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AN APPROACH TO MARTSINKOVSKY'S INVARIANT
VIA AUSLANDER'S APPROXIMATION THEORY

YUYA OTAKE

ABSTRACT. Auslander developed a theory of the §-invariant for finitely generated modules over commutative
Gorenstein local rings, and Martsinkovsky extended this theory to the &-invariant for finitely generated mod-
ules over general commutative noetherian local rings. In this paper, we approach Martsinkovsky’s £-invariant
by considering a non-decreasing sequence of integers that converges to it. We investigate Auslander’s approx-
imation theory and provide methods for computing this non-decreasing sequence using the approximation.
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1. INTRODUCTION

The theory of maximal Cohen—Macaulay (abbreviated to MCM) approximations was established by Aus-
lander and Buchweitz [4], and has played an important role in Cohen—Macaulay representation theory. More-
over, Auslander showed that every finitely generated module M over a commutative Gorenstein local ring
admits a unique minimal MCM approximation in his unpublished paper [I], and defined the §-invariant of
M, denoted 6(M), using the approximation. Numerous interesting properties and applications of the delta
invariant have been discovered; see, for example, [BL0TTHT4LT6L20,3233,85,37,38], and also the detailed ex-
positions in [25l36]. Dual to the existence of MCM approximations, every finitely generated module M over a
Gorenstein local ring admits a finite projective dimension (abbreviated to FPD) hull0 - M - Y — X — 0.
Auslander [I] showed that the delta invariant can be computed via an FPD hull, and as a consequence, he
found striking properties of modules with null §-invariant. Here, we denote by p(M) the minimal number of
generators of an R-module M.

Theorem 1.1 (Auslander). Let R be a commutative Gorenstein local ring with residue field k, and let M be
a finitely generated R-module.
(1) For any FPD hull0 - M —Y — X — 0 of M, the equality 6(M) = p(Y') — p(X) holds.
(2) The following conditions are equivalent.
(i) The equality §(M) = 0 holds.
(ii) For every R-homomorphism f : M — Z with Z a finitely generated R-module of finite projective
dimension, f ®rk = 0.

Let us now move on to Auslander’s approximation theory over more general two-sided noetherian rings.
Auslander and Bridger [3] developed an approximation theory for modules satisfying certain grade conditions,
which refines the theory of MCM approximations over commutative Gorenstein local rings. Simon [34] studied
the dual notion of Auslander—Bridger approximations, called the n-hull. Over commutative Gorenstein local
rings, Kato [2I] constructed a theory of origin extensions, which lie between MCM approximations and FPD
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hulls. Here, over a general two-sided noetherian ring A, we formulate these approximations, extensions, and
hulls as follows. We denote by mod A the category of finitely generated right A-modules, and by pd, M the
projective dimension of a A-module M.

Definition 1.2. Let n > 0 be an integer. We define the full subcategories «7,(A), &,(A), and F4,(A) of
mod A as follows:

pd, Y <n—1and Ext)(X,A)=0forall1 <i<n

there is an exact sequence 0 - X - M @ P — Y — 0 in mod A such that
P is projective, pd, Y < n, and Exti(X,A)=0forall1<i<n } ’
there is an exact sequence 0 - M — Y — X — 0 in mod A such that
pd, Y <nand Exti(X,A)=0foralll<i<n+1 }

The short exact sequences appearing in the definitions of @7,(A), &,(A), and J4,(A) are called an n-AB
approzimation, n-origin extension, and n-FPD hull of M, respectively.

Under the above definition, we have the inclusions @7, (A) > &,(A) o J4,(A). The subcategories o7, (A)
and &,(A) have been essentially studied in the Auslander-Bridger theory [3]. In particular, they proved
that any finitely generated module satisfying the n-th grade condition (see Definition B33)) admits an n-origin
extension. More precisely, they used the n-th grade condition to construct a well-behaved filtration, called
an n-spherical filtration, and used it to prove the result. In Section 3 of the present paper, we prove the
converse: if a finitely generated module admits an n-spherical filtration, then it satisfies the n-th grade
condition. Furthermore, we show that if A satisfies a certain grade condition on modules of finite projective
dimension, then any finitely generated A-module admitting an n-origin extension also satisfies the n-th grade
condition. Specifically, when A is commutative, the following three conditions are equivalent: satisfying the n-
th grade condition, admitting an n-spherical filtration, and admitting an n-origin extension; see Theorem 3.6l
Also, the category 4%, (A) is related to the notion of delooping level, which was introduced by Gélinas [15]
and has been actively studied in recent years. In fact, as a consequence of Theorem B9 any object of 77, (A)
has delooping level at most n; see Remark B.TT|(2).

As a generalization of Auslander’s d-invariant, Martsinkovsky [26] introduced the &-invariant, which is
denoted by £(M), for a finitely generated module M over a commutative noetherian local ring R. He showed
that the following theorem.

there is an exact sequence 0 - Y — X — M — 0 in mod A such that
Ay (A) =< M € mod A ,

én(N) = {M € mod A

A (N) = {M € mod A

Theorem 1.3 (Martsinkovsky). Let R be a commutative Gorenstein local ring, and let M be a finitely
generated R-module. Then the equality 6(M) = £(M) holds.

Various properties that were known for the d-invariant have also been established for the &-invariant;
see [260H28]. However, the ¢-invariant is generally difficult to compute, as its definition involves Tate—Vogel
cohomology. Our strategy, therefore, is to instead treat the following invariant. Let R be a commutative
noetherian local ring with residue field k, and let M be a finitely generated R-module and n > 0 an integer.
We define the n-th approzimated &-invariant &, (M) by

&0 (M) := dimy, Ker (Hompg(M, k) = Homp(M, k) 25 Homp(Q" M, Q"k)),
where Homp(—, —) denotes the quotient of Homp(—,—) by the submodule consisting of homomorphisms
factoring through projective modules, 7 is the canonical surjection, and 2" denotes the n-th syzygy functor.
Then, we obtain a non-decreasing sequence of integers
So(M) <& (M) <+ < &(M) <&ua(M) < -+ < §(M),
and the equality
£(M) = lim £,(M)
holds. Our main results give expressions for the n-th approximated ¢-invariant of modules belonging to the
subcategories 7, (R), &,(R), or %, (R).
Theorem 1.4 (Theorems [AT4] and Proposition IIT). Let R be a commutative noetherian local ring
with residue field k. Let M be a finitely generated R-module, and let n = 0 be an integer.

(1) Suppose that M belongs to o, (R). Take a minimal n-AB approzimation 0 — Yy — Xy — M — 0 of
M. Then &,(M) coincides with the rank of the maximal free summand of X .



AN APPROACH TO MARTSINKOVSKY'S INVARIANT VIA AUSLANDER'S APPROXIMATION THEORY 3

(2) Suppose that M belongs to &,(R). Then the following conditions are equivalent:
(i) The equality &,(M) = 0 holds.
(ii) For every R-homomorphism f : M — Z, where Z is a finitely generated R-module of projective
dimension at most n, f ®r k = 0.
(3) Suppose that M belongs to H;,(R). For any n-FPD hull0 - M —Y — X — 0 of M, the equality
En(M) = p(Y) = u(X) holds.

The minimality of the n-AB approximation appearing above is defined in the same way as in the case
of MCM approximations; see Definition 271 We should mention that our main Theorem [[4] recovers both
Theorem [[L1] due to Auslander and Theorem [[L3] due to Martsinkovsky; it is also worth noting that our
methods give a much more elementary proof to Martsinkovsky’s theorem, whose original proof is based on
differential graded structures of free resolutions. We remark that the proof of Theorem [[T[2) usually relies
on the existence of an FPD hull, whereas our approach requires only the weaker assumption that M belongs
to &, (R).

The organization of this paper is as follows. In Section 2, we state several notions and their basic properties
for later use. In particular, we recall some fundamental concepts from stable module theory and the notion of
approximations in the sense of Auslander-Smalg. In Section 3, for a general two-sided noetherian ring A, we
describe the behavior of the subcategories 7, (A), &,(A), and .7, (A) and their relation to Auslander’s grade
theory. Some of the results in this section are reformulations of results from [3B0,BT], but we give explicit
constructions of n-AB approximations, n-origin extensions, and n-FPD hulls. We also prove the converse of a
theorem of Auslander—Bridger concerning the existence of n-spherical filtrations mentioned above. In Section
4, we study the n-th approximated £-invariant over commutative noetherian local rings. The approach taken
by Martsinkovsky in [26H28] to investigate the ¢-invariant relies on the theory of complexes, whereas our
approach is based on the theory of stable module categories. We not only prove Theorem [[.4] but also
investigate when the sequence of approximated £-invariants stabilizes, and how it behaves modulo a regular
element. As a consequence, we refine various results of Martsinkovsky; see Corollary .23

2. PRELIMINARIES

Throughout this paper, assume that all rings are two-sided noetherian, and call right modules simply
modules. Let A be a two-sided noetherian ring. We denote by mod A the category of finitely generated
(right) A-modules, and by proj A the category of finitely generated projective A-modules. The opposite ring
of A is denoted by A°P, and the A-dual Homp (—, A) is denoted by (—)*.

Definition 2.1. We denote by mod A the stable category of mod A. The objects of mod A are the same as
those of mod A. For objects X,Y in mod A, the morphism set is defined by

Homyeaa(X,Y) = Hom, (X,Y) = Homy (X, Y)/Z2(X,Y),

where Z(X,Y) denotes the subgroup of Homa (X,Y") consisting of A-homomorphisms that factor through
some projective module. For any A-homomorphism f : X — Y, we denote by f the image of f in Hom, (X, Y").

The following syzygy functor and (Auslander) transpose functor play a central role in the theory of stable
module categories.

Definition 2.2. Let M be a finitely generated A-module and take a (finite) projective presentation P; 2,

Py — M — 0.

(1) We write the image of ¢ as QM and call it the syzygy of M. Then QM is uniquely determined by M up
to projective summands. Taking the syzygy induces an additive functor €2 : mod A — mod A. For each
integer n > 1, we define Q" inductively by Q" = Qo Q"1

(2) We write the cokernel of the A-dual 0* as Tr M and call it the (Auslander) transpose of M. Then Tr M is
uniquely determined by M up to projective summands. Taking the transpose induces an anti-equivalence
Tr : mod A — mod A°P.

It is well known that the pair of endofunctors (Tr Q Tr, ) on the stable category mod A forms an adjoint
pair; see [3] or [30, Section 4] for instance. Similarly, for any integer n > 1, the pair (Tr Q™ Tr, Q™) also forms
an adjoint pair; that is, there are functorial isomorphisms

0y v : Hom, (M, Q"N) = Hom, (Tr Q" Tr M, N)
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for all M, N € mod A. We denote the counit morphism of the above adjoint pair by 1/1?_) Tr Q" Tr Q" (—) —
(—). That is, for each M € mod A, the morphism ¢}, in mod A is given by

%: egnMyM(].QnAl\f) :Tr Q" Te Q"M — M.

Here, we recall the notions of right and left approximations by subcategories, as well as right and left
minimality of morphisms, in the sense of Auslander and Smalg [§].

Definition 2.3. Let &/ be an additive category, and let X be a subcategory of 7.

(1) A morphism f: X — M in & is called a right X-approzimation of M if X is an object of X, and for
any morphism [/ : X’ — M with X’ € X, there exists a morphism p : X’ — X such that f' = fop. In
other words, the map Hom (X', f) : Hom (X', X) — Hom (X', M) is surjective for any X’ € X.

(2) A morphism g : M — X in &/ is called a left X-approximation of M if X is an object of X', and for any
morphism ¢’ : M — X’ with X’ € X, there exists a morphism ¢ : X — X’ such that ¢’ = qo ¢g. In other
words, the map Hom (g, X’) : Homg (X, X') — Homg (M, X') is surjective for any X’ € X.

Definition 2.4. Let & be an additive category, and let f: X — Y be a morphism in </

(1) The morphism f is said to be right minimal if every morphism p : X — X satisfying fop = f is an
automorphism.

(2) The morphism f is said to be left minimal if every morphism ¢ : Y — Y satisfying go f = f is an
automorphism.

We will always deal with approximations within the category mod A of finitely generated A-modules.
For morphisms f: P — M and g : M — @ in mod A, where P,Q € proj A, note that f is a right projA-
approximation if and only if f is surjective, and g is a left proj A- approximation if and only if g* is surjective.

The notion of grade, introduced in the 1950s by D. Rees in commutative ring theory, plays a central role
in this paper as well. The theory of grade over noncommutative rings has also been extensively studied; see,

for example, [2[31[6]7118].

Definition 2.5. Let M be a A-module. The grade of M, written as grade, M, is defined to be the smallest
integer i = 0 such that Ext) (M, A) # 0.

3. AUSLANDER’S GRADE THEORY AND APPROXIMATION THEORY

In this section, we consider approximation theory over general two-sided noetherian rings. The results
presented in this section will play an important role in the next section.

Throughout this section, let A be a two-sided noetherian ring. The theory of n-AB approximations
described below was developed by Auslander and Bridger [3]. Here, “AB” stands for both Auslander—Bridger
and Auslander-Buchweitz. The existence of n-origin extensions, named by Kato [21], was also established
by Auslander and Bridger.

Definition 3.1. Let A be a two-sided noetherian ring, and let M be a finitely generated A-module. Let
n = 0 be an integer.

(1) A short exact sequence 0 > Y — X — M — 0 in mod A is called an n-AB approzimation of M if Y
has projective dimension at most n — 1 and Exti (X,A) = 0 for all 1 <i < n. We denote by .7, (A) the
subcategory of mod A consisting of modules having n-AB approximations.

(2) A short exact sequence 0 > X - M @ P — Y — 0 in mod A is called an n-origin extension of M if P
is projective, Y has projective dimension at most n and Ext} (X, A) = 0 for all 1 < i < n. We denote by
&n(A) the subcategory of mod A consisting of modules having n-origin extensions.

(3) A short exact sequence 0 > M — Y — X — 0 in mod A is called an n-finite projective dimension
hull (simply, n-FPD hull) of M if Y has projective dimension at most n and Ext)(X,A) = 0 for all
1 <i<n+1. We denote by 5, (A) the subcategory of mod A consisting of modules having n-fulls.

Let us record some immediate consequences from the definitions of the three subcategories above.

Remark 3.2. Let n > 0 be an integer. Denote by 7,(A) the subcategory of mod A consisting of modules M
satisfying Ext' (M, A) = 0 for all 1 < ¢ < n. Similarly, denote by £2,,(A) the subcategory of mod A consisting
of modules M with projective dimension at most n.
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(1) By definition, we have o/ (A) = &5(A) = mod A. Moreover, as will be stated later, a consequence
of the approximation theory developed by Auslander and Bridger shows that 7 (A) = mod A. The
subcategory 2 (/) is nothing but the subcategory of mod A consisting of finitely generated torsionless
A-modules. Here, for the natural homomorphism @y : M — M** given by ¢ (2)(f) = f(x) for
x € M and f e M*, the module M is said to be torsionless if s is injective, and reflexive if ppr is
an isomorphism.

(2) Suppose that a finitely generated A-module M has an n-AB approximation 0 —» Y — X I Mo,
Then f is a right .7, (A)-approximation of M. Indeed, note that Ext'(X,Y) = 0 for all X € .7,(A)
and Y € #,_1(A). Therefore, for any morphism f’: X’ — M in mod A with X’ € .7, (A), we have

an exact sequence
Hom(X’, X) — Hom(X’, M) — Ext'(X’,Y) = 0,

and so f’ factors through f. Dually, if M admits an n-FPD hull 0 - M % Y — X — 0, then g is a
left &, (A)-approximation.

(3) There are inclusions «7,(A) D &,(A) > 7, (A). For example, suppose that a finitely generated A-
module M has an n-FPD hull 0 - M — Y — X — 0. Taking the syzygy of X, we have an exact
sequence 0 — QX - M PP — Y — 0 with P € projA. This sequence is an n-origin hull of M. The
other inclusion is proved in a similar way.

The grade of Ext modules has been actively studied, mainly in the representation theory of non-
commutative rings; see, for example, [BIGITTETI7ITSIB0]. The behavior of the subcategories <, (A), &,(A), and
2, () defined above is closely related to grade theory. The terminology in (1) below is due to Gélinas [15].

Definition 3.3. Let n > 0 be an integer.

(1) Let M be a finitely generated A-module. We say that M satisfies the n-th grade condition if the inequality
gradeyop Ext) (M, A) = i holds for every 1 <i < n.

(2) We say that the ring A satisfies the (x,,)-condition if every finitely generated A-module Z with projective
dimension at most n satisfies the n-th grade condition.

The condition in (2) was considered in [3] Remark on page 70], and serves as a key connection between
approximation theory and grade theory. Typical examples of modules satisfying the n-th grade condition are
n-spherical modules. For an integer n > 0, a finitely generated A-module M is said to be n-spherical if it

has projective dimension at most n and satisfies Ext’y (M, A) = 0 for all 1 < i < n— 1. For further details on
spherical modules, see also [315129].

Lemma 3.4. Let n > 0 be an integer. Then the following statements hold.

1) FEvery n-spherical module satisfies the n-th grade condition.
Y g
(2) Every noetherian ring satisfies the condition (#1).
(3) Every commutative noetherian ring satisfies the condition (#,,) for all integers m > 0.

Proof. The statement (1) is a consequence of [29] Theorem 1.1]. By setting n =1 in (1), we obtain (2). The
statement (3) is nothing but [3, Corollary 4.18]. |

The notion of n-torsionfree modules plays an important role in the stable module theory developed by
Auslander and Bridger. Let n = 0 be an integer. A finitely generated A-module M is said to be n-torsionfree
if Ext’yop (Tr M, A) = 0 for all 1 <i < n. For a finitely generated A-module M, we have the Auslander exact
sequence [2[3]:

0 — Exthop (Tr M, A) — M 22 M** — Ext3., (Tr M, A) — 0.
This exact sequence implies that 1-torsionfreeness is equivalent to being torsionless, and 2-torsionfreeness
is equivalent to being reflexive. The following theorem is a consequence of Auslander—Bridger theory and
provides a fundamental result on the existence of n-AB approximations.

Theorem 3.5 (Auslander—Bridger). Let M be a finitely generated A-module and n > 0 an integer. Consider
the following conditions.

(1) One has the inequality grade o, Exty (M,A) =i —1 for all 1 <i<n—1.

(2) The i-th syzygy QM s i-torsionfree for all 1 <i < n.

(3) The n-th syzygy Q"M is n-torsionfree.
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(4) The module M is an object of <, (A), i.e., M has an n-AB approzimation.

Then the implications (1) <= (2) = (3) <= (4) hold. If the equivalent conditions (3) and (4) are satisfied,
then for a right proj A-approximation s : P — M of M, the short exact sequence

05Y »>TrQ"TrQ" M@ P -0, a1 o,

where Y = Ker(¢Y%y, s), gives an n-AB approzimation of M. Also, if A satisfies the (s,_1)-condition, then
all conditions are equivalent. In particular, when A is commutative, all conditions are equivalent.

Proof. The equivalence (1) <= (2) is nothing but [3, Proposition 2.26]. The implication (2) = (3) is
clearly true. The equivalence (3) <= (4) is also nothing but [3, Proposition 2.21], whose proof shows that
the morphism ¢, : Tr Q" Tr Q"M — M gives an n-AB approximation. If A satisfies the (#,-1) condition,
then the implication (3) = (2) follows from [3, Corollary 2.27]. [

Next, we describe the relationship between n-origin extensions and the n-th grade condition. To do this,
the notion of representation by monomorphisms plays an important role. A A-homomorphism f : X — Y
of finitely generated A-modules is said to be represented by monomorphisms if there exist P,(Q € proj A and
A-homomorphisms s, ¢, u such that the homomorphism

Ios\.
Q J.X@PaY@Q

is a monomorphism. It is easy to see that this condition is equivalent to the existence of a projective module
Q@ € projA and a A-homomorphism ¢ : X — @ such that the map ({) : X - Y ®Q is a monomorphism.
For the theory of representation by monomorphisms, we refer the reader to [3l23[30]. Under this notion, the
following theorem holds. Auslander and Bridger proved that the n-th grade condition implies the existence of
n-origin extensions and n-spherical approximations. We will prove the converse of Auslander and Bridger’s
theorem.

Theorem 3.6. Let M be a finitely generated A-module and n = 0 an integer. Consider the following

conditions.

(1) One has the inequality grade o, Ext (M, A) =i for all 1 <i < n.

(2) One has the inequality gradeyo, Exti (M,A) = i — 1, and the morphism Yl TrQ Ty QM — M s
represented by monomorphisms for all 1 < i < n. o

(3) The module M has an n-th spherical approzimation, i.e., there exists a filtration

MnCMn_lc---CM1CMQ=M®P

with P € proj A, such that for every 1 < k < n, the following conditions hold: Extf\(Mk,A) = 0 for all

1 <i <k, the quotient My,_1/My, is k-spherical, and the A-dual map M} | — M is surjective.
(4) The module M is an object of &,(A), i.e., M has an n-origin extension.
(5) The module M has an n-origin extension 0 - X — M @® P — Y — 0 such that the A-dual sequence

0->Y* > (M@P)* > X*— 0 is also exact.
(6) The module M is an object of <, (A), and there exists an n-AB approzimation 0 — Z — X Lm0

such that the homomorphism f : X — M is represented by monomorphisms.
Then the implications (1) < (2) = (3) = (4) <= (5) <= (6) hold. When the equivalent conditions
(4)—(6) hold, for any n-AB approzimation 0 — Z — X LMo of M with f represented by monomor-
phisms, and for any left proj A-approzimation s : X — P of X, the homomorphism (J.;) X > M®P is
injective and the short exact sequence

()
0> X-—->MeP->Y —0,

where Y = Coker (J;), is an n-origin extension of M. Moreover, if A satisfies the (#,)-condition, then all the
conditions are equivalent. In particular, when A is commutative, all conditions are equivalent.

Proof. The equivalence (1) <= (2) is none other than [3, Corollary 2.32]. The implications (1) = (3)
and (1) = (5) follow from [3| Theorem 2.37] and [3, Theorem 2.41], respectively. To prove the implication
(3) = (1), suppose that M admits an n-spherical filtration

MnCMn_lc---CM1CMO=M@P.
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For each 1 < k < n, set C, = My_1/Mj. Since the A-dual map M} | — M* is surjective, we obtain a long
exact sequence

0 — Bxt'(Cy, A) — Ext'(My_1,A) — Ext' (M, A) — Ext?(Cy, A) — - -

By assumption, we have isomorphisms Ext® (Ck,A) = Extk(Mk_l, A) and Extj(Mk_l, A) =~ Extj(Mk, A) for
all j > k. Therefore, for every 1 < i < n, we obtain

Ext’(M,A) = Ext'(My, A) = Ext’(M;,A) = --- = Ext'(M;_1,A) = Ext*(C;, A).

Since C; is i-spherical, it follows from Lemma B4 that grade Ext’(M, A) = grade Ext’(C;, A) = i.
Let us prove the equivalence between the conditions (4), (5) and (6). The implication (5) = (4) clearly
holds. Next, we prove the implication (4) = (6). Assume the condition (4) holds. Then M has an n-

f
origin extension 0 — X (*)» M®P — Y — 0. Taking a syzygy of Y, we obtain a short exact sequence

0—- QY - XpQ U, M — 0, with @ projective. Since f is represented by monomorphisms, this

sequence gives the desired n-AB approximation. Conversely, assume condition (6). Then there exists an n-

AB approximation 0 > Z — X I, M = 0 such that f is represented by monomorphisms. Since s : X — P is
a left proj A-approximation of X it follows from [30, Theorem 3.3 and Lemma 3.4] that the homomorphism
(f ) : X — M @ P is an injection. We obtain the following commutative diagram with exact rows and

S
columns:

N=<—©
Ng=<—o

©<—§
-

where Y = Coker (z ) From the first row, we see that Y has projective dimension at most n, and the second

()

row 0 > X — M@ P — Y — 0 is an n-origin extension of M. Also, since s : X — P is a left proj A-
approximation of X, the A-dual homomorphism (J; )* : (M @ P)* — X* is surjective. Thus, the condition
(5) holds.

Finally, let us assume that A satisfies the condition (x,), and let M be an object of &,(A). By the
condition (5), there exists an n-origin extension 0 - X - M @ P — Y — 0 of M such that the A-dual
homomorphism (M @ P)* — X* is surjective. Then, from the long exact sequence of Ext, we obtain
isomorphisms Exti(M,A) ~ Ex‘ci(Y7 A) for all 1 < i < n. Since Y has projective dimension at most n, the
assumption implies that grade Ext’(M,A) = grade Ext’ (Y, A) > for all 1 <i < n. [ |

As stated in the theorems above, the existence of n-AB approximations and n-origin extensions is deeply
connected to the grade of Ext modules. From this, we obtain the following results concerning the properties
of the categories 7, (A) and &,(A).

Remark 3.7. Let n > 0 be an integer.
(1) Let R be a commutative noetherian ring. Then, the subcategories «,(R) and %, (R) of mod R are
closed under extensions. Indeed, by Theorem [ a finitely generated R-module M is in 7%, (R) if and
only if grade Ext’(M, R) =i — 1 for all 1 <i < n. For a short exact sequence 0 - X —-Y — Z — 0
in mod R with X, Z € @,(R), we have an exact sequence Ext’(Z, R) — Ext*(Y, R) — Ext‘(X, R) for
any 7. When the Ext modules on both ends vanish by localization at a prime ideal p of R, the same
holds for the middle term. Hence, we have grade Ext’(Y,R) =i —1forall 1 <i <n, and Y € <7, (R).

1The module Coker (J:) is called the stable cokernel of the morphism f, and is denoted by Coker f; see [221[23][30].
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The same argument applies to &, (R). On the other hand, J#,(R) is, in general, not closed under
extensions. For example, if R is a non-Gorenstein artinian ring, then 4 (R), the subcategory of
torsionless modules in mod R, is not closed under extensions.

(2) When do the subcategories 7, (A) and &, (A) coincide with mod A? The stronger conditions consid-
ered in Theorems and above have been studied. Namely, we consider the following:

(i) One has the inequality grade Ext*(M,A) =i — 1 for all M € mod A and 1 <i < n.

(ii) One has the inequality grade Ext’(M,A) =i for all M € mod A and 1 < i < n.
Clearly, the condition (ii) implies (i). The condition (i) (resp. (ii)) is denoted by (d,,) (resp. (b))
in [6], and by ¢,,(0) (resp. gn(1)) in [I8]. As summarized in [I8], an n-Gorenstein ring (in the sense
of Auslander) satisfies the condition (ii). Moreover, it is stated there that condition (ii) for A is
equivalent to A°P being quasi n-Gorenstein. See also [19]. For a commutative noetherian ring R,
by [3, Proposition 2.41], the conditions (i) and (ii) are equivalent to the following one.
(iii) For any prime ideal p of R with depth R, < n — 1, the localization R, is Gorenstein.

The situation where Ext modules have higher grade is considered in [30, Section 4]. As a consequence, the
following proposition is obtained.

Proposition 3.8. Let M be a finitely generated A-module, and let n, k = 0 be integers. Consider the following

conditions.

(1) One has the inequality grade o, Exth (M, A) =i+ k for all 1 <i < n.

(2) The module M has an n-origin extension 0 - X — M ® P — Y — 0 such that Y is k-torsionfree.

(3) The module M has an n-origin extension 0 - X - M @ P — Y — 0 such that Y is k-torsionfree and
the A-dual sequence 0 - Y* — (M @ P)* — X* — 0 is also ezact.

Then the implications (1) = (2) <= (3) hold. Moreover, if A satisfies the (#p,4k)-condition, then all
conditions are equivalent. In particular, when A is commutative, all conditions are equivalent.

Proof. The implications (1) = (2) <= (3) follow from [30, Theorems 3.8 and 4.6]. Assume that A satisfies
the (#p41)-condition and that condition (3) holds. Then, since Y is k-torsionfree, it follows from [3] Theorem
2.17] that there exists Y’ € mod A such that Y is the k-th syzygy of Y’. Since Y has projective dimension at
most n, Y/ has projective dimension at most n + k. In this case, by considering the long exact sequence of
Ext, we obtain isomorphisms Ext?(M, A) = Ext*(Y,A) = Ext"™(Y”, A) for all 1 < i < n. Therefore, we can
conclude that grade Ext’(M, A) = grade Ext'™* (Y, A) =i + k for all 1 <i < n.

[ |

Finally, we discuss the relationship between the existence of n-FPD hulls and higher torsionfreeness. The
following theorem is essentially obtained in [31, Theorem 2.3] and its proof. However, since that paper
assumes commutativity of the ring, we give the precise statement in our general setting.

Theorem 3.9. Let M be a finitely generated A-module and n = 0 an integer. Then the following are

equivalent.

(1) The n-th syzygy Q"M is (n + 1)-torsionfree.

(2) The module M is an object of ,(A), i.e., M has an n-FPD hull.

(3) The module M is an object of <, (A), and there exists an n-AB approzimation 0 - Z - W — M — 0
of M such that W is torsionless.

(4) The module M is an object of &,(A), and there exists an n-origin extension0 > X' > M@P - Y’ — 0
of M such that X' is torsionless.

When the equivalent conditions above hold, for any n-AB approzimation 0 — Z — W LM - 0 with W
torsionless and any left proj A-approzimation s : W — P of W, the exact sequence

0-M-Y—->X—-0
obtained from the pushout diagram, where Y = Coker (ﬁ) and X = Cokers, is an n-FPD hull of M.

Proof. The implications (2) = (4) = (3) follow by taking syzygies of the modules on right-hand side of
the sequence. The implication (3) = (1) and the construction of the n-FPD hull in this case follow from
the proof of the implication (1) = (2) in [3I, Theorem 2.3]. Note that the proof of the equivalence of
the conditions (1), (2), and (3) in [31, Theorem 2.3] does not rely on the commutativity of the ring. The
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equivalence (1) <= (2) in our theorem is precisely the same as the equivalence of conditions (1) and (2)
in [31, Theorem 2.3]. |

As a consequence of the theorems above, we obtain the following inclusions among our subcategories. For
a subcategory 2" of mod A, we denote by Q"2 the subcategory consisting of the n-th syzygies of objects in
Z for n = 0.

Corollary 3.10. Let n = 0 be an integer.
(1) We have the following descending chain of subcategories of mod A.

Tn(N) D CL(N) D Hy(N) 5 Uty 1 (A) D QE, 4 (A) D QA1 (A) D Q2 5(A) > -

(2) Suppose that A satisfies the condition (#,-1) (e.g., A is commutative). Then we have the following
descending chain of subcategories of mod A.

o(A) =mod A = A (A) D eh(A) D Dy 1(N) D (A).

(3) Suppose that A satisfies the condition (%) (e.g. A is commutative). Then we have the following descend-
ing chain of subcategories of mod A.

€5(A) =mod A o C{(A) D Cy(A) > DF,_1(A) DE.(A).

Proof. It is enough to prove the statement (1) that the inclusion .7, (A) > Q7,11 (A) holds true. But, this
is a direct consequence of the equivalences (3) <= (4) in Theorem BH and (1) <= (2) in Theorem 39 The
statement (2) follows from the assumption and Theorem B0l In fact, in this situation, for any 1 < k < n and
any M € mod A, the conditions M € @ (A) and gradeExt’(M,A) =i — 1 for all 1 < i < k are equivalent.
The statement (3) can be proved similarly. |

At the end of this section, we state some remarks on the category 74, (A). The existence of n-FPD hull is
closely related to the delooping level of modules introduced by Gélinas [15].

Remark 3.11. (1) By the above corollary, if A satisfies the condition (#,), then the inclusions 47, (A) o
n—1(A) and &,(A) D &,-1(A) hold. The same is not necessarily true for .7, (A), even when A is
commutative. Indeed, let R be a commutative noetherian local ring with residue field k, and assume
that ¢t = depth R > 0. Then, by [I5, Theorem 3.1], the module Q'k is (¢ + 1)-torsionfree. However,
it is easily seen that Q'k is not (i + 1)-torsionfree for any 0 < i < ¢.

(2) Gélinas [I5] defined the delooping level of a finitely generated A-module M, which is denoted by
dellp M, as follows.

delly M = inf{n > 0 | Q"M is a direct summand of Q"' N in mod A for some N € mod A}.

He also defined the delooping level dell A of the ring A by dell A = sup{dellp S | S is simple}. He
proved that if A satisfies a certain grade condition, then the (little) finitistic dimension of A°P coincides
with dell A. Thus, the delooping level carries important information about the ring and has been
actively studied. The delooping level is related to the existence of n-FPD hulls in the following way:

If M has n-FPD hull, then the inequality delly M < n holds.
This follows from Theorem [39 and [I5, Theorem 1.13].

4. APPROXIMATING SEQUENCES FOR MARTSINKOVSKY’S -INVARIANTS

The d-invariant for finitely generated modules over a commutative Gorenstein local ring was introduced
by Auslander in his unpublished paper [I]. Martsinkovsky [26] later defined the &-invariant over general com-
mutative noetherian local rings, so that it coincides with Auslander’s d-invariant when the ring is Gorenstein.
In this section, we study a certain subsequence of the &-invariant. To state the definition, we first need some
preparation.

Let A be a two-sided noetherian ring, and let M, N € mod A. In this setting, we consider the following
sequence of maps induced by taking syzygies:

Hom, (M, N) =% Hom, (QM, QN) =% - .- =5 Hom,, ("M, Q" N) =% Hom, ("' M, Q"I N) = ...
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Let 7 be the natural surjection Homy (M, N) — Hom, (M, N). For an integer n > 0, we define a subgroup
V. (M, N) of Homy (M, N) as the kernel of the composition

Homa (M, N) %> Hom, (M, N) £ Hom, ("M, Q"N).
That is,
V,(M,N) = {f €eHomy(M,N)|Q"f =0in Hom, (Q"M,Q"N)}.
We state here some properties of the subgroup V,, (M, N), which will be used later.

Lemma 4.1. Let M, M', N and N’ be finitely generated A-modules, and let n > 0 be an integer. Then the

following hold.

(1) One has V,(M@®M',N)=V,(M,N)®V,,(M',N) and V,(M,N@®N') =V, (M,N)®V,, (M, N’).

(2) Assume that either M or N has projective dimension at most n. Then one has V,(M,N) =
Homp (M, N).

(3) Suppose that there is a surjection M — N of A-modules. Then, for any finitely generated A-module T,
the abelian group V,(N,T) can be regarded as a subgroup of the abelian group V,,(M,T).

Proof. (1) The claim follows from the additivity of the natural composition map

Hom(M, N) — Hom(M, N) — Hom(Q"M,Q"N)

with respect to M and N.
(2) Since we have Hom(Q"M,Q"N) = 0 by assumption, the claim follows immediately from the definition.
(3) The desired conclusion follows from the following commutative diagram:

Hom(N,T)———— Hom(M, T)
nat. nat

Hom(Q"N,Q"T)

Hom (2" M, Q"T).
|

We define a subgroup V(M, N) of Homy (M, N) as the union | J,», Vn(M, N), and obtain an ascending
chain of subgroups:

(4.1.1) Vo(M,N)c Vi{(M,N) < -+ Vo (M,N) © Vpyi (M,N) < --- = V(M, N).

Note that the ascending chain (LI stabilizes under suitable assumptions. For example, if R is a
commutative noetherian ring and A is a noetherian R-algebra, then the acceding chain (@I is a se-
quence of R-submodules of the finitely generated R-module Homp (M, N). Hence, there exists an integer
m = m(M,N) = 0 such that V,(M,N) = V,,(M,N) for all integers ¢{ > m. In particular, we have
V(M,N) =V,,(M,N).

Alternatively, when a A-module M is Ext-orthogonal to the ring A, the following result on the stabilization
of Vi (M, —) holds.

Lemma 4.2. Let a and b be integers with 0 < a < b. Suppose that M € mod A satisfies ExtA(M A) =0 for
all i with a <1 <b. Then, for any N € mod A, the following equalities hold:

Va1(M,N) = Vo(M,N) = --- = Vi1 (M, N) =Vb(M N).
Proof. The syzygy module Q%' M satisfies Exti (2% M, A) = 0 for all 1 < i < b—a + 1. Hence, by the
dual statement of [3 Theorem 2.17], the counit morphism wé’zaffl\l/[ : TrQb- “H’I‘rQb — Q% 1M is an
isomorphism in mod A. Therefore, the claim follows from the following commutative diagram.
Hom(Q ' M, Q*~ 1 N) LA Hom(Q°M, QP N)
Hom(y) *1] Q" N) | = H
Hom(Tr Q=9+ Tr Q* M, Q-1 N) — Hom(Q°M,Q"N)

Qbm,a—-1N
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In the remainder of this section, we further assume that R is a commutative noetherian local ring with
unique maximal ideal m and residue field k, and consider only the case A = R. Under the above notation, we
denote V,,(M, k) by V(M) and V(M, k) by V(M). We are now ready to define the ¢-invariant of a finitely
generated R-module M.

Definition 4.3. [26127] For a finitely generated R-module M, we define {g(M) = dimy, V(M) and call it
the Martsinkovsky’s £-invariant of M. That is, {g(M) is nothing but the dimension of the k-vector subspace

V(M) = {f e Homg(M,k) | Q" f =0 in Homp(Q™M,Q™k) for some m > 0}
of Hompg (M, k).

Remark 4.4. The above definition may look slightly different from Martsinkovsky’s original one. In [26],
for each integer 14 =0, €L(M) is defined as the dimension of the kernel of the natural homomorphism

Extih (M, k) — E\))?GZ%(M, k) as a k-vector space, and £%(M) is denoted by {g(M). Here, E\b?c;%(M, k) denotes
the i-th Tate—Vogel cohomology module. When M is defined to be the ith syzygy of M arising from the
minimal free resolution, it is shown that &4 (M) = £g(Q2°M). In this paper, to avoid confusion between &4 (M)
and £g (i, M) (to be defined below), we do not use the former notation. The invariant {g(M) = €% (M) defined
in [26] agrees with the one given in Definition In [27], the subspace V(M) of Hompg (M, k) is defined as
follows: Let Py, and P? be minimal free resolutions of M and k, respectively. Then V(M) is defined as the
set of all R-homomorphisms f : M — k satisfying that there exists a complex homomorphism f Py - P
with f™ = 0 for all m » 0 and HO(f*) = f. It is easy to see that the subspace V(M) given in this way also
agrees with the one described above.

Computing the £-invariant in practice is quite difficult, since it requires considering arbitrarily high syzygies
of morphisms. Thus, we consider an approximating sequence for the &-invariant.

Definition 4.5. Let M be a finitely generated R-module and n > 0 an integer. We define {g(n, M) =
dimy, V,,(M) and call it the n-th approzimated &-invariant of M. That is, {r(n, M) is the dimension of the
k-vector subspace of Homp (M, k) consisting of homomorphisms f € Hompg(M, k) satisfying Q" f = 0.

In the introduction, g(n, M) is written as &,(M). As is immediate from the definition, we obtain a
non-decreasing sequence of integers

Er(0, M) <&r(1,M) <...<&p(n, M) <&r(n+1,M) <...<&r(M)

and the equality lim,,_,o {r(n, M) = Er(M). Moreover, the inequality Er(M) < pu(M) clearly holds, where
(M) is the minimal number of generators of M. Note that the equalities ur(M) = dimp(M ®r k) =
dimy, Hompg(M, k) hold.

The following proposition is an n-th approximated version of certain properties that play an important
role in computing the &-invariant (or Auslander’s d-invariant). See also [20, Proposition 2.4] and [27, Lemma
5].

Proposition 4.6. Let M, N be finitely generated R-modules and n = 0 an integer. Then the following hold.

(0) The 0-th approzimated &-invariant (0, M) of M is the rank of the largest free summand of M.
(1) One has Eg(n, M ® N) = £r(n, M) + £r(n, N).

(2) If M has projective dimension at most n, then Eg(n, M) = ur(M).

(3) If there exists a surjection M — N of R-modules, then Ep(n, M) = Er(n, N).

Proof. The statements (1) through (3) follow from parts (1) through (3) of Lemma 1] respectively. Thus,
it suffices to prove the statement (0). Suppose that M = X @ R®?, where X is a stable module and a > 0.
Then, by assertions (1) and (2), we obtain the equalities £(0, M) = £(0, X ) + £(0, R®%) = £(0, X) + a. Hence,
it suffices to show that £(0, X) = 0. Assume that a nonzero R-homomorphism f : X — k factors through a
free module; that is, there exist b > 0 and maps h : X — R® and g : R®® — k such that f = go h. Let
g = (21,29,...,2) : R® — k with z; € R, and write h = (hy,ha,...,hy)T : X — R®. Since f is nonzero,
there exists an element = € X such that

zZihi(z) + Z2he(z) + -+ + Zphe(x) = 1 € k.
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It follows that there exists an integer 1 < ¢ < b such that Z;h;(x) # 0 in k, and hence both z; and h;(x) are
units in R. In particular, h; : X — R is a split surjection, which contradicts the assumption that X is stable.
Therefore,
£(0, X) = dimy, Ker (Hom(X, k) — Hom(X, k)) = 0.
|

To describe the relationship among the n-AB approximations, the n-FPD hulls (studied in the previous
section), and the nth approximated ¢-invariant, we recall the notion of minimality for such approximations
and hulls. This will also be needed to present the original definition of Auslander’s d-invariant.

Definition 4.7. Let M be a finitely generated R-module and n > 0 an integer.

(1) Suppose that M admits an n-AB approximation 0 — Y 4 X 2 M — 0. This approximation is said to
be minimal when X and Y have no nonzero direct summand in common through ¢. More precisely, this
means that for any direct sum decomposition X = Xy @ X; with Xy < Im i, we have Xy = 0.

(2) Suppose that M admits an n-FPD hull 0 — M % Y’ % X’ — 0. This hull is said to be minimal when
X’ and Y’ have no nonzero direct summand in common through ¢. More precisely, this means that for
any direct sum decomposition X = Xo@® X; with ¢71(X() nImj = (0), we have Xy = 0.

Recall that, for a Gorenstein local ring of Krull dimension d, a d-AB approximation is called a mazimal
Cohen—Macaulay approximation (or simply, an MCM approximation). Similarly, a d-FPD hull (resp. a
d-origin extension) is simply called an FPD hull (resp, an origin extension).

The minimality of MCM approximations is discussed in various papers; see [1[I6L25[B4-36] for instance.
It is easy to see that right minimality (resp. left minimality) implies minimality. Over a complete Gorenstein
local ring, a proof of the converse is given in [36, Lemma 2.2]. A proof in the non-complete case is given
in [I6] Lemma 2.3]. We also note that an interesting theory on the minimality of origin extensions is developed
in [21]. Using arguments similar to those in [T636], one can prove analogous results for n-AB approximations
and n-FPD hulls over local rings which are not necessarily Gorenstein. We also note that a proof avoiding
the assumption of completeness was given by Simon in [34].

Theorem 4.8. [3]l, Theorems 3.1 and 3.3] Let R be a local ring, M a finitely generated R-module and n = 0
an integer.

(1) Suppose that M admits an n-AB approzimation 0 — Y S X B M — 0. Then this approximation 1s
minimal if and only if the homomorphism p is right minimal.

(2) Suppose that M admits an n-FPD hull 0 — M L y" % X' 0. Then this hull is minimal if and only
if the homomorphism j is left minimal.

We obtain an existence and uniqueness theorem for minimal n-AB approximations and n-FPD hulls.

Corollary 4.9. Let R be a local ring and n = 0 an integer.

(1) Let M be a finitely generated R-module belonging to <, (R). Then M admits a minimal n-AB approzi-
mation ‘
0— Y 25 X5 24 M — 0,

which is unique up to isomorphism of exact sequences inducing the identity on M.
(2) Let M be a finitely generated R-module belonging to 7, (R). Then M admits a minimal n-FPD hull

- M M
0—>MIsyM I, XMoo,
which is unique up to isomorphism of exact sequences inducing the identity on M.

Proof. Tt suffices to prove (1), since (2) is its dual statement. By Theorem B, M admits an n-AB approx-

imation 0 — Y 5 X — M — 0. By removing any direct summands common to Y and X via 4, we obtain
a minimal n-AB approximation of M. By Theorem [£.8 minimality is equivalent to right minimality, so the
lifting property and a standard argument yield the uniqueness of the minimal one up to isomorphism. See
also the proofs of [25] Proposition 11.13] and [36], Theorem 2.4]. [ |

Over a Gorenstein ring, Auslander’s d-invariant is defined using the existence of minimal MCM approxi-
mations, as follows.
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Definition 4.10. [I[5] Let R be a Gorenstein local ring and M a finitely generated R-module. Take a
minimal MCM approximation 0 — Y3; — Xy — M — 0 of M and consider a decomposition Xy; =~ X @ F,
where X is a stable module and F' is a free module. Then the d-invariant 6r(M) of M is defined to be the
rank of the free module F. In other words, dr(M) is the rank of the largest free summand of the minimal
MCM approximation Xj,.

The definition of the £-invariant does not depend on the existence of approximations such as MCM ap-
proximations. However, Martsinkovsky showed in [26] Theorem 2.1 and Proposition 2.3] that the following
theorem holds over Gorenstein local rings.

Theorem 4.11 (Martsinkovsky). Let R be a Gorenstein local ring and M a finitely generated R-module.
Then the equality 6r(M) = Eg(M) holds true.

As in the theorem above, we aim to establish a method for computing the n-th approximated £-invariant
using n-AB approximations and n-FPD hulls. We begin with some preparations. When a module M is
Ext-orthogonal to the ring R, the following symmetry arises as a direct consequence of Lemma

Corollary 4.12. Let M be a finitely generated R-module and n = 0 an integer.

(1) Let a and b be integers with 0 < a < b. If Extih(M,R) = 0 for all a < i < b, then the equalities
rla—1,M)=¢r(a,M)=---=Er(b—1,M) = Er(b, M) hold true.

(2) Suppose Extlo(M, R) =0 for all 1 <i <n, Then £g(j, M) is the rank of the largest free summand of M
for any 0 < j < n.

Proof. The assertion (2) follows from the assertion and Proposition .6l The assertion (1) is a consequence
of Lemma (.21 [ |

The following proposition is particularly useful in determining whether a given n-AB approximation is
minimal. The original result for MCM approximations over Gorenstein local rings was given by Auslander [I],
and an explicit proof in this case is provided in [36, Corollary 2.10].

Proposition 4.13. Let M be a finitely generated R-module and n = 0 an integer. Suppose that M admits
an n-AB approximation 0 — Y L X B M 0. Write X = X ®F, where X is a stable module and
F is a free module, and write p = (po,p1) : X = X ®F — M. Then the composite homomorphism
J QN VN M /T pg is surjective, where 7 : M — Coker pg = M /Im pg is the natural surjection. Hence, the
inequality pr(F) = pr(Coker pg) holds. Moreover, the following conditions are equivalent.

(1) The approzimation 0 — Y 5 X B M - 0 is minimal.

(2) The composite homomorphism F oo 5 Coker pg is a minimal free cover of Cokerpg, that is, the
equality pr(F) = pr(Coker py) holds.

Proof. A similar argument to that in the proof of [36] Lemma 2.8] works in this case. Alternatively, an
explanation can also be found in [25] Lemma 11.26]. |

The following theorem is an analogue of Theorem .11} due to Martsinkovsky, for the n-th approximated
&-invariant. Here, we remark that it is not necessary to assume the Gorenstein property of the ring, and that
if M is an object of 7, then {r(n, M) can be computed by using an n-AB approximation.

Theorem 4.14. Let M be a finitely generated R-module and n = 0 an integer. Assume that M € <7, (R), and

take a minimal n-AB approximation 0 — Y, RAIR Xar 225 M — 0. Then the n-th approzimated &-invariant

Er(n, M) coincides with the rank of the largest free summand of X .

Proof. Write X)r = X @ F, where X is a stable module and F is a free module, and write pys = (po,p1) :
X@®F — M. Then X is a stable module satisfying Exty(X,R) =0 for all 1 <i <n, and pyr : Xy — M is
surjective. Hence, by Proposition L6 and Corollary ELT2(2), we obtain

p(F) =&, F) =¢n, X F) = {(n, Xar) = &{(n, M).
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Therefore, it suffices to show that £(n, M) = u(F). Let C = Coker pg, and let = : M — Coker pg denote the
natural surjection. We consider the following commutative diagram with exact rows and columns:

0 0
0 Vj(C) Hom%C, k) Hom(Q"C, Q"k)

[ [Hom(mk) Hom(Q™7,Q"k)
0 Vo (M) Hom(M, k) —— Hom(Q" M, Q"k).

We will show that Q"x : Q"M — Q"C' is the zero map in the stable module category mod R. Indeed, in
the n-AB approximation 0 — Yy, — X 225 M — 0, the module Yy, has projective dimension at most
n — 1. Therefore, by considering the long exact sequence of Ext, we see that Q"pys : Q"X — Q"M is
an isomorphism in mod R. Also, the morphism ((1)) : X - X @ F is an isomorphism in mod R, and since

Po = Pum © ((1)), it follows that Q"po : Q"X — Q"M is also an isomorphism in mod R. Moreover, since the
composition o pg : X — M — C is the zero map, the composition Q"m0 Q"py = Q*(mopg): Q"X — Q"C
is also the zero map in mod R. However, since 2"pg is an isomorphism, we conclude that Q"x = 0 in
Hom(Q"M,Q"C). -

Consequently, the homomorphism Hom(Q"w, Q"k) is the zero map, and the homomorphism Hom(, k)
induces an injective homomorphism Hom(C, k) < V,,(M). On the other hand, by Proposition 13 we have
the equality u(F') = u(C'). Therefore, we obtain

§(n, M) = p(Vn (M) = p(C) = pu(F),
and the proof is completed. |

The following theorem was proved by Auslander [I] and announced at the Berkeley symposium on com-
mutative algebra held at MSRI in 1987.

Theorem 4.15 (Auslander). Let R be a Gorenstein local ring and M a finitely generated R-module. Then
O0r(M) = 0 if and only if every morphism f: M — Z in mod R with pdg Z < «© satisfies f ®r k = 0.

The theorem above given by Auslander is generalized as follows. Known proofs of the above theorem, such
as those described in [36] Lemma 2.11 and Corollary 2.12] or [20, Lemma 2.1 and Corollary 2.3], rely crucially
on the existence of FPD hulls. However, the following theorem can be proved under the sole assumption that
the module is an object of &/ (R); therefore it is not necessarily a submodule of a module of finite projective
dimension. Note that the implication (1) = (2) in the following theorem is a refinement of [27, Lemma 9].

Theorem 4.16. Let M be a finitely generated R-module and n = 0 an integer. Consider the following
conditions:

(1) One has Eg(n, M) = 0.

(2) Every morphism f : M — Z in mod R with pdgp Z < n satisfies f @g k = 0.

Then the implication (1) = (2) always holds. The converse also holds if M is an object of &) (R).

Proof. Let us prove the implication (1) = (2). Fix a morphism f: M — Z in mod R with pd Z < n. We

consider the natural surjection 7 : Z — Z/mZ, and it suffices to show that the composition M Lzx Z/mZ
is the zero map. We write 7 = (71, m2,...,m)" : M — Z = k9" via the isomorphism Z/mZ =~ k®" where
r = pu(Z). For each 1 <i <7, since Q"7 is a free module, the morphism Q"(m; o f) = Q"m o Q" f : Q"M —
Q"Z — Q"k is zero in mod R. Moreover, the assumption £(n, M) = 0 implies that the homomorphism
Hom(M, k) — Hom(Q" M, Q"k) is injective. Therefore, for each 1 < i < r, the composition 7; o f : M —
Z — k is zero in mod R, and we conclude that w o f = 0.

Next, assume that M € &/ (R), and let us prove the implication (2) = (1). In particular, M is an object

of o, (R), so by Corollary 9] there exists a minimal n-AB approximation 0 — Y, ML Xy 2 M — 0.
By Theorem [14] there is an isomorphism X, =~ X @ RS, where X is a stable module and & = £(n, M).
Take a left proj R-approximation so : X — R®™ of X and consider an exact sequence X =% R®™
C — 0, where C' = Cokersy. Since X is stable, it follows from Proposition [L6(0) or its proof that the
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map so @k : X ®k — R®" ® k is the zero map, that is, we have m = pu(C). By taking the direct
sum of the free module R®¢ with the first two terms of the exact sequence, we obtain an exact sequence
X = R®(m+8) ¢ - 0. Note that the homomorphism s = (S(;J ] 0 : Xy = X @ R — RO(m+9) g

R®E
also a left proj R-approximation of X ;. Then, since the assumption M € &, (R) implies that pys : Xpr — M is
represented by monomorphisms by Theorem 3.6 and since s : X3, — R®(Mm+) ig a left proj R-approximation
of X s, we obtain from [30, Theorem 3.3 and Lemma 3.4] that the homomorphism (p;‘/’) : Xy — M@R®m+E)
is an injection. We consider the following commutative diagram with exact rows and columns, which appears
in the proof of Theorem as well:

O

0
0 Yur F Coker (p;”) —=0

inr ()

0 Xy M®F Coker (PM) ——0
Py (1,0
M M
S

where the free module R®("+8) is denoted by F. From the first row, the module Coker (p ;”) has projective
dimension at most n.

We will prove that the homomorphism F' — Coker (p o ) is a minimal free cover. If not, then there exists
a split monomorphism b : R — F such that soiy = (a,b) : Yy = Y @ R — F. In this case, the upper left
part of the above commutative diagram decomposes as follows.

(a;b) P

Y=Y ®R
()
M@®F

in = (i0,71)

RANGD

In particular, b = s oy holds. Since b is a split injection, so is i1. Hence, via the morphism iy; = (ig,41) :
Yy — X, the modules X and Y, share a common direct summand R. This contradicts the minimality
of our approximation. Therefore, the homomorphism F' — Coker (p o ) is a minimal free cover. Furthermore,
we obtain the following pushout diagram.

S

X F C 0
R |
M ——— Coker (pg/’) C 0.

Since the module Coker (p e ) has projective dimension at most n, our assumption (2) implies that f® k = 0.

This yields an isomorphism Coker (p o ) => C ®k by the exactness of the second row of the above pushout
diagram. On the other hand, since the homomorphism F — Coker (p fS”) is a minimal free cover, we have an

isomorphism F @ k —> Coker (p o ) Consequently, the equalities
m = u(C) = p(Coker (P31)) = u(F) = m + &
hold, and we conclude that {(n, M) = ¢ = 0. [ |
Over a Gorenstein local ring, it was shown by Auslander [I] that the §-invariant can be computed using an

FPD hull. Proofs and explanations can be found, for example, in [36] Lemma 2.11] and [25, Proposition 11.36].
Similarly, the n-th approximated &-invariant can also be computed using n-FPD hulls.
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Proposition 4.17. Let n = 0 be an integer, and let M be an object of 5, (R). Then, for any n-FPD hull
0—-Y - X —> M — 0, the equality Eg(n, M) = ur(Y) — pr(X) holds.

Proof. Essentially, the same argument as in the proof of [36] Lemma 2.11] applies. For the reader’s conve-
nience, we give a proof.

Let 0 > M — Y™ — XM — ( be the minimal n-FPD hull of M. First of all, we remark that for any
n-FPD hull 0 - M — Y — X — 0, the equality u(Y™) — u(XM) = u(Y) — p(X) holds. This is because,
by Corollary [£9] a minimal n-FPD hull can be obtained by removing common direct summands of X and
Y via the homomorphism ¥ — X.

For the minimal n-AB approximation 0 — Y3 =5 X 22 M — 0, it follows from Theorem EI4] that
there is a decomposition X =~ X @ R®¢, where X is stable and & = &(n, M). Since M € %, (R), the module
X is torsionless, and so is X. Therefore, there exists a short exact sequence 0 — X — RO — X’ — 0.
As X is stable, we have m = pu(X’). We now consider the following pushout diagram:

0 0
| |
Yyy—=Yu
M
0 X RO®(m+E) X/ 0
pm H
0 M Y’ X' 0
| |
0 0

The short exact sequence 0 — M — Y’ — X’ — 0 gives an n-FPD hull of M. Moreover, since X, and Yy
share no common free summand via 737, the homomorphism R®(m+) — Y’ is a minimal free cover of Y.
Therefore, we obtain the equalities

p(YM) = p(XM) = p(Y) = (X)) =m+E—m =& =&(n, M).
n

Auslander [I] defined an invariant called the index of a Gorenstein local ring. Let (R, m, k) be a Gorenstein
local ring. The index of R is defined as the infimum of all integers n > 0 such that jr(R/m™) # 0. Many
interesting and deep studies have been done on this invariant; see, for example, [TL9TTHI4T6124126132133136]
[37]. For the index of the &-invariant introduced by Martsinkovsky over an arbitrary commutative noetherian
local ring , the well-definedness is stated in |26, Proposition 4.3]. Although the proposition below is essentially
shown in the proof there, we shall present a more detailed statement with a proof based on stable module
theory. Let H! (—) denote the i-th local cohomology functor, that is, the i-th right derived functor of the
m-torsion functor 'y (—), defined by I'y(M) = {x € M | m"z = 0 for some r > 0} for an R-module M. More
explicitly, we have H, (=) = lim__ Extp(R/m", —).

Proposition 4.18. Assume that R has Krull dimension d. Then there exists an integer n > 0 such that
&r(d, R/m™) # 0.

Lemma 4.19. [3, Lemma 1.85] Let A be a noetherian ring. Let 0 > X — Y — Z — 0 be a short exact
sequence in mod A. Then there exists a long exact sequence

Hom, (—, X) — Hom, (—,Y) — Hom, (—, Z) — Ext'(—, X) - Ext;(—,Y) — Exty(—, Z) — -
of functors. Hence, for M € mod A, there is an injection Hom, (—, M) — Ext,l\(—, QM) of functors.

Proof of Proposition [{-18 Consider the sequence of natural surjections

n,n—1

- — R/m" e R/m" ! - ... » R/m? iy R/m.
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It follows from Lemma that we obtain the following commutative diagram.

Hom (9%, Q9k) — - - - —= Hom(Q4(R/m" 1), Qk) — Hom(Q¢(R/m"), Q%k) — - -

Ext'(Q%, Q4t1k) — - — BExt' (Q4R/m" 1), Q1 k) — Ext' (Q4(R/m™), Q4+ 1k) — - -

Ext®™ (k, Q41E) — ... — Ext?™ (R/m" 1, Q¥+ 1k) — Ext?™ (R/m™ QH1E) — ...
Taking the direct limit, we obtain from Grothendieck’s vanishing theorem [I0, Theorem 3.5.7] that

lim Hom(Q%(R/m"), Q%) < lim Ext**(R/m", Q" 1k) =~ HIH (Q k) = 0.

n>0 n>0

In particular, under the natural homomorphism Hom(Q%k, Q4k) — lim Hom(Q4(R/m"), Q%), the identity
map lqgay, is mapped to zero. Then there exists a sufficiently large integer n > 0 such that for the composite
Tp = Tpp—1 0+ 0m21 : R/m® — k, the morphism Q9m, : Q4(R/m") — Q% is zero in mod R. Then
Tn € Vg(R/m™), which means that ¢(d, R/m™) =1. |

We compare the n-th approximated &-invariant over R with that over R/xR, where x € R is an R-regular
element. The following inequality holds true.

Proposition 4.20. Let M be a finitely generated R-module and n > 0 an integer. Let x be an element of R
which is regular on both R and M. Then the following inequalities hold:

§R/mR(n -1, M/{EM) < §R(n7 M) < §R/wR(na M/IM)
We shall need the following well-known lemmas to compare syzygies over R and those over R/xR.

Lemma 4.21. Let n = 0 be an integer, and let x € m. Then there is a natural transformation
(Qr(-)) ®r R/zR — Qg ),z ((—) ®r R/zR)

of functors from mod R to mod(R/xR). Moreover, if M is a finitely generated R-module and x is reqular on
both R and M, then the morphism QUM /zQ}pM — Q%/mR(M/xM) is an isomorphism in mod(R/zR).

Proof. Let M be a finitely generated R-module. From the commutative diagram with exact rows

0—-=QrM —F —-= M —0

R

0—=QrM — F — M — 0,

where F' is a free cover of M, we obtain an exact sequence Qr/xQrM — F/xF — M/xM — 0, and this
induces a natural transformation Qgr(—)/rQgr(—~) — Qp/;pr((—)/z(—)). For an integer n > 1, a natural
transformation Qf(—)/zQ% (=) — Qf , x((—)/z(=)) is defined, inductively. Indeed, assume that a natural

transformation Q' (=) /zQ% 1 (—) — Q%?;R((—)/:v(—)) is defined. Then, by the composition

Qg (=)/2Q5 (=) = Qr(QE () /2Qr(QE ()

— QR/mR(Q%_l(*)/IQ;%—l(*)) - QR/mRQ%ﬁR((*)/x(*)) = Q% r((=)/2(-)),
the desired natural transformation is defined. Suppose that x is R-regular and M-regular and take a finite
projective resolution P* of M. Then, by considering the short exact sequence 0 — P* > P* — P*/zP* — 0

of complexes, we have short exact sequences 0 — QB M 5 QR M — Qlé/xR(M/:vM) — 0 for all ¢ > 0. The
desired isomorphism is obtained. |

Lemma 4.22. Let n = 1 be an integer, and let x € m be an R-reqular element. Then the syzygy functor
Q% :mod R — mod R induces a functor Q% : mod(R/xR) — mod R. Moreover, for any integer m = 0, there

exists a natural isomorphism of functors QR (=) = Qo Q%) z(—) from mod(R/zR) to mod R.
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Proof. Applying the n-th syzygy functor Q% to any finitely generated R/xR-module yields a projective
R-module, so Q% : mod(R/xR) — mod R is indeed induced.

Let N be a finitely generated projective R/xR-module. Take a finite free cover R®" — N over R. Then
(R/xR)®" — N is also a finite free cover over R/xR. Hence, we obtain the following commutative diagram
with exact rows and columns:

0 0
v {
RO" ——— R
| |
0 QrN RO" N —=0

} I H

0 — Qp/erN — (R/zR)®" — N —0

| |

0 0

Applying Qg to the first column, we obtain an isomorphism Q%N = Q0 r/zr(IN) in mod R, which induces
a natural isomorphism of functors Q% (—) = QrQR/zr(—) from mod(R/zR) to mod R. For m > 1, we obtain
the desired natural isomorphism QW+ (—) = Q RSV, r(—) by induction. Indeed, suppose that we have a
natural isomorphism Q72 (—) = QRQ;’;/;;
of functors from mod(R/zR) to mod R

(—). Then the composition of the following natural transformations

QETH(=) = QrOE () = QrORQY () = QRO (—) = QrORQY 1L () = QrQE) R (—)
/ / /

yields the desired natural isomorphism. |

Proof of Proposition[{-20L We first prove the inequality {r(n, M) < {g/pr(n, M /xM). To begin with, note
that there exists an isomorphism Homp (M, k) = Hompg/,gr(M/xM,k); f — f/xf. To prove the desired
inequality, it suffices to show that if an R-homomorphism f : M — k satisfies 2% f = 0 in mod R, then the
morphism Q% r(f/zf) is also zero in mod(R/zR). By Lemma EL.2T] the following diagram commutes in

mod(R/zR):

QR f/zQ%f
O M /2 M = Ok 2k

>~

o (f/2 )

Q’é/mR(M/:z:M) Q?%/mR(k)

By assumption, the morphism QF f/xzQ% f is zero in mod(R/xzR), and so is Q’}‘%/mR(f/:zrf). Thus, the first
inequality is proved.
Next, we prove the inequality 53/13(71 —1,M/xM) < &g(n, M) holds true. That is, we need to show that

if Q’é?;R(f/xf) = 0 in mod(R/zR), then it follows that Q% f = 0 in mod R. By Lemma (.22 the following

commutative diagram commutes in mod R:

Qrf
QM Qi
Qg
Qi (f/=f)
QL (M /zM) — Lk
» QrQy L r(f/2f) L
QRQE/wR(M/xM) QRQE/wR(k)’
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where 7 : M — M /zM is the natural surjection. Again by Lemma[@22] the assumption that Q™ ' (f/zf) =

R/zR
0 in mod(R/xR) implies that QRQ?J;R(f/xf) is the zero morphism in mod R. It follows from the above
commutative diagram that Q% f = 0 in mod R, and the proof is completed. |

We collect several important results that are recovered as special cases of our results.

Corollary 4.23. Let M be a finitely generated R-module.

(1) Suppose that R is Gorenstein. Then the following hold.
(1-i) [26, Proposition 2.3] One has the equality (M) = Er(M).
(1-ii) [I The equality 6r(M) = 0 holds true if and only if any R-homomorphism f : X — Z of finitely
generated R-modules with pdp Z < oo satisfies f @r k = 0.
(1-iii) [I] For any FPD hull0 - M —Y — X — 0 of M, one has the equality Sp(M) = pr(Y) — pr(X).
(2) [28, Theorem 8] Let x be an element of R which is reqular on both R and M. Then one has the equality
Er(M) = Epjpr(M/zM).
(3) [28, Theorem 12] Suppose that Ext's(M, R) = 0 for all i > 0. Then £g(M) is the rank of the largest free
summand of M.

Proof. The statements (1-i) to (1-iii) follow from Theorem .14 Theorem F16, and Proposition [L.IT respec-
tively. The statement (2) follows from Proposition 220} since we have

Erjzr(M/zM) = JijgoﬁR/zR(” —1,M/zM) < J%{R(n,M) < JijgofR/mR("vaM) = &ERrjar(M/xM)

and the middle limit is none other than £r(M). The statement (3) follows from Corollary FET2] which
implies that Eg(n, M) = (0, M) for all integers n > 0. Indeed, from this equality we obtain that {g(M) =
limn_wofR(n,M) =1imnﬁoo§R(0,M) =§R(O,M). |
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