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Abstract.

In this work, we introduce the notion of a two-Krein space and show that, starting from any classical

Krein space, it is possible to construct spaces endowed with an indefinite two-inner product (admit-

ting both positive and negative values) (Proposition 3.1). We develop the theory of two-Krein spaces

(Proposition 3.2), extending the classical structure and providing new tools for analysis in spaces with

an indefinite two-inner product.

It is established that the fundamental decomposition of a Krein space transfers orthogonality to the

space with an indefinite two-metric (Proposition 3.1). Moreover, the properties of the fundamental sym-

metry of the classical Krein space are carried over to the standardized two-Krein space (Proposition 4.1).

It is shown that the sets of positive and negative vectors generate a space with a semi-definite positive

and complete two-inner product (Proposition 3.4). One of the most important results in the theory of

spaces with an indefinite metric is the equivalence of norms (Theorem 2.2); in this work, we extend this

result to standardized spaces with an indefinite two-metric (Theorem 3.2).

Additionally, the notion of function strongly of bounded variation in two-Krein spaces is introduced

(Definition 5.1) and some of their properties are established (Theorem 5.4). It is also shown that the clas-

sical definition of bounded variation in two-Hilbert spaces [5] is a particular case of the one presented

in this work (Remark 5.1). Furthermore, we present a technique to construct functions of bounded t-

variation in standardized two-Krein spaces from functions of bounded variation in Krein spaces (Propo-

sition 5.1), and we guarantee that when the t-variation of a function is zero, the two-norm evaluated at

the images of the function remains constant with respect to t. Finally, we show that the class of strongly

bounded t-variation functions in a standardized two-Krein space can be endowed with the structure of a

two-norm (Theorem 5.5).

Keywords. Indefinite two-metric; two-Krein space; t-variation; negative t-variation; standardized space.

1. INTRODUCTION

The notion of the variation of a function over an interval [a,b] originated in the work of

the French mathematician Camille Jordan [12]. Since its introduction, the concept of bounded

variation has been the subject of multiple generalizations in various directions. Among these,

notable extensions include those to functions valued in vector spaces and functions taking values

in normed spaces [15, 3], Moreover, the concept has been extended to more general structures,
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including two-normed spaces [5]. These generalizations have significantly broadened the scope

of application of the concept.

As spaces with more intricate structures have emerged, particularly those by an indefinite

inner product [1, 2], various authors have sought to adapt and extend classical concepts of

functional analysis to this new context. A notable example of this line of research is the work

presented in [8], which explores this concept within the framework of Krein spaces. This gen-

eralization has enabled the transfer of fundamental tools from the classical theory of bounded

variation to spaces with an indefinite metric, thereby enriching the study of functions and oper-

ators in these settings.

A fundamental problem we address in this work is the possibility of constructing a space

endowed with an indefinite two-inner product from a space with an indefinite inner product,

thus extending the classical structure of Krein spaces. We show that it is indeed possible to

generate a two-Krein space from a classical Krein space, preserving and adapting essential

properties such as orthogonal decomposition and fundamental symmetry.

Furthermore, we establish that this construction is not only compatible with the structure of

the original space, but also allows for the transfer of relevant analytical properties. In particular,

we demonstrate that every function of bounded variation in the Krein space induces a function

of bounded t-variation function in the standardized two-Krein space. This result shows that

the notion of bounded variation in spaces with an indefinite inner product can be viewed as a

particular case within the more general theory we develop for spaces with an indefinite two-

inner product, thereby consolidating the validity and scope of the proposed generalization.

2. PRELIMINARIES

2.1. Krein spaces.

Definition 2.1. [1, 2] A Krein space is a pair (F , [·, ·]), where F is a vector space and [·, ·] is

an indefinite inner product, such that there exists a direct sum decomposition F = F+ ˙[+]F−

with (F+, [·, ·]) and (F−,−[·, ·]) forming Hilbert spaces.

Definition 2.2. [1, 2] Given a Krein space F with decomposition F = F− ˙[+]F+, the fun-

damental symmetry is the operator J : F → F given by

J x = x+− x−.

Remark 2.1. The fundamental symmetry has the following properties:

• J = J −1.

• [J x,y] = [x,J y] para todo x,y ∈ F .

• J is an isometric operator.

Definition 2.3. [1, 2] Let (F = F+ ˙[+]F−
, [·, ·],J ) be a Krein space. The map

[·, ·]J : F ×F →C is given by

[x,y]J = [J x,y], x,y ∈ F .

This map is referred to as the J -inner product.

Remark 2.2. In any J -inner product, it holds that [x,x]≥ 0 and [x,x] = 0 ⇐⇒ x = 0.
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Theorem 2.1. [1, 2] Let (F = F+ ˙[+]F−, [·, ·]) be a Krein space, and consider J as the

fundamental symmetry linked to the specified decomposition. Then, the following holds:

|[x,y]| ≤ ‖x‖J ‖y‖J , x,y ∈ F .

Proposition 2.1. [1, 2] In the Krein space (F = F+ ˙[+]F−, [·, ·]), the fundamental symmetry

J determines a norm on F , given by

‖x‖J =
√

[x,x]J , ∀x ∈ F .

This norm is referred to as the J -norm of the Krein space F .

Remark 2.3. The Hilbert spaces (F+, [·, ·]) and (F−,−[·, ·]) have the following associated

norms, respectively:

‖x+‖+ =
√

[x+,x+], ‖x−‖− =
√

−[x−,x−], for all x+ ∈ F+
, x− ∈ F−

.

Theorem 2.2. [1, 2] In a Krein space (F , [·, ·]), any two fundamental decompositions induce

equivalent norms via their respective fundamental symmetries.

Remark 2.4. Let (F = F+ ˙[+]F−, [·, ·],J ) be a Krein space, [a,b] an interval, and let f :

[a,b]→ F = F+ ˙[+]F−. Taking into account that, for any t in [a,b], f (t) belongs to

F = F+ ˙[+]F−, from now on we will write the image of t under f as f (t) = f+(t)+ f−(t).

Definition 2.4. [8] Let (F =F+ ˙[+]F−, [·, ·]) be a Krein space, and let f be a function defined

on the interval [a,b]. We say that f is strongly of bounded variation on [a,b] in F if

V b
a ( f ,(F , [·, ·])) = sup

{

n

∑
i=1

(

‖ f+(ti)− f+(ti−1)‖++‖ f−(ti)− f−(ti−1)‖−
)

: P ∈ P[a,b]

}

is finite.

2.2. On two-normed spaces. The study of two-normed spaces has garnered significant inter-

est within the mathematical community, as evidenced by the various generalizations developed

from this concept. In our case, we build upon the work carried out by Lewandowska, consider-

ing a particular case in which the two-norm is a symmetric mapping taking elements from the

same vector space, specifically where D = F ×F . Below, we present the formal definition that

will be used in this context.

Definition 2.5. [9, 14] Let F to be a complex vector space of dimension d, where 2 ≤ d ≤ ∞.

A two-norm on F is a function N : F ×F → R that satisfies the following conditions:

(2N1) N (g,αu) = |α|N (g,u), for all α ∈ C;

(2N2) N (g,u+h)≤ N (g,u)+N (g,h);
(2N3) N (g,u) = N (u,g).

If N is a two-norm for F , then the pair (F,N ) is called a two-normed space.

Definition 2.6. [4] Let F as a complex vector space of dimension d ≥ 2. A two-inner product

is a function

ψ : F ×F ×F → C

that satisfies the following conditions:

(2I1) ψ (g1 +g2,u,h) = ψ (g1,u,h)+ψ (g2,u,h).
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(2I2) ψ(g,g,h) = ψ(h,h,g);

(2I3) ψ(u,g,h) = ψ(g,u,h);
(2I4) ψ(αg,u,h) = αψ(g,u,h) for all α ∈ C;

(2I5) ψ(g,g,h)≥ 0

The pair (F,ψ) is called a two-inner product space (or pre-two-Hilbert space).

Remark 2.5. Note that in (2I3), ψ(u,g,h) = ψ(g,u,h). If u = g, we obtain

ψ(g,g,h) = ψ(g,g,h),

which guarantees ψ(g,g,h) ∈ R.

Proposition 2.2. [11] Let (F,ψ) a space with two-inner product and g,u,h ∈ F. Then it holds

that:

|ψ(g,u,h)|2 ≤ ψ(g,g,h)ψ(u,u,h).

The inequality above is the analogue of the Cauchy-Schwarz inequality in spaces with inner

product.

Remark 2.6. Given a space with two-inner product (F,ψ), we can define a two-norm for F ,

called the induced two-norm of the two-inner product given by

N (g,h) :=
√

ψ(g,g,h) g,h ∈ F.

Definition 2.7. [16] A sequence {gn}n∈N in a two-normed space F is called a convergent se-

quence if there exists a g ∈ F such that the lim
n→∞

N (gn −g,u) = 0 for all u ∈ F . If {gn}n∈N

converges to x, we write gn → g and we call g the limit of {gn}n∈N.

Definition 2.8. [13] Let (F,N (·, ·)) a two-normed space, h ∈ F . A sequence {gn}n∈N in F is

called h-Cauchy if for all ε > 0, there exists N ∈ N, such that if m,n > N then

N (gn −gm,h)< ε .

Definition 2.9. [14] A space with two-inner product (H ,ψ) is said to be a two-Hilbert space

if it is complete with respect to the two-norm induced by the two-inner product.

Definition 2.10. [10] Let (F,ψ) be a space with a two-inner product, and let g,u ∈ F . We say

that g and u are two-orthogonal in F , denoted by g ⊥ u, if for all h ∈ F the following holds

ψ(g,u,h) = 0.

Definition 2.11. [5] Let (F,N ) be a two-normed space, h ∈ F , [a,b] a closed interval, and

f : [a,b]→ F a function. The (2,h)-variation of f over [a,b], denoted by V b
a ( f ,F,h), is defined

as:

V b
a ( f ,F,h) = sup

{

n

∑
i=1

N ( f (ti)− f (ti−1),h) : P = {t0, t1, . . . , tn} ∈ P([a,b])

}

.

If V b
a ( f ,F,h)< ∞, the function f is called of bounded (2,h)-variation.

We now present the notion of an indefinite two-metric, thereby extending the definition given

by Gähler [9].
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3. MAIN RESULTS

We now introduce an indefinite two-metric, derived from the structure of a Krein space,

which preserves the interaction between its positive and negative components.

Proposition 3.1. If (F = F+[
·
+]F−, [·, ·],J ) is a Krein space, then the application

ψ : F ×F ×F −→ C defined by

ψ(x,y,z) = [x+,y+]
∥

∥z+
∥

∥

2

+
+[x−,y−]

∥

∥z−
∥

∥

2

−
(3.1)

satisfies the following properties:

1 ψ (x1 + x2,y,z) = ψ (x1,y,z)+ψ (x2,y,z).

2 ψ(x,x,z) = ψ(z,z,x);

3 ψ(y,x,z) = ψ(x,y,z);

4 ψ(αx,y,z) = αψ(x,y,z) for all α ∈ C.

5 There exist x1,x2 ∈ X such that ψ(x1,x1,z)> 0 and ψ(x2,x2,z)< 0 for all z ∈ F .

Proof. Let x,x′,y,z ∈ F and α ∈ C. Then,

1

ψ(x+ x′,y,z) = [x++ x′+,y+]
∥

∥z+
∥

∥

2

+
+[x−+ x′−,y−]

∥

∥z−
∥

∥

2

−

= [x+,y+]
∥

∥z+
∥

∥

2

+
+[x′−,y−]

∥

∥z−
∥

∥

2

−
+[x′+,y+]

∥

∥z+
∥

∥

2

+
[x−,y−]

∥

∥z−
∥

∥

2

−

= ψ(x,y,z)+ψ(x′,y,z).

2

ψ(αx,y,z) = [αx+,y+]
∥

∥z+
∥

∥

2

+
+[αx−,y−]

∥

∥z−
∥

∥

2

−
= α

(

[x+,y+]
∥

∥z+
∥

∥

2

+
+[x−,y−]

∥

∥z−
∥

∥

−

)

= αψ(x,y,z).

3

ψ(y,x,z) = [y+,x+]
∥

∥z+
∥

∥

2

+
+[y−,x−]

∥

∥z−
∥

∥

2

−
= [x+,y+]

∥

∥z+
∥

∥

2

+
+[x−,y−]

∥

∥z−
∥

∥

2

−

= [x+,y+]‖z+‖2
++[x−,y−]‖z−‖2

− = [x+,y+]‖z+‖2
++[x−,y−]‖z−‖2

−

= ψ(x,y,z).

4

ψ(x,x,z) = [x+,x+]
∥

∥z+
∥

∥

2

+
+[x−,x−]

∥

∥z−
∥

∥

2

−

= [x+,x+][z+,z+]+ [x−,x−](−[z−,z−])

= [x+,x+][z+,z+]+(−[x−,x−])[z−,z−]

= [z+,z+]
∥

∥x+
∥

∥

2

+
+[z−,z−]

∥

∥x−
∥

∥

2

−
= ψ(z,z,x).

5 There exist (k+, l−) ∈ F+×F− such that for any w ∈ F , the following holds:

ψ(k+,k+,w) = [k+,k+]‖w+‖2
++[0,0]‖w−‖2

− = [k+,k+]‖w+‖2
+ ≥ 0
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and

ψ(l−, l−,w) = [0,0]‖w+‖2
++[l−, l−]‖w−‖2

− = [l−, l−]‖w−‖2
− ≤ 0.

�

Definition 3.1. Let F be a complex vector space of dimension d ≥ 2. If ψ : F ×F ×F →C

is a function that satisfies the conditions of Proposition 3.1, then we will call the pair (F ,ψ) an

indefinite two-inner product space.

Remark 3.1. Note that for any (k+, l−) ∈ F+×F− and w = w+ +w− ∈ F , the following

holds:

ψ(k+, l−,w) = [k+,0]‖w+‖++[0, l−]‖w−‖− = 0.

Therefore, F+ and F− preserve orthogonality in the indefinite two-inner product ψ .

From now on, the space with the indefinite two-metric given in (3.1) will be referred to as

the standardized indefinite two-metric or standardized two-inner product, assuming it originates

from a space with an indefinite metric (F , [·, ·],J ).

Remark 3.2. Note that given a space with a standardized indefinite two-metric, the following

holds:

ψ(x,x,J t) = ψ(x,x, t+− t−) = [x+,x+]‖t+‖2
++[x−,x−]‖− t−‖2

−

= [x+,x+]‖t+‖2
++[x−,x−]‖t−‖2

− = ψ(x,x, t).

Remark 3.3. From Proposition 3.1, the two-norms associated with the spaces with two-inner

product (F+,ψ) and (F−,−ψ) naturally follow. These two-norms are given as follows:

N +(x+,y+)=
√

ψ(x+,x+,y+)=

√

[x+,x+]‖y+‖2
+=

√

[x+,x+]

√

‖y+‖2
+=

∥

∥x+
∥

∥

+

∥

∥y+
∥

∥

+
≥ 0

and

N −(x−,y−) =
√

−ψ(x−,x−,y−) =

√

−[x−,x−]‖y−‖2
− =

∥

∥x−
∥

∥

−

∥

∥y−
∥

∥

−
≥ 0.

Proposition 3.2. Let (F = F+[
·
+]F−, [·, ·],J ) be a Krein space with the standardized two-

inner product ψ given in Proposition 3.1. The application ψJ : F ×F ×F −→ C defined

by

ψJ (x,y,z) := ψ(J x,y,z) for all x,y,z ∈ F ,

is a positive semidefinite two-inner product, which, from now on, we will refer to as the associ-

ated J -two-inner product to ψ , or simply the J -two-inner product.

Proof. Let x,y,z ∈ F . Then,

ψJ (x,x,z) = ψ(J x,x,z) = ψ(x+− x−,x++ x−,z) = [x+,x+]
∥

∥z+
∥

∥

2

+
− [x−,x−]

∥

∥z−
∥

∥

2

−

= [x+,x+]
∥

∥z+
∥

∥

2

+
+(−[x−,x−])

∥

∥z−
∥

∥

2

−
≥ 0.

�

Proposition 3.3. Let (F = F+[
·
+]F−, [·, ·],J ) be a Krein space with the standardized two-

inner product ψ given in Proposition 3.1. Then, the application NJ : F ×F −→ R defined

by NJ (x,y) =
√

ψJ (x,x,y) is a two-norm over F .
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Proof. Let x,y,z ∈ F and α ∈ R.

(2N1) NJ (x,αy)=
√

ψJ (x,x,αy)=
√

|α|2ψJ (x,x,y)= |α|
√

ψJ (x,x,y)= |α|NJ (x,y).

(2N2) Given that ψJ is a semi-positive definite two-inner product, by Proposition 2.2 it fol-

lows that

NJ (x,y+ z) =
√

ψJ (x,x,y) =
√

ψJ (x,x,y)+ψJ (x,x,z)+2Re(ψJ (x,y,z))

≤
√

ψJ (x,x,y)+ψJ (x,x,z)+2
∣

∣ψJ (x,y,z)
∣

∣

≤
√

NJ (x,y)2 +NJ (x,z)2+2NJ (x,z)NJ (y,z)

=

√

(

NJ (x,z)+NJ (y,z)
)2

= NJ (x,z)+NJ (y,z).

(2N3) NJ (x,y) =
√

ψJ (x,x,y) =
√

ψJ (y,y,x) = NJ (y,x).

We will refer to this two-norm simply as J -two-norm.

�

Remark 3.4. Note that the two-norms induced in the spaces with two-inner product (F+,ψ)
and (F−,−ψ) are nothing more than a restriction of the J -two-norm to these spaces.

NJ (x+,y+) :=
√

ψJ (x+,x+,y+)J =
√

ψ(J x+,x+,y+) =
√

ψ(x+,x+,y+) =N +(x+,y+)

and

NJ (x−,y−)=
√

ψJ (x−,x−,y−)J =
√

ψ(J x−,x−,y−)=
√

−ψ(x−,x−,y−)=N −(x−,y−),

where x+,y+ ∈ F+ and x−,y− ∈ F−
.

Theorem 3.1. Let (F = F+ ˙[+]F−,ψ,J ) be a space with a standardized indefinite two-

metric. Then,

NJ (x,z)≤ N +(x+,z+)+N −(x−,z−),

for all x = x++ x− ∈ F .

Proof.

NJ (x,z)2 = ψJ (x,x,z) = ψ(J x,x,z) = ψ(x+− x−,x++ x−,z++ z−)

= ψ(x+,x+,z+)−ψ(x−,x−,z−) = ψ(x+,x+,z+)+(−ψ(x−,x−,z−))

= (
√

ψ(x+,x+,z+))2 +(
√

−ψ(x−,x−,z−))2 = N +(x+,z+)2 +N −(x−,z−)2

≤ N +(x+,z+)2 +2N +(x+,z+)N −(x−,z−)+N −(x−,z−)2

= (N +(x+,z+)+N −(x−,z−))2
.

Therefore,

NJ (x,z)≤ N +(x+,z+)+N −(x−,z−) for each x = x++ x−,z = z++ z− ∈ F

�

Theorem 3.2. Let (F , [·, ·]) be a Krein space with fundamental decompositions F =F+
1

˙[+]F−
1 ,

F = F+
2

˙[+]F−
2 , and fundamental symmetries J1 and J2 respectively. Then, the two-norms

NJ1
and NJ2

associated to the standardized two-Krein space are equivalent.
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Proof. Let x,y ∈ F . By Theorem 2.2, there exist α,β ∈ R+ such that

α‖x‖J1
≤ ‖x‖J2

≤ β‖x‖J1
.

In this way, we obtain on one hand that

NJ1
(x,z)2 = ψJ1

(x,x,z) = ‖x+‖2
+

∥

∥z+
∥

∥

2

+
+‖x−‖2

−

∥

∥z−
∥

∥

2

−

= ‖x+‖2
J1

∥

∥z+
∥

∥

2

J1
+‖x−‖2

J1

∥

∥z−
∥

∥

2

J1
≤

1

α2
(‖x+‖2

J2

∥

∥z+
∥

∥

2

J2
+‖x−‖2

J2

∥

∥z−
∥

∥

2

J2
)

=
1

α2
NJ2

(x,z)2

Similarly, it follows that

NJ2
(x,z)2 = ψJ2

(x,x,z) = ‖x+‖2
+

∥

∥z+
∥

∥

2

+
+‖x−‖2

−

∥

∥z−
∥

∥

2

−

= ‖x+‖2
J2

∥

∥z+
∥

∥

2

J2
+‖x−‖2

J2

∥

∥z−
∥

∥

2

J2
≤ β 2NJ1

(x,z)2
.

Therefore, it holds that αNJ1
(x,z)≤ NJ2

(x,z)≤ βNJ1
(x,z). �

Proposition 3.4. Let (F = F+[
·
+]F−

, [·, ·],J ) be a Krein space with the standardized two-

inner product defined by ψ(x,y,z)= [x+,y+]‖z+‖
2
++[x−,y−]‖z−‖

2
− and t ∈F . Then, (F+,ψ)

and (F−,−ψ) are t-Hilbert spaces.

Proof. Let {x+n }n∈N be a Cauchy sequence in (F+,ψ), t = t++ t− 6= 0 ∈ F fixed, and ε > 0

given. Take ε∗ = ‖t+‖+ε > 0. Then, there exists N ∈ N such that for all t+ ∈ F+, it holds that

N +(x+m − x+n , t
+)< ε∗,

whenever m,n > N. Thus,

N +(x+m − x+n , t
+) =

√

ψ(x+m − x+n ,x
+
m − x+n , t+) =

√

‖x+m − x+n ‖2
+‖t+‖2

+ < ε∗,

hence, we have that

‖x+m − x+n ‖+ <
1

‖t+‖+
ε∗ = ε.

Consequently, {x+n }n∈N is a Cauchy sequence in (F+
, [·, ·]). Taking ε ′ = 1

‖t+‖+
ε and by the

completeness of (F+
, [·, ·]), it follows that there exist x+ ∈ F+, N′ ∈ N, such that if n > N′

2

then ‖x+n − x+‖< ε ′.
Then,

N +(x+n − x+, t+) =
√

‖x+n − x+‖2
+‖t+‖2

+ < ε
′
‖t+‖= ε.

In this way, {xn}n∈N converges to x+ ∈ F+. Therefore, (F+
,ψ) is a t-Hilbert space.

Using an analogous reasoning, it can be seen that (F−
,−ψ) is a t-Hilbert space. �

Remark 3.5. A vector space F endowed with a mapping ψ : F ×F ×F −→C that satisfies

the characteristics of Proposition 3.1 motivates us to give the following definition.

Definition 3.2. A space with an indefinite two-inner product (F ,ψ) that admits a fundamental

decomposition of the form F =F+ ˙[+]F−, such that (F+,ψ) and (F−,−ψ) are two-Hilbert

spaces will be called a two-Krein space.
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Remark 3.6. Let (F = F+ ˙[+]F−, [·, ·],J ) be a Krein space, [a,b] an interval, and

f : [a,b]→ F = F+ ˙[+]F−. Taking into account that for any t in [a,b], f (t) belongs to

F = F+ ˙[+]F+, from now on we will write the image of t under f as f (t) = f+(t)+ f−(t).

Example 3.1. Let us consider the set formed by pairs of complex numbers C2 endowed with

the indefinite inner product [·, ·] : C2 ×C2 −→ R given by

[(a,b),(c,d)] := ac−bd, (a,b),(c,d) ∈ C
2
,

which is a Krein space with fundamental symmetry J given by

J (a,b) = (a,0)− (0,b) = (a,−b).

Using (3.1), we have that the standardized indefinite two-inner product induced by this in-

definite metric is given by the function ψ : C2 ×C
2 ×C

2 −→ C defined by

ψ((x1,x2),(y1,y2),(z1,z2)) = [(x1,0),(y1,0)]‖(z1,0)‖
2
++[(0,x2),(0,y2)]‖(0,z2)‖

2
−

= x1y1|z1|
2 − x2y2|z2|

2
.

Let

C
2+ := {(x,0)|x ∈ C} and C

2− := {(0,y)|y ∈ C} .

Note that for all (t1, t2) ∈ C2 we have

ψ((x,0),(x,0),(t1, t2)) = xx|t1|
2 −0 ·0|t2|

2 = |x|2|t1|
2 ≥ 0

and

ψ((0,x),(0,x),(t1, t2)) = 0 ·0|t1|
2 − xx|t2|

2 =−|x|2|t2|
2 ≤ 0.

Also,

ψ((x,0),(0,y),(t1, t2)) = x ·0|t1|
2 −0 · y|t2|

2 = 0.

Furthermore, (C2+
,ψ) and (C2−

,−ψ) are two-Hilbert spaces. Therefore, (F =F+[
·
+]F−

,ψ)
is a two-Krein space.

On the other hand, the J -two-inner product is determined by the expression

ψJ ((x1,x2),(y1,y2),(z1,z2)) = ψ(J (x1,x2),(y1,y2),(z1,z2)) = ψ((x1,−x2),(y1,y2),(z1,z2))

= x1y1|z1|
2 + x2y2|z2|

2
.

4. TRANSFER OF PROPERTIES FROM THE FUNDAMENTAL SYMMETRY TO THE

FUNDAMENTAL TWO-SYMMETRY

Proposition 4.1. Let (F = F+[
·
+]F−

, [·, ·],J ) be a Krein space with the associated two-

inner product defined by ψ(x,y,z) = [x+,y+]‖z‖2
++[x−,y−]‖z‖2

−. Then, J preserves the fol-

lowing properties:

(1) J is two-symmetric and two-self-adjoint.

(2) J is two-isometric.

(3) J is two-bounded.
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Proof. 1.

ψ(J x,y,z) = ψ(x+− x−,y,z) = [x+,y+]‖z+‖2
+− [x−,y−]‖z−‖2

−

= [x+,y+]‖z+‖2
++[x−,−y−]‖z−‖2

− = ψ(x,y+− y−,z) = ψ(x,J y,z).

2.

ψ(J x,J y,z) = ψ(x+− x−,y+− y−,z) = [x+,y+]‖z+‖2
++[−x−,−y−]‖z−‖2

−

= [x+,y+]‖z+‖2
++[x−,y−]‖z−‖2

− = ψ(x,y,z).

3. Taking into account Remark 3.2, it follows that

N (J x, t)+N (x,J t) =
√

ψ(J x,J x, t)+
√

ψ(x,x,J t)

=
√

ψ(x,x, t)+
√

ψ(x,x, t+− t−)

=
√

ψ(x,x, t)+
√

ψ(x,x, t) = 2
√

ψ(x,x, t)

≤ 3N (x, t).

�

5. VARIATION OF A FUNCTION IN SPACES WITH AN INDEFINITE TWO-METRIC

Next, we introduce the notion of a function of bounded variation in spaces with an indefinite

two-metric.

Definition 5.1. Let (F = F+ ˙[+]F−,ψ,J ) be a standardized two-Krein space and t ∈ F
fixed. Given [a,b] a closed interval, P = {a = t0, t1, · · ·b = tn} ∈ P([a,b]) a partition and

f : [a,b]→ F a function, we define the non-negative number

V b
a ( f ,F , t;P)J =

n

∑
i=1

NJ ( f (ti)− f (ti−1), t)

as the t-variation of f over [a,b] with respect to P.

Furthermore, we will call the t-variation of f over [a,b] the supremum

V b
a ( f ,F , t)J := sup

{

n

∑
i=1

NJ ( f (ti)− f (ti−1), t) : P = {x0,x1, · · · ,xn} ∈ P[a,b]

}

.

Definition 5.2. Let (F = F+ ˙[+]F−
,ψ,J ) be a standardized two-Krein space and t ∈ F

fixed. We will say that a function f : [a,b]−→ F is strongly of bounded t-variation over [a,b]
if the supremum

V b
a ( f ,F , t)J = sup

{

n

∑
i=1

NJ ( f (ti)− f (ti−1), t) : P ∈ P[a,b]

}

is finite.

Remark 5.1. Note that, when J = I, we are in the case of a two-Hilbert space, which guaran-

tees that every function of bounded (2,h)-variation in a two-Hilbert space is a strongly bounded

t-variation function in the standardized two-Krein space.
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Next, we show the robustness of the definition of bounded variation function in standardized

two-Krein spaces. To do this, we show that this definition is independent of the fundamental

decomposition.

Theorem 5.1. Let (F ,ψ) be a standardized two-Krein space with fundamental decompositions

F =F+
1 +F−

1 and F =F+
2 +F−

2 , and fundamental symmetries J1 and J2, respectively. If

f : [a,b]−→F is strongly of bounded t-variation in (F ,ψ,J1), then it is strongly of bounded

t-variation in (F ,ψ,J2).

Proof. By Theorem 3.2, there exist α,β ∈ R+ such that

αNJ1
(x,z)≤ NJ2

(x,z)≤ βNJ1
(x,z), for all x,z ∈ F .

Furthermore, since f is strongly of bounded t-variation in (F ,ψ,J1), there exists c ∈ R+

such that V b
a ( f ,F , t)J1

≤ c.

Taking 1
α c = l > 0, we obtain

V b
a ( f ,F , t)J2

≤ l.

�

Example 5.1. Consider the Krein space (C2
, [·, ·],J ) given in Example 3.1, whose standard-

ized indefinite two-inner product ψ is given by ψ(a,b,c) = a1b1|c1|
2−a2b2|c2|

2 for a,b,c∈C2

and the application f : [a,b]−→ C2 defined by f (x) = (−xi, i). Take t = (1,0) ∈ C2. Let’s see

that the (1,0)-variation of f over [a,b] in C2 is finite. Indeed, let P= {a, · · ·xn−1,b}∈P([a,b]).
First,

f (x j)− f (x j−1) = (−ix j, i)− (−ix j−1, i) = (−i(x j − x j−1),0)

Then:

n

∑
j=1

NJ ((−i(x j − x j−1),0),(1,0)) =
n

∑
j=1

√

|− i(x j − x j−1)|2|1|2 =
n

∑
j=1

|(x j − x j−1)|

=
n

∑
j=1

(x j − x j−1) = b−a

Thus, there exists α = b−a > 0 such that

V b
a ( f ,C2

,(1,0))J = sup
P∈P([a,b])

{

n

∑
j=1

NJ ( f (xi)− f (xi−1),(1,0))

}

≤ α.

Therefore, f has bounded (1,0)-variation over [a,b] in the standardized two-Krein space (C2,ψ,J ).

Remark 5.2. The class of strongly bounded t-variation functions over [a,b] in a standardized

two-Krein space (F = F+ ˙[+]F−,ψ,J ) will be denoted by BV ([a,b],(F ,ψstand)).

Theorem 5.2. Let (F = F+ ˙[+]F−,ψ,J ) be a standardized two-Krein space and t = t++

t− ∈F fixed. If f : [a,b]→F is strongly of bounded t-variation over [a,b] in (F =F+ ˙[+]F−),
then f is strongly of bounded t-variation in the two-Hilbert subspaces (F+,ψ) and (F−,−ψ).
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Proof. Let P = {a,x1 · · ·xn−1,b} ∈ P([a,b]) be a partition. Since f : [a,b]→ F is strongly of

bounded t-variation over [a,b] in (F = F+ ˙[+]F−
,ψ,J ), then there exists α ∈ R

+ such that

V b
a ( f ,F , t)J := sup

P∈P([a,b])

{

n

∑
i=1

NJ ( f (xi)− f (xi−1), t)

}

≤ α.

Furthermore,

NJ ( f (xi)− f (xi−1), t) =

√

‖ f+(xi)− f+(xi−1)‖
2
+‖t+‖2

++‖ f−(xi)− f−(xi−1)‖
2
−‖t−‖2

−.

Note that by Remark 3.3 it holds that

NJ ( f (xi)− f (xi−1), t)≥ ‖ f+(xi)− f+(xi−1)‖+
∥

∥t+
∥

∥

+
,‖ f−(xi)− f−(xi−1)‖−

∥

∥t−
∥

∥

−
.

That is,

N +( f+(xi)− f+(xi−1), t),N
−( f−(xi)− f−(xi−1), t)≤ NJ ( f (ti)− f (ti−1), t).

Therefore:

+

V b
a ( f ,F , t)J := sup

P∈P([a,b])

{

n

∑
i=1

N +( f+(xi)− f+(xi−1), t)

}

≤ α

and
−

V b
a ( f ,F , t)J := sup

P∈P([a,b])

{

n

∑
i=1

N −( f−(xi)− f−(xi−1), t)

}

≤ α.

�

Next, we show that the t-variation in a space with an indefinite two-metric 5.1 extends the

notion presented in Definition 2.4.

Proposition 5.1. Let (F =F+ ˙[+]F−, [·, ·],J ) be a Krein space and t ∈F . If f : [a,b]→F
is a strongly bounded variation function in (F , [·, ·]), then f is strongly bounded t-variation in

the standardized two-Krein space induced by [·, ·].

Proof. Let P = {a,x1, · · · ,xn−1,b} ∈ P[a,b]. Since f is strongly of bounded variation in the

classical Krein space (F , [·, ·]), there exists α ∈ R+ such that

V b
a ( f ,F ) = sup

{

n

∑
i=1

(‖ f+(ti)− f+(ti−1)‖++‖ f−(ti)− f−(ti−1)‖−)

}

≤ α.

Using Theorem 3.1, it follows that

NJ ( f (xi)− f (xi−1), t)≤ ‖ f+(xi)− f+(xi−1)‖+
∥

∥t+
∥

∥

+
+‖ f−(xi)− f−(xi−1)‖−

∥

∥t−
∥

∥

−
.

Furthermore,

NJ ( f (xi)− f (xi−1), t)≤ ‖ f+(xi)− f+(xi−1)‖+(
∥

∥t+
∥

∥

+
+
∥

∥t−
∥

∥

−
)

+‖ f−(xi)− f−(xi−1)‖−(
∥

∥t+
∥

∥

+
+
∥

∥t−
∥

∥

−
)

= (
∥

∥t+
∥

∥

+
+
∥

∥t−
∥

∥

−
)(‖ f+(xi)− f+(xi−1)‖++‖ f−(xi)− f−(xi−1)‖−)
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Thus, there exists β = (‖t+‖++‖t−‖−)α ≥ 0 such that it holds that

V b
a ( f ,F , t)J = sup

P∈P([a,b])

{

n

∑
i=1

NJ ( f (xi)− f (xi−1), t)

}

≤ (
∥

∥t+
∥

∥

+
+
∥

∥t−
∥

∥

−
)V b

a ( f ,F )≤ β

Therefore, f is of bounded t-variation over [a,b] in the standardized two-Krein space generated

by (F = F+ ˙[+]F−, [·, ·],J ). �

Proposition 5.2. Let (F ,ψstand,J ) be a standardized two-Krein space, t ∈F , and f : [a,b]→
F a strongly bounded t-variation function over [a,b]. If V b

a ( f ,F , t)J = 0, then for all x in [a,b]
it holds that NJ ( f (x), t) = NJ ( f (a), t) = NJ ( f (b), t).

Proof. Suppose that V b
a ( f ,F , t)J = 0, that is,

V b
a ( f ,F , t)J = sup

{

n

∑
i=1

NJ ( f (xi)− f (xi−1), t) : P ∈ P[a,b]

}

= 0.

Then, for any partition of [a,b], it holds that

n

∑
i=1

NJ ( f (xi)− f (xi−1), t) = 0. (5.1)

Let x ∈ (a,b). Consider in particular the partition P = {a,x,b} of [a,b]. By (5.1), it holds that

NJ ( f (x)− f (a), t)+NJ ( f (b)− f (x), t) = 0.

Thus,
∣

∣NJ ( f (x), t)−NJ ( f (a), t)
∣

∣≤ NJ ( f (x)− f (a), t) = 0

and
∣

∣NJ ( f (b), t)−NJ ( f (x), t)
∣

∣≤ NJ ( f (b)− f (x), t) = 0.

From this we obtain that

NJ ( f (x), t) = NJ ( f (a), t) = NJ ( f (b), t) for all x ∈ [a,b].

�

The following result shows that BV ([a,b],(F ,ψstand)) is a subset of the (2, t)-bounded func-

tions.

Theorem 5.3. Let (F ,ψstand,J ) be a standardized two-Krein space and t ∈ F .

If f : [a,b]→ F is a strongly bounded t-variation function, then f is (2, t)-bounded.

Proof. Taking into account that the application NJ : F ×F −→ [0,∞) defined by

NJ (x,y) =
√

ψJ (x,x,y)

is a two-norm, the proof follows from [5]. �

Theorem 5.4. Let f ,g ∈ BV ([a,b],(F ,ψstand)) and α ∈ C. Then, the following propositions

hold:

(1) Homogeneity of variation: V b
a (α f ,F , t)J = |α|V b

a ( f ,F , t)J .

(2) Subadditivity of variation: V b
a ( f + g,F , t)J ≤ V b

a ( f ,F , t)J +V b
a (g,F , t)J and

V b
a ( f ,F , t + v)J ≤V b

a ( f ,F , t)J +V b
a ( f ,F ,v)J .
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(3) Decomposition of variation: V b
a ( f ,F , t)J ≤

+
V b

a( f+,F+, t+)J +
−
V b

a( f−,F−, t−)J

Proof. 1.

V b
a (α f ,F , t)J = sup

P∈P [a,b]

{

n

∑
i=1

NJ (α f (xi)−α f (xi−1), t)

}

= |α| sup
P∈P [a,b]

{

n

∑
i=1

NJ ( f (xi)− f (xi−1), t)

}

= |α|V b
a ( f ,F , t)J

2.

V b
a ( f ,F , t)J +V b

a (g,F , t)J = sup

{

n

∑
i=1

NJ ( f (ti)− f (ti−1), t)+NJ (g(ti)−g(ti−1), t)

}

≥ sup

{

n

∑
i=1

NJ (( f (ti)+g(ti))− ( f (ti−1)+g(ti−1)), t)

}

=V b
a ( f +g,F , t).

Analogously, the second inequality holds.

3.

+
V b

a( f+,F , t+)J +
−
V b

a( f−,F , t−)J = sup
P∈P [a,b]

{

n

∑
i=1

[

N +( f+(xi)− f+(xi−1), t
+)

+N −( f−(xi)− f−(xi−1), t
−)

]

}

≥ sup
P∈P [a,b]

{

n

∑
i=1

NJ ( f (ti)− f (ti−1), t)

}

=V b
a ( f ,F , t)J

�

Proposition 5.3. BV ([a,b],(F ,ψstand)) is a vector space.

Proof. Let f ,g ∈ BV ([a,b],(F ,ψstand)) and α ∈ C. Then, there exist r,s ≥ 0 such that

V b
a ( f ,F , t)J ≤ r and V b

a (g,F , t)J ≤ s.

Defining r+ s = λ ≥ 0 and |α|r = γ ≥ 0 and applying Theorem 5.4, we obtain

V b
a ( f +g,F , t)J ≤ λ and V b

a (α f ,F , t)J ≤ γ.

Therefore, BV ([a,b],(F ,ψstand)) is closed under the sum of functions and the product by

scalars, which confirms that it is a vector space. �

Theorem 5.5. Let (F ,ψstand,J ) be a standardized two-Krein space and t ∈ F . The applica-

tion

NBV Ft
: BV ([a,b],(F ,ψstand))×BV ([a,b],(F ,ψstand))→ [0,∞) defined by

NBV Ft
( f ,g)=NJ ( f (a), t)Vb

a (g,F , t)J +NJ (g(a), t)Vb
a ( f ,F , t)J , f ,g∈BV([a,b],(F ,ψstand)),

is a two-norm for BV ([a,b],(F ,ψstand)).
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Proof. Let f ,g ∈ BV ([a,b],(F ,ψstand)) and α ∈ C.

(2N1)

NBV Ft
(α f ,g) = NJ (α f (a), t)Vb

a (g,F , t)J +NJ (g(a), t)Vb
a (α f ,F , t)J

= |α|NJ ( f (a), t)Vb
a (g,F , t)J + |α|NJ (g(a), t)Vb

a ( f ,F , t)J

= |α|NBV Ft
( f ,g).

(2N2)

NBV Ft
( f +g,h) = NJ (( f +g)(a), t)Vb

a (h,F , t)J +NJ (h(a), t)Vb
a ( f +g,F , t)J

≤ NJ ( f (a), t)Vb
a (h,F , t)J +NJ (h(a), t)Vb

a ( f ,F , t)J

+NJ (g(a), t)Vb
a (h,F , t)J +NJ (h(a), t)Vb

a (g,F , t)J

= NBV Ft
( f ,h)+NBV Ft

(g,h)

(2N3)

NBV Ft
( f ,g) = NJ ( f (a), t)Vb

a (g,F , t)J +NJ (g(a), t)Vb
a ( f ,F , t)J

= NJ (g(a), t)Vb
a ( f ,F , t)J +NJ ( f (a), t)Vb

a (g,F , t)J = NBV Ft
(g, f ).

�

6. CONCLUSION

Every classical Krein space generates a standardized two-Krein space (Proposition 3.1). In a

classical Krein space, the set of positive and negative vectors preserves orthogonality and com-

pleteness in the standardized two-Krein space (Propositions 3.1, 3.4). The two-norms associ-

ated with different fundamental decompositions in standardized two-Krein spaces are equivalent

(Theorem 3.2). The (2,h)-variation in two-Hilbert spaces is a particular case of the t-variation

in standardized two-Krein spaces (Remark 5.1). The vanishing of the t-variation implies that the

two-norm of the function’s images is constant with respect to t (Proposition 5.2). The notion of

strongly bounded t-variation functions in a standardized two-Krein space is independent of the

fundamental decompositions (Theorem 5.1). Any set of strongly bounded t-variation functions

in a standardized two-Krein space can be endowed with a two-norm (Theorem 5.5).

Given the notable interest generated by classical Krein spaces, it is natural to expect that

some previous research, such as that developed in [6, 7], could be extended to spaces with an

indefinite two-metric, which were introduced in this investigation.
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