
ar
X

iv
:2

50
4.

11
61

4v
1 

 [
m

at
h.

O
A

] 
 1

5 
A

pr
 2

02
5

The C∗-algebra of a composition reflection.

Esteban Anduchow
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Abstract

We study the C∗ algebra generated by the composition operator Ca acting on
the Hardy space H2 of the unit disk, given by Caf = f ◦ ϕa, where

ϕa(z) =
a− z

1− āz
,

for |a| < 1. Also several operators related to Ca are examined.
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1 Introduction

Let D = {z ∈ C : |z| ≤ 1} be the unit disk and T = {z ∈ C : |z| = 1} the unit circle. For
a ∈ D, consider the analytic automorphism which maps D onto D

ϕa(z) =
a− z

1− āz
,

The fact that ϕa(ϕa(z)) = z implies that the composition operator

Cϕaf = f ◦ ϕa. (1)

induced by this automorphisms is a reflection (i.e., satisfies that C2
a = I) in H2 = H2(D),

the Hardy space of the disk (see [6]). In this note we characterize the C∗-algebra C∗(Ca)
generated by Ca, which is also the C∗-algebra generated by two projections, the ortogonal
projections onto the two eigenspaces of Ca: N(Ca − I) and N(Ca + I). We profit from
the vast bibliography on this subject, specially the results by G.K Pedersen [11], and the
excellent survey [3].

We also consider several operators related to Ca. Among these, the symmetry (=self-
adjoint reflections) ρa, obtained from the polar decomposition of Ca, and Wa = MψaCa,

where ψa =
(1−|a|2)1/2

1−āz is the normalized Szego kernel.
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The characterization of C∗(Ca) requires the study of the spectrum of the product of
the projections onto N(Ca ± I).

The contents of the paper are the following. In Section 2 we introduce preliminay
facts and notations. In Section 3 we study elementary relations between the spectra of
of PQ and P ±Q, for P,Q orthogonal projections. In Section 4 we apply these result to
the case of P = PN(Ca−I) and Q = PN(Ca+I). In the short Section 5 we use these data
to characterize C∗(Ca), using the results of G.K. Pedersen [11] (via the exposition done
in [3]). The automorphism ϕa induces also a reflection in L2(T), which we call Γa; in
Section 6 we study the relation between Ca and Γa. In Section 7 we study the mentioned
symmetries ρa and Wa. In Section 8 we consider the relation of Ca with the Toeplitz
isometry Tϕωa

, where ωa is the unique fixed point of ϕa inside D.

2 Preliminaries and notations

Note that C0f(z) = f(−z). Denote by E the subspace of even functions in H2:

E = {f ∈ H2 : f(z) = f(−z)} = N(C0 − I).

Its orthogonal complement is the space O of odd functions, O = N(C0 + I). Denote by
ωa the unique fixed point of ϕa inside the disk:

ωa :=
1

ā
{1−

√

1− |a|2} if a 6= 0, and ω0 = 0.

The fixed point ωa is useful in describing the two eigenspaces of Ca for a 6= 0. In [2] it
was shown that

N(Ca − I) = Cωa(E) and N(Ca + I) = Cωa(O).

These assertions follow in a direct manner from the elementary identity

ϕωa ◦ ϕa = −ϕωa . (2)

In general (a 6= 0), Ca is non-selfadjoint. It was shown by Cowen [5] (see also [6]) that

C∗
a = (Cϕa)

∗ =M 1

1−āz
Ca(M1−āz)

∗ =M 1

1−āz
CaT1−az̄,

where, for g ∈ L∞(T), Mg and Tg denote, respectively, the multiplication and Toeplitz
operators with symbol g. Equivalently,

C∗
a =M 1

1−āz
Ca − aM 1

1−āz
CaS

∗, (3)

where S∗ = (Mz)
∗ (or co-shift) is the adjoint of the shift operator S =Mz. Then

CaC
∗
a =

1

1− |a|2 (I − āS)(I − aS∗) =
1

1− |a|2T1−āzT1−az̄ . (4)
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On the other hand, it can be shown that

C∗
aCa = (1− |a|2)T 1

|1−āz|2
, (5)

which also equals (see Proposition 7.5 in [8])

C∗
aCa = (1− |a|2)T 1

1−az̄
T 1

1−āz
. (6)

Remark 2.1. Using (5), one easily obtains that the spectrum of C∗
aCa is

σ(C∗
aCa) = σ(T 1−|a|2

|1−āz|

) = [
1− |a|
1 + |a| ,

1 + |a|
1− |a| ],

the image of T under the function 1−|a|2

|1−āz| (see [8]). Since Ca is invertible, we also have

σ(CaC
∗
a) equals this interval. In particular,

‖Ca‖ = ‖C∗
a‖ = ‖C∗

aCa‖1/2 =
1 + |a|
1− |a| ,

which is well know (see [6]). Similarly, we obtain the spectrum and the norm of the
commutator [C∗

a , Ca] (note that CaC
∗
a = (C∗

aCa)
−1):

[C∗
a , Ca] = C∗

aCa − (C∗
aCa)

−1 = f(C∗
aCa),

where f(t) = t− 1
t
(considered in (0,+∞)). Then

σ([C∗
a , Ca]) = f

(

[
1− |a|
1 + |a| ,

1 + |a|
1− |a| ]

)

= [
−4|a|
1− |a|2 ,

4|a|
1− |a|2 ],

and also ‖[C∗
a , Ca]‖ = 4|a|

1−|a|2 .

3 Spectral relations between PQP and P ±Q

In this section we collect several elementary (certainly well known) results concerning
the spectra of PQP and P ± Q for pairs of orthogonal projections P,Q. First we state
properties concerning eigenvalues. Note that PQP is a positive contraction, and that
P − Q is a selfadjoint contraction. Chandler Davis [7] observed that the spectrum of
P −Q is symmetric with respect to the oirigin, in the following sense. Denote A = P −Q
and put H′ = (N(A− I)⊕N(A+ I))⊥. Then it is elementary that H′ = (R(P )∩N(Q)⊕
N(P ) ∩ R(Q))⊥ reduces both P and Q. Denote by P ′ and Q′ (and A′ = P ′ − Q′) the
corresponding reductions. Then there exists a symmetry V of H such that V P ′V = Q′

(and therefore also V Q′V = P ′). Thus V A′V = −A′, and in particular the spectrum of
A′ is symmetric: λ ∈ σ(A′) iff −λ ∈ σ(A′), and the multiplicity function is symmetric. It
follows that the spectrum of A has the same property, save for the eventual eigenvalues
±1, where this symmetry could break.

Let us state the following basic properties.
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Lemma 3.1. Suppose that P and Q are orthogonal projections acting in H.

1. If PQP has a an eigenvalue λ 6= 0, 1, then ±(1 − λ2)1/2 are eigenvalues of P −Q.

2. Conversely, if µ 6= 0, 1,−1 is an eigenvalue of P −Q, then 1− µ2 is an eigenvalue
for PQP

Proof. Suppose PQPf = λf for λ 6= 0, 1 and ‖f‖ = 1. Then f ∈ R(P ) and therefore the
subspace V generated by f and Qf is invariant for P and Q:

Pf = f ; PQf = PQPf = λf and Qf

belong to V. Then P−Q is a selfadjoint operator acting in V, which is two dimensional (if
Qf where a multiple of f , then either Qf = 0 and then PQPf = PQf = 0; or Qf = αf
and thus f ∈ R(P )∩R(Q) and therefore PQPf = f). Then {f,Qf} is a basis for V and
the matrices of P , Q and P −Q as operators in V for this basis are, respectively:

(

1 λ
0 0

)

,

(

0 0
1 1

)

and

(

1 λ
−1 −1

)

.

Note that λ ∈ (0, 1): PQP ≥ 0. The eigenvalues of the third matrix are −(1−λ2)1/2 and
(1− λ2)1/2.

For the second statement, suppose that Pg −Qg = µg, for µ 6= 0,±1, i.e.,

Qg = Pg − µg. (7)

Then, applying Q one has Qg = QPg − µQg, i.e. Qg = 1
µ+1

g. Then, substituting this

identity in (7), we get
1

µ+ 1
QPg = Pg − µg,

and applying P : 1
µ+1

PQPg = (1− µ)Pg, i.e.

PQPg = (1− µ2)Pg.

Note that Pg 6= 0: Pg = 0 would imply Qg = −µg, i.e. µ = 0 or µ = −1.

Remark 3.2. Note that if f 6= 0, PQPf = f if and only if f ∈ R(P )∩R(Q). Sufficiency
is trivial. Necessity: pick ‖f‖ = 1; PQPf = f implies f ∈ R(P ), and thus PQf = f .
Then

1 = 〈PQf, f〉 = 〈Qf, Pf〉 = 〈Qf, f〉,
which clearly implies f ∈ R(Q).

The following result can be verified along the same lines as the above lemma. We
include the elementary proof.

Lemma 3.3. Let P,Q be orthogonal projections. Then λ is an eigenvalue of P −Q with
|λ| < 1 if and only if 1± (1− λ2)1/2 are eigenvalues of P +Q.

4



Proof. Let λ be an eigevalue of P −Q. First suppose that λ = 0, and (P −Q)f = 0 for
f 6= 0. Then f ∈ R(P ) ∩ R(Q)⊕N(P ) ∩N(Q). Thus f = f1 + f0 with Pf1 = f1 = Qf1
and Pf0 = 0 = Qf0. Then (P + Q)f1 = 2f1 and (P + Q)f0 = 0, i.e. 1 ± (1 − 0)1/2 are
eigenvalues of P +Q.

Suppose now that (P −Q)f = λf with λ 6= −1, 0, 1. Consider, as in the proof above,
the subspace V generated by f and Qf . Note that {f,Qf} are linearly independent:
if Qf = αf , then either α = 0 or α = 1. If α = 0, then λf = (P − Q)f = Pf
(and λ 6= 0) imply λ = 1 (a contradiction); if α = 1, then λf = (P − Q)f = Pf − f
implies Pf = (1 + λ)f , i.e. λ = −1 (again a contradiction). Thus {f,Qf} is a basis
for V. Note that (P + Q)f = (P − Q)f + 2Qf = λf + 2Qf . On the other hand,
(P −Q)f = λf implies that Pf = λf +Qf , and thus Pf = P (λf +Qf) = λPf + PQf
and thus PQf = (1 − λ)Pf = (1 − λ)(λf + Qf) = (λ − λ2)f + (1 − λ)Qf . Then
(P + Q)Qf = PQf + Qf = (λ − λ2)f + (2 − λ)Qf . Therefore (P + Q)V ⊂ V and its
matrix in the basis {f,Qf} is

(

λ λ− λ2

2 2− λ

)

,

whose eigenvalues are 1± (1− λ2)1/2.
The converse is similar.

Now we focus on arbitrary spectral values, not necessarily eigenvalues. To this ef-
fect, we shall need P. Halmos [10] results on pairs of subspaces / projections. Fix P,Q
orthogonal projections. consider the folowing natural orthogonal decomposition of H:

R(P ) ∩R(Q) ⊕ N(P ) ∩N(Q) ⊕ R(P ) ∩N(Q) ⊕ N(P ) ∩R(Q) ⊕ H0.

The space H0 is usually called the generic part of P and Q. Clearly this decomposition
reduces both P and Q. Note that in this decomposition,

P = I ⊕ 0 ⊕ I ⊕ 0 ⊕ P0 and Q = I ⊕ 0 ⊕ 0 ⊕ I ⊕ Q0.

So that
PQP = I ⊕ 0 ⊕ 0 ⊕ 0 ⊕ P0Q0P0,

P −Q = 0 ⊕ 0 ⊕ I ⊕ −I ⊕ P0 −Q0.

and
P +Q = 2 ⊕ 0 ⊕ I ⊕ I ⊕ P0 +Q0.

Therefore, in order to analyze the spectra of PQP , P − Q and P + Q we need to focus
on the operators acting in the generic part H0.

Continuing with Halmos’ theory, he proved that there exists a unitary isomorphim
between H0 and a product Hilbert space L × L, and a positive operator X acting in L,
with ‖X‖ ≤ π/2 and N(X) = {0}, such that the projections P0 and Q0 are carried to

P0 ≃
(

I 0
0 0

)

and Q0 ≃
(

C2 CS
CS S2

)

,

where C = cos(X) and S = sin(X).
Note in particular that σ(X) ⊂ [0, π/2].
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Lemma 3.4. Let P0 and Q0 as above and let λ 6= 0. Then

1.
λ ∈ σ(P0Q0P0) ⇐⇒ ±

√
1− λ2 ∈ σ(P0 −Q0).

2.
λ ∈ σ(P0Q0P0) ⇐⇒ 1± λ1/2 ∈ σ(P0 +Q0).

Proof. 1. We can reason with the operators in L × L. Then

P0Q0P0 ≃
(

C2 0
0 0

)

,

and thus σ(P0Q0P0) = {cos2(t) : t ∈ σ(X)} ∪ {0}. Also

P0 −Q0 ≃
(

S2 −CS
−CS −S2

)

=

(

S 0
0 S

)(

S −C
−C −S

)

,

where the last two matrices commute (we have used that C and S commute). Note that
the second matrix is a symmetry:

(

S −C
−C −S

)∗

=

(

S −C
−C −S

)

and

(

S −C
−C −S

)2

=

(

I 0
0 I

)

.

It is well known that if a, b are elements of a C∗-algebra such that ab = ba, then σ(ab) ⊂
{λµ : λ ∈ σ(a), µ ∈ σ(b)}. Therefore, since σ

((

S −C
−C −S

))

= {−1; 1}, we have that

σ(P0 −Q0) ⊂ {±λ : λ ∈ σ

(

S 0
0 S

)

} = {± sin(t) : t ∈ σ(X)}.

Conversely, suppose that P0 −Q0 − λ1 is invertible. Since

P0 −Q0 − λ1 ≃
(

S −C
−C −S

)

{
(

S 0
0 S

)

− λ

(

S −C
−C −S

)

},

this means that

(

S 0
0 S

)

− λ

(

S −C
−C −S

)

is invertible. Thus the square of this oper-

ator
(

S2 0
0 S2

)

− 2λ

(

S −C
−C −S

)

+ λ2
(

S2 0
0 S2

)

is positive and invertible. Therefore the diagonal entries are positive and invertible, i.e.,
S2 ± 2λS + λ2I = (S ± λI)2 is invertible. That is, λ 6= ± sin(t) for t ∈ σ(X).

2. The proof is similar. Note that

P0 +Q0 ≃
(

I + C2 CS
CS S2

)

=

(

I 0
0 I

)

+

(

C2 CS
CS −C2

)

6



and that
(

C2 CS
CS −C2

)

=

(

C 0
0 C

)(

C S
S −C

)

.

The right hand matrices commute, and the matrix

(

C S
S −C

)

is also a symmetry. Thus,

with the same argument as above, we have that

σ

((

C2 CS
CS −C2

))

⊂ {± cos(t) : t ∈ σ(X)}.

Also note that
(

C2 CS
CS −C2

)

− λ

(

I 0
0 I

)

=

(

C S
S −C

)

{
(

C 0
0 C

)

− λ

(

C S
S −C

)

}.

This product is invertible if and only if the right hand factor is invertible, which implies
that its square is positive and invertible, and therefore the diagonal entries of this square
are invertible, i.e. (C ± λI)2 are invertible. Therefore

σ(P0 +Q0) = σ

((

I 0
0 I

)

+

(

C2 CS
CS −C2

))

= {1± cos(t) : t ∈ σ(X)}.

4 Projections onto the eigenspaces of Ca

Recall from [1] the formulas for the orthogonal projections onto the range and the null
space of an oblique projection Q:

PR(Q) = Q(Q+Q∗ − I)−1 and PN(Q) = (I −Q)(I −Q−Q∗)−1.

For the oblique projection 1
2
(I − Ca), whose range and nullspace are, respectively, the

(non orthogonal) eigenspaces N(Ca − I) and N(Ca + I), we have:

PN(Ca−I) = (I + Ca)(Ca + C∗
a)

−1 and PN(Ca+I) = (Ca − I)(Ca + C∗
a)

−1. (8)

Denote by
∆a := PN(Ca−I)PN(Ca+I)PN(Ca−I).

We shall compute the norm ‖PN(Ca−I)PN(Ca+I)‖ = ‖∆a‖1/2 below, and further study the
spectrum of ∆a.

The following result will be useful:

Theorem 4.1. Let a ∈ D. Then

σ(PN(Ca−I) + PN(Ca+I)) = [
2− 2|a|2
2− |a|2 , 1 + |a|].

Moreover, none of these spectral values are eigenvalues.
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Proof. It follows from (8) that

PN(Ca−I) + PN(Ca+I) = 2Ca(Ca + C∗
a)

−1.

Note that the inverse of the element Ca(Ca + C∗
a)

−1 is (using (5))

(Ca + C∗
a)Ca = I + C∗

aCa = I + (1− |a|2)T 1

|1−āz|2
.

The spectrum of T 1

|1−āz|2
is the image of its symbol [8]:

σ(T 1

|1−āz|2
) = [

1

(1 + |a|)2 ,
1

(1− |a|)2 ].

Then

σ((I + C∗
aCa)

−1) = [
1− |a|2
2− |a|2 ,

1 + |a|
2

]

and therefore

σ(PN(Ca−I) + PN(Ca+I)) = [
2− 2|a|2
2− |a|2 , 1 + |a|].

An eigenvalue of PN(Ca−I) + PN(Ca+I) would yield an eigenvalue of T 1

|1−āz|2
.

In particular, we have that ‖PN(Ca−I) + PN(Ca+I)‖ = 1 + |a|. We can compute the
norm of ∆a:

Proposition 4.2. The operator ∆a has no (non nil) eigenvalues in H2. Moreover.

‖∆a‖ = |a|2.
Proof. Let λ 6= 0 be an eigenvalue of ∆a: ∆af = λf , for ‖f‖ = 1. Since clearly
‖∆a‖ ≤ 1, it must be |λ| ≤ 1. Note that ∆af = f would imply (see Remark 3.2) that
f ∈ N(Ca − I) ∩N(Ca + I) = {0}. Thus λ < 1.

Since f ∈ R(PN(Ca−I)),

PN(Ca−I)P
⊥
N(Ca+I)PN(Ca−I)f = (PN(Ca−I) − PN(Ca−I)PN(Ca+I)PN(Ca−I))f

= (I − PN(Ca−I)PN(Ca+I)PN(Ca+I))f = (1− λ)f.

Then using Lemma 3.1 with P = PN(Ca−I) andQ = P⊥
N(Ca+I)

, we get that± (1− (1− λ)2)
1/2

are eigenvalues of

P −Q⊥ = PN(Ca−I) − P⊥
N(Ca+I) = PN(Ca−I) + PN(Ca+I) − I.

But it was shown in Theorem 4.1 that PN(Ca−I) + PN(Ca+I) has no eigenvalues.

From Theorem 4.1 we know also that σ(PN(Ca−I)+PN(Ca+I)) = [2−2|a|2

2−|a|2 , 1+ |a|]. There-
fore, ‖PN(Ca−I)+PN(Ca+I)‖ = 1+ |a|. In [9] J. Duncan and P.J. Taylor proved that if P,Q
are non nil projections, then

‖P +Q‖ = 1 + ‖PQ‖.
Then ‖PN(Ca−I)PN(Ca+I)‖ = |a|.
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We can determine the spectrum of ∆a (in particular, obtain another proof of ‖∆a‖ =
|a|2). We shall use Theorem 3.4. Therefore, it will be useful to compute the position of
N(Ca − I) and N(Ca + I). First note that since these subspaces are complementary,

N(Ca − I) ∩N(Ca + I) = {0}

and
N(Ca − I)⊥ ∩N(Ca + I)⊥ = 〈N(Ca − I) +N(Ca + I)〉⊥ = {0}.

In [2] it was shown (Prop. 6.1) that

dimN(Ca − I) ∩N(Ca + I)⊥ = 1 but N(Ca − I)⊥ ∩N(Ca + I) = {0}. (9)

Therefore in Halmos decomposition of H2 in terms of N(Ca − I) and N(Ca + I) we have
only two non trivial subspaces:

N(Ca − I) ∩N(Ca + I)⊥ ⊕H0

Denote ∆a = 0⊕∆0
a, where ∆0

a is the reduction of ∆a to H0. Clearly σ(∆a) = σ(∆0
a)∪

{0}.
Proposition 4.3. σ(∆a) = [0, |a|2].
Proof. Due to the observation above, we have to compute the spectrum of the reduction
∆0

a. Denote by P0, Q0 the reductions of PN(Ca−I) and PN(Ca+I) to H0. The spectrum of
P0 +Q0 is obtained from

σ(PN(Ca−I) + PN(Ca+I)) = {1} ∪ σ(P0 +Q0).

Since σ(PN(Ca−I) + PN(Ca+I)) = [2−2|a|2

2−|a|2 , 1 + |a|], and 2−2|a|2

2−|a|2 < 1, we have that also

σ(P0 +Q0) = [
2− 2|a|2
2− |a|2 , 1 + |a|].

Recall from Theorem 3.4 that µ ∈ σ(P0 + Q0) if and only if λ = (µ − 1)2 ∈ σ(P0Q0P0).
Then the spectrum of ∆0

a is the image of the function f(µ) = (µ − 1)2 in the interval

[2−2|a|2

2−|a|2
, 1 + |a|], i.e., [0, |a|2].

It is known (and elementary to verify) that

N(Ca − I) ∩N(Ca + I)⊥ = N(PN(Ca−I) − PN(Ca+I) − I)

and
N(Ca − I)⊥ ∩N(Ca + I) = N(PN(Ca−I) − PN(Ca+I) + I).

Then using again the intersections computed in (9), we have that

Proposition 4.4. ‖PN(Ca−I) − PN(Ca+I)‖ = 1.

Proof. If f ∈ N(Ca−I)∩N(Ca+I)
⊥ with ‖f‖ = 1, then (PN(Ca−I)−PN(Ca+I))f = f .

9



5 The C∗-algebra generated by Ca.

The C∗-algebra C∗(Ca) generated by Ca coincides with the C∗-algebra generated by the
projections PN(Ca−I) and PN(Ca+I). Therefore, by the results of G.K. Pedesersen [11] it is
completely characterized by the spectrum of ∆a (see for instance the excellent survey [3]
on which we will base our exposition). Following the notation in [3], given the subspaces
L = N(Ca − I) and N = N(Ca + I), in order to characterize C∗

a we need the subspaces

M00 = L ∩ N , M01 = L ∩ N⊥, M01 = L⊥ ∩N , M11 = L⊥ ∩ N⊥,

and H0 the orthogonal complement of the sum of the former four. We already noticed
that M00 = M11 = M10 = {0} and dimM01 = 1. Again using Halmos’ theory [10],
we have that H0 ≃ J × J and there exists a positive operator X ∈ B(J ), X ≤ π/2,
N(X) = {0}, such that the isomorphism that carries H0 onto J ×J maps the projections
PL = PN(Ca−I) and PN = PN(Ca+I) onto

PN(Ca−I) ≃
(

I 0
0 0

)

and PN(Ca+I) ≃
(

C2 CS
CS S2

)

,

where C = cos(X) and S = sin(X). Then C∗(Ca) can be described in terms of H =
sin(X)2, or more precisely, in terms of the spectrum of H . Since σ(∆a) = [0, |a|], i.e.,
σ(X) = [arccos(|a|), π/2]. It follows that σ(H) = [1−|a|2, 1]. Then according to Theorem
4.1 in [3], we have that

Theorem 5.1. Let a ∈ D, a 6= 0. Then C∗
a is ∗-isomorphic to

{(α,
(

f00(H) f01(H)
f10(H) f11(H)

)

) : α ∈ C, fij ∈ C(1− |a|2, 1), f00(1) = α, f01(1) = f10(1) = 0}.

With this description, it is clear that

Corollary 5.2. Let a, b ∈ D \ {0}. Then C∗(Ca) ≃ C∗(Cb).

6 Relationship between Ca and Γa

Since ϕa is also a homeomorphism in T, it induces a composition operator Γa in L2(T).
This operator is also reflection, and is easier to handle. For instance, its adjoint is easier
to compute.

Clearly Γa|H2 = Ca. Moreover, PN(Γa−I) leaves H
2 invariant. Indeed, if f ∈ H2 and

f = f+ + f− with f+ ∈ N(Γa − I) and f− ∈ N(Γa + I), then Γaf = f+ − f− ∈ H2. Then
f + Γaf = 2f+ ∈ H2, i.e., f+, f− ∈ H2. Then

PN(Γa−I)|H2 = PN(Ca−I) and PN(Γa+I)|H2 = PN(Ca+I). (10)

10



Denote by P+ the orthogonal projection of L2(T) onto H2, and by H− := L2(T)⊖H2.
The fact that Γa|H2 = Ca, means P+ΓaP+ = ΓaP+ = Ca. On the other hand, by a change
of variables argument it is easy to see that

Γ∗
a = (1− |a|2)M 1

|1−āz|2
Γa = (1− |a|2)M 1

1−āz
z

z−a
Γa.

If f, g ∈ H2,
〈Γ∗

af, g〉 = 〈f,Γag〉 = 〈f, Cag〉 = 〈C∗
af, g〉,

i.e., P+Γ
∗
aP+ = C∗

a . Let us see how Γ∗
a acts on H2 (i.e., let us compute P⊥

+Γ∗
aP+).

Lemma 6.1. Let h ∈ H2, a ∈ D, a 6= 0, and denote by h0 = h−h(0). Then h0(ϕa(z))
z−a

∈ H2

and

Γ∗
ah = (1− |a|2) z

1− āz

h0(ϕa(z))

z − a
+ h(0)Γ∗

a(1).

Moreover,

Γ∗
a(1) =

1

1− āz
+

a

z − a
,

where the first summand lies in H2 and the second in H−.

Proof. If h = h0 + h(0), then

Γ∗
ah = Γ∗

ah0 + h(0)Γ∗
a(1) = (1− |a|2)M 1

1−āz
z

z−a
h0(ϕa(z)) + h(0)Γ∗

a(1).

Note that h0(ϕa(a)) = h0(0) = 0, and thus h0(ϕa(z))
z−a ∈ H2. On the other hand, if n ≥ 0,

〈zn,Γ∗
a(1)〉 = 〈Γa(zn), 1〉 = 〈

(

a− z

1− āz

)n

, 1〉 =
(

a− z

1− āz

)n

|z=0 = an,

i.e. 〈Γ∗
a(1), z

n〉 = ān, for n ≥ 0, and thus (for z ∈ T)

P+(Γ
∗
a(1)) =

∞
∑

n=0

ānzn =
1

1− āz
.

For m < 0,

〈Γ∗
a(1).z

m〉 = 〈1,
(

a− z

1− āz

)m

〉 = 1

2π

∫

T

(

ā− z̄

1− az̄

)m

dz =
1

2π

∫

T

(

ā− 1/z

1− a/z

)m

dz

=
1

2π

∫

T

(

ā− z

1− āz

)−m

dz = 〈ϕa(z)−m, 1〉 = a−m.

Then

P⊥
+ (Γ∗

a(1)) =
∑

m<0

a−mzm =
∑

m<0

(a

z

)−m

=
a/z

a− a/z
=

a

z − a
.

11



In other words, P⊥
+Γ∗

aP+ is the rank one operator

P⊥
+Γ∗

aP+f =
a

z − a
〈f, 1〉. (11)

Therefore, to complete the 2 × 2 matrix of Γa in terms of the decomposition L2(T) =
H2 ⊕H− it remains to compute P⊥

+ΓaP
⊥
+ . Denote by V the symmetry of L2(T) given by

V f(z) = f(z̄).

Clearly V ∗ = V −1 = V , and V maps H− onto H2 ⊖ 〈1〉. Also it is clear that if g ∈ H−,
then

Γa(g) = V CāV g.

Indeed, if g =
∑∞

k=1 akz
−k, then

V CāV g = V Cā(
∞
∑

k=1

akz
k) = V (

∞
∑

k=1

ak

(

ā− z

1− az

)k

) =
∞
∑

k=1

ak

(

ā− 1/z

1− a/z

)k

=
∞
∑

k=1

ak

(

a− z

1− āz

)−k

= Γag.

In particular, note that Γah− ⊂ H− ⊕ 〈1〉. For g ∈ H−, the component of Γah in 〈1〉 is
(accordingly)

〈Γag, 1〉 = 〈V CāV h, 1〉 = 〈CāV g.V 1〉 = 〈CāV g, 1〉,
recall that for f ∈ H2, 〈Cbf, 1〉 = f(b), the quantity above equals

V g(ā) = 〈V g, kā〉 = 〈g, V kā〉 = 〈g, z

z − a
〉.

Then, we have

Theorem 6.2. The 2 × 2 matrix of Γa in terms of the decomposition L2(T) = H2 ⊕H−

is




Ca 〈 , a
z−a〉1

0 V CāV − 〈 , a
z−a〉1



 .

Proof. The adjoint of 〈 , 1〉 a
a−z is 〈 , a

a−z 〉1.

7 Two symmetries

We shall consider two symmetries (i.e., selfadjoint unitaries) which are closely related to
Ca. The first one comes from the polar decomposition of Ca:

Ca = ρa|Ca| = ρa(C
∗
aCa)

1/2, i.e., ρa = Ca(C
∗
aCa)

−1/2.
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In [4] it was shown that the unitary part in the polar decomposition of a reflection is in
fact a symmetry. Thus, ρ∗a = ρ−1

a . Note then that C∗
a = |Ca|ρa and thus

ρaCaρa = C∗
a . (12)

The second symmetry can be found in the book [6] of C. Cowen and B. McCluer (Exercise
2.1.9): Wa : H

2 → H2,

Waf =
√

1− |a|2MkaCaf, (13)

where ka(z) =
1

1−āz
is the Szego kernel, i.e.,

Waf(z) =

√

1− |a|2
1− āz

f(ϕa(z)).

Cowen and McCluer mention that Wa is isometric for all p norms, it is easy to see that
W 2
a = I. Denote by fa the H∞ function

fa :=
1 + ω̄az

1− ω̄az
. (14)

Note that f̄a =
z+ωa

z−ωa
Then

Proposition 7.1. Let a ∈ D, and ωa the fixed point of ϕa inside D. Then

WωaCaWωa = TfaC0 = C0T1/fa .

Proof. By direct computation:

WωaCaWωaf(z) =
√

1− |ωa|2WωaCa (f(ϕωa(z))kωa(z))

=
√

1− |ωa|2Wωa (f(ϕωa(ϕa(z)))kωa(ϕa(z))) .

Recall from (2) that ϕωa ◦ ϕa = −ϕωa . Thus, the above expression equals

(1−|ωa|2)f(−ϕωa(ϕωa(z)))kωa(z)kωa(ϕa(ϕωa(z))) = (1−|ωa|2)f(−z)kωa(z)kωa(ϕa(ϕωa(z)))

Note that ϕωa ◦ ϕa = −ϕωa and ϕωa ◦ ϕωa(z) = z imply that ϕωa ◦ ϕa ◦ ϕωa(z) = −z, and
thus

ϕa ◦ ϕωa(z) = ϕωa(−z).
Then

kωa(ϕa(ϕωa(z))) =
1

1− ω̄a

(

ωa+z
1+ω̄az

) =
1 + ω̄az

1− |ωa|2
.

Therefore

WωaCaWωaf(z) = f(−z)kωa(z)(1 + ω̄az) = fa(z)f(−z) = TfaC0f(z).

The facts that (WωaCaWωa)
2 = I, and that fa is invertible in H∞ imply that

TfaC0 = (TfaC0)
−1 = C0T

−1
fa

= C0T1/fa .
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Remark 7.2. Since fa, 1/fa ∈ H∞, we could write Mfa ,M1/fa instead of Tfa , T1/fa . Also
note that

WωaC
∗
aWωa = (WωaCaWωa)

∗ = (TfaC0)
∗ = C0Tf̄a .

And similarly,
WωaC

∗
aWωa = (C0T1/fa)

∗ = T1/f̄aC0.

In Lemma 4.1 of [2] it was shown that the (unitary) product Waρa commutes with
C∗
aCa (and thus also with its inverse CaC

∗
a). As a consequence we obtain the following:

Proposition 7.3. With the current notations we have that

WaρaCa = Ca(Waρa)
∗, WaρaC

∗
a = C∗

a(Waρa)
∗,

and
C∗
aCaWa = Wa(C

∗
aCa)

−1.

Proof. Since Waρa commutes with C∗
aCa, it also commutes with its square root |Ca| (and

therefore also ρaWa = (Waρa)
∗ commutes with |Ca|). Then

WaρaCa = Waρaρa|Ca| =Wa|Ca| = ρa(ρaWa)|Ca| = ρa|Ca|ρaWa = CaρaWa.

Thus, aking adjoints,

C∗
aρaWa = (WaρaCa)

∗ = (CaρaWa)
∗ =WaρaC

∗
a .

Finally, using that ρa inertwines Ca with C∗
a ,

C∗
aCaWaρa = WaρaC

∗
aCa =WaCaρaCa =WaCaC

∗
aρa,

and thus C∗
aCaWa =WaCaC

∗
a = Wa(C

∗
aCa)

−1.

8 The relationship with Tϕωa
Since ϕωa is an inner function, the Toeplitz operator Tϕωa

is an isometry. It is easy to see
that it has co-rank 1. Below we compute the orthogonal projection Tϕωa

T ∗
ϕωa

= Tϕωa
Tϕωa

.
We shall use the following computation:

Lemma 8.1. Let f ∈ H2 and b ∈ D. Then

P+(f/ϕb) =
f − f(b)

ϕb
+ f(b)b̄.

Proof. Note that f/ϕb =
f−f(b)
ϕb

+ f(b)
ϕb

, where the first summand belongs to H2. Also note

that 1
b−z

∈ H−, and thus

P+(f(b)/ϕb) = f(b)P+(
1− b̄z

b− z
) = f(b)P+(

1− |b|2
b− z

+ b̄) = f(b)b̄.

14



Therefore, I − Tϕωa
Tϕωa

is the orthogonal projection onto the line generated by kωa:
using Lemma 8.1

Tϕωa
Tϕωa

f = Tϕωa
P+(f/ϕωa) = ϕωa

(

f − f(ωa)

ϕωa

+ f(ωa)ω̄a

)

= f − f(ωa) + ω̄af(ωa)ϕωa

= f + 〈f, kωa〉(1− ω̄aϕωa).

Note that 1− ωaϕωa = 1−|ωa|2

1−ω̄az
, and thus the computation above equals

f − 〈f, kωa〉(1− |ωa|2)kωa = f − 〈f, (1− |ωa|2)1/2kωa〉(1− |ωa|2)1/2kωa = f − 〈f, ψa〉ψa,
where ψa = (1− |ωa|2)1/2kωa is the normalization of kωa.

Note the folllowing facts:

Proposition 8.2. Let a ∈ D. The Toeplitz operator Tϕωa
satisfies that

Tϕωa
Ca + CaTϕωa

= 0

and
Tϕωa

C∗
a + C∗

aTϕωa
= 2ωa〈 , 1〉kωa.

Proof. The first assertion is a direct computation:

Tϕωa
Caf = P+ (ϕωaf(ϕa)) = ϕωaf(ϕa),

whereas
CaTϕωa

f = Ca(ϕωaf) = ϕωa(ϕa)f(ϕa),

and the assertion follows recalling from (2) that ϕωa ◦ ϕa = −ϕωa .
With respect to the second assertion, using Lemma 8.1

T1/ϕωa
Caf = P+ (1/ϕωaf(ϕa)) =

f(ϕa)− f(ωa)

ϕωa

+ ω̄af(ωa).

On the other hand, similarly as above

CaT
∗
ϕωa

f = CaP+ (1/ϕωaf) = Ca

(

f(z)− f(ωa)

ϕωa

+ ω̄af(ωa)

)

.

Since Ca(1) = 1 and again using (2), we get

T1/ϕωa
Caf = −f(ϕa)− f(ωa)

ϕωa

+ ω̄af(ωa).

Therefore
(T ∗

ϕωa
Ca + CaT

∗
ϕωa

)f = 2ω̄af(ωa) = 2ω̄a〈f, kωa〉1,
i.e.,

T ∗
ϕωa

Ca + CaT
∗
ϕωa

= 2ω̄a〈 , kωa〉1,
and thus

Tϕωa
C∗
a + C∗

aTϕωa
= 2ωa〈 , 1〉kωa.
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Remark 8.3. It follows form the previous lemma that T 2
ϕωa

= Tϕ2
ωa

commutes with Ca.
Whereas

T 2
ϕωa

C∗
a = Tϕωa

(

−C∗
aTϕωa

+ 2ωa〈 , 1〉kωa

)

= C∗
aT

2
ϕωa

+3ωa{〈 , 1〉Tϕωa
kωa −〈 , T ∗

ϕωa
1〉kωa}.

Note that Tϕωa
kωa = ωa−z

(1−ω̄az)2
and T ∗

ϕωa
1 = ω̄a (constant function). In particular T 2

ϕωa

commutes with C∗
a modulo a rank two operator.

Remark 8.4. Another consequence of the above lemma is that the isomery Tϕωa
inter-

twines Ca with −Ca:
T ∗
ϕωa

CaTϕωa
f = T ∗

ϕωa
(−ϕωaf(ϕa)) = −P+ ((1/ϕωa)ϕωaf(ϕa)) = −f(ϕa),

i.e., T ∗
ϕωa

CaTϕωa
= −Ca.

Denote A the operator A :=WωaCaWωa = TfaC0 = C0T1/fa from the previous section.
In [2] Lemma 4.1 (or perform the elementary computation) it was shown that for b ∈ D

WbTϕb
Wb = S = Tz. (15)

We can combine this with Proposition 8.2 to obtain

Corollary 8.5. With the current notations, we have that

SA+ AS = 0

and
SA∗ + A∗S = 2ωa〈 , kωa〉1.

Proof.

0 =Wωa

(

Tϕωa
Ca + CaTϕωa

)

Wωa = WωaTϕωa
WωaWωaCaWωa +WωaCaWωaWωaTϕωa

Wωa

= SA+ AS.

Similarly

SA∗ + A∗S = Wωa (2ωa〈 , 1〉kωa)Wωa = 2ωa〈 ,Wωa1〉Wωakωa .

The proof follows noting that Wωa1 =
√

1− |ωa|2Tkωa
Cωa1 =

√

1− |ωa|2kωa and thus

1 = WωaWωa1 = Wωa(
√

1− |ωa|2kωa) =
√

1− |ωa|2Wωakωa,

i.e., Wωakωa = 1√
1−|ωa|2

1.

Note that the second assertion of the above corollary is equivalent to

S∗A + AS∗ = 2ω̄a(〈 , kωa〉1)∗ = 2ω̄a〈 , 1〉kωa. (16)

Then, using the again this first assertion,

SS∗A+ SAS∗ = SS∗A− ASS∗ = 2ω̄a〈 , 1〉Skωa.

Since SS∗ = I − 〈 , 1〉1, we get that

A〈 , 1〉1− 〈 , 1〉1A = 〈 , 1〉A1− 〈 , A1〉1 = 2ω̄a〈 , 1〉Skωa.

Since A1 = TfaC01 = fa, we obtain

〈 , fa〉1− 〈 , 1〉fa = 2ω̄a〈 , 1〉Skωa. (17)

16



References

[1] Ando, T., Unbounded or bounded idempotent operators in Hilbert space. Linear
Algebra Appl. 438 (2013), no. 10, 3769–3775.

[2] E. Andruchow; G. Corach; L. Recht. Symmetries and reflections from compo-
sition operators in the disk, Integral Equations Operator Theory (to appear),
arXiv:2307.01287.

[3] A. Böttcher; I.M. Spitkovsky. A gentle guide to the basics of two projections theory.
Linear Algebra Appl. 432 (2010), 1412–1459.

[4] Corach, G.; Porta, H.; Recht, L., The geometry of spaces of projections in C∗-
algebras, Adv. Math. 101 (1993), no. 1, 59–77.

[5] Cowen, C. C. Linear fractional composition operators on H2. Integral Equations
Operator Theory 11 (1988), no. 2, 151–160.

[6] Cowen, C. C.; MacCluer, B. D., Composition operators on spaces of analytic func-
tions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.

[7] Davis, C., Separation of two linear subspaces, Acta Sci. Math. Szeged 19 (1958)
172–187.

[8] Douglas, R. G., Banach algebra techniques in operator theory. Second edition. Grad-
uate Texts in Mathematics, 179. Springer-Verlag, New York, 1998.

[9] Duncan, J.; Taylor, P. J. Norm inequalities for C∗-algebras. Proc. Roy. Soc. Edin-
burgh Sect. A 75 (1975/76), no. 2, 119–129.

[10] Halmos, P. R., Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381–389.

[11] G. K. Pedersen. Measure theory for C∗ algebras. II. Math. Scand. 22 (1968), 63–74.

E. Andruchow, Instituto Argentino de Matemática, ‘Alberto P. Calderón’,
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