (E); `, [) + ` (E).

If ` (E) < [ (E), we have from ` (E − ` (E)) = 0 and [ (E − ` (E)) = [ (E) − ` (E) by (11) that

W (E − ` (E); `, [) =
E (# ) −

∑
8∈# `8 (E) −

∑
8∈# `8 (E − ` (E))∑

8∈# ([8 (E − ` (E)) − `8 (E − ` (E)) )
[ (E − ` (E))

=
E (# ) −

∑
8∈# `8 (E)∑

8∈# ([8 (E) − `8 (E)) )
[[ (E) − ` (E) ]

Hence,

W (E − ` (E); `, [) + ` (E) =
E (# ) −

∑
8∈# `8 (E)∑

8∈# ([8 (E) − `8 (E)) )
[ (E) +

[
1 −

E (# ) −
∑

8∈# `8 (E)∑
8∈# ([8 (E) − `8 (E)) )

]
` (E)

=
E (# ) −

∑
8∈# `8 (E)∑

8∈# ([8 (E) − `8 (E)) )
[ (E) −

E (# ) −
∑

8∈# [8 (E)∑
8∈# ([8 (E) − `8 (E)) )

` (E)

= W (E ; `, [).

�is shows that the compromise value W satisfies the minimal rights property.

Next, we show that if a value 5 : B(`,[) → R
# satisfies the two stated properties, it necessarily

has to be the corresponding compromise value.

Combining the two properties for any E ∈ B(`, [) we derive that

5 (E) = 5 (E − ` (E)) + ` (E) = _ [ (E − ` (E)) + ` (E)

11



for some _ ∈ R where the first equality follows from the minimal rights property and the second

equality from restricted proportionality. Using [ (E − ` (E)) = [ (E) − ` (E) we subsequently conclude

that

5 (E) = _ [ (E) + (1 − _)` (E).

If ` (E) = [ (E), it follows immediately that 5 (E) = ` (E) = W (E ; `, [).

�is leaves the case that ` (E) < [ (E). Using the efficiency of 5 (E), it holds that
∑

8∈# 58 (E) = E (# ).

Together with
∑

8∈# `8 (E) 6 E (# ) =
∑

8∈# 58 (E) 6
∑

8∈# [8 (E) and ` (E) < [ (E) it follows that

∑

8∈#

58 (E) = _
∑

8∈#

[8 (E) + (1 − _)
∑

8∈#

`8 (E) = E (# )

implying that

_

(∑

8∈#

([8 (E) − `8 (E)

)
= E (# ) −

∑

8∈#

`8 (E)

Hence,

_ =
E (# ) −

∑
8∈# `8 (E)∑

8∈# ([8 (E) − `8 (E))

showing that 5 (E) = W (E ; `, [).

3.3 �ree illustrations of compromise values

To elucidate and refine the concepts explored in the preceding discussion, we examine three com-

promise values. Notably, the first two values, PANSC and Gately values, have been previously

examined in the literature. In contrast, the KM-value represents a novel contribution, emerging

from the integration of a plausible upper and lower bound, applicable over the entire space of all

games V# .

3.3.1 �e PANSC value

Considering the zero vector as the chosen lower bound and the marginal contributions vector as

the chosen upper bound, the resulting compromise value is the Proportional Allocation of Non-

Separable Contributions (PANSC) value. �is compromise value has been studied extensively by

van den Brink et al. (2023).

�e PANSC value assigns to every player a payoff that is proportional to the player’s marginal

contribution to the total wealth generated in the game. Formally, for the game E ∈ V# with
∑

9 ∈# "9 (E) ≠ 0 and player 8 ∈ # , the PANSC value is defined by

PANSC8 (E) =
"8 (E)∑

9 ∈# "9 (E)
E (# ). (13)

We claim that the PANSC value corresponds actually to the (`0, ")-compromise value, where

12



`0 (E) = 0 and" (E) = ("1 (E), . . . , "= (E) ) for every E ∈ B(`0, ") with

B(`0, ") =

{
E ∈ V#

����� 0 6 E (# ) 6
∑

9 ∈#

"9 (E)

}
(14)

We remark that this class of cooperative games includes the set of non-negative essential games.

It is easy to show that PANSC: B(`0, ") → R# is the unique value 5 on B(`0, ") such that for

every game E ∈ B(`0, ") there exists some _E > 0 with 5 (E) = _E " (E).

3.3.2 �e Gately value

Another example of a compromise value is the Gately value initially proposed by Gately (1974) and

further developed by Li�lechild and Vaidya (1976); Charnes et al. (1978); Staudacher and Anwander

(2019) and Gilles and Mallozzi (2024).

�e Gately value can be understood as the compromise value based on the bound pair (a,"),

where, for every E ∈ V# , a (E) = (E1, . . . , E=) is the vector of individual payoffs and " (E) =

("1 (E), . . . , "= (E)) is the vector of marginal contributions. �e pair (a,") indeed forms a bound

pair6 on the generated class of (a,")-balanced gamesB(a, "), which is exactly the class of essential

games V#
�
.

�e corresponding (a, ")-compromise value on B(a,") = V#
�
is the Gately value given by

68 (E) = E8 +
"8 (E) − E8∑

9 ∈#

(
"9 (E) − E 9

)
(
E (# ) −

∑

9 ∈#

E 9

)
(15)

for every essential game E ∈ V#
�
and player 8 ∈ # .7

�e Gately value has some interesting properties. First, the Gately value is the value at which

the so-called propensities to disrupt for all players are minimal (Gately, 1974). �is refers to the

interpretation that the Gately value is the equilibrium outcome of a bargaining process over the

allocation of the generated worths in the cooperative game.

Second, the Gately value is self-dual in the sense that the Gately value of the dual game is equal

to the Gately value of the original game (Gilles and Mallozzi, 2024, Proposition 3.9).

�ird, the Gately value is in the Core of every three player cooperative game as shown by

(Gilles and Mallozzi, 2024, �eorem 4.2). For games with more than three players, this might not

be the case, showing that in general the relationship between compromise values and the Core is

undetermined.

3.3.3 �e KM-value

It is an interesting question whether a compromise value can be constructed on the whole class

of cooperative games V# . �is has been investigated by van den Brink (1994), who constructed a

6It is relatively easy to check the three required properties of a bound pair for (a,").
7With reference to the discussion in Sections 4 and 5 in this paper, we remark that the Gately value cannot be con-

structed through the methods discussed there. Hence, the Gately value does not result from either the lower bound a or

the upper bound" .
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value based on a lower bound introduced by Kikuta (1980) and an upper bound that was already

considered by Milnor (1952). Both of these bounds were originally considered for the Core only.

Formally, the Kikuta lower bound " : V# → R
# assigns to every player 8 ∈ # her minimal

marginal contribution in a game E ∈ V# , defined as

"8 (E) = min
(⊆# : 8∈(

( E (() − E (( − 8) ) (16)

Similarly, the Milnor upper bound " : V# → R
# assigns to every player 8 ∈ # his maximal

marginal contribution in a game E ∈ V# , defined as

"8 (E) = max
(⊆# : 8∈(

( E (() − E (( − 8) ) (17)

�e next claim summarises the properties of these bounds and introduces the KM-value as the

(",")-compromise value.

Proposition 3.11 �e pair (",") forms a bound pair on B(",") = V# .

Proof. To show that (",") is a bound pair on V# , we show the conditions (i), (ii) and (iii) of

Definition 3.1 over the whole game space V# .

(i) It is immediately clear that for every E ∈ V# : " (E) 6 " (E).

(ii) Next, let E ∈ V# and let E ′ = E −" (E). To check that " (E −" (E) ) = " (E ′) = 0 for 8 ∈ # , let

(8 ∈ 2# be such that 8 ∈ (8 and"8 (E) = E ((8) − E ((8 − 8). �en for an arbitrary coalition ( ∈ 2# we

derive that

E ′(() = (E −" (E) ) (() = E (() −
∑

9 ∈(

" 9 (E) = E (() −
∑

9 ∈(

E (( 9) +
∑

9 ∈(

E (( 9 − 9). (18)

Now for any player 8 ∈ ( it is easy to see that

E ′(() − E ′(( − 8) = E (() − E (( − 8) −"8 (E). (19)

�is, in turn, implies that

"8 (E
′) = min

(∈2# :8∈(
[E ′(() − E ′(( − 8)]

= min
(∈2# :8∈(

(E (() − E (( − 8) ) −"8 (E)

= "8 (E) −"8 (E) = 0

where the second equality follows by definition and the third equality follows from (19). �us, (ii)

is satisfied.

It is easily established that for every E ∈ V# : " (E −" (E) ) = " (E) −" (E). Hence, with (i) and (ii)

above, (",") is shown to be a bound pair on V# .

To establish that B(",") = V# we introduce #0 = ∅ and for every : = 1, . . . , = : #: = {1, . . . , :} ⊆

# . In particular, #= = # . Hence, for every game E ∈ V# and every player 8 ∈ # we have that
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"8 (E) 6 E (#8) − E (#8−1) 6 "8 (E). �is implies that

∑

8∈#

"8 (E) 6
∑

:∈#

(E (#:) − E (#:−1) ) = E (#=) = E (# ) 6
∑

8∈#

"8 (E).

�is shows that indeed B(",") = V# .

We refer to the (",")-compromise value ^ : V# → R# as the KM-value. It is a compromise value

that is defined for all cooperative games.

We note that the KM-value ^ is also self-dual in the sense that ^ (E) = ^ (E∗) for all E ∈ V# .

Indeed, we note that for E ∈ V# and 8 ∈ # :

"8 (E
∗) = min

( : 8∈(
(E∗(() − E∗(( − 8) ) = min

( : 8∈(
(E (# ) − E (# \ () − E (# ) + E (# \ (( − 8) ) )

= min
( : 8∈(

(E ((# \ () + 8) − E (# \ () ) = min
) : 8∈)

(E () ) − E () − 8) ) = "8 (E).

Hence," (E∗) = " (E). Similarly, we can show that" (E∗) = " (E). �is implies that indeed ^ (E∗) =

^ (E).

�e KM-value for convex games With reference to the discussion of the g-value in Section 2,

we remark that all convex games are semi-balanced, i.e., V#
�

⊂ V#
(
, as pointed out by Tijs (1981).

�e next proposition addresses the nature of the KM-value and the g-value for this class of games.

In particular, for convex games, the g-value is equal to the KM-value.

Proposition 3.12 For every convex game E ∈ V#
�
: ^ (E) = g (E).

Proof. Let E ∈ V#
�
be a convex game and let 8 ∈ ( ⊂ ) . �en by convexity it follows immediately

that for any player 8 ∈ # :

"8 (E) = min
( : 8∈(

(E (() − E (( − 8) ) = E8 =<8 (E),

where we use the fact that<8 (E) = E8 for any convex game as shown by Driessen and Tijs (1985),

and

"8 (E) = max
( : 8∈(

(E (() − E (( − 8) ) = E (# ) − E (# − 8) = "8 (E).

�erefore, ^ (E) = W (E ;",") = W (E ;<,") = g (E).

We have introduced compromise values for arbitrary bound pairs. We can also construct proper

bound pairs from either a lower bound function or an upper bound function. �is results in certain

natural bound pairs that lead to compromise values that have been considered in the literature on

cooperative games. �is is explored in the next sections.

15



4 Constructing compromise values from lower bounds

In this section we examine a specific subset of compromise values derived solely from an imposed

lower bound. While this construction is not unique, the methodology employed here appears par-

ticularly intuitive. We do this by introducing a specific procedure how to associate to every lower

bound function an appropriate upper bound function.

4.1 Regular lower bounds and LBC values

�e next definition introduces a category of “regular” lower bounds that satisfy condition (ii-a) of

Definition 3.1, from which compromise values can be constructed in a relatively straightforward

manner.

Definition 4.1 �e function ` : V# → R
# is referred to as a regular lower bound if for every

E ∈ Bℓ (`) it holds that ` (E − ` (E)) = 0, where

Bℓ (`) :=

{
E ∈ V#

�����
∑

8∈#

`8 (E) 6 E (# )

}
(20)

is the subclass of `-lower bound games.

With reference to the discussion of linear bound pairs in Section 3.1, we refer to a lower bound `8

for some player 8 ∈ # as linear if there exists some `8 ∈ V# such that `8 (E) = `8 · E for all E ∈ V# .

�e next property identifies the defining characteristics of linear regular lower bounds, linking this

to the properties imposed on a linear bound pair.

Proposition 4.2 Let ` : Bℓ (`) → R
# be some linear lower bound in the sense that `8 (E) = `8 · E for

all games E ∈ Bℓ (`) and players 8 ∈ # with `8 ∈ V# . �en ` is a regular lower bound if and only if

for every 8 ∈ # :

`8 =
∑

9 ∈#

[ ∑

) : 9 ∈)

`8)

]
` 9 (21)

Proof. �e proof of the assertion proceeds in the same fashion as the first part of the proof of

Proposition 3.6. In particular, we need to show that ` (E − ` (E)) = 0 for every linear lower bound `.

Due to linearity, it suffices to show this for every base game 1( ∈ V# for ( ⊆ # .

Let ( ⊆ # and consider any 8 ∈ # . �en

`8 (1( − ` (1( )) = `8 · 1( − `8 · ` (E) = `8( −
∑

) ⊆#

`8)

(∑

9 ∈)

`
9
(

)

= `8( −
∑

9 ∈#

[ ∑

) : 9 ∈)

`8)

]
`
9
(
= `8( − `8( = 0

if and only if the hypothesis (21) stated in the assertion holds.
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�e next proposition links the regularity of a lower bound to the ability to construct a natural upper

bound with this lower bound such that the resulting pair forms a bound pair. �is gives rise to the

identification of a natural compromise value for any given regular lower bound.

Proposition 4.3 Let ` : V# → R# be a regular lower bound on Bℓ (`).

(a) �e function [` : Bℓ (`) → R
# defined by

[
`
8 (E) = E (# ) −

∑

9≠8

`8 (E) (22)

forms a bound pair with ` on Bℓ (`) in the sense that ` is the lower bound and [` is the upper

bound over the corresponding class of (`, [`)-balanced games B(`, `[ ) = Bℓ (`) ⊂ V
# .

(b) �e corresponding (`, [`)-compromise value on Bℓ (`) is given by

W8 (E ; `) = `8 (E) +
1

=

[
E (# ) −

∑

9 ∈#

` 9 (E)

]
(23)

�e value W (·; `) can be denoted as the `-Lower Bound Compromise (`-LBC) value on Bℓ (`).

Proof. Let ` : V# → R# be a regular lower bound, i.e., ` (E − ` (E)) = 0.

(a) We show that the upper bound [` : Bℓ (`) → R
# defined by (22) satisfies, in conjunction with `

as the lower bound, the conditions of Definition 3.1:

(i) It is obvious that ` (E) 6 [` (E) for E ∈ Bℓ (`).

(ii-a) Condition 3.1(ii-a) follows from the assumption that ` is a regular lower bound.

(ii-b) To show condition 3.1(ii-b), note that for E ∈ Bℓ (`) :

[
`
8 (E − ` (E)) = (E − ` (E)) (# ) −

∑

9≠8

` 9 (E − ` (E))

= (E − ` (E)) (# ) = E (# ) −
∑

9 ∈#

` (E) = [
`
8 (E) − `8 (E).

�erefore, (`, [`), indeed, forms a bound pair as defined in Definition 3.1.

To show that B(`, [`) = Bℓ (`), we note that for every E ∈ Bℓ (`) :

∑

8∈#

[
`
8 (E) =

∑

8∈#

[
E (# ) −

∑

9≠8

` 9 (E)

]
= = E (# ) − (= − 1)

∑

9 ∈#

` 9 (E)

= E (# ) + (= − 1)

[
E (# ) −

∑

9 ∈#

` 9 (E)

]
> E (# ),

showing that B(`, [`) = Bℓ (`) is the corresponding class of (`, [
`)-balanced games.

(b) Next, we show that W (·; `) defined by (23) is the corresponding (`, [`)-compromise value on
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Bℓ (`). For every E ∈ Bℓ (`) :

E (# ) −
∑

9 ∈#

` 9 (E) = [
`
8 (E) − `8 (E) for any 8 ∈ #, and

∑

9 ∈#

[
`
9 (E) − E (# ) = (= − 1)

[
E (# ) −

∑

9 ∈#

` 9 (E)

]
.

If ` (E) = [` (E), by definition, E (# ) =
∑

8∈# `8 (E). Hence, the corresponding (`, [`)-compromise

value is trivially W (E ; `) = ` (E), confirming (23) for this case.

For ` (E) < [` (E), with the above and (11), we now compute that the (`, [`)-compromise value

W (E) = W (E ; `, [) on B(`, [`) = Bℓ (`) is given by

W8 (E) =
E (# ) −

∑
9 ∈# ` 9 (E)∑

9 ∈# ([
`
9 (E) − ` 9 (E) )

[
`
8 (E) +

∑
9 ∈# [

`
9 (E) − E (# )

∑
9 ∈# ([

`
9 (E) − ` 9 (E) )

`8 (E)

=

E (# ) −
∑

9 ∈# ` 9 (E)

=(E (# ) −
∑

9 ∈# ` 9 (E))

(
E (# ) −

∑

9≠8

` 9 (E)

)
+
(= − 1) (E (# ) −

∑
9 ∈# ` 9 (E))

=(E (# ) −
∑

9 ∈# ` 9 (E))
`8 (E)

=
1
=

[
E (# ) −

∑

9≠8

` 9 (E)

]
+ =−1

=
`8 (E)

=
1
=

[
E (# ) −

∑

9 ∈#

` 9 (E)

]
+ `8 (E) = W8 (E ; `)

for any 8 ∈ # .

�is completes the proof of the proposition.

�e method introduced in Proposition 4.3 to derive an upper bound to any regular lower bound

is intuitive and partly follows the same reasoning as the marginal contribution is taken as upper

bound in the definition of the g-value. �e main difference is that the marginal contribution of a

player subtracts all individual worths of the other players from E (# ). To introduce [` as an upper

bound, we subtract all individual lower bounds of the other players from E (# )

When the lower bound ` and the upper bound [ are fixed, (11) yields a specific value for each

game E ∈ B(`, [). In such instances, we refer to the value W that assigns allocations W (E) to games

within this class as the (`, [)-compromise value. More generally, the value depends on the chosen

lower bound ` and upper bound [, leading us to denote it as W (E ; `, [) in Equation (11). As demon-

strated in Proposition 4.3, for any regular lower bound `, the upper bound [` is derived from `,

rendering the value dependent solely on `. Consequently, we denote it as W (E ; `) in this scenario.

Nevertheless, it is important to emphasise that our ultimate interest lies in the values W (E).

4.2 A characterisation of lower bound based compromise values

�e axiomatisation of arbitrary compromise values—developed in�eorem 3.10—can be sharpened

for the subclass of compromise values that can be constructed from a lower bound functional. �e

next theorem states that the restricted proportionality property of �eorem 3.10 can be replaced by

an egalitarian division property.
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�eorem 4.4 Let ` : V# → R# be a regular lower bound on the class of `-bound games Bℓ (`). �en

the `-LBC value is the unique value 5 : Bℓ (`) → R
# that satisfies the following two properties:

(i) Minimal rights property:

For every E ∈ Bℓ (`) : 5 (E) = 5 (E − ` (E)) + ` (E).

(ii) Egalitarian Division property:

For every game E with ` (E) = 0, there exists some _E ∈ R such that 5 (E) = _E 4, where

4 = (1, . . . , 1).

Proof. It is obvious that any `-LBC value indeed satisfies these two listed properties.

Next, let 5 : Bℓ (`) → R
# be some function that satisfies the two listed properties. First, for E ∈

Bℓ (`) with ` (E) = 0, by efficiency of the value 5 and the egalitarian division property it holds that

5 (E) =
E (# )
=

4.

Next, let E ∈ Bℓ (`) be arbitrary. �en for every 8 ∈ # , by the minimal rights property and the fact

that ` (E − ` (E) ) = 0, it follows that

58 (E) = 58 (E − ` (E) ) + `8 (E) =
(E − ` (E) ) (# )

=
+ `8 (E)

=
1

=

(
E (# ) −

∑

9 ∈#

` 9 (E)

)
+ `8 (E) = W8 (E ; `)

�is shows the assertion.

4.3 Two well-known LBC values

We discuss two well-known compromise values that are based on the construction method set out

in Proposition 4.3, based on a well-defined regular lower bound only. �ese LBC values are the

egalitarian value and the CIS value.

4.3.1 �e Egalitarian Value

A trivial lower bound is the function `0 : V# → R# with `0 (E) = 0 for every E ∈ V# . Clearly, any

function [ : V# → R# with [ (E) > 0 for E ∈ V ⊂ V# is a non-trivial upper bound for `0 to form

a bound pair, where V ⊂ V# is a subclass of games E for which A(E) has a non-empty relative

interior.

Indeed, the upper bound constructed in Proposition 4.3(a) is the corresponding upper bound [0

given by [0 (E) = ( E (# ), . . . , E (# ) ) ∈ R# . �is corresponds to the trivial upper bound assigning

the total wealth generated in the corresponding cooperative game E ∈ V# to every player in the

game as an upper bound on their payoff. �e class of (`0, [0)-balanced games is now given by

B(`0, [0) = Bℓ (`
0) = {E ∈ V# | E (# ) > 0}. (24)

�e corresponding (`0, [0)-compromise value given by Proposition 4.3(b) is the Egalitarian Value
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� : Bℓ (`
0) → R# defined by8

�8 (E) =
E (# )

=
for every 8 ∈ # . (25)

�e egalitarian value � is the unique value on Bℓ (`
0) such that there exists some _ > 0 with

� (E) = _[0 (E), i.e., �8 (E) = _ E (# ). Clearly, _ =
1
=
.

4.3.2 �e CIS-value

Another lower bound that is considered widely in the literature on cooperative games is that of the

vector of the individual worths in a game. It forms a natural lower bound on allocated payoffs and

many values considered in the literature indeed have this vector as a lower bound on the assigned

payoffs.

Formally, for any cooperative game E ∈ V# this lower bound is described by the vector a (E) =

(E1, . . . , E=) ∈ R# . Since a8 (E − a (E) ) = E8 − E8 = 0 for any 8 ∈ # , the natural lower bound a is

regular. �e corresponding class of a-lower bound games is now identified as

Bℓ (a) =

{
E ∈ V#

�����
∑

8∈#

E8 6 E (# )

}
(26)

which includes the class of essential games. We note that Bℓ (a) is the class of games that admit a

non-empty set of imputations.

Next, using Proposition 4.3(a), we can construct the corresponding upper bound [′ : V# → R#

which for every 8 ∈ # is defined by

[′8 (E) = E (# ) −
∑

9≠8

E 9 (27)

�e resulting (a, [′)-compromise value as constructed in Proposition 4.3(b) is the Centre-of-gravity

of the Imputation Set (CIS) considered by Driessen and Funaki (1991), which on the class of a-lower

bound games Bℓ (a) for every 8 ∈ # is defined by

CIS8 (E) = E8 +
1
=

(
E (# ) −

∑

9 ∈#

E 9

)
(28)

It can easily be verified that the CIS-value is indeed equal to the (a, [′)-compromise value as already

remarked by van den Brink (1994).9

8Axiomatisations of this Egalitarian value using axioms similar as those for the Shapley value, are given in

van den Brink (2007).
9We refer also to Driessen and Funaki (1991); Dragan et al. (1996); van den Brink and Funaki (2009); Hou et al. (2019)

and Zou et al. (2022) for discussions of the CIS-value and related concepts from different perspectives.
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5 Constructing compromise values from upper bounds

In Proposition 4.3, we provided a method to derive an associated upper bound using (22). We also

introduced a method to construct a compromise value based on a regular lower bound. In this

section, we explore the possibility of constructing compromise values from a given upper bound.

For a given covariant upper bound [, we construct a proper corresponding lower bound `[ such

that (`[, [) forms a proper bound pair.

Our construction method is based on the methodology developed by Tijs (1981) for calculat-

ing the g-value. Bergantiños and Massó (1996) further developed this approach by combining the

Milnor upper bound " with the Tijs lower bound construction method. Sánchez-Soriano (2000)

extended this research and introduced a general construction method based on this methodology.

Here, we further generalise this method.

5.1 Covariant upper bounds and UBC values

We note that the methodology as set out by Sánchez-Soriano (2000), founded on Tijs’s construction,

is rather restrictive. Indeed, since the conditions on the class of upper-bound games are rather strict,

it might be that for certain upper bounds this class is empty.

Here, we explore amore general approach, allowing a larger class of upper-bound games defined

in (29) below. It is based on a covariance condition on the selected upper bound which allows

the construction of a corresponding lower bound to form a bound pair. �is, in turn, allows the

construction of a proper compromise value. �is method is fully stated in Proposition 5.1, which

extends the insight of Sánchez-Soriano (2000, Proposition 3.2).

We recall that a function 5 : V# → R# is translation covariant if 5 (E + G) = 5 (E) + G for any

G ∈ R# . �e next proposition constructs a compromise value from a given translation covariant

upper bound.

Let [ : V# → R# be translation covariant on V# . Define

BD ([) =

{
E ∈ V#

����� E (() 6
∑

8∈(

[8 (E) for every ( ⊆ #

}
(29)

as the subclass of strongly [-bound games.

Proposition 5.1 Let[ : V# → R# be translation covariant onV# andBD ([) the corresponding class

of strongly [-bound games.

�en the function `[ : BD ([) → R
# defined by

`
[
8 (E) = max

(⊆#
'8 ((, E) where '8 ((, E) = E (() −

∑

9 ∈(−8

[ 9 (E) (30)

forms a bound pair with [ such that `[ is the lower bound and [ is the upper bound over the corre-

sponding class BD ([) ⊂ V
# .

Proof. Let [ : V# → R# and BD ([) be defined as formulated in the assertion. If BD ([) = ∅ then

the assertion of Proposition 5.1 holds trivially.
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Assuming BD ([) ≠ ∅, take any E ∈ BD ([). Note that by construction E (# ) 6
∑

9 ∈# [ 9 (E). Next, let

`[ (E) be as defined in (30).

First, note that `
[
8 (E) > E8 for every E ∈ BD ([) and player 8 ∈ # since '8 (8, E) = E8 .

To show that `[ (E) 6 [ (E), assume to the contrary that there is some 8 ∈ # with `
[
8 (E) > [8 (E).

Hence, from (30), there exists some coalition (8 ⊆ # with 8 ∈ (8 and

`
[
8 (E) = '8 ((8, E) = E ((8) −

∑

9 ∈(8−8

[ 9 (E) > [8 (E).

But then it follows that
∑

9 ∈(8 [ 9 (E) < E ((8), which contradicts that E ∈ BD ([). Hence, `
[ (E) 6 [ (E),

showing that condition (i) of Definition 3.1 is satisfied.

From Sánchez-Soriano (2000, Proposition 3.2), it immediately follows that `[ defined in (30) is trans-

lation covariant on V# . Hence, in particular this implies that `[ (E − `[ (E)) = 0, showing that con-

dition (ii-a) of Definition 3.1 is satisfied.

Finally, it follows immediately from covariance of [ and the definition of `[ that condition (ii-b)

of Definition 3.1 is satisfied. �erefore, (`[, [) forms a proper bound pair on the subclass of upper

bound games BD ([) ⊂ V
# .

Based on the proposition we introduce the proper class of (`[, [)-bounded games by

BD ([) =

{
E ∈ BD ([)

�����
∑

8∈#

`
[
8 (E) 6 E (# ) 6

∑

8∈#

[8 (E)

}
(31)

Proposition 5.1 introduces implicitly a compromise value that is founded on a translation covariant

upper bound [. We refer to the corresponding (`[, [)-compromise value on BD ([) ⊆ BD ([) as the

[-Upper Bound Compromise ([-UBC) value. We note the difference with Proposition 4.3 where a

LBC value is defined on Bℓ (`), while an UBC value is defined on a possibly strict subset BD ([) ⊆

BD ([) ⊂ V
# .

We explore two natural upper bounds that satisfy the conditions imposed in Proposition 5.1. �e

first refers to themarginal contributions" of the players to the grand coalition# . �is is used in the

definition of the g-value as studied in Tijs (1981, 1987); Tijs and Driessen (1987); Casas-Méndez et al.

(2003) and Yanovskaya (2010).

�e second natural upper bound concerns the residual that remains for a player 8 ∈ # if all

other players 9 ≠ 8 are paid their individual worth E 9 . We show that for a certain class of games,

the resulting compromise value from this natural upper bound is the CIS-value. With the insight

of Section 4.3.2, this leads to the insight that the CIS-value is a compromise value that can be

constructed from a lower as well as an upper bound.

A characterisation of UBC values. Sánchez-Soriano (2000) provided a characterisation of the

compromise value constructed from a translation covariant upper bound. For completeness, we

provide this characterisation here as a restatement.
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Lemma 5.2 (Sánchez-Soriano, 2000, �eorem 3.5)

Let [ : V# → R# be a translation covariant upper bound on V# and let `[ be the constructed lower

bound from (30). �en the [-UBC value is the unique value 5 : BD ([) → R
# that satisfies the following

two properties:

(i) Covariance property:

For every E ∈ BD ([) and every G ∈ R# : 5 (_E + G) = _5 (E) + G for any _ > 0

(ii) Restricted proportionality:

For every game E ∈ BD ([) with `[ (E) = 0, there is some _E ∈ R such that 5 (E) = _E [ (E).

Note that the characterisation given in �eorem 5.2 deviates from the general axiomatisation of

compromise values (�eorem 3.10), which is based on replacing a minimal rights hypothesis with

a covariance property.

5.2 Two examples of UBC values

�e g-value, discussed in Section 2 of this paper, is the quintessential example of an UBC value.

Here, we discuss shortly two further well-known compromise values that can be constructed from

a well-defined upper bound.

5.2.1 �e j-value

Bergantiños and Massó (1996) introduced the notion of the j-value as an explicitmodification of the

g-value through the selection of the Milnor upper bound " (Milnor, 1952) instead of the marginal

contributions vector. Recalling that for any E ∈ V# and player 8 ∈ # : "8 (E) = max( : 8∈( ( E (() − E (( − 8) ),

we immediately conclude that BD (") = V
# . Defining `" through (30) Bergantiños and Massó

(1996) showed that

BD (") =

{
E ∈ V#

�����
∑

8∈#

E8 6 E (# )

}

is the class of weakly essential games. �e j-value is now defined as the corresponding "-UBC

value on BD ("), given by j = W
(
·; `" , "

)
.

Noting that any convex game is alwaysweakly essential, the following insight for convex games

follows immediately from the proof of Proposition 3.12 and the definition of the j-value.

Corollary 5.3 For every convex game E ∈ V#
�
: j (E) = g (E) = ^ (E).

5.2.2 �e CIS-value redux

In Section 4.2.2, we developed the CIS-value as an LBC-compromise value from the well-defined

lower bound a , where a (E) = (E1, . . . , E=) for all E ∈ V# . �e resulting compromise value based

on the construction method set out in Proposition 4.3 was the (a, [′)-compromise value, where

[′8 (E) = E (# ) −
∑

9≠8 E 9 for E ∈ V# and 8 ∈ # . We concluded there that the (a, [′)-compromise

value is the CIS-value on Bℓ (a) defined by (26).
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Using the construction method set out in Proposition 5.1 based on the upper bound [′, we can

construct the corresponding (a, [′)-compromise value as a UBC-compromise value. We show that

for a substantial class of games, the (a, [′)-compromise value is equal to the CIS-value. However,

the different construction method implies that this class of games is smaller than identified for

the construction of the CIS-value from the lower bound a in Section 4.3.2. For games outside this

restricted class, the identified (a, [′)-compromise value can be different from the CIS-value and is

harder to identify.

Let the upper bound [′ be given as above. �en

BD ([
′) =

{
E ∈ V#

����� E (() 6
∑

8∈(

(
E (# ) −

∑

9 ∈#−8

E 9

)
for every ( ⊆ #

}

=

{
E ∈ + #

����� E (() 6 |( |E (# ) −
∑

8∈(

∑

9 ∈#−8

E 9 for every ( ⊆ #

}

=



E ∈ + #

������
E (() 6 |( |E (# ) −

∑

8∈# \(

|( |E8 −
∑

8∈(

( |( | − 1)E8 for every ( ⊆ #




=

{
E ∈ V#

����� E (() −
∑

8∈(

E8 6 |( |

(
E (# ) −

∑

9 ∈#

E 9

)
for every ( ⊆ #

}

Note that ∅ ≠ BD ([
′) ⊂ {E ∈ V# | E (# ) >

∑
8∈# E8 }. Furthermore, BD ([

′) contains all games of

which the zero-normalisation is monotone.

Proposition 5.4 Consider the class of cooperative games given by

B̂ =

{
E ∈ V#

����� E (() −
∑

8∈(

E8 6 ( |( | − 1)

(
E (# ) −

∑

9 ∈#

E 9

)
for every ( ⊆ #

}
⊂ BD ([

′). (32)

�en for every E ∈ B̂ the corresponding lower bound defined in Proposition 5.1 is a (E) = (E1, . . . , E=).

Consequently, the constructed compromise value on B̂ as asserted in Proposition 5.1 is the corresponding

(a, [′)-compromise value, being the CIS-value.

Proof. Consider the construction of the lower bound given in (30) for the upper bound [′. �en

we compute for ( ⊆ # and 8 ∈ ( :

'8 ((, E) = E (() −
∑

9 ∈(−8

[′9 (E) = E (() −


( |( | − 1)E (# ) −

∑

9 ∈(−8

∑

ℎ≠9

Eℎ



= E (() − (|( | − 1)

(
E (# ) −

∑

9 ∈#

E 9

)
−

∑

9 ∈(−8

E 9

=

(
E (() −

∑

9 ∈(

E 9

)
− (|( | − 1)

(
E (# ) −

∑

9 ∈#

E 9

)
+ E8
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Hence, '8 ((, E) 6 E8 if and only if
(
E (() −

∑
9 ∈( E 9

)
6 ( |( | − 1)

(
E (# ) −

∑
9 ∈# E 9

)
. By Definition

of B̂, this implies that for all 8 ∈ # : '8 ((, E) 6 E8 for all ( ⊆ # . �erefore, the constructed lower

bound is given by ` (E) = a (E) = (E1, . . . , E=) for E ∈ B̂.

�e claim shown above asserts that the constructed compromise value on the class B̂ is the CIS-

value. As mentioned before, this construction method differs from the one based on the lower

bound a as discussed in Section 3.1.2, since for games in the subclass BD ([
′) \ B̂ the constructed

compromise value differs from the CIS-value. �e next example constructs such a case.

Example 5.5 Consider # = {1, 2, 3}. Let � ∈ R and let E ∈ V# be given by E1 = E2 = 1, E3 = 2,

E (12) = �, E (13) = E (23) = 6 and E (# ) = 8. It can easily be verified that the CIS-value of this game

is given by CIS(E) =
(
2 13 , 2

1
3 , 3

1
3

)
for all � > 0.

Next, we determine that [′ (E) = (5, 5, 6) for all � > 0. �is implies that E ∈ BD ([
′) if and only

if � 6 10. Furthermore, E ∈ B̂ if and only if � 6 6, implying that for � 6 6 the corresponding

constructed compromise value is equal to the CIS-value.

For 6 6 � 6 10 we can compute that the resulting lower bound as stated in (30) is described by

` (E) = (� − 5, � − 5, 2). Now, `1 (E) + `2 (E) + `3 (E) = 2� − 8 6 E (# ) = 8 if and only if 6 6 � 6 8. In

that case the resulting compromise value is the feasible balance between ` (E) = (�−5, �−5, 2) and

[′ (E) = (5, 5, 6) computed as W =
(
20−�
12−� , 20−�

12−� , 56−6�
12−�

)
. We remark that this allocation is the CIS-

value for� = 6, as expected, while for� = 8 the resulting compromise value is given byW = (3, 3, 2).

�

Hence, we conclude from this that the CIS-value has the special property that it is a compromise

value that can be constructed from a lower as well as an upper bound on these properly constructed

subclasses of games.

6 Concluding remarks: �e EANSC value

�e “Egalitarian Allocation of Non-Separable Contributions” value or EANSC-value can be under-

stood as the CIS-value of the dual of any cooperative game. It assigns to every player her marginal

contribution and then equally taxes all players for the resulting deficit.

In this section, we delve into the unique nature of the EANSC value as a compromise value

for two mutually exclusive bound pairs. We demonstrate that it can be derived from the marginal

contribution bound" as both an upper bound and a lower bound. Consequently, the two resulting

bound pairs encompass the entire space of TU-games on which the EANSC value is indeed properly

defined.

�e EANSC value as an upper bound based value �e EANSC-value has a special role in rela-

tion to UBC values. It is itself not an UBC value, but nevertheless it has an interesting relationship

with the marginal contributions vector as an upper bound on its payoffs. �is is explored here. In

particular, the next proposition introduces an innovative perspective on the EANSC-value.

�is proposition shows that, not only is the EANSC-value a compromise value, it is a compro-

mise value for themarginal contribution vector" as an upper bound. Its lower bound is constructed
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from a different methodology as the one introduced for UBC-compromise values. Indeed, the lower

bound of the EANSC value can be identified as a solution to a system of equations. Furthermore,

the proposition shows that the EANSC-value is defined as a compromise value on a rather large

class of games, which includes all essential games.

Proposition 6.1 Let B̃ = {E ∈ V# | E (# ) 6
∑

9 ∈# "9 (E)} be the subclass of straightforwardly

"-upper bounded cooperative games, where "9 (E) = E (# ) − E (# − 9) is the marginal contribution

for player 9 ∈ # in the game E ∈ V# .

Let ˜̀ : B̃→ R# be a solution to the system of equations

∑

9≠8

˜̀ 9 (E) = E (# − 8) for 8 ∈ # . (33)

�en the EANSC-value defined by

EANSC8 (E) = "8 (E) +
1
=

(
E (# ) −

∑

9 ∈#

"9 (E)

)
for every E ∈ V# and 8 ∈ # (34)

is the ( ˜̀, ")-compromise value on B̃.

Proof. We construct the proof of the assertion through the method set out in Proposition 4.3 based

on the introduced lower bound ˜̀ defined implicitly as a solution of (33).

For every E ∈ B̃ and every 8 ∈ # , let ˜̀ (E) be given by

˜̀8 (E) = "8 (E) +
1

=−1

[
E (# ) −

∑

9 ∈#

"9 (E)

]
(35)

We claim that the given ˜̀ is a solution of (33). Indeed, for every E ∈ B̃ and 8 ∈ # :

∑

9≠8

˜̀ 9 (E) =
∑

9≠8

"9 (E) +

(
E (# ) −

∑

9 ∈#

"9 (E)

)
= E (# ) −"8 (E) = E (# − 8).

Next, we note that for any E ∈ V# :
∑

8∈# ˜̀8 (E) 6 E (# ) if and only if

∑

8∈#

(E (# ) − E (# − 8)) +
=

= − 1

(
E (# ) −

∑

9 ∈#

(E (# ) − E (# − 9)

)
6 E (# ) if and only if

= E (# ) −
∑

8∈#

E (# − 8) +
=

= − 1
E (# ) −

=2

= − 1
E (# ) +

=

= − 1

∑

9 ∈#

E (# − 9) 6 E (# ) if and only if

=(= − 1) + = − =2

= − 1
E (# ) +

= − = + 1

= − 1

∑

8∈#

E (# − 8) 6 E (# ) if and only if

1

= − 1

∑

8∈#

E (# − 8) ≤ E (# )

implying that
∑

8∈# "8 (E) = = E (# ) −
∑

8∈# E (# − 8) > E (# ), which is equivalent to E ∈ B̃. Hence,

Bℓ ( ˜̀) = B̃.
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Next we check that ˜̀ (E − ˜̀ (E)) = 0. For that we note that for every E ∈ B̃ and 8 ∈ # :

"8 (E − ˜̀ (E)) = "8 (E) − ˜̀8 (E) and

(E − ˜̀ (E)) (# ) = E (# ) −
∑

9 ∈#

˜̀ 9 (E)

leading to the conclusion that

(E − ˜̀ (E)) (# ) −
∑

9 ∈#

"9 (E − ˜̀ (E)) = E (# ) −
∑

9 ∈#

˜̀ 9 (E) −
∑

9 ∈#

"9 (E) +
∑

9 ∈#

˜̀ 9 (E)

= E (# ) −
∑

9 ∈#

"9 (E).

�erefore,

˜̀8 (E − ˜̀ (E)) = "8 (E − ˜̀ (E) + 1
=−1

[
(E − ˜̀ (E) (# ) −

∑

9 ∈#

"9 ((E − ˜̀ (E))

]

= "8 (E) − ˜̀8 (E) +
1

=−1

[
E (# ) −

∑

9 ∈#

"9 (E)

]
= ˜̀8 (E) − ˜̀8 (E) = 0

�is shows that ˜̀ is indeed a regular lower bound and that we can apply the method set out in

Proposition 4.3. Hence, we determine that for the formulated lower bound ˜̀ the corresponding

upper bound, using (22), is given by

[̃8 (E) = E (# ) −
∑

9≠8

˜̀ 9 (E) = E (# ) −
∑

9≠8

"9 (E) −
1

= − 1

∑

9≠8

E (# ) +
1

= − 1

∑

9≠8

∑

ℎ∈#

"ℎ (E) = "8 (E).

Furthermore, the corresponding ( ˜̀, ")-compromise value defined on Bℓ ( ˜̀) = B̃ is for every E ∈

Bℓ ( ˜̀) = B̃ and 8 ∈ # given by

W8 (E ; ˜̀) = ˜̀8 (E) +
1
=

[
E (# ) −

∑

9 ∈#

˜̀8 (E)

]

= "8 (E) +
1

=−1

[
E (# ) −

∑

9 ∈#

"9 (E)

]
+ 1

=

[
E (# ) − 1

=−1

∑

9 ∈#

E (# − 9)

]

= "8 (E) +
1

=−1

[
E (# ) −

∑

9 ∈#

"9 (E)

]
+ 1

= (=−1)

[ ∑

9 ∈#

"9 (E) − E (# )

]

= "8 (E) +
1
=

[
E (# ) −

∑

9 ∈#

"9 (E)

]
= EANSC8 (E),

where the second equality follows by (33) and the third equality follows from the property that the

definition of"9 (E) implies that
∑

9 ∈# E (# − 9) = = E (# ) −
∑

9 ∈# "9 (E).

�is shows the assertion of the proposition.
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�e EANSC value as an LBC-value From the definition of the EANSC value it should be imme-

diately clear that the EANSC value corresponds to the LBC-value for the lower bound " (Propo-

sition 4.3).10 �e EANSC value as an LBC-value is, therefore, defined over the class Bℓ (") ={
E ∈ V# | E (# ) >

∑
8∈# "8 (E)

}
. FromProposition 4.3 it follows that the EANSC value is the (",[" )-

value over Bℓ (") for the constructed upper bound given by

["8 (E) = E (# ) −
∑

9≠8

"9 (E) =
∑

9≠8

E (# − 9) − (= − 2)E (# ).

We now note that the class of the"-lower bounded games Bℓ (") is the complement of the class B̃

over which the EANSC value is constructed as the ( ˜̀, ")-compromise value. Hence, since Bℓ (") ∪

B̃ = V
# , combining these two characterisations of the EANSC value, we have shown that the

EANSC value is a compromise value over the whole space V# of TU-games, although for two

different bound pairs.
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