
ar
X

iv
:2

50
4.

02
22

1v
1 

 [
cs

.L
G

] 
 3

 A
pr

 2
02

5

To appear in Proceedings of the CBCL Learning Day (1994)

following Oral Presentation by Gregory Galperin at the CBCL Learning Day (Jan. 1994)

Abstract: A novel approach to learning is presented, combining features of on-line and off-
line methods to achieve considerable performance in the task of learning a backgammon value
function in a process that exploits the processing power of parallel supercomputers. The off-
line methods comprise a set of techniques for parallelizing neural network training and TD(λ)
reinforcement learning; here Monte-Carlo “Rollouts” are introduced as a massively parallel on-
line policy improvement technique which applies resources to the decision points encountered
during the search of the game tree to further augment the learned value function estimate. A
level of play roughly as good as, or possibly better than, the current champion human and
computer backgammon players has been achieved in a short period of learning.

http://arxiv.org/abs/2504.02221v1


LEARNING AND IMPROVING BACKGAMMON STRATEGY

GREG GALPERIN

The Problem: From an applications perspective, the challenge is to design and implement a
system that learns how to play backgammon at a level that surpasses the best human players
in the world. On the theoretical side, the goal is to develop fast methods for learning and using
an optimal or near-optimal policy in a high-dimensional, delayed-reward, stochastic setting.

The task of playing a game well can be reduced to the task of picking the best move at each
decision point, where the best move is the one that maximizes the probability of winning. A
value function that is meant to represent the probability of winning can be approximated, and
decisions are still made in the same way using this approximate value function. The value
function has traditionally been a set of man-made heuristics that represent human experts’
intuitions about the games. Instead, computers can learn to play board games simply by
learning the evaluation function based on experience in playing or training from samples of
positions taken from games.

Motivation: Perfect information board games are excellent domains for investigating new
learning methodologies; the creation of evaluation functions is very much a black art, and is a
labor intensive process. Generally, it is done via a trial and error process through a decade or
more of human effort for each player, and the result is generally a somewhat cryptic and com-
plicated hand-crafted evaluation function. Such a representation of knowledge about the game
is certainly not in the same form as its designers’ internal representations, but is an attempt
to recast that knowledge into a form useful to computers; even if that translation process were
perfect with no information lost, that computer player would still not know any more than its
programmers did, and it is likely that in practice much less information is captured. Instead,
a learning process could learn information relevant to the chosen representation, would not be
constrained by the knowledge of its “instructors” (nor would it benefit from their ability), and
would automate the tedious and mysterious process of developing the evaluation function.

Second, since the structure of the value function is not known, a general function approximator
must be used to represent the learned function. It is almost certain that with a finite time to
train the system (thus requiring a model of finite dimensionality), there will always be some
error in the approximation of the function. Given a value function that is known to be imperfect,
an appropriate boosting procedure might improve the performance of the evaluation function,
and would augment the learning process.

Previous Work: There is a long history of development of computer games, though most
of this work has been focused on hand-crafted evaluation functions [1] and strategies for tree
search and heuristic tree pruning. Tesauro initially used human expert rankings of moves to
train an evaluation function [2], and later used TD(λ) reinforcement learning [3] to allow a
system to learn the evaluation function through self-play [4]. Monte Carlo techniques have
been studied rigorously in many applications outside of learning and games [5].

Approach: A functional representation (“architecture of the learning box”) is chosen, and the
value function for the game of backgammon is learned on a parallel computer by examples from
self-play. Very simple (linear) representations have produced some of the best results. Then a
backgammon game is played against an opponent with the help of that learned function in the



following manner: at each decision point, all legal actions are considered; for each action, many
games are played to termination in parallel with all decisions being made for both sides based
on the learned value function (in the obvious manner: the function is evaluated for all possible
moves, and the move that maximizes the value function is taken). The action that led to the
greatest percentage of wins is chosen.

The on-line phase of the algorithm approximates a Monte Carlo estimation of the probability
for an optimal player to win when playing against another optimal player. Each game played
to the end (here termed a “Rollout” of the position under consideration) is a random sample
from the space of all possible roll sequences; an exhaustive search over this space is clearly
intractable. This process is embarrassingly parallel: a massive number of processors can play
games simultaneously starting from the same point to collect Monte Carlo statistics. Further-
more, the parallelism is crucial to making the system run in real time, so that decisions can
be made in tens of seconds rather than in hours. Applying this Monte Carlo “Rollout” tech-
nique has achieved improvements to the point that this method beats the originally learned
function 75% of the time, exhibiting a greater margin of victory (implying a better job of learn-
ing/representing the optimal value function) than a significantly more complicated functional
representation is able to achieve with orders of magnitude more initial learning time.

Difficulty: A proof that this Monte Carlo technique achieves any improvement over the learned
function simply used in the obvious manner is formidable. For this to be true, the evaluation
function must not be coherently flawed in some manner as to systematically overlook some
important strategy or policy. Assuming that the error in the value function is unbiased white
noise may allow argument that the average performance is no worse than the value function,
but stronger results will be difficult. In practice, this is a naive assumption, though all results
observed have shown strict improvement. Other issues include the fact that this technique is
tailored for decisionmaking in a stochastic environment.

Impact: This technique proposes a novel approach to learning, combining features of on-line
and off-line methods to achieve considerable performance in the task of learning a backgammon
value function in a process that exploits the processing power of parallel supercomputers. A
level of play roughly as good as, or possibly better than, the current champion human and
computer backgammon players has been achieved in a short period of learning.

REFERENCES

[1] H.J. Berliner, “BKG—A Program That Plays Backgammon,” Computer Games I, D.N.L.
Levy, pp. 3–28 (1988).

[2] G. Tesauro, “Neurogammon: A Neural-Network Backgammon Program,” IJCNN Proceed-

ings III, 33–39 (1990).

[3] R.S. Sutton, “Learning to Predict by the Methods of Temporal Differences,” Machine Learn-

ing 3, pp. 9–44 (1988).

[4] G. Tesauro, “Practical Issues in Temporal Difference Learning,” IBM Technical Report
RC-17223, #76307 (1991).

[5] R.M. Neal, “Probabilistic Inference Using Markov Chain Monte Carlo Methods,” University
of Toronto Dept. of Computer Science Technical Report CRG-TR-93-1 (1993).


