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Abstract:

This paper investigates the estimation of high-dimensional factor models in

which factor loadings undergo an unknown number of structural changes over time.

Given that a model with multiple changes in factor loadings can be observation-

ally indistinguishable from one with constant loadings but varying factor variances,

this reduces the high-dimensional structural change problem to a lower-dimensional

one. Due to the presence of multiple breakpoints, the factor space may expand,

potentially causing the pseudo factor covariance matrix within some regimes to be

singular. We define two types of breakpoints: a singular change, where the num-

ber of factors in the combined regime exceeds the minimum number of factors in the

two separate regimes, and a rotational change, where the number of factors in

the combined regime equals that in each separate regime. Under a singular change,

we derive the properties of the small eigenvalues and establish the consistency of

the QML estimators. Under a rotational change, unlike in the single-breakpoint

case, the pseudo factor covariance matrix within each regime can be either full

rank or singular, yet the QML estimation error for the breakpoints remains stably

bounded. We further propose an information criterion (IC) to estimate the num-

ber of breakpoints and show that, with probability approaching one, it accurately

identifies the true number of structural changes. Monte Carlo simulations confirm

strong finite-sample performance. Finally, we apply our method to the FRED-MD

dataset, identifying five structural breaks in factor loadings between 1959 and 2024.
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1 Introduction

Factor models have become increasingly popular in the analysis of economic and financial

data with large cross-section and time dimensions. In practice, a few common factors usually

provide a good summary of the common driving force for a large number of variables, so

they can preserve the key information of the major shocks in an economic system while

reducing dimensionality. Factor models are widely applied in various fields of economics,

such as policy evaluation (Stock and Watson, 2016), macroeconomic modelling (Boivin and

Giannoni, 2006), and asset pricing (Giglio and Xiu, 2021). While factor models are highly

useful, practitioners should be cautious about the potential structural changes, which are

likely to arise in a data-rich environment. Ignoring the underlying changes in factor models

may lead to misleading results.

In this paper, we propose a quasi-maximum likelihood method for estimating breakpoints

in high-dimensional factor models with multiple structural changes by introducing a unified

framework that classifies breakpoints as singular or rotational changes, with asymptotic the-

ory establishing eigenvalue convergence rate and estimator consistency for singular changes

and bounded estimation error for rotational changes. Moreover, we develop an informa-

tion criterion that consistently identifies the true number of breakpoints with probability

approaching one, addressing the practical challenge of unknown breakpoint numbers. Duan,

Bai, and Han (2021, hereafter DBH) demonstrated that when a single structural break occurs

in the factor loading matrix, the resulting factor model becomes observationally equivalent

to one with time-invariant loadings and possibly more pseudo-factors. This expansion of

the factor space induces singularity in the covariance matrices of the pseudo-factors before

and/or after the break. The singularity is the key condition to generate the consistency

of the proposed QML estimator. In practical scenarios, particularly when dealing with a

substantial time dimension T , multiple breakpoints may arise, thereby rendering the DBH

approach inapplicable.

The concept of multiple breakpoints extends far beyond the framework of a single break-

point, introducing a fundamentally different scenario that faces several significant challenges:

First, while singularity is a key criterion for verifying the consistency of estimated breakpoints

2



in a single-breakpoint setting, it is not the sole indicator in a multiple-breakpoint context,

as rotational changes can also result in singular covariance matrices. For example, in a

multiple-breakpoint scenario, adjacent regimes may simultaneously exhibit both rotational

and singular characteristics-meaning that although these regimes share the same number of

factors, their loading matrices differ only by a rotational transformation, and the factor di-

mension within these regimes is lower than the overall number of pseudo-factors estimated

from the entire sample. Such a configuration is naturally excluded in a single-breakpoint

framework via dimensionality reduction during the factor estimation; however, in multiple-

breakpoint models, additional structural changes expand the overall factor space, making

such exclusion infeasible. Consequently, this complexity complicates the task of determining

whether the estimated breakpoints are consistent or merely bounded. Second, establishing

that the information criterion consistently identifies the true number of breaks with probabil-

ity approaching one (w.p.a.1) poses significant technical challenges. This difficulty arises from

the need to characterize the divergence rates of the objective function under both overfit-

ting and underestimating breakpoints. In a multi-breakpoint context, these divergence rates

may vary depending on the specific type of breakpoint, further complicating the theoretical

analysis.

To address these challenges, we extend the QML estimator for the singular break case

to the multiple breaks case, designed to simultaneously address more complex data struc-

tures. This paper makes the following contributions to the literature. First, we propose a

unified theoretical framework that classifies structural breaks into two distinct types: sin-

gular changes and rotational changes. Furthermore, we establish a necessary and sufficient

conditions, along with their equivalent representations, to precisely distinguish between these

two types of structural breaks.

Second, we establish the convergence rate for the distance between the eigenvalues of the

estimated factor covariance matrix and those of the sub-regime covariance matrix when the

true factor covariance matrix in that regime is singular. This conclusion plays a crucial role in

the subsequent theoretical analysis, including the consistency and boundedness of the QML

estimators, as well as the consistency of the information criterion.
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Third, we establish the consistency of the QML estimator in factor model with multiple

breaks. Specifically, if the number of factors within the combined regime [k0
j−1, k0

j+1] exceeds

the number of factors in the regimes [k0
j−1, k0

j ] or [k0
j , k0

j+1], or both of them, then the QML

estimator k̂j is consistent. Conversely, if the number of factors within [k0
j−1, k0

j ], [k0
j , k0

j+1], and

[k0
j−1, k0

j+1] are equal, then the QML estimator k̂j is stochastically bounded. In this scenario,

the loading matrix undergoes solely a rotational change between the regimes [k0
j−1, k0

j ] and

[k0
j , k0

j+1]. Notably, we do not require the number of factors within the regimes [k0
j−1, k0

j ] and

[k0
j , k0

j+1] to equal the number of factors in the full sample. In contrast, in a single-breakpoint

scenario, this equality is necessary.

Fourth, we introduce an effective information criterion to determine the number of break-

points, which achieves a balanced trade-off between the loss function and the penalty term.

We demonstrate that the difference in the loss function is Op(1) in the case of overfitting and

Op(T ) when the number of breakpoints is underestimated. As a result, the penalty function

must be carefully chosen to balance these different rates effectively. Finally, we provide the-

oretical proof that this information criterion can consistently select the correct number of

breakpoints.

Our paper is also related to, but substantially different from, other studies estimating

structural changes in factor models. Earlier literature establishes the consistency of the es-

timated break fraction (i.e., the break date k0 divided by the sample size T ) (e.g., Chen,

2015 and Cheng et al. 2016). Barigozzi et al. (2018) propose a wavelet-based method that

consistently estimates both the number and locations of structural breaks in the common and

idiosyncratic components. By comparing the second moments of factors estimated via full-

sample principal components, Baltagi et al. (2017, 2021) developed an estimator that permits

changes in the number of factors but produces estimation errors that are only stochastically

bounded, not consistent with the true breakpoint positions. Under a small break setup, Bai,

Han, and Shi (2020) obtain a much stronger result that the LS estimator is consistent for

the break point, i.e., the estimated break point is equal to the true one with a probability

approaching one in large samples. Their method involves performing PCA across all po-

tential splitting points for covariance matrices before and after the split. By contrast, our
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QML methodology conducts PCA just once on the entire dataset, resulting in greater com-

putational efficiency, a difference that becomes particularly pronounced when dealing with

extensive data sets. Ma and Su (2018) propose a fused Lasso estimator that is consistent for

multiple break points in factor models. Compared to the approaches of Ma and Su (2018)

and Bai et al. (2020), who assume that the number of factors remains constant after the

break, our method offers greater generality.

Lastly, we perform a series of Monte Carlo simulations to assess the finite sample properties

of our procedure. The results demonstrate that our method can accurately estimate the

break dates, even in the presence of small sample sizes, and that our information criterion

consistently identifies the correct number of breaks. We further apply our approach to the

FRED-MD dataset (McCracken and Ng, 2016), detecting five breakpoints over the period

from January 1959 to July 2024.

The rest of this paper is organized as follows. Section 2 introduces the factor model

with multiple breaks on the factor loading matrix and describes the QML estimators for

break dates. Section 3 presents the assumptions made for this model. Section 4 studies the

asymptotic theory. Section 5 investigates the finite-sample properties of the QML estimators

through simulations. Section 6 provides an empirical study. Section 7 concludes.

The following notations will be used throughout the paper. Let ρi(B) denote the i-th

eigenvalue of an n × n symmetric matrix B, and ρ1(B) ≥ ρ2(B) ≥ · · · ≥ ρn(B). For an m × n

real matrix A, we denote its Frobenius norm as ‖A‖ = [tr(AA
′

)]1/2, and its adjoint matrix

as A
# when m = n. Let Proj(A|Z) denote the projection of matrix A onto the columns of

matrix Z. For a real number x, [x] represents the integer part of x.
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2 Model and estimator

Let us consider the following factor model with m0 common breaks at k0
1(T ) < k0

2(T ) < · · · <

k0
m0

(T ) in the factor loadings for i = 1, · · · , N :

xit =







λi,1ft + eit for t = 1, 2, · · · , k0
1(T )

· · ·

λi,m0+1ft + eit for t = k0
m0

(T ) + 1, · · · , T,

(1)

where ft is an r−dimensional vector of unobserved common factors; r is the number of

pseudo-factors in the entire sample; k0
j (T ), j = 1, · · · , m0 are unknown break dates and

min{j=0,1,··· ,m0} k0
j+1(T ) − k0

j (T ) ≥ cT for constant c, with k0
0(T ) = 0 and k0

m0+1(T ) = T ;

λi,j, j = 1, · · · , m0 + 1 are factor loadings in different time periods; and eit is the error term

allowed to have serial and cross-sectional dependence as well as heteroskedasticity, and both

N and T tend to infinity. τ 0
j = k0

j (T )/T ∈ (0, 1), j = 1, · · · , m0 are break fractions and are

fixed constants. For notational simplicity, hereinafter, we suppress the dependence of k0
j on

T . Note that the dimension of ft is the same as that of the pseudo-factors (to be defined

soon) instead of the original underlying factors.

In vector form, model (1) can be expressed as

xt =







Λ1ft + et for t = 1, 2, · · · , k0
1

· · ·

Λm0+1ft + et for t = k0
m0

+ 1, · · · , T,

(2)

where xt = [x1,t, · · · , xN,t]
′

, et = [e1,t, · · · , eN,t]
′

, Λj = [λ1,j, · · · , λN,j]
′

, j = 1, · · · , m0 + 1.

For any j = 1, · · · , m0 + 1, we define

Xj = [xk0
j−1

+1, · · · , xk0
j
]
′

, Fj = [fk0
j−1

+1, · · · , fk0
j
]
′

, ej = [ek0
j−1

+1, · · · , ek0
j
]
′

.
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We rewrite (2) using the following matrix representation:

X =









X1

· · ·
Xm0+1









=









F1Λ
′

1

· · ·
Fm0+1Λ

′

m0+1









+









e1

· · ·
em0+1









=









F1(ΛB1)
′

· · ·
Fm0+1(ΛBm0+1)

′









+









e1

· · ·
em0+1









,

=









F1B
′

1

· · ·
Fm0+1B

′

m0+1









︸ ︷︷ ︸

G

Λ
′

+









e1

· · ·
em0+1









,

= GΛ
′

+ E, (3)

where Fj , j = 1, · · · , m0 +1 have dimensions (k0
j −k0

j−1)×r and Λ is an N ×r matrix with full

column rank. The loadings are modeled as Λj = ΛBj , j = 1, · · · , m0 +1, where Bj is an r ×r

matrix. Each Λj has dimension N ×r. In this model, rj = rank(Bj)(≤ r) denote the numbers

of original factors in regime [k0
j−1, k0

j ]. In (3), we define G as the pseudo-factors because the

final expression in (3) provides an observationally equivalent representation, maintaining the

structure of the loadings matrix Λ unchanged. More precisely, when the break is omitted

during the estimation, the factors derived from a full-sample PCA correspond to the pseudo-

factors G presented in (3). It is well-established that the presence of breaks can expand the

factor space; consequently, for j = 1, . . . , m0+1, we have rj ≤ r, where rank(G) = r. This

representation allows for changes in factor loadings and the number of factors. When there

are no breaks in all factor loadings, Bj = Ir for j = 1, · · · , m0 + 1 in model (3).

The representation in (3) is convenient for theoretical analysis because one can control

break types by setting Bj for j = 1, · · · , m0 + 1. To further illustrate the generality of model

(3), we present two types of breakpoint structures within the combined regime [k0
j−1, k0

j+1] by

varying the ranks of Bj and Bj+1. Define rj,j+1 = rank([BjF
′
j , Bj+1F

′
j+1]

′) = rank([Bj, Bj+1]).

1

1Since

rj,j+1 = rank([BjF ′

j , Bj+1F ′

j+1]′) = rank([BjF ′

j , Bj+1F ′

j+1][BjF ′

j , Bj+1F ′

j+1]′/(k0
j+1 − k0

j−1))

= rank
(

[Bj , Bj+1]diag(F ′

jFj/(k0
j+1 − k0

j−1), F ′

j+1Fj+1/(k0
j+1 − k0

j−1))[Bj , Bj+1]′
)

= rank ([Bj , Bj+1]) ,
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Next, we define two types of breakpoints based on the relationship between rj,j+1 and

min{rj, rj+1}.

Type 1. rj,j+1 > min{rj, rj+1}. In this case, the number of pseudo factors in the

combined regime [k0
j−1, k0

j+1] is larger than the number of true factors 2 in either or both

of the two regimes [k0
j−1, k0

j ] and [k0
j , k0

j+1], we refer to this as a singular change. If

rj,j+1 > max{rj , rj+1}, this implies that the number of true factors within regimes [k0
j−1, k0

j ]

and [k0
j , k0

j+1] is strictly less than the number of pseudo-factors within the combined regime

[k0
j−1, k0

j+1] (i.e., rj < rj,j+1 and rj+1 < rj,j+1). As a result, the dimension of the factor load-

ings space within the combined regime [k0
j−1, k0

j+1] increases due to the structural breakpoint.

For example, when the difference in factor loadings before and after the breakpoint k0
j (i.e.,

Λj −Λj+1) is linearly independent of the factor loadings after the breakpoint (Λj+1), we have

rj < rj,j+1 and rj+1 < rj,j+1. When the factor loadings before and after the breakpoint k0
j

are linearly independent, then rj,j+1 = rj + rj+1. If rj,j+1 = max{rj, rj+1}, this implies that

new factors may emerge or existing factors may disappear from regime [k0
j−1, k0

j ] to [k0
j , k0

j+1].

For instance, if rj,j+1 = rj+1 and rj = rank(Bj) < rj,j+1, it indicates that some new factors

will appear after the breakpoint k0
j .

Type 2. rj,j+1 = min{rj, rj+1}. In this case, the number of pseudo factors in the combined

regime [k0
j−1, k0

j+1] is the same as the number of factors in each regime, and we refer to this

as a rotational change. Specifically, there exists a nonsingular r × r matrix R such that

BjR = Bj+1,

then





FjB
′
j

Fj+1B
′
j+1




 =






FjB
′
j

Fj+1R
′B′

j




 =






Fj

Fj+1R
′




B′

j , (4)

which satisfies rj,j+1 = rj = rj+1 = rank(Bj). When there is one break (m0 = 1) and B1

is nonsingular, it is analogous to the rotational change for single break setup. For example,

if B2 = 2B1 and m0 = 1, it indicates that the factors after the breakpoint have twice

standard deviation as those before the breakpoint, it must follow that r = r1,2 = r1 = r2 for

it follows that rj,j+1 = rank([BjF ′

j , Bj+1F ′

j+1
]′) = rank([Bj , Bj+1]).

2The term “true factor” here refers to the number of factors within a regime that has no breakpoints.
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m0 = 1. Such a breakpoint suggests that a model exhibiting a rotational change in the factor

covariance matrix, with unchanged loadings, can be equivalently regarded as a Type 2 change.

When Bj is singular, the rotational change is also associated with a singular, indicating a

breakpoint that exhibits both rotational and singular characteristics (r > rj,j+1 = rj = rj+1),

as demonstrated in DGP 1.E of the simulation section. Therefore, the multiple breakpoint

setting in model (3) includes a broader range of potential breakpoint configurations, making

it significantly more complex than the single breakpoint setting.

Remark 1 Singularity is not the unique feature of a singular change. Although type 1 is

labeled as a “singular change” and type 2 as a “rotational change”, singularity can occur in

both cases. Thus, singularity alone is insufficient to differentiate between the two types of

changes. To understand the origin of singularity, consider equation (4): if Bj is singular,

the subsample associated with the rotational type may not have full column rank. When

analyzing the data within the combined regime [k0
j−1, k0

j+1], the pseudo-factors are full rank,

with the number of factors denoted as rj,j+1. However, in the context of the full sample, the

pseudo-factors within this combined regime are not full rank. This singularity is not directly

attributable to the j-th breakpoint itself but rather results from the expansion of the factor

loadings space caused by other breakpoints, which renders the pseudo-factors in [k0
j−1, k0

j+1]

not full rank. Consequently, the j-th breakpoint is still classified as a rotational type. This

highlights that singularity is not introduced solely by the j-th breakpoint but rather by the

cumulative effect of structural changes at multiple locations. Therefore, relying solely on the

ranks of Bj and Bj+1 is insufficient to distinguish between type 1 and type 2 changes at

j-th breakpoint, as both types can lead to singularity in Bj and Bj+1. Situations involving

both singular and rotational changes occur only when multiple breakpoints are present; such

scenarios do not arise in single-breakpoint cases. To determine whether a breakpoint is of type

2, we establish that equation (4) provides a necessary and sufficient condition for classification

as type 2, as demonstrated in Proposition 1.

Proposition 1 There exists a nonsingular R such that BjR = Bj+1 ⇔ rj,j+1 = min(rj, rj+1).

Remark 2 Proposition 1 can equivalently be written as: There does not exists a nonsingular
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R such that BjR = Bj+1 ⇔ rj,j+1 > min(rj, rj+1), which is corresponding to a type 1 change.

To further understand Proposition 1, let’s consider a simple example. Let

B1 =









1, 0, 0

0, 0, 0

0, 0, 0









, B2 =









1, 1, 0

0, 0, 0

0, 0, 0









, B̃2 =









1, 0, 0

1, 0, 0

0, 0, 0









, B3 = I3,

then rank(B1)=rank(B2)=rank(B̃2) = 1. But rank([B1, B2]) = 1 and rank(
[

B1, B̃2

]

) = 2 >

rank(B1). For B1, we can find a nonsingular r × r matrix R such that

B1 × R =









1, 0, 0

0, 0, 0

0, 0, 0









×









1, 1, 0

0, 1, 0

0, 0, 1









=









1, 1, 0

0, 0, 0

0, 0, 0









= B2.

But such nonsingular R does not exist for B̃2 because the second row of the product B1R is

always zeros, which is not equal to that of B̃2, i.e., for any R,

B1 × R 6=









1, 0, 0

1, 0, 0

0, 0, 0









= B̃2.

Thus, in this example, for B2, since the number of pseudo factors in the combined regime is

equal to the number of factors in regimes 1 and 2 (r1,2 = r1 = r2 < r), the first breakpoint

is classified as type 2, i.e., a rotational change. In contrast, for B̃2, the number of pseudo

factors in the combined regime exceeds that in each regime (r1,2 > min{r1, r2}), indicating

that this breakpoint is classified as type 1, i.e., a singular change.

Analyzing the model with multiple changes is more complex than the model with single

change. Because in a single breakpoint model, only one type of breakpoint exist in the

model, while in the multiple changes case, both types of breakpoints may exist. This greatly

increases the complexity of analysis and estimation. Therefore, it is necessary to analyze the

convergence rate of each type of breakpoint.

In this section, we consider using the QML (quasi-maximum likelihood) method to es-

timate the break dates for model (3), assuming the number of breaks is known. We also

propose an information criterion to determine the number of breaks in section 4.
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Let Ĝ = (ĝ1, ..., ĝT )′ denote the full-sample PCA estimator for G subject to the normal-

ization condition that G
′

G/T = Ir and Λ
′

Λ being diagonal. The number of pseudo factors

can be estimated using Bai and Ng (2002). For a given set of partition (k1, · · · , km0
), the

QML objective function is expressed as:

UNT (k1, · · · , km0
) =

m0+1∑

ℓ=1

(kℓ − kℓ−1) log |Σ̂(kℓ−1, kℓ)|,

where

Σ̂(kℓ−1, kℓ) =
1

kℓ − kℓ−1

kℓ∑

t=kℓ−1+1

ĝtĝ
′

t,

with k0 = 0 and km0+1 = T . The QML estimator of the break points for model (3) is defined

as follows:

(k̂1, · · · , k̂m0
) = arg min

(k1,··· ,km0
)∈Kτ

UNT (k1, · · · , km0
), (5)

where Kτ = {(k1, · · · , km0
) : kj − kj−1 ≥ Tτ, 1 < kj < T, j = 1, · · · , m0 + 1} with τ ∈ (0, 1).

Similar to the argument of DBH and Baltagi, Kao, and Wang (2017, 2021, BKW here-

after), the second moment of ĝt shared the same change point as that of gt. Therefore, we

can obtain the QML break point estimators k̂j, j = 1, · · · , m0 using (5).

Remark 3 Bai and Perron (2003) introduced a dynamic programming algorithm, providing

an efficient method for comparing possible combinations to minimize the global sum of squared

residuals, requiring at most least-squares operations of order O(T 2) for any number of breaks.

In this paper, while estimating the globally optimal breakpoints, we apply this approach to

efficiently identify the global minimizers of the QML objective function.

3 Assumptions

The assumptions are as follows:

Assumption 1 (i) E ‖ft‖4 < M < ∞, E(ftf
′

t ) = ΣF , where ΣF is positive definite, and

1
k0

j −k0
j−1

∑k0
j

t=k0
j−1

+1 ftf
′

t
p−→ ΣF for j = 1, · · · , m0 + 1;

(ii) There exists d > 0 such that ‖∆j‖ ≥ d > 0 for j = 2, · · · , m0 + 1, where ∆j =

BjΣF B
′

j − Bj−1ΣF B
′

j−1 and Bj are r × r matrices.
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Assumption 2 ‖λi,j‖ ≤ λ̄ < ∞ for j = 1, · · · , m0 + 1, i = 1, · · · , N ,
∥
∥
∥

1
N

Λ
′

Λ − ΣΛ

∥
∥
∥ → 0 for

some r × r positive definite matrix ΣΛ.

Assumption 3 There exists a positive constant M < ∞ such that

(i) E(eit) = 0 and E|eit|8 ≤ M for all i = 1, · · · , N and t = 1, · · · , T ;

(ii) E(e
′

set/N) = E(N−1∑N
i=1 eiseit) = γN(s, t) and

∑T
s=1 |γN(s, t)| ≤ M for every t ≤ T ;

(iii) E(eitejt) = τij,t with |τij,t| < τij for some τij and for all t = 1, · · · , T and
∑N

j=1 |τij| ≤ M

for every i ≤ N ;

(iv) E(eitejs) = τij,ts,
1

NT

∑

i,j,t,s

|τij,ts| ≤ M ;

(v) For every (s, t), E
∣
∣
∣N−1/2 ∑N

i=1(eiseit − E[eiseit])
∣
∣
∣

4 ≤ M ;

(vi) For every (i, j), E
∣
∣
∣
∣(k

0
j − k0

j−1)
−1/2∑k0

j

t=k0
j−1

+1
(eitejt − E[eitejt])

∣
∣
∣
∣

4

≤ M , j = 1, · · · , m0+1.

Assumption 4 There exists a positive constant M < ∞ such that

E






1

N

N∑

i=1

∥
∥
∥
∥
∥
∥
∥

1
√

k0
j − k0

j−1

k0
j∑

t=k0
j−1

+1

fteit

∥
∥
∥
∥
∥
∥
∥

2


 ≤ M for j = 1, · · · , m0 + 1.

Assumption 5 The eigenvalues of ΣGΣΛ are distinct.

Assumption 6 Define ǫt = ftf
′

t − ΣF . The Hájek-Rényi inequality applies to the processes

{ǫt, t = k0
j−1 + 1, · · · , k0

j } and {ǫt, t = k0
j , · · · , k0

j−1 + 1} for j = 1, · · · , m0 + 1.

Assumption 7 There exists an M < ∞ such that

(i) for each h = 1, · · · , T ,

E



max
k>s

1

k − s

k∑

t=s+1

∣
∣
∣
∣
∣

1√
N

N∑

i=1

[eiheit − E(eiheit)]

∣
∣
∣
∣
∣

2


 ≤ M ;

(ii)

E



max
k>s

1

k − s

k∑

t=s+1

∥
∥
∥
∥
∥

1√
N

N∑

i=1

λieit

∥
∥
∥
∥
∥

2


 ≤ M.
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Assumption 8 There exists an M < ∞ such that for all values of N and T ,

(i)

E



max
k>s

1

k − s

k∑

t=s+1

∥
∥
∥
∥
∥

1√
NT

T∑

h=1

N∑

i=1

fs[eiheit − E(eiheit)]

∥
∥
∥
∥
∥

2


 ≤ M,

(ii)

lim sup
N,k>s

∥
∥
∥
∥
∥
∥

1
√

N(k − s) log log(N(k − s))

k∑

t=s+1

N∑

i=1

λif
′
teit

∥
∥
∥
∥
∥
∥

2

≤ M.

(iii)

lim sup
N,k>s

∥
∥
∥
∥
∥
∥

1

N
√

k − s
√

log log N2(k − s)

k∑

t=s+1

N∑

i=1

N∑

h=1

λiλ
′

h(eiteht − E(eiteht))

∥
∥
∥
∥
∥
∥

≤ M

Assumptions 1-5 are standard in the factor model literature. Assumptions 1 (i) is similar

to Assumption A in Bai (2003) and (ii) imposes restrictions on Bj and Bj−1 to ensure the

identification of the break point. Assumptions 1 (ii) rules out the case that Bj = −Bj−1 since

the objective function (5) can not identify the difference between Σ̂j−1 and Σ̂j . Assumptions

2 is similar to Assumption B of Bai (2003). Assumption 3 allows for weakly correlated error

terms in both time and cross-sectional dimensions. Assumption 4 means that the factors and

idiosyncratic errors are allowed to be weakly dependent within each regime. Assumption 5

corresponds to Assumption G in Bai (2003). Assumption 6 corresponds to Assumption 7 of

Baltagi et al. (2021), which allows the Hájek-Rényi inequality to be applicable to the second

moment process of the factors. Assumptions 7 and 8 correspond to Assumptions 7 and 8

of DBH. Assumptions 7 and 8(i) imposes further constraints on the idiosyncratic error, and

Assumption 8(ii) and (iii) are Law of the Iterated Logarithm (LIL).

Assumption 9 With probability approaching one (w.p.a.1), the following inequalities hold:

0 < c ≤ min
k−s≥[τT ]

ρh

(

1

N(k − s)

k∑

t=s+1

Λ′ete
′
tΛ

)

, for h = 1, · · · , r;

ρ1

(

1

NT

T∑

t=1

Λ′ete
′
tΛ

)

≤ c < +∞,
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as N, T → ∞, where c and c are some constants.

Assumption 10

max
k−s≥[τT ]

∥
∥
∥
∥
∥
∥

1
√

N(k − s)

k∑

t=s+1

N∑

i=1

fteitλ
′
i

∥
∥
∥
∥
∥
∥

= Op(1).

Assumption 11 (i) [B1, · · · , Bm0
] is of full row rank.

(ii) For j = 1, · · · , m0, ‖Bjfk0
j
−Proj(Bjfk0

j
|Bj+1)‖ ≥ d > 0 when r−rj+1 ≥ 2 or rj+1 = 0;

and ‖Bj+1fk0
j+1

+1 − Proj(Bj+1fk0
j+1

|Bj)‖ ≥ d > 0 when r − rj ≥ 2 or rj = 0, where Proj(A|Z)

denotes the projection of A onto the columns of Z, and d is a constant.

Assumption 9 is the same as Assumption 9 of DBH, which is an extension of Assumption

F3 in Bai (2003). Assumption 10 is an extension of 8 (ii), which is similar to Assumption F2

of Bai (2003). Assumption 11 (i) implies that ΣG is positive definite. Assumption 11 (ii) is

similar with Assumption 11 of DBH.

4 Asymptotic properties of the QML estimators

In this section, we establish the asymptotic properties of the quasi-maximum likelihood

(QML) estimators. In the existing literature on structural breaks within fixed-dimensional

time series, traditional breakpoint estimators, such as Bai’s (1997a) least-squares (LS) esti-

mator, Bai’s (2000) QML estimator, and the method proposed by Qu and Perron (2007),

are shown to exhibit fraction consistency. However, for the QML estimators to achieve con-

sistency in breakpoint estimation, the cross-sectional dimension of the time series must be

large, as demonstrated in works such as Bai (2010) and Kim (2011).

Analyzing multiple structural changes is significantly more complex than examining a sin-

gle change due to increased uncertainty in identifying regime boundaries. In a single-break

case, where two regimes exist, the boundaries are partially known the first observation marks

the start of the initial regime, while the last observation defines the end of the final regime.

This partial knowledge simplifies the problem. However, with multiple breaks, hypothesized
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regimes may not align with the actual ones, increasing difficulty and complexity. For a single

breakpoint, the search spans the entire interval [1, T ]. When two breakpoints are involved,

all possible pairs (k1, k2) must be considered, ensuring k1 and k2 are separated by at least

τT , where τ is typically a small positive integer. This constraint reduces computational

complexity and eases theoretical derivations. Since τ can be very small, hypothesized break-

points k1, . . . , km are allowed within a single regime such that k0
i < k1 < · · · < km < k0

i+1.

Consequently, overfitting is an unavoidable and significant issue when discussing asymptotic

properties.

We first consider the case of overfitting a point k̃j in regime [k0
j−1 + [τT ], k0

j − [τT ]] when

Bj is a singular matrix. Define Σ(k, s) as the covariance matrix of Hgt, and let Σ̂(k, s)

denote the estimated sample covariance matrix within the regime from k to s, where k < s.

Specifically,

Σ̂(k0
j−1, k0

j ) = Ĝ′
jĜj/(k0

j −k0
j−1), Σ̂(k0

j−1, k̃j) = Ĝ′
j,1Ĝj,1/(k̃j−k0

j−1), Σ̂(k̃j, k0
j ) = Ĝ′

j,2Ĝj,2/(k0
j −k̃j),

where Ĝj = [ĝk0
j−1

+1, ..., ĝk0
j
]′, Ĝj,1 = [ĝk0

j−1
+1, ..., ĝk̃j

]′, Ĝj,2 = [ĝk̃j+1, ..., ĝk0
j
]′. The follow-

ing theorem establishes the convergence rate of the difference between the eigenvalues of

Σ̂(k0
j−1, k0

j ) and the eigenvalues of Σ̂(k0
j−1, k̃j), when Bj is singular. This result is crucial for

the subsequent theoretical analysis.

Theorem 1 Under Assumptions 1-8 and N
T

→ κ, as N, T → ∞ for 0 < κ < ∞, when

rank(Bj) = rj < r,

(i)
∣
∣
∣ρℓ

(

Σ̂(k0
j−1, k0

j )
)

− ρℓ

(

Σ̂(k0
j−1, k̃j)

)∣
∣
∣ = Op




log log N(k̃j − k0

j−1)

N
√

k̃j − k0
j−1



 ,

(ii)
∣
∣
∣ρℓ

(

Σ̂(k0
j−1, k0

j )
)

− ρℓ

(

Σ̂(k̃j, k0
j )
)∣
∣
∣ = Op




log log N(k0

j − k̃j)

N
√

k0
j − k̃j





for ℓ = rj + 1, · · · , r uniformly over k̃j ∈ [k0
j−1 + r + 1, k0

j − r − 1].

In theorem 1, the rate of convergence is determined by N and the sample size of the

subsample, k̃j − k0
j−1 (or k0

j − k̃j). In the proof of theorem 1, we cannot use the general

Central Limit Theorem because the small eigenvalues of the population covariance matrix in
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the regime [k0
j−1, k0

j ] are zero, while the estimated small eigenvalues of the covariance matrix

in this regime are δ−2
NT . This necessitates a more detailed analysis of the asymptotic properties

of the singular eigenvalues of the factor covariance matrix. The convergence rate established

in Theorem 1 is crucial, as it underpins the consistency of the information criterion used to

select the number of breakpoints and ensures the consistency of k̂j.

Theorem 2 Under Assumptions 1–11 and N
T

→ κ, as N, T → ∞ for 0 < κ < ∞,

(i) when rj,j+1 > min{rj, rj+1}, k̂j − kj = op(1);

(ii) when rj,j+1 = min{rj, rj+1}, k̂j − kj = Op(1)

for j = 1, · · · , m0, where rj,j+1 = rank([Bj, Bj+1]).

Theorem 2 (i) demonstrates that the estimated change points converge to the true break-

points w.p.a.1 when rj,j+1 > min{rj, rj+1} (Type 1). This result is more robust than that

of Baltagi et al. (2021), who establish that the distance between estimated and true break-

points is merely Op(1) for Type 1 changes. It is important to note that in Type 1 scenarios,

where rj,j+1 = max{rj, rj+1}, the model accounts for the emergence and disappearance of

factors. Our QML estimator proves to be consistent when the number of factors changes

acorss regimes, whereas Ma and Su (2018) exclude this case by assumption. Furthermore,

Theorem 2 (ii) suggests that the discrepancy between the QML estimators and the true

change points is stochastically bounded for Type 2 changes.

To validate these theoretical findings, we conducted simulations involving factor loadings

with rotational changes (see DGP 1.D and DGP 1.E in Section 5). The simulation results

reveal that our QML estimators exhibit significantly lower MAEs and RMSEs compared to

those reported by Baltagi et al. (2021) and Ma and Su (2018).

Remark 4 Due to the presence of multiple breakpoints, one cannot simply determine the

type of breakpoint by counting the number of factors within a regime. For example, in (4),

when Bj is a singular matrix and R is a nonsingular matrix, the number of factors in the

regime [kj−1, kj+1] is rank(Bj) < r. In this case, the difference between the estimated and

true breakpoints is bounded, as described by Theorem 2 (ii) for Type 2 breakpoints. However,

when r > rj,j+1 > min{rj, rj+1}, the breakpoint corresponds to Type 1, where the estimated
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breakpoint is consistent with the true one. In both cases, although r > rj,j+1, the results

are fundamentally different. Similarly, when the number of factors in the regimes [kj−1, kj]

and [kj, kj+1] is the same, we cannot directly determine the nature of the change across the

breakpoint. If there exists a nonsingular matrix R such that Bj+1 = BjR, then the breakpoint

represents a rotational change (regardless of whether Bj is full rank or singular), and the

estimated breakpoint follows the result of Theorem 2 (ii). If no such matrix R exists, it

indicates that the factor loadings before and after the breakpoint are not fully linearly related,

and the estimated breakpoint follows the result of Theorem 2 (i). However, in the single-

break case, the condition r > r1,2 does not arise because such scenarios are excluded during

the initial estimation of the number of factors.

Remark 5 We discuss how to analyze the nature of changes around the breakpoints and

assess the reliability of the estimated breakpoint positions. For clarity, let us denote the

estimated breakpoints as k̂j−1, k̂j, and k̂j+1, and aim to determine the type of change around

the breakpoint k̂j. First, using our QML estimators and following Bai and Ng’s (2002)

information criterion, one can estimate the number of factors rj, rj+1, rj,j+1 for regimes

[k̂j−1, k̂j], [k̂j, k̂j+1], and [k̂j−1, k̂j+1], and the full-sample pseudo factors r.

(A.1) If r = min{rj, rj+1} (i.e., r = rj = rj+1 = rj,j+1), then the change across the

breakpoint is a full-rank rotational change.

(A.2) If r > min{rj, rj+1} and rj,j+1 = rj = rj+1, then the change is rotational.

(B.1) If r > min{rj, rj+1} and rj,j+1 = rj + rj+1, the factor loading before and after the

breakpoint are linearly independent-a scenario commonly assumed in existing literature.

(B.2) If r > min{rj, rj+1} and rj,j+1 = rj > rj+1, the factor loading after the breakpoint are

a linear subset of those before the breakpoint, i.e., some factors disappear after the breakpoint.

(B.3) If r > min{rj, rj+1} and rj,j+1 = rj+1 < rj, the factor loading before the breakpoint

are a linear subset of those after the breakpoint, i.e., new factors emerge after the breakpoint.

For cases (A.1) and (A.2), the difference between the estimated and true breakpoint posi-

tions is bounded, as shown by Theorem 2 (ii). In contrast, for cases (B.1), (B.2), and (B.3),

the estimated breakpoint positions are consistent with the true breakpoints, as indicated by

Theorem 2 (i). Thus, one can assess the type of break around the breakpoint and evaluate
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the reliability of the estimated breakpoint based on the values of r, rj,j+1, rj and rj+1.

Determining the number of breaks

We now discuss the choice of the number of breaks m, which is an important issue when

the objective function is used in practice. The objective function is monotonically decreasing

with respect to m, as proven in Lemma ??. Thus, we propose selecting m to minimize the

following information criterion:

IC(m) =
m+1∑

ℓ=1

(kℓ − kℓ−1) log |Σ̂(kℓ−1, kℓ)| + m(1 + |ρ̂|)r2 log(min(N, T )), (6)

where ρ̂ is the radius of the estimated AR(1) coefficient matrix, obtained by fitting a

VAR(1) model to ĝt. Let mmax be a bounded integer such that m0 < mmax and m̂ =

arg min1≤m≤mmax IC(m). We add the following assumption.

Assumption 12 The r × r matrix
Σ

−1/2

Λ
Λ′

e
′

kj

N
· ekj

ΛΣ
−1/2

Λ

N
Σ

−1/2
Λ Σ−1

F Σ
−1/2
Λ has r different eigen-

values for j = 1, · · · , m0.

Assumption 12 ensures that the smallest eigenvalue of the estimated factor covariance matrix

is distinct, with a unique corresponding eigenvector. With this result, we can further conclude

that the eigenvalues of the product of the estimated factor covariance matrix and the inverse

of the factor covariance matrix from the overfitted subsample are close to an upper triangular

matrix with diagonal elements equal to one. For details, see the proof of lemma ??.

Theorem 3 Under Assumptions 1–10 and 12, and N
T

→ κ, as N, T → ∞ for 0 < κ < ∞,

lim
N,T →∞

P (m̂ = m0) = 1.

Remark 6 The penalty function (1 + |ρ̂|)r2 log(min(N, T )) in (6) is designed to ensure the

consistent estimation of the number of breaks, applying the same penalty to both types of

breaks. This is because overestimating the number of breaks decreases the loss function by a

magnitude of Op(1), whereas underestimating the number of breaks increases the loss function

by a magnitude of Op(T ). The |ρ̂| term is introduced to prevent the penalty term from being too

small due to correlations among the factors, which could otherwise lead to an overestimation

of the number of breakpoints.
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5 Simulation

In this section, we consider DGPs corresponding to different types to evaluate the finite

sample performance of the QML estimator. We compare the QML estimator with two other

estimators. As shown below, k̂BKW is the estimator proposed by Baltagi, Kao, and Wang

(2021, BKW hereafter); k̂MS is the estimator proposed by Ma and Su (2018, MS hereafter);

and k̂QML is the QML estimator. The DGP roughly follows BKW, which can be used to

examine various elements that may affect the finite sample performance of the estimators,

and we use this DGP for model (3). We calculate the root mean square error (RMSE) and

mean absolute error (MAE) of these change point estimators k̂BKW , k̂MS, and k̂QML, and

each experiment is repeated 1000 times, where RMSEi =

√

1
1000

1000∑

s=1
(k̂i,s − k0

i )2 and MAEi =

1
1000

1000∑

s=1
|k̂i,s − k0

i | for i = 1, · · · , m0. As the computation of k̂MS requires the number of

original factors and that of k̂BKW and k̂QML requires the number of pseudo-factors, we set

r̂ = r0 for k̂MS and r̂ = r for k̂QML and k̂BKW , where r0 is the number of original factors

and r is the number of pseudo-factors. Note that the MS method sometimes detects more

or fewer than m0 breaks. For the sake of comparability, we only select the estimated results

when exactly m0 breaks are detected by MS.

Each factor is generated by the following AR(1) process:

ftp = ρft−1,p + ut,p, for t = 2, · · · , T ; p = 1, · · · , r0,

where ut = (ut,1, · · · , ut,r0
)

′

is i.i.d. N(0, Ir0
) for t = 2, · · · , T and f1 = (f1,1, · · · , f1,r0

)
′

is i.i.d.

N(0, 1
1−ρ2 Ir0

). The scalar ρ captures the serial correlation of factors, and the idiosyncratic

errors are generated by

ei,t = αei,t−1 + vi,t, for i = 1, · · · , N ; t = 2, · · · , T,

where vt = (v1,t, · · · , vN,t)
′

is i.i.d. N(0, Ω) for t = 2, · · · , T and e1 = (e1,1, · · · , eN,1)
′

is

N(0, 1
(1−α2)

Ω). The scalar α captures the serial correlation of the idiosyncratic errors, and Ω

is generated as Ωij = β |i−j| so that β captures the degree of cross-sectional dependence of

the idiosyncratic errors. In addition, ut and vt are mutually independent for all values of t.

We consider the following DGPs for factor loadings and investigate the performance of the

QML estimator for different types of breaks discussed in Section 2.
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DGP 1. We first consider the case in which m0 = 2 and r0 = 3. We set k0
1 = [0.3T ]

and k0
2 = [0.7T ], where [·] denotes the rounding operation. This means that there are two

breakpoints and three regimes.

DGP 1.A We set λi,0 to be i.i.d. N(0, 1
r0

Ir0
) across i, and define Λ0 = (λ1,0, . . . , λN,0)

′.

In the first regime, Λ1 = (λ1,1, · · · , λN,1)
′

= Λ0B1 with B1 = [1, 0, 0; 0, 1, 0; 0, 0, 0]. In the

second regime, Λ2 = (λ1,2, · · · , λN,2)
′

= Λ0B2 with B2 = [1, 0, 0; 0, 0, 0; 0, 0, 1]. In the third

regime, Λ3 = (λ1,3, · · · , λN,3)
′

= Λ0B3 with B3 = [0, 0, 0; 0, 1, 0; 0, 0, 1]. For the full sample,

the number of pseudo-factors is r = 3. In each of the three regimes, the number of factors is

2, as rank(B1) = rank(B2) = rank(B3) = 2. This setting corresponds to a Type 1 break in

Section 2 with rj,j+1 > max{rj, rj+1}. In this case, there are both independent and correlated

factor loadings within adjacent regimes. Table 1 lists the RMSEs and MAEs of these change

point estimators k̂BKW , k̂MS, and k̂QML with different values of (ρ, α, β).

In all cases, k̂QML has much smaller RMSEs and MAEs than k̂BKW and k̂MS, and the

RMSEs and MAEs of k̂QML tend to decrease as N and T increase. This confirms the con-

sistency of k̂QML established in Theorem 2 (i). In addition, the RMSEs and MAEs of k̂BKW

do not converge to zero as N and T increase, indicating that the estimation error of k̂BKW

remains stochastically bounded. Furthermore, a larger AR(1) coefficient ρ tends to worsen

the performance of k̂BKW , while it does not have effect on our QML estimator. As the sam-

ple size increases, although the performance of k̂MS gradually improves, it still falls short of

QML in terms of RMSEs and MAEs.
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Table 1: Simulated root mean squared errors (RMSEs) and mean absolute errors (MAEs) of k̂QML, k̂BKW

and k̂MS , under DGP 1.A. The last column, "Num," represents the number of times the MS method correctly

estimated two breakpoints in 1000 iterations.

N, T (k̂1, k̂2)QML (k̂1, k̂2)BKW (k̂1, k̂2)MS

RMSE MAE RMSE MAE RMSE MAE Num

ρ = 0 α = 0 β = 0

100,100 (0.585,0.587) (0.238,0.220) (10.278,10.950) (4.934,5.411) (13.527,16.188) (9.112,11.066) 197

100,300 (0.492,0.542) (0.194,0.216) (3.754,2.906) (1.323,1.283) (38.707,40.302) (23.927,27.641) 220

300,300 (0.366,0.355) (0.114,0.108) (3.459,3.672) (1.275,1.251) (32.591,32.323) (19.131,18.664) 444

300,600 (0.354,0.372) (0.107,0.118) (1.899,1.991) (0.886,0.880) (30.847,33.765) (9.957,9.870) 563

600,600 (0.290,0.293) (0.080,0.076) (1.967,1.943) (0.864,0.864) (8.324,17.133) (1.518,2.590) 566

ρ = 0.7 α = 0 β = 0

100,100 (0.575,0.495) (0.199,0.173) (20.072,19.915) (14.724,14.257) (11.472,12.697) (7.487,7.809) 230

100,300 (0.504,0.427) (0.180,0.136) (30.374,30.487) (13.404,12.818) (31.692,31.232) (17.584,17.151) 449

300,300 (0.316,0.363) (0.088,0.106) (27.303,27.966) (11.891,11.699) (21.725,23.120) (9.920,8.905) 513

300,600 (0.315,0.305) (0.081,0.075) (15.284,15.701) (4.036,3.498) (9.122,14.798) (1.736,2.338) 462

600,600 (0.221,0.261) (0.041,0.060) (22.984,16.870) (5.098,3.842) (1.162,2.937) (0.662,0.671) 459

ρ = 0 α = 0.3 β = 0

100,100 (0.636,0.578) (0.268,0.232) (11.187,10.698) (5.679,5.243) (14.503,16.041) (10.362,10.710) 221

100,300 (0.551,0.611) (0.210,0.247) (4.328,4.518) (1.482,1.537) (34.096,33.528) (22.185,21.263) 259

300,300 (0.417,0.356) (0.130,0.111) (2.625,2.818) (1.122,1.237) (33.489,27.816) (19.837,15.085) 436

300,600 (0.370,0.369) (0.117,0.110) (2.049,1.685) (0.922,0.757) (31.595,28.276) (9.600,8.324) 547

600,600 (0.329,0.313) (0.094,0.088) (2.127,1.826) (0.937,0.825) (11.666,6.868) (2.513,1.230) 534

ρ = 0 α = 0 β = 0.3

100,100 (0.576,0.680) (0.240,0.282) (10.678,11.051) (5.083,5.397) (14.617,16.179) (10.349,10.967) 212

100,300 (0.624,0.551) (0.249,0.225) (3.181,2.893) (1.410,1.323) (36.529,31.525) (23.806,19.872) 242

300,300 (0.435,0.329) (0.143,0.096) (2.696,2.752) (1.227,1.146) (28.129,31.622) (16.158,16.622) 437

300,600 (0.362,0.363) (0.113,0.116) (2.100,1.877) (0.939,0.780) (31.471,37.708) (10.541,10.886) 545

600,600 (0.311,0.300) (0.087,0.082) (2.034,1.865) (0.898,0.833) (13.322,6.358) (2.953,1.107) 552

ρ = 0.7 α = 0.3 β = 0.3

100,100 (0.531,0.577) (0.192,0.179) (21.127,19.862) (15.306,14.535) (12.497,13.936) (8.482,8.872) 243

100,300 (0.504,0.427) (0.180,0.136) (30.374,30.487) (13.404,12.818) (31.692,31.232) (17.584,17.151) 449

300,300 (0.344,0.336) (0.082,0.089) (30.739,26.776) (12.881,11.394) (23.455,21.124) (10.231,7.694) 545

300,600 (0.295,0.321) (0.077,0.081) (16.831,17.168) (4.216,3.952) (5.083,6.411) (1.088,1.197) 456

600,600 (0.221,0.307) (0.049,0.074) (15.492,18.497) (3.935,4.216) (3.111,3.017) (0.836,0.587) 421
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DGP 1.B

In this setup, we adopt the DGP from MS. We set Λ1 = (λ1,1, . . . , λN,1)
′, where λi,1 are

i.i.d. N((0.5b, 0.5b, 0.5b), 1
r0

Ir0
) across i in the first regime. In the second regime, Λ2 =

(λ1,2, · · · , λN,2)
′

and λi,2 are i.i.d. N((b, b, b), 1
r0

Ir0
) across i. In the third regime, Λ3 =

(λ1,3, · · · , λN,3)
′

and λi,3 are i.i.d. N((1.5b, 1.5b, 1.5b), 1
r0

Ir0
) across i. The number of pseudo-

factors for the full samples in this case is r = 9, and the numbers of factors in each regime

is 3. This setting corresponds to the case in Type 1 with rj,j+1 = rj + rj+1. In this case,

the factor loadings within adjacent regimes are independent. Different values of b can be

used to control the scale of change between regimes. Tables 2 and 3 present the RMSEs

and MAEs of these change point estimators k̂BKW , k̂MS, and k̂QML with different values

of (ρ, α, β), corresponding to b = 1 and b = 0, respectively. From Tables 2 and 3, we

observe that the RMSEs and MAEs of the kQML estimator are close to zero, even with

a small sample size, indicating that the QML method can nearly accurately identify the

breakpoints. Furthermore, as the sample size increases, the RMSEs and MAEs of the QML

estimator converge to zero, further validating the consistency of Theorem 2 (i). k̂BKW and

k̂MS estimators also perform well, but they are still not as accurate as the QML estimation

method.
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Table 2: Simulated root mean squared errors (RMSEs) and mean absolute errors (MAEs) of k̂QML, k̂BKW

and k̂MS , under DGP 1.B with b = 1. The last column, "Num," represents the number of times the MS

method correctly estimated two breakpoints in 1000 iterations.

N, T (k̂1, k̂2)QML (k̂1, k̂2)BKW (k̂1, k̂2)MS

RMSE MAE RMSE MAE RMSE MAE Num

ρ = 0 α = 0 β = 0

100,100 (0.148,0.134) (0.022,0.018) (1.166,1.261) (0.356,0.335) (1.396,6.403) (0.550,1.500) 40

100,300 (0.110,0.148) (0.012,0.018) (0.586,0.688) (0.205,0.233) (0.427,0.334) (0.097,0.063) 896

300,300 (0.055,0.055) (0.003,0.003) (0.696,0.638) (0.243,0.215) (0.554,0.502) (0.156,0.126) 799

300,600 (0.055,0.045) (0.003,0.002) (0.625,0.612) (0.215,0.208) (0.685,0.653) (0.236,0.213) 798

600,600 (0.000,0.032) (0.000,0.001) (0.611,0.538) (0.213,0.185) (0.825,0.687) (0.340,0.236) 711

ρ = 0.7 α = 0 β = 0

100,100 (0.078,0.078) (0.006,0.006) (2.675,3.631) (0.702,0.926) (2.894,6.358) (0.837,1.767) 43

100,300 (0.063,0.071) (0.004,0.005) (0.987,1.883) (0.347,0.455) (0.732,0.590) (0.270,0.176) 790

300,300 (0.000,0.032) (0.000,0.001) (1.569,1.072) (0.329,0.341) (0.902,0.660) (0.407,0.218) 688

300,600 (0.045,0.045) (0.002,0.002) (0.808,1.002) (0.258,0.303) (0.967,0.769) (0.466,0.297) 644

600,600 (0.000,0.032) (0.000,0.001) (1.084,1.079) (0.368,0.337) (1.061,0.867) (0.563,0.377) 597

ρ = 0 α = 0.3 β = 0

100,100 (0.170,0.164) (0.025,0.025) (0.921,1.165) (0.300,0.321) (0.697,0.775) (0.257,0.314) 35

100,300 (0.138,0.114) (0.019,0.013) (0.636,0.748) (0.231,0.257) (0.431,0.324) (0.102,0.059) 906

300,300 (0.055,0.000) (0.003,0.000) (0.665,0.683) (0.228,0.248) (0.600,0.516) (0.182,0.134) 801

300,600 (0.032,0.045) (0.001,0.002) (0.636,0.528) (0.217,0.177) (0.687,0.661) (0.237,0.217) 782

600,600 (0.032,0.045) (0.001,0.002) (0.528,0.595) (0.187,0.188) (0.863,0.742) (0.373,0.275) 698

ρ = 0 α = 0 β = 0.3

100,100 (0.145,0.148) (0.019,0.022) (1.318,1.157) (0.338,0.339) (3.919,6.342) (1.167,1.262) 42

100,300 (0.100,0.118) (0.010,0.014) (0.660,0.842) (0.212,0.286) (0.381,0.404) (0.077,0.088) 882

300,300 (0.078,0.055) (0.006,0.003) (0.593,0.642) (0.211,0.210) (0.547,0.522) (0.152,0.137) 815

300,600 (0.105,0.032) (0.011,0.001) (0.623,0.573) (0.202,0.196) (0.772,0.648) (0.302,0.210) 782

600,600 (0.032,0.000) (0.001,0.000) (0.569,0.536) (0.198,0.191) (0.818,0.678) (0.334,0.230) 730

ρ = 0.7 α = 0.3 β = 0.3

100,100 (0.118,0.095) (0.012,0.009) (2.471,3.445) (0.650,0.873) (2.121,5.266) (0.750,1.075) 40

100,300 (0.055,0.055) (0.003,0.003) (2.317,1.338) (0.418,0.409) (0.744,0.532) (0.278,0.143) 785

300,300 (0.000,0.055) (0.000,0.003) (1.167,1.200) (0.364,0.372) (0.969,0.693) (0.469,0.241) 686

300,600 (0.045,0.032) (0.002,0.001) (1.046,1.051) (0.358,0.335) (0.985,0.823) (0.486,0.339) 632

600,600 (0.032,0.032) (0.001,0.001) (0.818,1.030) (0.271,0.319) (1.044,0.870) (0.543,0.379) 567
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Table 3: Simulated root mean squared errors (RMSEs) and mean absolute errors (MAEs) of k̂QML, k̂BKW

and k̂MS , under DGP 1.B with b = 0. The last column, "Num," represents the number of times the MS

method correctly estimated two breakpoints in 1000 iterations.

N, T (k̂1, k̂2)QML (k̂1, k̂2)BKW (k̂1, k̂2)MS

RMSE MAE RMSE MAE RMSE MAE Num

ρ = 0 α = 0 β = 0

100,100 (0.182,0.195) (0.033,0.036) (1.017,0.903) (0.285,0.299) (1.265,0.894) (0.800,0.400) 5

100,300 (0.173,0.158) (0.022,0.023) (0.706,0.621) (0.245,0.225) (2.652,2.956) (0.417,0.411) 696

300,300 (0.055,0.078) (0.003,0.006) (0.691,0.575) (0.228,0.196) (0.951,0.787) (0.453,0.312) 404

300,600 (0.063,0.045) (0.004,0.002) (0.519,0.459) (0.175,0.153) (1.177,0.923) (0.693,0.425) 407

600,600 (0.045,0.045) (0.002,0.002) (0.533,0.544) (0.178,0.170) (1.270,0.939) (0.806,0.441) 263

ρ = 0.7 α = 0 β = 0

100,100 (0.089,0.114) (0.008,0.011) (2.963,2.075) (0.765,0.492) (3.691,1.581) (2.375,1.250) 8

100,300 (0.095,0.055) (0.009,0.003) (1.169,1.752) (0.338,0.397) (0.931,0.805) (0.432,0.326) 565

300,300 (0.032,0.000) (0.001,0.000) (1.238,1.157) (0.364,0.312) (1.060,0.922) (0.561,0.425) 367

300,600 (0.032,0.045) (0.001,0.002) (0.865,0.909) (0.265,0.260) (1.350,0.934) (0.912,0.438) 226

600,600 (0.000,0.045) (0.000,0.002) (0.932,0.922) (0.275,0.294) (1.257,0.971) (0.790,0.471) 157

ρ = 0 α = 0.3 β = 0

100,100 (0.251,0.205) (0.057,0.040) (1.041,1.194) (0.303,0.322) (4.000,5.344) (1.333,3.000) 9

100,300 (0.148,0.155) (0.022,0.022) (0.676,0.659) (0.241,0.226) (3.437,1.814) (0.482,0.389) 691

300,300 (0.063,0.071) (0.004,0.005) (0.562,0.580) (0.190,0.206) (1.082,0.781) (0.586,0.302) 377

300,600 (0.055,0.063) (0.003,0.004) (0.509,0.465) (0.169,0.146) (1.196,0.958) (0.715,0.463) 400

600,600 (0.055,0.045) (0.003,0.002) (0.501,0.506) (0.175,0.150) (1.294,0.909) (0.838,0.408) 277

ρ = 0 α = 0 β = 0.3

100,100 (0.179,0.192) (0.032,0.033) (1.102,1.111) (0.287,0.286) (1.069,0.756) (0.571,0.286) 7

100,300 (0.145,0.176) (0.021,0.031) (0.622,0.656) (0.197,0.218) (5.322,3.584) (0.561,0.521) 684

300,300 (0.055,0.045) (0.003,0.002) (0.546,0.610) (0.182,0.194) (1.024,0.836) (0.526,0.352) 386

300,600 (0.055,0.045) (0.003,0.002) (0.496,0.431) (0.162,0.134) (1.203,1.023) (0.724,0.525) 406

600,600 (0.055,0.045) (0.003,0.002) (0.507,0.503) (0.175,0.149) (1.255,0.893) (0.788,0.401) 287

ρ = 0.7 α = 0.3 β = 0.3

100,100 (0.100,0.114) (0.008,0.011) (3.115,2.989) (0.788,0.718) (4.336,1.265) (2.800,0.800) 5

100,300 (0.089,0.141) (0.008,0.012) (1.159,0.967) (0.342,0.298) (0.933,0.880) (0.436,0.389) 530

300,300 (0.000,0.055) (0.000,0.003) (1.099,2.137) (0.366,0.328) (1.153,0.920) (0.665,0.424) 304

300,600 (0.032,0.032) (0.001,0.001) (0.921,1.050) (0.269,0.304) (1.298,0.943) (0.843,0.444) 216

600,600 (0.032,0.000) (0.001,0.000) (0.788,0.980) (0.237,0.255) (1.429,0.916) (1.021,0.420) 143
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DGP 1.C We set λi,0 are i.i.d. N(0, 1
r0

Ir0
) across i and Λ0 = (λ1,0, · · · , λN,0)

′

. In the

first regime, Λ1 = (λ1,1, · · · , λN,1)
′

= Λ0B1 with B1 = [1, 0, 0; 0, 1, 0; 0, 0, 1]. In the second

regime, Λ2 = (λ1,2, · · · , λN,2)
′

= Λ0B2 with B2 = [1, 0, 0; 0, 1; 0, 0, 0]. In the third regime,

Λ3 = (λ1,3, · · · , λN,3)
′

= Λ0B3 with B3 = [0, 0, 0; 0, 0, 0; 0, 0, 1]. The number of pseudo-factors

for the full sample is r = 3, with the numbers of factors in the three regimes being 3, 2, and 1,

respectively, since rank(B1) = 3, rank(B2) = 2, and rank(B3) = 1. Table 4 lists the RMSEs

and MAEs of three estimators. In the first regime, all three factors are present. In the

second regime, only the first two factors remain, with the third factor disappearing. In the

third regime, only the third factor remains, while the first two factors vanish. This setting

corresponds to the case in Type 1 of Section 2, where some factors disappear after some

break points and rj,j+1 = max{rj, rj+1}. From Table 4, we observe that when the factors

are serially independent (ρ = 0), the BKW method works, though there is significant bias in

the estimated results. However, when the factors are correlated (ρ = 0.7), the BKW method

performs worse. The MS method also seems to struggle in this case, as both the RMSEs

and MAEs increase with the growing sample size. This is because the MS method assumes

a constant number of factors throughout. Nevertheless, k̂QML still performs the best, and as

the sample size increases, the RMSEs and MAEs gradually decrease.
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Table 4: Simulated root mean squared errors (RMSEs) and mean absolute errors (MAEs) of k̂QML, k̂BKW

and k̂MS , under DGP 1.C. The last column, "Num," represents the number of times the MS method correctly

estimated two breakpoints in 1000 iterations.

N, T (k̂1, k̂2)QML (k̂1, k̂2)BKW (k̂1, k̂2)MS

RMSE MAE RMSE MAE RMSE MAE Num

ρ = 0 α = 0 β = 0

100,100 (1.016,0.336) (0.473,0.097) (11.441,9.371) (7.917,3.235) (17.860,5.496) (12.216,2.775) 102

100,300 (0.915,0.302) (0.436,0.077) (12.283,1.804) (6.219,0.528) (33.254,15.893) (24.851,4.140) 443

300,300 (0.623,0.152) (0.238,0.023) (10.671,1.417) (5.222,0.425) (42.555,4.143) (28.226,0.878) 204

300,600 (0.525,0.176) (0.202,0.029) (7.939,0.807) (3.896,0.319) (69.553,5.166) (52.161,1.666) 323

600,600 (0.428,0.084) (0.147,0.007) (8.311,0.773) (4.289,0.289) (80.610,0.244) (65.299,0.030) 67

ρ = 0.7 α = 0 β = 0

100,100 (0.932,0.272) (0.373,0.058) (18.067,21.688) (14.712,14.044) (14.375,5.354) (9.513,2.835) 236

100,300 (0.925,0.207) (0.355,0.035) (33.006,21.240) (20.774,6.111) (31.273,25.690) (23.129,9.708) 489

300,300 (0.519,0.100) (0.179,0.010) (33.220,20.436) (20.490,5.413) (35.426,3.043) (25.134, 0.769) 134

300,600 (0.503,0.105) (0.171,0.011) (33.781,4.921) (17.369,1.024) (71.489,1.827) (53.703,1.585) 219

600,600 (0.358,0.105) (0.100,0.009) (34.375,7.976) (16.771,1.160) (96.833,0.316) (83.300,0.100) 10

ρ = 0 α = 0.3 β = 0

100,100 (1.146,0.358) (0.548,0.104) (12.478,8.471) (8.224,3.000) (19.026,5.281) (13.401,2.918) 147

100,300 (1.019,0.310) (0.449,0.080) (10.994,2.340) (5.665,0.500) (32.237,17.604) (25.454,4.403) 414

300,300 (0.584,0.182) (0.239,0.031) (12.211,2.303) (5.772,0.503) (34.548,1.604) (25.883,1.120) 460

300,600 (0.589,0.182) (0.237,0.031) (8.609,0.755) (4.184,0.288) (59.920,1.953) (44.780,1.770) 587

600,600 (0.449,0.095) (0.152,0.009) (8.119,0.898) (3.966,0.333) (61.981,2.037) (47.405,1.917) 482

ρ = 0 α = 0 β = 0.3

100,100 (0.996,0.300) (0.452,0.080) (12.469,7.292) (8.288,2.384) (15.848,4.817) (10.581,2.675) 117

100,300 (0.998,0.305) (0.449,0.085) (9.940,1.243) (5.155,0.475) (32.588,20.696) (25.027,6.211) 402

300,300 (0.621,0.190) (0.229,0.034) (11.364,1.101) (5.958,0.438) (38.026,4.607) (22.914,1.177) 232

300,600 (0.550,0.170) (0.224,0.027) (8.689,0.784) (4.202,0.298) (71.898,2.406) (53.062,1.562) 422

600,600 (0.458,0.114) (0.160,0.013) (8.849,0.912) (4.247,0.354) (70.002,0.633) (55.300,0.200) 40

ρ = 0.7 α = 0.3 β = 0.3

100,100 (1.097,0.249) (0.467,0.054) (17.995,21.305) (14.608,13.565) (14.184,3.582) (9.871,1.809) 278

100,300 (0.982,0.278) (0.412,0.053) (35.058,24.497) (22.097,7.168) (32.378,24.107) (25.337,9.121) 514

300,300 (0.602,0.138) (0.198,0.019) (31.680,20.713) (19.468,5.404) (33.039,2.012) (25.856,1.414) 423

300,600 (0.518,0.127) (0.180,0.016) (35.115,8.706) (17.147,1.419) (53.368,1.914) (38.673,1.619) 551

600,600 (0.486,0.123) (0.150,0.013) (31.109,9.982) (15.349,1.221) (59.029,2.181) (45.495,1.841) 428
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DGP 1.D Let Λ1 = Λ0, Λ2 = 2Λ0 and Λ3 = Λ0. In this case, the number of factors in each

regime is the same, and the changes between the factor loadings are only in their multiples,

meaning they undergo full rank rotational changes. This setting corresponds to a Type 2

break with r = rj,j+1 = rj = rj+1. In this case, the factor loadings within adjacent regimes are

perfectly linearly correlated. Table 6 reports the performance of these estimators. From the

table, we can see that the serial correlation between factors greatly affects the BKW method.

When ρ = 0.7, the RMSEs and MAEs of k̂BKW are much larger than when ρ = 0. The

MS method does not generate accurate estimates in this case, as both RMSEs and MAEs

gradually increase with the sample size. Once again, the QML method remains effective,

which also verifies our Theorem 2 (ii) that the difference between the QML estimator and

the true breakpoints is bounded under rotational change. Although k̂BKW also reaches the

same conclusion for this type of break, QML estimator clearly outperforms their estimator

according to the simulation results.
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Table 5: Simulated root mean squared errors (RMSEs) and mean absolute errors (MAEs) of k̂QML, k̂BKW

and k̂MS , under DGP 1.D. The last column, "Num," represents the number of times the MS method correctly

estimated two breakpoints in 1000 iterations.

N, T (k̂1, k̂2)QML (k̂1, k̂2)BKW (k̂1, k̂2)MS

RMSE MAE RMSE MAE RMSE MAE Num

ρ = 0 α = 0 β = 0

100,100 (3.496,3.109) (1.575,1.619) (10.317,10.069) (6.108,5.930) (20.658,20.860) (17.500,16.750) 80

100,300 (2.054,2.109) (1.159,1.142) (6.035,5.698) (2.851,2.448) (47.356,42.423) (37.796,35.259) 402

300,300 (2.215,2.111) (1.184,1.173) (6.115,5.521) (2.805,2.475) (47.817,41.938) (38.664,34.751) 425

300,600 (1.888,1.859) (1.859,1.006) (4.273,4.993) (2.078,2.368) (94.145,95.593) (76.831,77.552) 326

600,600 (2.165,1.987) (1.063,1.017) (5.295,3.856) (2.442,2.000) (95.014,86.729) (77.629,71.579) 202

ρ = 0.7 α = 0 β = 0

100,100 (8.479,8.603) (4.521,4.592) (15.649,16.261) (11.746,12.495) (18.690,18.562) (15.064,15.018) 109

100,300 (5.341,6.392) (2.765,3.037) (28.486,29.621) (15.658,16.752) (46.643,45.121) (38.320,37.091) 416

300,300 (6.208,5.149) (3.050,2.782) (29.165,27.955) (16.648,15.486) (46.087,46.810) (37.729,38.957) 299

300,600 (5.058,5.173) (2.553,2.670) (22.849,23.002) (8.809,9.277) (91.392,93.097) (71.639,75.528) 144

600,600 (5.695,5.415) (2.832,2.716) (20.543,19.428) (8.459,7.793) (88.560,92.720) (68.569,75.343) 102

ρ = 0 α = 0.3 β = 0

100,100 (3.529,3.143) (1.612,1.657) (10.447,10.092) (6.234,5.912) (19.241,17.709) (16.067,13.640) 75

100,300 (2.057,2.030) (1.145,1.093) (5.867,5.986) (2.715,2.528) (47.429,44.239) (37.707,36.320) 403

300,300 (2.225,2.114) (1.192,1.167) (6.159,5.722) (2.805,2.554) (47.924,44.531) (38.340,36.859) 412

300,600 (1.938,1.895) (1.026,1.027) (4.256,4.964) (2.126,2.354) (96.138,96.734) (78.785,80.658) 330

600,600 (1.846,1.993) (0.987,1.055) (4.536,4.712) (2.252,2.201) (98.905,94.103) (82.469,76.454) 194

ρ = 0 α = 0 β = 0.3

100,100 (3.358,3.157) (1.486,1.667) (10.340,10.413) (6.117,6.219) (21.086,19.073) (18.085,15.451) 71

100,300 (3.365,3.380) (1.560,1.641) (10.121,9.705) (6.014,5.840) (20.953,17.881) (18.039,15.115) 26

300,300 (2.148,2.093) (1.170,1.163) (6.112,5.441) (2.796,2.466) (48.737,42.597) (39.724,35.161) 416

300,600 (1.912,1.882) (1.003,1.009) (4.229,4.924) (2.081,2.317) (96.557,92.987) (78.411,76.160) 319

600,600 (1.924,2.038) (1.012,1.086) (4.574,4.716) (2.276,2.222) (97.734,91.644) (81.787,74.427) 192

ρ = 0.7 α = 0.3 β = 0.3

100,100 (8.565,8.408) (4.572,4.490) (15.741,16.328) (11.771,12.532) (16.173,16.614) (13.441,13.643) 84

100,300 (5.619,6.389) (2.914,3.094) (28.825,30.149) (16.010,17.198) (45.309,44.115) (36.507,36.493) 406

300,300 (6.326,5.310) (3.101,2.892) (29.341,28.247) (16.790,15.777) (41.986,44.212) (33.615,36.755) 273

300,600 (4.921,5.171) (2.499,2.685) (22.760,22.752) (8.788,9.281) (93.980,84.635) (74.508,67.463) 134

600,600 (5.691,5.362) (2.836,2.683) (19.944,19.463) (8.339,7.729) (82.489,86.675) (66.011,70.527) 93

28



DGP 1.E In this setup, we focus on type 2 changes with singular Bj . λi,0 are i.i.d.

N(0, 1
r0

Ir0
) across i and Λ0 = (λ1,0, · · · , λN,0)

′

. In the first regime, Λ1 = (λ1,1, · · · , λN,1)
′

=

Λ0B1 with B1 = [1, 0, 0; 0, 1, 0; 0, 0, 0]. In the second regime, we set Λ2 = (λ1,2, · · · , λN,2)
′

=

Λ0B2, where B2 = [2, x, y; 0, 2, z; 0, 0, 0] and x, y, z are i.i.d. N(0, 1). In the third regime,

Λ3 = (λ1,3, · · · , λN,3)
′

= Λ0B3 with B3 = [0, 0, 0; 0, 0, 0; 0, 0, 1]. In this setup, we can find a

nonsingular matrix R such that

B1 × R =









1, 0, 0

0, 1, 0

0, 0, 0









×









2, x, y

0, 2, z

0, 0, 1









=









2, x, y

0, 2, z

0, 0, 0









= B2.

The first breakpoint in this setting corresponds to the case in Type 2 with r = 3 > r1,2 =

r1 = r2 = 2. As shown in Table 6, the simulation results are similar to DGP 1.D.
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Table 6: Simulated root mean squared errors (RMSEs) and mean absolute errors (MAEs) of k̂QML, k̂BKW

and k̂MS , under DGP 1.E. The last column, "Num," represents the number of times the MS method correctly

estimated two breakpoints in 1000 iterations.

N, T (k̂1, k̂2)QML (k̂1, k̂2)BKW (k̂1, k̂2)MS

RMSE MAE RMSE MAE RMSE MAE Num

ρ = 0 α = 0 β = 0

100,100 (3.633,0.155) (1.949,0.022) (15.145,4.496) (8.667,1.695) (29.270,5.861) (25.831,3.295) 237

100,300 (2.520,0.148) (1.366,0.022) (8.309,0.780) (3.844,0.300) (48.334,16.411) (36.875,4.296) 311

300,300 (2.427,0.100) (1.310,0.010) (8.784,1.627) (3.799,0.452) (71.554,4.018) (60.385,0.718) 156

300,600 (2.174,0.078) (1.225,0.006) (5.545,0.839) (2.842,0.346) (188.222,8.533) (167.173,3.990) 404

600,600 (2.477,0.084) (1.290,0.007) (8.184,0.884) (3.505,0.366) (212.646,6.323) (207.218,2.655) 174

ρ = 0.7 α = 0 β = 0

100,100 (6.912,0.424) (3.832,0.024) (25.394,9.812) (19.344,5.912) (23.705,6.482) (19.818,3.608) 347

100,300 (5.773,0.118) (3.134,0.014) (39.502,12.142) (19.971,3.552) (38.722,16.872) (31.729,4.553) 425

300,300 (6.362,0.071) (3.155,0.005) (39.445,11.937) (19.855,3.580) (91.617,6.655) (79.851,3.000) 208

300,600 (5.176,0.089) (2.636,0.008) (29.764,9.061) (11.098,1.201) (163.143,7.993) (133.892,3.420) 343

600,600 (5.373,0.055) (2.730,0.003) (39.830,10.978) (14.478,1.843) (224.301,9.778) (218.798,5.816) 163

ρ = 0 α = 0.3 β = 0

100,100 (3.913,0.675) (1.964,0.058) (15.890,5.301) (9.032,2.079) (26.293,4.959) (22.084,2.821) 308

100,300 (2.436,0.179) (1.310,0.032) (9.848,2.290) (4.028,0.376) (34.548,15.027) (27.554,3.916) 296

300,300 (2.653,0.100) (1.367,0.010) (11.124,2.851) (4.060,0.541) (52.027,3.326) (38.841,1.053) 454

300,600 (2.409,0.100) (1.344,0.010) (5.755,0.925) (3.083,0.364) (67.729,1.197) (55.553,0.678) 528

600,600 (2.317,0.055) (1.238,0.003) (7.029,0.908) (3.050,0.370) (84.391,2.551) (64.069,0.907) 551

ρ = 0 α = 0 β = 0.3

100,100 (3.280,0.145) (1.713,0.019) (16.181,5.220) (9.266,2.009) (26.854,5.717) (22.728,3.244) 283

100,300 (2.288,0.145) (1.222,0.019) (9.004,2.638) (3.879,0.435) (41.812,18.103) (31.784,5.114) 254

300,300 (2.540,0.145) (1.276,0.021) (12.016,3.572) (4.384,0.610) (77.056,2.844) (65.225,0.879) 182

300,600 (2.093,0.084) (1.141,0.007) (5.856,0.896) (2.963,0.350) (159.473,4.668) (129.832,2.168) 459

600,600 (2.062,0.071) (1.176,0.005) (6.939,0.985) (3.254,0.399) (211.883,6.943) (203.669,3.291) 175

ρ = 0.7 α = 0.3 β = 0.3

100,100 (7.263,1.070) (3.980,0.083) (25.069,9.428) (19.206,5.684) (21.130,7.205) (17.294,4.071) 350

100,300 (5.830,0.182) (3.052,0.027) (44.287,14.081) (22.931,4.522) (38.584,18.216) (32.287,5.701) 442

300,300 (6.004,0.063) (2.937,0.004) (41.843,12.271) (21.719,3.710) (43.257,3.377) (33.133,1.039) 490

300,600 (5.743,0.045) (2.893,0.002) (34.972,9.347) (13.471,1.366) (72.697,1.046) (59.165,0.464) 571

600,600 (5.904,0.000) (2.907,0.000) (30.896,9.040) (11.606,1.317) (73.199,2.969) (59.281,0.674) 570
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DGP 2.

Table 7 reports the percentage of correct detection of the number of breaks under DGP

1.A-E using the information criterion (6). From table 7, it can be seen that the information

criterion we proposed can almost correctly identify the number of breakpoints as N and T

increases.

Table 7: Percentage of correct detection of the number of breaks under DGP 1.A, DGP 1.B, DGP 1.C, DGP

1.D, DGP 1.E

N, T DGP 1.A DGP 1.B (b = 1) DGP 1.B (b = 0) DGP 1.C DGP 1.D DGP 1.E

ρ = 0 α = 0 β = 0

100,100 1.000 0.725 0.488 0.991 0.331 0.422
100,300 1.000 1.000 1.000 1.000 1.000 1.000
300,300 1.000 1.000 1.000 1.000 1.000 0.999
300,600 1.000 1.000 1.000 1.000 1.000 1.000
600,600 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.7 α = 0 β = 0

100,100 1.000 0.110 0.032 0.970 0.075 0.109
100,300 0.999 1.000 1.000 0.999 0.990 0.956
300,300 1.000 1.000 1.000 1.000 0.940 0.890
300,600 1.000 1.000 1.000 1.000 1.000 1.000
600,600 1.000 1.000 1.000 1.000 1.000 0.999

ρ = 0 α = 0.3 β = 0

100,100 1.000 0.634 0.451 0.971 0.304 0.360
100,300 1.000 1.000 1.000 1.000 1.000 1.000
300,300 1.000 1.000 1.000 1.000 1.000 0.999
300,600 1.000 1.000 1.000 1.000 1.000 1.000
600,600 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0 α = 0 β = 0.3

100,100 1.000 0.644 0.391 0.995 0.321 0.376
100,300 1.000 1.000 1.000 1.000 1.000 1.000
300,300 1.000 1.000 1.000 1.000 1.000 0.999
300,600 1.000 1.000 1.000 1.000 1.000 1.000
600,600 1.000 1.000 1.000 1.000 1.000 1.000

ρ = 0.7 α = 0.3 β = 0.3

100,100 1.000 0.052 0.012 0.956 0.069 0.122
100,300 1.000 1.000 1.000 1.000 0.984 0.958
300,300 1.000 1.000 1.000 1.000 0.930 0.899
300,600 1.000 1.000 1.000 1.000 1.000 1.000
600,600 1.000 1.000 1.000 1.000 1.000 0.999

DGP 3.

Finally, we consider the accuracy of the information criterion (6) in choosing the number

of breakpoints when the the number of breaks from 0 to 4. We let the factor loadings within
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each regime, λi, i = 1 · · · , N , follow a normal distribution N(0, 1/r0), which means that the

factor loadings between regimes are independent. Before estimating the factors and factor

loadings, we use the IC criteria from Bai and Ng (2002) to determine the number of factors

for the full samples. To determine whether a breakpoint exists, we compare the size of the

loss function and the penalty function when considering a single breakpoint. In the absence

of a breakpoint, the loss function is zero. Thus, we need to compare the divergence rates

of the loss function and the penalty function when overfitting with one breakpoint. If the

divergence rate of the loss function is less than that of the penalty function, it indicates that

no breakpoint is present; otherwise, a breakpoint exists. From Table 8, it can be seen that as

the sample size increases, the probability that the proposed information criterion accurately

selects the number of breakpoints asymptotically converges to 1. This also validates our

theorem 3.
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Table 8: Percentage of correct detection of the number of breaks under different number of breaks.

N, T 0 1 2 3 4

ρ = 0, α = 0, β = 0

100,300 1.000 1.000 1.000 1.000 0.934

300,300 1.000 1.000 1.000 1.000 1.000

100,600 0.980 1.000 1.000 1.000 1.000

300,600 1.000 1.000 1.000 1.000 1.000

600,600 1.000 1.000 1.000 1.000 1.000

ρ = 0.7, α = 0, β = 0

100,300 0.920 1.000 1.000 1.000 0.082

300,300 0.980 1.000 1.000 1.000 1.000

100,600 0.880 1.000 1.000 1.000 1.000

300,600 1.000 1.000 1.000 1.000 1.000

600,600 0.960 1.000 1.000 1.000 1.000

ρ = 0, α = 0.3, β = 0

100,300 1.000 1.000 1.000 1.000 0.828

300,300 1.000 1.000 1.000 1.000 1.000

100,600 0.980 1.000 1.000 1.000 1.000

300,600 1.000 1.000 1.000 1.000 1.000

600,600 1.000 1.000 1.000 1.000 1.000

ρ = 0, α = 0, β = 0.3

100,300 1.000 1.000 1.000 1.000 0.903

300,300 1.000 1.000 1.000 1.000 1.000

100,600 0.980 1.000 1.000 1.000 1.000

300,600 1.000 1.000 1.000 1.000 1.000

600,600 1.000 1.000 1.000 1.000 1.000

ρ = 0.7, α = 0.3, β = 0.3

100,300 0.920 1.000 1.000 1.000 0.033

300,300 0.980 1.000 1.000 1.000 0.451

100,600 0.980 1.000 1.000 1.000 1.000

300,600 0.940 1.000 1.000 1.000 1.000

600,600 1.000 1.000 1.000 1.000 1.000

6 Empirical application

In this section we apply our method to detect break points for the FRED-MD (Federal

Reserve Economic Data - Monthly Data) data set. The FRED database is maintained by
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the Research division of the Federal Reserve Bank of St. Louis, and is publicly accessible

and updated in real-time. The August 2024 vintage of the FRED-MD dataset includes 126

unbalanced monthly time series spanning from January 1959 to July 2024. These series are

categorized into eight groups: (1) output and income, (2) labor market, (3) housing, (4)

consumption, orders, and inventories, (5) money and credit, (6) interest rates and exchange

rates, (7) prices, and (8) stock market. Following the literature, we replaced the missing

values replaced by the EM algorithm and transform the data by removing first two months

and replaced outliers, so that we obtain a total of T = 785 monthly observations for each

macroeconomic variable. The data have been centered and standardized for the analysis.

One can refer to McCracken and Ng (2016) for the detailed data description.

We use h = 20 as the minimum distance between breakpoints. Although theoretically, the

distance between breakpoints is required to be proportional to T , in practical applications,

a smaller h can be chosen. This is because a smaller h often allows for the detection of

more breakpoints, even when the structural changes are minor. We select the number of

factors by the information criteria IC2 of Bai and Ng (2002) for the entire samples. As a

result, the number of selected factors is 7. Next, we apply our proposed information criterion

(6) and the QML method to select the number of breakpoints and estimate their locations

as follows: January 1969, January 1983, June 2008, March 2010, and February 2020. By

January 1969, U.S. inflation surged due to heightened spending on the Vietnam War and

“Great Society” programs. By January 1983, the economy was recovering from a severe

recession triggered by the Federal Reserve’s anti-inflationary policies, though unemployment

remained high. June 2008 marked the early stages of the Global Financial Crisis, as the

collapse of the housing market spread into the broader financial sector. By March 2010, the

U.S. economy was slowly emerging from the Great Recession, bolstered by fiscal stimulus and

the passage of the Affordable Care Act. February 2020 saw the initial economic disruptions

from the COVID-19 pandemic, which would soon result in a sharp global downturn.

Finally, based on the five breakpoints, we divided the entire period into six regimes and

applied the IC2 criterion from Bai and Ng (2002) to estimate the number of factors in

each regime, yielding 2, 5, 7, 3, 4, and 7, respectively. The variation in the number of factors
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between adjacent breakpoints indicates clear changes. Therefore, in accordance with theorem

2, we conclude that each estimated breakpoint is consistent.

7 Conclusions

In this paper, we examine the quasi-maximum likelihood (QML) method for estimating

breakpoints in high-dimensional factor models with multiple structural changes. We study

two types of changes and develop asymptotic theory for the QML estimators. For type 1

changes, we establish the convergence rate between the eigenvalues of the estimated factor co-

variance matrix and those of the sub-regime covariance matrix, demonstrating the consistency

of the QML estimators. For type 2 changes, we show that the distance between the QML

estimators and the true break points is bounded. The proposed method is straightforward

to implement, computationally efficient, and theoretically robust, as it requires performing

eigendecomposition only once. Additionally, we also show that the number of changes can

be consistently estimated via information criterion approach. Simulation results confirm

the strong finite-sample performance of our approach. Finally, applying the method to the

FRED-MD dataset further demonstrates its practical utility.
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