
Nonlinear Temperature Sensitivity of Residential Electricity

Demand: Evidence from a Distributional Regression Approach∗

Kyungsik Nam†, Won-Ki Seo‡

March 11, 2025

Abstract

We estimate the temperature sensitivity of residential electricity demand during extreme tem-

perature events using the distribution-to-scalar regression model. Rather than relying on simple

averages or individual quantile statistics of raw temperature data, we construct distributional

summaries, such as probability density, hazard rate, and quantile functions, to retain a more

comprehensive representation of temperature variation. This approach not only utilizes richer

information from the underlying temperature distribution but also enables the examination of

extreme temperature effects that conventional models fail to capture. Additionally, recogniz-

ing that distribution functions are typically estimated from limited discrete observations and

may be subject to measurement errors, our econometric framework explicitly addresses this is-

sue. Empirical findings from the hazard-to-demand model indicate that residential electricity

demand exhibits a stronger nonlinear response to cold waves than to heat waves, while heat

wave shocks demonstrate a more pronounced incremental effect. Moreover, the temperature

quantile-to-demand model produces largely insignificant demand response estimates, attributed

to the offsetting influence of two counteracting forces.
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1 Introduction

Accurately estimating electricity demand during extreme weather events is vital for ensuring energy

security and enhancing grid reliability. For energy practitioners and policymakers, precise demand

estimation is crucial for balancing supply and demand, preventing power outages, and ensuring

that the energy infrastructure can withstand increased loads during such critical periods. As

climate change drives more frequent and severe weather events, the importance of precise demand

estimation has grown significantly, making it a cornerstone of sustainable energy management.

The relationship between temperature and electricity demand is inherently nonlinear, as de-

mand typically rises sharply during hot or cold conditions. Traditional approaches to modeling this

relationship rely on nonlinear temperature variables such as Heating Degree Days (HDD) and Cool-

ing Degree Days (CDD). However, these methods have notable limitations, including the need to

arbitrarily define threshold temperatures. To address this limitation, nonlinear econometric models

or density-based approaches that incorporate the full temperature distribution as an explanatory

variable have been investigated. These methodologies effectively capture the seasonal dynamics of

electricity demand while allowing the threshold temperature to be estimated endogenously within

the model.

Nonetheless, unexpected spikes in electricity demand during extreme temperature events present

crucial challenges for grid stability, necessitating more advanced econometric modeling techniques.

Residential electricity demand, in particular, exhibits heightened sensitivity to temperature ex-

tremes, increasing unpredictably under such conditions. Existing nonlinear and density-based

econometric approaches often fail to adequately capture these nonlinear demand responses, leading

to significant underestimation during critical periods. As climate change amplifies temperature

extremes, reassessing and refining demand estimation methodologies is essential for ensuring grid

stability and optimizing operational efficiency.

Beyond the inherent challenges of modeling nonlinear temperature-demand relationships, a

significant source of error arises from measurement and estimation inaccuracies. In particular,

constructing a representative temperature regressor from high-frequency or regional raw data in-

troduces estimation errors, leading to biased and inconsistent demand response estimates. Addi-

tionally, the density-based approach assumes that nonparametrically estimated temperature distri-

butions represent true distributions. This assumption further amplifies estimation bias, as errors

in the temperature distribution can distort demand response projections. These errors are partic-

ularly problematic during extreme temperature events, where precise demand forecasting is crucial
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for ensuring energy security and grid stability.

Building on the foundational work of Engle et al. (1986), a substantial body of literature has

applied the cointegration framework for analyzing electricity demand, with noticeable contributions

from Engle et al. (1989), Silk and Joutz (1997), Beenstock et al. (1999), Chang et al. (2014), Chang

et al. (2016a), and Chang et al. (2021), among others. Subsequently, the literature has focused

on incorporating nonlinear temperature variables, such as HDD and CDD, or employing nonlinear

econometric methods to evaluate the impact of temperature fluctuations on electricity demand,

including Sailor and Muñoz (1997), Henley and Peirson (1997), Henley and Peirson (1998), Valor

et al. (2001), Pardo et al. (2002), and Apadula et al. (2012). In particular, smooth transition,

panel threshold, and switching regression models have been employed to capture nonlinear demand

responses (Moral-Carcedo and Vicéns-Otero, 2005; Bessec and Fouquau, 2008). The nonlinear

relationship between electricity demand and temperature has been further explored through various

advanced methodologies. Notably, artificial neural networks have been applied to improve load

forecasting accuracy (Teixeira et al., 2017; Caro et al., 2020; Sharma et al., 2020), while machine

learning approaches have been employed to enhance short-run demand predictions (Al-Musaylh

et al., 2019; Sultana et al., 2022).

Rather than analyzing the overall effects of weather variables, recent literature has increasingly

focused on the impact of extreme temperatures on peak electricity demand. Early studies em-

ployed seasonal autoregressive moving average models with conditional heteroskedasticity to model

fluctuations in peak demand (Sigauke and Chikobvu, 2011; Rallapalli and Ghosh, 2012). Later

research incorporated tail-quantile estimation and extreme value theory to improve the accuracy

of predicting extreme peak demand (Sigauke et al., 2013; Chan and Nadarajah, 2015; Sigauke

and Bere, 2017; Sigauke and Nemukula, 2020). More recently, density-based functional approaches

have emerged to analyze these extreme effects across sectors, providing deeper insights into the

nonlinearity between temperature and electricity demand (Chang et al., 2016b; Miller and Nam,

2022).

Compared to the existing literature, we investigate distribution-to-scalar regression models that

effectively account for the nonlinear response of residential electricity demand, even in the presence

of measurement errors and extreme temperature events—an aspect that has not been comprehen-

sively explored. By addressing the complexities introduced by measurement errors, our approach

provides a more robust estimation, setting it apart from traditional techniques that may over-

look these critical factors. Furthermore, our approach differs significantly from existing studies

by focusing on the nonlinear response of residential electricity demand to changes in temperature
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distribution, rather than just temperature levels. This allows for a more comprehensive analysis,

capturing the broader distributional effects of temperature fluctuations, particularly during extreme

temperature events.

Accordingly, we incorporate both density and hazard rate functions (as distributional summaries

of temperature), each offering distinct advantages, to construct a comprehensive analytical frame-

work. The density-based approach provides direct interpretability within a compositional data

framework, facilitating a clear assessment of temperature’s impact on electricity demand across the

entire temperature distribution. In contrast, the hazard rate is particularly well-suited for analyz-

ing extreme temperature events, as it incorporates the conditional probability of such occurrences

to some extent, thereby enhancing the precision of demand estimations under extreme conditions.

To ensure that distributional information is properly incorporated into our econometric framework,

we will consider relevant transformations of the temperature densities and hazard rates (see Section

2.1). For comparison, we additionally consider the quantile-to-demand model, which is not only

a popular approach for utilizing distributional information (see, e.g., Yang et al., 2020) but also

aligns conceptually with density- or hazard-based models.

The remainder of this paper is structured as follows. Section 2 outlines the econometric method-

ology used to estimate the nonlinear response of residential electricity demand while addressing

measurement errors. Section 3 describes the residential electricity demand and local temperature

data from the Republic of Korea. Section 4 presents the empirical temperature response functions

based on density-, hazard-, and quantile-based approaches under hypothetical scenarios and two

historical extreme temperature events. This section also includes a discussion of the estimation

results derived from these three distributional predictors. Finally, Section 5 provides concluding

remarks, with proofs provided in the Appendix.

2 Econometric methodology

2.1 Distributional predictors

We let yt represent electricity demand, a practical measurement of which for our empirical study

is detailed in Section 3, and let X◦
t be a function that summarizes the distributional properties of

temperature. A possible (and popular) candidate for X◦
t may be the probability density function

(PDF) of temperature, denoted hereafter ϕt. However, as well documented in the literature, directly

using the PDF as a predictor is not advisable in applications of statistical methods developed within

a standard Hilbert space setting for functional data analysis. As proposed by Petersen and Müller
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(2016), we thus consider appropriate transformations of ϕt. There are various potential choices

for X◦
t , but in this paper, we mainly focus on the following: (i) the Centered-Log-Ratio (CLR)

transformation and (ii) the Log-Hazard-Rate (LHR) transformation of ϕt. Assuming that the PDF

of temperature, ϕt, is supported on [a, b], the CLR transformation X◦
t is defined as follows:

X◦
t (r) = log ϕt(r)−

∫ b

a
log ϕt(s)ds, r ∈ [a, b]. (1)

Under some mathematical conditions on the underlying PDF ϕt, the transformation from ϕt to

its CLR not only embeds the probability densities on [a, b] into a linear subspace of the L2[a, b]-

Hilbert space (the Hilbert space of square-integrable functions on [a, b]) but also is invertible; see

e.g., Egozcue et al. (2006) and van den Boogaart et al. (2014). It is known that the inverse CLR

transformation is given by X◦
t (r) 7→ exp(X◦

t (r))
/ ∫ b

a exp(X◦
t (r))dr for r ∈ [a, b], which recovers

ϕt. The CLR transformation of ϕt has been considered a standard choice in models involving

distributional functional data, as discussed in several recent articles to be mentioned shortly.

As an alternative, we also consider the LHR transformation of ϕt, which is given as follows: for

some small positive δ > 0,

X◦
t (r) = log

(
ϕt(r)

1− Φt(r)

)
, r ∈ [a, b− δ], (2)

where Φt(s) is the cumulative distribution function (CDF) given by Φt(s) =
∫ s
0 ϕt(r)dr. Note that

ht(r) = ϕt(r)/(1−Φt(r)) is the so-called hazard rate of ϕt and for this to be well defined, we need

to restrict the support into [a, b − δ] for some small positive δ. It is known that the LHR is also

invertible transformation of ϕt into a linear space under appropriate conditions (see Petersen and

Müller, 2016).

It appears to be more common to consider the CLR transformation or its similar alternatives

in the literature on density-valued functional data (see, e.g., Kokoszka et al., 2019; Seo and Beare,

2019; Seong and Seo, 2025), and this is partly a reason that we also consider it in the present paper.

On the other hand, cases using the LHR transformation seem scarce in the literature, to the best

of the authors’ knowledge, except for Petersen and Müller (2016), who proposed the LHR as a way

to avoid potential issues when directly using the PDF. As a slight and obvious modification of the

LHR, we define the following, obtained by replacing the hazard rate (ϕt(r)/(1 − Φt(r))) with the

reversed hazard rate (see Block et al., 1998), defined by ϕt(r)/Φt(r), as follows:

X◦
t (r) = log

(
ϕt(r)

Φt(r)

)
, r ∈ [a+ δ, b]. (3)
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We hereafter call the above as the Log-Reversed-Hazard-Rate (LRHR) transformation.

In the sequel, we will consider a functional linear model connecting the electricity demand yt with

the distributional predictor X◦
t . It is worth noting that while the CLR, LHR, and LRHR transfor-

mations characterize the temperature distribution, they differ in how they summarize distributional

information. In the CLR model, the distributional predictor is fully characterized by the PDF ϕt(s),

which can be approximated as the average change of the distribution function of temperature on a

small interval [s, s+∆) for small ∆ > 0, i.e, ϕt(s) ≈ ∆−1P(s ≤ St < s+∆), where St denote the ran-

dom variable of temperature level at time t. On the other hand, the hazard (resp. reversed) rate may

be approximately understood as ∆−1P(s ≤ St < s+∆|St ≥ s) = ∆−1P(s ≤ St < s+∆)/P(s ≥ St)

(resp. ∆−1P(s−∆ < St ≤ s|St ≤ s) = ∆−1P(s ≤ St < s+∆)/P(St ≤ s)). For any s, P(St ≥ s)

(resp. P(St ≤ s)) indicates the exposure probability of the temperature being higher (lower) than s

at time t, and thus the hazard (resp. reversed hazard) rate, which we consider, may be understood

as the PDF weighted by this exposure probability. If we consider any small density shock, which is

particularly concentrated on the upper (lower) tail of the temperature PDF and hence may have

a significant impact on the electricity demand despite its small magnitude,1 then the LHR (resp.

LRHR) will be much more responsive to this change than the PDF. It is thus expected that the

LHR (resp. LRHR) will have a higher tendency to comove with electricity demand, particularly

during extremely high (resp. low) temperature events, and hence, the model involving the LHR

(resp. LRHR) may be more suitable for capturing and explaining the effect of extreme temperature

events at high (resp. low) quantiles on electricity demand.

In the literature on density-valued functional data, it seems to be popular to regard the quantile

function corresponding to ϕt as a distributional summary (see e.g., Yang et al., 2020) and use it for

statistical inference. We also briefly discuss this choice of distributional predictor in Section 4.4.

2.2 Measurement errors

In practice, ϕt and Φt cannot directly be observed, and thus the distributional predictor X◦
t ,

considered in Section 2.1 is not observable. For empirical analysis, it must be constructed from the

raw temperature data. For example, in the CLR case, we may replace ϕt or log ϕt with its relevant

nonparametric estimate in (1) (as in Seo and Beare, 2019). However, this replacement necessarily

introduces estimation/smoothing errors, and in this case, it is well known that standard estimation

1We are mainly interested in the effect of extreme temperature events on electricity demand, and such events are
expected to happen with low probability; thus those will only make small changes in the PDF in the lower or upper
tails.
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methods for functional linear models may lead to inconsistent estimation of the model; see Benatia

et al. (2017, Section 7), Chen et al. (2022), and Seong and Seo (2025) for a more detailed discussion.

Section 3.2 details how the distributional predictors used in our empirical analysis are constructed.

Subsequently, we discuss econometric methods for studying the distributional impact of temper-

ature on electricity demand that are robust to these estimation/smoothing errors, which naturally

exist, in the distributional predictor.

2.3 Model and estimator

For the subsequent discussion, it will be convenient to introduce some notation. We let H denote

L2[a, b] (i.e., the Hilbert space of square-integrable functions defined on [a, b]) with inner product

⟨g, h⟩ =
∫ b
a g(s)h(s)ds for and norm ∥g∥ =

√
⟨g, g⟩, where g, h ∈ H; H is a commonly considered

Hilbert space in the literature on functional data analysis. The distributional predictor X◦
t and its

measurement Xt, which are introduced in (2.1), are understood as random elements in H. Essential

concepts on H, relevant to the subsequent discussion, are reviewed in Section A.1.

To study temperature sensitivity of electricity demand, we consider the following model:

yt = µ+ f(X◦
t ) + εt, (4)

where E[εt] = 0 and f : H 7→ R is a linear map, connecting yt and X
◦
t .

2 Equation (4) corresponds

to the Function-to-Scalar Regression (FSR) model, which is widely discussed in the literature.

Following the terminology used in conventional linear models, f is typically referred to as the

(functional) coefficient or slope parameter. However, in our context, since f captures how the

distributional properties of X◦
t influence yt, we refer to it as the distributional coefficient hereafter,

and we refer to (4) as the Distribution-to-Scalar Regression (DSR) model.

As discussed in Section 2.1, in practice, X◦
t is not directly observed and has to be estimated

or smoothed from discrete samples {ϕ◦t (si)}
Nt
i=1 of ϕt, and practitioners often have no choice but to

replace X◦
t with its feasible estimate Xt. As earlier pointed out by Seong and Seo (2025, Sections 2

and 5.3), this is a common source of endogeneity in the regression model involving functional data,

and ignoring such errors may be detrimental to the use of standard estimators of f , requiring the

exogeneity of the predictor, developed in the literature. Even if more detailed discussion can be

found in recent articles (e.g., Chen et al., 2022; Seong and Seo, 2025), it will be helpful to illustrate

2The linear map f can equivalently be expressed as an integral transformation associated with a kernel function
kf , as follows: f(X◦

t ) =
∫ b

a
kf (r)X

◦
t (r)dr. Obviously, estimation kf is identical to estimation of f . In this paper, we

focus on f but the subsequent results can be rephrased for kf with only a minor modification.
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this issue with a concrete example for the subsequent discussion.

Suppose that Xt = X◦
t +et, where et represents an additive deviation of Xt from X◦

t and satisfies

E[et] = 0. From (4), we obtain the following relationship:

yt = µ+ f(Xt) + ut, ut = f(et) + εt, (5)

where E[ut] = 0. Given that X◦
t is unobserved, while Xt is observable, practitioners will work with

(5) rather than (4). In (5), however, Xt and ut are generally correlated (meaning that E[⟨Xt, x⟩ut] ̸=

0 for some x ∈ H) and thus Xt is endogenous. As is well documented in the aforementioned

articles, this endogeneity makes the standard estimators, developed under the exogeneity condition

(E[⟨Xt, x⟩ut] = 0 for every x ∈ H), inconsistent and invalidates the inferential methods based on

those estimators (see also Benatia et al., 2017).

To estimate the distributional coefficient f from (5) and implement valid statistical inference

in our DSR model, which inevitably involves measurement errors, we adapt the functional IV

approach, considered in Seong and Seo (2025) for Function-to-Function Regression (FFR) models,

to our context. To this end, we let Zt be the functional Instrumental Variable (IV), which satisfies

the following:

CXZ(x) := E[⟨Xt − E[Xt], x⟩(Zt − E[Zt])] ̸= 0 for some x ∈ H, (6)

CZu(x) := E[⟨Zt − E[Zt], x⟩ut] = 0 for every nonzero x ∈ H. (7)

CXZ (resp. CZu) defined above is called the (cross-)covariance operator of Xt and Zt (resp. Zt and

ut). The conditions given in (6) and (7) consist of only the minimal requirements for the IV Zt

in our DSR model. More conditions for the consistency and (local) asymptotic normality of our

estimator will be detailed in Section A of the Appendix. Assuming that the measurement errors

are not serially correlated and that Xt tends to exhibit time series dependence in the considered

empirical model, we may let Zt be a lagged distributional predictor in our empirical analysis, as in

Seong and Seo (2025, Section 5.3); this is also a special case of the IV considered in Chen et al.

(2022). To obtain our proposed estimator, we need to compute the sample covariance operators

ĈXZ and its adjoint Ĉ∗
XZ defined as follows: for any x ∈ H,

ĈXZ(x) =
1

T

T∑
t=1

⟨Xt − X̄T , x⟩(Zt − Z̄T ), Ĉ∗
XZ(x) =

1

T

T∑
t=1

⟨Zt − Z̄T , x⟩(Xt − X̄T ), (8)

where X̄T = T−1
∑T

t=1Xt and Z̄T = T−1
∑T

t=1 Zt. ĈXZ and Ĉ∗
XZ are, respectively, the sample
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counterparts of CXZ and its adjoint C∗
XZ (defined by C∗

XZ(x) = E[⟨Zt − E[Zt], x⟩(Xt − E[Xt])]).

As is well known in the literature, the composite map Ĉ∗
XZĈXZ allows the eigendecomposition

with respect to its nonnegative eigenvalues (hereafter denoted {λ̂2j}j≥1) and the corresponding

eigenvectors (denoted {ĝj}j≥1). That is,

Ĉ∗
XZĈXZ ĝj = λ̂2j ĝj ,

where λ̂21 ≥ λ̂22 ≥ . . . ≥ 0. The eigenelements of Ĉ∗
XZĈXZ can be computed using the standard

functional principal component analysis (FPCA) as in Bosq (2000, pp. 117-118) and Seong and Seo

(2025). Then our proposed estimator f̂ , which is a map from H to R, is defined as follows: for any

x ∈ H,

f̂(x) = T−1
T∑
t=1

K∑
j=1

λ̂−2
j ⟨ĝj , x⟩⟨ĈXZ ĝj , Zt − Z̄T ⟩(yt − ȳT ), (9)

where ȳT = T−1
∑T

t=1 yt and K is sufficiently smaller than T ; a more detailed and technical require-

ment on the choice of K will be postponed to Section A of the Appendix. If K is determined, it is

straightforward to compute the estimator using ĈXZ and the sample eigenelements {λ̂2j , ĝj}. The

above estimator turns out to be viewed as a sample analogue estimator based on the population

equation CZyCXZ = fC∗
XZCXZ , which holds when Zt satisfies (6) (see Section A of the Appendix

for more detailed discussion). From this equation, the estimator (9) is obtained by (i) replacing the

population operators CZy and CXZ with their sample counterparts, ĈZy and ĈXZ , respectively,

and then (ii) employing a regularized inverse of Ĉ∗
XZĈXZ , which is necessary to compute the es-

timator. Through our study of the asymptotic properties of the proposed estimator, we establish

the consistency of f̂ under appropriate assumptions as follows:

Proposition 1. Under Assumption A1 given in Section A, f̂ is a consistent estimator of f .

Proposition 1 is presented without the mathematical details intentionally; a more rigorous

version is provided in the Appendix (see Proposition 2). The consistency stated in Proposition 1

implies that for every x ∈ H, f̂(x) converges in probability to f(x).

It is often of interest to practitioners to make inference on f(ζ), which may be understood

as the effect of an additive distributional perturbation ζ given to X◦
t on yt. Specifically, in our

empirical analysis, ζ will be set to various extreme temperature events and we are interested in the

effect of these events on yt. The consistency result in Proposition 1 implies that this effect can be

estimated by f̂(ζ). Beyond the consistent estimation, the following result, which can be used for
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statistical inference on f(ζ), is established under some appropriate conditions (see Proposition 3 in

the Appendix): √
T

σ̂2uθ̂K(ζ)
(f̂(ζ)− f(ζ)) →d N(0, 1), (10)

where σ̂2u = T−1
∑T

t=1 û
2
t with ût = yt − f̂(Xt) and

θ̂K(ζ) =
1

T

T∑
t=1

 K∑
j=1

λ̂−2
j ⟨ĝj , ζ⟩⟨ĈXZ ĝj , Zt − Z̄T ⟩

2

. (11)

The result (10) may be understood as the local asymptotic normality of the functional IV estimator,

which was earlier obtained by Seong and Seo (2025) in the FFR model.

It is well known that f(ζ) for any ζ may be understood as the integral transformation

f(ζ) =

∫ b

a
ψf (r)ζ(r)dr

for some uniquely identified function ψf ∈ H. ψf (s) is sometimes interpreted as the temperature

effect when the distributional predictor X◦ hypothetically concentrated at a point s (Chang et al.,

2014). It might be of interest to practitioners to implement statistical inference on ψf (s), but in

our setup, it is not possible to implement direct statistical inference with a perturbation which is

fully concentrated at a point.3 However, it is, instead, possible to consider a weighted average of

ψf (s) near s. For example, if we let ζs(r) = wh(|r − s|)/
∫ b
a wh(|r − s|)dr, then statistical inference

on the following quantity is feasible based on the asymptotic normality result (10):

f(ζs) =

∫ b
a wh(|r − s|)ψf (r)dr∫ b

a wh(|r − s|)dr
=: ψ̃f (s), (12)

where wh(|r − s|) is the standard kernel function defined near s with bandwidth h. The above

ψ̃f (s) is dependent on the choice of kernel function, but it may be understood as the local weighted

average of ψf near s for any reasonable choice of the kernel function. We hereafter call ψ̃f (s) as

the kernel-weighted temperature response function.

3In the standard L2[a, b]-Hilbert space setting, such a function is essentially equivalent to the zero function.
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Figure 1: Natural log of residential electricity demand per effective day and its 12-month moving
average (top), and their deviation process (bottom), from January 1999 to December 2023.

3 Data

3.1 Raw data and temperature densities

To investigate the nonlinear temperature sensitivity of electricity demand, we analyze an extensive

dataset that includes residential electricity demand (in GWh) and local temperature (in degrees

Celsius) readings from the Republic of Korea. The dataset spans from January 1999 to December

2023, with 300 monthly observations. The residential electricity demand data is provided by the

Korea Electric Power Corporation (KEPCO), the state-owned utility responsible for electricity

sales across the country. Due to the inherent variability in the number of days within each month,

we have normalized the raw monthly electricity demand by dividing it by the number of effective

days per month. This adjustment produces a metric known as electricity demand per effective day,

as discussed in Chang et al. (2014), which underscores the importance of accounting for temporal

differences in energy demand analysis.

Chang et al. (2016b) found no empirical evidence suggesting that non-climate variables signif-

icantly influence the demand response to temperature in the residential sector. Building on this

finding, and to isolate the short-run fluctuations in residential electricity demand, we calculate the

deviation from the 12-month moving average of the natural logarithm of electricity demand per ef-

fective day, as illustrated in Figure 1. This deviation serves as a proxy for the short-run component
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Figure 2: Kernel density estimates of the temperature PDF in the Republic of Korea (left) and the
dynamics of its descriptive statistics (right). The red lines indicate August 2017 and August 2018,
while the blue lines represent January 2020 and January 2021.

of electricity demand, allowing us to focus on the short-run effects of temperature changes while

filtering out the long-run effects of income and electricity price. By employing this detrending

approach, we ensure that our analysis effectively captures the nonlinear responses of residential

electricity demand to temperature fluctuations, independent of other non-climate factors (Chang

et al., 2016b).

To model the seasonality, we retrieve the hourly temperature data from the KMA National

Climate Data Center.4 We then construct the monthly temperature PDF over the common sup-

port, [−20, 40], using hourly temperature observations from the five largest cities (Seoul, Daejeon,

Daegu, Gwangju, and Busan) covering the territory of the Republic of Korea.5 To represent the

temperature PDF of the Republic of Korea, we calculate the weighted average of the estimated time

series for these five PDFs, assigning weights based on the annual proportion of electricity sales in

each of the five regions: the Seoul Metropolitan Area (Seoul, Incheon, Gyeonggi), Daejeon, Daegu,

Gwangju, and Busan.67

Figure 2 illustrates the time series of temperature PDFs, estimated using Gaussian kernel and

4Downloaded from https://data.kma.go.kr/cmmn/main.do on July 1, 2024.
5Instead of estimating the range of the common support, we adopt the common support of [−20, 40] with a grid

difference, 0.1, as provided in the literature (Chang et al., 2014; Chang et al., 2016b).
6The combined annual electricity consumption of the five regions accounts for approximately 55.3% of the national

total on average during the period from 1999 to 2021. Due to data availability constraints, the proportions for the
years 2022 and 2023 have been substituted with the values from 2021.

7The annual regional consumption data was obtained from the Korea Energy Statistics Information System
(KESIS) and can be accessed at https://www.kesis.net/sub/subChart.jsp?report_id=33150&reportType=0 (data
downloaded on July 1, 2024).

https://www.kesis.net/sub/subChart.jsp?report_id=33150&reportType=0
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Silverman’s rule of thumb bandwidth, and the dynamics of their descriptive statistics. Note that

the generated monthly temperature PDFs exhibit significant heterogeneity, particularly between

summer and winter. The time series of monthly temperature distributions in the Republic of Korea

from 1999 to 2023 reveals stable seasonal cycles in the mean temperature, reflecting consistent

annual patterns. However, the standard deviation indicates increasing variability, particularly

post-2010, suggesting a growing spread in temperature values around the mean. The skewness

exhibits seasonal fluctuations, with positive skewness during warmer months indicating a higher

frequency of extreme high temperatures, and negative skewness during colder months reflecting

an increase in extreme low temperatures. However, this skewness does not show a clear trend of

increasing asymmetry over time but rather indicates a recurring seasonal pattern. The kurtosis

remains relatively stable but experiences significant spikes, particularly after 2010. These spikes

suggest periods with more frequent and intense extreme temperature events. Thus, while the

skewness reflects consistent seasonal variability, the spikes in kurtosis indicate a rise in temperature

extremes, likely influenced by climate change.

3.2 Construction of the distributional predictors

As discussed in Section 2.1, distributional predictors in practice need to be estimated from the

raw data. For the CLR transformations, we use the estimated densities, denoted hereafter as ϕ̂t,

obtained in Section 3.1 (see Figure 2), and construct Xt as follows:

Xt(r) = log ϕ̂t(r)−
∫ 40

−20
log ϕ̂t(s)ds.

8 (13)

For the model using the LRH and LRHR predictors, Xt can be constructed as

Xt(r) = log

(
ϕ̂t(r)

1− Φ̂t(r)

)
and Xt(r) = log

(
ϕ̂t(r)

Φ̂t(r)

)
, (14)

where Φ̂t(r) =
∫ r
0 ϕ̂t(s)ds. However, in practical computation for the LHR predictor, instead of

1 − Φ̂t(s), we take the maximum of a small positive constant (10−3 in the subsequent analysis)

and 1− Φ̂t(s) in (14), which is done to avoid the case where 1− Φ̂t(s) equals zero, and hence the

hazard rate is undefined. The LRHR predictor is similarly constructed by taking the maximum of a

small positive constant and Φ̂t(s).
9 Note that this convenient method of constructing the LHR and

8As is common in the literature (see e.g., Section 5.2, Seo and Shang, 2024), a small value of 10−3 is added to the

entire temperature PDF ϕ̂t to implement the log transformation over the common support range of [−20, 40].
9As an alternative, we also considered adding 0.001 to 1− Φ̂t(s) or Φ̂t(s), but we found that the estimation results

change little.
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LRHR results in the constructed predictors not perfectly matching their theoretical counterparts

((2) and (3)). However, for our analysis, we only require that the constructed predictors serve as

reasonable proxies, and thus, this does not invalidate the empirical results that will be discussed.

4 Empirical Investigation

In this section, we estimate the DSR model (5) with potential endogeneity, using the distributional

predictors described in (13) and (14). For the computation of our estimator with finite samples, we

represent the distributional predictor using 80 orthonormal Fourier basis functions on the support.10

Noting that measurement errors mostly arise from smoothing Xt from its discrete realizations, we

assume that these errors are serially uncorrelated. Under this assumption, and given that the

sequence of X◦
t (and also Xt) is serially correlated, the lagged variable Xt−κ for κ ≥ 1 may serve

as a candidate IV for our empirical analysis. Similar approaches were previously adopted in Chen

et al. (2022) and Seong and Seo (2025) concerning dependent functional data. Since our approach

relies on a high degree of dependence, where possible, of the IV on the endogenous distributional

predictor Xt, as in standard IV methods (see Section A.2 for more details), it is not advisable to

use a large value of κ, as this could make Xt−κ only weakly correlated with Xt. Therefore, we

choose to set κ to 1. We believe that this selection allows us to account for potential errors in the

density/quantile estimation process or data quality while enhancing the robustness and reliability

of our analysis. Lastly, in our estimation procedure, K (see (9)) is set to 3.11

We hereafter focus on statistical inference regarding the impact of temperature events on elec-

tricity demand, given by f(ζ), where ζ denotes the distributional shocks applied to the distributional

predictor. This quantity is estimated using our proposed estimator, f̂(ζ), and is accompanied by

an asymptotically valid confidence interval constructed based on the results in (10). Taking advan-

tage of the distributional flexibility of our DSR model, we examine hypothetical scenarios and two

historical events for the specification of ζ, as detailed in the following section.

10Moderate changes in the number of basis functions result in only minor numerical differences in the estimation
results.

11Following the results given in Section A of the Appendix and Remark 1, we set K = 1 + maxj≥1{λ̃2
j ≥ α} for

α = 0.01×T−0.2, where λ̃2
j = λ2

j/
∑∞

j=1 λ̂
2
j and this is to obtain a choice of K which is independent of the scale of Xt

and Zt; see Section S5 of Seong and Seo (2025).
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4.1 Functional Shocks for Cold Wave and Heat Wave

In this paper, we present two temperature response functions. The first is the kernel-weighted

temperature response function (see (12)), which serves as a benchmark and is similar to those

estimated by Chang et al. (2014) and Chang et al. (2016b). It captures the point-wise temperature

sensitivity across the extreme temperature domain. The second is derived from historical extreme

temperature events. While the benchmark temperature response function provides intuitive insights

into temperature sensitivity by isolating the effects of temperature changes from distributional

shifts, the response function based on historical extreme events enhances the practical relevance of

extreme temperature fluctuations.

More specifically, the key distinction between these two approaches lies in their treatment of

distributional changes. The analysis of historical extreme events explicitly accounts for shifts in

the distribution as normal temperature distributions transition toward extreme ones. In contrast,

the benchmark temperature response function hypothetically assumes that the temperature stays

at a specified level without consideration of the distributional shift that appeared in the past.

Although we provide representative cases of extreme temperature events, the specific distributional

characteristics of past cold or heat waves may not necessarily recur. Therefore, the difference

between the benchmark response function and the date-specific response function can be interpreted

as the additional distributional effect unique to that date.

To estimate the benchmark response function, ψ̃f (s) (see (12)), we employ Gaussian kernel,

which is truncated on the support; more specifically, for each temperature level s, wh(|r − s|) is

defined as follows:

wh(|r − s|) = 1√
2π

exp

{
−0.5

(
|r − s|
h

)2
}

× 1{−20 ≤ s ≤ 40},

where the bandwidth h is set to span 15°C around s to align with the range of density increases

observed in cold (17.3°C) and heat (12.2°C) wave shocks, as illustrated by the black lines of Figure

3.

For the response function based on historical extreme events, we consider two significant extreme

weather events that occurred in the Republic of Korea during the sample period.12 In August 2018,

the Republic of Korea experienced one of its most intense heat waves on record, with temperatures

soaring to an average of 29.2°C, the highest since record-keeping began in 1907. This extreme

12See e.g., https://www.wunderground.com/cat6/Hottest-Day-Korean-History and https://watchers.news/

2021/01/11/historic-cold-wave-and-heavy-snow-hit-south-korea/.

https://www.wunderground.com/cat6/Hottest-Day-Korean-History
https://watchers.news/2021/01/11/historic-cold-wave-and-heavy-snow-hit-south-korea/
https://watchers.news/2021/01/11/historic-cold-wave-and-heavy-snow-hit-south-korea/
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Figure 3: Kernel density estimates comparing January 2021 (solid) and January 2020 (dotted)
on the left, and August 2018 (solid) and August 2017 (dotted) on the right, with the black lines
representing their vertical differences.

heat led to the residential electricity demand of 8,851.04 GWh during that month, underscoring

the strain placed on the energy grid by cooling needs. Similarly, January 2021 was marked by a

significant cold wave, with temperatures plunging to an average of -6.1°C, well below the seasonal

norm. During this period, residential electricity demand also spiked to 7,163.28 GWh as households

increased heating usage to cope with the severe cold.

Figure 3 illustrates the year-over-year changes in monthly temperature PDFs associated with

extreme weather events, specifically the heat wave of August 2018 and the cold wave of January

2021. In the left panel of Figure 3, the blue solid line represents the temperature PDF for January

2021, compared to the blue dashed line for January 2020, with the black line showing the (vertical)

difference between the two PDFs, capturing the effect of the cold wave. Similarly, in the right

panel of Figure 3, the red solid line represents the temperature PDF for August 2018, while the

red dashed line shows the temperature PDF for August 2017, with the black line indicating the

difference between these two PDFs.

The temperature distributions during the 2018 heat wave and the 2021 cold wave exhibit distinct

shifts, indicative of extreme weather conditions. The August 2018 distribution is significantly right-

skewed, suggesting a higher frequency of exceptionally high temperatures, with a pronounced right

tail representing extreme heat events. In contrast, the January 2021 distribution is heavily left-

skewed, highlighting the prevalence of unusually low temperatures, with a long left tail representing

severe cold conditions. These graphs reveal significant changes in temperature distributions during

these historical extreme events, illustrating how both the heat wave and cold wave deviated sharply

from the typical conditions of the preceding months.
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Figure 4: Temperature PDFs for cold waves and heat waves (left), showing the transition from the
reference to event periods, and the evolution of descriptive statistics (right).

Our empirical analysis aims to provide practitioners with insights into the potential increase

in future electricity demand when similar extreme temperature events occur. By understanding

extreme temperature events as potential perturbations in the distributional predictor Xt, we can

estimate their impact on electricity demand. We henceforth refer to the function zextr(s), corre-

sponding to the black line in the left (resp. right) panel of Figure 3, as the observed cold wave

(resp. heat wave). This function is computed by subtracting Znorm(s) from Zextr(s), where Znorm(s)

denotes the reference (normal) temperature PDF in January 2020 (resp. August 2017), and Zextr(s)

denotes the extreme temperature PDF in January 2021 for the cold wave (resp. August 2018 for

the heat wave). Consequently, Zextr(s) = Znorm(s) + zextr(s).

Due to the flexibility of our model in the choice of potential perturbations, we may also consider

fractions of these observed heat and cold waves and their effects on electricity demand; specifically,

we let

za(s) = a× zextr(s), a =
1

M
,
2

M
, . . . , 1, (15)

for some large positive integerM . Note that these fractions of observed heat or cold waves satisfy (i)

|za(s)| ≤ |zextr(s)| and (ii)
∫ 40
−20 za(s) ds = 0 for all considered values a. Thus, adding these fractions

of heat or cold waves to the reference PDF Znorm(s) results in a new PDF, hereafter denoted as Za(s)

(i.e., Za(s) = Znorm(s) + za(s)). Since the application of za(s) induces a globally more moderate

shock compared to that of zextr(s), Za(s) represents less extreme temperature conditions than the

extreme temperature PDF Zextr(s) observed in January 2021 for the cold wave or August 2018 for

the heat wave. Thus, za(s) can naturally be interpreted as a possible, but less extreme, heat or cold

wave. Observe also that, as a grows, Za(s) constructed from za(s) moves away from the normal
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Figure 5: Estimated LRHR and LHR functions for cold waves (top left) and heat waves (top right).
The transition from the reference to event periods by functional LRHR and LHR shocks is depicted
in the bottom panels.

temperature PDF (Znorm(s)) and closer to the extreme temperature PDF (Zextr(s)) by a constant

functional increment (1/M) × zextr(s) at each step; the left panel of Figure 4 illustrates Za for a

few selected values of a.

Similarly, Figure 5 illustrates the corresponding year-over-year changes in monthly temperature

LRHR and LHR for these cold and heat wave events, respectively. Specifically, in January 2021,

the LRHR gradually increased as temperatures decreased, peaking at -19.5°C, which represents

the highest conditional probability of occurrence at this temperature. This indicates that, given

temperatures had already dropped below -19.5°C, the likelihood of further decreases to even lower

temperatures was greatest. This peak highlights -19.5°C as a critical threshold during the cold wave

events. In contrast, January 2020 exhibited a peak LRHR at -7.6°C, reflecting a focus on milder

cold conditions and a rapid decline in LRHR at more extreme lows. Similarly, in August 2018, the

LHR peaked at 39.5°C, indicating the dominance of intense heatwave conditions. In comparison,
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Figure 6: Estimated quantile functions for cold waves (left) and heat waves (middle), and the
transition from the reference to event periods by functional quantile shocks (right).

August 2017 exhibited a peak at 36.4°C, indicating a milder concentration of high-temperature

events. It is worth noting that the exponentially increasing pattern of the monthly temperature

LHR in August 2018 (LRHR in January 2021) indicates that the probability of the temperature

staying around 39.5°C (-19.5°C) is higher than for any temperature below (above) this value. This

would demonstrate the cumulative temperature effect on electricity demand during peak times

to some extent (see Section 4.4). The bottom left (resp. right) panel of the figure illustrates the

transition from the normal temperature LHR (resp. LRHR) to the extreme temperature LHR (resp.

LRHR).

Given that the quantile function corresponding to the temperature distribution can serve as

a distributional summary, it may be of interest to practitioners to examine changes in quantile

functions during the considered extreme temperature events. The left panel of Figure 6 shows

the quantile functions corresponding to the normal and extreme temperature distributions and

also illustrates the cold wave event, expressed as a quantile shock. As shown, the impact is most

pronounced in the lower quantiles, particularly those associated with the coldest temperatures. This

reflects that the January 2021 cold wave caused a significant downward shift in the quantile function

compared to January 2020, with the most substantial changes at the lowest quantiles. In the middle

panel, the quantile shocks associated with the August 2018 heat wave exhibit a relatively uniform

increase across the quantiles, with a more pronounced effect at both extremes. This implies that

the heat wave not only elevated overall temperature levels but also disproportionately intensified

occurrences at both the lower and upper quantiles. The fractions of observed cold and heat waves,

expressed as quantile shocks, can be constructed as in (15). These quantile shocks are used to

illustrate the transition from the normal temperature quantile function to the extreme one in each
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scenario, as shown in the right panel of the figure.

4.2 Empirical Results for Density-to-Demand Model

In this section, we analyze the impact of extreme temperature events on residential electricity

demand using the PDF-based DSR model, hereafter referred to as the density-to-demand model.

We first apply this model to estimate point-wise temperature sensitivity through the benchmark

response function. Subsequently, we analyze the effects of observed heat and cold wave fractions on

electricity demand using the CLR predictor. Note that we generate the relevant functional shocks

ζa, corresponding to za(s), in the CLR domain. This can be implemented by applying the CLR

transformation to both the reference PDF Znorm(s) and Za(s), and then computing the subtraction

of the former from the latter in each of the heat and cold wave scenarios.13 The effect of ζa on

electricity demand is then given by f(ζa).

In the left panel of Figure 7, we present our benchmark response function on the range s ∈

[−15, 35] and its 95% confidence interval. Consistent with the findings of Chang et al. (2016b),

the estimated temperature response function exhibits a nonlinear U-shaped pattern across the

temperature domain. However, the estimates with κ = 1 reveal a more pronounced degree of

nonlinearity. Note also that, unlike existing approaches, our approach explicitly accounts for the

interdependence of temperature changes, ensuring that adjustments at one level are accompanied

by compensatory changes in other temperatures to maintain the unit integral requirement of a

PDF.14

The right two panels of Figure 7 present the estimated response of electricity demand on the

y-axis with respect to a, denoting the fraction parameter defined in (15), of Za(s), depicted on

the x-axis. As earlier discussed, Za(s) approaches Zextr(s) with a constant functional increment as

a increases. The solid lines show the estimates, f̂(ζa), which can be interpreted as the estimated

demand responses to progressively but constantly intensifying heat or cold wave shocks, as described

in Section 4.1. The dotted lines indicate the 95% confidence intervals for f(ζa) based on the

asymptotic normality result given in (10).

The empirical results from the estimation with κ = 1, which is designed to account for potential

measurement errors, indicate an increase in electricity demand response as the considered shock

13If Xextr (resp. Xa) is the CLR corresponding to Zextr (resp. Za), then ζa = Xextr −Xa.
14The function f(ζs), where ζs is defined near s, represents the effect of an additional perturbation applied to

the distributional predictor Xt, as indicated by f(Xt + ζs) − f(Xt). If Xt is the PDF itself, Xt + ζs may not be
a valid PDF, as it could violate the unit integral requirement. However, this issue does not arise if Xt is the CLR
transformation of a PDF and ζs is a shock expressed in the CLR.
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Figure 7: Estimated PDF-based benchmark response function with 95% confidence intervals (left),
and PDF-based temperature sensitivity for varying cold wave (top middle and top right) and heat
wave (bottom middle and bottom right) shock intensities under κ = 0 and κ = 1.

gets closer to the observed cold or heat wave. For comparison, we also report estimation results

without accounting for potential endogeneity, with the y-axis scaled to half of that in the case of

κ = 1 to enhance visualization. Similar to the benchmark response function, the empirical results

for observed heat and cold wave fractions with κ = 0 exhibit a similar upward trend. However, the

magnitude is substantially lower compared to the case with κ = 1. Since the estimation results for

κ = 0 do not account for endogeneity, we focus on interpreting the estimation results with κ = 1

as our main empirical findings.

Note that the right panel of Figure 4 provides statistical insights into how the considered

cold and heat wave events change temperature distributions. As the considered cold wave shock

approaches the observed severe cold wave, the mean temperature experiences a linear decline from

2.31°C to -1.53°C, with a substantial increase in variance (17.30 → 51.37), indicating greater

temperature dispersion. Concurrently, skewness decreases (0.14 → −0.04), and kurtosis declines

(2.62 → 2.40), signifying a more symmetrical and less peaked distribution. In contrast, as the

considered heat wave shock approaches the observed severe heat wave, the mean temperature

rises linearly from 26.02°C to 28.54°C, with a modest increase in variance (15.0 → 17.11), rising

skewness (−0.06 → 0.20), and declining kurtosis (2.90 → 2.50), reflecting a more right-skewed but

less peaked distribution. As illustrated in the right panel of Figure 7, these distributional changes,

characterized by greater variance shifts per unit change in mean temperature, reveal that cold wave

shocks have a significantly greater impact on electricity demand, with a 28.06% increase, compared

to a 9.89% increase observed during heat wave shocks.



22

The observation that cold wave shocks lead to a greater increase (7.31%) in electricity demand

per unit change in mean temperature, following the transition from Znorm to Zextr, compared to heat

wave shocks (3.93%) highlights that electricity demand is more sensitive to the extreme and intense

temperature conditions associated with cold waves. This implies that demand response is influenced

not only by temperature extremes but also by the specific nature of these extremes. This finding

departs from existing literature, which predominantly focused on the demand response to changes

in temperature levels alone, and also highlights the importance of understanding how shifts in

temperature distributions impact electricity demand. Such insights emphasize the need for energy

planning that accounts for the varying effects of temperature distribution changes, particularly in

the context of increasingly severe cold wave events.

Notably, as the cold waves intensify, electricity demand rises at a diminishing rate as incremental

heating needs taper off. More specifically, the demand response values for the cold wave event at

fraction parameters a of 0.33, 0.66, and 1.0 are estimated at 0.1677, 0.2328, and 0.2806, respectively.

Given that electricity demand is expressed in natural logarithms, these values indicate that a

functional shock causing normal temperatures to approach extreme levels by 33% corresponds to

a 16.77% year-over-year increase in monthly electricity demand. An additional 33% progression

toward extreme temperatures results in a further 6.51% increase, followed by an additional 4.77%

increase with a complete transition to extreme conditions. Collectively, the full transition from

normal temperatures in January 2020 to extreme temperatures in January 2021 corresponds to a

total 28.06% year-over-year increase in monthly electricity demand.

Conversely, electricity demand is estimated to increase at an accelerating rate as the heat

waves intensify, driven by heightened cooling requirements. More specifically, the demand response

values for the heat wave events at fraction parameters a of 0.33, 0.66, and 1.0 are 0.0222, 0.0498,

and 0.0989, respectively. Using the same approach, these results indicate that a functional shock

causing normal temperatures to approach extreme levels by 33% corresponds to a 2.22% year-

over-year increase in monthly electricity demand. An additional 33% progression toward extreme

temperatures results in a 2.76% year-over-year increase, followed by an additional 4.91% increase

with the complete transition to extreme conditions. Collectively, the full transition from normal

temperatures in August 2017 to extreme temperatures in August 2018 corresponds to a total 9.89%

year-over-year rise in monthly electricity demand. This contrasting behavior can be attributed to

the extensive reliance on air conditioning during heat waves and the substitution effect between

natural gas and electricity for heating purposes during cold waves.
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Figure 8: Estimated LHR-based benchmark response function with 95% confidence intervals (left),
and LHR-based temperature sensitivity for varying cold wave (top middle and top right) and heat
wave (bottom middle and bottom right) shock intensities under κ = 0 and κ = 1.

4.3 Empirical Results for Hazard-to-Demand Model

In this section, we analyze the impact of extreme temperature events on residential electricity

demand using the DSR model with the LHR (resp. LRHR) predictor for both hypothetical and

historical heat (resp. cold) wave scenarios, collectively referred to as the hazard-to-demand model.

Figure 8 illustrates the benchmark response function ψ̃(s), focusing on the extreme temperature

ranges of [−20, 5] and [25, 40], and the corresponding estimated electricity demand response as a

function of parameter a within the hazard-to-demand model. While the estimation results from the

hazard-to-demand model are broadly consistent with those from the density-to-demand model, they

provide distinct interpretative insights into how variations in the conditional probability of extreme

temperature events distinctly influence electricity demand under cold and heat wave scenarios.

While both models capture increased temperature sensitivity, the hazard-to-demand model pro-

duces higher response function values in the extreme heat range but lower values in the extreme cold

range compared to the density-to-demand model. Notably, it provides a more reliable representa-

tion of the response function at the lower temperature boundary, offering a structured depiction of

cold extremes. Specifically, electricity demand rises as temperatures decline within the cold tem-

perature range. However, at extremely low temperatures, demand exhibits diminishing sensitivity

to further declines, reflecting saturation effects driven by persistent heating requirements and sub-

stitution effects with natural gas. In contrast, in the hot temperature range, rising temperatures
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correspond to an increased conditional probability of extreme heat events, leading to a steady rise

in electricity demand, particularly at higher temperatures. This increased sensitivity is primarily

driven by intensive cooling needs, highlighting the asymmetric response of electricity demand to

temperature extremes. Further discussion on these distinctions is provided in the following section.

Although with a smaller overall magnitude, the hazard-to-demand model aligns with the density-

to-demand model for historical extreme temperature events. The cold wave shocks result in a

greater increase in electricity demand per 1°C change in mean temperature (3.01%) following the

transition from Znorm to Zextr, compared to the heat wave shocks (1.80%). Moreover, as the cold

waves intensify, the rate of increase in electricity demand diminishes, reflecting tapering incremen-

tal heating needs. Specifically, the LRHR-based demand response values for the cold wave events

at fraction parameters a of 0.33, 0.66, and 1.0 are estimated at 0.0987, 0.1113, and 0.1155, re-

spectively. These estimates indicate that a functional shock causing normal temperatures to shift

toward extreme cold levels by 33% corresponds to a 9.87% year-over-year increase in monthly elec-

tricity demand. An additional 33% progression toward extreme cold conditions results in a further

1.26% increase, followed by an additional 0.42% increase with a complete transition to extreme

cold conditions.

For the heat wave events, the LHR-based demand response values at fraction parameters a

of 0.33, 0.66, and 1.0 are estimated at 0.0111, 0.0228, and 0.0453, respectively. These results

indicate that a functional shock causing normal temperatures to shift toward extreme heat lev-

els by 33% corresponds to a 1.11% year-over-year increase in monthly electricity demand. An

additional 33% progression toward extreme heat conditions results in a further 1.17% increase,

followed by an additional 2.25% increase with a complete transition to extreme heat conditions.

Both the density-to-demand and hazard-to-demand models, despite differences in their estimated

magnitudes, consistently reveal distinct demand response patterns for the heat wave and cold wave

events. The cold wave shocks result in more significant demand increases overall while the heat

wave shocks exhibit a stronger incremental effect as temperatures approach extreme levels.

Lastly, similar to the density-to-demand model, the empirical results from the hazard-to-demand

model for κ = 0 exhibit an upward trend but with a substantially lower magnitude compared to

the case with κ = 1. As the estimation results for κ = 0 do not account for endogeneity, they are

not considered for interpretation.
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4.4 Some Discussion on the Distributional Predictors

Our empirical findings for extreme temperature events provide more practical insights than those

derived from existing functional approaches. A key limitation of conventional methods is their

tendency to yield inaccurate estimates at the boundaries, particularly in data-sparse regions near

critical temperature thresholds such as -20°C and 40°C. This boundary issue can lead to misin-

terpretations of demand responses at extreme temperatures, potentially resulting in significant

misjudgments in energy policy and management.

By leveraging both representative heat and cold wave scenarios, as well as demand responses

at specific temperature levels, our approach provides broader distributional insights into electricity

demand dynamics under extreme temperature events. Specifically, we incorporate higher-order dis-

tributional changes associated with extreme temperatures, illustrating how such conditions result

in significantly greater increases in electricity demand compared to normal scenarios–an effect that

has been largely overlooked in previous studies. Additionally, we integrate the LHR and LRHR pre-

dictors, which are expected to more effectively capture electricity demand dynamics under extreme

temperature conditions, into the hazard-to-demand model, a framework not previously explored in

the literature. Furthermore, our estimation results remain robust to endogeneity concerns arising

from measurement errors in the distributional predictors.

The estimation results from both models, as presented in Figures 7 and 8, indicate that the

benchmark response function from the hazard-to-demand model more effectively captures electric-

ity demand dynamics under extreme temperature conditions than that of the density-to-demand

model. In the extreme cold range, the benchmark response function from the hazard-to-demand

model (top left panel of Figure 8) remains non-decreasing, except below −16.2°C, a threshold

not observed in historical cold wave events. In contrast, the benchmark response function from

the density-to-demand model (left panel of Figure 7) begins to decline at −13.3°C, suggesting an

implausible reduction in electricity demand under extreme cold temperatures. Similarly, in the

extreme heat range, the benchmark response function from the hazard-to-demand model suggests

a steeper increase in demand, surpassing the growth rate implied by that of the density-to-demand

model.

While benchmark response functions from both models consistently show that cold waves re-

sult in greater demand increases than heat waves, that of the density-to-demand model exhibits

excessive sensitivity, predicting disproportionately large demand fluctuations in response to im-

perceptibly small temperature variations (e.g., 0.1°C) under extreme cold conditions. In contrast,
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the benchmark response function from the hazard-to-demand model under extreme cold scenar-

ios demonstrates more moderate sensitivity but still exhibits slightly larger responses compared

to extreme heat scenarios. In this context, the hazard-to-demand model aligns more closely with

empirical observations from historical heat and cold wave events.

In the reported estimation results for the functional shocks generated from the observed cold

and heat waves (the right panels of Figures 7 and 8), it is important to note that both the density-

to-demand and hazard-to-demand models capture the incremental effects of extreme heat on elec-

tricity demand, whereas the benchmark response function ψ̃(s) from either of the models fails to

capture such effects as temperature approaches extreme heat. This suggests that distributional

characteristics associated with heat wave events, such as a more right-skewed distributional change

with significantly reduced kurtosis, further amplify electricity demand in a nonlinear manner. In

contrast, incorporating distributional characteristics of historical cold wave events, such as signif-

icantly increased variance, into the benchmark response function does not qualitatively affect its

overall shape.

Based on the derived implications above, the hazard-to-demand model appears to provide an

empirically more sensible framework for analyzing the impact of extreme temperature events on

electricity demand. This may be because, unlike the PDF, which considers the entire temperature

distribution and may consequently dilute the influence of rare but critical extreme events that occur

as tail events, the LHR predictor assigns substantial importance to tail events, as is evident from its

construction. This allows for a more targeted analysis, focusing on the likelihood of temperatures

persisting within an extreme range given that they have already exceeded a critical threshold (e.g.,

-15°C or 35°C). By emphasizing tail events, the LHR approach enhances the reliability of demand

estimations under extreme temperature conditions.

An essential factor in extreme temperature analysis would be the cumulative temperature effect,

wherein prolonged exposure to high or low temperatures significantly increases electricity demand

for cooling or heating, even if the actual temperature remains unchanged. This phenomenon results

in an apparent paradox where electricity demand continues to rise despite stable temperature levels,

as extended exposure amplifies the need for indoor climate control. For instance, during a heat-

wave, electricity demand increases not only due to immediate high temperatures but also because

prolonged exposure intensifies cooling requirements. In this context, the PDF, which captures only

the relative frequency of temperatures without considering exposure duration, may exhibit weaker

comovement with electricity demand, particularly under extreme conditions. Conversely, the LHR

framework, which inherently accounts for the persistence of extreme temperature states, is expected
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Figure 9: Estimated quantile-based benchmark response function, truncated within the [0.05, 0.95]
range, with dotted lines representing the 95% confidence intervals.

to provide a more robust methodological foundation for assessing the dynamic relationship between

extreme temperature events and electricity demand.

It might be of interest to consider quantile function corresponding to ϕt as the distributional

predictor in our DSR model. The model with the quantile function predictor shares a conceptual

similarity with the density-to-demand and hazard-to-demand models in that all three utilize the

distributional properties of temperature as predictive variables. However, these models differ fun-

damentally in their interpretation of the demand response function f . In the density-to-demand

and hazard-to-demand models, the kernel-weighted benchmark response function ψ̃(s) measures the

impact of more frequently occurring temperatures around a given temperature level s ∈ [−20, 40],

either unconditionally or conditionally, while allowing for potential variations in associated tem-

perature quantiles. In contrast, a similar quantity, which can similarly be defined in the quantile-

to-demand model, represents the effect of changes around the s-quantile, where s ∈ [0, 1], with the

corresponding temperature level varying due to monthly (seasonal) fluctuations.

To illustrate the difference between the quantile-to-demand model and the previously considered

models, we additionally examine the impact of temperature quantiles on electricity demand during

extreme weather events by estimating the quantile-to-demand model, a more detailed description

of which is provided in Section B of the Appendix. Notably, the benchmark response function from

the quantile-to-demand model, reported in Figure 9, remains largely insignificant, except within

the 0.63 to 0.87 quantile range for κ = 1. This contrasts with the temperature density and LHR

sensitivity presented in the left panels of Figures 7 and 8. The temperature quantile time series

exhibits a monthly pattern, with lower values in winter and higher values in summer, whereas
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residential electricity demand exhibits a dual-peak structure, rising sharply in both summer and

winter. This divergence introduces nonlinearities in the relationship between temperature and elec-

tricity demand, as an increase in temperature quantile time series simultaneously reduces heating

demand while increasing cooling demand. Consequently, unlike an increase in the temperature

density or LHR time series, which is unambiguously associated with higher cooling (heating) de-

mand around 40°C (-20°C), applying fixed-quantile shocks in the quantile-to-demand framework

would result in ambiguous slope estimates due to these offsetting effects. Similarly, incorporating

the distributional characteristics into the quantile shocks in Figure 6 would not change the result

of producing insignificant or ambiguous temperature sensitivity.

5 Concluding Remarks

In this paper, we study the nonlinear temperature sensitivity of residential electricity demand

using distributional predictors of temperature, which are likely to contain measurement errors.

Given that residential electricity demand is highly sensitive to temperature fluctuations, accurately

capturing these nonlinearities is critical, especially during extreme temperature events where un-

derestimation could jeopardize grid stability. Additionally, measurement errors may stem from the

assumption that nonparametrically estimated temperature distributions represent true distribu-

tions, compounded by data quality issues and limitations within the estimation process.

We address these challenges by applying our DSR framework with distributional predictors.

This approach allows for the effective identification of nonlinearities in the relationship between

temperature distribution and electricity demand, even in the presence of measurement errors.

Through the analysis of historical heat wave and cold wave shocks of varying intensities within

a distributional context, we find that the hazard-to-demand model more reliably captures nonlin-

ear temperature sensitivity than the density-to-demand model, particularly in extreme conditions.

Our results indicate that residential electricity demand is significantly more sensitive to intense

cold waves, with demand increasing sharply as temperatures decline. However, as cold wave sever-

ity intensifies, the rate of electricity demand growth diminishes, whereas for heat waves, demand

growth accelerates with increasing intensity.

Given our findings, energy practitioners should prioritize incorporating detailed temperature

distribution analysis, particularly when planning for extreme weather events. Our empirical findings

suggest that residential electricity demand exhibits greater sensitivity to cold waves compared to

heat waves, albeit with a slower rate of increase in demand, highlighting the need for advanced
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demand estimating models that account for these nonlinear sensitivities. Moreover, it is crucial to

address potential measurement errors by adopting robust econometric techniques, in order to ensure

that demand response strategies are based on accurate and reliable estimates. Our econometric

approach would enhance grid stability and support effective energy management during extreme

temperature events.
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A Technical Appendix

This technical appendix provides a detailed discussion of the asymptotic properties of the proposed

estimator along with the necessary mathematical preliminaries.

A.1 Mathematical preliminaries

This section briefly reviews essential mathematical concepts for the proposed estimator and intro-

duce notation.

Let H1 be a separable Hilbert space with inner product ⟨·, ·⟩1 and norm ∥ · ∥1. A H1-valued

random variable Z is defined as a measurable map from the underlying probability space to H1.

Such a random element Z is said to be square-integrable if E[∥Z∥21] < ∞. Let H2 be another

such Hilbert space; in the context of our DSR model, a relevant example of H2 is either H1 or

R as Euclidean 1-space. We let ⊗ denote the tensor product associated with H1 and H2; more

specifically, for any ζ1 ∈ H1 and ζ2 ∈ H2,

ζ1 ⊗ ζ2(·) = ⟨ζ1, ·⟩1ζ2;

note that ζ1 ⊗ ζ2 is a map from H1 to H2. For any mean-zero square-integrable random elements

Z1 and Z2, E[Z1 ⊗ Z2], defined as a map from H1 to H2, is called the (cross-)covariance of Z1 and

Z2. We call A : H1 7→ H2 a bounded linear map if A is a linear map and its operator norm, defined

as ∥A∥op = sup∥ζ∥1≤1 ∥Aζ∥2, is finite. For any bounded linear map A, we let A∗ be the adjoint

map defined by the property ⟨Aζ1, ζ2⟩2 = ⟨ζ1, A∗ζ2⟩1 for all ζ1 ∈ H1 and ζ2 ∈ H2. We say that A

is a compact operator if H1 = H2 and there exist orthonormal bases {ζ1,j}j≥1 and {ζ2,j}j≥1 such

that A =
∑∞

j=1 ajζ1,j ⊗ ζ2,j with aj tending to zero as j increases; in this expression, if A is self-

adjoint (A = A∗) and nonnegative (⟨Aζ, ζ⟩1 ≥ 0), it may be assumed that aj ≥ 0 and ζ1,j = ζ2,j ,

and furthermore they are understood as the eigenvalues and the corresponding eigenvectors. A

compact operator A is Hilbert-Schmidt if
∑∞

j=1 ∥Aζj∥21 < ∞ for some orthonormal basis {ζj}j≥1,

and in this case, the Hilbert-Schmidt norm ∥A∥HS is defined as ∥A∥HS =
√∑∞

j=1 ∥Aζj∥21. It is well

known that ∥A∥op ≤ ∥A∥HS (see e.g., Bosq, 2000, (1.55)).

A.2 Equivalent formulation of the proposed estimator

Our estimator, discussed in Section 2.3, is a suitable adaptation of the functional IV estimator

proposed by Seong and Seo (2025) for our DSR model. First, observe that for an IV Zt satisfying

(6), the following can directly be deduced from (5): CZy = fC∗
XZ , where CZy = E[(Zt − E[Zt]) ⊗
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(yt − E[yt])]. This in turn leads to the following identity:

CZyCXZ = fC∗
XZCXZ , (16)

where CZu := E[(Zt − E[Zt]) ⊗ ut] = 0. As in Seong and Seo (2025), where the FFR model is

studied, we construct an estimator that mimics the population relationship (16). We first replace

CZy and CXZ in (16) with their sample counterparts ĈZy = T−1
∑T

t=1(Zt − Z̄T ) ⊗ (yt − ȳT ),

where ȳT = T−1
∑T

t=1 yt, and ĈXZ , which is introduced in Section 2.3. Noting that Ĉ∗
XZĈXZ

is not invertible (see e.g., Benatia et al., 2017), we employ a regularized inverse of Ĉ∗
XZĈXZ to

compute an estimator from the sample equation. Specifically, we consider a rank-regularized inverse

(Ĉ∗
XZĈXZ)

† of Ĉ∗
XZĈXZ defined as follows:

(Ĉ∗
XZĈXZ)

† =
K∑

j=1

λ̂−2
j ĝj ⊗ ĝj , (17)

where, for α tending to zero, K is determined as

K = max
j≥1

{λ̂2j ≥ α}. (18)

Note that Ĉ∗
XZĈXZ(Ĉ

∗
XZĈXZ)

† becomes the K-dimensional projection Π̂K =
∑K

j=1 ĝj ⊗ ĝj . Reg-

ularized inverses, similar to (17), are widely used in the literature on the functional linear model

(see, e.g., Chen et al., 2022; Seong and Seo, 2025; Seo, 2025). The estimator f̂ is constructed as

follows: for any x ∈ H

f̂(x) = ĈZyĈXZ(Ĉ
∗
XZĈXZ)

†(x). (19)

Using (17) and the definitions of the operators above, along with some algebra, it can be shown

that (19) is equivalent to the expression given in (9).

Remark 1. The choice K in (18) is adopted from Seong and Seo (2025) concerning the FFR model.

Based on this choice, we study the asymptotic properties of our estimator. Of course, with only a

minor modification, it is possible to extend the desired asymptotic results, which will be discussed,

for an alternative choice of K, such as K = m + maxj≥1{λ̂2j ≥ α} for some finite m. This choice

may be preferred when researchers want to retain at least m eigenelements for estimation. The case

with m = 1 also has some theoretical justification, given that we need at least one eigenelement for

the proposed estimator to be well defined for every T .
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A.3 Consistency and asymptotic normality

This section establishes the consistency and asymptotic normality of the proposed estimator, both

of which are fundamental to our empirical analysis in Section 4.

A.3.1 Sone notational and theoretical simplifications

For notational convenience, we hereafter let ∥ζ1∥ denote the norm of ζ1 regardless of the Hilbert

space in which ζ1 takes values. There is little risk of confusion following this simplification since,

in the sequel, the considered Hilbert space is either L2[a, b] (the Hilbert space of square-integrable

functions defined on [a, b]) or Euclidean 1-space R. For any linear operator AT and a nonnegative

real number BT depending on T , we let AT = Op(BT ) (resp. AT = op(BT )) if ∥AT ∥op is Op(BT )

(resp. op(BT )) whenever it is convenient as in Seo (2024, Supplementary material).

We subsequently consider the case where yt, Xt, and Zt have zero means, which reduces the

regression model (4) to yt = f(X◦
t ) + εt. Under this simplification, the population (e.g., CXZ) and

sample covariance operators (e.g., ĈXZ) introduced in Section 2 are naturally interpreted as being

defined without centering or demeaning the associated variables. As earlier discussed by Seong

and Seo (2025), extending the subsequent results to cases where the means are unknown and must

be estimated requires only minor modifications, such as replacing variables with their centered or

demeaned counterparts. Consequently, we omit these details.

A.3.2 Assumptions and main results

It turns out that C∗
XZCXZ and CXZC

∗
XZ are self-adjoint, nonnegative and compact (see Bosq,

2000, p. 117). We thus hereafter let

C∗
XZCXZ =

∞∑
j=1

λ2jgj ⊗ gj , CXZC
∗
XZ =

∞∑
j=1

λ2jhj ⊗ hj ,

where λj , gj , and hj are relevant eigenelements (see Section A.1). Let CZZ = E[Zt⊗Zt], σ
2
u = E[u2t ]

and CZu = E[Zt ⊗ ut]. We let ĈZZ and ĈZu be defined as follows:

ĈZZ =
1

T

T∑
t=1

Zt ⊗ Zt, ĈZu =
1

T

T∑
t=1

Zt ⊗ ut,

which may be understood as the sample counterparts of CZZ and CZu. We employ the following

assumptions: below, Ft denotes the natural filtration given by σ({Zs}s≤t+1, {us}s≤t) and let τj =

2
√
2max{(λ2j−1 − λ2j )

−1, (λ2j − λ2j+1)
−1} as in Seong and Seo (2025).
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Assumption A1. (i) Equation (5) holds; (ii) {Xt, Zt}t≥1 is stationary and geometrically strongly

mixing, E[∥Xt∥2] < ∞, and E[∥Zt∥2] < ∞; (iii) E[ut|Ft−1] = 0, E[u2t |Ft−1] = σ2u, and, for some

δ > 0, sup1≤t≤T E[∥ut∥2+δ|Ft−1] <∞; (iv)
∑∞

j=1 ∥f(bj)∥2 <∞ for some orthonormal basis {bj}j≥1

of H; (v) ∥ĈXZ−CXZ∥HS = Op(T
−1/2), ∥ĈZZ−CZZ∥HS = Op(T

−1/2) and ∥ĈZu−CZu∥HS = Op(T
−1/2);

(vi) kerCXZ = {0}; (vii) λ21 > λ22 > · · · > 0; (viii) T−1α−1 → 0 and T−1/2
∑K

j=1 τj →p 0.

The conditions given in Assumption A1 are adapted from Assumptions M and E of Seong

and Seo (2025) studying the FFR model, and similar assumptions have been employed in the

literature on the FSR model (see e.g., Hall and Horowitz, 2007). Condition (viii) is a technical

requirement that α decay at an appropriate rate depending on the eigenvalues {λj} and T . This

subtle requirement on αmay be relaxed if some additional (but still standard in the literature on the

functional linear model) assumptions on the decay rate of λ2j −λ2j+1 as a function of j are employed.

For example, if Assumption A2, which is to appear, is satisfied, then it is straightforward to see that

the consistency result given in Proposition 1 can be established with e.g., α−1 = o(T 1/4), without

requiring Assumption A1(viii) (see Remark 2 in Section A.3.3). We next present the consistency

result, which elaborates on Proposition 1 given in Section 2.3:

Proposition 2. Under Assumptions A1, ∥f̂ − f∥op →p 0.

We next obtain the asymptotic normality result (10) for any specified ζ ∈ H. To this end, we

employ the following assumptions: below, we let υt(j, ℓ) = ⟨Xt, gj⟩⟨Zt, hℓ⟩ − E[⟨Xt, gj⟩⟨Zt, hℓ⟩] for

j, ℓ ≥ 1.

Assumption A2. For some c◦ > 0, ρ > 2, ς > 1/2, δζ > 1/2 and m > 1, the following holds:

(i) λ2j ≤ c◦j
−ρ; (ii) λ2j−λ2j+1 ≥ c◦j

−ρ−1; (iii) ∥f(gj)∥ ≤ c◦j
−ς ; (iv) E[υt(j, ℓ)υt−s(j, ℓ)] ≤ c◦s

−mE[υ2t (j, ℓ)]

for s ≥ 1, and furthermore, E[⟨Xt, gj⟩4] ≤ c◦λ
2
j and E[⟨Zt, hj⟩4] ≤ c◦λ

2
j ; (v) ⟨gj , ζ⟩ ≤ c◦j

−δζ .

The above assumptions are obvious adaptation of the conditions given by Hall and Horowitz

(2007) and Seong and Seo (2025), which seem to be standard in the literature. Particularly, Seong

and Seo (2025) established useful asymptotic results for the FFR model under assumptions similar

to Assumption A2, and some of these asymptotic results are used to study the asymptotic properties

of our estimator. In order to establish the asymptotic normality result, we need more conditions,

which are stated below:

Assumption A3. (i) α−1 = o(T 1/3); (ii) ς+δζ > ρ/2+2, 2δζ ≥ ρ+1 and Tα(2ς+2δζ−1)/ρ = O(1);

(iii) θK(ζ) = ⟨ζ, (C∗
XZCXZ)

†C∗
XZCZZCXZ(C

∗
XZCXZ)

†ζ⟩ →p ∞.
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Assumption A3(ii) requires f and ζ to be sufficiently smooth with respect to the eigenvectors

{gj}j≥1 so that the entire map or element can be well approximated by those eigenvectors; this is

a standard requirement in asymptotic analysis in the literature on the functional linear model (see

e.g., Seong and Seo, 2025 and reference therein). Assumption A3(iii) requires a certain quantity

depending on ζ to diverge to infinity. This condition is expected to be satisfied for many possible

choices of ζ (see Section 3.2 of Carrasco et al., 2007; Remark 4 of Seong and Seo, 2025). Although

the desired asymptotic normality result is established under these requirements, a weaker version of

(10), with f(ζ) replaced by fΠ̂K(ζ), still holds without requiring that these conditions be satisfied,

as long as α decays at a sufficiently slow rate. This allows for statistical inference on fΠ̂K(ζ).

As discussed by Seong and Seo (2025, Section 3.2), Π̂K(ζ) may be understood as the best linear

approximation of ζ based on the covariation of Xt and Zt, thus this weaker result still provides

interpretable insights for practitioners.

The desired asymptotic normality result is given as follows:

Proposition 3. Under Assumptions A1-A3√
T

σ̂2uθ̂K(ζ)
(f̂(ζ)− f(ζ)) →d N(0, 1),

where σ̂2u = T−1
∑T

t=1(yt − f̂(Xt))
2 and θ̂K(ζ) = ⟨ζ, (Ĉ∗

XZĈXZ)
†Ĉ∗

XZĈZZĈXZ(Ĉ
∗
XZĈXZ)

†ζ⟩.

With some algebra, it can be shown that θ̂K(ζ), as given in Proposition 3 can be written as

θ̂K(ζ) =
1

T

T∑
t=1

 K∑
j=1

λ̂−2
j ⟨ĝj , ζ⟩⟨ĈXZ ĝj , Zt⟩

2

,

which corresponds to (11) without demeaning the variables.

A.3.3 Mathematical proofs

Proof of Proposition 2

Using (5) and the expression given in (19), the proposed estimator f̂ can be written as

f̂ = ĈZyĈXZ(Ĉ
∗
XZĈXZ)

† = fΠ̂K + ĈZuĈXZ(Ĉ
∗
XZĈXZ)

†, (20)

where Π̂K =
∑K

j=1 ĝj ⊗ ĝj as earlier introduced. As shown in the proof of Theorem 1 of Seong and

Seo (2025), we have ∥ĈXZ(Ĉ
∗
XZĈXZ)

†∥op ≤ α−1/2 and ∥ĈZu∥HS = Op(T
−1/2) under Assumption



37

A1. Consequently, we find that

∥f̂ − fΠ̂K∥op ≤ ∥ĈZu∥HS∥ĈXZ(Ĉ
∗
XZĈXZ)

†∥op ≤ Op(α
−1/2T−1/2).

We hereafter assume that {ĝj}j≥1 consists of an orthonormal basis; this can simply be achieved

by assigning an appropriate vector to each zero eigenvalue with no loss of generality (see e.g., the

proof of Lemma A.1 of Seo, 2025). From the properties of the operator norm and the fact that

{ĝj}j≥1 is an orthonormal basis, we find the following:

∥fΠ̂K − f∥2op ≤
∞∑
j=1

∥fΠ̂K(ĝj)− f (̂gj)∥2.

Thus, the proof becomes complete if
∑∞

j=1 ∥fΠ̂K(ĝj)−f(ĝj)∥2 →p 0 is shown. From nearly identical

arguments used to derive (8.63) of Bosq (2000), we find that

∞∑
j=1

∥fΠ̂K(ĝj)−f(ĝj)∥2 ≤
∞∑

j=K+1

∥f(ĝj)∥2 ≤
∞∑

j=K+1

∥f(gj)∥2+Op(1)∥Ĉ∗
XZĈXZ −C∗

XZCXZ∥op
K∑

j=1

τj .

(21)

Since
∑∞

j=K+1 ∥f(gj)∥2 < ∞ under Assumption A1,
∑∞

j=K+1 ∥f(gj)|2 converges in probability to

zero as T gets larger (note that K diverges as T → ∞). In addition, ∥Ĉ∗
XZĈXZ − C∗

XZCXZ∥op ≤

∥Ĉ∗
XZ∥op∥ĈXZ−CXZ∥op+∥Ĉ∗

XZ−C∗
XZ∥op∥CXZ∥op = Op(T

−1/2) by the properties of the operator

norm and Assumption A1. Combining all these results, we find that (21) is op(1) as desired.

Proof of Proposition 3

In this proof, we let gsj = sgn(⟨ĝj , gj⟩)gj as in the proof of Theorem 2 of Seong and Seo (2025). We

also note that θ̂K can equivalently be written as θ̂K(ζ) = ⟨ζ, (Ĉ∗
XZĈXZ)

†Ĉ∗
XZĈZZĈXZ(Ĉ

∗
XZĈXZ)

†ζ⟩.

From nearly identical arguments used in the proof of Theorem 2 of Seong and Seo (2025)

(particularly, see (S2.4)-(S2.6) and (S2.11) of their paper) and Assumptions A1-A2, it can be

shown that αKρ = Op(1) and also

∥ĈXZ(Ĉ
∗
XZĈXZ)

† − CXZ(C
∗
XZCXZ)

†∥op ≤ Op(α
−1/2T−1/2

K∑
j=1

τj) ≤ Op(T
−1/2α−3/2−2/ρ) = op(1).

(22)

We observe that

f̂(ζ)− f(ζ) = (f̂ − fΠ̂K)(ζ) + f(Π̂K −ΠK)(ζ) + f(ΠK − I)(ζ), (23)
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where ΠK =
∑K

j=1 g
s
j ⊗ gsj . The first term in (23), (f̂ − fΠ̂K)(ζ), satisfies the following:√

T

σ2uθK(ζ)
(f̂ − fΠ̂K)(ζ) =

√
1

σ2uθK(ζ)

(
1√
T

T∑
t=1

Zt ⊗ ut

)(
CXZ(C

∗
XZCXZ)

† + op(1)
)
(ζ), (24)

where the equality follows from simple algebra (as in (20)) and (22). If define ξt = σ−1
u θK(ζ)

−1/2
(Zt⊗

ut)CXZ(C
∗
XZCXZ)

†(ζ), then σ−1
u θK(ζ)

−1/2
(

1√
T

∑T
t=1 Zt ⊗ ut

)
CXZ(C

∗
XZCXZ)

†(ζ) = T−1/2
∑T

t=1 ξt.

Then as can obviously be deduced from (S2.7) and (S2.8) by Seong and Seo (2025), the above {ξt}

is a martingale difference sequence (w.r.t. Ft−1) and also E[ξ2t ] = 1. Then, from the employed

assumption and the standard central limit theorem for a martingale difference sequence, we find

that T−1/2
∑T

t=1 ξt →d N(0, 1), and hence we conclude that√
T

σ2uθK(ζ)
(f̂(ζ)− fΠ̂K(ζ)) →d N(0, 1).

We then note that the second term in (23), f(Π̂K−ΠK)(ζ), can be rewritten as
√
T/θK(ζ)(A1+

A2 + A3), where A1 =
∑K

j=1⟨ĝj − gsj , ζ⟩f(ĝj − gsj ), A2 =
∑K

j=1⟨gsj , ζ⟩f(ĝj − gsj ), A3 =
∑K

j=1⟨ĝj −

gsj , ζ⟩f(gj). To analyze these terms, we first investigate the stochastic order of the quantity ⟨(ĈXZ−

CXZ)gj , hℓ⟩. From Assumption A2 and nearly identical arguments used in the unnumbered equation

between (S2.28) and (S2.29) in Seong and Seo (2025), the following can be shown:

TE[⟨(ĈXZ − CXZ)gj , hℓ⟩2] ≤
T∑

s=0

E[vt(j, ℓ)vt−s(j, ℓ)] ≤ O(1)E[⟨Xt, gj⟩2⟨Zt, hℓ⟩2] = O(λjλℓ), (25)

where the second inequality follows from Assumption A2(iv) and the third inequality follows from

the Cauchy-Schwarz inequality and Assumption A2(iv). (25) implies that ⟨(ĈXZ − CXZ)gj , hℓ⟩ =

Op(T
−1/2

√
λjλℓ). Combining this result with Lemma S1 of Seong and Seo (2025), we conclude

that ∥v̂j−vj∥2 = Op(T
−1j2) holds under Assumption A1-A3. In turn, from similar arguments used

in the proofs of (S2.16) and (S2.33) in Seong and Seo (2025), the following can also be deduced:

∥f(ĝj − gsj )∥2 = Op(T
−1)jρ+2−2ς ,

⟨ĝj − gsj , ζ⟩2 = Op(T
−1)jρ+2−2δζ .

Combining these results with the conditions given in Assumption A3, it can be shown (see pp.
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S12-S13 of the Supplementary Material in Seong and Seo, 2025) that

√
T (∥A1∥+ ∥A2∥+ ∥A3∥) ≤ Op(

K∑
j=1

jρ/2−ς−δ+1) = Op(K
ρ/2−ς−δ+2) = op(1), (26)

where the last equality is deduced from that K → ∞ as T → ∞ and ρ/2 − ς − δ + 2 < 0 under

Assumption A3.

The third term in (23), f(ΠK − I)(ζ), satisfies that

∥f(ΠK−I)(ζ)∥2 ≤
∞∑

j=K+1

∥⟨gsj , ζ⟩f(gsj )∥2 ≤ O(1)

∞∑
j=K+1

j−2δζ−2ς = O(K−2δζ−2ς+1) = O(α(2ς+2δζ−1)/ρ),

(27)

where the second inequality follows from Assumptions A2(iii) and A2(v), the first equality follows

from the Euler-Maclaurin summation formula for the Riemann zert-function (see, e.g., (5.6) of

Ibukiyama and Kaneko, 2014) and the second equality follows from the fact that αKρ = Op(1).

Therefore, from (26) and (27), we find that

√
T/θK(ζ)(fΠ̂K − f)(ζ) = Op(1/

√
θK(ζ)) +O(T 1/2α(ς+δζ−1/2)/ρ/

√
θK(ζ)).

Under Assumption A3, the above is op(1). We therefore conclude that√
T

σ2uθK(ζ)
(f̂ − f)(ζ) =

√
T

σ2uθK(ζ)
(f̂ − fΠ̂K(ζ)) + op(1) →d N(0, 1).

To establish the desired asymptotic normality result, it only remains to show that (i) ∥σ̂2u−σ2u∥ →p 0

and (ii) ∥θ̂K(ζ)− θK(ζ)∥ →p 0. Under the employed assumptions, the former follows directly from

the consistency of f̂ . The latter follows from (22), as discussed by Seong and Seo (2025) in their

proof of Theorem 2.

Remark 2. As shown in the earlier proof of Proposition 2, under Assumption A1, we have ∥f̂ −

f∥op = Op(α
−1/2T−1/2) + Op(

∑∞
j=K+1 ∥f(gj)∥2) + Op(T

−1/2
∑K

j=1 τj), where the first two terms

are op(1) as shown in our earlier proof. Suppose further that α = o(T 1/4) and Assumption A2 are

satisfied. Then as shown by Seong and Seo (2025), αKρ = Op(1), and by combining this result

with Assumption A2, we find that Op(T
−1/2

∑K
j=1 τj) ≤ Op(T

−1/2
∑K

t=1 j
ρ+1) = Op(T

−1/2Kρ+2) =

Op(T
−1/2α−(ρ+2)/ρ), which is op(1) since α = o(T 1/4) and ρ > 2.
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B Quantile function predictor

In Section 4.4, we considered the quantile-to-demand model for comparison with the density-to-

demand and hazard-to-demand models. In the DSR model given in (4), as an alternative to the

CLR, LHR, or LRHR predictors, practitioners may consider the quantile function corresponding

to ϕt as the distributional predictor X◦
t . In this case,

X◦
t (r) = inf

{
x ∈ [a, b] :

∫ x

a
ϕt(s) ds ≤ r

}
, r ∈ [a, b].

Like other distributional predictors, the quantile function predictor must be estimated in advance

from raw temperature data. This can be done by replacing ϕt with the estimate ϕ̂t as described in

Section 3.1. Alternatively, the quantile function predictor can directly be estimated from the raw

temperature data by replacing population quantiles with sample quantiles. Specifically, if x[j] for

j = 1, . . . , Nt are the ordered (smallest to largest) raw temperature observations at time t, we may

define

Xt(r) = x[Ntr] if Ntr is an integer, (28)

for r ∈ [0, 1]. If Ntr is not an integer, we employ a linear interpolation scheme to estimate values

proportionally between neighboring data points. The quantile function predictor Xt constructed in

this way may be regarded as a reasonable proxy for X◦
t . Thus, we estimate the model in (5) as in

the other DSR models considered in Sections 4.2 and 4.3. The results reported in Section 4.4 are

based on the quantile predictor constructed as in (28).
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