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AN APPROACH TO MARTSINKOVSKY'S INVARIANT

VIA AUSLANDER'S APPROXIMATION THEORY

YUYA OTAKE

Abstract. Auslander developed a theory of the δ-invariant for finitely generated modules over commutative
Gorenstein local rings, and Martsinkovsky extended this theory to the ξ-invariant for finitely generated mod-
ules over general commutative noetherian local rings. In this paper, we approach Martsinkovsky’s ξ-invariant
by considering a non-decreasing sequence of integers that converges to it. We investigate Auslander’s approx-
imation theory and provide methods for computing this non-decreasing sequence using the approximation.
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1. Introduction

The theory of maximal Cohen–Macaulay (abbreviated to MCM) approximations was established by Aus-
lander and Buchweitz [4], and has played an important role in Cohen–Macaulay representation theory. More-
over, Auslander showed that every finitely generated module M over a commutative Gorenstein local ring
admits a unique minimal MCM approximation in his unpublished paper [1], and defined the δ-invariant of
M , denoted δpMq, using the approximation. Numerous interesting properties and applications of the delta
invariant have been discovered; see, for example, [5,9,11–14,16,20,32,33,35,37,38], and also the detailed ex-
positions in [25,36]. Dual to the existence of MCM approximations, every finitely generated moduleM over a
Gorenstein local ring admits a finite projective dimension (abbreviated to FPD) hull 0 Ñ M Ñ Y Ñ X Ñ 0.
Auslander [1] showed that the delta invariant can be computed via an FPD hull, and as a consequence, he
found striking properties of modules with null δ-invariant. Here, we denote by µpMq the minimal number of
generators of an R-module M .

Theorem 1.1 (Auslander). Let R be a commutative Gorenstein local ring with residue field k, and let M be
a finitely generated R-module.

(1) For any FPD hull 0 Ñ M Ñ Y Ñ X Ñ 0 of M , the equality δpMq “ µpY q ´ µpXq holds.
(2) The following conditions are equivalent.

(i) The equality δpMq “ 0 holds.
(ii) For every R-homomorphism f : M Ñ Z with Z a finitely generated R-module of finite projective

dimension, f bR k “ 0.

Let us now move on to Auslander’s approximation theory over more general two-sided noetherian rings.
Auslander and Bridger [3] developed an approximation theory for modules satisfying certain grade conditions,
which refines the theory of MCM approximations over commutative Gorenstein local rings. Simon [34] studied
the dual notion of Auslander–Bridger approximations, called the n-hull. Over commutative Gorenstein local
rings, Kato [21] constructed a theory of origin extensions, which lie between MCM approximations and FPD
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2 YUYA OTAKE

hulls. Here, over a general two-sided noetherian ring Λ, we formulate these approximations, extensions, and
hulls as follows. We denote by modΛ the category of finitely generated right Λ-modules, and by pdΛM the
projective dimension of a Λ-module M .

Definition 1.2. Let n ě 0 be an integer. We define the full subcategories AnpΛq, EnpΛq, and HnpΛq of
modΛ as follows:

AnpΛq “

"
M P modΛ

ˇ̌
ˇ̌ there is an exact sequence 0 Ñ Y Ñ X Ñ M Ñ 0 in modΛ such that

pdΛ Y ď n ´ 1 and ExtiΛpX,Λq “ 0 for all 1 ď i ď n

*
,

EnpΛq “

"
M P modΛ

ˇ̌
ˇ̌ there is an exact sequence 0 Ñ X Ñ M ‘ P Ñ Y Ñ 0 in modΛ such that

P is projective, pdΛ Y ď n, and ExtiΛpX,Λq “ 0 for all 1 ď i ď n

*
,

HnpΛq “

"
M P modΛ

ˇ̌
ˇ̌ there is an exact sequence 0 Ñ M Ñ Y Ñ X Ñ 0 in modΛ such that

pdΛ Y ď n and ExtiΛpX,Λq “ 0 for all 1 ď i ď n` 1

*
.

The short exact sequences appearing in the definitions of AnpΛq, EnpΛq, and HnpΛq are called an n-AB
approximation, n-origin extension, and n-FPD hull of M , respectively.

Under the above definition, we have the inclusions AnpΛq Ą EnpΛq Ą HnpΛq. The subcategories AnpΛq
and EnpΛq have been essentially studied in the Auslander–Bridger theory [3]. In particular, they proved
that any finitely generated module satisfying the n-th grade condition (see Definition 3.3) admits an n-origin
extension. More precisely, they used the n-th grade condition to construct a well-behaved filtration, called
an n-spherical filtration, and used it to prove the result. In Section 3 of the present paper, we prove the
converse: if a finitely generated module admits an n-spherical filtration, then it satisfies the n-th grade
condition. Furthermore, we show that if Λ satisfies a certain grade condition on modules of finite projective
dimension, then any finitely generated Λ-module admitting an n-origin extension also satisfies the n-th grade
condition. Specifically, when Λ is commutative, the following three conditions are equivalent: satisfying the n-
th grade condition, admitting an n-spherical filtration, and admitting an n-origin extension; see Theorem 3.6.
Also, the category HnpΛq is related to the notion of delooping level, which was introduced by Gélinas [15]
and has been actively studied in recent years. In fact, as a consequence of Theorem 3.9, any object of HnpΛq
has delooping level at most n; see Remark 3.11(2).

As a generalization of Auslander’s δ-invariant, Martsinkovsky [26] introduced the ξ-invariant, which is
denoted by ξpMq, for a finitely generated module M over a commutative noetherian local ring R. He showed
that the following theorem.

Theorem 1.3 (Martsinkovsky). Let R be a commutative Gorenstein local ring, and let M be a finitely
generated R-module. Then the equality δpMq “ ξpMq holds.

Various properties that were known for the δ-invariant have also been established for the ξ-invariant;
see [26–28]. However, the ξ-invariant is generally difficult to compute, as its definition involves Tate–Vogel
cohomology. Our strategy, therefore, is to instead treat the following invariant. Let R be a commutative
noetherian local ring with residue field k, and let M be a finitely generated R-module and n ě 0 an integer.
We define the n-th approximated ξ-invariant ξnpMq by

ξnpMq :“ dimk Ker
`
HomRpM,kq

π
ÝÑ HomRpM,kq

Ωn

ÝÝÑ HomRpΩnM,Ωnkq
˘
,

where HomRp´,´q denotes the quotient of HomRp´,´q by the submodule consisting of homomorphisms
factoring through projective modules, π is the canonical surjection, and Ωn denotes the n-th syzygy functor.
Then, we obtain a non-decreasing sequence of integers

ξ0pMq ď ξ1pMq ď ¨ ¨ ¨ ď ξnpMq ď ξn`1pMq ď ¨ ¨ ¨ ď ξpMq,

and the equality
ξpMq “ lim

nÑ8
ξnpMq

holds. Our main results give expressions for the n-th approximated ξ-invariant of modules belonging to the
subcategories AnpRq, EnpRq, or HnpRq.

Theorem 1.4 (Theorems 4.14, 4.16 and Proposition 4.17). Let R be a commutative noetherian local ring
with residue field k. Let M be a finitely generated R-module, and let n ě 0 be an integer.

(1) Suppose that M belongs to AnpRq. Take a minimal n-AB approximation 0 Ñ YM Ñ XM Ñ M Ñ 0 of
M . Then ξnpMq coincides with the rank of the maximal free summand of XM .
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(2) Suppose that M belongs to EnpRq. Then the following conditions are equivalent:
(i) The equality ξnpMq “ 0 holds.
(ii) For every R-homomorphism f : M Ñ Z, where Z is a finitely generated R-module of projective

dimension at most n, f bR k “ 0.
(3) Suppose that M belongs to HnpRq. For any n-FPD hull 0 Ñ M Ñ Y Ñ X Ñ 0 of M , the equality

ξnpMq “ µpY q ´ µpXq holds.

The minimality of the n-AB approximation appearing above is defined in the same way as in the case
of MCM approximations; see Definition 4.7. We should mention that our main Theorem 1.4 recovers both
Theorem 1.1 due to Auslander and Theorem 1.3 due to Martsinkovsky; it is also worth noting that our
methods give a much more elementary proof to Martsinkovsky’s theorem, whose original proof is based on
differential graded structures of free resolutions. We remark that the proof of Theorem 1.1(2) usually relies
on the existence of an FPD hull, whereas our approach requires only the weaker assumption that M belongs
to EnpRq.

The organization of this paper is as follows. In Section 2, we state several notions and their basic properties
for later use. In particular, we recall some fundamental concepts from stable module theory and the notion of
approximations in the sense of Auslander–Smalø. In Section 3, for a general two-sided noetherian ring Λ, we
describe the behavior of the subcategories AnpΛq, EnpΛq, and HnpΛq and their relation to Auslander’s grade
theory. Some of the results in this section are reformulations of results from [3, 30, 31], but we give explicit
constructions of n-AB approximations, n-origin extensions, and n-FPD hulls. We also prove the converse of a
theorem of Auslander–Bridger concerning the existence of n-spherical filtrations mentioned above. In Section
4, we study the n-th approximated ξ-invariant over commutative noetherian local rings. The approach taken
by Martsinkovsky in [26–28] to investigate the ξ-invariant relies on the theory of complexes, whereas our
approach is based on the theory of stable module categories. We not only prove Theorem 1.4, but also
investigate when the sequence of approximated ξ-invariants stabilizes, and how it behaves modulo a regular
element. As a consequence, we refine various results of Martsinkovsky; see Corollary 4.23.

2. Preliminaries

Throughout this paper, assume that all rings are two-sided noetherian, and call right modules simply
modules. Let Λ be a two-sided noetherian ring. We denote by modΛ the category of finitely generated
(right) Λ-modules, and by projΛ the category of finitely generated projective Λ-modules. The opposite ring
of Λ is denoted by Λop, and the Λ-dual HomΛp´,Λq is denoted by p´q˚.

Definition 2.1. We denote by modΛ the stable category of modΛ. The objects of modΛ are the same as
those of modΛ. For objects X,Y in modΛ, the morphism set is defined by

HommodΛpX,Y q “ HomΛpX,Y q “ HomΛpX,Y q{PpX,Y q,

where PpX,Y q denotes the subgroup of HomΛpX,Y q consisting of Λ-homomorphisms that factor through
some projective module. For any Λ-homomorphism f : X Ñ Y , we denote by f the image of f in HomΛpX,Y q.

The following syzygy functor and (Auslander) transpose functor play a central role in the theory of stable
module categories.

Definition 2.2. Let M be a finitely generated Λ-module and take a (finite) projective presentation P1
B
ÝÑ

P0 Ñ M Ñ 0.

(1) We write the image of B as ΩM and call it the syzygy of M . Then ΩM is uniquely determined by M up
to projective summands. Taking the syzygy induces an additive functor Ω : modΛ Ñ modΛ. For each
integer n ě 1, we define Ωn inductively by Ωn “ Ω ˝ Ωn´1.

(2) We write the cokernel of the Λ-dual B˚ as TrM and call it the (Auslander) transpose ofM . Then TrM is
uniquely determined byM up to projective summands. Taking the transpose induces an anti-equivalence
Tr : modΛ Ñ modΛop.

It is well known that the pair of endofunctors pTrΩTr,Ωq on the stable category modΛ forms an adjoint
pair; see [3] or [30, Section 4] for instance. Similarly, for any integer n ě 1, the pair pTrΩnTr,Ωnq also forms
an adjoint pair; that is, there are functorial isomorphisms

θnM,N : HomΛpM,ΩnNq
„

ÝÑ HomΛpTrΩnTrM,Nq
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for all M , N P modΛ. We denote the counit morphism of the above adjoint pair by ψnp´q : Tr Ω
nTrΩnp´q Ñ

p´q. That is, for each M P modΛ, the morphism ψnM in modΛ is given by

ψnM “ θnΩnM,M p1ΩnM q : Tr ΩnTrΩnM Ñ M.

Here, we recall the notions of right and left approximations by subcategories, as well as right and left
minimality of morphisms, in the sense of Auslander and Smalø [8].

Definition 2.3. Let A be an additive category, and let X be a subcategory of A .

(1) A morphism f : X Ñ M in A is called a right X -approximation of M if X is an object of X , and for
any morphism f 1 : X 1 Ñ M with X 1 P X , there exists a morphism p : X 1 Ñ X such that f 1 “ f ˝ p. In
other words, the map HomA pX 1, fq : HomA pX 1, Xq Ñ HomA pX 1,Mq is surjective for any X 1 P X .

(2) A morphism g :M Ñ X in A is called a left X -approximation of M if X is an object of X , and for any
morphism g1 : M Ñ X 1 with X 1 P X , there exists a morphism q : X Ñ X 1 such that g1 “ q ˝ g. In other
words, the map HomA pg,X 1q : HomA pX,X 1q Ñ HomA pM,X 1q is surjective for any X 1 P X .

Definition 2.4. Let A be an additive category, and let f : X Ñ Y be a morphism in A .

(1) The morphism f is said to be right minimal if every morphism p : X Ñ X satisfying f ˝ p “ f is an
automorphism.

(2) The morphism f is said to be left minimal if every morphism q : Y Ñ Y satisfying q ˝ f “ f is an
automorphism.

We will always deal with approximations within the category modΛ of finitely generated Λ-modules.
For morphisms f : P Ñ M and g : M Ñ Q in modΛ, where P,Q P projΛ, note that f is a right projΛ-
approximation if and only if f is surjective, and g is a left projΛ- approximation if and only if g˚ is surjective.

The notion of grade, introduced in the 1950s by D. Rees in commutative ring theory, plays a central role
in this paper as well. The theory of grade over noncommutative rings has also been extensively studied; see,
for example, [2, 3, 6, 7, 18].

Definition 2.5. Let M be a Λ-module. The grade of M , written as gradeΛM , is defined to be the smallest
integer i ě 0 such that ExtiΛpM,Λq ‰ 0.

3. Auslander’s grade theory and approximation theory

In this section, we consider approximation theory over general two-sided noetherian rings. The results
presented in this section will play an important role in the next section.

Throughout this section, let Λ be a two-sided noetherian ring. The theory of n-AB approximations
described below was developed by Auslander and Bridger [3]. Here, “AB” stands for both Auslander–Bridger
and Auslander–Buchweitz. The existence of n-origin extensions, named by Kato [21], was also established
by Auslander and Bridger.

Definition 3.1. Let Λ be a two-sided noetherian ring, and let M be a finitely generated Λ-module. Let
n ě 0 be an integer.

(1) A short exact sequence 0 Ñ Y Ñ X Ñ M Ñ 0 in modΛ is called an n-AB approximation of M if Y

has projective dimension at most n´ 1 and ExtiΛpX,Λq “ 0 for all 1 ď i ď n. We denote by AnpΛq the
subcategory of modΛ consisting of modules having n-AB approximations.

(2) A short exact sequence 0 Ñ X Ñ M ‘ P Ñ Y Ñ 0 in modΛ is called an n-origin extension of M if P

is projective, Y has projective dimension at most n and ExtiΛpX,Λq “ 0 for all 1 ď i ď n. We denote by
EnpΛq the subcategory of modΛ consisting of modules having n-origin extensions.

(3) A short exact sequence 0 Ñ M Ñ Y Ñ X Ñ 0 in modΛ is called an n-finite projective dimension

hull (simply, n-FPD hull) of M if Y has projective dimension at most n and ExtiΛpX,Λq “ 0 for all
1 ď i ď n` 1. We denote by HnpΛq the subcategory of modΛ consisting of modules having n-fulls.

Let us record some immediate consequences from the definitions of the three subcategories above.

Remark 3.2. Let n ě 0 be an integer. Denote by TnpΛq the subcategory of modΛ consisting of modules M

satisfying ExtipM,Λq “ 0 for all 1 ď i ď n. Similarly, denote by PnpΛq the subcategory of modΛ consisting
of modules M with projective dimension at most n.
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(1) By definition, we have A0pΛq “ E0pΛq “ modΛ. Moreover, as will be stated later, a consequence
of the approximation theory developed by Auslander and Bridger shows that A1pΛq “ modΛ. The
subcategory H0pΛq is nothing but the subcategory of modΛ consisting of finitely generated torsionless
Λ-modules. Here, for the natural homomorphism ϕM : M Ñ M˚˚ given by ϕM pxqpfq “ fpxq for
x P M and f P M˚, the module M is said to be torsionless if ϕM is injective, and reflexive if ϕM is
an isomorphism.

(2) Suppose that a finitely generated Λ-module M has an n-AB approximation 0 Ñ Y Ñ X
f

ÝÑ M Ñ 0.
Then f is a right TnpΛq-approximation of M . Indeed, note that Ext1pX,Y q “ 0 for all X P TnpΛq
and Y P Pn´1pΛq. Therefore, for any morphism f 1 : X 1 Ñ M in modΛ with X 1 P TnpΛq, we have
an exact sequence

HompX 1, Xq Ñ HompX 1,Mq Ñ Ext1pX 1, Y q “ 0,

and so f 1 factors through f . Dually, if M admits an n-FPD hull 0 Ñ M
g

ÝÑ Y Ñ X Ñ 0, then g is a
left PnpΛq-approximation.

(3) There are inclusions AnpΛq Ą EnpΛq Ą HnpΛq. For example, suppose that a finitely generated Λ-
module M has an n-FPD hull 0 Ñ M Ñ Y Ñ X Ñ 0. Taking the syzygy of X , we have an exact
sequence 0 Ñ ΩX Ñ M ‘P Ñ Y Ñ 0 with P P projΛ. This sequence is an n-origin hull of M . The
other inclusion is proved in a similar way.

The grade of Ext modules has been actively studied, mainly in the representation theory of non-
commutative rings; see, for example, [3,6,7,15,17,18,30]. The behavior of the subcategories AnpΛq, EnpΛq, and
HnpΛq defined above is closely related to grade theory. The terminology in (1) below is due to Gélinas [15].

Definition 3.3. Let n ě 0 be an integer.

(1) LetM be a finitely generated Λ-module. We say thatM satisfies the n-th grade condition if the inequality
gradeΛop ExtiΛpM,Λq ě i holds for every 1 ď i ď n.

(2) We say that the ring Λ satisfies the p˚nq-condition if every finitely generated Λ-module Z with projective
dimension at most n satisfies the n-th grade condition.

The condition in (2) was considered in [3, Remark on page 70], and serves as a key connection between
approximation theory and grade theory. Typical examples of modules satisfying the n-th grade condition are
n-spherical modules. For an integer n ą 0, a finitely generated Λ-module M is said to be n-spherical if it
has projective dimension at most n and satisfies ExtiΛpM,Λq “ 0 for all 1 ď i ď n´ 1. For further details on
spherical modules, see also [3, 15, 29].

Lemma 3.4. Let n ą 0 be an integer. Then the following statements hold.

(1) Every n-spherical module satisfies the n-th grade condition.
(2) Every noetherian ring satisfies the condition p˚1q.
(3) Every commutative noetherian ring satisfies the condition p˚mq for all integers m ą 0.

Proof. The statement (1) is a consequence of [29, Theorem 1.1]. By setting n “ 1 in (1), we obtain (2). The
statement (3) is nothing but [3, Corollary 4.18]. �

The notion of n-torsionfree modules plays an important role in the stable module theory developed by
Auslander and Bridger. Let n ě 0 be an integer. A finitely generated Λ-module M is said to be n-torsionfree
if ExtiΛoppTrM,Λq “ 0 for all 1 ď i ď n. For a finitely generated Λ-module M , we have the Auslander exact
sequence [2, 3]:

0 Ñ Ext1ΛoppTrM,Λq Ñ M
ϕM

ÝÝÑ M˚˚ Ñ Ext2ΛoppTrM,Λq Ñ 0.

This exact sequence implies that 1-torsionfreeness is equivalent to being torsionless, and 2-torsionfreeness
is equivalent to being reflexive. The following theorem is a consequence of Auslander–Bridger theory and
provides a fundamental result on the existence of n-AB approximations.

Theorem 3.5 (Auslander–Bridger). Let M be a finitely generated Λ-module and n ą 0 an integer. Consider
the following conditions.

(1) One has the inequality gradeΛop ExtiΛpM,Λq ě i´ 1 for all 1 ď i ď n´ 1.
(2) The i-th syzygy ΩiM is i-torsionfree for all 1 ď i ď n.
(3) The n-th syzygy ΩnM is n-torsionfree.
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(4) The module M is an object of AnpΛq, i.e., M has an n-AB approximation.

Then the implications p1q ðñ p2q ùñ p3q ðñ p4q hold. If the equivalent conditions (3) and (4) are satisfied,
then for a right projΛ-approximation s : P Ñ M of M , the short exact sequence

0 Ñ Y Ñ TrΩnTrΩnM ‘ P
pψn

M , sq
ÝÝÝÝÝÑ M Ñ 0,

where Y “ KerpψnM , sq, gives an n-AB approximation of M . Also, if Λ satisfies the p˚n´1q-condition, then
all conditions are equivalent. In particular, when Λ is commutative, all conditions are equivalent.

Proof. The equivalence p1q ðñ p2q is nothing but [3, Proposition 2.26]. The implication p2q ùñ p3q is
clearly true. The equivalence p3q ðñ p4q is also nothing but [3, Proposition 2.21], whose proof shows that
the morphism ψnM : Tr ΩnTrΩnM Ñ M gives an n-AB approximation. If Λ satisfies the p˚n´1q condition,

then the implication p3q ùñ p2q follows from [3, Corollary 2.27]. �

Next, we describe the relationship between n-origin extensions and the n-th grade condition. To do this,
the notion of representation by monomorphisms plays an important role. A Λ-homomorphism f : X Ñ Y

of finitely generated Λ-modules is said to be represented by monomorphisms if there exist P,Q P projΛ and
Λ-homomorphisms s, t, u such that the homomorphismˆ

f s

t u

˙
: X ‘ P Ñ Y ‘Q

is a monomorphism. It is easy to see that this condition is equivalent to the existence of a projective module
Q P projΛ and a Λ-homomorphism t : X Ñ Q such that the map

`
f
t

˘
: X Ñ Y ‘ Q is a monomorphism.

For the theory of representation by monomorphisms, we refer the reader to [3,23,30]. Under this notion, the
following theorem holds. Auslander and Bridger proved that the n-th grade condition implies the existence of
n-origin extensions and n-spherical approximations. We will prove the converse of Auslander and Bridger’s
theorem.

Theorem 3.6. Let M be a finitely generated Λ-module and n ě 0 an integer. Consider the following
conditions.

(1) One has the inequality gradeΛop ExtiΛpM,Λq ě i for all 1 ď i ď n.
(2) One has the inequality gradeΛop ExtiΛpM,Λq ě i ´ 1, and the morphism ψiM : TrΩi TrΩiM Ñ M is

represented by monomorphisms for all 1 ď i ď n.
(3) The module M has an n-th spherical approximation, i.e., there exists a filtration

Mn Ă Mn´1 Ă ¨ ¨ ¨ Ă M1 Ă M0 “ M ‘ P

with P P projΛ, such that for every 1 ď k ď n, the following conditions hold: ExtiΛpMk,Λq “ 0 for all
1 ď i ď k, the quotient Mk´1{Mk is k-spherical, and the Λ-dual map M˚

k´1 Ñ M˚
k is surjective.

(4) The module M is an object of EnpΛq, i.e., M has an n-origin extension.
(5) The module M has an n-origin extension 0 Ñ X Ñ M ‘ P Ñ Y Ñ 0 such that the Λ-dual sequence

0 Ñ Y ˚ Ñ pM ‘ P q˚ Ñ X˚ Ñ 0 is also exact.

(6) The module M is an object of AnpΛq, and there exists an n-AB approximation 0 Ñ Z Ñ X
f

ÝÑ M Ñ 0
such that the homomorphism f : X Ñ M is represented by monomorphisms.

Then the implications p1q ðñ p2q ðñ p3q ùñ p4q ðñ p5q ðñ p6q hold. When the equivalent conditions

p4q–p6q hold, for any n-AB approximation 0 Ñ Z Ñ X
f

ÝÑ M Ñ 0 of M with f represented by monomor-

phisms, and for any left projΛ-approximation s : X Ñ P of X, the homomorphism
`
f
s

˘
: X Ñ M ‘ P is

injective and the short exact sequence

0 Ñ X
pf
sq

ÝÝÑ M ‘ P Ñ Y Ñ 0,

where Y “ Coker
`
f
s

˘
, is an n-origin extension of M . Moreover, if Λ satisfies the p˚nq-condition, then all the

conditions are equivalent. In particular, when Λ is commutative, all conditions are equivalent.

Proof. The equivalence p1q ðñ p2q is none other than [3, Corollary 2.32]. The implications p1q ùñ p3q
and p1q ùñ p5q follow from [3, Theorem 2.37] and [3, Theorem 2.41], respectively. To prove the implication
p3q ùñ p1q, suppose that M admits an n-spherical filtration

Mn Ă Mn´1 Ă ¨ ¨ ¨ Ă M1 Ă M0 “ M ‘ P.
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For each 1 ď k ď n, set Ck “ Mk´1{Mk. Since the Λ-dual map M˚
k´1 Ñ M˚

k is surjective, we obtain a long
exact sequence

0 Ñ Ext1pCk,Λq Ñ Ext1pMk´1,Λq Ñ Ext1pMk,Λq Ñ Ext2pCk,Λq Ñ ¨ ¨ ¨ .

By assumption, we have isomorphisms ExtkpCk,Λq – ExtkpMk´1,Λq and ExtjpMk´1,Λq – ExtjpMk,Λq for
all j ą k. Therefore, for every 1 ď i ď n, we obtain

ExtipM,Λq – ExtipM0,Λq – ExtipM1,Λq – ¨ ¨ ¨ – ExtipMi´1,Λq – ExtipCi,Λq.

Since Ci is i-spherical, it follows from Lemma 3.4 that gradeExtipM,Λq “ gradeExtipCi,Λq ě i.
Let us prove the equivalence between the conditions p4q, p5q and p6q. The implication p5q ùñ p4q clearly

holds. Next, we prove the implication p4q ùñ p6q. Assume the condition (4) holds. Then M has an n-

origin extension 0 Ñ X
pf
sq

ÝÝÑ M ‘ P Ñ Y Ñ 0. Taking a syzygy of Y , we obtain a short exact sequence

0 Ñ ΩY Ñ X ‘ Q
pf,tq

ÝÝÝÑ M Ñ 0, with Q projective. Since f is represented by monomorphisms, this
sequence gives the desired n-AB approximation. Conversely, assume condition p6q. Then there exists an n-

AB approximation 0 Ñ Z Ñ X
f

ÝÑ M Ñ 0 such that f is represented by monomorphisms. Since s : X Ñ P is
a left projΛ-approximation of X , it follows from [30, Theorem 3.3 and Lemma 3.4] that the homomorphism`
f
s

˘
: X Ñ M ‘ P is an injection. We obtain the following commutative diagram with exact rows and

columns:
0

��

0

��

0 // Z //

��

P //

p0

1q

��

Y // 0

0 // X
pf
sq

//

f

��

M ‘ P

p1,0q

��

// Y // 0

M

��

M

��

0 0,

where Y “ Coker
`
f
s

˘
. From the first row, we see that Y has projective dimension at most n, and the second

row 0 Ñ X
pf
sq

ÝÝÑ M ‘ P Ñ Y Ñ 0 is an n-origin extension of M1. Also, since s : X Ñ P is a left projΛ-

approximation of X , the Λ-dual homomorphism
`
f
s

˘˚
: pM ‘ P q˚ Ñ X˚ is surjective. Thus, the condition

(5) holds.
Finally, let us assume that Λ satisfies the condition p˚nq, and let M be an object of EnpΛq. By the

condition (5), there exists an n-origin extension 0 Ñ X Ñ M ‘ P Ñ Y Ñ 0 of M such that the Λ-dual
homomorphism pM ‘ P q˚ Ñ X˚ is surjective. Then, from the long exact sequence of Ext, we obtain

isomorphisms ExtipM,Λq – ExtipY,Λq for all 1 ď i ď n. Since Y has projective dimension at most n, the

assumption implies that gradeExtipM,Λq “ gradeExtipY,Λq ě i for all 1 ď i ď n. �

As stated in the theorems above, the existence of n-AB approximations and n-origin extensions is deeply
connected to the grade of Ext modules. From this, we obtain the following results concerning the properties
of the categories AnpΛq and EnpΛq.

Remark 3.7. Let n ą 0 be an integer.

(1) Let R be a commutative noetherian ring. Then, the subcategories AnpRq and C 1
npRq of modR are

closed under extensions. Indeed, by Theorem 3.5, a finitely generated R-moduleM is in AnpRq if and
only if gradeExtipM,Rq ě i´ 1 for all 1 ď i ď n. For a short exact sequence 0 Ñ X Ñ Y Ñ Z Ñ 0

in modR with X , Z P AnpRq, we have an exact sequence ExtipZ,Rq Ñ ExtipY,Rq Ñ ExtipX,Rq for
any i. When the Ext modules on both ends vanish by localization at a prime ideal p of R, the same
holds for the middle term. Hence, we have gradeExtipY,Rq ě i´1 for all 1 ď i ď n, and Y P AnpRq.

1The module Coker
`
f
s

˘
is called the stable cokernel of the morphism f , and is denoted by Coker f ; see [22, 23, 30].
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The same argument applies to EnpRq. On the other hand, HnpRq is, in general, not closed under
extensions. For example, if R is a non-Gorenstein artinian ring, then H1pRq, the subcategory of
torsionless modules in modR, is not closed under extensions.

(2) When do the subcategories AnpΛq and EnpΛq coincide with modΛ? The stronger conditions consid-
ered in Theorems 3.5 and 3.6 above have been studied. Namely, we consider the following:
(i) One has the inequality gradeExtipM,Λq ě i´ 1 for all M P modΛ and 1 ď i ď n.
(ii) One has the inequality gradeExtipM,Λq ě i for all M P modΛ and 1 ď i ď n.
Clearly, the condition (ii) implies (i). The condition (i) (resp. (ii)) is denoted by pdnq (resp. pbnq)
in [6], and by gnp0q (resp. gnp1q) in [18]. As summarized in [18], an n-Gorenstein ring (in the sense
of Auslander) satisfies the condition (ii). Moreover, it is stated there that condition (ii) for Λ is
equivalent to Λop being quasi n-Gorenstein. See also [19]. For a commutative noetherian ring R,
by [3, Proposition 2.41], the conditions (i) and (ii) are equivalent to the following one.
(iii) For any prime ideal p of R with depthRp ď n ´ 1, the localization Rp is Gorenstein.

The situation where Ext modules have higher grade is considered in [30, Section 4]. As a consequence, the
following proposition is obtained.

Proposition 3.8. LetM be a finitely generated Λ-module, and let n, k ě 0 be integers. Consider the following
conditions.

(1) One has the inequality gradeΛop ExtiΛpM,Λq ě i` k for all 1 ď i ď n.
(2) The module M has an n-origin extension 0 Ñ X Ñ M ‘ P Ñ Y Ñ 0 such that Y is k-torsionfree.
(3) The module M has an n-origin extension 0 Ñ X Ñ M ‘ P Ñ Y Ñ 0 such that Y is k-torsionfree and

the Λ-dual sequence 0 Ñ Y ˚ Ñ pM ‘ P q˚ Ñ X˚ Ñ 0 is also exact.

Then the implications p1q ùñ p2q ðñ p3q hold. Moreover, if Λ satisfies the p˚n`kq-condition, then all
conditions are equivalent. In particular, when Λ is commutative, all conditions are equivalent.

Proof. The implications p1q ùñ p2q ðñ p3q follow from [30, Theorems 3.8 and 4.6]. Assume that Λ satisfies
the p˚n`kq-condition and that condition (3) holds. Then, since Y is k-torsionfree, it follows from [3, Theorem
2.17] that there exists Y 1 P modΛ such that Y is the k-th syzygy of Y 1. Since Y has projective dimension at
most n, Y 1 has projective dimension at most n ` k. In this case, by considering the long exact sequence of
Ext, we obtain isomorphisms ExtipM,Λq – ExtipY,Λq – Exti`kpY 1,Λq for all 1 ď i ď n. Therefore, we can

conclude that gradeExtipM,Λq “ gradeExti`kpY 1,Λq ě i` k for all 1 ď i ď n.
�

Finally, we discuss the relationship between the existence of n-FPD hulls and higher torsionfreeness. The
following theorem is essentially obtained in [31, Theorem 2.3] and its proof. However, since that paper
assumes commutativity of the ring, we give the precise statement in our general setting.

Theorem 3.9. Let M be a finitely generated Λ-module and n ě 0 an integer. Then the following are
equivalent.

(1) The n-th syzygy ΩnM is pn ` 1q-torsionfree.
(2) The module M is an object of HnpΛq, i.e., M has an n-FPD hull.
(3) The module M is an object of AnpΛq, and there exists an n-AB approximation 0 Ñ Z Ñ W Ñ M Ñ 0

of M such that W is torsionless.
(4) The module M is an object of EnpΛq, and there exists an n-origin extension 0 Ñ X 1 Ñ M ‘P Ñ Y 1 Ñ 0

of M such that X 1 is torsionless.

When the equivalent conditions above hold, for any n-AB approximation 0 Ñ Z Ñ W
f

ÝÑ M Ñ 0 with W
torsionless and any left projΛ-approximation s :W Ñ P of W , the exact sequence

0 Ñ M Ñ Y Ñ X Ñ 0

obtained from the pushout diagram, where Y “ Coker
`
f
s

˘
and X “ Coker s, is an n-FPD hull of M .

Proof. The implications p2q ùñ p4q ùñ p3q follow by taking syzygies of the modules on right-hand side of
the sequence. The implication p3q ùñ p1q and the construction of the n-FPD hull in this case follow from
the proof of the implication p1q ùñ p2q in [31, Theorem 2.3]. Note that the proof of the equivalence of
the conditions (1), (2), and (3) in [31, Theorem 2.3] does not rely on the commutativity of the ring. The
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equivalence p1q ðñ p2q in our theorem is precisely the same as the equivalence of conditions (1) and (2)
in [31, Theorem 2.3]. �

As a consequence of the theorems above, we obtain the following inclusions among our subcategories. For
a subcategory X of modΛ, we denote by ΩnX the subcategory consisting of the n-th syzygies of objects in
X for n ě 0.

Corollary 3.10. Let n ě 0 be an integer.

(1) We have the following descending chain of subcategories of modΛ.

AnpΛq Ą C
1
npΛq Ą HnpΛq Ą ΩAn`1pΛq Ą ΩC

1
n`1pΛq Ą ΩHn`1pΛq Ą Ω2

An`2pΛq Ą ¨ ¨ ¨ .

(2) Suppose that Λ satisfies the condition p˚n´1q (e.g., Λ is commutative). Then we have the following
descending chain of subcategories of modΛ.

A0pΛq “ modΛ “ A1pΛq Ą A2pΛq Ą ¨ ¨ ¨ Ą An´1pΛq Ą AnpΛq.

(3) Suppose that Λ satisfies the condition p˚nq (e.g. Λ is commutative). Then we have the following descend-
ing chain of subcategories of modΛ.

C
1
0pΛq “ modΛ Ą C

1
1pΛq Ą C

1
2pΛq Ą ¨ ¨ ¨ Ą C

1
n´1pΛq Ą C

1
npΛq.

Proof. It is enough to prove the statement (1) that the inclusion HnpΛq Ą ΩAn`1pΛq holds true. But, this
is a direct consequence of the equivalences p3q ðñ p4q in Theorem 3.5 and p1q ðñ p2q in Theorem 3.9. The
statement (2) follows from the assumption and Theorem 3.5. In fact, in this situation, for any 1 ď k ď n and

any M P modΛ, the conditions M P AkpΛq and gradeExtipM,Λq ě i ´ 1 for all 1 ď i ď k are equivalent.
The statement (3) can be proved similarly. �

At the end of this section, we state some remarks on the category HnpΛq. The existence of n-FPD hull is
closely related to the delooping level of modules introduced by Gélinas [15].

Remark 3.11. (1) By the above corollary, if Λ satisfies the condition p˚nq, then the inclusions AnpΛq Ą
An´1pΛq and EnpΛq Ą En´1pΛq hold. The same is not necessarily true for HnpΛq, even when Λ is
commutative. Indeed, let R be a commutative noetherian local ring with residue field k, and assume
that t “ depthR ą 0. Then, by [15, Theorem 3.1], the module Ωtk is pt ` 1q-torsionfree. However,
it is easily seen that Ωik is not pi` 1q-torsionfree for any 0 ď i ă t.

(2) Gélinas [15] defined the delooping level of a finitely generated Λ-module M , which is denoted by
dellΛM , as follows.

dellΛM “ inftn ě 0 | ΩnM is a direct summand of Ωn`1N in modΛ for some N P modΛu.

He also defined the delooping level dell Λ of the ring Λ by dell Λ “ suptdellΛ S | S is simpleu. He
proved that if Λ satisfies a certain grade condition, then the (little) finitistic dimension of Λop coincides
with dell Λ. Thus, the delooping level carries important information about the ring and has been
actively studied. The delooping level is related to the existence of n-FPD hulls in the following way:

If M has n-FPD hull, then the inequality dellΛM ď n holds.

This follows from Theorem 3.9 and [15, Theorem 1.13].

4. Approximating sequences for Martsinkovsky’s ξ-invariants

The δ-invariant for finitely generated modules over a commutative Gorenstein local ring was introduced
by Auslander in his unpublished paper [1]. Martsinkovsky [26] later defined the ξ-invariant over general com-
mutative noetherian local rings, so that it coincides with Auslander’s δ-invariant when the ring is Gorenstein.
In this section, we study a certain subsequence of the ξ-invariant. To state the definition, we first need some
preparation.

Let Λ be a two-sided noetherian ring, and let M , N P modΛ. In this setting, we consider the following
sequence of maps induced by taking syzygies:

HomΛpM,Nq
Ω

ÝÝÑ HomΛpΩM,ΩNq
Ω

ÝÝÑ ¨ ¨ ¨
Ω

ÝÝÑ HomΛpΩnM,ΩnNq
Ω

ÝÝÑ HomΛpΩn`1M,Ωn`1Nq
Ω

ÝÝÑ ¨ ¨ ¨
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Let π be the natural surjection HomΛpM,Nq ։ HomΛpM,Nq. For an integer n ě 0, we define a subgroup
VnpM,Nq of HomΛpM,Nq as the kernel of the composition

HomΛpM,Nq
π

ÝÑ HomΛpM,Nq
Ωn

ÝÝÑ HomΛpΩnM,ΩnNq.

That is,
VnpM,Nq “ tf P HomΛpM,Nq | Ωnf “ 0 in HomΛpΩnM,ΩnNqu.

We state here some properties of the subgroup VnpM,Nq, which will be used later.

Lemma 4.1. Let M , M 1, N and N 1 be finitely generated Λ-modules, and let n ě 0 be an integer. Then the
following hold.

(1) One has VnpM ‘M 1, Nq “ VnpM,Nq ‘ VnpM 1, Nq and VnpM,N ‘N 1q “ VnpM,Nq ‘ VnpM,N 1q.
(2) Assume that either M or N has projective dimension at most n. Then one has VnpM,Nq “

HomΛpM,Nq.
(3) Suppose that there is a surjection M ։ N of Λ-modules. Then, for any finitely generated Λ-module T ,

the abelian group VnpN, T q can be regarded as a subgroup of the abelian group VnpM,T q.

Proof. (1) The claim follows from the additivity of the natural composition map

HompM,Nq Ñ HompM,Nq Ñ HompΩnM,ΩnNq

with respect to M and N .
(2) Since we have HompΩnM,ΩnNq “ 0 by assumption, the claim follows immediately from the definition.
(3) The desired conclusion follows from the following commutative diagram:

HompN, T q �
�

//

nat.

��

HompM,T q

nat

��

HompΩnN,ΩnT q // HompΩnM,ΩnT q.

�

We define a subgroup VpM,Nq of HomΛpM,Nq as the union
Ť
ně0 VnpM,Nq, and obtain an ascending

chain of subgroups:

(4.1.1) V0pM,Nq Ă V1pM,Nq Ă ¨ ¨ ¨ Ă VnpM,Nq Ă Vn`1pM,Nq Ă ¨ ¨ ¨ Ă VpM,Nq.

Note that the ascending chain (4.1.1) stabilizes under suitable assumptions. For example, if R is a
commutative noetherian ring and Λ is a noetherian R-algebra, then the acceding chain (4.1.1) is a se-
quence of R-submodules of the finitely generated R-module HomΛpM,Nq. Hence, there exists an integer
m “ mpM,Nq ě 0 such that VℓpM,Nq “ VmpM,Nq for all integers ℓ ě m. In particular, we have
VpM,Nq “ VmpM,Nq.

Alternatively, when a Λ-moduleM is Ext-orthogonal to the ring Λ, the following result on the stabilization
of V˚pM,´q holds.

Lemma 4.2. Let a and b be integers with 0 ă a ď b. Suppose that M P modΛ satisfies ExtiΛpM,Λq “ 0 for
all i with a ď i ď b. Then, for any N P modΛ, the following equalities hold:

Va´1pM,Nq “ VapM,Nq “ ¨ ¨ ¨ “ Vb´1pM,Nq “ VbpM,Nq.

Proof. The syzygy module Ωa´1M satisfies ExtiΛpΩa´1M,Λq “ 0 for all 1 ď i ď b ´ a ` 1. Hence, by the

dual statement of [3, Theorem 2.17], the counit morphism ψb´a`1
Ωa´1M

: TrΩb´a`1 TrΩbM Ñ Ωa´1M is an

isomorphism in modΛ. Therefore, the claim follows from the following commutative diagram.

HompΩa´1M,Ωa´1Nq
Ωb´a`1

//

Hompψb´a`1

Ωa´1M
,ΩnNq –

��

HompΩbM,ΩbNq

HompTrΩb´a`1 TrΩbM,Ωa´1Nq
θ
b´a`1

ΩbM,Ωa´1N

–
// HompΩbM,ΩbNq

�
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In the remainder of this section, we further assume that R is a commutative noetherian local ring with
unique maximal ideal m and residue field k, and consider only the case Λ “ R. Under the above notation, we
denote VnpM,kq by VnpMq and VpM,kq by VpMq. We are now ready to define the ξ-invariant of a finitely
generated R-module M .

Definition 4.3. [26, 27] For a finitely generated R-module M , we define ξRpMq “ dimk VpMq and call it
the Martsinkovsky’s ξ-invariant of M . That is, ξRpMq is nothing but the dimension of the k-vector subspace

VpMq “ tf P HomRpM,kq | Ωmf “ 0 in HomRpΩmM,Ωmkq for some m ě 0u

of HomRpM,kq.

Remark 4.4. The above definition may look slightly different from Martsinkovsky’s original one. In [26],
for each integer i ě 0, ξiRpMq is defined as the dimension of the kernel of the natural homomorphism

ExtiRpM,kq Ñ }ExtiRpM,kq as a k-vector space, and ξ0RpMq is denoted by ξRpMq. Here, }ExtiRpM,kq denotes
the i-th Tate–Vogel cohomology module. When ΩiM is defined to be the ith syzygy of M arising from the
minimal free resolution, it is shown that ξiRpMq “ ξRpΩiMq. In this paper, to avoid confusion between ξiRpMq
and ξRpi,Mq (to be defined below), we do not use the former notation. The invariant ξRpMq “ ξ0RpMq defined
in [26] agrees with the one given in Definition 4.3. In [27], the subspace VpMq of HomRpM,kq is defined as
follows: Let P ‚

M and P ‚
k be minimal free resolutions of M and k, respectively. Then VpMq is defined as the

set of all R-homomorphisms f :M Ñ k satisfying that there exists a complex homomorphism f̃‚ : P ‚
M Ñ P ‚

k

with f̃m “ 0 for all m " 0 and H0pf̃‚q “ f . It is easy to see that the subspace VpMq given in this way also
agrees with the one described above.

Computing the ξ-invariant in practice is quite difficult, since it requires considering arbitrarily high syzygies
of morphisms. Thus, we consider an approximating sequence for the ξ-invariant.

Definition 4.5. Let M be a finitely generated R-module and n ě 0 an integer. We define ξRpn,Mq “
dimk VnpMq and call it the n-th approximated ξ-invariant of M . That is, ξRpn,Mq is the dimension of the
k-vector subspace of HomRpM,kq consisting of homomorphisms f P HomRpM,kq satisfying Ωnf “ 0.

In the introduction, ξRpn,Mq is written as ξnpMq. As is immediate from the definition, we obtain a
non-decreasing sequence of integers

ξRp0,Mq ď ξRp1,Mq ď . . . ď ξRpn,Mq ď ξRpn` 1,Mq ď . . . ď ξRpMq

and the equality limnÑ8 ξRpn,Mq “ ξRpMq. Moreover, the inequality ξRpMq ď µpMq clearly holds, where
µpMq is the minimal number of generators of M . Note that the equalities µRpMq “ dimkpM bR kq “
dimk HomRpM,kq hold.

The following proposition is an n-th approximated version of certain properties that play an important
role in computing the ξ-invariant (or Auslander’s δ-invariant). See also [26, Proposition 2.4] and [27, Lemma
5].

Proposition 4.6. Let M , N be finitely generated R-modules and n ě 0 an integer. Then the following hold.

(0) The 0-th approximated ξ-invariant ξRp0,Mq of M is the rank of the largest free summand of M .
(1) One has ξRpn,M ‘Nq “ ξRpn,Mq ` ξRpn,Nq.
(2) If M has projective dimension at most n, then ξRpn,Mq “ µRpMq.
(3) If there exists a surjection M ։ N of R-modules, then ξRpn,Mq ě ξRpn,Nq.

Proof. The statements (1) through (3) follow from parts (1) through (3) of Lemma 4.1, respectively. Thus,
it suffices to prove the statement (0). Suppose that M “ X ‘ R‘a, where X is a stable module and a ě 0.
Then, by assertions (1) and (2), we obtain the equalities ξp0,Mq “ ξp0, Xq ` ξp0, R‘aq “ ξp0, Xq `a. Hence,
it suffices to show that ξp0, Xq “ 0. Assume that a nonzero R-homomorphism f : X Ñ k factors through a
free module; that is, there exist b ą 0 and maps h : X Ñ R‘b and g : R‘b Ñ k such that f “ g ˝ h. Let
g “ pz1, z2, . . . , zbq : R‘b Ñ k with zi P R, and write h “ ph1, h2, . . . , hbq

T : X Ñ R‘b. Since f is nonzero,
there exists an element x P X such that

z1h1pxq ` z2h2pxq ` ¨ ¨ ¨ ` zbhbpxq “ 1 P k.
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It follows that there exists an integer 1 ď i ď b such that zihipxq ‰ 0 in k, and hence both zi and hipxq are
units in R. In particular, hi : X Ñ R is a split surjection, which contradicts the assumption that X is stable.
Therefore,

ξp0, Xq “ dimk Ker pHompX, kq ։ HompX, kqq “ 0.

�

To describe the relationship among the n-AB approximations, the n-FPD hulls (studied in the previous
section), and the nth approximated ξ-invariant, we recall the notion of minimality for such approximations
and hulls. This will also be needed to present the original definition of Auslander’s δ-invariant.

Definition 4.7. Let M be a finitely generated R-module and n ě 0 an integer.

(1) Suppose that M admits an n-AB approximation 0 Ñ Y
i

ÝÑ X
p

ÝÑ M Ñ 0. This approximation is said to
be minimal when X and Y have no nonzero direct summand in common through i. More precisely, this
means that for any direct sum decomposition X “ X0 ‘X1 with X0 Ă Im i, we have X0 “ 0.

(2) Suppose that M admits an n-FPD hull 0 Ñ M
j

ÝÑ Y 1 q
ÝÑ X 1 Ñ 0. This hull is said to be minimal when

X 1 and Y 1 have no nonzero direct summand in common through q. More precisely, this means that for
any direct sum decomposition X “ X0 ‘X1 with q´1pX0q X Im j “ p0q, we have X0 “ 0.

Recall that, for a Gorenstein local ring of Krull dimension d, a d-AB approximation is called a maximal
Cohen–Macaulay approximation (or simply, an MCM approximation). Similarly, a d-FPD hull (resp. a
d-origin extension) is simply called an FPD hull (resp, an origin extension).

The minimality of MCM approximations is discussed in various papers; see [1, 16, 25, 34–36] for instance.
It is easy to see that right minimality (resp. left minimality) implies minimality. Over a complete Gorenstein
local ring, a proof of the converse is given in [36, Lemma 2.2]. A proof in the non-complete case is given
in [16, Lemma 2.3]. We also note that an interesting theory on the minimality of origin extensions is developed
in [21]. Using arguments similar to those in [16,36], one can prove analogous results for n-AB approximations
and n-FPD hulls over local rings which are not necessarily Gorenstein. We also note that a proof avoiding
the assumption of completeness was given by Simon in [34].

Theorem 4.8. [34, Theorems 3.1 and 3.3] Let R be a local ring, M a finitely generated R-module and n ě 0
an integer.

(1) Suppose that M admits an n-AB approximation 0 Ñ Y
i

ÝÑ X
p

ÝÑ M Ñ 0. Then this approximation is
minimal if and only if the homomorphism p is right minimal.

(2) Suppose that M admits an n-FPD hull 0 Ñ M
j

ÝÑ Y 1 q
ÝÑ X 1 Ñ 0. Then this hull is minimal if and only

if the homomorphism j is left minimal.

We obtain an existence and uniqueness theorem for minimal n-AB approximations and n-FPD hulls.

Corollary 4.9. Let R be a local ring and n ě 0 an integer.

(1) Let M be a finitely generated R-module belonging to AnpRq. Then M admits a minimal n-AB approxi-
mation

0 Ñ YM
iMÝÝÑ XM

pM
ÝÝÑ M Ñ 0,

which is unique up to isomorphism of exact sequences inducing the identity on M .
(2) Let M be a finitely generated R-module belonging to HnpRq. Then M admits a minimal n-FPD hull

0 Ñ M
jM

ÝÝÑ YM
qM

ÝÝÑ XM Ñ 0,

which is unique up to isomorphism of exact sequences inducing the identity on M .

Proof. It suffices to prove (1), since (2) is its dual statement. By Theorem 3.5, M admits an n-AB approx-

imation 0 Ñ Y
i

ÝÑ X Ñ M Ñ 0. By removing any direct summands common to Y and X via i, we obtain
a minimal n-AB approximation of M . By Theorem 4.8, minimality is equivalent to right minimality, so the
lifting property and a standard argument yield the uniqueness of the minimal one up to isomorphism. See
also the proofs of [25, Proposition 11.13] and [36, Theorem 2.4]. �

Over a Gorenstein ring, Auslander’s δ-invariant is defined using the existence of minimal MCM approxi-
mations, as follows.
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Definition 4.10. [1, 5] Let R be a Gorenstein local ring and M a finitely generated R-module. Take a
minimal MCM approximation 0 Ñ YM Ñ XM Ñ M Ñ 0 of M and consider a decomposition XM – X ‘ F ,
where X is a stable module and F is a free module. Then the δ-invariant δRpMq of M is defined to be the
rank of the free module F . In other words, δRpMq is the rank of the largest free summand of the minimal
MCM approximation XM .

The definition of the ξ-invariant does not depend on the existence of approximations such as MCM ap-
proximations. However, Martsinkovsky showed in [26, Theorem 2.1 and Proposition 2.3] that the following
theorem holds over Gorenstein local rings.

Theorem 4.11 (Martsinkovsky). Let R be a Gorenstein local ring and M a finitely generated R-module.
Then the equality δRpMq “ ξRpMq holds true.

As in the theorem above, we aim to establish a method for computing the n-th approximated ξ-invariant
using n-AB approximations and n-FPD hulls. We begin with some preparations. When a module M is
Ext-orthogonal to the ring R, the following symmetry arises as a direct consequence of Lemma 4.2.

Corollary 4.12. Let M be a finitely generated R-module and n ě 0 an integer.

(1) Let a and b be integers with 0 ă a ď b. If ExtiRpM,Rq “ 0 for all a ď i ď b, then the equalities
ξRpa ´ 1,Mq “ ξRpa,Mq “ ¨ ¨ ¨ “ ξRpb ´ 1,Mq “ ξRpb,Mq hold true.

(2) Suppose ExtiRpM,Rq “ 0 for all 1 ď i ď n, Then ξRpj,Mq is the rank of the largest free summand of M
for any 0 ď j ď n.

Proof. The assertion (2) follows from the assertion and Proposition 4.6. The assertion (1) is a consequence
of Lemma 4.2. �

The following proposition is particularly useful in determining whether a given n-AB approximation is
minimal. The original result for MCM approximations over Gorenstein local rings was given by Auslander [1],
and an explicit proof in this case is provided in [36, Corollary 2.10].

Proposition 4.13. Let M be a finitely generated R-module and n ě 0 an integer. Suppose that M admits

an n-AB approximation 0 Ñ Y
i

ÝÑ X
p

ÝÑ M Ñ 0. Write X “ X ‘ F , where X is a stable module and
F is a free module, and write p “ pp0, p1q : X “ X ‘ F Ñ M . Then the composite homomorphism

F
p1ÝÑ M

π
։M{Im p0 is surjective, where π :M ։ Coker p0 “ M{Im p0 is the natural surjection. Hence, the

inequality µRpF q ě µRpCoker p0q holds. Moreover, the following conditions are equivalent.

(1) The approximation 0 Ñ Y
i

ÝÑ X
p

ÝÑ M Ñ 0 is minimal.

(2) The composite homomorphism F
p1

ÝÑ M
π
։ Coker p0 is a minimal free cover of Coker p0, that is, the

equality µRpF q “ µRpCoker p0q holds.

Proof. A similar argument to that in the proof of [36, Lemma 2.8] works in this case. Alternatively, an
explanation can also be found in [25, Lemma 11.26]. �

The following theorem is an analogue of Theorem 4.11, due to Martsinkovsky, for the n-th approximated
ξ-invariant. Here, we remark that it is not necessary to assume the Gorenstein property of the ring, and that
if M is an object of An, then ξRpn,Mq can be computed by using an n-AB approximation.

Theorem 4.14. Let M be a finitely generated R-module and n ě 0 an integer. Assume that M P AnpRq, and

take a minimal n-AB approximation 0 Ñ YM
iMÝÝÑ XM

pM
ÝÝÑ M Ñ 0. Then the n-th approximated ξ-invariant

ξRpn,Mq coincides with the rank of the largest free summand of XM .

Proof. Write XM “ X ‘ F , where X is a stable module and F is a free module, and write pM “ pp0, p1q :
X ‘ F Ñ M . Then X is a stable module satisfying ExtiRpX,Rq “ 0 for all 1 ď i ď n, and pM : XM Ñ M is
surjective. Hence, by Proposition 4.6 and Corollary 4.12(2), we obtain

µpF q “ ξpn, F q “ ξpn,X ‘ F q “ ξpn,XM q ě ξpn,Mq.
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Therefore, it suffices to show that ξpn,Mq ě µpF q. Let C “ Coker p0, and let π : M ։ Coker p0 denote the
natural surjection. We consider the following commutative diagram with exact rows and columns:

0

��

0

��

0 // VnpCq

��

// HompC, kq //

Hompπ,kq

��

HompΩnC,Ωnkq

HompΩnπ,Ωnkq

��

0 // VnpMq // HompM,kq // HompΩnM,Ωnkq.

We will show that Ωnπ : ΩnM Ñ ΩnC is the zero map in the stable module category modR. Indeed, in

the n-AB approximation 0 Ñ YM Ñ XM
pMÝÝÑ M Ñ 0, the module YM has projective dimension at most

n ´ 1. Therefore, by considering the long exact sequence of Ext, we see that ΩnpM : ΩnXM Ñ ΩnM is

an isomorphism in modR. Also, the morphism
`
1
0

˘
: X Ñ X ‘ F is an isomorphism in modR, and since

p0 “ pM ˝
`
1
0

˘
, it follows that Ωnp0 : ΩnX Ñ ΩnM is also an isomorphism in modR. Moreover, since the

composition π ˝ p0 : X Ñ M ։ C is the zero map, the composition Ωnπ ˝ Ωnp0 “ Ωnpπ ˝ p0q : ΩnX Ñ ΩnC
is also the zero map in modR. However, since Ωnp0 is an isomorphism, we conclude that Ωnπ “ 0 in

HompΩnM,ΩnCq.
Consequently, the homomorphism HompΩnπ,Ωnkq is the zero map, and the homomorphism Hompπ, kq

induces an injective homomorphism HompC, kq ãÑ VnpMq. On the other hand, by Proposition 4.13, we have
the equality µpF q “ µpCq. Therefore, we obtain

ξpn,Mq “ µpVnpMqq ě µpCq “ µpF q,

and the proof is completed. �

The following theorem was proved by Auslander [1] and announced at the Berkeley symposium on com-
mutative algebra held at MSRI in 1987.

Theorem 4.15 (Auslander). Let R be a Gorenstein local ring and M a finitely generated R-module. Then
δRpMq “ 0 if and only if every morphism f :M Ñ Z in modR with pdR Z ă 8 satisfies f bR k “ 0.

The theorem above given by Auslander is generalized as follows. Known proofs of the above theorem, such
as those described in [36, Lemma 2.11 and Corollary 2.12] or [20, Lemma 2.1 and Corollary 2.3], rely crucially
on the existence of FPD hulls. However, the following theorem can be proved under the sole assumption that
the module is an object of E 1

npRq; therefore it is not necessarily a submodule of a module of finite projective
dimension. Note that the implication (1) ùñ (2) in the following theorem is a refinement of [27, Lemma 9].

Theorem 4.16. Let M be a finitely generated R-module and n ě 0 an integer. Consider the following
conditions:

(1) One has ξRpn,Mq “ 0.
(2) Every morphism f :M Ñ Z in modR with pdR Z ď n satisfies f bR k “ 0.

Then the implication (1) ùñ (2) always holds. The converse also holds if M is an object of E 1
npRq.

Proof. Let us prove the implication (1) ùñ (2). Fix a morphism f : M Ñ Z in modR with pdZ ď n. We

consider the natural surjection π : Z ։ Z{mZ, and it suffices to show that the compositionM
f
ÝÑ Z

π
ÝÑ Z{mZ

is the zero map. We write π “ pπ1, π2, . . . , πrqT : M Ñ Z – k‘r via the isomorphism Z{mZ – k‘r, where
r “ µpZq. For each 1 ď i ď r, since ΩnZ is a free module, the morphism Ωnpπi ˝ fq “ Ωnπi ˝ Ωnf : ΩnM Ñ

ΩnZ Ñ Ωnk is zero in modR. Moreover, the assumption ξpn,Mq “ 0 implies that the homomorphism
HompM,kq Ñ HompΩnM,Ωnkq is injective. Therefore, for each 1 ď i ď r, the composition πi ˝ f : M Ñ
Z Ñ k is zero in modR, and we conclude that π ˝ f “ 0.

Next, assume that M P E 1
npRq, and let us prove the implication (2) ùñ (1). In particular, M is an object

of AnpRq, so by Corollary 4.9, there exists a minimal n-AB approximation 0 Ñ YM
iMÝÝÑ XM

pMÝÝÑ M Ñ 0.
By Theorem 4.14, there is an isomorphism XM – X ‘ R‘ξ, where X is a stable module and ξ “ ξpn,Mq.

Take a left projR-approximation s0 : X Ñ R‘m of X and consider an exact sequence X
s0ÝÑ R‘m Ñ

C Ñ 0, where C “ Coker s0. Since X is stable, it follows from Proposition 4.6(0) or its proof that the
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map s0 b k : X b k Ñ R‘m b k is the zero map, that is, we have m “ µpCq. By taking the direct
sum of the free module R‘ξ with the first two terms of the exact sequence, we obtain an exact sequence

XM
s

ÝÑ R‘pm`ξq Ñ C Ñ 0. Note that the homomorphism s “

ˆ
s0 0
0 1R‘ξ

˙
: XM “ X ‘R‘ξ Ñ R‘pm`ξq is

also a left projR-approximation ofXM . Then, since the assumptionM P EnpRq implies that pM : XM Ñ M is

represented by monomorphisms by Theorem 3.6, and since s : XM Ñ R‘pm`ξq is a left projR-approximation
ofXM , we obtain from [30, Theorem 3.3 and Lemma 3.4] that the homomorphism

`
pM
s

˘
: XM Ñ M‘R‘pm`ξq

is an injection. We consider the following commutative diagram with exact rows and columns, which appears
in the proof of Theorem 3.6 as well:

0

��

0

��

0 // YM
s˝iM

//

iM

��

F //

p0

1q

��

Coker
`
pM
s

˘
// 0

0 // XM

ppM
s q

//

pM

��

M ‘ F

p1,0q

��

// Coker
`
pM
s

˘
// 0

M

��

M

��

0 0,

where the free module R‘pm`ξq is denoted by F . From the first row, the module Coker
`
pM
s

˘
has projective

dimension at most n.
We will prove that the homomorphism F Ñ Coker

`
pM
s

˘
is a minimal free cover. If not, then there exists

a split monomorphism b : R Ñ F such that s ˝ iM “ pa, bq : YM “ Y 1 ‘R Ñ F . In this case, the upper left
part of the above commutative diagram decomposes as follows.

YM Y 1 ‘R
pa,bq

//

iM“pi0,i1q

��

F

p0

1q

��

XM

ppM
s q

// M ‘ F.

In particular, b “ s ˝ i1 holds. Since b is a split injection, so is i1. Hence, via the morphism iM “ pi0, i1q :
YM Ñ XM , the modules XM and YM share a common direct summand R. This contradicts the minimality
of our approximation. Therefore, the homomorphism F Ñ Coker

`
pM
s

˘
is a minimal free cover. Furthermore,

we obtain the following pushout diagram.

XM
s

//

pM
��

F //

��

C // 0

M
f

// Coker
`
pM
s

˘
// C // 0.

Since the module Coker
`
pM
s

˘
has projective dimension at most n, our assumption (2) implies that f b k “ 0.

This yields an isomorphism Coker
`
pM
s

˘ –
ÝÑ C b k by the exactness of the second row of the above pushout

diagram. On the other hand, since the homomorphism F Ñ Coker
`
pM
s

˘
is a minimal free cover, we have an

isomorphism F b k
–

ÝÑ Coker
`
pM
s

˘
. Consequently, the equalities

m “ µpCq “ µpCoker p pMs qq “ µpF q “ m` ξ

hold, and we conclude that ξpn,Mq “ ξ “ 0. �

Over a Gorenstein local ring, it was shown by Auslander [1] that the δ-invariant can be computed using an
FPD hull. Proofs and explanations can be found, for example, in [36, Lemma 2.11] and [25, Proposition 11.36].
Similarly, the n-th approximated ξ-invariant can also be computed using n-FPD hulls.
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Proposition 4.17. Let n ě 0 be an integer, and let M be an object of HnpRq. Then, for any n-FPD hull
0 Ñ Y Ñ X Ñ M Ñ 0, the equality ξRpn,Mq “ µRpY q ´ µRpXq holds.

Proof. Essentially, the same argument as in the proof of [36, Lemma 2.11] applies. For the reader’s conve-
nience, we give a proof.

Let 0 Ñ M Ñ YM Ñ XM Ñ 0 be the minimal n-FPD hull of M . First of all, we remark that for any
n-FPD hull 0 Ñ M Ñ Y Ñ X Ñ 0, the equality µpYM q ´ µpXM q “ µpY q ´ µpXq holds. This is because,
by Corollary 4.9, a minimal n-FPD hull can be obtained by removing common direct summands of X and
Y via the homomorphism Y Ñ X .

For the minimal n-AB approximation 0 Ñ YM
iMÝÝÑ XM

pM
ÝÝÑ M Ñ 0, it follows from Theorem 4.14 that

there is a decomposition XM – X‘R‘ξ, where X is stable and ξ “ ξpn,Mq. Since M P HnpRq, the module
XM is torsionless, and so is X . Therefore, there exists a short exact sequence 0 Ñ X Ñ R‘m Ñ X 1 Ñ 0.
As X is stable, we have m “ µpX 1q. We now consider the following pushout diagram:

0

��

0

��

YM

iM

��

YM

��

0 // XM
//

pM

��

R‘pm`ξq //

��

X 1 // o

0 // M

��

// Y 1 //

��

X 1 // 0

0 0

The short exact sequence 0 Ñ M Ñ Y 1 Ñ X 1 Ñ 0 gives an n-FPD hull of M . Moreover, since XM and YM
share no common free summand via iM , the homomorphism R‘pm`ξq Ñ Y 1 is a minimal free cover of Y 1.
Therefore, we obtain the equalities

µpYM q ´ µpXM q “ µpY 1q ´ µpX 1q “ m ` ξ ´m “ ξ “ ξpn,Mq.

�

Auslander [1] defined an invariant called the index of a Gorenstein local ring. Let pR,m, kq be a Gorenstein
local ring. The index of R is defined as the infimum of all integers n ě 0 such that δRpR{mnq ‰ 0. Many
interesting and deep studies have been done on this invariant; see, for example, [1,9,11–14,16,24,26,32,33,36,
37]. For the index of the ξ-invariant introduced by Martsinkovsky over an arbitrary commutative noetherian
local ring , the well-definedness is stated in [26, Proposition 4.3]. Although the proposition below is essentially
shown in the proof there, we shall present a more detailed statement with a proof based on stable module
theory. Let Himp´q denote the i-th local cohomology functor, that is, the i-th right derived functor of the
m-torsion functor Γmp´q, defined by ΓmpMq “ tx P M | mrx “ 0 for some r ą 0u for an R-module M . More

explicitly, we have Himp´q “ limÝÑną0
ExtiRpR{mn,´q.

Proposition 4.18. Assume that R has Krull dimension d. Then there exists an integer n ą 0 such that
ξRpd,R{mnq ‰ 0.

Lemma 4.19. [3, Lemma 1.35] Let Λ be a noetherian ring. Let 0 Ñ X Ñ Y Ñ Z Ñ 0 be a short exact
sequence in modΛ. Then there exists a long exact sequence

HomΛp´, Xq Ñ HomΛp´, Y q Ñ HomΛp´, Zq Ñ Ext1p´, Xq Ñ Ext1Λp´, Y q Ñ Ext1Λp´, Zq Ñ ¨ ¨ ¨

of functors. Hence, for M P modΛ, there is an injection HomΛp´,Mq ãÑ Ext1Λp´,ΩMq of functors.

Proof of Proposition 4.18. Consider the sequence of natural surjections

¨ ¨ ¨ ։ R{mn
πn,n´1

։ R{mn´1
։ ¨ ¨ ¨ ։ R{m2

π2,1

։ R{m.
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It follows from Lemma 4.19 that we obtain the following commutative diagram.

HompΩdk,Ωdkq
� _

��

// ¨ ¨ ¨ // HompΩdpR{mn´1q,Ωdkq
� _

��

// HompΩdpR{mnq,Ωdkq
� _

��

// ¨ ¨ ¨

Ext1pΩdk,Ωd`1kq // ¨ ¨ ¨ // Ext1pΩdpR{mn´1q,Ωd`1kq // Ext1pΩdpR{mnq,Ωd`1kq // ¨ ¨ ¨

Extd`1pk,Ωd`1kq // ¨ ¨ ¨ // Extd`1pR{mn´1,Ωd`1kq // Extd`1pR{mn,Ωd`1kq // ¨ ¨ ¨

Taking the direct limit, we obtain from Grothendieck’s vanishing theorem [10, Theorem 3.5.7] that

lim
ÝÑ
ną0

HompΩdpR{mnq,Ωdkq ãÑ lim
ÝÑ
ną0

Extd`1pR{mn,Ωd`1kq – Hd`1
m pΩd`1kq “ 0.

In particular, under the natural homomorphism HompΩdk,Ωdkq Ñ limÝÑną0
HompΩdpR{mnq,Ωdkq, the identity

map 1Ωdk is mapped to zero. Then there exists a sufficiently large integer n ą 0 such that for the composite

πn “ πn,n´1 ˝ ¨ ¨ ¨ ˝ π2,1 : R{mn ։ k, the morphism Ωdπn : ΩdpR{mnq Ñ Ωdk is zero in modR. Then
πn P VdpR{mnq, which means that ξpd,R{mnq “ 1. �

We compare the n-th approximated ξ-invariant over R with that over R{xR, where x P R is an R-regular
element. The following inequality holds true.

Proposition 4.20. Let M be a finitely generated R-module and n ą 0 an integer. Let x be an element of R
which is regular on both R and M . Then the following inequalities hold:

ξR{xRpn ´ 1,M{xMq ď ξRpn,Mq ď ξR{xRpn,M{xMq.

We shall need the following well-known lemmas to compare syzygies over R and those over R{xR.

Lemma 4.21. Let n ě 0 be an integer, and let x P m. Then there is a natural transformation

pΩnRp´qq bR R{xR Ñ ΩnR{xRpp´q bR R{xRq

of functors from modR to modpR{xRq. Moreover, if M is a finitely generated R-module and x is regular on
both R and M , then the morphism ΩnRM{xΩnRM Ñ Ωn

R{xRpM{xMq is an isomorphism in modpR{xRq.

Proof. Let M be a finitely generated R-module. From the commutative diagram with exact rows

0 // ΩRM //

x
��

F //

x
��

M //

x
��

0

0 // ΩRM // F // M // 0,

where F is a free cover of M , we obtain an exact sequence ΩR{xΩRM Ñ F {xF Ñ M{xM Ñ 0, and this
induces a natural transformation ΩRp´q{xΩRp´q Ñ ΩR{xRpp´q{xp´qq. For an integer n ą 1, a natural
transformation ΩnRp´q{xΩnRp´q Ñ Ωn

R{xRpp´q{xp´qq is defined, inductively. Indeed, assume that a natural

transformation Ωn´1
R p´q{xΩn´1

R p´q Ñ Ωn´1
R{xRpp´q{xp´qq is defined. Then, by the composition

ΩnRp´q{xΩnRp´q “ ΩRpΩn´1
R p´qq{xΩRpΩn´1

R p´qq

Ñ ΩR{xRpΩn´1
R p´q{xΩn´1

R p´qq Ñ ΩR{xRΩ
n´1
R{xRpp´q{xp´qq “ ΩnR{xRpp´q{xp´qq,

the desired natural transformation is defined. Suppose that x is R-regular and M -regular and take a finite

projective resolution P ‚ of M . Then, by considering the short exact sequence 0 Ñ P ‚ x
ÝÑ P ‚ Ñ P ‚{xP ‚ Ñ 0

of complexes, we have short exact sequences 0 Ñ ΩiRM
x
ÝÑ ΩiRM Ñ Ωi

R{xRpM{xMq Ñ 0 for all i ě 0. The

desired isomorphism is obtained. �

Lemma 4.22. Let n ě 1 be an integer, and let x P m be an R-regular element. Then the syzygy functor
ΩnR : modR Ñ modR induces a functor ΩnR : modpR{xRq Ñ modR. Moreover, for any integer m ě 0, there

exists a natural isomorphism of functors Ωm`1
R p´q

–
ÝÑ ΩR ˝ Ωm

R{xRp´q from modpR{xRq to modR.
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Proof. Applying the n-th syzygy functor ΩnR to any finitely generated R{xR-module yields a projective
R-module, so ΩnR : modpR{xRq Ñ modR is indeed induced.

Let N be a finitely generated projective R{xR-module. Take a finite free cover R‘n
։ N over R. Then

pR{xRq‘n
։ N is also a finite free cover over R{xR. Hence, we obtain the following commutative diagram

with exact rows and columns:

0

��

0

��

R‘n

��

R‘n

��

0 // ΩRN //

��

R‘n //

��

N // 0

0 // ΩR{xRN //

��

pR{xRq‘n //

��

N // 0

0 0

Applying ΩR to the first column, we obtain an isomorphism Ω2
RN

–
ÝÑ ΩRΩR{xRpNq in modR, which induces

a natural isomorphism of functors Ω2
Rp´q

–
ÝÑ ΩRΩR{xRp´q from modpR{xRq to modR. Form ą 1, we obtain

the desired natural isomorphism Ωm`1
R p´q

–
ÝÑ ΩRΩ

m
R{xRp´q by induction. Indeed, suppose that we have a

natural isomorphism ΩmR p´q
–

ÝÑ ΩRΩ
m´1
R{xRp´q. Then the composition of the following natural transformations

of functors from modpR{xRq to modR

Ωm`1
R p´q “ ΩRΩ

m
R p´q

–
ÝÑ ΩRΩRΩ

m´1
R{xRp´q “ Ω2

RΩ
m´1
R{xRp´q

–
ÝÑ ΩRΩRΩ

m´1
R{xRp´q “ ΩRΩ

m
R{xRp´q

yields the desired natural isomorphism. �

Proof of Proposition 4.20. We first prove the inequality ξRpn,Mq ď ξR{xRpn,M{xMq. To begin with, note
that there exists an isomorphism HomRpM,kq – HomR{xRpM{xM, kq; f ÞÑ f{xf . To prove the desired
inequality, it suffices to show that if an R-homomorphism f : M Ñ k satisfies ΩnRf “ 0 in modR, then the

morphism Ωn
R{xRpf{xfq is also zero in modpR{xRq. By Lemma 4.21, the following diagram commutes in

modpR{xRq:

ΩnRM{xΩnRM

–

��

Ωn
Rf{xΩn

Rf
// ΩnRk{xΩnRk

��

Ωn
R{xRpM{xMq

Ωn
R{xRpf{xfq

// Ωn
R{xRpkq

By assumption, the morphism ΩnRf{xΩnRf is zero in modpR{xRq, and so is Ωn
R{xRpf{xfq. Thus, the first

inequality is proved.
Next, we prove the inequality ξR{xRpn´ 1,M{xMq ď ξRpn,Mq holds true. That is, we need to show that

if Ωn´1
R{xRpf{xfq “ 0 in modpR{xRq, then it follows that ΩnRf “ 0 in modR. By Lemma 4.22, the following

commutative diagram commutes in modR:

ΩnRM
Ωn

Rf
//

Ωn
Rπ

��

ΩnRk

ΩnRpM{xMq
Ωn

Rpf{xfq
//

–

��

ΩnRk

–

��

ΩRΩ
n´1
R{xRpM{xMq

ΩRΩ
n´1

R{xR
pf{xfq

// ΩRΩ
n´1
R{xRpkq,
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where π :M ։M{xM is the natural surjection. Again by Lemma 4.22, the assumption that Ωn´1
R{xRpf{xfq “

0 in modpR{xRq implies that ΩRΩ
n´1
R{xRpf{xfq is the zero morphism in modR. It follows from the above

commutative diagram that ΩnRf “ 0 in modR, and the proof is completed. �

We collect several important results that are recovered as special cases of our results.

Corollary 4.23. Let M be a finitely generated R-module.

(1) Suppose that R is Gorenstein. Then the following hold.
(1-i) [26, Proposition 2.3] One has the equality δRpMq “ ξRpMq.
(1-ii) [1] The equality δRpMq “ 0 holds true if and only if any R-homomorphism f : X Ñ Z of finitely

generated R-modules with pdR Z ă 8 satisfies f bR k “ 0.
(1-iii) [1] For any FPD hull 0 Ñ M Ñ Y Ñ X Ñ 0 of M , one has the equality δRpMq “ µRpY q ´µRpXq.

(2) [28, Theorem 8] Let x be an element of R which is regular on both R and M . Then one has the equality
ξRpMq “ ξR{xRpM{xMq.

(3) [28, Theorem 12] Suppose that ExtiRpM,Rq “ 0 for all i ą 0. Then ξRpMq is the rank of the largest free
summand of M .

Proof. The statements (1-i) to (1-iii) follow from Theorem 4.14, Theorem 4.16, and Proposition 4.17, respec-
tively. The statement (2) follows from Proposition 4.20, since we have

ξR{xRpM{xMq “ lim
nÑ8

ξR{xRpn´ 1,M{xMq ď lim
nÑ8

ξRpn,Mq ď lim
nÑ8

ξR{xRpn,M{xMq “ ξR{xRpM{xMq

and the middle limit is none other than ξRpMq. The statement (3) follows from Corollary 4.12, which
implies that ξRpn,Mq “ ξRp0,Mq for all integers n ě 0. Indeed, from this equality we obtain that ξRpMq “
limnÑ8 ξRpn,Mq “ limnÑ8 ξRp0,Mq “ ξRp0,Mq. �
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