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ON SYMMETRIC FUNCTIONS AND SYMMETRIC OPERATORS

ON BANACH SPACES

KALLOL PAUL, DEBMALYA SAIN AND SHAMIM SOHEL

Abstract. We study left symmetric and right symmetric elements in the space

ℓ∞(K,X) of bounded functions from a non-empty set K to a Banach space X. We

prove that a non-zero element f ∈ ℓ∞(K,X) is left symmetric if and only if f is zero

except for an element k0 ∈ K and f(k0) is left symmetric in X. We characterize left

symmetric elements in the space C0(K,X), where K is a locally compact perfectly

normal space. We also study the right symmetric elements in ℓ∞(K,X). Furthermore,

we characterize right symmetric elements in C0(K,X), where K is a locally compact

Hausdorff space and X is real Banach space. As an application of the results obtained

in this article, we characterize the left symmetric and right symmetric operators on

some special Banach spaces. These results improve and generalize the existing ones

on the study of left and right symmetric elements in operator spaces.

1. Introduction

In the realm of Banach space geometry, the concept of symmetric points plays an

important role. Unlike Hilbert spaces, the Birkhoff-James orthogonality is not sym-

metric in general Banach spaces. In view of this, two new notions of left symmetric

points and right symmetric points have been introduced [14]. Several mathematicians

have studied the symmetric points and their applications in the isometric theory of

Banach spaces in [3, 6, 12, 14, 19, 20] to gain insights into the geometric aspects of the

concerned spaces, including the study of onto isometries. In this article, we study the

symmetric points in ℓ∞(K,X), the space of all bounded functions from K to X and

C(K,X), the space of all continuous functions from K to X, where X is a Banach space

and K is a non-empty set.

We use the symbols X,Y to denote Banach spaces over the field K, where K is

either the complex field C or the real field R. Let BX = {x ∈ X : ‖x‖ ≤ 1} and

SX = {x ∈ X : ‖x‖ = 1} denote the unit ball and the unit sphere of X, respectively.

The dual space of X is denoted by X∗. Let L(X,Y) (K(X,Y)) denote the Banach space

of all bounded (compact) linear operators from X to Y. The convex hull of a non-empty

set S ⊂ X is the intersection of all convex sets in X containing S and it is denoted by

co(S). For a non-empty convex set A, an element z ∈ A is said to be an extreme point of
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A if the equality z = (1− t)x+ ty, with t ∈ (0, 1) and x, y ∈ A, implies that x = y = z.

The set of all extreme points of A is denoted by Ext(A). A Banach space is said to be

strictly convex if every point of SX is an extreme point of BX. For T ∈ L(X,Y), the

norm attainment set of T, denoted by MT , is defined asMT = {x ∈ SX : ‖Tx‖ = ‖T‖}.
Given any non-zero x ∈ X, f ∈ SX∗ is said to be a support functional at x if f(x) = ‖x‖.
Let J(x) := {f ∈ SX∗ : f(x) = ‖x‖}. Given a subset M of X∗, M

w∗

denotes the closure

of M with respect to the weak*- topology defined on X∗.

Let us now recall from [1, 5] that an element x ∈ X is said to be Birkhoff-James

orthogonal to y ∈ X if ‖x + λy‖ ≥ ‖x‖, for all λ ∈ K. Symbolically, it is written as

x ⊥B y. For real Banach spaces, this orthogonality relation is dissected in two parts as

x+ and x−, in [15]. Given x, y ∈ X, we say that y ∈ x+ if ‖x+λy‖ ≥ ‖x‖, for any λ ≥ 0

and y ∈ x− if ‖x+ λy‖ ≥ ‖x‖, for any λ ≤ 0. For any x, y ∈ X, it is easy to verify that

either y ∈ x+ or y ∈ x−. Approximate versions of these concepts have been introduced

in [18], for further analyzing the geometry of Banach spaces as follows : For x, y ∈ X

and ǫ ∈ [0, 1), we say that y ∈ x+ǫ if ‖x + λy‖ ≥
√
1− ǫ2‖x‖, ∀λ ≥ 0 and y ∈ x−ǫ if

‖x+ λy‖ ≥
√
1− ǫ2‖x‖, ∀λ ≤ 0.

It is clear that in general, Birkhoff-James orthogonality is not symmetric. In this

context the notions of left and right symmetric points were introduced in [14]:

Definition 1.1. An element x ∈ X is said to be a left symmetric point if x ⊥B y

implies that y ⊥B x for all y ∈ X. Similarly, a point x ∈ X is said to be a right

symmetric point if y ⊥B x implies that x ⊥B y for all y ∈ X. An element x ∈ X is said

to be a symmetric point if x is both left symmetric and right symmetric.

While complete characterizations have been obtained for left symmetric points [19,

Th. 2.1] and right symmetric points [19, Th. 2.2] in real Banach spaces, explicitly

determining these points still remains a challenging task in the space of bounded (con-

tinuous) functions. Of course, this difficulty is further elevated in the complex case.

This article aims to address this problem by determining the explicit forms of left

(right) symmetric elements in the bounded (continuous) function spaces.

For a non-empty set K and a Banach space X, the Banach space of all bounded

functions defined from K to X, endowed with the supremum norm, is denoted by

ℓ∞(K,X). Given a compact Hausdorff topological space K and a Banach space X,

we write C(K,X) to denote the Banach space of all bounded continuous functions

from K to X, endowed with the supremum norm. Clearly, C(K,X) is embedded into

ℓ∞(K,X). Whenever K is finite, it follows trivially that ℓ∞(K,X) = C(K,X). For the

sake of simplicity, if K is a finite set and |K| = n, then ℓ∞(K,X) is denoted as ℓn∞(X).

Given a locally compact Hausdorff space K and a Banach space X, the space C0(K,X)

is the space of all bounded continuous function f having the property that for any

ǫ > 0, there exists a compact set Γ ⊂ K such that ‖f(k)‖ < ǫ, for any k ∈ K \ Γ. So,
whenever K is compact, C0(K,X) = C(K,X). For a function f ∈ C0(K,X), the norm

attainment set of f, denoted by Mf , is defined as Mf = {k ∈ K : ‖f(k)‖ = ‖f‖}.
Whenever X = R or C, we use the standard notations C(K) and C(K0) in place of
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C(K,X) and C0(K,X), respectively.

This article is divided into three sections including the introductory one. In the fol-

lowing preliminary section we study some basic results on Birkhoff-James orthogonality

in the function spaces. The main results of this article are further divided into two

sections. In Section-I, we study the symmetric points in the spaces ℓ∞(K,X), C(K,X),

and C0(K,X). We characterize the left symmetric points in the space ℓ∞(K,X) and

provide a necessary condition for right symmetric points. We also obtain a complete

characterization of left symmetric functions in the space C0(K,X), under the condition

that K is locally compact and perfectly normal. Moreover, we characterize the right

symmetric points in C(K,X), under the assumption that K is a compact Hausdorff

space. As an application of our study, we provide a necessary condition for onto linear

isometries in the space ℓn∞(X). In Section-II, we study the symmetric points in the space

of bounded linear operators. Using the results obtained in Section-I, we characterize

the symmetric points for the spaces K(X, C(K)). We also present refinements of some

known results on symmetric points in the spaces L(ℓn1 ,X) and L(X, ℓn∞).

2. Preliminaries

The following characterizations of Birkhoff-James orthogonality and relevant results

in terms of support functionals will be used in many places in this article.

Theorem 2.1. [5] Let X be a Banach space and let x, y ∈ X. Then x ⊥B y if and only

if there exists f ∈ X∗ such that f(x) = ‖f‖‖x‖ and f(y) = 0.

Lemma 2.2. [11, Lemma. 7.3.2] Let X be a real Banach space and x, u ∈ X. Then the

following holds true:

(i) u ∈ x+ \ x− if and only if f(u) > 0, ∀f ∈ J(x).

(ii) u ∈ x− \ x+ if and only if f(u) < 0, ∀f ∈ J(x).

In [9], Birkhoff-James orthogonality has been studied in the space ℓ∞(K,X) and

C(K,X), for some non-empty set K and a Banach space X. In order to describe the

symmetric points in these spaces, we need the following characterizations of Birkhoff-

James orthogonality that follow directly from [9, Th. 3.2, Th. 3.5].

Theorem 2.3. [9, Th 3.2] Let K be a non-empty set and let X be a Banach space.

Suppose C ⊂ SX∗ be such that BX∗ = co(C)
w∗

. Then for f, g ∈ ℓ∞(K,X), f ⊥B g if

and only if

0 ∈ co

({
lim y∗n(g(kn)) : kn ∈ K, y∗n ∈ C, ∀n ∈ N, lim y∗n(f(kn)) = ‖f‖

})
.

Corollary 2.4. [9, Th 3.5] Let K be a compact Hausdorff space and let X be a Banach

space. Suppose let C ⊂ SX∗ be such that BX∗ = co(C)
w∗

. Then for f, g ∈ C(K,X),

f ⊥B g if and only if

0 ∈ co

({
y∗(g(k)) : k ∈ K, y∗ ∈ C, y∗(f(k)) = ‖f‖

})
.
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Observe thatBX∗ being weak*-compact and convex, it follows from the Krein-Milman

Theorem that BX∗ = co(Ext(BX∗))
w∗
. Thus, both Theorem 2.3 and Corollary 2.4 re-

main valid if we take C = Ext(BX∗).

In the same spirit, we study orthogonality in the space C0(K,X), when K is locally

compact Hausdorff. For this purpose, we require the following observations.

Proposition 2.5. Let K be a locally compact Hausdorff space and let X be a Banach

space. Then for any f ∈ SC0(K,X), Mf is non-empty and compact.

Proof. Let ǫ = 1
2
. Suppose that Γ ⊂ K is a compact set such that ‖f(k)‖ < ǫ, ∀k ∈

K \ Γ. Clearly,
‖f‖ = sup

k∈K
‖f(k)‖ = sup

k∈Γ
‖f(k)‖.

As Γ is compact, there exists k′ ∈ Γ such that ‖f(k′)‖ = supk∈Γ ‖f(k)‖ = ‖f‖. Hence
k′ ∈ Mf and Mf is non-empty. Let kα be a net in Mf . Clearly, {kα} ⊂ Γ. As Γ is

compact, there exists a subnet {kαλ
} of {kα} such that kαλ

→ k0 ∈ Γ. To prove that

Mf is compact, it suffices to show that k0 ∈Mf . Since f is continuous, it follows that

f(kαλ
) → f(k0) and ‖f(kαλ

)‖ → ‖f(k0)‖. As {kαλ
} ∈ Mf , we obtain that ‖f(k0)‖ =

1. �

Theorem 2.6. Let K be a locally compact Hausdorff space and let X be a Banach

space. Suppose f, g ∈ C0(K,X). Then f ⊥B g if and only if

0 ∈ co

({
y∗(g(k)) : k ∈ K, y∗ ∈ Ext(BX∗), y∗(f(k)) = ‖f‖

})
.

Proof. From Proposition 2.5, for any f ∈ C0(K,X), Mf is non-empty and compact.

Now the proof of this theorem follows in the same line of the proof of [9, Th. 3.5]. �

For a real Banach space X, the following result can be deduced easily by applying

Corollary 2.4.

Corollary 2.7. Let K be a compact Hausdorff space and X be a real Banach space.

Let f, g ∈ C(K,X). Then f ⊥B g if and only if there exists k1, k2 ∈ Mf such that

g(k1) ∈ f(k1)
+ and g(k2) ∈ f(k2)

−.

We end this section with the following important property of a locally compact

Hausdorff space which will be used later on.

Theorem 2.8. [13, Th. 2.7] Suppose U is open in a locally compact Hausdorff space

K, S ⊂ U and S is compact. Then there is an open set V with compact closure V such

that S ⊂ V ⊂ V ⊂ U.

3. Main Results.

Section-I

We begin with the characterization of left symmetric elements in the space ℓ∞(K,X).
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Theorem 3.1. Let K be any non-empty set and let X be a Banach space. Then

f ∈ Sℓ∞(K,X) is left symmetric if and only if f satisfies the following:

(i) there exists a k0 ∈ K such that f(k0) ∈ SX and f(k) = 0, ∀k0 6= k ∈ K.

(ii) f(k0) is left symmetric.

Proof. To prove the sufficient part, let us assume that f ∈ Sℓ∞(K,X) and f ⊥B g. We

prove that g ⊥B f. Let {kn} ⊂ K such that lim ‖g(kn)‖ = ‖g‖. Consider the following

two cases:

Case 1: Let kn 6= k0, for all but finitely many n ∈ N. Consider y∗n ∈ Ext(BX∗) such

that lim y∗n(g(kn)) = ‖g‖. Since f(kn) = 0, for all but finitely many n ∈ N, we obtain

that

0 ∈ co({lim y∗n(f(kn)) : kn ∈ K, y∗n ∈ Ext(BX∗), ∀n ∈ N, lim y∗n(g(kn)) = ‖g‖}).
Now using Theorem 2.3, we obtain that g ⊥B f.

Case 2: Suppose that the sequence {kn} has a subsequence {knr
} such that knr

=

k0, ∀r ∈ N. Then ‖g‖ = ‖g(k0)‖. As f ⊥B g and f(k) = 0, ∀k ∈ K \ {k0}, so for any

scalar λ,

sup{‖f(k0) + λg(k0)‖, |λ|‖g(k)‖ : k ∈ K \ {k0}} = ‖f + λg‖ ≥ ‖f‖ = ‖f(k0)‖ = 1.

Let |λ| < 1
2‖g‖

, then |λ|‖g(k)‖ < 1
2
. So, whenever |λ| < 1

2‖g‖
,

‖f(k0) + λg(k0)‖ ≥ |f(k0)‖.
From the convexity of the norm, it is easy to observe that for any scalar λ, ‖f(k0) +
λg(k0)‖ ≥ ‖f(k0)‖. So, f(k0) ⊥B g(k0). Since f(k0) is left symmetric, g(k0) ⊥B f(k0).

Observe that for any scalar λ,

‖g + λf‖ ≥ ‖g(k0) + λf(k0)‖ ≥ ‖g(k0)‖ = ‖g‖,
which is equivalent to g ⊥B f. Thus, f is left symmetric.

To prove the necessary part, we first show that f satisfies (i). Suppose on the contrary

that there exist k1, k2 ∈ K such that f(k1) 6= 0 6= f(k2), where k1 6= k2. We choose

{kn}n∈N ⊂ K such that lim ‖f(kn)‖ = ‖f‖. Define g : K → X such that g(k1) =
f(k1)

‖f(k1)‖
,

and g(k) = 0, for any k ∈ K \ {k1}. Clearly, ‖g‖ = 1. Then for any y∗n ∈ Ext(BX∗)

with lim y∗n(f(kn)) = ‖f‖, we obtain that y∗n(g(kn)) = 0, ∀n > 1. Therefore,

0 ∈ co({lim y∗n(g(kn)) : kn ∈ K, y∗n ∈ Ext(BX∗), ∀n ∈ N, lim y∗n(f(kn)) = ‖f‖}).
So, using Theorem 2.3, we obtain that f ⊥B g. Next we show that g 6⊥B f. Let

{k′n} ⊂ K and {y∗n} ⊂ Ext(BX∗) such that lim y∗n(g(k
′
n)) = 1, ∀n ∈ N. Note that

g(k1) ∈ SX and g(k) = 0, ∀k 6= k1. As lim y∗n(g(k
′
n)) = 1, without loss of generality

we assume that k′n = k1, ∀n ∈ N. As g(k1) =
f(k1)

‖f(k1)‖
, it follows that lim y∗n(g(k1)) = 1.

Thus, lim y∗n(f(k1)) = ‖f(k1)‖ 6= 0. So,

0 /∈ co({lim y∗n(f(k1)) : y
∗
n ∈ Ext(BX∗), lim y∗n(g(k1)) = 1}),

which implies that g 6⊥B f. This contradicts that f is left symmetric. Therefore, f

satisfies (i).



6 PAUL, SAIN AND SOHEL

Next we show that (ii) holds. Suppose on the contrary that f(k0) is not left sym-

metric. Then there exists w0 ∈ SX such that f(k0) ⊥B w0 and w0 6⊥B f(k0). So, there

exists λ0 ∈ K such that ‖w0+λ0f(k0)‖ < ‖w0‖. Define g : K → X such that g(k0) = w0

and g(k) = 0, for any k ∈ K \ {k0}. Clearly, ‖g‖ = 1. As f satisfies (i), it follows that

for any scalar λ,

‖f + λg‖ = ‖f(k0) + λg(k0)‖ = ‖f(k0) + λw0‖ ≥ ‖f(k0)‖.
So, f ⊥B g. We note that f(k) = 0 ∀(k0 6=)k ∈ K and moreover,

‖g + λ0f‖ = ‖g(k0) + λ0f(k0)‖ = ‖w0 + λ0f(k0)‖ < ‖w0‖ = 1 = ‖g‖,
which implies that g 6⊥B f. This contradicts the fact that f is left symmetric. Thus

f(k0) is left symmetric.

�

As an immediate corollary of the above theorem we obtain the following observation.

Corollary 3.2. Let K be a Hausdorff topological space and X be a Banach space.

Then there is a non-zero left symmetric continuous function in ℓ∞(K,X) if and only if

K contains an isolated point and X contains a non-zero left symmetric point.

Proof. Let f be a non-zero left symmetric continuous function in ℓ∞(K,X). Without

loss of generality assume that ‖f‖ = 1. From Theorem 3.1, there exists k0 ∈ K and a

left symmetric point w ∈ SX of X such that f(k0) = w and f(k) = 0, ∀k ∈ K \ {k0}.
Let U = {u ∈ X : ‖u − w‖ < 1

2
}. Clearly, U is open in X. As f is continuous, f−1(U)

is open. Observe that f−1(U) = {k0}. Therefore, k0 is an isolated point.

Conversely, let w ∈ SX be a left symmetric point of X and let k0 be an isolated point

of K. Define f : K → X such that f(k0) = w and f(k) = 0, ∀K \ {k0}. Clearly f is

continuous and it follows from Theorem 3.1 that f is left symmetric. �

As the space C0(K,X) is a subspace of ℓ∞(K,X), if a continuous function f satisfies

the sufficient condition of Theorem 3.1, then f is also left symmetric in C0(K,X). In

the next theorem, we show that the necessary part also holds true for left symmetric

point in C0(K,X), under the condition that K is perfectly normal. Let us recall that

a topological space K is said to be perfectly normal if K is normal and every closed

set of K is a Gδ set.

Theorem 3.3. LetK be a locally compact, perfectly normal space and let X be a Banach

space. Then f ∈ SC0(K,X) is left symmetric if and only if f satisfies the following :

(i) there exists k0 ∈ K such that f(k0) ∈ SX and f(k) = 0, ∀k0 6= k ∈ K.

(ii) f(k0) is left symmetric.

Proof. Since the sufficient part follows from Theorem 3.1, we prove only the necessary

part.

(i) Suppose on the contrary that there exist k0, k1 ∈ K such that f(k0) 6= 0 6= f(k1).

From Proposition 2.5, it follows that Mf is non-empty. Without loss of generality we

assume that f(k0) ∈ SX. Let v ∈ SX be such that v 6⊥B f(k1). As K is locally compact
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and Hausdorff, Theorem 2.8 ensures that there exists an open set U containing k1 such

that k0 /∈ U and U is a compact set. As K is perfectly normal and {k1}, K \U are two

disjoint closed sets in K, so by the Urysohn’s lemma (see [8]), there exists a continuous

function h : K → [0, 1] such that h−1({1}) = {k1} and h−1({0}) = K \ U. Define

g : K → X as

g(k) = h(k)v, ∀k ∈ K.

Clearly, g is continuous. As for any k ∈ K\U, ‖g(k)‖ = 0, it is clear that g ∈ C0(K,X).

As h−1({1}) = {k1}, h−1({0}) = K \U, so we have g(k1) = v, and g(k) = 0, ∀k ∈ K \U.
Moreover, ‖g‖ = 1 and Mg = {k1}. Now observe that for any scalar λ,

‖f + λg‖ = sup
k∈K

‖f(k) + λg(k)‖ ≥ ‖f(k0) + λg(k0)‖ = ‖f(k0)‖ = 1 = ‖f‖.

Therefore, f ⊥B g. Also observe that v 6⊥B f(k1). Using Theorem 2.1, there exists no

y∗ ∈ J(v) such that y∗(f(k1)) = 0. As J(v) is convex, we deduce that

0 /∈ co({y∗(f(k1)) : y∗ ∈ J(v)}).
As Mg = {k1}, it is now immediate that

0 /∈ co({y∗(f(k1)) : y∗ ∈ Ext(BX∗), y∗(g(k1)) = ‖g‖}).
Therefore, using Theorem 2.6, g 6⊥B f. This contradicts that f is left symmetric.

(ii) Suppose on the contrary that f(k0) is not left symmetric. So, there exists v ∈ SX

such that f(k0) ⊥B v but v 6⊥B f(k0). Let U be an open set containing k0 such that U

is compact. As K is perfectly normal, there exists a continuous function h : K → [0, 1]

such that h−1({1}) = {k1} and h−1({0}) = K \ U. Define g : K → X such that

g(k) = h(k)v, ∀k ∈ K.

Proceeding similarly as in the proof of (i), we get g ∈ C0(K,X) andMg = {k0}, g(k0) =
v. As f(k0) ⊥B v and g(k0) = v, observe that for any scalar λ,

‖f+λg‖ = sup
k∈K

‖f(k)+λg(k)‖ ≥ ‖f(k0)+λg(k0)‖ = ‖f(k0)+λv‖ ≥ ‖f(k0)‖ = 1 = ‖f‖.

Therefore, f ⊥B g. Also observe that v 6⊥B f(k0) and following similar arguments as

in the proof of the first part of the theorem, we obtain that g 6⊥B f. This contradicts

the fact that f is left symmetric. �

We next provide a necessary condition for a right symmetric element in the space

ℓ∞(K,X).

Theorem 3.4. Let K be any non-empty set and X be a Banach space. Suppose that

f ∈ Sℓ∞(K,X) is right symmetric. Then

(i) f(k) ∈ SX, ∀k ∈ K.

(ii) f(k) is right symmetric, ∀k ∈ K.

Proof. Let us first prove (i). Suppose on the contrary that there exists ko ∈ K such

that f(k0) /∈ SX. Take w0 ∈ SX such that w0 ⊥B f(k0). Define g : K → X such that
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g(k0) = w0 and g(k) = f(k), ∀k0 6= k ∈ K. Clearly, ‖g‖ = 1. Now observe that for any

scalar λ,

‖g + λf‖ ≥ ‖g(k0) + λf(k0)‖ = ‖w0 + λf(k0)‖ ≥ ‖w0‖ = 1 = ‖g‖.

So, g ⊥B f. We claim that f 6⊥B g, i.e.,

0 /∈ co
({

lim y∗n(g(kn)) : y
∗
n ∈ Ext(BY∗), kn ∈ K, ∀n ∈ N, lim y∗n(f(kn)) = ‖f‖

})
.

Consider kn ∈ K and y∗n ∈ Ext(BY∗) such that lim y∗n(f(kn)) = ‖f‖ = 1. Then there

are two possibilities for the sequence {kn}: (a) {kn} has a subsequence {knr
} such that

knr
= k0, ∀r ∈ N and (b) kn 6= k0, for all but finitely many n. Case (a) is not possible as

f(k0) /∈ SX and so, |y∗nr
(f(knr

))| = |y∗nr
(f(k0))| ≤ ‖f(k0)‖ < 1, for all r. For Case (b), we

get g(kn) = f(kn), for all but finitely many n and so, lim y∗n(g(kn)) = lim y∗n(f(kn)) = 1.

This shows that

0 /∈ co

({
lim y∗n(g(kn)) : y

∗
n ∈ Ext(BY∗), kn ∈ K, ∀n ∈ N, lim y∗n(f(kn)) = ‖f‖

})
.

Thus g ⊥B f and f 6⊥B g, which contradicts that f is right symmetric. Hence f(k) ∈
SX, for each k ∈ K.

Let us now prove (ii). Suppose on the contrary that there exists k0 ∈ K such that

f(k0) is not right symmetric. Take w0 ∈ SX such that w0 ⊥B f(k0) but f(k0) 6⊥B w0.

Then there exists scalar λ0 such that ‖f(k0)+λ0w0‖ < ‖f(k0)‖ = 1. Using the convexity

of the norm, it is easy to observe that for any 0 < t ≤ 1, ‖f(k0)+tλ0w0‖ < ‖f(k0)‖ = 1.

Take µ = t0λ0 such that |µ| < 1, where 0 < t0 ≤ 1. Define g : K → X such that

g(k0) = w0 and g(k) = −µf(k), for any k ∈ K\{k0}. Clearly, ‖g‖ = 1. As w0 ⊥B f(k0),

we now observe that for any scalar λ,

‖g + λf‖ ≥ ‖g(k0) + λf(k0)‖ = ‖w0 + λf(k0)‖ ≥ ‖w0‖ = 1 = ‖g‖.

So, g ⊥B f. On the other hand,

‖f + µg‖ = sup
k∈K

‖f(k) + µg(k)‖

= sup

{
‖f(k)− µµf(k)‖, ‖f(k0) + µg(k0)‖ : k ∈ K \ {k0}

}

= sup

{
|(1− |µ|2)|‖f(k)‖, ‖f(k0) + µw0‖ : k ∈ K \ {k0}

}

< max{(1− |µ|2), 1} = 1 = ‖f‖.

Therefore, f 6⊥B g. This contradicts the fact that f is right symmetric, and completes

the proof. �

As an immediate consequence of Theorem 3.4, we obtain a necessary condition for

a continuous function to be right symmetric in ℓ∞(K,X), when K is a connected

Hausdorff space.
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Corollary 3.5. Let K be a connected Hausdorff space and let X be a Banach space

such that the set of all right symmetric points in SX is finite. Suppose f ∈ Sℓ∞(K,X)

is continuous and right symmetric in ℓ∞(K,X). Then there exists a right symmetric

point x0 ∈ SX in X such that f(k) = x0, ∀k ∈ K.

Following the characterization of left symmetric points and the necessary condition

for right symmetric points obtained in Theorem 3.1 and Theorem 3.4, respectively, we

conclude that there is no non-zero symmetric point in ℓ∞(K,X), whenever K is not a

singleton set.

Theorem 3.6. Let K be any non-empty set such that |K| > 1 and let X be a Banach

space. Then there is no non-zero symmetric element in ℓ∞(K,X).

The question that naturally arises is whether the conditions mentioned in Theorem

3.4 are sufficient. In this connection we have the following result assuming the space X

to be a finite-dimensional real Banach space and the set of all right symmetric points

is closed. To prove the result we need the following characterization of Birkhoff-James

orthogonality in ℓ∞(K,X), the proof of which is in the same line of [18, Th. 2.8].

Theorem 3.7. Let X be a Banach space and K be a non-empty set. Let f, g ∈
ℓ∞(K,X). Then g ⊥B f if and only if either (i) or (ii) holds:

(i) There exists a sequence {kn} ⊂ K such that ‖g(kn)‖ → ‖g‖ and f(kn) → 0, as

n→ ∞.

(ii) there exists two sequence {kn}, {tn} ⊂ K and {ǫn}, {δn} ⊂ R such that

(a) ǫn → 0, δn → 0

(b) ‖g(kn)‖ → ‖g‖, ‖g(tn)‖ → ‖g‖
(c) f(kn) ∈ g(kn)

+ǫn and f(tn) ∈ g(tn)
−δn .

We also need the following lemma.

Lemma 3.8. [19, Th. 2.2] Let X be a real Banach space. Then x ∈ SX is right

symmetric if and only if given any u ∈ X, the following two conditions hold true:

(i) x ∈ u− implies that u ∈ x−.

(ii) x ∈ u+ implies that u ∈ x+.

Theorem 3.9. Let K be a non-empty set and let X be a finite-dimensional real Banach

space such that the set of all right symmetric points of SX is closed. Then f ∈ Sℓ∞(K,X)

is right symmetric if the following conditions hold:

(i) f(k) ∈ SX, ∀k ∈ K.

(ii) f(k) is right symmetric, ∀k ∈ K.

Proof. Let g ∈ Sℓ∞(K,X) such that g ⊥B f. Since f(k) ∈ SX, ∀k ∈ K, from Theorem 3.7,

there exist two sequences {kn}, {tn} ⊂ K and {ǫn}, {δn} ⊂ R such that

(a) ǫn → 0, δn → 0

(b) ‖g(kn)‖ → ‖g‖, ‖g(tn)‖ → ‖g‖
(c) f(kn) ∈ g(kn)

+ǫn and f(tn) ∈ g(tn)
−δn.
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Since X is finite-dimensional, without loss of generality we assume that f(kn) →
z1, f(tn) → z2, g(kn) → w1, g(tn) → w2. As f satisfies the condition (i), z1, z2 ∈ SX. As

f(kn) ∈ g(kn)
+ǫn, we get

‖g(kn) + λf(kn)‖ ≥
√

1− ǫ2n‖g(kn)‖, ∀λ ≥ 0.

Taking limit on both sides we get ‖w1 + λz1‖ ≥ ‖w1‖, ∀λ ≥ 0. In other words, z1 ∈
w+

1 . Similarly, from f(tn) ∈ g(tn)
−δn , we obtain z2 ∈ w−

2 . Since the set of all right

symmetric points of SX is closed and f(kn), f(tn) are right symmetric, z1, z2 are also

right symmetric. Following Lemma 3.8 we get, w1 ∈ z+1 and w2 ∈ z−2 .

Now, take y∗n ∈ J(f(kn)). As X is finite-dimensional, as before without loss of gen-

erality we assume y∗n → y∗ ∈ SX∗ . As f(kn) → z1, it is straightforward to see that

y∗(z1) = 1. In other words, y∗ ∈ J(z1). As w1 ∈ z+1 , it follows easily that y∗(w1) ≥ 0

(see [16, Th. 2.4]). So, lim y∗n(g(kn)) = y∗(w1) ≥ 0. Next, we consider z∗n ∈ J(f(tn)).

Following similar arguments and using [16, Th. 2.4] we can show that lim z∗n(g(tn)) ≤ 0.

Therefore,

0 ∈ co({lim y∗n(g(kn)) : kn ∈ K, y∗n ∈ SX∗∀n ∈ N, lim y∗n(f(kn)) = 1}).

Using Theorem 2.3, f ⊥B g. This proves that f is right symmetric. �

Remark 3.10. It is worth mentioning here that the set of right symmetric points is

closed in finite-dimensional real polyhedral Banach spaces. In fact, we are yet to get

an example of a finite-dimensional real Banach space where the set of right symmetric

points is not closed.

We next characterize the right symmetric functions in C(K,X), where X is a real

Banach space.

Theorem 3.11. Let K be a compact Hausdorff space and let X be a real Banach space.

Then f ∈ SC(K,X) is right symmetric if and only if f satisfies the following conditions:

(i) f(k) ∈ SX, ∀k ∈ K.

(ii) f(k) is right symmetric, ∀k ∈ K.

Proof. We first prove the sufficient part. Let g ⊥B f. From Corollary 2.7, there exist

k1, k2 ∈Mg such that f(k1) ∈ g(k1)
+ and f(k2) ∈ g(k2)

−. As f(k1), f(k2) both are right

symmetric points, applying Lemma 3.8, we obtain that g(k1) ∈ f(k1)
+ and g(k2) ∈

f(k2)
−. Observe that k1, k2 ∈Mf . Using Corollary 2.7, we get that f ⊥B g. Therefore,

f is right symmetric.

Let us now prove the necessary part. First we show that f(k) ∈ SX, ∀k ∈ K. Suppose

on the contrary that there exists k0 ∈ K such that ‖f(k0)‖ < 1. Take w0 ∈ SX such

that w0 ⊥B f(k0). From Proposition 2.5, it follows thatMf is a compact set. Since K is

a compact Hausdorff space, there exist open sets U and V such that U ∩V = ∅, k0 ∈ U

and Mf ⊂ V. Now {k0} and K \U are two disjoint closed sets and so by the Urysohn’s

lemma [8], there exists a continuous function h1 : K → [0, 1] such that h1(k0) = 1 and

h1(k) = 0, ∀k /∈ U. Similarly, there exists a continuous function h2 : K → [0, 1] such
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that h2(k) = 1, ∀k ∈Mf and h2(k) = 0, ∀k /∈ V. Define g : K → X as

g(k) = h1(k)w0 + h2(k)f(k), ∀k ∈ K.

Clearly, g is continuous. Note that g(k) = h1(k)w0, ∀k ∈ U, g(k) = h2(k)f(k), ∀k ∈ V

and g(k) = 0, ∀k ∈ K \ (U ∪ V ), which shows that ‖g‖ = 1. Also, g(k0) = w0 and

g(k) = f(k), ∀k ∈Mf . As w0 ⊥B f(k0), we observe that for any scalar λ,

‖g + λf‖ ≥ ‖g(k0) + λf(k0)‖ = ‖w0 + λf(k0)‖ ≥ ‖w0‖ = ‖g(k0)‖ = ‖g‖.
So, g ⊥B f. For any k ∈ Mf , g(k) = f(k) and so for any k ∈ K, y∗ ∈ Ext(BX∗) with

y∗(f(k)) = ‖f‖ = 1, we get y∗(g(k)) = y∗(f(k)) = ‖f‖ = 1. So,

0 /∈ co({y∗(g(k)) : k ∈ K, y∗ ∈ Ext(BX∗), y∗(f(k)) = 1}).
Therefore, using Corollary 2.4, we conclude that f 6⊥B g. This contradicts the fact that

f is right symmetric.

To complete the proof, we only need to show that f satisfies the condition (ii).

Suppose on the contrary that there exists k0 ∈ K such that f(k0) is not right symmetric.

Therefore, there exists w0 ∈ SX such that w0 ⊥B f(k0) but f(k0) 6⊥B w0. Without loss

of generality we assume that w0 ∈ f(k0)
+. So, w0 /∈ f(k0)

−. Then there exists a scalar

λ0 < 0 such that ‖f(k0) + λ0w0‖ < ‖f(k0)‖. Let us now define a function ζ : X → R

such that for any x ∈ X, ζ(x) = ‖x + λ0w0‖ − ‖x‖. Clearly, ζ is continuous and

ζ(f(k0)) < 0. Therefore, there exists an open set V ⊂ X containing f(k0) such that

for any v ∈ V, ζ(v) < 0. So, for any v ∈ V, ‖v + λ0w0‖ < ‖v‖, which implies that

w0 /∈ v−. Thus, w0 ∈ v+ and w0 /∈ v−, for any v ∈ V. By the continuity of f at k0,

there exists an open set U of K containing k0 such that f(U) ⊂ V. As before, using the

Urysohn’s Lemma, there exists a continuous map h : K → [0, 1] such that h(k0) = 1

and h(K \ U) = 0. Define g : K → X as

g(k) = (1− h(k))f(k) + h(k)w0, ∀k ∈ K.

Clearly, g is continuous and moreover, ‖g(k)‖ = ‖f(k)‖ = 1, ∀k ∈ K \U and ‖g(k)‖ ≤
|1− h(k)|‖f(k)‖+ |h(k)|‖w0‖ ≤ 1, ∀k ∈ U. So, ‖g‖ = 1. Since g(k0) = w0, we observe

that for any scalar λ ∈ R,

‖g + λf‖ ≥ ‖g(k0) + λf(k0)‖ = ‖w0 + λf(k0)‖ ≥ ‖w0‖ = 1 = ‖g‖.
So, g ⊥B f. For any k ∈ K \ U and y∗ ∈ J(f(k)), y∗(g(k)) = y∗(f(k)) = 1. For any

k ∈ U, g(k) ∈ f(k)+ and g(k) /∈ f(k)−. This implies that for any k ∈ U and for any

y∗ ∈ Ext(BX∗) with y∗(f(k)) = ‖f‖, we have y∗(g(k)) > 0 (by Lemma 2.2). Therefore,

0 /∈ co({y∗(g(k)) : k ∈ K, y∗ ∈ Ext(BX∗), y∗(f(k)) = ‖f‖}).
So, using Corollary 2.4, we get f 6⊥B g. This contradicts the fact that f is right

symmetric, and establishes the theorem. �

Corollary 3.12. Let K be a compact Hausdorff space and let X be a real Banach

space such that the set of all right symmetric points in SX is not connected. Then K

is connected if and only if the following are equivalent:
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(i) f is right symmetric in SC(K,X).

(ii) there exists a right symmetric point x0 ∈ SX in X such that f(k) = x0, ∀k ∈ K.

Proof. Let K be connected. If f is right symmetric in C(K,X) then it follows from

Theorem 3.11 that for any k ∈ K, f(k) ∈ SX and f(k) is right symmetric in X. As K

is connected and f is continuous, f(K) ⊂ SX is also connected. Since the set of all

right symmetric points in SX is not connected, we conclude that f(K) is singleton and

f satisfies the condition (ii). On the other hand, if f satisfies the condition (ii), then

from Theorem 3.11 we infer that f is right symmetric.

For the converse part, suppose on the contrary that K is not connected. Then there

exists two non-empty disjoint open sets U, V such that K = U ∪ V. Let x ∈ SX be

right symmetric. Define f : K → X such that f(U) = x and f(V ) = −x. Clearly, f
is continuous and by virtue of Theorem 3.11, f is right symmetric. Since f does not

satisfy the condition (ii), this completes the proof. �

Remark 3.13. Let K be a compact connected Hausdorff space and let X be a real

Banach space. Suppose that right symmetric points in SX are finite. Then the number

of right symmetric functions in SC(K,X) are same as the number of right symmetric

points in SX.

As an immediate consequence of Theorem 3.11, we obtain that the right symmetric

points on the unit sphere of C(K) are precisely the extreme points of the unit ball.

Corollary 3.14. Let K be a compact Hausdorff space and let C(K) be the space

of all real valued continuous functions on K. Let f ∈ SC(K). Then the following are

equivalent:

(i) f is a right symmetric function of C(K).

(ii) f(k) = 1, ∀k ∈ K or f(k) = −1, ∀k ∈ K.

(iii) f is an extreme point of BC(K).

Next we show that if K is a locally compact normal space which is not compact,

then the space C0(K,X) has no non-zero right symmetric points.

Theorem 3.15. Let K be a locally compact normal space which is not compact and

let X be a Banach space. Then f ∈ SC0(K,X) is right symmetric if and only if f is the

zero function.

Proof. As the sufficient part follows trivially, we only prove the necessary part. Let

f be right symmetric. Suppose on the contrary that f 6= 0. As f ∈ C0(K,X), there

exists k0 ∈ K such that ‖f(k0)‖ = r ∈ (0, 1). Take w0 ∈ SX such that w0 ⊥B f(k0).

From Proposition 2.5, it follows thatMf is a compact set. Since K is a locally compact

normal space, there exist open sets U and V such that U ∩ V = ∅, k0 ∈ U, Mf ⊂ V

and U, V both compact (by Theorem 2.8). As before, by using the Urysohn’s Lemma,

we can find two continuous functions h1, h2 : K → [0, 1] such that h1(k0) = 1 and

h1(k) = 0, ∀k /∈ U, and h2(k) = 1, ∀k ∈ Mf and h2(k) = 0, ∀k /∈ V. Define g : K → X

as

g(k) = h1(k)w0 + h2(k)f(k), ∀k ∈ K.
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Clearly, g is continuous and for any k ∈ K \ (U ∪ V ), ‖g(k)‖ = 0. So, g ∈ C0(K,X).

Then proceeding similarly as in the proof of Theorem 3.11(i), we obtain that g ⊥B f

and f 6⊥B g. This contradicts the fact that f is right symmetric. Thus f = 0. �

As a consequence of Theorem 3.3 and Theorem 3.15, we derive the following results.

Corollary 3.16. Let K be a locally compact, perfectly normal space such that K is

not compact and K has no isolated point. Then the space C0(K,X) has no non-zero

left symmetric points and no non-zero right symmetric points.

Considering K = {1, 2, . . . , n}, the following corollary is obvious from Theorem 3.1

and Theorem 3.11.

Corollary 3.17. Let X be a Banach space and let x̃ = (x1, x2, . . . , xn) ∈ Sℓn
∞
(X). Then

(i) x̃ is left symmetric if there exists i0 ∈ {1, 2, . . . , n} such that xi0 ∈ SX is left

symmetric and xj = 0, for any j ∈ {1, 2, . . . , n} \ {i0}.
(ii) x̃ is right symmetric if and only if for any 1 ≤ i ≤ n, xi ∈ SX and xi is right

symmetric, when X is a real Banach space.

(iii) x̃ is symmetric if and only if x̃ = 0.

The symmetric points in a Banach space play a vital role in identifying the onto

linear isometries on that space, by virtue of the following fact.

Proposition 3.18. [2, Cor. 1.1] Let X and Y be normed linear spaces and let T ∈
L(X,Y) be an onto linear isometry. Then x ∈ X is left symmetric (resp. right sym-

metric) if and only if T (x) is left symmetric (resp. right symmetric) in Y.

Using this connection between symmetric points and onto isometries, we provide a

necessary condition for onto isometries on the space ℓn∞(X). In the following result for

a Banach space X, we denote the set of all norm one left symmetric points as L. Also
for any 1 ≤ i ≤ n and for any x ∈ X, we write ei(x) = (0, 0, . . . , x,

i−th

0, . . . , 0) ∈ ℓn∞(X).

Theorem 3.19. Let X be a Banach space such that span L = X. Let T be an onto

linear isometry on ℓn∞(X) . Then there exists a basis B ⊂ L of X such that for any

(x1, x2, . . . , xn) ∈ ℓn∞(X),

T (x1, x2, . . . , xn) =

n∑

i=1

mi∑

k=1

αi
keσ(i)(ψ(zk)),

where for any 1 ≤ i ≤ n, xi =
∑mi

k=1 α
i
kzk, zk ∈ B, ∀1 ≤ k ≤ mi, σ and ψ are

permutations on the set {1, 2, . . . , n} and L, respectively.

Proof. Let L ⊂ SX be the set of all left symmetric points of SX. Applying Theorem 3.1,

the set of left symmetric points of Sℓn
∞
(X) is given by S = {ei(z) : 1 ≤ i ≤ n, z ∈ L}.

Following Proposition 3.18, if T is an onto isometry then T (s) ∈ S, ∀s ∈ S. This implies

that for any 1 ≤ i ≤ n, z ∈ L,
T (ei(z)) = eσ(i)(ψ(z)),
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where σ is a permutation on {1, 2, . . . , n} and ψ is a permutation on L. For any

(x1, x2, . . . , xn) ∈ ℓn∞(X), xi =
∑mi

k=1 αkzk, where αk ∈ K, zk ∈ L, ∀1 ≤ k ≤ mi.

Suppose B ⊂ L is a basis of X and xi =
∑mi

k=1 α
i
kzk, zk ∈ B, ∀1 ≤ k ≤ mi. Then

T (x1, x2, . . . , xn) =
n∑

i=1

T (ei(x)) =
n∑

i=1

T (ei(

mi∑

k=1

αi
kzk))

=
n∑

i=1

mi∑

k=1

αi
kT (ei(zk))

=
n∑

i=1

mi∑

k=1

αi
keσ(i)(ψ(zk)).

�

In this context, it is worth noting that it follows from [3, Th. 2.7, Th 2.9] that

span L = X, whenever X = ℓnp (1 < p ≤ ∞). It is well-known that the signed

permutations are the only onto isometries on ℓnp spaces. The concept of symmetric

points was utilized in [3, Th. 2.11] to give an elementary proof of the same. Applying

similar technique, in [2, Th. 4.5], a simple proof of the classical Banach-Lamperti

Theorem has been given, which states that the signed permutations are the only onto

isometries on ℓp spaces.

Section-II

In this section, our primary goal is to study the symmetric points in operator spaces

defined on real Banach spaces. For a Banach space X with Ext(BX) 6= ∅, let e(BX) =

{x, y ∈ Ext(BX) : x 6= ±y}. We first observe that the operator space L(X,Y) can be

embedded into the spaces of continuous functions.

Proposition 3.20. Let X,Y be Banach spaces. Then L(X,Y) is embedded into C(e(BY∗),X∗).

Proof. We define φ : L(X,Y) −→ C(e(BY∗),X∗) as

φ(T ) = fT , ∀T ∈ L(X,Y),

where fT : e(BY∗) → X∗ is given by

fT (y
∗) = T ∗(y∗), ∀y∗ ∈ e(BY∗).

As T is continuous and fT = T ∗|e(BY∗), fT is continuous. Clearly, φ is well-defined. We

show that φ is a linear isometry. First we observe that for any k ∈ K and for any

scalar α, β,

fαT1+βT2
(y∗) = (αT1 + βT2)

∗(y∗) = αT ∗
1 (y

∗) + βT ∗
2 (y

∗) = (αfT1
+ βfT2

)(y∗).
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This implies that φ(αT1 + βT2) = αφ(T1) + βφ(T2). Also,

‖φ(T )‖ = ‖fT‖ = sup
y∗∈e(BY∗ )

‖fT (y∗)‖ = sup
y∗∈e(BY∗ )

‖T ∗(y∗)‖

= sup
y∗∈e(BY∗ )

sup
x∈SX

|T ∗(y∗)(x)|

= sup
x∈SX

sup
y∗∈e(BY∗)

|T ∗(y∗)(x)|

= sup
x∈SX

sup
y∗∈e(BY∗)

|y∗(Tx)|.

Following [10, Cor. 2.10.7], supy∗∈e(BY∗)
|y∗(Tx)| = ‖Tx‖, which implies that

‖φ(T )‖ = sup
x∈SX

‖Tx‖ = ‖T‖.

This proves that φ is an isometry from L(X,Y) into C(e(BY∗),X∗), finishing the proof.

�

Next we present sufficient conditions for an operator to be left symmetric and right

symmetric.

Theorem 3.21. Let X,Y be Banach spaces and let T ∈ SL(X,Y). Then

(i) T is left symmetric if there exists y∗0 ∈ Ext(BY∗) such that T ∗(y∗0) is a left

symmetric point and T ∗(y∗) = 0, ∀y∗ ∈ Ext(BY∗) \ {±y∗0}.
(ii) T is right symmetric if for each y∗ ∈ Ext(BY∗), T ∗(y∗) is a right symmetric

point of SX∗ and Ext(BY∗) is a compact set in Y∗.

Proof. (i) We define φ : L(X,Y) −→ ℓ∞(Ext(BY∗),X∗) as

φ(T ) = fT ∀T ∈ L(X,Y),

where fT : Ext(BY∗) → X∗ is given by

fT (y
∗) = T ∗(y∗), ∀y∗ ∈ Ext(BY∗).

Proceeding similarly as in the proof of Proposition 3.20, we can show that φ is a

linear isometry. So, L(X,Y) is embedded into ℓ∞(Ext(BY∗),X∗). As there exists y∗0 ∈
Ext(BY∗) such that fT (y

∗
0) is a left symmetric point and fT (y

∗) = 0, ∀y∗ ∈ Ext(BY∗) \
{±y∗0}, it follows from Theorem 3.1 that fT is left symmetric in ℓ∞(Ext(BY∗),X∗).

Clearly, fT is also left symmetric in φ(L(X,Y)). Since left symmetricity is preserved

under isometric isomorphism, T is left symmetric in L(X,Y).

(ii) Consider

φ : L(X,Y) −→ C(Ext(BY∗),X∗),

defined as

φ(T ) = fT ∀T ∈ L(X,Y),

where fT : Ext(BY∗) → X∗ is given by

fT (y
∗) = T ∗(y∗), ∀y∗ ∈ Ext(BY∗).
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It is easy to see that φ is a linear isometry from L(X,Y) into C(Ext(BY∗),X∗). Since

fT (y
∗) ∈ SX∗ is right symmetric for each y∗ ∈ Ext(BY∗), it follows from Theorem

3.11 that fT is right symmetric in C(Ext(BY∗),X∗). Clearly, fT is right symmetric in

φ(L(X,Y)). Since right symmetricity is preserved under isometric isomorphism, T is

right symmetric in L(X,Y).

�

For some special Banach spaces, the Proposition 3.20 can be strengthened as follows.

Proposition 3.22. (i) The space L(ℓn1 ,Y) is isometrically isomorphic to ℓn∞(Y),

for any Banach space Y.

(ii) The space K(X, C(K)) is isometrically isomorphic to C(K,X∗), where K is a

compact Hausdorff space.

(iii) The space L(X, ℓn∞) is isometrically isomorphic to ℓn∞(X∗), for any Banach space

X.

Proof. (i) Define φ : L(ℓn1 ,Y) → ℓn∞(Y) as

φ(T ) = (Te1, T e2, . . . , T en),

where {e1, e2, . . . , en} is the standard ordered basis of ℓn1 . It is clear that φ is linear.

Observe that for any T ∈ L(ℓn1 ,X),

‖φ(T )‖ = ‖(Te1, T e2, . . . , T en)‖ = sup{‖Tei‖ : i ∈ {1, 2, . . . , n}}.
Since Ext(Bℓn

1
) = {±e1,±e2, . . . ,±en}, it is straightforward to observe that

‖T‖ = sup{‖Tx‖ : x ∈ Sℓn
1
} = sup{‖Tei‖ : i ∈ {1, 2, . . . , n}}.

This implies ‖φ(T )‖ = ‖T‖. So, φ is an isometry. So to prove (i), we only need to show

that φ is surjective. Let (x1, x2, . . . , xn) ∈ ℓn∞(Y). We finish the proof by defining a

linear operator T : ℓn1 → Y given by T (ei) = xi, for any i, 1 ≤ i ≤ n.

(ii) Follows directly from [4, Th.1 (p. 490)]. Indeed, the isometric isomorphism

φ between K(X, C(K)) and C(K,X∗) is defined as follows : for T ∈ K(X, C(K)),

φ(T )(k)(x) = Tx(k) = T ∗(δk)(x), ∀k ∈ K, x ∈ X, where δk is the evaluation map de-

fined on C(K) as δk(f) = f(k), ∀f ∈ C(K).

(iii) This follows immediately from (ii) by taking |K| = n.

�

In the following theorem, we present a complete characterization of left and right

symmetric operators in the space L(ℓn1 ,X).

Theorem 3.23. Let X be a Banach space and let T ∈ L(ℓn1 ,X). Then

(i) T ∈ SL(ℓn
1
,X) is left symmetric if and only if there exists i0 ∈ {1, 2, . . . , n} such

that the following hold:

(a) T (ei0) ∈ SX,
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(b) T (ej) = 0, ∀j ∈ {1, 2, . . . , n} \ {i0},
(c) T (ei0) is a left symmetric point,

(ii) T ∈ SL(ℓn
1
,X) is right symmetric if only if for each i, 1 ≤ i ≤ n, T (ei) ∈ SX and

Tei is right symmetric,

(iii) T is symmetric if and only if T is the zero operator,

where for 1 ≤ i ≤ n, ei = (0, 0, . . . , 1
i-th
, 0, . . . , 0) ∈ ℓn1 .

Proof. From Proposition 3.22(i), L(ℓn1 ,X) is isometrically isomorphic to ℓn∞(X). More-

over, φ : L(ℓn1 ,X) → ℓn∞(X) defined as φ(T ) = (Te1, T e2, . . . , T en) is the isometric iso-

morphism. Since left (right) symmetricity is preserved under isometric isomorphism,

the desired result follows easily from Corollary 3.17. �

Remark 3.24. In [7], the symmetric operators have been studied in the space L(ℓn1 ,X)

and a complete characterization of left symmetric operators has been obtained [7, Th

3.6], whereas for the right symmetric operators, only a necessary condition has been

found [7, Th 3.7]. It should be noted that for the necessary condition obtained in [7,

Th. 3.7] for right symmetric operators, we observe that it is also sufficient.

In the following two results, we characterize the left symmetric operators and the

right symmetric operators in the space K(X, C(K)).

Proposition 3.25. Let K be a compact, perfectly normal space and let X be a Banach

space. Let T ∈ SK(X,C(K)). Then T is left symmetric if and only if T satisfies the

following:

(i) there exists exactly one point k0 ∈ K such that T ∗(δk0) ∈ SX and T ∗(δk) = 0,

∀k ∈ K \ {k0},
(ii) T ∗(δk0) is a left symmetric point in X∗,

where δk ∈ (C(K))∗ such that δk(f) = f(k), for any f ∈ C(K). Moreover, if K does not

contain any isolated point then T is left symmetric if and only T is the zero operator.

Proof. From Proposition 3.22(ii), K(X, C(K)) is isometrically isomorphic to C(K,X∗).

Moreover, φ : K(X, C(K)) → C(K,X∗) given by φ(T )(k) = T ∗(δk) is the isometric

isomorphism. Hence applying Theorem 3.3, the result follows easily. �

Proposition 3.26. Let K be a compact Hausdorff space and X be a Banach space. Let

T ∈ SK(X,C(K)). Then T is a right symmetric operator if and only if the following hold:

(i) T ∗(δk) ∈ SX∗ , for any k ∈ K,

(ii) T ∗(δk) is right symmetric point of SX∗ , ∀k ∈ K,

where δk ∈ (C(K))∗ such that δk(f) = f(k), for any f ∈ C(K).

Proof. The proof is in the same line as that of Proposition 3.25, and is therefore omitted.

�

Next we provide an explicit form of the left and right symmetric operators in

L(X, ℓn∞).
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Theorem 3.27. Let X be any Banach space and let T ∈ SL(X,ℓn
∞
). Then

(i) T is left symmetric if and only if there exists j ∈ {1, 2, . . . , n} such that for any

x ∈ X, Tx = (0, . . . , 0, f(x)
j-th

, 0, . . . , 0), where f ∈ SX∗ is a left symmetric point

of X∗.

(ii) T is right symmetric if and only if for any x ∈ X, T (x) = (f1(x), f2(x), . . . , fn(x)),

where each fi ∈ SX∗ is a right symmetric point of X∗, for any 1 ≤ i ≤ n.

(iii) T is symmetric if and only if T is the zero operator.

Proof. Observe that Ext(B(ℓn
∞
)∗) = {±ei : 1 ≤ i ≤ n}, where ei(x) = xi, for any

x = (x1, x2, . . . , xn) ∈ ℓn∞. From Proposition 3.22, L(X, ℓn∞) is isometrically isomorphic

to ℓn∞(X∗). Moreover, if φ is the isometric isomorphism between L(X, ℓn∞) and ℓn∞(X∗),

then φ(T ) = (T ∗e1, T
∗e2, . . . , T

∗en).

(i) From Corollary 3.17, we obtain that φ(T ) is left symmetric if and only if there

exists j ∈ {1, 2, . . . , n} such that T ∗(ej) ∈ SX∗ is a left symmetric point and T ∗(ei) = 0,

for any i ∈ {1, 2, . . . , n} \ {j}. Suppose that T ∗(ej) = f. Let for any x ∈ X, Tx =

(u1(x), u2(x), . . . , un(x)), where ui ∈ X
∗. Then uj(x) = ej(Tx) = T ∗(ej)(x) = f(x) and

ui(x) = ei(Tx) = T ∗(ei)(x) = 0, whenever i 6= j. Thus we obtain (i).

(ii) Proceeding similarly as in (i) and applying Corollary 3.17, we obtain (ii).

(iii) Follows directly from (i) and (ii). �

Remark 3.28. It is clear from the previous result that L(X, ℓn∞) has no non-zero left

symmetric point if X∗ does not have any non-zero left symmetric point. As (ℓn∞)∗ = ℓn1
and ℓn1 has no non-zero left symmetric point for n > 2 (see [3, Th. 2.8]), there does

not exist any non-zero left symmetric operator in L(ℓn∞), whenever n > 2.

From Theorem 3.27 and by using the characterization of left symmetric points of

ℓnp , p 6= 1, 2,∞ (see [3, Th. 2.7]), we classify left symmetric operators in L(ℓnp , ℓ
n
∞) in

the following result.

Corollary 3.29. Let T ∈ L(ℓmp , ℓ
n
∞) with ‖T‖ = 1. Then T is left symmetric if and only

if there exists j ∈ {1, 2, . . . , n} such that T (x1, x2, . . . , xm) = (0, 0, . . . , uj, 0, . . . , 0),

where uj is one of the two following:

(i) uj = xk, for some k ∈ {1, 2, . . . , m}.
(ii) uj = ± 1

2
1
q
xk ± 1

2
1
q
xl, for some k, l ∈ {1, 2, . . . , m}.

Proof. From Theorem 3.27, T is left symmetric if and only if there exists j ∈ {1, 2, . . . , n}
such that for any x ∈ ℓmp , Tx = (0, 0, . . . , f(x), 0, . . . , 0), where f ∈ S(ℓmp )∗ is a left sym-

metric point of (ℓmp )
∗. As (ℓmp )

∗ is isometrically isomorphic to ℓmq , f ∈ S(ℓmp )∗ is exactly

of one of the following forms [3, Th. 2.7]:

(i) f(x1, x2, . . . , xn) = xj , for some j, 1 ≤ j ≤ m

(ii) f(x1, x2, . . . , xn) = ± 1

2
1
q
xj ± 1

2
1
q
xk, for some j, k ∈ {1, 2, . . . , m}.

�

Using Theorem 3.27 and the characterization of right symmetric points of ℓnp , p 6=
1, 2,∞ (see [3, Th. 2.7]), the right symmetric operators in the space L(ℓmp , ℓ

n
∞) can be
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expressed explicitly in the following way. The proof is omitted as it is in the same line

as that of Corollary 3.29.

Corollary 3.30. Let T ∈ L(ℓmp , ℓ
n
∞) with ‖T‖ = 1. Then T is right symmetric if and

only if T (x1, x2, . . . , xm) = (u1, u2, . . . , un), where each uj is one of the following:

(i) uj = xk, for some k ∈ {1, 2, . . . , m}.
(ii) uj = ± 1

2
1
q
xk ± 1

2
1
q
xl, for some k, l ∈ {1, 2, . . . , m}.

Remark 3.31. The symmetricity of operators on a strictly convex Banach space space

has been studied in [7, 12]. In [12], it has been shown that if X,Y are both reflexive

strictly convex spaces then the zero operator is the only left symmetric operator. In [7,

Th. 3.3], an example of non-zero left symmetric operator has been given in L(ℓ2p, ℓ
2
∞).

To the best of our knowledge, it is the only example of a non-zero left symmetric

operator on a strictly convex Banach space. However, from Theorem 3.27, we now

have a class of non-zero left symmetric operators on strictly convex Banach spaces, see

Corollary 3.29.

We next present necessary conditions for a rank 1 operator to be left symmetric and

right symmetric in the space of all compact operators on reflexive Banach spaces. To

do so, we need the following easy observation.

Proposition 3.32. Let X,Y be Banach spaces. Let T ∈ L(X,Y) be a rank 1 operator.

Then MT = ±F, for some face F of BX.

Theorem 3.33. Let X,Y be two reflexive Banach spaces and let T ∈ L(X,Y) be a

rank 1 operator.

(i) If T is left symmetric then there exists a left symmetric element w in Y and a

left symmetric functional f in X∗ such that

Tx = f(x)w, ∀x ∈ X.

(ii) If T is right symmetric then there exists a right symmetric element w in Y and

a right symmetric functional f in X∗ such that

Tx = f(x)w, ∀x ∈ X.

Proof. (i) As T is of rank 1, T can be expressed as T (x) = f(x)w, ∀x ∈ X, where w ∈ Y

and f ∈ X∗. Suppose on the contrary that w is not left symmetric. Then there exists

v ∈ Y such that w ⊥B v but v 6⊥B w. Define S : X → Y such that S(x) = f(x)v, for

any x ∈ X. It is straightforward to verify that MT = MS and for any z ∈ MT (= MS),

T z = ±w, Sz = ±v. Observe that for any z ∈ MT , T z ⊥B Sz, which implies T ⊥B S.

Moreover, for any z ∈ MS , Sz 6⊥B Tz. Using Proposition 3.32 and [17, Th.2.1], we

conclude that S 6⊥B T, which contradicts that T is left symmetric. Therefore, w is left

symmetric. It is easy to check that T ∗(y∗) = ψ(w)(y∗)f, for any y∗ ∈ Y∗, where ψ is

the canonical isometric isomorphism from X to X∗∗. Clearly, T ∗ is rank 1. Moreover,

as X,Y are reflexive, T is left symmetric implies that T ∗ is also left symmetric. Now,

suppose on the contrary that f is not left symmetric. Then there exists g ∈ X∗ such
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that f ⊥B g but g 6⊥B f. Define A : Y∗ → X
∗ such that A(y∗) = ψ(w)(y∗)g. Clearly,

MT ∗ = MA. Proceeding similarly as above, we obtain that T ∗ ⊥B A but A 6⊥B T ∗,

which contradicts that T ∗ is left symmetric. This completes the proof of (i).

(ii) As in (i) T can be expressed as T (x) = f(x)w, ∀x ∈ X, Let MT = ±F , for
some face F of BX and Tx = w, for any x ∈ F. On the contrary, assume that w

is not right symmetric. Then there exists v ∈ Y such that v ⊥B w but w 6⊥B v.

Define S : X → Y such that S(x) = f(x)v, for any x ∈ X. It is straightforward to

see that MT = MS and for any z ∈ MT (= MS), T z = ±w, Sz = ±v. Observe that

for any z ∈ MS, Sz ⊥B Tz, which implies that S ⊥B T. Moreover, for any z ∈ MT ,

T z 6⊥B Sz. Using Proposition 3.32 and [17, Th. 2.1], we obtain that T 6⊥B S, which

contradicts that T is right symmetric. Therefore, w is right symmetric. Also, we

have that T ∗(y∗) = ψ(w)(y∗)f, for any y∗ ∈ Y∗, where ψ is the canonical isometric

isomorphism from X to X∗∗. Clearly, T ∗ is of rank 1. Moreover, since X,Y are reflexive

and T is right symmetric, it follows that T ∗ is right symmetric. Proceeding similarly

as above (the proof of right symmetricity of w), we can show that f is right symmetric.

This completes the theorem. �

In [12, Th. 2.8], it has been shown that for a reflexive and strictly convex Banach

space X, if a non-zero T ∈ K(X,Y) is left symmetric, then T is a rank 1 operator.

Also in the same article [12, Th. 2.10], it also has been shown that if both X,Y are

reflexive spaces and Y is smooth, then K(X,Y) has only rank 1 non-zero left symmetric

operator. Thus combining Theorem 3.33 and [12, Th.2.8, Th.2.10], we can conclude

that the left symmetric compact operators are of special forms as mentioned below.

Theorem 3.34. Let X,Y be reflexive Banach spaces and let T ∈ SK(X,Y) be left sym-

metric. If either X is strictly convex or Y is smooth, then there exists a left symmetric

element w in Y and a left symmetric functional f in X∗ such that

Tx = f(x)w, ∀x ∈ X.

Observe that the conditions in Theorem 3.33 are not sufficient. Indeed, for a Hilbert

space H, the space L(H) has no non-zero left symmetric operators [20, Th.3.3]. More-

over, L(H) does not have any rank 1 right symmetric operator as the only right sym-

metric operators in L(H) are the isometries and the co-isometries [20, Cor.4.5].
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