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Abstract

We study the joint design of information and transfers when an informed Sender
can motivate Receiver by both paying and (Bayesian) persuading. We introduce an
augmented concavification method to characterize Sender’s value from jointly design-
ing information and transfers. We use this characterization to show Sender strictly
benefits from combining information and payments whenever the actions induced at
adjacent kinks in the augmented concavification differ from those in the information-
only concavification. When Receiver has an outside option, Sender always first increases
the informativeness of their experiment before adjusting transfers—-payments change if
and only if full revelation does not meet Receiver’s outside option constraint. Moreover,
we show repeated interactions cannot restore ex-post efficiency, even with transfers and
arbitrarily patient agents. However, Sender benefits from linking incentives so long as
Receiver prefers the stage-game optimal information structure to no information. Our
results have implications for platforms such as Uber, where both monetary rewards
and strategic information disclosure influence driver behavior.
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1 Introduction

Consider the problem faced by Uber, who seeks to design a platform such that drivers

fulfill ride requests as often as possible (i.e. drivers accept all rides that are suggested to

them). Standard economic theory suggests two canonical, potential tools Uber can use to help

them attain this goal: either compensate drivers directly with money (Holmström (2017)),

or indirectly, with information (Kamenica (2019)). Indeed, a rich literature has studied the

nature and limits of each of the two instruments above in isolation. Yet little has been said

about how to wield information and transfer together, even though modern platforms often

have the ability to do both. For example, while Uber can strategically disclose information

about the quality of a specific ride from a driver (and, because the algorithm is set in advance,

commit to how this disclosure), they can also simply pay the driver more for accepting a

ride1. When both tools are available to Uber, a new host of questions arises: how does

Sender optimally trade off information and transfers (and do they even want to use both)?

What are the limits of what can be done when Sender can change both drivers’ preferencse

and information? How does Sender’s optimal value evolves with the prior belief about the

state? Are there qualitative differences between how these tools are used to deliver utility to

Receiver in the presence of exogenous outside options?

Motivated by these questions, we embed action and belief-contingent transfers into the

canonical finite persuasion model of Kamenica and Gentzkow (2011). Our main result –

Theorem 1 – provides a geometric characterization of Sender’s value from persuasion and

transfers, which we call the K-cavification. To do so, we first show that there exists a unique

set of action-contingent transfers, which we call the canonical transfers – which are optimal

at every prior and choice of information structure. We then identify a finite set K of extremal

beliefs – those at which Receiver is maximally indifferent between different actions – which

uniquely pin down the value of the K-cavification for all possible priors. When Sender faces

a moment persuasion problem – as is the case in linear persuasion settings – extremal beliefs

partition the space of prior beliefs into finitely many intervals, along which Sender’s decision

on how to use information and transfers depends only on the value of their k-cavification

at each extremal belief. We use this condition to derive easily sufficient conditions on which

Sender prefers to use both information and transfers (Proposition 2) and show how to use

it to compute the K-cavification value for all transfers in polynomial time (Corollary 1).

We next turn to the case where Receiver has an exogenous outside option. Again we

show the canonical transfers unique motivate Receiver Receiver in the prescence of a utility

1For example, Uber advertises differential tiers for their drivers, and restricts the information lower-tiered
drivers can see about their rides: see this explanation.
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promise constraint – any constrained optimal transfer rule is exactly the canonical transfer

rule modulo a constant. This characterization, combined with a strong duality result for

constrained information design (see Doval and Skreta (2023)) implies our second main result

(Theorem 2): so long Sender’s optimal payment is not exactly equal to the canonical transfers,

the optimal information structure must be full information. We interpret this as a sequencing

result on the role of information and transfers in meeting an outside option constraint for

Receiver – Sender always prefers to first use information to guarantee Receiver a certain

utility, and only turns to augmenting transfers after this channel is completely exhausted.

Finally, we consider the role of repeated interactions. Contrary to standard intuition from

repeated games, we show that even with perfectly observable actions and transfers, repetition

need not restore ex-post efficiency (c.f. Levin (2003)). In fact, Sender need not benefit from

dynamic interaction (Proposition 4). Despite this, we show that a sufficient condition for

Sender to benefit from dynamically linking Receiver incentives is for Receiver to strictly

prefer Sender’s static-optimal information structure to no information. This condition that

is violated in the canonical two-state, two-action example in Kamenica and Gentzkow (2011)

but is satisfied in many richer examples. Our characterization applies even when k is very

large (so transfers may never be optimal), and thus provides an independent contribution

on the value of repetition in models of only information design.

The rest of this paper proceeds as follows. We next discuss the related literature. Section

2 works through a simple numerical example that highlights the intuition behind our results.

Section 3 presents the general model, and Section 4 solves the static persuasion and transfers

problem. Section 5 adds an exogenous outside option constraint and compares the solution

to the unconstrained solution. Section 6 studies the repeated persuasion problem. Section 7

concludes and discusses promising avenues for future work.

Related Literature We contribute to a long and rich literature on information design, ini-

tiated by Rayo and Segal (2010) and Kamenica and Gentzkow (2011) for the case of a single

receiver, and by Bergemann and Morris (2016), Taneva (2019), and Smolin and Yamashita

(2023) for the many-receiver case. Surveys of the burgeoning literature are found in Bergemann and Morris

(2019) and Kamenica (2019); we refer the reader to these papers for a more comprehensive

discussion. One core insight underlying this literature is that information provision, even

without transfers, can both change behavior but benefit Sender. This insight motivates our

analysis, which seeks to understand Sender’s tradeoff between information provision and

transfers when both may be used to motivate an agent.

There are some related models on the joint interaction between transfers and informa-

tion, albeit in different settings. Bergemann et al. (2015) study the role of varying infor-
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mation on a monopolists’ optimal pricing scheme and the implications for the distribution

of welfare, focusing on extremal information structures. Bergemann and Pesendorfer (2007),

Eso and Szentes (2007), and Bergemann et al. (2022) study revenue-maximizing information

disclosure to bidders who then participate in the auction, while Terstiege and Wasser (2022)

and Ravid et al. (2022) study auctions where bidders can choose the information they learn

about their type (potentially at a cost). We differ from this work by having both Sender

design information but also pay the agent (instead of having the agent pay Sender for a

good). Finally, Li (2017) study the effect of limiting transfers on information transmission in

a binary-state model where the transfer rule is decided after information. We contribute to

all of these models by solving a general finite-state, finite action problem with information

and transfers, highlighting the role of extremal beliefs in characterizing the optimal solution.

There has also been significant research in the dynamics of (optimal) information design,

starting from the seminal work of Ely (2017) and Renault et al. (2017) who analyze the opti-

mal policy when the state evolves according to a Markov chain. Koh and Sanguanmoo (2022)

and Koh et al. (2024) analyze general models of persuasion when the state is persistent and

the agent takes an irreversible action. Finally, Ely et al. (2022) study a dynamic moral haz-

ard problem where the principal can release information about a persistent fundamental that

affects agents’ work-or-shirk decisions and thus the realized path of transfers. We contribute

to this literature by giving a framework in which a principal jointly contributes to the joint

path of information and transfers for a transient state.

Along the way, we need to analyze the static persuasion problem subject to an exogenous

outside option constraint. To do so, we draw on methods introduced by Doval and Skreta

(2023) and Treust and Tomala (2019) for constrained persuasion problems without trans-

fers, and augment their argument to allow for Sender to also pay Receiver. Further afield,

Babichenko et al. (2021), Kosenko (2023), and Lorecchio and Monte (2023) all study persua-

sion problems without transfers; we solve the constrained persuasion problem when Sender

can also pay the agent.

Finally, we contribute to the literature that seeks to find geometric characterizations

for the value of communication. The concavification theorem – a fundamental result in

information design – goes as far back as Aumann and Maschler (1995), and was applied

to communication games by Kamenica and Gentzkow (2011). More recent work has found

a geometric characterization in games with many players (Mathevet et al. (2020)), for the

Bayes welfare set of a game (Doval and Smolin (2024)), for cheap talk with state-independent

preferences (Lipnowski and Ravid (2020)), and for general finite cheap talk models (Barros

(2025)). We contribute to this literature by providing a geometric characterization of Sender’s

joint value from using persuasion and transfers that can be computed in polynomial time.
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2 Examples

2.1 The Role of Transfers

We start with the following example based on a one-shot interaction between a driver and

Uber. Suppose there are two states of the world: a ride is either good (θ1) or bad (θ0). Let

µ = P(θ = θ1) be the probability the driver thinks the state is good. Given the driver’s belief

about the state of the world, they can do one of three things. Reject the ride (a0), accept

the ride but then renege and cancel (a1), or accept and fulfill the ride request (a2). Uber has

strict, state-independent preferences: they prefer acceptance to rejection to acceptance and

then reneging. The driver wishes to accept good rides and rejects bad ones. However, the

driver prefers accepting and then reneging to either accepting a bad ride or rejecting a good

one. Formally, we model the above interact with the following state-dependent payoffs.2

S/R a0 a1 a2

θ0 0, 1 −0.5, 0 2.5, −2
θ1 0, −2 −0.5, 0 2.5, 1

Having fixed cardinal payoffs, we use the concavification theorem of Kamenica and Gentzkow

(2011) to graph Sender’s indirect utility function and its concavification in Figure 1.

1
3

2
3

1

−0.5

2.5

µ

V (µ)

Figure 1: Value of Persuasion

Suppose µ0 = 1
6
. Then Sender’s optimal value from persuasion is given by 3

4
(0)+ 1

4
(5

2
) = 5

8
.

If, instead, Sender could not use persuasion but would pay the agent to induce a2, giving

Sender a payoff of 1
2
.

2The specification of cardinal payoffs is not important, and is mostly chosen to simplify the algebra.
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What happens if Sender could use both transfers and persuasion? Consider the following

scheme: with probability 1
2
, reveal the state is 0 for sure, and pay the agent nothing, allowing

them to take a0. With probability 1
2

induce belief 1
3
, and pay the agent 1 dollar to take

action a2 (noting their expected payoff from a2 at µ = 1
3

is −1), This gives Sender a payoff of
1
2
(0)+ 1

2
(2.5−1) = 3

4
, which is greater than their value from just persuasion or just transfers.

Figure 2 gives a graphical illustration of this joint persuasion and transfer scheme.

µ0 1
3

2
3

1

−0.5

2.5

Value Function
Persuasion Only
Persuasion + Transfers

µ

V (µ)

Figure 2: Value with Transfers

There are a few features of the above graph worth explicitly flagging. First, the candidate

solution strictly outperforms (for sender) the policy where Sender gives full information and

then pays to induce the efficient action at each degenerate belief (in which case payments are

never used and Sender gets payoffs of 5
12

.). This computation shows the ex-post efficient payoff

is not attained by information and transfers, which is potentially surprising as actions are

perfectly observed and Sender has access to transfers in our model. However, efficiency fails

because of Sender’s limited liability constraint: Sender cannot charge Receiver when a state-

realization guarantees Receiver positive surplus, and hence Sender may choose to restrict the

information they provide. Consequently, Sender may prefer to withhold information about

the state in order to relax the limited liability constraint and hold on to more of the surplus.

Second, the optimum features both transfers and persuasion, highlighting that both tools

can be useful: in particular, a bang-bang solution where either only transfers or only per-

suasion are used at some prior belief is strictly suboptimal. Finally, in equilibrium, the

induced beliefs are exactly those where either (1) the state is fully revealed or (2) Receiver’s

best-response correspondence is multiple-valued. Theorem 1 generalizes this observation and

characterizes all beliefs that might be induced at an optimal information and transfer policy.
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2.2 The Role of Dynamics

Consider again Example 2.1 but suppose the prior is µ0 = 1
2
. Here, one candidate optimum

is to pay Receiver 1
2

to take action a2, which yields a payoff of 4 over both periods. However,

this is not optimal3. In particular, consider the following scheme.

(1) At t = 1, recommend Receiver take action a2.

(2) If Receiver follows this recommendation, pay a lump sum of 1
24

, and split beliefs into

(0, 3
4
) with probabilities (1

3
, 2

3
) and have Receiver best respond myopically.

(3) Else, if Receiver does not follow this recommendation, revert to static optimum.

If Receiver follows the recommendation, then at t = 1 Sender attains payoff 5
2
. In the

second period, Sender gets payoff 0 with probability 1
4

and payoff 5
2

− 1
24

with probability 3
4
.

Thus, Sender’s expected payoff is 13
3

> 4.

This recommendation policy is incentive compatible for Receiver. This is clearly true

at t = 2 since recommendations are myopically optimal for Receiver. At t = 1, Receiver’s

expected payoff is −1
2
. If they do not follow the recommendation, their continuation payoff

is 0. If they follow the recommendation, their expected continuation payoff is 1
3

· 1 + 2
3

· 3
16

+
1
24

= 1
2
, and hence they cannot profitable deviate. Thus, sender benefits from the ability to

dynamically design information and transfers in this model.

The ability to design both is crucial. If Sender only had access to transfers then the static

optimum would be optimal. If Sender could only persuade, their optimum must be bounded

above by the repeated optimal persuasion value, 15
4

, plus Receiver’s total surplus in the first

period under the optimal persuasion value, 1
4
, which is less than the joint surplus value.

Two key mechanisms are at play: first, the ability of Sender to threaten no-information in

the future, which relaxes Receiver incentive compatibility constraints, and second, transfers,

which help smoothly ensure Receiver IC exactly binds, maximizing Sender potential surplus.

Proposition 3 clarifies the extent to which these two forces intertwine to ensure Sender

benefits from persuasion and transfers.

3 Model

There are two players, Sender (S) and Receiver (R). There is a finite, payoff-relevant

state of the world θ ∈ Θ, drawn from a full-support prior µ0 ∈ ∆(Θ). Receiver can take one

of finitely many actions a ∈ A.

3Note that by Theorem 1, this is the static optimum at this prior
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Before Receiver takes their action, Sender can influence Receiver in one of two ways. First,

Sender can design Receiver’s informational environment by committing to any Blackwell

experiment from states to some messages space, formally4 a distribution of posterior beliefs

τ ∈ ∆(∆(Θ)) such that Eτ [µ] = µ0. Second, Sender can designs a transfer scheme, formally

a mapping t : Θ × ∆(Θ) × A → R+ from states, messages, and actions into nonnegative real

numbers. Let T = R
|Θ|×|∆(Θ)|×A
+ be the set of all transfer rules. Implicitly, the requirement

that the transfer cannot be negative imposes a limited liability constraint: Sender cannot ask

the agent to pay them conditional on a good state realization of the world. This constraint

prevents Sender from immediately attaining their first best and is a core friction in the paper.

Sender and Receiver have baseline preferences v(a, θ) and u(a, θ) over the action and

state, respectively. Given any realized posterior belief µ ∈ ∆(Θ), transfer rule t, and Receiver

action a, Sender and Receiver realized payoffs are given by

v(a, θ) − kt(a, µ, θ) and u(a, θ) + t(a, µ, θ)

respectively. k > 0 is a parameter reflecting the efficiency of transfers. If k = 1, then it costs

Sender 1 unit to transfer to the agent 1 unit of surplus5.

Given the above realized utilites, for any posterior belief µ and transfer rule t, define

Receiver’s best-response correspondence to be

a†(µ, t) = argmax
a∈A

{Eµ[u(a, θ) + t(a, µ, θ)]} .

Denote Sender’s optimal selection from Receiver’s best response correspondence is

a∗(µ, t) = argmax
a∈a†(µ,t)

{Eµ[v(a, θ) − kt(a, µ, θ)]} .

We will use 0 to denote the baseline without transfers, i.e. there are no payments regardless

of the action, state, or belief. Consequently, a∗(µ, 0) is Receiver’s action given belief µ in the

absence of transfers, i.e. as it is defined in Kamenica and Gentzkow (2011). Since Receiver’s

payoff depends only on their expected state, it should be clear that it is without loss of

generality to suppose the transfer rule t does not condition on the state (in particular, at

each belief µ, we can pay Receiver their expected transfer). Consequently, we will drop the

dependence of t on the state θ in the remainder of the paper to simplify notation. From here,

4Following the standard belief-based approaches of Kamenica and Gentzkow (2011) and
Bergemann and Morris (2016), noting that we omit the exact details, which are spelled out in the
above references.

5In principle, k may not be 1 because of differences in marginal tax rates, risk aversion, minimum wage
laws, etc. We see k as a reduced form way to model these potential frictions.
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define Sender’s indirect value function given a transfer rule t to be

V (µ, t) = Eµ[v(a∗(µ, t), θ) − kt(a, µ)]

noting the choice of a∗ from a† implies V (µ, t) is upper semi-continuous in µ for any fixed

transfer rule t. A tuple (τ ∗, t∗) is optimal at prior µ0 if it solves the program

max
τ∈∆(∆(Θ)),t∈T

{Eτ∗(V (µ, t∗))} such that Eτ [µ] = µ0.

Let V ∗(µ0) be the value function that is attained by an optimal tuple (τ ∗, t∗) at a prior µ0.

Recall by the revelation principle of Kamenica and Gentzkow (2011) that it is sufficient

for τ ∗ to support at most |A| many actions; without loss of generality, we will restrict to

these straightforward signals for the remainder of the exposition.

4 Static Equilibria

4.1 K-Concavification

What is the value of persuasion and transfers? Before we explicitly characterize the

optimum, it will be useful to restrict the set of transfer rules that are part of an optimal

tuple. Define Sender’s favorite actions at a belief µ to be

aS(µ) = argmax
a∈A

Eµ[v(a, θ) − k(u(a∗(µ, 0), θ) − u(a, θ))].

This is the set of actions where Sender gets the highest possible utility, assuming they

choose payments so that Receiver is exactly indifferent between their default action without

payments and action a. Given this set, define the canonical transfers at a belief µ as

tI(a, µ) = Eµ[u(a∗(µ, 0), θ) − u(a, θ)]1
{

a ∈ aS(µ)
}

.

The canonical transfers are the cheapest way to induce a when the agent would prefer to

take some action a∗(µ, 0) when they do not have access to transfers; in particular, they pay

only if Sender takes an action a ∈ aS(µ) and not otherwise6 Formally, we have the following:

Lemma 1. For any prior µ0 and any optimal (τ ∗, t∗), the tuple (τ ∗, tI) is optimal as well.

6Because Sender and Receiver are both indifferent after the transfer procedure, any selection from the
correspondence aS(µ) is payoff equivalent for both players, and aS(µ) is generically single-valued. When it
is without loss of ambiguity, we will treat aS(µ) as a singleton.
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The proof is given in Appendix A. Note one useful property of the canonical transfers is

that they are chosen to leave Receiver’s payoff the same both before and after payments:

Eτ∗ [u(a∗(µ, 0), θ)] = Eτ∗ [u(a∗(µ, tI), θ) + tI(a∗(µ, tI), µ)].

We can now use the canonical transfers to define the following function.

Definition 1. The transfer-augmented indirect value function is given by

V t(µ) = max
a∈A

Eµ[v(a, θ) − k(u(a∗(µ, 0), θ) − u(a, θ)].

The structure of the augmented transfer function sheds some insight into the effect of

transfers. In particular, we can rewrite the problem as

max
a∈A

{Eµ[v(a, θ) + ku(a, θ)]} − kEµ[u(a∗(µ, 0), θ)].

The first term is a combination of Sender and Receiver payoffs, and is increasing in k, the

cost of transfers to Sender: the more costly it is to change Receiver actions, the more Sender

wants to behave “as-if” they are acting in Receiver’s best interest. The second term is a

lump sump, independent of the induced action, that models Receiver’s “informational outside

option” (their payoff from taking an action when they are not paid). We can now prove the

following result about the geometric value of persuasion. Recall that the concavification of

a function f from some topological vector space X into R, denoted cav(f), is the smallest

concave function such that cav(f)(x) ≥ f(x) at every x ∈ X .

Proposition 1 (Pointwise Maximization). The optimal value function from persuasion con-

cavifies the transfer-augmented indirect value function: V ∗(µ0) = cav(V t)(µ0).

The proof is deferred until Appendix A. A-priori, the joint choice of optimal information

structure and transfer scheme might seem hard to compute, since changes in the information

structure may cause Sender to want to induce different actions with different payments at

different beliefs. Proposition 1 implies this is unnecessary: it is sufficient for Sender to first

maximize belief-by-belief their payoff supposing they only had access to transfers at that

belief (which yields V t(µ)), and then subsequently optimizing over the resulting pointwise

maximized function.

Though Proposition 1 greatly simplifies the problem of finding the optimal value of

persuasion and transfers, it still requires an uncountable number of individual computations

(one for each belief). Note, however, that in finite persuasion models the optimal value of

persuasion is piecewise linear; thus, to compute the value of persuasion, it is sufficient to

10



find each kink of the concavification and then linearly interpolate the intermediate values.

Theorem 1 exactly finds a set of extremal beliefs which are sufficient to capture all of the

kinks in V ∗(µ) and hence trace out the entire concavification (and hence, the entire value of

persuasion and transfers). Towards defining extremal beliefs, define the sets

Oa = {µ : a ∈ a†(µ, 0)}

to be the sets of beliefs at which an action a is optimal for an agent without transfers.

Clearly,
⋃

a Oa = ∆(Θ). In the proof of Theorem 1, we show each Oa is a convex, com-

pact polytope contained in ∆(Θ), using arguments from Gao and Luo (2025). We have the

following definition.

Definition 2. A belief µ is extremal if there exists a ∈ A such that µ ∈ ext(Oa).

We give an example of extremal beliefs in a three-state, three-action problem below with

the extremal beliefs depicted in brown.

θ1

θ2

θ3

Oa1
Oa2

Oa3

Figure 3: Example of Extremal Beliefs

Definition 3. Fix a set K ⊂ ∆(Θ). The K-concavification of a function f : ∆(Θ) → R,

denoted fK, is the smallest concave function such that fK(µ) ≥ f(µ) for all µ ∈ K.

If K = ∆(Θ), then the concavification is exactly the K-cavification. In general, for ar-

bitrary K, we only have fK(µ) ≤ cav(f)(µ). The main mathematical content of Theorem 1

shows, for (the finite set of) extremal beliefs, the inequality holds with equality at all beliefs.

Theorem 1 (Finite K-cavification). There exists a finite set of extremal points K such that

V K(µ) = V ∗(µ) for every belief µ.

11



We defer the (somewhat technical) proof to Appendix A. . Theorem 1, however, has

several useful implications. First, since K is independent of the effectiveness of transfers,

k, it implies that regardless of the effectiveness of transfers, there is a finite set of beliefs

(independent of k) which are exactly the ones that might be induced in an equilibrium at

some prior belief. As k grows large (i.e. k → ∞), it becomes very costly to use transfers, so

this procedure recovers exactly the value of persuasion. This implies a “qualitative invariance”

property of adding transfers to the information design problem: it will never change the set

of beliefs that might be supported in an optimal experiment, regardless of the prior. When

k → 0, Receiver preferences become “effectively” aligned with Sender preferences, and full

information is optimal.

Second, it gives a fast way to compute the (finite) set of beliefs that an analyst needs

to compute to characterize the value of persuasion, since the set of extremal beliefs is often

exactly the beliefs at which Receiver’s best response correspondence is multiple-valued. For

example, let’s return to the problem in Example 2.1; here, it is easy to see the extremal

points are exactly K = {0, 1
3
, 2

3
, 1}. Applying Theorem 1 implies the proposed information

and payment scheme – splitting beliefs into 0 and 1
3

and paying at 1
3

to induce a2 – is exactly

optimal for Sender. Moreover, this splitting of beliefs (with different weights to satisfy Bayes

plausibility) is optimal for any prior µ0 ∈ (0, 1
3
). In general, so long as Receiver’s preferences

about the state are unidimensional, there exists a polynomial-time algorithm that delivers

the value of persuasion and transfers. We elaborate on this more below in Section 4.2.

What if instead µ0 = 1
2

in Example 2.1? Reading off Figure 2 implies the value of

persuasion and transfers is then given by V ∗(µ0) = 3µ0 + 1
2
, so the value of persuasion

and transfers is 2. However, at µ0 = 1
2
, Receiver has value −1

2
from taking action a2, so

Sender can also simply pay receiver 1
2

and offer no information, which also yields a value of

2. Thus, while splitting beliefs into 1
3

and 2
3

(and paying for action a2 at 1
3
) is optimal, it

is not uniquely optimal – and in fact Sender does not benefit from the ability to design the

information structure at all. This motivates the following question: when is it that Sender

benefits strictly from the combination of persuasion and transfers, relative to the baseline of

just transfers or just persuasion? We turn to this question next.

4.2 Benefiting From Transfers

To give a complete answer to this question, we will need some control over the convex

structure of set of extremal beliefs. When there are many states, this can in general be

a complicated problem, since the exact combinatorial structure underpinning the space of
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extremal beliefs can be quite subtle7. Consequently, to answer the question of when Sender

benefits from persuasion and transfers, we focus on the moment persuasion case, where

Sender cares about the state only through a one-dimensional summary statistic. Formally,

Definition 4. Sender faces a moment persuasion problem if there exists a continuous func-

tion g : ∆(Θ) → [0, 1] and a value function Ṽ : R × T → R such that Ṽ (g(µ), t) = V (µ, t).

Moment persuasion is satisfied whenever Receiver’s payoff depends only on a moment

of the state (i.e. linear persuasion), in all problems with only two states but potentially

arbitrarily many actions (i.e. Example 2.1), and problems where Receiver’s best response

is linear in the state (i.e. quadratic loss preferences). Thus, it nests many of the standard

settings studied by the literature. Note that if a moment persuasion problem exists for

t = 0, then it exists for all transfers, as transfers enter both Sender and Receiver payoffs

linearly. We will often abuse notation and use V t(g(µ)) and V ∗(g(µ0)) to refer to Ṽ (g(µ), tI)

and cav(Ṽ (g(µ), tI)), respectively. Our first result under the moment persuasion condition

formalizes the discussion succeeding Theorem 1 that restricting to “extremal” points makes

computing the joint value of transfers and persuasion fast.

Corollary 1. Suppose Sender faces a moment persuasion problem. Then there exists an

algorithm in POLY(|Θ|×|A|) which computes the value of persuasion and transfers.

The idea is to use the fact that the indifference points in moment persuasion are pinned

down by indifference points, and hence we need only solve a finite system of linear equalities

to characterize K, after which finitely many comparisons (scaling linearly in the number of

actions) is sufficient to compute the optimal induced action. The formal proof is found in

Appendix A. We now turn to the main question of this section.

Definition 5. Say Sender strictly benefits from information and transfers at µ0 if

V ∗(µ0) > max{V t(µ0), cav(V (µ0, 0))}

Sender benefits from only transfers if V ∗(µ0) = V t(µ0).

Proposition 2. Suppose Sender faces a moment persuasion problem. Let K′ = {µ ∈ K :

V K(µ) = V t(µ)}. Represent K′ = {µj}
J
j=1, J < ∞, so that j < j′ if and only if g(µj) < g(µj′).

For generic preferences {u, v} and priors µ0 ∈ ∆(Θ),

(1) If a∗(µj, t∗) 6= a∗(µj, 0) or a∗(µj+1, t∗) 6= a∗(µj+1, 0), Sender benefits from transfers.

7See, for example, recent work by Kleiner et al. (2024).
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(2) If a∗(µj, t∗) 6= a∗(µj, 0) and a∗(µj+1, t∗) 6= a∗(µj+1, 0) and a∗(µj, t∗) 6= a∗(µj+1, t∗),

Sender strictly benefits strictly from persuasion and transfers.

(3) If a∗(µj, t∗) = a∗(µj, 0) and a∗(µj+1, t∗) = a∗(µj+1, 0), Sender does not benefit from

transfers (though may benefit from only persuasion).

The proof can be found in Appendix A. The set K′ is the set of all extremal beliefs

which are supported in some optimal information policy across all possible priors: these are

exactly the “kinks” in the K-cavification function. The genericity condition only has bite

for condition (2), where it implies that the correspondence a†(µ0, 0) is single-valued at prior

µ0. Finally, the assumption a∗(µj, t∗) 6= a∗(µj+1, t∗) in Condition (2) ensures the answer to

our question is nontrivial: if this was the case, persuasion would be unnecessary as the same

action would always be induced at optimum.

Proposition 2 dovetails nicely with Example 2.1. In particular, it gives a justification

for why only transfers are useful on the interval (1
3
, 2

3
) (since the same action is induced at

both beliefs 1
3

and 2
3
) and also justifies why the optimal solution requires both information

and transfers on the interval (0, 1
3
). However, the conditions are not exhaustive: it may be

possible that Sender benefits from transfers and persuasion even if only the hypotheses of

Condition (1) are satisfied (for example, if Sender prefers to pay at the “lower” endpoint on

the value function but not the higher one, but the higher action would be induced at the

prior under only transfers).

Proposition 2 also implies there is “essentially” an interval structure behind persuasion

and transfers. In particular, prior beliefs can be partitioned into finitely many connected

sets where (modulo finitely many points), Sender’s decision to either use transfers or use

persuasion (and the transfers and beliefs induced) will be constant on each connected set. In

the context of the motivating rideshare example, Proposition 2 implies that Uber’s optimal

information and transfer policy (1) divides drivers into distinct intervals based on their

prior belief about the quality of the ride (i.e. the location of the ride, the driver’s active

time, etc.), and (2) within each interval, pursues the same policy by adopting the same

information structure (modulo weights to satisfy Bayes plausibility).

5 Exogenous Outside Options

In Section 4, we have supposed Sender is completely unconstrained in their joint infor-

mation and transfer scheme. Yet this is often not the case for platforms who can jointly vary

both tools; for example, Uber drivers often have outside options, dictated, for example, by

their labor-leisure tradeoff or prevailing minimum wage laws. In this section, we adapt our
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baseline analysis to analyze the problem where Receiver has an exogenous outside option

of ū, and suppose Sender must fulfill this value. In particular, we interpret our results as

shedding light on the relative distortions between information and transfers.

Definition 6. Say V ∗(µ0, ū) is the value of the constrained problem with utility promise ū

if it solves the program

max
τ,t

Eµ∼τ [V (µ, t)]

s.t. Eµ∼τ [µ] = µ0 and Eµ∼τ [Eµ[u(a∗(µ, t), θ) + t(a∗(µ, t), µ)]] ≥ ū.

Any tuple (τ ∗, t∗) that solves this program is ū-constrained optimal.

The first constraint is the standard martingale constraint in persuasion; the second is

the novel utility promise constraint. What do ū-constrained optimal solutions look like? For

a fixed utility promise ū, we might expect the solution will differ from an optimal solution

where ū = 0 in two ways. First, it may affect the structure of transfers paid to the agent,

since Sender may want to depart from the canonical transfers at different actions in order

to fulfill the utility promise. Second, it may affect the structure of information, as Sender

wishes to alleviate the utility promise by increasing Receiver utility through transfers.

Theorem 2. For any ū ≥ 0, there exists a ū-constrained optimal solution of the form

(τ ∗, tI +C∗) for a constant C∗ ≥ 0. Moreover, if C∗ > 0, then the optimal information policy

is full information: τ ∗ supports only degenerate beliefs.

Theorem (2) has two important implications. First, it implies that it is without loss of

generality to consider the canonical transfers plus a (potentially zero) lump sum payment

C∗. Thus, a utility promise constraint never causes Sender to change the qualitative way

in which they employ transfers to motivate Receiver actions. Second, it implies there is a

sequential nature to how Sender balances their informational and monetary tools in fulfilling

their utility promise constraint: they will always first offer Receiver more information before

they begin to alter the amount Receiver is paid.

The proof of Theorem (1) proceeds in a few parts. First, we show all ū optimal transfer

rules t∗ take the form tI + C∗ for some C∗ ≥ 0. The proof is deferred to Appendix A.

Lemma 2. Let (τ ∗, t∗) be ū-constrained optimal. Then there exists a transfer rule t̄∗ = tI +C∗

for some C∗ ≥ 0 such that (τ ∗, t̄∗) is ū-constrained optimal.

Because the canonical transfers render Receiver completely indifferent to taking their

default action a∗(µ, 0) and the action induced on path, a∗(µ, tI), we know Receiver’s utility
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under the information and transfer policy (τ ∗, tI) is given by

Eτ∗ [u(a∗(µ, tI), θ) + tI(a∗(µ, tI), µ)] = Eτ∗ [u(a∗(µ, 0), θ)]

That is, less a constant, Receiver only benefits from a utility promise based on the effect of

increasing information transmission, not changes in the aggregate payment scheme. We will

use this observation above in simplifying the utility promise constraint below.

Suppose strong-duality holds for the constrained problem (this is verified explicitly in

Step 1 of the proof of Theorem 2 in Appendix A. ) If this is the case, then by arguments in

Doval and Skreta (2023) and Lemma 2, we can rewrite Sender’s objective function as

V ∗(µ0, ū) = sup
C∈R+

inf
λ∈R+

{

cav|µ0

{

V t(µ0) − kC + λEµ[u(a∗(µ0, 0), θ)] − λ(ū − C)
}}

.

Supposing a first order approach is valid (e.g. C∗ > 0) and differentiating in C implies λ = k

is necessary for an optimal solution. Plugging this back into the formula for the objective

and simplifying some terms implies the objective is given by

V ∗(µ0, ū) = cav
{

max
a∈A

Eµ[v(a, θ) + ku(a, θ)]
}

− kū.

The inner concavification is the maximum of linear functions and hence concave in µ and

hence full disclosure must be optimal by Kamenica and Gentzkow (2011)’s concavification

theorem. This completes our heuristic proof outline. Details are fleshed out in Appendix A.

Theorem 2 has a few useful corollaries about properties of the constrained optimum:

Corollary 2. The following are true about ū-constrained optimal solutions (τ ∗, tI + C∗) and

the value function V ∗(µ0, ū):

(1) (Lump-Sum Monotonicity) The lump sum C∗(ū) for ū-constrained optima is increasing

in ū, strictly if C∗(ū) > 0.

(2) (Concavity) V ∗(µ0, ū) is concave in µ0 and ū.

The proof is in Appendix A. Part (1) further sharpens the intuition lump-sum payments

are used to “top-off” Receiver utility up to a point information can feasibly deliver the

remaining surplus. Part (2) is useful when C∗(ū) = 0, since it restricts the effect domain of

beliefs on which we need to search to find an optimal policy. Part (3) implies Sender prefers

not to spread out utility promises whenever possible; this is particularly useful in the context

of the dynamic problem, which we analyze next.
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We can interpret Theorem 2 in the context of the motivating example as follows. Suppose

drivers’ outside options from being on the platform suddenly increase, for example, because

of minimum wage laws, changes in purchasing power parity, ease of regulation among taxi

medallions, etc. If this occurs, our model predicts first an increases in match efficiency for

drivers – they get more information – followed by not net change in efficiency once the

outside option is sufficiently high. While stylized (in particular, we don’t consider the effect

of wages on platform demand for drivers), we think that this highlights an important novel

channel through which standard minimum wage analysis differs when the employer partially

compensates agents through information.

6 Dynamics

6.1 The Dynamic Model

Time is discrete and indexed by t = 0, 1, 2, . . . . In each period, Sender and Receiver play

the static game described in Section 3, with the state drawn i.i.d.

At the beginning of each period, players observe the past history of play consisting of past

state realizations, signals, and actions ht = (θs, µs, as)
t−1
s=1. They then simultaneously choose

strategies in the stage game8 Let Ht be the set of all time-t histories and H =
⋃

t Ht be the set

of all histories. Strategies are then functions σS : H → ∆(∆(Θ)) × T and σR : H → ∆(A).

We use subscripts in σS to separate between the choice of experiment and transfer function.

Each pair of strategies (σS, σR) induces a probability measure P
σS ,σR

over the set of

histories. We say Receiver’s strategy is obedient if there are no profitable one-shot deviations

at any on-path history.

A strategy tuple (σS, σR) is optimal for Sender if it solves

max
(σS ,σR)

{

E
PσS,σR

[

(1 − δ)
∞

∑

t=0

[

EσS
1

(ht)

[

Eµ

[

v(σR(ht), θ)
]]]

]}

s.t. σR is obedient.

We are interested in studying the qualitative properties of optimal tuples. It will be useful

8This implies the state θ is perfectly revealed at the end of each period, as is Receiver’s action. In the
context of the motivating example, we interpret this as saying the driver sees the true value of the ride after
making their acceptance/rejection decision.
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to cast the problem recursively.

V ∗(µ0, ū, δ) = max
τ,u′(µ),t

Eτ [(1 − δ)Eµ[v(a∗(µ, t, u′), θ)] − kt(a∗(µ, t, u′), θ) + δV (u′(µ))]

s.t. Eτ [µ] = µ0

(1 − δ) (Eµ[u(a∗(µ, t, u′), θ)] + t(a∗(µ, t, u′), µ)) + δu′(µ) ≥ (1 − δ)Eµ[u(a∗(µ, 0), θ)] + δu

Eτ [(1 − δ) [Eµ[u(a∗(µ, t, u′), θ)] + t(a∗(µ, t, u′), µ)] + δu′(µ)] ≥ ū

The first constraint is the Bayes plausibility (martingale) constraint; the second is Receiver

incentive compatibility, and the final one is the dynamic promise keeping constraint. If a

tuple of functions (τ, u′(µ), t)(ū) solve the above problem, we will refer to the induced value

function (starting from ū = 0) to be the value of the δ-repeated persuasion problem. Note

Sender’s value from dynamic persuasion and transfers is exactly V (µ0, 0, δ), since they start

out in the first period at a trivial history without a utility promise constraint.

6.2 Equilibrium Analysis

When might it be that Sender benefits from the ability to intertwine Receiver incentives

across time? Fix some static optimum (τ ∗, t∗) and recall that repeating the static optimum

gives Sender a normalized discounted repeated payoff of V ∗(µ0) for every discount rate δ.

However, suppose there was some alternative information structure (τ̄ , t̄) which gave Sender

a payoff (close) to the payoff at (τ ∗, t∗) but which Receiver preferred to (τ ∗, t∗) by a lot.

Sender could then leverage commitment to (τ̄ , t̄) in the future to extract more payoffs from

Receiver today at a smaller cost tomorrow, increasing Sender payoffs. In Proposition 3 below,

we establish surprisingly general conditions under which we could expect such an intuition

to be formalized (in particular, for such “nearby” information and transfer schemes to exist).

Definition 7. Say Sender benefits from dynamics at prior µ0 and discount rate δ such that

V ∗(µ0, 0, δ) > V ∗(µ0).

From here, define

V̄ (µ0) = Eµ0

[

max
a∈A

v(a, θ)
]

and U(µ0) = max
a∈A

Eµ0
[u(a, θ)]

to be Sender’s best possible and Receiver’s worst possible payoff at a prior µ0 for some

information structure, respectively. If V̄ (µ0) > V ∗(µ0), we say Sender does not attain first

best at prior µ0. If Eτ∗ [Eµ[u(a∗(µ, 0)]] > U(µ0), where (τ ∗, tI) is a static optimal policy,

we say Receiver values persuasion. We can now characterize when Receiver benefits from

dynamics; the proof of Proposition 3 is deferred until Appendix A.
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Proposition 3. Suppose Sender does not attain first best and Receiver values persuasion at

µ0. Then there exists δ̄ > 0 such that for all δ > δ̄, Sender benefits from dynamics. Moreover,

lim
δ→1

V ∗(µ0, 0, δ) > V ∗(µ0).

Compare Proposition 3 to Example 2.2: in the candidate optimum there, even though

Receiver values persuasion, Sender must still transfer some surplus in order to meet Receiver

incentive compatibility constraints conditional on a signal realization. Note the mechanism

behind the proof of Proposition 3 is distinct from the asymptotic review policies constructed

in Appendix A. ; this is because of the finite time period, where we use transfers to “smooth

out” surplus instead.

One naive intuition for the driving result behind 3 is that the combination of repetition

with transfers and a patient Receiver implies the asymptotic information and transfer policy

must attain payoffs on the ex-post efficient frontier (i.e. a similar intuition to Levin (2003)).

However, this is not the core economic force driving our result – even though there are

transfers between one state and another, the limited liability constraint may still bind – thus,

if Receiver does not value persuasion at µ0, then it may be impossible to reach the efficient

frontier. Below, we give an example highlighting this intuition that doubles as an example

demonstrating why Proposition 3 requires the assumption Receiver values persuasion.

Consider the following variation of the standard judge-jury example in Kamenica and Gentzkow

(2011), where Θ = {θ0, θ1}, A = {a0, a1}, and µ0 = 1
4

is the prior probability θ = θ1. Suppose

payoffs are as follows:

S/R a0 a1

θ0 (0, 1) (1, 0)
θ1 (0, 0) (1, 1)

Suppose k ≥ 1, so the optimal joint information and transfer policy is to induce beliefs

(0, 1
2
) and never pay Receiver, netting Sender a payoff of 1

2
and Receiver a payoff of 3

4
.

However efficient allocation here is full information, which guarantees Sender and Receiver

a joint payoff of 3
2

(1
2

for Sender and 1 for Receiver).

Proposition 4. In the game above, at µ0 = 1
4
, V ∗(µ0, 0, δ) = V ∗(µ0) for all δ ∈ (0, 1).

Why does Sender not benefit from dynamics here? Note first that if k > 1, then Sender

never wants to use transfers because compensating Receiver is more expensive than the

benefit Sender can get (since Sender’s payoff from increasing the probability that a1 is chosen

is 1). Moreover, dynamic information can never be helpful because, conditional on the state

θ = θ0, Receiver and Sender actions are zero-sum. Since the static optimum already always
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induces a1 whenever θ = θ0, any further increase in the probability of a1 being chosen would

have to be when θ = θ0, and hence Sender can never relax Receiver’s incentive constraints

today by increasing tomorrow’s utility promises without decreasing their own expected utility

by the same amount, making a strict improvement impossible.

Unfortunately, finding tight necessary and sufficient conditions remains elusive. In par-

ticular, this is because the degree to which transfers can ameliorate or extract surplus from

Receiver when they take an action that is better than their no-information action will depend

crucially on the cardinal structure of payoffs when Receiver does not value persuasion at µ0.

Finding jointly necessary and sufficient conditions is a promising area for future research.

7 Discussion

In this paper, we analyzed a general model of information design where Sender can

also commit to action and belief-contingent transfers. We first showed that transfers do

not restore ex-post efficiency in the canonical finite persuasion model. Next, we introduced

a geometric argument that characterized Sender’s value from having access to both tools.

We then used this characterization to give conditions under which Sender benefits strictly

from having access to both informational and monetary tools in terms of their optimal

choices at extremal beliefs. From there, we showed that when Receiver had an exogenous

(nonzero) outside option, Sender’s optimal action responded in a sequential way: first by

providing more information, and then only after all informational tools had been exhausted

would they augment their transfer function. Finally, we gave conditions under which Sender

could benefit from intertemporal commitment, and interpreted our results in the context of

a rideshare platform (our motivating example).

We think that there are several promising directions for future research that our model

and results can speak to. Below, we sketch out several of the most promising directions.

Nonlinear Transfers. Neither Theorem 1 nor Proposition 2 use the linear structure of

transfers. Consequently, it may be natural to consider more general settings where Sender

takes an action that affects both their own payoff and the payoff of Receiver in a nonlin-

ear way. Understanding whether our extremal characterization generalizes, and if not, what

an appropriate geometric characterization would be can help us better understand the core

economic forces behind persuasion problems where the state can also engage in repression

(Gitmez and Sonin (2023)), persuasion with costly information acquisition (Matysková and Montes

(2023)), or persuasion when there is a hold-up problem by Sender (i.e. an information design

interpretation of Dworczak and Muir (2025)).
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Explicit Dynamics. Proposition 3 does not explicitly characterize the qualitative struc-

ture of the optimal contract. However, given our characterization of the static constrained

problem (2) and the fact Bayesian beliefs must be a martingale intertemporally, a natural

conjecture would be that the optimal contract asymptotically converges to either (1) the

repeated static optimum, or (2) full-information and a transfer that services some utility

promise constraint. Moreover, which of these two regimes behavior converges too may de-

pend on whether early signal realizations give Receiver high or low payoff, mirroring the

history-dependence of Guo and Hörner (2020). Finally, this conjecture mirrors and would

relate to known results in dynamic moral hazard where utilities promises must converge (i.e.

Thomas and Worrall (1990)), where (with transfers) Sender may want to explicitly retire

Receiver by giving up on leveraging dynamic incentives (i.e. Sannikov (2008)).

Platform Design: Thickness versus Efficiency. Finally, towards analyzing the plat-

form problem in the motivating example more concretely, we could endogenize consumers

and suppose the platform (i.e. Sender) can charge consumers a price to elicit services. Con-

sumers demand different ride attributes and hence different pricing schemes lead to different

distributions of ride quality, which in equilibrium would be the prior drivers’ hold about the

state of the world (this “endogenous prior” setting is reminiscent of and a potential micro-

foundation for the setting in Dai and Koh (2024)). Sender now faces an additional tradeoff

to the one analyzed in this paper9: an efficiency benefit, (changing the distribution of con-

sumers by varying consumer prices to induce a more favorable prior belief to drivers) versus

a thickness cost (decreasing the total mass of drivers in order to hit the desired prior). This

would allow us to speak to some of the recent questions about the role of information and

pricing and how they affect platforms more generally (see, for example, Bergemann et al.

(2025) and Bergemann and Bonatti (2024)).

9A similar tradeoff is studied by Gao (2024)
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Appendix A: Omitted Proofs

PROOF OF LEMMA 1

Proof. Fix an optimal (τ ∗, t∗), and suppose a∗(µ, t∗) is induced at some belief µ ∈ supp(τ ∗)

inducing a∗(µ, t∗). First suppose a∗(µ, t∗) ∈ aS(µ). Since Receiver takes action a∗, this implies

Eµ[u(a∗(µ, t∗), θ)] + t∗(a∗(µ, t∗), µ) ≥ Eµ[u(a, θ)] + t∗(a, µ) for all a ∈ A

Taking differences, this tells us that

Eµ[u(a∗(µ, t∗), θ) − u(a, θ)] ≥ t∗(a∗(µ, t∗), µ) − t∗(a, µ) for all a ∈ A

Since a∗(µ, 0) maximizes Receiver’s payoff without transfers, we have that for any a 6∈ aS(µ)

(so that tI(a, µ) = 0)

Eµ[u(a∗(µ, t∗), θ) − u(a, θ)] ≥ Eµ[u(a∗(µ, t∗), θ) − u(a∗(µ, 0)), θ)] = tIµ)

and so in particular under payments tI Receiver will not want to take any a 6∈ aS(µ). Suppose

now that a∗(µ, t∗) 6∈ aS(µ). Then if at belief µ Sender paid tI(a, µ) for some a ∈ aS(µ), they

could attain a strictly higher payoff then the induced pair under (τ ∗, t∗) at µ, a contradiction

to the optimality of the original tuple. This finishes the proof.

PROOF OF PROPOSITION 1

Proof. Fix any prior belief µ0. We have the following chain of (in)equalities.

V ∗(µ0) = max
τ

max
t

Eµ∼τ [V (µ, t(a∗(µ, t))]

≤ max
τ

Eτ

[

max
t

V (µ, t(a∗(µ, t)))
]

= Eτ [V t(µ)] = cav(V t)(µ0).

The first equality follows from the definition and maximization first over τ then t; the second

from the fact that moving the maximum into the expectation must make the value weakly

greater, the third from Lemma 1 since V t exactly implements the canonical transfers, and the

final one from the standard concavification theorem of Kamenica and Gentzkow (2011).
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PROOF OF THEOREM 1

Proof. That each Oa is compact and closed follows immediately from Lemma A.1 of Gao and Luo

(2025); that Oa is a polytope follows by noting

Oa = ∆(Θ) ∩





⋂

a′∈A\{a}

{

m :
∫

u(a, θ) − u(a′, θ)dm ≥ 0
}





K =
⋃

a ext(Oa). where m is any measure (not necessarily a probability measure). This

is a finite intersection of half-spaces and thus each Oa has finitely many extreme points by

Theorem 19.1 of Rockafellar (1996). For any fixed ã, we can now write the transfer-augmented

indirect value function on Oã as

V t(µ) = max
a∈A

{Eµ[v(a, θ) − k(u(ã, θ) − u(a, θ))]} ,

which is the maximum of linear functions over a finite index. This implies V t(µ) is convex over

the interior of each Oã. Moreover, V t(µ) is globally upper semi-continuous over all of µ since

it is the finite upper envelope of continuous functions. Thus, we have that lim
µ→µ̄

V t(µ) ≤ V t(µ̄)

for any µ̄ ∈ ∆(Θ), with strict inequality only potentially possible on the boundaries of Oa.

Now set K =
⋃

a extOa be the set of extremal beliefs; this is finite. By definition, it must

be that V K(µ) is a concave function such that V K(µ) ≥ V t(µ) for all µ ∈ K, which itself

is piecewise convex and globally upper semi-continuous (with jumps at most on points in

K). But then because V K(µ) ≥ V t(µ) on the boundary of each Oa and affine on the interior

(by the definition of the concavification), it must be that V K(µ) ≥ V t(µ) for each belief

µ ∈ ∆(Θ). Since we know also V K(µ) ≤ V ∗(µ) for all µ ∈ ∆(Θ) (by Proposition 1) it must

be that V K(µ) = cav(V t)(µ). This finishes the proof.

PROOF OF COROLLARY 1

Proof. Since Sender faces a moment persuasion problem, it is without loss of generality to

parametricize Receiver’s payoff by the same moment function g (from Sender’s point of view),

in particular by taking equivalence classes of ∆(Θ) defined by g. Second, by the argument in

Proposition (3) of Gao and Luo (2025), every extremal belief is either an indifference belief

(i.e. a∗(µ, 0) is multiple valued) or degenerate belief. Thus, since Sender faces a moment

persuasion problem, it is sufficient to find one solution µ for each pair (a, a’) to the equation

∫

u(a, θ)dg(µ) =
∫

u(a′, θ)dg(µ)
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where we abuse notation to mean the transformed problem where we take equivalence classes

of beliefs in g. Because g(µ) is a one-dimensional summary statistic, this equation admits

a unique solution which can be computed in polynomial time (recalling A and Θ are both

finite). For each pair (a, a′), this is a simple linear equation with finitely many states and

hence can be solved in polynomial time. Varying over all doubletons of (a, a′) gives there are

at most n(n−1)
2

possible pairs of beliefs (a, a′), and captures a superset of all extremal beliefs.

For each of these extremal beliefs, we need to find the (finite) maximum value aS(µ), but this

involves comparing finitely many linear equations and thus can be executed in polynomial

time. Finally, this gives V t(µ) on a superset of K, and so the concavification is the linear

interpolation of the highest points. Concatenating each of the finitely many (polynomial

time) steps together implies the result.

PROOF OF PROPOSITION 2

Proof. Clearly, V t(µ) ≥ V (µ, 0), so V ∗(µ) ≥ cav(V (µ, 0)) (with equality only if transfers are

not useful). Throughout, we will use the fact that for any connected set B ⊂ ∆(Θ), g(B)

is connected, so in particular the convex hulls of extremal points are mapped to intervals

in the moment persuasion problem. We can thus find extremal beliefs µ′ and µ′′ such that

g(µ′) < g(µ′′) ∈ [g(µj), g(µj+1)] such that cav(V (µ0), 0) = αV (µ′, 0) + (1 − α)V (µ′′, 0) for

some α ∈ [0, 1] and V K(µ0) = αV t(µj) + (1 − α)V t(µj+1).

Suppose the first condition holds, and we have picked a generic prior µ0 such that

g(µ0) 6∈ g(K′). Because the induced action under transfers is distinct from the induced

action without, we know that either V t(µj) > V (µj, 0) or V t(µj+1) > V (µj+1, 0). Moreover,

for every extremal belief µ̃ where g(µ̃) ∈ (g(µj), g(µj+1)), V K(µ̃) > V t(µ̃). Combining these

observations with the decomposition of µ0 into a convex combination of extremal beliefs

(and linearly interpolating its values) then implies the argument. Note that if g(µ0) ∈ g(K′),

a similar argument applies by looking only at the extremal point µj ∈ K′ and the induced

action at that point.

Now suppose Condition (2) holds. We will pick a generic µ0 where µ0 is on the interior

of some Oa; in particular, this implies that we can write µ0 = αµ′ + (1 − α)µ′′ for α ∈ (0, 1).

Part (1) already shows Sender benefits from transfers; we want to show they also benefit

from persuasion, i.e. it is not optimal to induce the no-information experiment. We now have

the following computation.

Suppose not, so that at µ0, a∗(µ, tI) = a is induced and V t(µ0) = V K(µ0) = V ∗(µ0).

Since µ0 is on the interior of some Oa,

µ → v(a) − kEµ[u(a∗(µ, 0), θ) − u(a, θ)]
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is linear on a neighborhood Bε(µ). But because a∗(µ, tI) attains the optimal concavification

value, one of two things must be true:

(1) There exists µ′ ∈ Bε(µ0) such that V ∗(µ′) < v(a) − kEµ[u(a∗(µ, 0), θ) − u(a, θ)], or

(2) V ∗(µ) = v(a) + ktI(a, µ) is linear over interval containing [g(µj), g(µj+1)].

Case (1) occurs when the slope of the mapping above is not equivalent to the value V t(µj+1)−V t(µj )

g(µj+1)−g(µj )
,

i.e. the slope of the value of the K-cavification over the interval [g(µj), g(µj+1)]; this is

clearly impossible by definition of V ∗(µ0). Next, we show Case (2) is impossible too. Since

a∗(µj, t∗) and a∗(µj+1, t∗) are induced at µj and µj+1 and are distinct, it must be that either

v(a) − kEµj
[u(a∗(µj, 0), θ) − u(a, θ)] < V t(µj) or v(a) − kEµj+1

[u(a∗(µj+1, 0), θ) − u(a, θ)] <

V t(µj+1). But then this implies that

V ∗(µ0) = αV t(µj) + (1 − α)V t(µj+1)

> v(a) − α
[

kEµj
[u(a∗(µj, 0), θ) − u(a, θ)]

]

− (1 − α)
[

kEµj
[u(a∗(µj, 0), θ) − u(a, θ)]

]

= v(a) − kEµ0
[u(a∗(µ0, 0), θ) − u(a, θ)]

the last equality uses the fact µ → v(a)−kEµ[u(a∗(µ, 0)−u(a, θ)] is linear on [g(µj), g(µj+1)]

by Condition (2). This implies V ∗(µ0) > V t(µ0), a contradiction to our hypothesis. Thus, at

µ0, it cannot be that V ∗(µ0) = V t(µ0), so Sender benefits from persuasion and transfers.

Finally, suppose condition (3) holds. This implies that V t(µ) = V (µ, 0) at the extremal

points {µj, µj+1}. Taking the decomposition of the prior µ0, we then have that

cav(V (αµj + (1 − α)µj+1, 0)) ≤ V K(αµj + (1 − α)µj+1) = αV t(µj) + (1 − α)V t(µj+1)

= αV (µj, 0) + (1 − α)V (µj+1, 0) ≤ cav(V (αµj + (1 − α)µj+1, 0)).

The first inequality is definitional, the second by choice of µj and µj+1, the third from the

hypotheses of Part (3), and the last one again by the definition of concavification. Thus, the

K-cavification and concavification coincide, so Sender does not benefit from transfers.

PROOF OF LEMMA 2

Proof. Suppose (τ ∗, t∗) is ū-optimal. For every µ ∈ supp(τ) and a∗(µ, t∗), let C(µ) =

t∗(a, µ)− tI(a, µ) be the difference in payoffs between the ū-optimal transfers and the canon-

ical transfers. Each C(µ) must be nonnegative by the definition of tI and the fact a is chosen

on path. Define C = Eτ [C(µ)], and consider the tuple (τ ∗, tI + C). Clearly, the transfer
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scheme satisfies the constraints since the expected payment to the principal is the same, but

also must induce the same actins on path as and induces the same actions as (τ ∗, t∗). Thus,

(τ ∗, tI + C) is ū-constrained optimal.

PROOF OF THEOREM 2

Proof. We split the proof into two distinct steps to supplement the discussion in the main

exposition. Step (1) validates the program written down in the discussion, and Step (2) solves

it to prove Theorem 2.

STEP 1: VALIDATING THE LAGRANGIAN APPROACH

For completeness, we introduce some notation from Doval and Skreta (2023). Fix a prior

µ0 and a utility promise ū. Let

F(ū − C) = {µ : There exists τ s.t. Eτ [µ] = µ0 and Eτ [Eµ[u(a∗(µ, 0), θ)]] ≥ ū − C

be the set of feasible beliefs at which there exists an information policy that satisfies the

utility promise constraint supposing that there is a lump-sum payment of C̄. Let FS(ū − C)

be the set of experiments where the utility promise holds strictly at that belief, noting

FS(ū − C) = F(ū − C). Sender’s objective function, V t(µ) − kC, is upper semi-continuous

by assumption and Receiver’s objective function at t = 0 (which defines our constraint),

Eµ(a∗(µ, 0), θ) is the maximum of linear functions and hence continuous. Moreover, both

are finite valued. Hence we satisfy all of the necessary assumptions for Theorem (3.1) in

Doval and Skreta (2023): restated in our notation, this says exactly that

Theorem (Doval and Skreta, 2023). For any (µ0, ū − C),

V ∗(µ0, ū − C) = cavµ0,ū

(

V t(µ0) − kC + 1∗ {Eµ[u(a∗(µ, 0), θ)] ≥ ū − C}
)

where the concavification is taken in both the prior and utility promise.

This program yields a value of −∞ whenever µ0 6∈ F(ū − C). The outer supremum over

C in our program follows from the fact ū−C is endogenously chosen by Sender via transfers.

Since for any ū, there exists some C at which µ0 ∈ F(ū − C), V ∗(µ0, ū) > −∞ for all ū.

We now want to apply Theorem (3.3) in Doval and Skreta (2023), noting that if µ0 ∈

F(ū − C) then F(ū − C) 6= ∅ (a nontriviality assumption required by the theorem).

Theorem (Doval and Skreta, 2023). For every C and every µ0 ∈ F(ū − C),

V ∗(µ0, ū − C) = inf
λ∈R+

[

cav
(

V t(µ0) − kC + λEµ0
[u(a∗(µ0, 0), θ)]

)

− λ(ū − C)
]
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What if µ0 6∈ F(ū − C)? That is, there is no information policy which can guarantee a

payoff of at least ū−C under the canonical transfers. In that case, the first part of our result

implies that the value of the constraint is at −∞. Setting it equal to this value and taking

the supremum across all C then implies the desired equality.

Suppose now we have fixed some C; substituting in the definition of V t then implies that

the function inside the concavification is given by

max
a∈A

{Eµ[v(a, θ) + ku(a, θ)} + (λ − k)u(a∗(µ, 0), θ)] − kC − λ(ū − C).

Maximizing over C and infimizing over λ then implies the desired program.

STEP 2: SOLVING THE LAGRANGIAN

To solve the program, note that the value function coincides with the following program

at the prior and utility promise tuple (µ0, ū):

sup
(C,λ)∈R2

+

{

cav
(

max
a∈A

{Eµ(v(a, θ) + ku(a, θ))} + (λ − k)u(a∗(µ, 0), θ)
)

− C(λ − k) − λū

}

where we pull the constant term −kC out of the concavification. This objective is differ-

entiable in C, and hence if the optimal C is every nonzero, then the first order necessary

condition must hold: that is, λ = k. Plugging this back into the above program implies the

value is equivalent to solving (less the constant term −kū)

cav
(

max
a∈A

{Eµ(v(a, θ) + ku(a, θ))}
)

.

This is the concavification of a (strictly) convex function in µ for any k ≥ 0 and hence

is attained by full-information. Otherwise, if C = 0, then µ0 ∈ F(ū), and we apply the

Doval and Skreta (2023) theorems to the problem without supremizing over C.

PROOF OF COROLLARY 2

Proof. The first part. Fix ū so that C∗(ū) > 0 and fix some ū′ > ū, and suppose C∗(ū′) <

C∗(ū). By Theorem 2, this implies τ ∗(ū) is full-information;

ū − C∗(ū) > Eτ∗(ū) [Eµ[u(a∗(µ, 0), θ)]]

≥ Eτ∗(ū′) [Eµ[u(a∗(µ, 0), θ)]] ≥ ū′ − C∗(ū′) > ū − C∗(ū′)

where the first comes from the fact C∗(ū) > 0, the second from Blackwell’s theorem (since

τ ∗(ū) is full information and hence Blackwell-maximal among all posterior distributions),
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the third from the fact (τ ∗(ū′), tI) is ū′-constrained maximum, and the final one by the fact

ū′ > ū. This then implies that C∗(ū′) > C∗(ū). This implies both parts of the argument once

we recall that C∗(ū) ≥ 0 always.

The second part. Clearly for fixed ū we are concave in µ0, since the second representation

in the proof of Theorem 2 implies

V ∗(µ0, ū) = sup
C∈R+

inf
λ∈R+

{

cav|µ0

{

V t(µ0) + λEµ[u(a∗(µ0, 0), θ)] − kC − λ(ū − C)
}}

.

The outer supremum is independent of the concavification (and moreover is independent

of beliefs) (in particular, supC∈R{f(x) + C} will be concave in x for any C), and the inner

infimum is the infimum of functions each of which is concave in µ0 (and hence concave). This

implies V ∗ is concave in µ0.

For ū, there are two cases. First, if we are on the region where C∗(ū) > 0, then the value

of persuasion and transfers in u exactly is linear with slope k (since increases in the utility

promise must be matched with increases in payments one-to-one). Second, if we are on the

interior of the region of promises where C∗(ū) = 0, then

V ∗(µ0, ū) = inf
λ∈R+

{

cav|µ0

{

V t(µ0) + λEµ[u(a∗(µ0, 0), θ)] − kC − λ(ū − C)
}}

which is the infimum of functions which are linear in u and hence must be concave.

Finally, global concavity. Let ū be the unique point at which C∗(ū+ε) > 0 but C∗(ū−ε) =

0 for all ε > 0. For a small enough compact neighborhood around ū, λ must be chosen from

a compact set, so by Berge’s theorem of the maximum the infimizers for λ are upper hemi-

continuous in the utility promise. Since λ(ū + ε) = k for all ε > 0, this implies λ(ū) = k and

hence the subderivative of V ∗(µ, ū − ε) as ε → 0 must converge to k (noting a subderivative

exists since V ∗(µ, ū − ε) is concave for all ε > 0). This implies a smooth-pasting property

must hold so V ∗(µ0, ū) is globally concave in ū for fixed prior µ0, as desired.

PROOF OF PROPOSITION 3

Proof. Fix some discount rate δ. Normalize payoffs so that U(µ) = u = 0. Consider the

following strategy for some fixed T ∈ N for Sender.

(1) At periods N which are divisible by T , reveal the state, pay nothing, and recommend

aS(θ) = {argmaxa∈A v(a, θ)}.

(2) In all other periods where N mod T is nonzero, if Receiver listened to Sender’s recom-

mendation at the most recent time N ′ < N where N ′ = nT , then revert to the static
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optimal information policy (τ ∗, tI), and recommend a∗(µ, tI) to Receiver.

(3) Otherwise, if Receiver deviated at N ′, give no information and recommend a∗(µ0, 0).

These are strategies that split histories into times T (i.e. the clock resets every T periods)

and which extract surplus from Receiver at exactly the beginning of each period. If we are

in cases (2) or (3), the recommended action is clearly incentive compatible for Receiver since

it is myopically optimal and has no affect on Receiver’s continuation value.

Finally, suppose we are in case (1). Define ∆(θ) = u(a∗(δθ, 0), θ) − u(aS(θ), θ) to be

Receiver’s deviation gain at state θ, and let ∆̄ = maxθ{∆(Θ)}. Let

η = Eτ∗ [u(a∗(µ, 0), θ)] − u(a∗(µ0, θ), θ)

be the amount by which Receiver benefits from persuasion. Incentive compatibility is then

satisfied so long as ∆̄ ≤ η
(

1−δT +1

1−δ

)

. Pick δ̄ sufficiently large so that ∆̄ < η
(

1
1−δ̄

)

, noting

this must exist since ∆̄ < ∞. Continuity in T then implies there exists some T < ∞

where this inequality holds (strictly) at T as well. Moreover, since 1−δT +1

1−δ
is increasing in

δ for any fixed T , this inequality must also hold for all δ > δ̄. Thus Receiver cannot have

any profitable deviation in the periods where Sender adopts full information. This implies

that the recommendation policy for Receiver is incentive compatible at all histories. Finally,

since Sender doesn’t attain first best, in periods divisible by T they outperform their static

persuasion payoff.

To see that the limiting inequality holds, recall

lim
δ→1

(1 − δ)
∞

∑

t=0

δtct = lim
T →∞

1

T

T
∑

t=0

cT

for any bounded sequence of numbers {ct}. In particular, this implies that as δ → 1, the above

strategy converges to the average payoff attained in all periods. Since Sender outperforms

their static persuasion payoff 1
T

of the time by a bounded amount, their total average payoff

must also increase and hence we obtain the asymptotic result.

PROOF OF PROPOSITION 4

Proof. Let ν∗ ∈ ∆(Θ × A) be the joint distribution over states and actions induced by the

static optimum (τ ∗, t∗) at µ∗
0 = 1

4
. We start with two observations.

(1) ν∗(θ1, a1) = 1
4

and ν∗(a1|θ1) = 1.
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(2) Receiver does not benefit from persuasion: that is, at the static optimum, their expected

payoff is 3
4
, which is the same as their no-information payoff.

(3) Conditional on θ = θ0, Sender and Receiver play a zero-sum game.

Now suppose not. Then there exists some δ > 0 where Sender benefits from dynamics. Fix

any history ht at which the static optimum is not played and at which Sender’s continuation

payoff starting at ht is higher than their repeated static payoff. Since Receiver does not

benefit from persuasion, Sender can only increase their payoff at ht in a zero-sum way: either

by promising a higher probability of choosing a0 at θ0 in the future, or by paying the agent.

But since Sender’s payoff and Receiver’s payoff over the static optimum allocation is zero-

sum, the utility promise to Receiver necessary to induce this allocation is equal to the benefit

Sender attains today, meaning this cannot be profitable over the static optimum. Hence the

repeated static allocatin must be optimal.
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