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MATRIX CONCENTRATION INEQUALITIES FOR DEPENDENT

BINARY RANDOM VARIABLES

RADOS LAW ADAMCZAK AND IOANNIS KAVVADIAS

Abstract. We prove Bernstein-type matrix concentration inequalities for linear com-
binations with matrix coefficients of binary random variables satisfying certain ℓ∞-
independence assumptions, complementing recent results by Kaufman, Kyng and Solda.
For random variables with the Stochastic Covering Property or Strong Rayleigh Prop-
erty we prove estimates for general functions satisfying certain direction aware matrix
bounded difference inequalities, generalizing and strengthening earlier estimates by the
first-named author and Polaczyk.

We also demonstrate a general decoupling inequality for a class of Banach-space valued
quadratic forms in negatively associated random variables and combine it with the matrix
Bernstein inequality to generalize results by Tropp, Chrétien and Darses, and Ruetz and
Schnass, concerning the operator norm of a random submatrix of a deterministic matrix,
drawn by uniform sampling without replacements or rejective sampling, to submatrices
given by general Strong Rayleigh sampling schemes.
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1. Introduction

Concentration inequalities for sums of independent random matrices have found numerous
applications in statistics, computer science, high-dimensional probability, functional analysis
and quantum information theory. Given the great progress in this direction achieved in the
last years, it is difficult to give a full account of the literature, so we will mention here just a
few landmark papers, establishing the most important tools of the theory: the work on the
non-commutative Khintchine inequalities by Lust-Piquard and Pisier [32, 33], the paper [38]
by Rudelson, where these inequalities were used to derive bounds on the accuracy of empirical
approximation of covariance matrices, the article by Ahlswede and Winter establishing the
first matrix Chernoff bounds [2], the subsequent work by Oliveira [35] and finally the work
[47] by Tropp, strengthening and polishing previous estimates and providing a whole range of
inequalities valid under various assumptions on the random matrices involved. We refer the
reader to the last reference for a more detailed description of the history of the problem up to
2012. More recent developments involve connections with free probability and refinements
of previous inequalities which do not outperform them in general, but allow for elimination
of certain logarithmic factors in situations where one may expect that the problem is indeed
well approximated by its free counterpart [48, 5, 6, 14].

When one drops the assumption of independence, the theory is so far less developed,
however there are also several results, covering various type of assumptions concerning the
dependence structure. One of the first results is the matrix Freedman inequality for mar-
tingales due to Tropp [46]. Another lines of research establish bounds for matrices corre-
sponding to mixing sequences, Markov chains or more specifically random walks on graphs
[7, 22, 34, 49], concentration under matrix counterparts of classical functional inequalities
[4, 24, 25] and inequalities for matrix-valued functions of random vectors with values in the
discrete cube {0, 1}n, satisfying some Dobrushin-type or negative dependence conditions
[4, 28, 1, 27].

This article belongs to the last group. We are interested in concentration inequalities
for matrix valued functions on the discrete cube under non-product measures. Motivations
for investigating concentration for such models come from combinatorics, physics, computer
science and statistics, as dependent binary random variables arise in the analysis of ran-
dom combinatorial structures (for instant random bases of matroids, in particular random
spanning trees of the graph, [20, 28]), discrete models of statistical physics (see, e.g., the
monographs [21, 30]), randomized algorithms (see e.g., [19]), and survey sampling, where
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2 RADOS LAW ADAMCZAK AND IOANNIS KAVVADIAS

they allow for selecting a sample from a population with prescribed inclusion probabilities
(see, e.g., [43, 15, 9, 8]).

In subsequent sections we develop several inequalities working under different (but in-
terrelated) types of assumptions. Since precise formulation of our theorems would require
additional definitions, we postpone the statements to Section 3, and here we just describe
the nature of the estimates and its relations with previous results.

The inequalities we present are of the form

P(‖Z‖ ≥ t) ≤ 2d exp
(
−min

( t2

a2
,
t

b

))
,

where Z is a matrix-valued function on {0, 1}n, P(·) is a probability on {0, 1}n, satisfying
appropriate weak or negative dependence assumptions, and a, b are parameters responsible
for the Gaussian and exponential rate of tail decay, which hold respectively for small and
large values of t. The right-hand side resembles the tail decay given by the classical Bernstein
inequality for sums of independent random variables, therefore we call such class of estimates
Bernstein-type inequalities. The parameter b is usually related to some ℓ∞ bounds on the
increments of the function f , while a should be thought of as a variance proxy and be of a
weaker, informally speaking, integrated form.

Our approach is inspired by the recent article [27] by Kaufman, Kyng and Solda who were
able to adapt to the dependent setting classical tools going back to [2] and prove bounds for
random variables of the form

∑n
i=1 XiAi where Xi’s are binary random variables satisfying

an appropriate Dobrushin-type condition (see Section 2.2 below for all the definitions and
assumptions), and Ai’s are nonnegative definite matrices. By refining their approach we
obtain Bernstein-type inequalities for general (not neccessarily nonnegative definite) matri-
ces which involve as a subgaussian parameter the quantity ‖E∑n

i=1 XiA
2
i ‖, just as in the

corresponding estimates in the independent setting (Theorems 3.1, Corollary 3.5). Under
stronger assumptions of Stochastic Covering Property or Strong Rayleigh Property, by com-
bining the method of [27] with the approach from the paper by the first named author and
Polaczyk [1], we obtain a Bernstein type inequality for general matrix-valued functions sat-
isfying a McDiarmid type increment conditions, answering a question which was left open in
[1] (Theorem 3.8, Corollary 3.11). Finally, we address the problem of random subsampling
of deterministic matrices, and obtain norm estimates for random submatrices selected via
random vectors with Strong Rayleigh Property (Theorem 3.15). It is a generalization of the
results by Tropp [45], Chrétien and Darses [17] for uniform sampling without replacement,
and more recent inequalities due to Ruetz and Schnass [39] for rejective sampling, to a wider
family of efficient sampling schemes. To this end we also develop a decoupling inequality
for a class of Banach space-valued quadratic forms in negatively associated binary variables,
which is of independent interest (Theorem 3.13).

The organization of the article is as follows. In Section 2 we introduce the basic nota-
tion and discuss the notions of weak and negative dependence used in our assumptions. In
Section 3 we formulate our main theorems and provide a comparison with earlier results.
More specifically, Section 3.1 is devoted to Bernstein-type inequalities for ℓ∞-independent
random vectors, Section 3.2 to inequalities for more general functions of vectors with Sto-
chastic Covering Property, and Section 3.3 to decoupling inequalities and applications to the
problem of sampling random submatrices. Section 4 contains proofs of all our theorems.

2. Notation and preliminaries

2.1. Basic notation. We will use the notation [n] = {1, . . . , n}. The cardinality of a set
will be denoted by | · |. For x ∈ {0, 1}n by supp(x) we will denote the support of x, i.e., the
set {i ∈ [n] : xi = 1}. For a set I ⊆ [n], we write Ic for [n] \ I.

By Md×d
sym we will denote the space of symmetric d × d matrices with real coefficients.

The identity matrix will be denoted by I (the size of the matrix will be always clear from
the context).

By e1, . . . , en we will denote the standard basis in Rn. The standard Euclidean norm
in Rn will be denoted by | · | (which should not lead to confusion with cardinality of a
set) and the Euclidean unit sphere in Rn by Sn−1. For p ≥ 1, by ℓnp we will denote the

Banach space (Rn, ‖ · ‖p) where ‖x‖p = (|x1|p + · · · + |xn|p)1/p. For an m × n matrix A
by ‖A‖ℓp→ℓq we will denote the operator norm of A seen as an operator between ℓnp and
ℓnq , i.e., ‖A‖ℓp→ℓq = sup‖x‖p≤1 ‖Ax‖q. When p, q = 2, we will drop the subscript ℓ2 → ℓ2

and write simply ‖ · ‖. Thus ‖A‖ = ‖A‖ℓ2→ℓ2 = supx,y∈Sn−1 |xTAy|. We will write � for
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the positive-semidefinite order on symmetric matrices. For x, y ∈ {0, 1}n by x ⊕ y we will
denote the coordinate-wise sum of x and y modulo 2.

We say that a random vector X = (X1, . . . , Xn) with values in {0, 1}n is k-homogeneous
if with probability one,

∑n
i=1 Xi = k. For a random vector Y , by µY we will denote its

law. If µY = µ we will also write Y ∼ µ. Similarly, if X,Y have the same law, we will
write X ∼ Y . For I ⊆ [n] and a {0, 1}n-valued random vector X = (X1, . . . , Xn) we set
XI = (Xi)i∈I . For a random variable X , by σ(X) we will denote the σ-field generated by
X .

2.2. Assumptions on random vectors. Let us now describe various notions of depen-
dence between binary random variables, which we will use in the article. We will start with
ℓ∞-independence, which relies on bounding an appropriate operator norm of an interdepen-
dence matrix. Various versions of this notion has appeared in the literature starting from
the seminal work by Dobrushin (see, e.g., [41, 36, 40] for applications to concentration of
measure phenomenon). In the context of matrix concentration inequalities the version we
present below has been recently introduced by Kaufman, Kyng and Solda [27].

Let µ be a probability measure on {0, 1}n. Consider a random vectorX = (X1, . . . , Xn) ∼
µ. For Λ ⊆ [n], and σ ∈ {0, 1}Λ, consider a matrix ΨΛ,σ

µ = (ΨΛ,σ
µ (i, j))i,j∈[n] defined as

ΨΛ,σ
µ (i, j) = P(Xj = 1|Xi = 1, ∀ℓ∈ΛXℓ = σℓ)− P(Xj = 1|Xi = 0, ∀ℓ∈ΛXℓ = σℓ)

whenever P(Xi = 1, ∀ℓ∈ΛXℓ = σℓ),P(Xi = 0, ∀ℓ∈ΛXℓ = σℓ) > 0 and ΨΛ,σ
µ (i, j) = 0 other-

wise.
Following [27] we will also consider a matrix IΛ

µ = (IΛ
µ (i, j))i,j∈[n], given by

IΛ
µ (i, j) = P(Xj = 1|Xi = 1, ∀ℓ∈ΛXℓ = 1)− P(Xj = 1|∀ℓ∈ΛXℓ = 1),

whenever P(Xi = 1, ∀ℓ∈ΛXℓ = 1) > 0, and IΛ
µ (i, j) = 0 otherwise.

For a matrix A = (aij)i,j∈[n], by ‖A‖ℓ∞→ℓ∞ we will denote the norm of A seen as an
operator from the space ℓn∞ to itself, i.e.,

‖A‖ℓ∞→ℓ∞ = max
1≤i≤n

n∑

j=1

|aij |.

Definition 2.1 (ℓ∞-independence). We will say that a probability measure µ on {0, 1}n
(equiv. a random vector X with law µ) is

• (one-sided) ℓ∞-independent with parameter D if for every Λ ⊆ [n],

‖IΛ
µ ‖ℓ∞→ℓ∞ ≤ D,

and

• two-sided ℓ∞-independent with parameter D if for every Λ ⊆ [n] and σ ∈ {0, 1}Λ,

‖ΨΛ,σ
µ ‖ℓ∞→ℓ∞ ≤ D.

Remark 2.2. By considering i = j we can see that if a random vector X is two-sided ℓ∞-
independent and X is not deterministic, then D ≥ 1. It is not difficult to see that this is not
true for one-sided ℓ∞-independence, for instance a random vector with i.i.d. coordinates,
taking values 1 with probability very close to 1 is ℓ∞-independent with parameter D ≃ 0.
If we however restrict our attention to k-homogeneous random vectors, then again, for non-
deterministic vectors, we have D ≥ 1 (see Lemma 4.5 below).

Moreover the two-sided ℓ∞-independence implies its one-sided version, but the reverse
implication in generality does not hold (see [27, Appendix C]).

In [27] the authors provide many examples of random vectors satisfying the above defi-
nitions, in particular examples coming from the theory of negative dependence (see below)
and Gibbs measures coming from statistical physics. We refer the reader to this article for
the proofs and here we just mention that the examples include the monomer-dimer model,
the Ising/Potts model, list colouring, stable distributions and distributions with the Sto-
chastic Covering Property. The last example is the most important for us and we recall
it in Definition 2.5 below. Let us also remark that the conditions from the definitions of
ℓ∞-independence for Λ = ∅ are related to the notion of spectral independence [3]. In partic-
ular, examples of measures satisfying ℓ∞-conditions may be often obtained from examples
satisfying spectral independence. For instance, following conditionally the arguments of [31,
Chapter 2, Example 5], one can prove that if X is homogeneous and for every Λ ⊆ [n], and
all i, j ∈ Λc, conditionally on the event {∀ℓ∈ΛXℓ = 1}, the variables Xi, Xj are negatively
correlated, then X is one-sided ℓ∞-independent with D = 2.
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The next definitions are related to the theory of negative dependent random variables.
The first one, we would like to introduce, is negative association. It was introduced in a
more general context of real-valued variables in [26] and since then it has become one of the
basic notions of the theory of negative dependence.

Definition 2.3 (Negative association). Let X be a random vector with values in Rn. We
will say that X is negatively associated if for any ∅ 6= I ( [n] and (coordinate-wise) non-
decreasing functions f : {0, 1}I → R and g : {0, 1}Ic → R, we have

Ef(XI)g(XIc) ≤ Ef(XI)Eg(XIc).

In some of our results we will work under an assumption stronger than negative associa-
tion, namely the Strong Rayleigh Property.

Definition 2.4 (Rayleigh Properties). An {0, 1}n-valued random vector X = (X1, . . . , Xn)
has the Rayleigh property if its generating polynomial

FX(x1, . . . , xn) = ExX1
1 · · ·xXn

n

satisfies

F (x)
∂2

∂xi∂xj
F (x) ≤ ∂F

∂xi
(x)

∂F

∂xj
(x)

for all i, j ∈ [n] and x = (x1, . . . , xn) ∈ [0,∞)n.
If the above inequality holds for all x ∈ Rn, then we say that X has the Strong Rayleigh

Property.

The above definition was introduced by Borcea, Brändén and Liggett in [11]. They proved
that many distributions of interest satisfy the SRP. It is known that SRP implies negative
association. The by now classical examples include uniform measures on bases of balanced
matroids (in particular random uniform spanning trees of a graph), determinantal mea-
sures, Bernoulli random variables conditioned on their sum, measures related to exclusion
dynamics, determinantal measures.

Finally, let us recall the definition of Stochastic Covering Property (SCP). It was intro-
duced by Pemantle and Peres [37], who showed that it is implied by the SRP, but there is
no implication in the other direction. Recall that e1, . . . , en is the standard basis in Rn.

Definition 2.5 (Stochastic covering property). Let x, y ∈ {0, 1}. We say that x covers y,
which we denote by x ⊲ y, if x = y or x = y + ei for some i ∈ [n].

Let µ be a probability measure on {0, 1}n and let X ∼ µ. We will say that µ (equivalently
X) satisfies the Stochastic Covering Property (abbrev. SCP) if for any Λ ⊂ [n] and any
x, y ∈ {0, 1}n such that P(XΛ = xΛ),P(XΛ = yΛ) > 0 and xΛ ⊲ yΛ, there exists a coupling
(Y,Q) between the conditional distributions P(XΛc ∈ · |XΛ = yΛ) and P(XΛc ∈ · |XΛ = xΛ)
such that with probability one, Y ⊲ Q.

Kaufman, Kyng and Solda proved that for k-homogeneous measures the SCP implies
two-sided ℓ∞-independence with parameter D = 2.

3. Main results

3.1. Matrix Bernstein inequality for ℓ∞-independent random vectors. In this sec-
tion we will present results for linear combinations of binary random variables with matrix
coefficients, corresponding to non-commutative Bernstein-type inequalities, obtained in the
independent setting by Tropp [47] (see also [2, 35] for important earlier contributions). We
will work under the assumption of ℓ∞-independence. In the special case of nonnegative
definite matrices, the inequalities we obtain allow to recover the results by Kaufman, Kyng
and Solda [27]. We should, however, stress that our approach builds extensively on their
ideas.

Theorem 3.1. Let X = (X1, . . . , Xn) be an {0, 1}n-valued random vector and consider
A1, . . . , An ∈ Md×d

sym. Define the random variable

Z =

n∑

i=1

XiAi.

Assume that X is k-homogeneous and one-sided ℓ∞-independent with parameter D. Then,
for some absolute constant C and all t > 0,
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P(‖Z − EZ‖ ≥ t) ≤ 2d exp
(
− 1

CD2
min

( t2

σ2
,
t

R

))
,(3.1)

where σ2 = ‖E∑n
i=1 XiA

2
i ‖ and R = maxi≤n ‖Ai‖.

Remark 3.2. The quantity E
∑n

i=1 XiA
2
i =

∑n
i=1 piA

2
i , where pi = P(Xi = 1). It can be

thought of as a matrix variance proxy for Z. In fact since
∑n

i=1 Xi = k = E
∑n

i=1 Xi, it can
be replaced by E

∑n
i=1 Xi(Ai − A)2 for any deterministic matrix A at the cost of replacing

the constant R by R+ ‖A‖. Choosing A = 1
k

∑n
i=1 piAi we obtain

E

n∑

i=1

Xi(Ai −A)2 = k
(1
k

n∑

i=1

piAi −
(1
k

n∑

i=1

piAi

)2)
� E

n∑

i=1

XiA
2
i .

Observe that in this case ‖A‖ ≤ R. One can also note that the left-hand side above
equals to kVar(AI), where I is a random element of [n], which conditionally on X is drawn
uniformly from supp(X) = {i : Xi = 1}. Its operator norm can be significantly smaller than
that of E

∑n
i=1 XiAi, in particular it vanishes when all Ai’s are equal (in which case Z is

deterministic).

Remark 3.3. As seen from the proofs, presented in Section 4.2, in the above theorem one
can take C = 35. Also in subsequent inequalities one can obtain explicit constants from our
proofs. Since they are most likely rather far from optimal, we do not specify them.

Remark 3.4. We have stated our results for symmetric matrices, but the standard hermi-
tization trick (known also as dilation) allows to obtain results for non-symmetric square
matrices or rectangular matrices. Since this method is by now standard, we do not state
explicitly the results, and refer to [47, Section 2.6] for details.

Similarly as in [27], under the stronger assumption that X is two-sided ℓ∞-independent,
we can drop the assumption of homogeneity.

Corollary 3.5. Let X = (X1, . . . , Xn) be an {0, 1}n-valued random vector and consider
A1, . . . , An ∈ Md×d

sym. Define the random variable

Z =

n∑

i=1

XiAi.

Assume that X is two-sided ℓ∞-independent with parameter D. Then, for some absolute
constant C and all t > 0,

P(‖Z − EZ‖ ≥ t) ≤ 2d exp
(
− 1

CD2
min

( t2

σ2
,
t

R

))
,

where σ2 = ‖E∑n
i=1 XiA

2
i ‖ and R = maxi≤n ‖Ai‖.

In the special case, when the matrices A1, . . . , An are nonnegative definite, the following,
simplified bound may be sometimes sufficient. We will use it in particular to obtain bounds
concerning sampling submatrices of a deterministic matrix (see Section 3.3).

Corollary 3.6. Under the assumptions of Theorem 3.1 or Corollary 3.5 on the random
vector X, for any nonnegative definite A1, . . . , An, the random variable Z =

∑n
i=1 XiAi

satisfies for all t > 0,

P(‖Z‖ ≥ ‖EZ‖+ t) ≤ 2d exp
(
− 1

CD2
min

( t2

‖EZ‖R,
t

R

))
,

where C is an absolute constant and R = maxi≤n ‖Ai‖.
Remark 3.7. Let us end this section with a brief comparison of our estimates with the
inequalities by Kaufman, Kyng and Song [27], which were a direct source of inspiration for
us. They considered nonnegative definite matrices Ai, with ‖Ai‖ ≤ 1 and proved that for
δ ∈ [0, 1]

P(‖Z‖ ≥ (1 + δ)‖EZ‖) ≤ d exp
(
− δ2‖EZ‖

CD2

)

P(µmin(Z) ≤ (1− δ)µmin(EZ)) ≤ d exp
(
− δ2µmin(EZ)

CD2

)
,

where µmin(A) is the smallest eigenvalue of the matrix A ∈ Md×d
sym.
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It is easy to see that their upper bound follows from Corollary 3.6 (up to the value of the
constant C). One should stress that this corollary could be also obtained from the proof
in [27]. On the other hand, the general inequality (3.1) of Theorem 3.1 and Corollary 3.5
requires a modification of the approach from [27] and leads in general to stronger estimates.
While the strength of both inequalities in the positive definite case considered in the CS
applications discussed in [27] is comparable, in general the parameter σ2 involving matrices
A2

i may be much smaller than ‖EZ‖, leading to stronger upper bounds.
As for the lower bound on the smallest eigenvalue value in the nonnegative definite case,

inequality (3.1) would yield

P(µmin(Z) ≤ (1− δ)µmin(EZ))

≤ 2d exp
(
− 1

CD2
min

(δ2µmin(EZ)2

σ2
, δµmin(EZ)

))
,

which is not directly comparable with the lower bound of Kaufman, Kyng and Solda. One
can easily construct examples in which µmin(EZ) is much larger than σ2 (in which case
our bound is better) and in which µmin(EZ) is much smaller than σ2 (then, the bound by
Kaufman, Kyng and Solda outperforms ours).

Let us mention that the main inequality on the Laplace transform used in our proofs,
i.e., formula (4.11) is (up to the value of constants) a strengthening of the corresponding
estimate in [27, Lemma 5.2], so it also allows to obtain the lower bound from [27].

3.2. Concentration for Lipschitz functions of random vectors withthe SCP. In this
section we will present concentration results for more general matrix-valued functions under
an additional assumption that the random vector X has the SCP. Recall the notation ⊕
for the coordinate-wise mod 2 addition of binary vectors and that e1, . . . , en is the standard
basis in Rn.

Theorem 3.8. Assume that X is a k-homogeneous {0, 1}n-valued random vector, satisfying
the SCP. Let f : {0, 1}n → Md×d

sym, such that for some nonnegative definite matrices Ai ∈
Md×d

sym, and all i ∈ [n],

(f(x)− f(x⊕ ei))
2 � A2

i .(3.2)

Then for every t ≥ 0,

P(‖f(X)− Ef(X)‖ ≥ t) ≤ 2d exp
(
− 1

C
min

( t2

σ2
,
t

R

))
,

where σ2 = ‖E∑n
i=1 XiA

2
i ‖ and R = maxi≤n ‖Ai‖.

Remark 3.9. The above theorem improves [1, Theorem 2.8]. First, it allows to replace
the Strong Rayleigh Property assumed there, by the weaker notion of Stochastic Covering
Property. Second, it eliminates spurious log(ek) factors in the estimate.

Remark 3.10. Clearly, Theorem 3.8 covers in particular the class of the form f(x) =∑n
i=1 xiCi, considered in the previous section (with Ai =

√
C2

i ). Another example of a
function to which one can apply the above theorem is

f(x) =

n−1∑

i=1

Cixixi+1.

In this case, it is not difficult to see (e.g., using Lemma 4.1 below), that one can take

A1 =
√
C2

i , Ai =
√
2(C2

i + C2
i+1) for i = 2, . . . , n− 1 and An =

√
C2

n.

In fact, for measures with the SRP, we can obtain the conclusion of the above theorem
without assuming homogeneity. Indeed, in [11, Theorem 4.2] it is shown that if an {0, 1}n-
valued random vector X has the SRP, then its law is a projected homogeneous Rayleigh
measure, i.e., X can be embedded as the first n coordinates of some {0, 1}m-valued homoge-
neous random vector with the Rayleigh Property. Moreover, by [37, Proposition 2.1], every
projected homogeneous Rayleigh measure (so in particular every homogeneous Rayleigh
measure) satisfies the SCP. Therefore, the above theorem yields the following corollary.

Corollary 3.11. The conclusion of Theorem 3.8 holds if X is a (not necessarily homoge-
neous) {0, 1}n-valued random vector satisfying the SRP.
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Remark 3.12. The above corollary applied in dimension one generalizes (up to constants)
[37, Theorem 3.2] by Pemantle and Peres, which states that for X with the SRP and a
real-valued function f : {0, 1}n → R, 1-Lipschitz with respect to the Hamming distance, and
t > 0,

P(|f(X)− Ef(X)| ≥ t) ≤ 5 exp
(
− t2

16(2EN + t)

)
,

where N =
∑n

i=1 Xi.

In [27] Kaufman, Kyng and Solda ask whether under some weak dependence assumptions
it is possible to obtain an inequality of the type

|f(X)− Ef(X)| ≤ C
√
Ef(X) log(1/δ)(3.3)

with probability at least 1−δ for all nonnegative functions which are 1-Lipschitz with respect
to the Hamming distance.

We would like to argue here that in general such an inequality cannot hold for all δ ∈ (0, 1)
with universal C. This is witnessed by the independent case, when Xi are i.i.d. with
P(Xi = 1) = 1/n. Indeed, in this case for f(x) = x1 + . . . + xn, the random variable
f(X) converges weakly to the Poisson distribution with parameter 1, which does not have a
subgaussian tail. More precisely, Ef(X) = 1, and for t ∈ N, some constant K > 0 arbitrary
c > 0 and n, t large, we get

P(|f(X)− Ef(X)| ≥ t) ≤ P(f(X) ≥ 1 + t) ≥ 1

2(1 + t)!
e−1 ≥ e−Kt log t ≫ e−ct2 ,

so taking t =
√
C log(1/δ) we can see that for small δ, (3.3) does not hold. Still, in this

example, the subgaussian bound holds for large values of δ (small values of t). Theorem 3.8
provides a subgaussian bound for general functions and small t, but with the expectation of
f(X) replaced by σ2 ≤ EN .

3.3. A decoupling inequality with application to random submatrices. In this sec-
tion we first discuss a general decoupling inequality for a class of quadratic forms in nega-
tively associated binary variables, which goes beyond the matrix setting and is formulated
in terms of arbitrary Banach spaces. Next, we go back to random matrices and consider the
problem of bounding from above the norm of a random submatrix of a deterministic matrix
selected with a sampling scheme with the Strong Rayleigh Property.

Theorem 3.13. Assume that X = (X1, . . . , Xn) is a k-homogeneous, {0, 1}n-valued random
vector with negatively associated coordinates. Let (E, ‖ · ‖) be a Banach space and assume
that (cij)1≤i,j≤n is a matrix with coefficients in E, such that cii = 0 for all i ∈ [n]. Moreover,
assume that the function f : {0, 1}n × {0, 1}n → R, given by

f(x, y) =
∥∥∥

n∑

i,j=1

cijxiyj

∥∥∥

is coordinate-wise non-decreasing. There exists a universal constant C, such that for all
t > 0,

P
(∥∥∥

n∑

i,j=1

cijXiXj

∥∥∥ ≥ t
)
≤ CP

(∥∥∥
n∑

i,j=1

cijXiYj

∥∥∥ ≥ t/C
)
,

where Y is an independent copy of X.

The examples of functions f for which the monotonicity property holds are for instance
operator norms of the form

∥∥∥
∑

1≤i6=j≤n

aijeie
T
j xiyj

∥∥∥
E1→E2

,

where Ei = (Rn, ‖ · ‖i), i = 1, 2, are Banach spaces for which the standard basis (ei)i∈[n] is
unconditional (for instance the classical ℓnp -spaces). Other examples include quadratic forms
in nonnegative definite random matrices cij with ‖ · ‖ = ‖ · ‖ℓ2→ℓ2 or Rademacher averages,
i.e., functions of the form

f(x, y) = Eε,ε′

∥∥∥
n∑

i,j=1

cijxiyjεiε
′
j

∥∥∥,
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where ε, ε′ are independent Rademacher sequences (the monotonicity for binary x, y fol-
lows from Jensen’s inequality, in fact the monotonicity in positive x, y also holds by the
contraction principle for Rademacher averages, see, e.g., [29, Theorem 4.4]). Here cij ’s are
coefficients from an arbitrary Banach space.

As we have already mentioned, by [11, Theorem 4.2], every measure with the SRP is a
projected homogeneous Rayleigh measure. On the other hand, by [11, Theorem 4.10], pro-
jected homogeneous Rayleigh measures are negatively associated. Thus, the above theorem
gives the following corollary.

Corollary 3.14. The conclusion of Theorem 3.13 holds if X is a (not necessarily homoge-
neous) {0, 1}n-valued random vector satisfying the SRP.

We remark that we do not know if one can drop the homogeneity assumption in the case
of arbitrary negatively associated random variables.

As an application of the above corollary and Bernstein type inequalities for ℓ∞-dependent
measures from Section 3.1, we obtain the following theorem concerning the operator norm
of a matrix restricted to a random set of rows and columns, given by the support of a
random vector with the SRP. Before we formulate it, let us recall the notation ‖A‖ℓp→ℓq

for the operator norm of an m × n matrix seen as an operator from ℓnp to ℓmq . Observe
that ‖A‖ℓ1→ℓ2 is the maximum Euclidean length of a column of A, ‖A‖ℓ2→ℓ∞ the maximum
Euclidean length of a row, while ‖A‖ℓ1→ℓ∞ is just the maximum (in absolute value) entry
of A.

Theorem 3.15. Let X = (X1, . . . , Xd) be a {0, 1}d-valued random vector satisfying the
SRP. Cosider a deterministic matrix H = (hij)

d
i,j=1 with zero diagonal and a random di-

agonal matrix ΛX = Diag(X1, . . . , Xd). Let HX = ΛXHΛX and let P = Diag(P(X1 =

1), . . . ,P(Xd = 1)). There exist universal constants C, c > 0, such that for t > C‖
√
PH

√
P‖,

P(‖HX‖ ≥ t) ≤ 2d exp
(
− cmin

( t2

‖
√
PH‖2

ℓ1→ℓ2

,
t2

‖H
√
P‖2

ℓ2→ℓ∞

,
t

‖H‖ℓ1→ℓ∞

))
.(3.4)

Results concerning random restrictions of deterministic matrices for a subset of rows and
columns of fixed cardinality selected by the uniform sampling without replacement or a
subset obtained by i.i.d. binary variables, appeared in the literature in the context of local
theory of Banach spaces and the Kadison–Singer problem (see the famous papers [12, 13]
by Bourgain and Tzafriri as well as the article [45] by Tropp, which simplifies some of the
proofs), signal processing and statistics [44, 16, 17, 39]. Theorems resembling Theorem 3.15
in the case of uniform sampling without replacement appeared in the work by Tropp [45, 44]
(in the language of moments) and in [17] by Chrétien and Darses.

In the recent article [39], Ruetz and Schnass consider special vectors with the SRP prop-
erty, i.e., vectors obtained by conditioning independent Bernoulli variables to have a fixed
sum k. More precisely, if Y1, . . . , Yn are independent random variables with P(Yi = 1) =
1− P(Yi = 0) = πi, where

∑n
i=1 πi = k, then the vector they consider has the law

P(X ∈ ·) = P
(
Y ∈ ·

∣∣∣
n∑

i=1

Yi = k
)
.

It is well known that X satisfies the SRP. For this class of random variables Ruetz and
Schnass obtain the estimate (3.4) (with explicit constants C, c) and with the matrix P
replaced by Π = Diag(π1, . . . , πn). Such a sampling scheme is known in the literature as
rejective sampling or conditional Poisson sampling (see, e.g., [43, 9]).

The motivation for considering such random restrictions comes from signal processing and
the analysis of statistical models in which the signal is represented as a linear combination of
randomly chosen atoms from some dictionary. The authors of [39] argue that when modelling
data appearing in applications, choosing a model with non-equal probabilities of inclusion
of particular atoms may give better results than the classical approach when the atoms
are chosen via uniform sampling with replacement. We refer to their work for examples
of applications of their estimates for random restrictions to various sparse approximation
algorithms or construction of sensing dictionaries. In principle one can perform similar
analysis for general measures satisfying (3.4), this problem is however beyond the scope of
this article.
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Our Theorem 3.15 generalizes the estimate by Ruetz and Schnass to arbitrary (not nec-
essarily homogeneous) vectors with the SRP. Moreover, even for the conditioned Bernoulli
case, replacing the matrix Π by P may be in some cases beneficial. In general, pi ≤ 2πi for
all i (see [39, Lemma 3.5]) and it is not difficult to construct examples in which most of the
entries of P are much smaller than the corresponding entries of Π. One could also argue
that P , defined in terms of inclusion probabilities of atoms is a more natural parameter than
Π.

On the other hand, the result in [39] gives explicit constants, while ours is expressed in
terms of absolute constants. We remark that by tracking down the constants in the proofs
of all our inequalities, one could obtain explicit expressions. However, since the constants
obtained this way would still be rather large, tracking their value would obscure the main
arguments, and we do not pursue specific applications of Theorem 3.15, we prefer not to
specify them.

4. Proofs

4.1. Preliminary lemmas. Let us start with two standard linear-algebraic lemmas. Ele-
mentary proofs of both of them can be found in [27].

Lemma 4.1. For any A,B ∈ Md×d
sym,

−A2 −B2 � AB +BA � A2 +B2

and
(A+B)2 � 2A2 + 2B2.

Lemma 4.2. If A,B ∈ Md×d
sym, A � I and 0 � B, then

exp(A−B) � I+A−B + 2A2 + 2B2.

Let us also recall the classical Golden–Thompson inequality [23, 42].

Theorem 4.3. For any A,B ∈ Md×d
sym,

Tr eA+B ≤ Tr eAeB.

The next lemma is a part of a more general observation made in [27, Lemma 4.5]. After
rearranging the terms and an application of the Bayes rule, it is a quick consequence of the
definition of ℓ∞-independence. For notational simplicity in the lemma below and subsequent
part of the article we will often assign arbitrary value to P(A|B), when P(B) = 0, if such
expressions in our formulas are multiplied by P(B).

Lemma 4.4. Let X be a {0, 1}n-valued, k-homogeneous random vector. If X is ℓ∞-
independent with parameter D, then for any i ∈ [n],

n∑

v=1

P(Xv = 1)|P(Xi = 1|Xv = 1)− P(Xi = 1)| ≤ DP(Xi = 1).

We will also need the following lemma which has already been announced in Remark 2.2

Lemma 4.5. Let X be a k-homogeneous {0, 1}n-valued random vector, whose law is not a
Dirac mass. If X is one-sided ℓ∞-independent with constant D, then D ≥ 1.

Proof. Let Λ ⊂ [n] be a maximal set such that the measure P(X ∈ ·|∀ℓ∈ΛXℓ = 1) is well
defined and is not a Dirac mass. Note that it may happen that Λ is empty, moreover
by homogeneity s := |Λ| < k. Let I1, I2, . . . , Im ⊆ [n] \ Λ be all pairwise distinct sets
of cardinality k − s > 0, such that P(∀ℓ∈IrXℓ = 1|∀ℓ∈ΛXℓ = 1) > 0. By the definition
of Λ, m ≥ 2. Moreover, the sets Ir , r ∈ [m] are pairwise distinct since if there exists
j ∈ Ir1 ∩ Ir2 for r1 6= r2, then P(X ∈ ·|∀ℓ∈Λ∪{j}Xℓ = 1) is not a Dirac mass, contradicting
the maximality of Λ. By homogeneity, the events {∀ℓ∈Ir∪ΛXℓ = 1}, r ∈ [m], are disjoint
and

∑m
r=1 P(∀ℓ∈IrXℓ = 1|∀ℓ∈ΛXℓ = 1) = 1. Denoting pr := P(∀ℓ∈IrXℓ = 1|∀ℓ∈ΛXℓ = 1),

we thus get pr ≤ 1/2 for some r ∈ [m]. We may without loss of generality assume that
p1 ≤ 1/2.

Fix j1 ∈ I1, . . . , jm ∈ Im and let i = j1. We have P(Xjr = 1|Xi = 1, ∀ℓ∈ΛXℓ = 1) =
1{r=1}. Moreover P(Xjr = 1|∀ℓ∈ΛXℓ = 1) = pr. Thus

n∑

j=1

|IΛ
µX

(i, j)| ≥
m∑

r=1

|P(Xjr = 1|Xi = 1, ∀ℓ∈ΛXℓ = 1)− P(Xjr = 1|∀ℓ∈ΛXℓ = 1)|

= |1− p1|+ |0− p2|+ . . .+ |0− pm| = 2(1− p1) ≥ 1,
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where in the third equality we used that
∑m

r=1 pr = 1 and in the last inequality that p1 ≤ 1/2.

This shows that ‖IΛ
µX

‖ℓ∞→ℓ∞ ≥ 1 and ends the proof of the lemma. �

4.2. Proof of results from Section 3.1. The proof will rely on the following lemma

Lemma 4.6. In the setting of Theorem 3.1, assume that R = 1. There exists an absolute
constant C such that for K = CD2 and every λ ∈ [− 1

4K , 1
4K ],

ETr exp(λ(Z − EZ)) ≤ Tr exp
(
λ2KE

n∑

i=1

XiA
2
i

)
.

In our proofs we will use a sampling construction from [27]. We remark that it is equivalent
to sampling non-zero coordinates of X in a uniformly random order, and in this version in
the case of SCP measures it was used already by Pemantle and Peres [37], and later, e.g.,
in [28, 1]. In [27] it is presented in a slightly different language as a two stage sampling
procedure for the law of X , allowing to decompose µX into a mixture of conditional (k− 1)-
homogeneous distributions and giving rise to an induction approach. We prefer to present
this idea in terms of conditional expectations, starting with the random vector X as this
form will be more convenient for us when dealing with SCP measures and more general
functions than linear combinations of matrices.

Let V be a random element of [n], which conditionally on X is sampled uniformly from
the set supp(X) = {i ∈ [n] : Xi = 1}. By k-homogeneity it follows that for every v ∈ [n],

P(V = v) =
P(Xv = 1)

k
.(4.1)

It is also easy to see that

P(X ∈ ·|V = v) = P(X ∈ ·|Xv = 1).(4.2)

In particular, it follows that if X is ℓ∞-independent with parameter D, then conditionally
on V , the random vector X{V }c with values in {0, 1}{V }c

is (k − 1)-homogeneous and also
ℓ∞-independent with parameter D.

In the proof of Lemma 4.6 we will need the following two random variables

ZV = E
( n∑

i=1

XiAi|V
)
− E

n∑

i=1

XiAi,(4.3)

ẐV = E
( n∑

i=1

XiA
2
i |V

)
− E

n∑

i=1

XiA
2
i .(4.4)

Lemma 4.7. Under the assumptions of Lemma 4.6,

‖ZV ‖, ‖ẐV ‖ ≤ D,(4.5)

EZ2
V � D2EA2

V and EẐ2
V � D2EA4

V .(4.6)

Proof. We will first prove (4.5). It is enough to consider the inequality for ZV . The estimate

on ẐV follows from it by substituting A2
i in place of Ai (note that ‖A2

i ‖ ≤ 1).
Using the assumption that ‖Ai‖ ≤ 1 and (4.2), we obtain that on the event of the form

{V = v} and positive probability,

‖ZV ‖ =
∥∥∥

n∑

i=1

Ai

(
P(Xi = 1|Xv = 1)− P(Xi = 1)

)∥∥∥

≤
n∑

i=1

‖Ai‖|P(Xi = 1|Xv = 1)− P(Xi = 1))|

≤
n∑

i=1

|P(Xi = 1|Xv = 1)− P(Xi = 1)| ≤ D

by ℓ∞-independence.
We will now proceed with the proof of (4.6). Again, it is enough to prove the first

inequality, the second one follows by substituting A2
i for Ai.
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On the event {V = v}, we have denoting p(i) = P(Xi = 1), pv(i) = P(Xi = 1|Xv = 1),

Z2
V =

( n∑

i=1

Ai(pv(i)− p(i)
)2

=
n∑

i=1

(pv(i)− p(i))2A2
i +

∑

1≤i<j≤n

(pv(i)− p(i))(pv(j)− p(j))(AiAj +AjAi)

�
n∑

i=1

(pv(i)− p(i))2A2
i +

∑

1≤i<j≤n

|pv(i)− p(i)||pv(i)− p(i)|(A2
i +A2

j )

=

n∑

i=1

|pv(i)− p(i)|A2
i

n∑

j=1

|pv(i)− p(i)| � D

n∑

i=1

|pv(i)− p(i)|A2
i ,

where in the first inequality we used Lemma 4.1 and in the last one the ℓ∞-independence.
Thus, by (4.1) and Lemma 4.4,

EZ2
V � D

n∑

v=1

P(V = v)

n∑

i=1

|pv(i)− p(i)|A2
i

= D
n∑

v=1

p(v)

k

n∑

i=1

|pv(i)− p(i)|A2
i

= D

n∑

i=1

A2
i

n∑

v=1

p(v)

k
|pv(i)− p(i)|

� D

n∑

i=1

A2
iD

p(i)

k
= D2

n∑

i=1

A2
iP(V = i) = D2EA2

V ,

which proves (4.6).
�

Lemma 4.8. Let M1,M2,M3 be Md×d
sym-valued random variables, such that EM1 = EM2 =

0, 0 � M3 � I , and for some D ≥ 1,

‖M1‖, ‖M2‖ ≤ D,(4.7)

EM2
1 � D2EM3 and EM2

2 � D2EM3.(4.8)

There exists a universal constant C, such that for any K ≥ CD2 and any λ ∈ (− 1
4K , 1

4K ),
∥∥∥E exp

(
λM1 +Kλ2M2 −Kλ2M3

)∥∥∥ ≤ 1.(4.9)

Proof. By (4.7) and the assumption K|λ| ≤ 1/4, we get

‖λM1 +Kλ2M2‖ ≤ (|λ|+Kλ2)D ≤ 5

16

D

K
=

5

16CD
≤ 1

if C ≥ 5/16.
Thus, using Lemma 4.2 with A = λM1 +Kλ2M2, B = Kλ2M3, we obtain

E exp
(
λM1 +Kλ2M2 −Kλ2M3

)

� I+ λEM1 +Kλ2EM2 −Kλ2EM3 + 2E(λM1 +Kλ2M2)
2 + 2K2λ4EM2

3

= I−Kλ2EM3 + 2E(λM1 +Kλ2M2)
2 + 2K2λ4EM2

3

� I−Kλ2EM3 + 4λ2EM2
1 + 4K2λ4EM2

2 + 2K2λ4EM2
3

� I−Kλ2EM3 + 4λ2D2EM3 + 4D2K2λ4EM3 + 2K2λ4EM2
3

where in the equality we used the assumption EM1 = EM2 = 0, in the second inequality
Lemma 4.1 and in the last one the assumption (4.8). Taking into account that 0 � M3 � I,
we have

−Kλ2EM3 + 4λ2D2EM3 + 4D2K2λ4EM3 + 2K2λ4EM2
3

� (−Kλ2 + 4λ2D2 + 4D2K2λ4 + 2K2λ4)EM3.

We have |λ|K ≤ 1/4, so

−Kλ2 + 4λ2D2 + 4D2K2λ4 + 2K2λ4 ≤ −Kλ2 + 4λ2D2 +
1

4
D2λ2 +

1

8
λ2 ≤ 0
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for K ≥ 35D2/8 (recall that D ≥ 1).

We thus get E exp
(
λM1 +Kλ2M2 −Kλ2M3

)
� I, which ends the proof since the left-

hand side is nonnegative definite. We remark that the value of C obtained from the proof
is 35/8. �

Corollary 4.9. Under the assumptions of Lemma 4.6 there exists an absolute constant C
such that for any K ≥ CD2 and every λ ∈ [− 1

4K , 1
4K ,

∥∥∥E exp
(
λZV +Kλ2ẐV −Kλ2A2

V

)∥∥∥ ≤ 1.(4.10)

Proof. We may assume that X is not deterministic, since otherwise ZV = ẐV = 0 and the
lemma is trivial. Thus D ≥ 1 (see Lemma 4.5).

Now it is enough to apply Lemma 4.8 with M1 = ZV , M2 = ẐV and M3 = A2
V . The

assumptions of Lemma 4.8 follow from Lemma 4.7 and the observation that ‖Ai‖ ≤ 1 for
all i implies that 0 � A4

V � A2
V = M3 � I. �

Proof of Lemma 4.6. We will prove by induction on k that for every deterministic matrix
H ,

ETr exp(H + λZ) ≤ Tr exp
(
H + λEZ +Kλ2E

n∑

i=1

XiA
2
i

)
.(4.11)

For k = 0 the statement is trivial as both sides of (4.11) equal Tr eH . Let us thus assume that
k ≥ 1 and the statement holds for (k−1). Let V be the random element of [n] defined above.
Conditionally on V , X{V }c is ℓ∞-independent with parameter D and (k− 1)-homogeneous.
Thus, using the induction assumption with the matrix H ′ = H + λAV , measurable with
respect to σ(V ), we may write

ETr exp(H + λZ) = EE
(
Tr exp

(
H + λAV +

∑

i6=V

XiAi

)
|V

)

≤ ETr exp
(
H + λAV + λE(

∑

i6=V

XiAi|V ) +Kλ2E(
∑

i6=V

XiA
2
i |V )

)

= ETr exp
(
H + λE(

n∑

i=1

XiAi|V ) +Kλ2E(
n∑

i=1

XiA
2
i |V )−Kλ2A2

V

)

= ETr exp
(
H + λEZ +Kλ2E

n∑

i=1

XiA
2
i + λZV +Kλ2ẐV −Kλ2A2

V

)
,

where in the second equality we used the fact that by construction XV = 1.
Using the Golden-Thompson inequality, the estimate TrAB ≤ TrA‖B‖ valid for nonneg-

ative definite A, and Lemma 4.8, we further estimate

ETr exp(H + λZ)

≤ ETr exp
(
H + λEZ +Kλ2E

n∑

i=1

XiA
2
i

)
exp

(
λZV +Kλ2ẐV −Kλ2AV

)

= Tr exp
(
H + λEZ +Kλ2E

n∑

i=1

XiA
2
i

)
E exp

(
λZV +Kλ2ẐV −Kλ2AV

)

≤ Tr exp
(
H + λEZ +Kλ2E

n∑

i=1

XiA
2
i

)∥∥∥E exp
(
λZV +Kλ2ẐV −Kλ2A2

V

)∥∥∥

≤ Tr exp
(
H + λEZ +Kλ2E

n∑

i=1

XiA
2
i

)
,

which ends the proof of the induction step. The proof of the lemma is completed by substi-
tuting H = −λEZ. �

Proof of Theorem 3.1. Having Lemma 4.6, we can proceed in the usual way, using exponen-
tial Chebyshev’s inequality. By homogeneity we may assume that R = 1.
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We have for λ > 0,

P(‖Z − EZ‖ ≥ t)

≤ P
(
Tr exp(λ(Z − EZ)) ≥ exp(λt)

)
+ P

(
Tr exp(−λ(Z − EZ)) ≥ exp(λt)

)

≤ e−λtETr exp(λ(Z − EZ)) + e−λtETr exp(−λ(Z − EZ)).

Thus, by Lemma 4.4, if 0 < λ ≤ 1/(4K), then

P(‖Z − EZ‖ ≥ t) ≤ 2e−λt Tr exp(λ2KE

n∑

i=1

XiA
2
i ) ≤ 2d exp(Kσ2λ2 − λt).

If t ≤ σ2/2, we substitute λ = t
2Kσ2 ≤ 1

4K and obtain

P(‖Z − EZ‖ ≥ t) ≤ 2d exp(−t2/(4Kσ2)).

If t > σ2/2, then we substitute λ = 1/(4K) and get

P(‖Z − EZ‖ ≥ t) ≤ 2d exp(σ2/(16K)− t/(4K)) ≤ 2d exp(−t/(8K)).

This ends the proof. �

Proof of Theorem 3.5. Consider the homogenization of X , i.e., a {0, 1}2n-valued random
vector Y = (X1, . . . , Xn, 1 − X1, . . . , 1 − Xn). It is clearly n-homogeneous. Moreover, in
the proof of [27, Corollary 1.4.], Kaufman, Kyng and Solda demonstrate that if X is two-
sided ℓ∞-independent with constant D, then Y is one-sided ℓ∞-independent with constant
2D. The corollary now follows immediately by Theorem 3.1 applied to Y instead of X and

matrices Ãi = Ai for i ≤ n, Ãi = 0 for i = n+ 1, . . . , 2n. �

4.3. Proofs of results from Section 3.2. The proof will rely on a combination of the
ideas leading to Theorem 3.1 with additional arguments, similar to those in the proof of [1,
Theorem 2.8], exploiting the SCP. Recall that by [27, Proposition 3.2], every homogeneous
SCP measure is two-sided ℓ∞-independent with D = 2.

We will prove the following fact which is a counterpart of Lemma 4.6.

Lemma 4.10. In the setting of Theorem 3.8, assume that R = 1. Then there exists an
absolute constant C, such that for any λ ∈ [−1

4C , 1
4C ],

ETr exp
(
λ(f(X)− Ef(X))

)
≤ Tr exp

(
λ2CE

n∑

i=1

XiA
2
i

)
.

Similarly as in Section 4.2 let us introduce the random variables

ZV = E(f(X)|V )− Ef(X),(4.12)

ẐV = E
( n∑

i=1

XiA
2
i |V

)
− E

n∑

i=1

XiA
2
i .(4.13)

where V again is an [n]-valued random variable, which conditionally on X is uniformly
distributed on {i ∈ [n] : Xi = 1}.

We then have the following lemma.

Lemma 4.11. Under the assumptions of Lemma 4.10, there exists a universal constant C,
such that for all λ ∈ [− 1

4C , 1
4C ],

∥∥∥E exp
(
λZV + Cλ2ẐV − Cλ2A2

V

)∥∥∥ ≤ 1.(4.14)

Proof. Observe that by Lemma 4.7, we have

‖ẐV ‖ ≤ 2 and EẐ2
V � 4EA4

V � 4EA2
V .(4.15)

We will prove that also

‖ZV ‖ ≤ 2, and EZ2
V � 4EA2

V .(4.16)

By the SCP assumption, there exists a coupling (Qv, Y v) of P(X ∈ ·|Xv = 0) and
P(X ∈ ·|Xv = 1) such that (Qv

i )i∈[v]c ⊲ (Y
v
i )i∈[v]c . It follows from k-homogeneity that there

exists a random variable Uv with values in [v]c, such that Qv = Y v − ev + eUv
.

We have

Ef(X) = E(f(X)|Xv = 1)(1 − P(Xv = 0)) + E(f(X)|Xv = 0)P(Xv = 0).
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Moreover, by (4.2), on the event {V = v} we have P(X ∈ ·|V ) = P(X ∈ ·|Xv = 1) and so
E(f(X)|V = v) = E(f(X)|Xv = 1). Combining this with the inequality above, we get

(4.17) E(f(X)|V = v)− Ef(X) = P(Xv = 0)
(
E(f(X)|Xv = 1)− E(f(X)|Xv = 0)

)

= P(Xv = 0)
(
E(f(Y v)− f(Qv))

)
.

Denote av = EA2
Uv

. As a consequence of the above equality, using twice the operator

convexity of x 7→ x2 (see, e.g., [10, Example V.1.3]) and the assumption (3.2) , we get that
on {V = v},

(4.18) Z2
V = (E(f(X)|V = v)− Ef(X))2

= P(Xv = 0)2
((

E(f(Y v)− f(Y v − ev))
)
+
(
E(f(Y v − ev)− f(Y v − ev + eUv

))
))2

� 2P(Xv = 0)2
[(

E(f(Y v)− f(Y v − ev))
)2

+
(
E(f(Y v − ev) + f(Y v − ev + eUv

))
)2]

� 2P(Xv = 0)2
[
E
(
f(Y v)− f(Y v − ev)

)2
+ E

(
f(Y v − ev) + f(Y v − ev + eUv

)
)2
]

� 2P(Xv = 0)2(A2
v + EA2

Uv
) = 2P(Xv = 0)2(A2

v + av)

� 2P(Xv = 0)(A2
v + av).

Applying (4.17) to the function g : {0, 1}n → Md×d
sym given by g(x) =

∑n
i=1 xiA

2
i instead

of f , we get

E
( n∑

i=1

XiA
2
i |V = v

)
− E

( n∑

i=1

XiA
2
i

)
= P(Xv = 0)E

n∑

i=1

A2
i (Y

v
i −Qv

i )

= P(Xv = 0)E(A2
v −A2

Uv

)
= P(Xv = 0)

(
A2

v − av
)
.

Integrating this equality with respect to the distribution of V we obtain

n∑

v=1

P(V = v)P(Xv = 0)A2
v =

n∑

v=1

P(V = v)P(Xv = 0)av.

Going back to (4.18), we get,

EZ2
V �

n∑

v=1

2P(V = v)P(Xv = 0)(A2
v + av)

= 4E

n∑

v=1

P(V = v)P(Xv = 0)A2
v � 4EA2

V .

This implies the second estimate of (4.16). The first one follows from (4.18) and the
observation that ‖Av‖, ‖av‖ ≤ 1.

Having (4.18) and (4.16), to obtain (4.14) it is enough to observe that EZV = EẐV = 0

and apply Lemma 4.8 with D = 2 and M1 = ZV , M2 = ẐV , M3 = A2
V . �

We are now ready for

Proof of Lemma 4.10. The argument is very similar to that in the proof of Lemma 4.6. It
requires only notational changes and an application of Lemma 4.11. We present the details
for completeness.

We will show by induction on k that for every deterministic matrix H ,

ETr exp(H + λf(Z)) ≤ Tr exp
(
H + λEf(Z) + Cλ2E

n∑

i=1

XiA
2
i

)
.(4.19)

For k = 0 the statement is trivial as both sides of (4.19) equal Tr eH+f(0). Let us thus
assume that k ≥ 1 and the statement holds for (k − 1). Let V be the random element of
[n] defined above. Conditionally on {V = v}, X{v}c is a (k− 1)-homogeneous measure with
the SCP and so it is ℓ∞-independent with parameter D = 2 . Thus, using the induction
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assumption, we get

ETr exp(H + λf(X)) = EE
(
Tr exp(H + λf(X)|V

)

≤ ETr exp
(
H + λE(f(X)|V ) + Cλ2E(

∑

i6=V

XiA
2
i |V )

)

= ETr exp
(
H + λEf(X) + λZV + Cλ2E(

n∑

i=1

XiA
2
i |V )− Cλ2A2

V

)

= ETr exp
(
H + λEf(X) + Cλ2E

n∑

i=1

XiA
2
i + λZV + Cλ2ẐV − Cλ2A2

V

)
,

where in the second equality we used the fact that by construction XV = 1.
Using the Golden-Thompson inequality and inequality (4.14) of Lemma 4.11, we further

estimate

ETr exp(H + λf(X))

≤ ETr exp
(
H + λEf(X) + Cλ2E

n∑

i=1

XiA
2
i

)
exp

(
λZV + Cλ2ẐV − Cλ2A2

V

)

= Tr exp
(
H + λEf(X) + Cλ2E

n∑

i=1

XiA
2
i

)
E exp

(
λZV + Cλ2ẐV − Cλ2A2

V

)

≤ Tr exp
(
H + λEf(X) + Cλ2E

n∑

i=1

XiA
2
i

)∥∥∥E exp
(
λZV + Cλ2ẐV − Cλ2A2

V

)∥∥∥

≤ Tr exp
(
H + λEf(X) + Cλ2E

n∑

i=1

XiA
2
i

)
,

which ends the proof of the induction step. The proof of the lemma is completed by substi-
tuting H = −λEZ. �

Proof of Theorem 3.8. The theorem follows from Lemma 4.10 in exactly the same way as
Theorem 3.1 from Lemma 4.6 (one formally replaces Z with f(X) and K with C). �

4.4. Proofs of results from Section 3.3. Let us start with the proof of the decoupling
inequality.

Proof of Theorem 3.13. Consider binary random variables δi, i ∈ [n], such that

P(δi = 1|X) =
1

2
Xi

and δi are conditionally independent given X .
Using the fact that cii = 0, together with conditional independence and the equality

E(δi|X) = 1
2Xi, we have

E
( n∑

i,j=1

cijXiXjδi(1− δj)
∣∣∣X

)
=

n∑

i,j=1

cijXiXjE(δi|X)E(1− δj |X)

=

n∑

i,j=1

1

2
cijX

2
i Xj(1−

1

2
Xj) =

1

4

n∑

i,j=1

cijXiXj ,

where in the last equality we used the fact that Xi’s take only values 0 and 1. Conditionally
on X , the random variable

Z =
∥∥∥

n∑

i,j=1

cijXiXjδi(1− δj)
∥∥∥

is an E-valued tetrahedral polynomial of degree 2 in independent Rademacher variables
εi = 2δi − 1, i ∈ supp(X). Therefore, by [18, Theorem 3.2.5], there exists a universal
constant K, such that

(E(Z2|X))1/2 ≤ KE(Z|X).

It follows by the Paley–Zygmund inequality (see, e.g., [18, Corollary 3.3.2]) that

P
(
Z ≥ 2−1E(Z|X)

∣∣∣X
)
≥ 1

4

(E(Z|X))2

E(Z2|X)
≥ 1

4K2
.
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Since by Jensen’s inequality

E(Z|X) ≥
∥∥∥E(

n∑

i,j=1

cijXiXjδi(1− δj)|X)
∥∥∥ =

1

4

∥∥∥
n∑

i,j=1

cijXiXj

∥∥∥,

we thus get

(4.20) P(Z ≥ t) = EP(Z ≥ t|X) ≥ EP(Z ≥ t|X)1{‖
∑

n
i,j=1 cijXiXj‖≥8t}

≥ EP
(
Z ≥ 2−1E(Z|X)

∣∣∣X
)
1{‖

∑
n
i,j=1 cijXiXj‖≥8t}

≥ 1

4K2
P
(∥∥∥

n∑

i,j=1

cijXiXj

∥∥∥ ≥ 8t
)
.

Let σ(X) be the σ-field generated by X . Consider the random set I = {i ∈ [n] : δi = 1}.
Note that for any non-empty J ⊆ [n], such that P(I = J) > 0, and any event A ∈ σ(X),

P(A|I = J) = P(A|∀i∈JXi = 1).(4.21)

Indeed, it is enough to consider A being atoms of σ(X), i.e., sets of the form

A = {X1 = x1, . . . , Xn = xn}
for some x1, . . . , xn ∈ {0, 1}, exactly k of which are equal to 1. Moreover, since P(δi =
1|Xi = 0) = 0, both sides of (4.21) vanish if for some j ∈ J , xj = 0. Thus, to prove (4.21),
it is enough to show that for every xj ∈ {0, 1}, j ∈ Jc, with k − |J | ones

P(∀j∈JcXj = xj and ∀j∈JXj = 1|I = J) = P(∀j∈JcXj = xj |∀j∈JXj = 1).

Using the definition of conditional probability and rearranging, we obtain that the above
equality is equivalent to

P(∀j∈JcXj = xj and ∀j∈JXj = 1 and I = J)P(∀j∈JXj = 1)

= P(∀j∈JcXj = xj and ∀j∈JXj = 1)P(I = J).

Using homogeneity and the definition of δi, we obtain that the left-hand side above equals

P(∀j∈JcXj = xj and ∀j∈JXj = 1)2−kP(∀j∈JXj = 1)

and so does the right hand side, since similarly

P(I = J) =
∑

K⊇J,|K|=k

P(∀j∈KXj = 1)2−k = P(∀j∈JXj = 1)2−k.

This establishes (4.21).
Now, on the event I = J we have

Z =
∥∥∥

∑

i∈J,j∈Jc

cijXiXj

∥∥∥ =
∥∥∥

∑

i∈J,j∈Jc

cijXj

∥∥∥

and so we can write for t > 0,

(4.22) P(Z ≥ t) =
∑

∅6=J⊆[n]

|J|≤k

P(Z ≥ t|I = J)P(I = J)

=
∑

∅6=J⊆[n]

|J|≤k

P
(∥∥∥

∑

i∈J,j∈Jc

cijXj

∥∥∥ ≥ t
∣∣∣I = J

)
P(I = J)

=
∑

∅6=J⊆[n]

|J|≤k

P
(∥∥∥

∑

i∈J,j∈Jc

cijXj

∥∥∥ ≥ t
∣∣∣∀j∈JXj = 1

)
P(I = J),

where in the last equality we used (4.21) and the fact that the event appearing there belongs
to σ(X).

Observe that the random variables 1{‖
∑

i∈J,j∈Jc cijXj‖≥t} and 1{∀j∈JXj=1} are non-decreasing

functions of XJc and XJ respectively (we use here the assumed monotonicity of the bilinear
form f). Thus, by negative association,

E1{‖
∑

i∈J,j∈Jc cijXj‖≥t}1{∀j∈JXj=1} ≤ E1{‖
∑

i∈J,j∈Jc cijXj‖≥t}E1{∀j∈JXj=1}
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Let now Y be a copy of X , independent of X and δi’s. For any J , such that P(Xj =
1 for all j ∈ J) > 0 (equivalently P(I = J) > 0), we have

P
(∥∥∥

∑

i∈J,j∈Jc

cijXj

∥∥∥ ≥ t
∣∣∣∀j∈JXj = 1

)

=
E1{‖

∑
i∈J,j∈Jc cijXj‖≥t}1{∀j∈JXj=1}

E1{∀j∈JXj=1}

≤ E1{‖
∑

i∈J,j∈Jc cijXj‖≥t} = P
(∥∥∥

∑

i∈J,j∈Jc

cijXj

∥∥∥ ≥ t
)

= P
(∥∥∥

∑

i∈J,j∈Jc

cijYj

∥∥∥ ≥ t
)
≤ P

(∥∥∥
∑

i∈J,1≤j≤n

cijYj

∥∥∥ ≥ t
)
,

where in the last inequality we again used the monotonicity of f . Thus, by (4.22),

P(Z ≥ t) ≤
∑

∅6=J⊆[n]

|J|≤k

P
(∥∥∥

∑

i∈J,1≤j≤n

cijYj

∥∥∥ ≥ t
)
P(I = J)

=
∑

∅6=J⊆[n]

|J|≤k

P
(∥∥∥

∑

i∈J,1≤j≤n

cijYj

∥∥∥ ≥ t and I = J
)

=
∑

∅6=J⊆[n]

|J|≤k

P
(∥∥∥

∑

i∈J,1≤j≤n

cijXiYj

∥∥∥ ≥ t and I = J
)

≤
∑

∅6=J⊆[n]

|J|≤k

P
(∥∥∥

n∑

i,j=1

cijXiYj

∥∥∥ ≥ t and I = J
)
≤ P

(∥∥∥
n∑

i,j=1

cijXiYj

∥∥∥ ≥ t
)
,

where in the first equality we used the independence of Y and δ, in the second one the fact
that if I = J , then Xi = 1 for i ∈ J , finally in the second inequality we used once more the
monotonicity of f .

Going back to (4.20), we obtain

P
(∥∥∥

n∑

i,j=1

cijXiXj

∥∥∥ ≥ 8t
)
≤ 4K2P

(∥∥∥
n∑

i,j=1

cijXiYj

∥∥∥ ≥ t
)
,

which ends the proof. �

We will now prove Theorem 3.15

Proof of Theorem 3.15. The norm ‖HX‖ can be written as

‖HX‖ =
∥∥∥

∑

1≤i6=j≤d

eie
T
j hijXiXj

∥∥∥

and it is easy to see that the function

{0, 1}d × {0, 1}d ∋ (x, y) 7→
∥∥∥

∑

1≤i6=j≤d

eie
T
j hijxiyj

∥∥∥

is coordinate-wise non-decreasing. Therefore, by Corollary 3.14, for Y – an independent
copy of X , we have

P(‖HX‖ ≥ t) ≤ CP(‖ΛXHΛY ‖ ≥ t/C),(4.23)

where ΛY = Diag(Y1, . . . , Yd).
We may and will assume that X,Y are defined as coordinates on a product probability

space. To simplify the notation for conditioning, we will from now on denote by PX ,PY

the probability with respect to the X , resp. Y coordinate on this space, with the other
coordinate fixed, i.e., the conditional probability given Y , resp. X . An analogous standard
convention will be used for EX ,EY .

Let us first bound the conditional probability PY (‖ΛXHΛY ‖ ≥ t). Denote the columns
of ΛXH by Wi. Note that they are random vectors measurable with respect to X and thus
independent of Y . Using the fact that ΛY Λ

T
Y = Λ2

Y = ΛY , we get

Z := ΛXHΛY (ΛXHΛY )
T =

d∑

i=1

YiWiW
T
i .
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Recall that for any square matrix A, ‖A‖2 = ‖AAT ‖ = ‖ATA‖. Thus, applying Corollary
3.6 to Y , conditionally on X , we obtain

(4.24) PY (‖ΛXHΛY ‖ ≥
√
‖EY Z‖+ t2) = PY (‖Z‖ ≥ ‖EY Z‖+ t2)

≤ 2d exp
(
− 1

C
min

( t4

‖EY Z‖maxi≤d |Wi|2
,

t2

maxi≤d |Wi|2
))

.

Now, we observe that

EY Z =

d∑

i=1

piWiW
T
i = ΛXH

√
P (ΛXH

√
P )T .

Therefore,

‖EY Z‖ = ‖(ΛXH
√
P )TΛXH

√
P‖ =

∥∥∥
d∑

i=1

XiUiU
T
i

∥∥∥,

where Ui is the i-the column of
√
PHT . Moreover, we have

∥∥∥E
d∑

i=1

XiUiU
T
i

∥∥∥ = ‖(
√
PHT

√
P )(

√
PH

√
P )‖ = ‖

√
PH

√
P‖2

Applying again Corollary 3.6, we get

(4.25) P
(
‖EY Z‖ ≥ ‖

√
PH

√
P‖2 + t2

)

≤ 2d exp
(
− 1

C
min

( t4

‖
√
PH

√
P‖2 maxi≤d |Ui|2

,
t2

maxi≤d |Ui|2
))

= 2d exp
(
− 1

C
min

( t4

‖
√
PH

√
P‖2‖H

√
P‖2

ℓ2→ℓ∞

,
t2

‖H
√
P‖2

ℓ2→ℓ∞

))
.

The last ingredient we need is a deviation bound on maxi≤n |Wi|. For a fixed index i, we
get

|Wi|2 =

d∑

j=1

Xih
2
ij

and, denoting by Hi the i-th column of H ,

E

d∑

j=1

Xih
2
ij = |

√
PHi|2,

which by an application of Corollary 3.6 in dimension 1, gives

P(|Wi|2 ≥ |
√
PHi|2 + tmax

j≤d
|hij |) ≤ 2 exp

(
− 1

C
min

( t2

|
√
PHi|2

,
t

maxj≤d |hij |
))

.

Taking the union bound over all i ≤ d, we obtain

(4.26) P(max
i≤d

|Wi|2 ≥ ‖
√
PH‖2

ℓ1→ℓ2 + t‖H‖ℓ1→ℓ∞)

≤ 2d exp
(
− 1

C
min

( t2

‖
√
PH‖2

ℓ1→ℓ2

,
t

‖H‖ℓ1→ℓ∞

))
.

Assume now that t ≥ ‖
√
PH

√
P‖. Let

A = {‖EY Z‖ < 2t2,max
i≤d

|Wi|2 ≤ ‖
√
PH‖2

ℓ1→ℓ2 + t‖H‖ℓ1→ℓ∞}.
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Using the union bound together with the Fubini theorem, we can write

P
(
‖ΛXHΛY ‖ ≥

√
3t
)

≤P
({

‖ΛXHΛY ‖ ≥
√
3t2

}
∩ A

)
+P

(
‖EY Z‖ > 2t2

)

+ P
(
max
i≤d

|Wi|2 ≥ ‖
√
PH‖2

ℓ1→ℓ2 + t‖H‖ℓ1→ℓ∞

)

≤EX1APY

(
‖ΛXHΛY ‖ ≥

√
‖EY Z‖+ t2

)

+ P
(
‖EY Z‖ > ‖

√
PH

√
P‖+ t2

)

+ P
(
max
i≤d

|Wi|2 ≥ ‖
√
PH‖2

ℓ1→ℓ2 + t‖H‖ℓ1→ℓ∞

)
.

Using (4.24), (4.25) and (4.26) to bound from above the last three probabilities, we obtain

P
(
‖ΛXHΛY ‖ ≥

√
3t
)

≤2dEX1A exp
(
− 1

C
min

( t4

‖EY Z‖maxi≤d |Wi|2
,

t2

maxi≤d |Wi|2
))

+ 2d exp
(
− 1

C
min

( t4

‖
√
PH

√
P‖2‖H

√
P‖2

ℓ2→ℓ∞

,
t2

‖H
√
P‖2

ℓ2→ℓ∞

))

+ 2d exp
(
− 1

C
min

( t2

‖
√
PH‖2

ℓ1→ℓ2

,
t

‖H‖ℓ1→ℓ∞

))
,

which by the definition of A and the inequality t ≥ ‖
√
PH

√
P‖ gives

P
(
‖ΛXHΛY ‖ ≥

√
3t
)

≤ 6d exp
(
− 1

C′
min

( t2

‖
√
PH‖2

ℓ1→ℓ2

,
t2

‖H
√
P‖2

ℓ2→ℓ∞

,
t

‖H‖ℓ1→ℓ∞

))
.

The theorem follows now by (4.23) and an adjustment of constants. �
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inequalities and free probability II. Two-sided bounds and applications, 2024. 1
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11. Julius Borcea, Petter Brändén, and Thomas M. Liggett, Negative dependence and the geometry of
polynomials, J. Amer. Math. Soc. 22 (2009), no. 2, 521–567. MR 2476782 4, 6, 8

12. J. Bourgain and L. Tzafriri, Invertibility of “large” submatrices with applications to the geometry of
Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), no. 2, 137–224. MR 890420 8

13. , On a problem of Kadison and Singer, J. Reine Angew. Math. 420 (1991), 1–43. MR 1124564 8
14. Tatiana Brailovskaya and Ramon van Handel, Universality and sharp matrix concentration inequalities,

Geom. Funct. Anal. 34 (2024), no. 6, 1734–1838. MR 4823211 1
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32. Françoise Lust-Piquard, Inégalités de Khintchine dans Cp (1 < p < ∞), C. R. Acad. Sci. Paris Sér. I
Math. 303 (1986), no. 7, 289–292. MR 859804 1

33. Françoise Lust-Piquard and Gilles Pisier, Noncommutative Khintchine and Paley inequalities, Ark. Mat.
29 (1991), no. 2, 241–260. MR 1150376 1

34. Joe Neeman, Bobby Shi, and Rachel Ward, Concentration inequalities for sums of Markov-dependent
random matrices, Inf. Inference 13 (2024), no. 4, Paper No. iaae032, 52. MR 4838296 1

35. Roberto Imbuzeiro Oliveira, Sums of random Hermitian matrices and an inequality by Rudelson, Elec-
tron. Commun. Probab. 15 (2010), 203–212. MR 2653725 1, 4

36. Daniel Paulin, The convex distance inequality for dependent random variables, with applications to
the stochastic travelling salesman and other problems, Electron. J. Probab. 19 (2014), no. 68, 34.
MR 3248197 3

37. Robin Pemantle and Yuval Peres, Concentration of Lipschitz functionals of determinantal and other
strong Rayleigh measures, Combin. Probab. Comput. 23 (2014), no. 1, 140–160. MR 3197973 4, 6, 7,
10

38. M. Rudelson, Random vectors in the isotropic position, J. Funct. Anal. 164 (1999), no. 1, 60–72.
MR 1694526 1

39. Simon Ruetz and Karin Schnass, Submatrices with nonuniformly selected random supports and insights
into sparse approximation, SIAM J. Matrix Anal. Appl. 42 (2021), no. 3, 1268–1289. MR 4296760 2, 8,
9

40. Holger Sambale and Arthur Sinulis, Logarithmic Sobolev inequalities for finite spin systems and appli-
cations, Bernoulli 26 (2020), no. 3, 1863–1890. MR 4091094 3

41. Paul-Marie Samson, Concentration of measure inequalities for Markov chains and Φ-mixing processes,
Ann. Probab. 28 (2000), no. 1, 416–461. MR 1756011 3

42. Colin J. Thompson, Inequality with applications in statistical mechanics, J. Mathematical Phys. 6

(1965), 1812–1813. MR 189688 9
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