AP101A - Therapeutic Nucleosides - Google Patents

Therapeutic Nucleosides Download PDF

Info

Publication number
AP101A
AP101A APAP/P/1989/000129A AP8900129A AP101A AP 101 A AP101 A AP 101A AP 8900129 A AP8900129 A AP 8900129A AP 101 A AP101 A AP 101A
Authority
AP
ARIPO
Prior art keywords
alkyl
substituted
amino
methanol
compound
Prior art date
Application number
APAP/P/1989/000129A
Other versions
AP8900129A0 (en
Inventor
Deluge Susan Mary
Original Assignee
The Wellcome Foundation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Wellcome Foundation Ltd filed Critical The Wellcome Foundation Ltd
Publication of AP8900129A0 publication Critical patent/AP8900129A0/en
Application granted granted Critical
Publication of AP101A publication Critical patent/AP101A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/32Nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/42Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/47One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/48Two nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/50Three nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/22Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 one oxygen and one sulfur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • C07F9/65616Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • AIDS & HIV (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to 6-substituted purine carbocyclic nucleosides and their use in medical therapy particularly in the treatment and prophylaxis of HIV and HBV infections. Also provided are pharmaceutical formulations and processes for the preparation of compounds according to the invention.

Description

Therapeutic Nucleosides
The present invention relates to purine nucleoside analogues containing an unsaturated carbocyclic ring in place of the sugar residue, pharmaceutically acceptable derivatives thereof, and their use in therapy, particularly for the treatment or prophylaxis of certain viral infections.
AIDS is an immunosuppressive or immunodestructive disease that predisposes subjects to fatal opportunistic infections. Characteristically, AIDS is associated with a progressive depletion of T-cells, especially the 4 helper-inducer subset bearing the OKT surface marker.
Human immunodeficiency virus (HIV) has been reproducibly isolated from patients with AIDS or with the symptoms that frequently precede AIDS. HIV is cytopathic and appears to preferentially infect and destroy T-cells 4 bearing the OKT marker , and it is now generally recognized that HIV is the etiological agent of AIDS.
Since the discovery that HIV is the etiological agent of AIDS, numerous proposals have been made for anti-HIV chemotherapeutic agents that may be effective in treating AIDS sufferers. Thus, for example, European Patent Specification No. 196185 describes 3'-azido-3'-deoxythymidine (which has the approved name zidovudine), its pharmaceutically acceptable derivatives and their use in the treatment of human retrovirus infections including AIDS and associated clinical conditions. Vince et al., Antiviral Research, 9 (1/2),
120 (1988) describes certain carbocyclic purine nucleosides (in particular (±)-9-(cis-4-(hydroxymethyl)-2-cyclopentenyl) guanine and their use against HIV.
World wide, hepatitis B virus (HBV) is a viral pathogen of major consequence. It is most common in Asian countries, and prevalent in sub-Saharan Africa. The virus is aetiologically associated with primary hepatocellular carcinoma and is thought to cause 80% of the world's liver cancer. In the United States more than ten thousand people are hospitalised for HBV illness each year, an average of 250 die with fulminant disease.
The United States currently contains an estimated pool of 500,000-1-million infectious carriers. Chronic active hepatitis will develop in over 25% of
ΔΡΟ 0 010 1
NJBM/JJ/JCB/2 June 1989
PBO535CH carriers, and often progresses to cirrhosis. It is estimated that 5000 people die from HBV related cirrhosis each year in the USA, and that perhaps 1000 die from HBV-related liver cancer. Even when a universal HBV vaccine is in place, the need for effective anti-HBV compounds will continue. The large reservoir of persistently infected carriers, estimated at 220 million worldwide, will receive no benefit from vaccination and will continue at high risk for HBV induced liver disease. This carrier population serves as the source of infection of susceptible individuals perpetuating the instance of disease particularly in endemic areas or high risk groups such as IV drug abusers and homosexuals. Thus, there is a great need for effective antiviral agents, both to control the chronic infection and reduce progression to hepatocellular carcinoma.
Clinical effects of infection with the HBV virus range from headache, fever, malaise, nausea, vomiting, anorexia and abdominal pains. Replication of the virus is usually controlled by the immune response, with a course of recovery lasting weeks or months in humans, but infection may be more severe leading to persistent chronic liver disease as outlined above. In Viral Infections of Humans (second edition, Ed., Evans, A.S. (1982) Plenum Publishing Corporation, New York), Chapter 12 describes in some detail, the aetiology of viral hepatitis infections.
Hepatitis B virus (HBV) is a small DNA containing virus which infects humans. It is a member of the class of closely related viruses known as the hepadnaviruses, each member of which selectively infects either mammalian or avian hosts, such as the woodchuck and the duck. Recent insights into the mechanism of replication of the hepadnavirus genome indicate the importance of reverse transcription of an RNA intermediate, suggesting that the reverse transcriptase is a logical chemotherapeutic target.
It has now been discovered that certain purine nucleoside analogues containing an unsaturated carbocyclic ring, as referred to below, are useful for the treatment or prophylaxis of viral infections for example hepatitis B and retroviral infections, especially AIDS.
L 0 L 00 OdV
According to a feature of the present invention, novel compounds of the formula (I) are provided:
NJBM/JJ/JCB/2 June 1989
PBO535CM and R represents branched or straight chain $ alkoxy (e.g. propyloxy or isopropoxy), optionally substituted by alkoxy, $ cycloalkyl (e.g.
cyclopropylmethoxy); cycloalkyl; g eycloalkyloxy (e.g. cyclobutyloxy or cyclopentyloxy); aryloxy (e.g. phenyloxy); aralky (e.g. benzyl) or aralkyloxy (e.g. benzyloxy) in which the aryl may optionally be substituted with alkyl, hydroxy or halogen; & alkenylthio (e.g.allylthio); &
cycloalkylthio; & alkylthio; aryl thio or aralkylthio in which the aryl may optionally be substituted with C. alkyl, hydroxy, halogen or nitro; or 2
R“ represents a heterocyclic group containing an oxygen atom or one or two nitrogen atoms, and 3-7 carbon atoms with optional double bonds in the ring (e.g. piperidino, pyrrolidino or furfuryl) optionally containing one or more heteroatoms selected from sulphur and oxygen and optionally substituted on the ring by one or more C
1-4 alkyl, hydroxy or halogen groups, C
3-6
1-4 cycloalkylthio, aralkylthio in which the aryl may be substituted with C alkyl, hydroxy or halogen; or R represents an imidazolylthio group in which the imidazolyl moiety may be substituted with one or more substituents 2 selected from alkyl and C-substituted with nitro; or R represents an amino group which is mono- or di-substituted by one or two substituents selected from alkyl (e.g. methyl or ethyl), alkoxy (e.g. methoxy), & hydroxyalkyl (e.g. hydroxyethyl), -, cycloalkyl (preferably cycloalkyl, e.g. cyclopropyl, cyclobutyl or cyclopentyl) optionally substituted by alkyl (e.g. cyclopropyl methyl), aryl (e.g. phenyl), aralkyl (e.g. benzyl) in which the aryl may optionally be substituted with , alkyl, hydroxy or halogen, allyl optionally substituted with mono- or 3 di-alkyl or alkoxy groups (e.g. dimethylallyl); and R represents hydrogen, / amino or alkyl (e.g. methyl), qantt pharmaceutically acceptable derivatives thereof.
AP 0 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989
BAD owe,NAL ντ/88· a rearurpres···: invent I ->:.. w/·. provide ·.··'^pounds of the oS *»
H - nJ ir: R* represents
I?
or t· tla (A) (B) or (C)
HO -
(3)
HO (A)
ar.d R represents helogcn—(«-.-g;—ohlr»y 1 no)-, & alkoxy (e.g. propyloxy or isopropoxy), optionally substituted for example by C, , cycloalkyl (e.g.
J - O ° cyclopropylctethoxy);
cycloalkyloxy (e.g.
3-8 cyclobutyloxy or cyclopentyloxy); aryloxy (e.g. phenyloxy). aralkyl (e.g. benzyl) or ornll«yl»«,y (. fc to £i t(2y L&xy } in Which ihe Agy't Bitty optionally be suDstltUted with lower alkyl, hydroxy or halogen; $ cycloalkylthio; $ alkylthio;
arylthio, cr aralkylthlo in which the aryl may optionally be substituted 2 with lower alkyl, hydroxy. or halogen; or R represents a heterocyclic group containing an oxygen atom or ate or two nitrogen atoms, and 3-7 carbon atoms with optional double bonds in the ring (e.g. piperidine, pyrrolldino or furfuryl) optionally containing a sulphur and/or oxygen heteroatom and optionally substituted on the ring by one or more lower alkyl, hydroxy or halogen groups, $ cycloalkylthio, aralkylthlo in which the aryl may be substituted with lower alkyl, hydroxy or halogen; or R^ represents an imidazoly1 thio group in which the iaidazolyl ooiecy may be substituted with 2 ' lover alkyl and/or C-substituted with nitro; cr R represents an amino group which is mono- cr di-substituted by C alkyl (e.g. methyl or ethyl), C, , alkoxy (e.g. methoxy), hydroxy C, alkyl (e.g. hydroxyethyl) and/or C. ,
SJ3/DDP/AC/24th June 19S3 spawns : <· ' Χ·.Λ*Μ ..Λ·
BAD ORIGINAL
. · 1 a . k y L >' e . . • -.yc propy 1 or ' .pent·; 1 rvl eg :. <iy. . . t talk·.·:
henzyl) . n wh i n the iryL ma .· >pcional ly be subscic . ~-»d WL“’ ί lower
--//1. hydroxy or 1.. logon. allyl opcIona 11/ subsc itute -ith T- no- or
.<·.· 1 or 11 .- )xy g: ‘Lips ’ g. di.--chvlal 1 vl · and r} rerr /droge.-
.i.nu.o, and p xarmacr ; c i a L L . a c c e p a n 1 e d e r t v atives hem·: *
AP 0 0 0 1 0 1
BAD ORIGINAL
li
PBO535CM
It should be noted chat the invention also Includes the individual optical and geometrical isomers of the compounds of formula (I) either alone or in admixture. Where reference is made to an alkyl moiety, this includes methyl, ethyl, propyl, butyl, pentyl and hexyl.
Preferred examples of compounds of formula (I) include those wherein κ 2 represents A. Also preferred are compounds wherein R is C, alkoxy for 2 16 example methoxy or butoxy or R is an amino group susbtituted by C2 J cycloalkyl (for example cyclopropyl or cyclobutyl) or R is alkenyl or alkylthio (e.g. allylthio).
A preferred subgenus of formula (I) is as follows:
wherein R represents
O
HO
R represents hydrogen, amino or
C16 alkyl (e.g.
methyl); R represents
Cj ? cycloalkyl (preferably & cycloalkyl, e.g.cyclopropyl, cyclobutyl or cyclopentyl); and R? represents a hydrogen atom or a substituent selected from alkyl (e.g. methyl or ethyl), & alkoxy (e.g. methoxy), hydroxyalkyl (e.g. hydroxyethyl), ? cycloalkyl (preferably C3_g cycloalkyl, e.g. cyclopropyl, cyclobutyl or cyclopentyl) optionally substituted by C1 . alkyl (e.g. cyclopropyl methyl), aryl (e.g. phenyl), aralkyl (e.g. benzyl) in which the aryl may optionally be substituted with C alkyl, hydroxy or halogen, allvl ootionallv substituted with mono- or allyl optionally substituted with mono(e.g. dimethylallyl); pharmaceutically di-alkyl or alkoxy groups acceptable derivatives thereof.
NJBM/JJ/JCB/2 June 1989 f·
PBO535CM
6
Most preferably R represents A, R represents hydrogen, R represents cycloalkyl and R? represents a hydrogen atom.
3-6
The most preferred isomers are those in which the hydroxymethyl group is cis to the purine in compounds of formula (I) wherein R^ is A.
Particularly preferred examples of compounds of formula (I) are:
a) (±)-cis-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2cyclopentene-l-methanol;
b) (±)-cis-4-(2-amino-6-methoxy-9H-purin-9-yl)- 2-cyclopentene-1-methanol ;
c) (±)-cis-4-(2-Amino-6-ethoxy-9H-purin-9-yl)- 2-cyclopentene-1methanol;
d) (±)-cis-4-(2-Amino-6-isopropoxy-9H-purin-9-yl)- 2-cyclopentene-1methanol;
e) (±)-cis-4-(2-Amino-6(-ethylthio)-9fl-purin-9-yl)- 2-cyclopentene-1methanol;
f) (±)-cis-4-(6- (Allylthio)-2-amino-9H-purin-9-yl)-2-cyclopentene-lmethanol;
g) (±)-cis-4-(2-Amino-6-butoxy-9H-purin-9-yl)-2-cyclopentene-1methanol;
h) (±)-cis-4-(2-Amino-6-cyclopentyloxy-9H-purin-9-yl)-2-cyclopentene as
1-methanol;
i) (±)-cis-4-(6-(Allylamino)-2-amino-9H-purin-9-yl)- 2-cyclopentene-1methanol;
j) (±)-cis-4-(2-Amino-6-propoxy-9H-purin-9-yl)- 2-cyclopentene-1methanol;
I. 0 V 0 0 0 dV
NJBM/JJ/JCB/2 June 1989
PBO535CM
k) (±)-cis-4-(2-Amino-6-cyclopropylmethylaminc)-9H-purin-9-yl)-2cyclopentene -1-methanol;
l) (±)-cis-4-(2-Amino-6-cyclobutylamino-9H-purin-9-yl)-2cyclopentene-l-methanol;
m) (±)-cis-4-(2-Amino-6-(isobutylthio)-9H-purin-9-yl)-2cyclopentene-1-methanol;
The compounds of formula (I) above and their pharmaceutically acceptable derivatives are hereinafter referred to as the compounds according to the invention.
In one aspect of the invention there are provided the compounds according to the invention for use in medical therapy particularly for the treatment or prophylaxis of retroviral infections and heptatis B viral infections.
Examples of retroviral infections which may be treated or prevented in accordance with the invention include human retroviral infections such as Human Immunodeficiency Virus (HIV), HIV-2 and Human T-cell Lymphotropic Virus (HLTV) e.g. HTLV-I or HTLV-IV infections. The compounds according to the invention are especially useful for the treatment or prophylaxis of AIDS and related clincial conditions such as AIDS-related complex (ARC), progressive generalised lymphadenopathy (PGL), AIDS-related neurological conditions, such as multiple sclerosis or tropical paraparesis, anti-HIV antibody-positive and HIV-positive conditions, Kaposi's sarcoma and thrombocytopenia purpura. The compounds may also be used in the treatment or prevention of psoriasis.
In a further aspect of the present invention there is included:a) A method for the treatment or prophylaxis of retroviral infections and hepatitis B infections which comprises treating the subject with a therapeutically effective amount of a compound according to the invention.
b) Use of a compound according to the invention in the manufacture of
NJBM/JJ/JCB/2 June 1989
PBO535CM a medicament for the treatment or prophylaxis of any of the above-mentioned infections or conditions.
By a pharmaceutically acceptable derivative is meant any pharmaceutically or pharmacologically acceptable salt, ester, salt of such ester, , of a compound according to the invention or any other compound which, upon administration to the recipient, is capable of providing (directly or indirectly) a compound according to the invention, or an antivirally active metabolite or residue thereof.
Φ
Preferred esters of the compounds of the invention include carboxylic acid esters in which the non-carbonyl moiety of the ester grouping is selected from straight or branched chain alkyl e.g. n-propyl, t-butyl, n-butyl, alkoxyalkyl (e.g. methoxymethyl), aralkyl (e.g. benzyl), aryloxyalkyl (e.g. phenoxymethyl), aryl (e.g. phenyl optionally substituted by halogen, alkyl or alkoxy or amino); sulphonate esters such as alkyl- or aralkylsulphonyl (e.g. methanesulphonyl); amino acid esters (e.g. L-valyl or L-isoleucyl); and mono-, di- or tri-phosphate esters. The phosphate esters may be esterified by for example the following substituent CH^Cl^) wherein n is selected from 0-20.
With regard to the above-described esters, unless otherwise specified, any alkyl moiety present advantageously contains 1 to 18 carbon atoms, particularly 1 to 4 carbon atoms. Any aryl moiety present in such esters advantageously comprises a phenyl group.
Any reference to any of the above compounds also includes a reference to pharmaceutically acceptable salt thereof. s
Examples of pharmaceutically acceptable salts of the compounds according to the invention and pharmaceutically acceptable derivatives thereof include base salts, eg derived from an appropriate base, such as alkali metal (e.g. sodium), alkaline earth metal (e.g. magnesium) salts, ammonium and NW+ (wherein W is alkyl). Physiologically acceptable salts of a hydrogen atom or an amino group include salts of organic carboxylic acids such as acetic, lactic, tartaric, malic, isethionic, lactobionic and succinic acids; organic sulfonic acids such as methanesulfonic, ethanesulfonic,
AP 0 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989 ί y
PB0535CM benzenesulfonic and p-toluenesulfonic acids and inorganic acids such as hydrochloric, sulfuric, phosphoric and sulfamic acids. Physiologically acceptable salts of a compound with a hydroxy group include the anion of said compound in combination with a suitable cation such as Na+, NH + and + 4 NW^ (wherein W is a alkyl group) .
The above compounds according to the invention and their pharmaceutically acceptable derivatives may be employed in combination with other therapeutic agents for the treatment or prophylaxis of the above infections or conditions. Examples of such further therapeutic agents include agents that are effective for the treatment or prophylaxis of viral infections or associated conditions such as 3'-azido-3'-deoxythymidine
2' , 3'-dideoxynucleosides such as 2',3'-dideoxycytidine, adenosine and 2',3'-dideoxyinosine, interferons such as a-interferon, (zidovudine), 2',3'-dideoxy acyc'lic nucleosides (eg acyclovir), renal excretion inhibitors such as probenicid, nucleoside transport inhibitors such as dipyridamole, as well as immunomodulators such as interleukin II and granulocyte macrophage colony stimulating factors. The component compounds of such combination therapy may be administered simultaneously, in either separate or combined formulations, or at different times, e.g. sequentially such that a combined effect is achieved.
The compounds according to the invention, also referred to herein as the active ingredient, may be administered for therapy by any suitable route including oral, rectal, nasal, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous and intradermal). It will be appreciated that the preferred route will vary with the condition and age of the recipient, the nature of the infection and the chosen active ingredient.
In general a suitable dose will be in the range of 3.0 to 120 mg per kilogram body weight of the recipient per day, preferably in the range of 6 to 90 mg per kilogram body weight per day and most preferably in the range 15 to 60 mg per kilogram body weight per day. The desired dose is preferably presented as two, three, four, five, six or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing 10 to 1500
NJBM/JJ/JCB/2 June 1989
PBO535CM mg, preferably 20 co 1000 mg, and most preferably 50 to 700 mg of active ingredient per unit dosage form.
Ideally, the active ingredient should be administered to achieve peak plasma concentrations of the active compound of from about 1 to about 75μΜ, preferably about 2 to 50μΜ, most preferably about 3 to about 30μΜ. This may be achieved, for example, by the intravenous injection of a 0.1 to 5% solution of the active ingredient, optionally in saline, or orally administered as a bolus containing about 1 to about 100 mg/kg of the active ingredient. Desirable blood levels may be maintained by a continuoife infusion to provide about 0.01 to about 5.0 mg/kg/hour or by intermittent infusions containing about 0.4 to about 15 mg/kg of the active ingredient.
While it is possible for the active ingredient to be administered alone it is preferable to present it as a pharmaceutical formulation. The formulations of the present invention comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof and optionally other therapeutic agents. Each carrier must be acceptable in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Formulations include chose suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory Ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association cftfe active ingredient with liquid carriers or finely divided solid carriers both, and then if necessary shaping the product.
Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.
AP o 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989
PBO535CM
A tablet may be made by compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g. povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (e.g. sodium starch glycollate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent. Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach. This is particularly advantageous for purine nucleoside derivatives as such compounds are susceptible to acid hydrolysis.
Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.
Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
Formulations suitable for parenteral administration include aqueous and nonaqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be
NJBM/JJ/JCB/2 June 1989
PBO535CM stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for Injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
Preferred unit dosage formulations are chose containing a daily dose or unit, daily sub-dose, as herein above recited, or an appropriate fractiop thereof, of an active ingredient.
The compounds according to the Invention may also be presented for use in the form of veterinary formulations, which may be prepared, for example, by methods that are conventional in the art.
It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include such further agents as sweeteners, thickeners and flavouring agents.
The present invention further Includes a process for the preparation of a compound according to the invention and pharmaceutically acceptable derivatives thereof which comprises either:
(II)
AP 0 0 0 1 0 1
3 wherein R and R are as hereinbefore defined and Z represents a precursor 2 group for the said R group with an agent or under conditions serving to 2 convert the precursor Z group to the desired R group; or Z represents a thio group onto which may be substituted an appropriate group to form a 2 compound of formula (I) wherein R is a substituted thio group or;
NJBM/JJ/JCB/2 June 1989
PBO535CM (III)
B) reacting a compound of formula
NU
I
(wherein R and R are hereinbefore defined) or a pharmaceutically acceptable derivative thereof, with an agent serving to effect formation of the imidazole ring in the desired compound of formula (I); or
i) where a compound of formula (I) is formed, converting the said compound to a pharmaceutically acceptable derivative thereof; or ii) where a pharmaceutically acceptable derivative of a compound of formula (I) is formed, converting the said derivative to the parent compound of formula (I) or to a further such derivative.
Process A) above may be carried out in conventional manner, for example, by treatment of a compound of formula (II) in which Z represents a leaving group, e.g. a halo such as a chloro group, with, for example, an alkali metal (e.g. sodium) or alkali metal hydride (e.g. sodium hydride) and an appropriate alcohol at reflux or a temperature greater than 50°C preferably in an organic solvent.
Alternatively the compound of formula (II) may be treated with an appropriate amine or amino hydrochloride to introduce a substituted amino group as defined above at reflux or at a temperature greater than 50°C preferably in the presence of an organic solvent, for example methanol, ethanol. Alternatively, a compound of formula (II) wherein Z is a thio group may be treated with an appropriate halide under nitrogen.
Process B) may be carried out, e.g., by reacting a compound of formula (III) with formic acid or a reactive formic acid derivative, triethylorthoformate or diethoxymethyl acetate, in a solvent such as a dimethylacetamide or acetonitrile at an elevated temperature, preferably at 75-9O°C. This reaction is conveniently effected by the addition of slightly more than one equivalent of a strong anhydrous acid, with 1.1 equivalents of
NJBM/JJ/JCB/2 June 1989
PBO535CM ethanesulfonic acid per equivalent of compound of formula (III), in which case lower temperatures, 25°C., are used.
In process A) the starting material of formula (II) may be prepared, for example, by firstly cyclising a compound of formula (III) above in an analogous manner to that described for process B) above.
Other reagents may be useful for cyclisation of compounds of formula II tfc 3 give compounds of formula I where R, is not hydrogen. For example triethyl f
or trimethylorthoacetate with acetic anhydride at 70-120 C for several hours gives R^-CHg (see H.C. Koppel and R.K. Robins, J.Org.Chem 1958. 1457),
Rg-Nl^ may be obtained by cyclisation with ethoxycarbonyl Isothiocyanate
Heterocyclic Chem, 1984. £1, 1245). This'initially gives R^-NHC02 Et (see R. Esmail and F. Kurzer, Synthesis 1975. 301; L.B. Towsend, et al., which 3 is then hydrolysed in base (e.g. aqueous sodium hydroxide) to R-NH^·
Cyclisation with potassium ethylxanthate (W.T. Stolle, J.C. S<h, R.S.P. Hsi,
J. Labe1. Compound Radiopharm 1988. 891) in ethanol at 80°C gives R.-SH.
Alkylation of the SH with alkyl halides and base (e.g. potassium carbonate 3 in DMF) gives R^-SMe, SEt.
A compound of formula (I) may be converted into a pharmaceutically acceptable ester by reaction with an appropriate esterifying agent, e.g. an acid halide or anhydride. The compound of formula (I), including esters thereof, may be converted into pharmaceutically acceptable salts thereof in conventional manner, e.g. by treatment with an appropriate base. An ester or salt of a compound of formula (I) may be converted Into the parent compound, e.g. by hydrolysis.
The optical and geometric isomers of the compounds of formula (I) may be resolved or Isolated in conventional manner, e.g. by chromatographic separation or diastereomeric esters prepared by acylation of the hydroxyl on the cyclopentenyl moiety with appropriate optically active carboxylic acid derivatives as, e.g., with naproxen (J.Org.Chem., 51, 1287 (1986)). The cyclopentenyl precursors of the compounds of formula (ΙΙ^φ, , may also be resolved by fractional crystallization of salts formed with optically active carboxylic acids (e.g. L-tartaric acid and its derivatives). Alternatively, enzymatic resolution may be achieved as in J.Med.Chem., 30, 746 (1987) and J.Med.Chem. 28, 1385 (1985).
NJBM/JJ/JCB/2 June 1989
PB0535CM
The following Examples are intended for illustration only and are not intended to limit the scope of the invention in any way. The term 'active ingredient' as used in the Examples means a compound of formula (I) or a pharmaceutically acceptable derivative thereof.
Example 1 (+)-cis-4 -f(2-Amino-4-chloro-6-pyrimidinyl)aminol-2-cyclopentene-1methanol cis-4-Acetamidocvclopent-2-enemethyl acetate [S.Daluge and R.Vince, J.Org.Chem, 1978. 43. 2311] (14.88g, 0.073mol) and barium hydroxide octahydrate (46.19g, 0,146 mol) were refluxed in water (300mL) under nitrogen for 18 hours. The resulting solution was neutralized with carbon dioxide. The precipitate was washed with water, then ethanol. The combined filtrate-wash was evaporated to a syrup (11.16g) which was condensed with 2-amino-4,6-dichloropyrimidine (23.91g, 0.146mol) and triethylamine (3O.5mL, 0.219mol) in refluxing 1-butanol (lOOmL) for 1.5 hours. After addition of IN NaOH (73mL), the resulting mixture was evaporated to dryness and the residual solid slurried in CHCl^ (200mL). Unreacted 2-amino-4,6-dichloropyrimidine was filtered off and washed with chloroform (lOOmL). The chloroform filtrate-wash was concentrated and chromatographed on a silica gel column. Additional pyrimidine starting material was eluted with 2.5% methanol-chloroform. The title compound was eluted with 3.5% methanol-chloroform as an off-white solid foam (15.90g, 91%); 'H-NMR (Me2SO-dg) 1.15-1.28 and 2.26-2.41 (2m,2,CH2), 2.60-2.71 (m,l,l'-H), 3.4 (m overlapping HjO, C^OH), 4.625 (t, J-5.3,1, CH2OH), 4.95 (br s.l.CH-N), 5.67-5.87 (m,2,CH-CH), 6.38 (br s,l,NH2), 7.12(br s,l,NH); MS (CP)M+1, 241,243.
Anal. calc, for C1OH13N4OC1.0.2H2O : C.48.99; H,5.55; N.22.85; Cl,14.46. Found : C.49.10; H.5.57; N.22.81; Cl,14.40.
NJBM/JJ/JCB/2 June 1989
PBO535CM
Example 2 (t)-cis-4-(( 2-Amino-6-chloro-5-f(4-chlorophenvl)azo 1-4-pyrimidinyllamino 1-2-cyclopentene-1-methanol (+)-cis-4-((2-Amino-4-chloro-6-pyrimidinyl)amino]-2-cyclopentene-lmethanol from Example 1 (11.58g, 48.1mmol) and sodium acetate trihydra^e (97g) were dissolved in glacial acetic acid (225mL) and water (225mL). A cold solution (0.5°C) of 4-chlorobenzenediazonium chloride was prepared from 4-chloroaniline (6.74g, 52.8mol), concentrated hydrochloric acid (14.7mk) water (52mL), and sodium nitrite (4.01g, 58.2mMol in 47mL of water). This cold solution was added dropwise over 5 minutes to the first solution. The resulting yellow precipitate was filtered after 18 hours, washed with water, and extracted with ethanol to give title compound as dark yellow powder (12.56g, 69%), Mp 218-220°C dec; 'H-NMR (Me2SO-dg) 10.25(d,1,NH), 7.69 and
7.54 (both, J-8.9,C6H4) overlapping 7.6 (br,6,NH2), 5.80-5.95 (m,2,CH-CH)
5.24(m,1,CHN), 4.75(t, 1,CH^H) , 3,41(t, 1 .CH^H) , 3.41(t, 2 .C^OH),
2.75(m,1,CH), 2.41(m,1,CH), 1.44-1.53(m,1,CH).
Anal calc, for C^H^NgC^O : C.50.67; H.4.25; N.22.16; Cl,18.70.
Found : C.50.59; H.4.29; N.22.10; Cl,18.66
Aonnnm 1
Example 3 (±)-cis-4-((2.5-Diamino-4-chloro-6-pyrimidinyl)-amino 1 - 2-cvclopentene-1methanol. ,,
The title compound of Example 2 (11.67g) was suspended in ethanol (235mL), glacial acetic acid (30mL), and water 235mL). The mixture was heated to reflux under nitrogen. Zinc dust (13.5g) was added in small portions over 30 minutes during which time the compound dissolved. The reaction was heated an additional 20 minutes, and then the excess zinc was filtered of from the hot solution, and it was washed with ethanol. The filtrates were evaporated, and the residue was purified on a silica gel column eluting with chloroform (IL) and chloroform: methanol/4:1 (1.8L). The fractions
NJBM/JJ/JCB/2 June 1989
PBO535CM containing the product were combined, and the solvent was removed under reduced pressure to give the title compound as a red-orange oil (11.2g, >100% yield). A pure sample was obtained during another small scale reaction to obtain the product as a light yellow solid in a 76% yield; 1H-NMR (Me2SO-d6) 1.29 and 2.39 (m, 2, CH^ , 2.69 (t, 1, l'-H), 3.37 (d, 2, CH2OH), 3.91 (br, 2, NHj), 4.60 (br, 1, CH2OH), 5.02 (m, 1, CHNH), 5.56 (br s, 2, NH2), 5.74 (m, 1, - CH), 5.86 (m, 1, - CH), 6.36 (d, 1, CHNH).
Example 4 (i)-cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol
The title compound of Example 3 (about 9.7g) was dissolved in diethoxymethyl acetate (lOOg), and refluxed for two days. The solvent was removed under high vacuum at 50°C, and dioxane (40mL) and 0.5N HC1 (60mL) was added. The reaction was stirred at room temperature for 1.25 hours, and then chilled. The reaction was neutralized to pH7 with cold 5N sodium hydroxide, and then it was extracted with chloroform ; methanol/3:l several times. The organic layers were dried with magnesium sulphate, filtered, and evaporated. The residue was purified by chromatography on a silica gel column, eluting with CHC1^:2% MeOH to give 3.7g (46% yield) of the title compound, Mp 138-139°C. 1H-NMR (Me2SO-dfi) 1.63 and 2.61 (m, 2, CH^, 2.87 (m, 1, l'-H), 3.44 (d,
2, CH2OH), 5.44 (m, 1, CH-N), 5.89 (m, 1, - CH), 6.14 (m, 1, - CH), 6.82 (br s, 2, NH2), 8.02 (s, 1, 8-H). (CHjOH not seen - under HjO peak) uv : pH 1 lambda max 315 ( 7370), 218 (26200); lambda sh 239.5 (5650). pH 7.4 lambda max 307 ( 8000), 245.5 (4600), 223 (26400). MS (El) 265,267 (m) (Cl) 266,268 (m + 1).
Anal. calc, for C^^N^IO. 2Η£0 : C.43.79; H.5.35; N.23.21; Cl,11,75.
Found : C.43.67; H.5.29; N.23.05; Cl, 11.70
Example 5 (±)-cis-4-f 2-Amino-6-(cyclopropvlamino)-9H-purln-9-yll- 2-cyclopentene-1 methanol
The title compound of Example 4 (0.50g) was dissolved in ethanol (40mL), and cyclopropylamine (0.65mL, 5 equivalent) was added. The reaction was
NJBM/JJ/JCB/2 June 1989
PBO535CM refluxed under nitrogen for 6 hours. An additional O.65mL of cyclopropylamine was added, and the reaction refluxed for an additional 5.5 hours. The solvents were evaporated, and chloroform (25mL) and saturated sodium bicarbonate solution (5mL) was added. The aqueous layer was extracted several times with CHCl^ to obtain the crude product. This was purified on a silica gel column eluting with ethyl acetate : 3% methanol to give 0.43g (80%) of the title compound. This was recrystallised from acetonitrile to give 0.30 g of product; Mp 70°C shrivels, 85°C gels; ^H-NMR (Me2SO-dg) 0.56 and 0.63 (2m, 4, CHjCHp, 1.56 and 2.60 (2m, 2, 5'-CH2),
2.85 (m, 1, l'-H), 3.02 (m, 1, CH-NH), 3.43 (t, 2, CH20H), 4.71 (t, l·,
CH2OH), 4.28 (m, 1, 4'-H). 5.77 (s, 2, NH^, 5,84 (m, 1, - CH^, 6.09 (m, 1, -CH), 7.23 (d, 1, NH-CH), 7.58 (s, 1, purine-8-H); ms (CI) 287 (m+); uv pH 1: lambda max 296 ( 12850), 255 (9800), 210.5 (18100); lambda sh 221 (16300). pH 7.4 : max 284.5 (14300), 259.'5 (8250), 216 (21100).
Anal. calc, for C14H18N6°·0·25 H20 : C, 57.82; H.6.41; N.28.90.
Found ; C.57.84; H.6.45; N.28.86
Example 6 (i)-cis-4-(2-Amino-6-methoxy-9H-purin-9-yl)-2-cyclopentene-1-methanol ( + ) -cis-4-(2-Amino-4-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol from
Example 4 (0.53g, 2.0wmol) was dissolved in methanol (25mL) and a solution of sodium (O.23g, 10 m.equiv.) and methanol (20mL) added. After 1.0 hour of reflux, the solution was cooled, neutralized with hydrochloric acid.
Evaporated solvent and chromatographed residue on silica gel. Product was eluted as a white solid foam (0.44g) with 5% methanol-ethylacetate; 'H-NMR (MeSO-d) 1.57 and 2.60 (both m,2,CH.), 2.85 (m,1,1'-H), 3.43 (t, 2,
Zb Z
CH20H), 3.94 (s, 3, OCH3), 4.70 (t, 1, CH^H, 5.42 (m,l,CH-N), 5.86 and 6.11 (m,2,CH-CH), 6.37 (s,2,NH2), 7.75 (s,1,purine-8H).
APO 0 010 1
NJBM/JJ/JCB/2 June 1989 t·
PBO535CM
Anal. calc. for C12H15N5°2'005 EtOAc.0.2H2O.0.30MeOH:C,53.83; H.6.14;
N.25.11.
Found : C.53.87; H.6.09; N.25.07.
Example 7 (±)-cis-4-(2-Amino-6-ethoxv-9H-purin-9-yl)-2-cyclopentene-1-methanol
A flask was charged with ethanol (33ml) and sodium (O.172g, 7.5mmol). After all of the sodium had dissolved (±)-cis-4-(2-amino-6-chloro-9H-purin9-yl)-2-cyclopentene-l-methanol(0.40g,1.5mmol) from Example 4 was added and the solution was brought to reflux for 0.5 hours. The solution was allowed to cool to room temperature before neutralization with 1.0N HC1. The solution was then concentrated and the residue partitioned between chloroform and water. The organic layer was dried with MgSO^, filtered and concentrated. The residues were then placed on a silica gel column and eluted with 2% methanol in chloroform to yield a yellow glass (0.28g, 67.8%), 'H-NMR(Me2SO-d6) 57.74 (s,lH, purine H-8), 6.35(br s, 2H, NHj), 6.15 and 6.07 and 5.91-5.82(both m, 2H.CH-CH) 5.49-5.35(br rn.lH.CHN) 4.71(t,J-5.3Hz,1H,0H), 4.43(a,J-7.0Hz,OCH2 CHp, 3.50-3.39(m,2H, OCH2),
2.95-2.78(br m,lH,H-l'), 2.70-2.52(br m, overlapping solvent, 0.5 CH2),
1.68-1.52(br m,lH,0.5 CHp, 1.33( +, J-7.1Hz , 3H, CHp .
Anal. calc, for C^H^N 0 : C.56.72; H.6.22; N25.44.
Found: C.56.48; H.6.28; N.25.20.
Example 8 (±)-cis-4-(2-Amlno-6-isopropoxy-9H-purin-9-vl)- 2-cvclopentene-1-methanol
A flask was charged with sodium hydride (60% oil dispersion, 240mg, -6mmol) which was washed with hexanes before the addition of iso-propanol (20mL) and (±)-cis-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.318g, 1.19mMol) from Example 4. This solution was heated at 75*C for 2 hours before being allowed to cool to room temperature and neutralized by addition of 1.0N HC1. The solution was concentrated and the residue was placed on a silica gel column which was eluted with 10% methanol-chloroform. Crystallisation from ethanol: water-l:l yielded off-white crystals
NJBM/JJ/JCB/2 June 1989
PBO535CM (265mg,77%) Mp 188-191*C,Ή-NMR (Me2SO-d6)
57.72((s,1H,purine H-8),
6.28(s,2H,NH2), 6.09 and 5.87 (both m, 2H.CH-CH), 5.50-5.37(m,2H,CHN,CHO), 4.69(t,J-5.3,1H,OH), 3.43(m,2H,CH2OH) 2.86-2.81 (br m,1H,CH), 2.67-2.51 and 1.64-1.52(2m, 2H,CH2) 1.31(d,J-6.2 , (CH^CH) .
Anal. calc, for CUH19N5 O2; C.58.12; H.6.62; N.24.20. Found: C.58.20; H.6.66: N.24.20.
Examples 9 and 10 (t) -cis-2-Amino-1.9-dlhydro-9- i (4-hydroxyrnethvl)-2-cyclopenten-l-yll -6Hpurin-6-thione and (t) -cis-4-(2-Amino-6^propylthio^-9H-purin-9-yI)-2-cyclopenten-l-methanol (±) -cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-eyelopenten-1-methanol (4.18g,15.7mmol) from Example 4 and thiourea (1.32g,17.3mmol) were refluxed in n-propanol for 17 hours. The resulting mixture was filtered and the solid washed with n-propanol to give (±)-cis-2-amino-1,9-dihydro-9[ (4-hydroxymethyl)-2-cyclopenten-l-yl)-6H-purin-6-thione as yellow powder (2.19g.53%); Mp 235-238’C, 'H-NMR(DMSO-dg) 5; 11.85(5,1,NH); 7.77(s,1,H-8),
6.76 (br s, 2 NH2), 6.16 and 5.86 (both m, 2, CH-CH), 5.35(m,1,CH-N),
4.70(m,1,OH) , 3.42 (br m, overlapping H20, CHj-O), 2.85 (br m,l,CH), 2.30
(m, overlapping solvent, 0.5 CHj), 1.60 (m,l, 0.5 CHp.
Anal. calc, for C^H^N^S: C.50.18; H.4.98; N.26.60; S.12.18. Found: C.50.10; H.5.00; N.26.50; S,12.10.
VO V 0 0 0 dv
Chromatography on silica gel of the propanol filtrate contents gave a second product on elution with 5% MeOH-EtOAc. Crystallisation from aceto nitrile gave (±)-cis-4-(2-amino-6^propylthio)-9H-purin-9-yl)-2-cyclopenten-lmethanol as a yellow powder (0,441g, 10%), Mp 128-13O°C; Ή-NMR (DMSO-d^) 5: 7.84(s,l,H-8) , 6.46(br s, 2, NHj), 6.15 and 5.90 (both m, 2, CH-CH), 5.45 (br m, l.CH-N), 4.73(t, J-5.4,1,OH), 3.45(m,2,CH2-0), 3.25<t, J-7.3,2, s-CHp , 2.90(br m,l,CH), 2.70-2.55(m, 1, 0.5 CHp, 1.80-1.50(m, 3, 0.5 CH2 overlapping CH2 of propyl), 1.0 (t, J-7.3,3,CH^).
NJBM/JJ/JCB/2 June 1989
PB0535CM
Anal. calc, for C14H19N5O5: C,55.06; H.6.27; N.22.93; S.10.50. Found: C.55.15; H.6.25; N.22.91; S.10.58.
Example 11
:)-cis-4-( 2 - Amino - 6-^iethylthidy 9H-purin - 9-vl) - 2-cyclopenten-1 - methanol
A solution of (±)-cis-2-amino-l,9-dihydro-9-{(4-hydroxymethyl)-2-cyclopentenl-yl)]-6H-purin-6-thione (0.50g, 1.89mmol) from Example/<§> in IN NaOH (1.89mL) was stirred under N^ with methyliodide (0.54g, 3.79mmol) for 30 minutes. The mixture was extracted with CHCl^ (3 x 100ml). Extracts were dried (MgSO^) , solvent evaporated and the residual solid chromatographed. Product was eluted from a silica gel column with 10% MeOH-CHCl^. Crystallisation of such a sample from acetonitrile gave title compound as yellow crystals (0.410g, 78%); Mp. 152-154eC; 'H-NMR(DMSO-dg) 6;
7.84((s,l.H-8), 6.49(br s, 2, NHj), 6.15 and 5.90 (both m, 2, CH-CH), 5.45 (br m, l.CH-N), 4.73 (t, J-5.3, 1, OH), 3.45(m,2,CH2-0), 2.90 (br m, 1, CH), 2.70-2.55 (m, overlapping S at 2.57, 4, 0.5 CHj and CH^), 1.65-1.55 (ra, 1,
0.5 CH2).
Anal. calc, for C12 Η N$ OS: C,51.97; H.5.45; N,25.25; S.11.56; Found: C,51.98; H.5.48; N.25.21; S.11.65
Example 12
-A' (t) -cls-4-(2-Amino-6/g/-nltrobenzvlthi^-9H-purin-9-vl)- 2-cyclopenten-1· methanol
A solution of (±)-cis-2-amino-1,9-dihydro-9-[(4-hydroxymethyl-2-cyclopenten1-yl)-6H-purin-6-thione (0.50g, 1.89mmol)from Example 10 in DMF(5mL) was stirred with K2 C°3 (θ·268· l-89mmol) and p-nitrobenzylbromide (0.41g, 1.89mmol) under nitrogen for 12 hours. The mixture was partitioned between H20 (5mL) and CHCl^ (3x50mL). The CHCl^ extracts were dried (MgS04), concentrated to a yellow oil, and the oil chromatographed. Elution of a silica gel column with 10% MeOH-CHCl^ gave title compound as a yellow powder (0.545g,73%) , Mp. 199-201’C; H-NMR(DMSO-dg) 5; 8.15 (AB,J-8.8H2,2, 0.5 C6H4), 7.76 (AB.J-9.0, 2, 0.5 CfiH4), 7.83 (s, 1, H-8), 6.62 (s, 2, NHp , 6.10 and 5.85 (both m, 2, CH-CH), 5.40 (br m, 1, CH-N), 4.70 (t,J-5.3,l,
NJBM/JJ/JCB/2 June 1989
PBO535CM
OH), 4.63 (s, 2, CH2-S), 3.42 (m, 2, CHj-O), 2.85 (br m, 1, CH), 2.70-2.50 (m, overlapping solvent, 0.5 CHj) , 1.70-1.50 (m, 1, 0.5 CH2).
Anal. calc, for C.54.26; H.4.55; N.21.09; S.8.05
Found: C.54.17; H,4.56; N.21.05; S,8.11
Example 13 (i)-cis-4-(2-Amino-6-((1-methyl-4-nitro-1H-Imidazol-5-vl)thio)-9H-purin9-vl)-2-cyclopenten-l-methanol
To a solution of (±)-cis-2-amino-l,9-dihydro-9-[(4-hydroxymethyl)-2cyclopenten-1-yl)-6H-purin-6-thione (0.50g, 1.89mmol) from Example 10 in IN NaOH (1.89mL) was added 1-methyl-4-nitro-5-chloro-imidazole (0.31g, 1.89mmol). The solution was stirred under nitrogen overnight and the resulting precipitate filtered after addition of HjO (3mL). Chromatography of the precipitate on silica gel gave title compound, eluted with 10% MeOH-CHClj as yellow powder (0.638, 87%), Mp. 207-208eC; 'H-NMR(DMSO-dg) 5; 8.19(s,l imidazolyl CH), 7.89(S, 1, H-8), 6.55 (br, s, 2, NHj), 6.15 and
5.85 (both m, 2, CH-CH), 5.40 (br m, 1, CH-N), 4.70 (t,J-5.3Hz, 1, OH), 3.65 (s, 3, CH3), 3.40 (m, 2, OCHp, 2.85 (br m, 1, CH) , 2.70-2.50 (m, overlapping solvent, 0.5 CHp, 1.70-1.50 (m, 1, 0.5 CHj).
Anal. calc, for C^H^NOjS-lH^: C.44.33; H.4.46; N.27.57; S.7.89
Found: C,44.22,44.12; H,4.46,4.49; N,27.52,27.46; S.7.81
Example 14 (±) - cis-4 - (2-Amino-6-^ethylthio)'9H-purin-9-yl) -2-cyclopenten-1-methanol
To a solution of (±)-cis-2-amino-l,9-dihydro-9-[(4-hydroxymethyl)-2cyclopenten-l-yl)-6U-purin-6-thione (0.50g, 1.89mmol) in IN NaOH (1.89mL) was added ethyliodide (0.29g, 1.89mmol) and dioxane (1 mL). The solution was stirred at 25’C under nitrogen for 1.25 hours. The resulting mixture was extracted with CHCl^ (3x50mL), dried (MgSO^) and evaporated to give crude product as yellow oil. Chromatography on silica gel gave title compound, eluted with 10% MeOH-CHCl^ and solidfied to yellow powder in acetonitrile (0.445g, 80%); Mp.l23-125’C; 'H-NMR(DMSO-dg) 5;7.82 (s, 1,
ΔΡ0 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989
PBO535CM
H-8), 6.43 (br, s. 2, NH^, 6.15 and 5.85 (both m, 2. CH-CH) , 5.43 (m, 1,
CH-N) , 4.70 (t,J—5.4, 1, OH), 3.43 (m, 2, C^-O), 3.23 (q,J—7.3, overlapping H20, S-CH2), 2.85 (br m, 1, CH), 2.70-2.55 (m, 1, 0.5 CH ) , 1.70-1.50 (m, 1, 0.5 CH2), 1.30 (t,J-7.3, 3, CHj).
Anal. calc, for C^H N OS: C,53.51; H.5.83; N.24.19; S,10.99.
Found: C.53.32; H,5.93; N.24.00; S.10.94
Example 15 ft) -cls-4- (2-Αιπ1ηο-6^3.11ν1ίΗ1^-9Η-ρυΓίη-9-ν1) -2-cyclopenten-l-methanol
To a solution of (±)-cis-2-amino-1,9-dihydro-9-[(4-hydroxymethyl)-2cyclopenten-l-yl]-6H-purine-6-thione (0.50g, 1.89mmol) from Example 10 in IN NaOH (1.89mL), was added allylbromide (0.229g, 1.89mmol) and dioxane (ImL). The solution was stirred at 25’C under nitrogen for 1 hour. The mixture was extracted with CHCl^ (3x50) and the CHCl^ extracts dried (MgSO^) and concentrated to a yellow oil. Chromatography on silica gel gave the title compound, which was eluted with 10% MeOH-CHCl^ and solidified to yellow powder in acetonitrile, (0.436g, 76%), Up.108-110’C; H-NMR (DMS0-dg) 8;
7.83(S, 1, H-8), 6.49 (br s, 2, NHp, 6.15 and 5.85 (both m, overlapping 6.0, m, total 3, CH-CH, and CH-CH2). 5.45 (m, overlapping dd centered at 5.35, 2, CH-N, and 0.5 -CH2), 5.10 (dd, 1, 0.5 -CHp, 4.70 (t,J-5.3Hz, 1, OH), 3.95 (d,J-6.8Hz, 2, S-CH^, 3.45 (m, 2, CH2-0), 2.85 (br m, 1, CH) ,
2.60 (m, 1, 0.5 CH2), 1.60 (m, 1, 0.5 CH2).
Anal. calc, for C^NjOS: C.55.42; H.5.65; N.23.08; S.10.57 Found: C.55.37; H,5.70; N.23.03; S,10.47
PBO535CM
Example (+) - cis-4- (2-Amino-6-butoxy-9H-purin-9-yl)-2-cyclopentene-1-methanol
A flask was charged with sodium hydride (60% oil dispersion 300mg, 7.5mmol) which was then washed with hexanes before the addition of butanol (lOmL) containing (±)-cis-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol (800mg, 3mmol) from Example 4. The solution was stirred at reflux for 2 hours and then neutralized by the addition of 1.0 N NaOH.
Concentration of the solution afforded the crude product which was purified by elution from a silica gel column with 5% methanol - chloroform. (810mg,
94%) . Crystallisation of such a sample from ethanol/acetonitrile gave an off-white powder, Mp. 122-123'C, Ή-NMR (Me.SO-d-.) δ 7.73 (S, 1H, purine z b
H8), 6.12 and 5.86 (m,2H,CH-CH), 5.41 (br m, 1H, NCH) 4.71 (unressolved t, 1H, OH), 4.38 (t,J-6.6Hz, 2H, OCHj butyl), 3.42 (m, 2H, OCH2), 2.85 (br m, 1H, CH), 2.60 (m, 1H, 0.5CH2 cyclopentene), 1.75-1.35 (m, 5H, O.5CH2 cyclopentene, CH2 CH2) 0.92 (t,J-7.3Hz, 3H, CH.j) .
Anal. calc, for αχ5ΗΝ5θ2: c>59·39: ».6.98; N.23.09.
Found: C.59.56; H.7.07; N.22.87.
I 0 I 00 OdV
NJBM/JJ/JCB/2 June 1989
PB0535CM
Example (ί) - cis-4- (2-Amino-6-cyclopentyloxy-9H-purin-9-yl·)-2-cyclopentene-1-methanol·
A flask was charged with sodium hydride (60% oil dispersion, 185mg, 4.6mmol) which was then washed with hexanes before the addition of cyclopentanol (lOmL). The resulting mixture was heated and (±)-cis-4-(2-Amino-6chloro-9H-purin-9-yl)-2-cyclopentene-l-methanol (0.53g, 2mmol) from Example 4 was added. After stirring at lOO’C for 0.75 hours the solution was neutralized by the addition of 1.0N HC1. Concentration of the solution afforded the crude product which was purified by elution from a silica gel column with 5% methanol-chloroform (0.30g 47.6%). Crystallisation of such a sample from ethanol-acetonitrile gave an off white powder, Mp.188-190*C; Ή-NMR (Me2SO-d6) 5 7.74 (S, 1H, purine H8), 6.33 (br s, 2H NHj), 6.12 and 5.87 (m, 2H, CH-CH), 5.60 (m, 1H, OCH), 5.42 (m, 1H, NCH), 4.73 (t,J-5.1Hz,
1H, OH), 3.44 (m, 2H, OCH2) 2.87 (br m, 1H, CH), 2.63-2.57 (m,lH, 0.5 CH2 cyclopentane), 1.98 (br m, 2H, cyclopentane), 1.80-1.57 (br m, 7H, 0.5 CH2 cyclopentene, 3CH2).
Anal. calc, for C.,Ho1Nc0 · C.60.94; H.6.71; N.22.21. lb Z1 0 L
Found: C.60.99; H.6.73.; N.22.20.
Example (±) -cis-4-(2-Amino-6-cvclopentylamino-9H-purin-9-yl)-2-cvclopentene-1
-methanol
A solution of (±)-cis-4-(-2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol (O.53g, 2mmol) from Example 4, triethylamine (2.00g,
20mmol), cyclopentylamine (267mg, 3.1mmol) and ethanol (lOmL) was stirred at reflux for 9 hours. The solution was allowed to cool to room temperature before the addition of 2mL of 1.0H NaOH, concentration of the solution afforded the crude product which was purified by elution from a silica gel column using 5% methanol In chloroform (0.430g, 68.4%). Crystallisation of such a sample from ethanol-acetonitrile gave an off-white powder, Mp.
143-146’C, Ή-NMR (Me.SO-d.) δ 7.60 (s, 1H, purine H-8), 7.00 (br,m, 1H, NH) 2 b
6.10 and 5.86 (m, 2H, CH-CH), 5.77 (br s, 2H, NHj) 5.39 (m, 1H, NCH cyclopentene), 4.76 (br s, 1H, OH), 4.53 (br m, 1H, NCH), 3.44 (m, 2H,
NJBM/JJ/JCB/2 June 1989
PBO535CM
O.5CH-CH, CH-, NH2 (t,J-5.1Hz, 1H, OH) 1H, CH), 2.65-2.54
OCH^), 2.87 (m, 1H, CH) 2.62-2.54 (m, 1H, 0.5 CH2 cyclopentene ring), 1.89 (br m, 2H, cyclopentyl CHp, 1.70-1.48 (br, m, 7H. 0.5 CHj cyclopentene ring, 3CH2).
Anal. calc, for C16H22N60.0.25H20: C.60.26; H.7.11; N.26.35.
Found: C,60.43; H.7.16; N.26.27 C.60.37; H.7.17; N.26.25.
Example (±)-cis-4-(2-Am (±) - (lot,4a)-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-l-methanol (0.531g, 2mmol) from Example 4, allylamine (1.014g, 17.8mmol) and ethanol (5mL) were stirred at reflux for 2.75 hours. The solution was allowed to cool to room temperature before the addition of 2.0mL of 1H NaOH, Evaporation afforded the crude product which was purified by elution from a silica gel column with 5% methanol - chloroform (O.36g, 63%).
Crystallisation of such a sample from ethanol yielded an off white powder, Mp. 181-183’C; Ή-NMR (Me2S0-dg) 5 7.58 (s, 1H, purine H.8), 7.28 (br s, 1H, NH) , 6.11-6.06 (m, 1H, 0.5CH-CH) 5.98-5.82 (m overlapping br s at 5.86, 4H ), 5.37 (m, 1H, NCH), 5.16-4.98 (m,2H, -CH^, 4.72
4.07 (br m, 2H, NCHp, 3.42 (m, 2H, OCH^ 2.84 (br m, and 1.62-1.57 (m, 2H, cyclopentyl CHp.
HlgN60: C.58.73; H,6.34; N.29.35.
.42; N.29.19.
/
Z \ (+)-cis-4-(2-Amino-6-morpholino-9H-purin-9-yl)-2-cyclopentene-l-methanol
A solution of (±)-cis-4-(-2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol (O.531g, 2.00mmol) from Example 4 and morpholine (0.526g, 6.04mmol) in ethanol (6mL) was stirred at reflux for 1 hour. The reaction mixture was allowed to cool to room temperature before the addition of 2mL of 1.0N NaOH. Concentration of the mixture afforded the crude product which
Anal. calc, for C,, 14
Found: C.58.47; H,6 t 0 t 0 0 0 dV
NJBM/JJ/JCB/2 June 1989
V
PBO535CM was purified by elution from a silica gel column using 5% methanol in chloroform (O.62g, 98%). Crystallisation of such a sample from ethanol-water gave a white powder; Mp 165-167°C; Ή-NMR (MeoS0-d.) S 7.62 2 “6 (s, 1H, purine H-8), 6.09 (m, 1H 0.5CH—CH), 5.90-5.82 (m overlapping br s at 5.86, 3H, 0.5CH-CH, NH^, 5.39 (m, 1H, NCH) 4.72 (t,J-5.0Hz, 1H, OH) 4.09 and 3.64 (br, m, 8H, 4CH2 on morpholine ring), 3.42 (m, 2H, OCHp, 2.84 (br m, 1H, CH), 2.65-2.54 and 1.59-1.47 (m, 2H, CHp.
Anal. calc, for c15H2oN6O2; c-56·95! H.6.37; N.26.57. Found: C,57.03; H.6.41; N.26.48.
Example (t) -cis-4-(2-Amino-6-benzvlamino-9H-purin-9-yl)-2-cvclopentene-1-methanol
A solution of (±)-cis-4-(-2-Amino-6-chloro-9H)-purin-9-yl)-2-cyclopentene-1-methanol (O.531g, 2.00mmol) from Example 4, benzylamine (0.214g,
2.00mmol) and triethylamine (1.717g, 17mmol) in the ethanol (6mL) was stirred at reflux for 4 hours. The reaction mixture was allowed to cool to room temperature before the addition of 2mL of 1.0N NaOH, Concentration of the mixture afforded the crude product which was eluted from a silica gel column with 5% methanol-chloroform. Crystallisation of such a sample from ethanol-water yielded a white powder (0.386g, 57%); Mp.174-176’C; 'H-NMR (Me2S0-dg) S 7.80-7.65 (br s, 1H, NH), 7.60 (s, 1H, purine H-8), 6.08 (m, 1H 0.5CH-CH), 5.86-5.82 (m overlapping br s, 3H 0.5CH-CH, NH2), 5.35 (br m, 1H, NCH), 4.73 (t,J-4.9Hz, overlapping br s at 4.65, 3H, OH, NCH^ 3.43 (m, 2H,
0CH2), 2.85-2.81 (br m 1H, CH), 2.65-2.54 and 1.63-1.50 (m, 2H, CHp.
Anal. calc, for C.-H-.N-O: C.64.27; H.5.99; N.24.98.
Io 2U 0
Found: C.64.35; H.6.02; N.24.92.
Example (±)- cis-4-(2-Amino-6-(2-methoxvethoxy-9H-Purin-9-yl)-2-cvclopentene-1methanol
A flask was charged with sodium hydride (60% oil dispersion, 298mg, 7.45mmol) which was then washed with hexanes before the addition of
NJBM/JJ/JCB/2 June 1989 e
PB0535CM methoxyethano1 (15mL), (±)-cis-4-(2-Amino-6-chloro-9H-purin-9-yl)2-cyclopentene-l-methanol (O.531g, 2mmol) from Example 4 was added and the solution was stirred at 100’C for 1 hour and then neutralized by the addition of 1.OH HC1. Concentration of the solution afforded the crude product which was purified by elution from a silica gel column with 5% methanol-chloroform (416mg, 68%). Crystallisation from ethanol gave an off-white powder, Mp.121-123‘C; Ή-NMR (MejSO-dg) 6 7.78 (S, 1H, purine H8), 6.39 (br s, 2H, NHj), 6.14 and 5.90 (m, 2H, CH-CH), 5.44 (br m, 1H, NCH), 4.72 (t,J-4.6Hz, 1H, OH) 4.72 and 3.69 (m, 4H, OCH2 CH20), 3.45 (m, 2H, OCH2), 3.31 (s, overlapping with H20, OCHg), 2.88 (br m, 1H, CH), 2.67-2.60 and 1.65-1.58 (m, 2H, CHp.
Anal. calc, for C^H^N^: C.55.07; H.6.27; N.22.94.
Found: C.55.18; H.6.33; N.22.95.
Sample M (±) -cis-4-(2-Aniino-6-propvlamino-9H-purin-9-yl)-2-cyclopentene-l-methanol
A solution of (±)-cis-4-(-2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1 -methanol (O.531g, 2.00mmol) from Example 4 and propylamine (1.12g, 18.19mmol) in 8mL of ethanol was stirred at reflux for 2 hours. The solution was allowed to cool to room temperature before the addition of 2mL of 1.OH NaOH. Concentration of the solution afforded the crude product which was purified by elution methanol-chloroform (0.46g, 80%).
ethanol-ethyl acetate yielded a (Me2S0-dg) S 7.57 (S, 1H, purine H and 5.86-5.82 (both m, 2H, CH-CH), NCH), 4.73 (t.J-5.3, 1H, OH), 3.452.93-2.78 (bra, 1H CH), 2.65-2.54 (m, 3H, 0.5 cyclopentyl CH2, CHj) 0
Anal. calc, for ci4H20N: c>5®-^2; Found: C.58.38; H.7,02; N.29.10.
from a silica gel column with 5% Crystallisation of such a sample from white powder, Mp.138-140’C; Ή-NMR 8) 7.20-7.05 (br s, 1H, NH), 6.11-6.06 5.78-5.70 (br s, 2H, NHp , 5.39 (m,lH, .28 (br m, overlapping HjO, OCHj, NCH2) (m, 1H 0.5 cyclopentyl CH2), 1.62-1.58 86 (t, J-7.4HZ, 3H, CHg).
H.6.99; N.29.15.
AP 0 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989
PB0535CM
SxamEle methanol-chloroform (0.60g, methanol-acetonitrile gave (ί)- cis-4-(2-Amino-6-anilino-9H-purin-9-yl)-2-eyelopentene-1-methanol
A solution of (±)-cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.550g, 2.07mmol) from Example 4 and aniline (0.965g,
10.35mmol) in lOmL of methoxyethanol was stirred at 95’C for 1 hour. The reaction mixture was allowed to cool to room temperature before the addition of 2.05mL of IN NaOH. Concentration of the solution afforded the crude product which was purified by elution from a silica gel column with 5% 90%). Crystallisation of such a sample from an off-white powder Mp.177-179’C; 'H-NMR 1H, (Me2S0-dg 6
9.32 (s, 1H, NH), 8.00 (d,J-7.8Hz, 2H, C,H,), 7.74 (s, o J
3H, (m, purine H-8) , 7.25 (m, 2H, C,Hc), 6.94 (a, 1H, C,Hc), 6.18-6.05 (br m,
0 O 0
NH2, 0.5CH-CH), 5.88 (m, 1H, 0.5CH-CH), 5.50-5.35 (br m, 1H, NCH), 4.74 1H, OH),3.45 (m, 2H, CH2O) , 2.97-2.80 (br m, 1H, CH), 2.65 and 1.61 (2m, 2H, ch2).
Anal. calc, for C^H Ng0: C.63.34; H.5.63; N.26.07 Found: C.63.26; H.5.67; N.26.01
Example -ifr'
(t)-cis-4-(2-Araino-6-methylamino-9H-purin-9-yl)-2-cyclopentene-l-methanol (±) - cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-l-methanol (0.400g, 1.5mmol) from Example 4 and methylamine (40% aqueous solution, 25mL) were stirred at 60*C for 0.5 hours. The solution was allowed to cool to room temperature before the addition of 1.5mL of 1.5N NaOH. Evaporation left the crude product which was purified by elution from a silica gel column with 5% methanol-chloroform. The resulting solid was slurried in acetonitrile to yield a pale yellow powder (0.274g, 70%); Mp.221-223eC;
Ή-NMR (Me.SO-d,) 5 7.57 (s, 1H, purine H-8), 7.12 (br s, 1H, NH), 6.11-6.06 (m, 1H, 0.5CH-CH), 5.87-5.80 (m, overlapping br s at 5.80, total 3H
0.5CH-CH, NH2), 5.40-5.33 (m, 1H, CHN), 4.76-4.70 (m, 1H, OH), 3.43 (m 2H, CH20) 2.95-2.77 (br s, 4H, CH3> CH), 2.65-2.54 and 1.62-1.50 (both m,
2H, CH2).
NJBM/JJ/JCB/2 June 1989
PBO535CM
Anal. calc, for C12H16N: C, 55.37; H.6.20; N.32.29.
Found: C.55.28; H.6.24; N.32.19.
Example (±)-cis-4-(2-Amino-6-dlmethvlami.no-9H-purin-9-yl)- 2-cyclopentene-1-methanol (±)-cis-4-(2-Amino-6-chloro-9^-purin-9-yl)-2-cyclopentene-1-methanol (0.400g, 1.5mmol) from Example 4 and dimethylamine (25% aqueous solution,
20mL) was stirred at 80*C for 0.5 hours. The reaction mixture was allowed to cool to room temperature before the addition of 1.5mL of lg NaOH.
Concentration of the solution afforded the crude product which was purified by elution from a silica gel column with 5% methanol-chloroform (0.310g,
75%). Crystallisation of such a sample from ethanol-water gave an off-white powder Mp.173-174eC; Ή-NMR (Me„SO-d.) 5 7.60 (s, 1H, purine H-8), 6.10 and £ 0
5.84 (both m, 2H, CH-CH), 5.78 (s, 2H, NHp, 5.39 (m, 1H, CHN), 4.72 (m, 1H, OH), 3.42 (m, OCHj overlapping with ^0, NMe^ , 3.33 and 3.31 (both s, N(CH3)2 overlapping with H20, OCH^, 2.90-2.78 (m, 1H, CH), 2.65-2.53 and 1.59-1.47 (both m, 2H, CH2).
Anal. calc, for CnHlgN60: C.56.92; H, 6.61; N.30.63.
Found: C.56.93; H.6.64; N.30.56
(±) -cis-4-(2-Amino-6-propoxy-9H-purin-9-yl)-2-cvclopentene-l-methanol
A flask was charged with sodium hydride (60% oil dispersion, 158mg, 3mMol) which was then washed with hexanes before the addition of n-propanol (25mL). (±)-cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol from Example 4 (400mg, 1.5mmol) was added and the solution was stirred at 80*C for 2 hours and the neutralized by the addition of 1.OJJ HC1. Concentration of the solution afforded the crude product which was purified by elution from a silica gel column with 2% methanol-chloroform (350mg, 81%). Crystallisation of such a sample from ethanol-water gave an off-white powder, Mp.97-99’C; Ή-NMR (Me2S0-d6) 5 7.74 (s, 1H, purine, H-8), 6.34 (s, 2H, NH2), 6.11 and 5.85 (both m, 2H, CH-CH), 5.41 (m, 1H, CHN), 4.71 (m, 1H, OH), 4.34 (t,J-6.8, 2H, OCH2), 3.44 (m, 2H, CH2 OH), 2.85 (m, 1H, CH), 2.60
I 0 I 0 0 0 dV
NJBM/JJ/JCB/2 June 1989
PBO535CM (m, 1H, 0.5 CH2), 1.74 (η, 2H, CH^Hp 1.61 (m, 1H, 0.5 CH2, 0.95 (t.J-7,4,
3H, CHp.
Anal, calc for . 0.35^0: C.56.88; H.6.72; N.23.69.
Found: C.57.00; H.6.78; N.23.61
C.56.93; H.6.81; N.23.59
(±)-cis-4-(2-Amino-6-((2-hydroxyethvl3 amino3-9H-purin-9-yl·)-2-cvclopentene1-methanol
A flask charged with (±)-cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2cyclopentene-l-methanol (0.53g, 2.00mmoiy from Example 4, triethylamine (0.92g, 9.10mmol), ethanolamine (O.172g, 2.82mmol) and methoxyethanol (6mL) was stirred at reflux for 2 hours. The solution was allowed to cool to room temperature before the addition of 2mL of l.Ofi NaOH. Concentration of the solution left the crude product which was purified by elution from a silica gel column with 10% methanol chloroform (0.430g, 74%). Crystallisation of such a sample from ethanol-water gave a white powder, Mp.150-152eC; 'H-NMR (Me2SO-d6) δ 7.57 (s, 1H, purine H-8), 7.00-6.87 (br s, 1H, NH), 6.11-6.06 (m, 1H, 0.5CH-CH), 5.87-.580 (m, overlapping br s, 3H 0.5 CH-CH, NHp, 5.37 (m, 1H, CHN), 4.72 (two t, 2H, 20H) 3.53-3.40 (m, 6H, 2 OCHp, 2.87-2.80 (br m, 1H, CH) 2.65-2.54 and 1.62-1.50 (2m, 2H, CHp.
Anal. calc, for C13H18N2 : C.53.78; H.6.25; N.28.95
Found: C.53.89; H.6.33; N.28.90 *3
PB0535CM
Example (t)-cis-4- (2-Amino-6- (cyclopropylmethvlami.no) -9H-purin-9-yl) - 2cyclopentene-l-methanol (±)-cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.53g, 2mmol) from Example 4, N-methyl-N-cyclopropylamine (0.8477g, 12mmol) and methanol (20mL) were placed in a Parr bomb and heated to 62°C for 5 hours. The solution was concentrated and then diluted with ethanol before being brought to pH12 by the addition of l.OJJ NaOH. This solution was concentrated and the residue was purified by elution from a silica gel column with 3% Methanol-chloroform (0.547g, 91.2%). Crystallisation of such a sample from water-ethanol yielded a white powder, Mp. 130-131°C; 'H-NMR (Me2SO-si6): 67.61(s,1H,purine H-8), 6.10(m,1H.CH-), 5.84(m,lH,CH-), 5.7(brs,2H,NH2), 5.40(M,1H.CHN), 4.70(brt,lH,OH), 3.43(m,2H,CH2OH) 3.24(brs,4H,CHj,NCH cyclopropyl), 2.85(m,lH,CH), 2.66-2.57 and 1.61-1.51(m,2H2CH cyclopentene), 0.90-0.65(m,4H,2CH2 cyclopropane).
AP 0 0 0 1 0 1
Anal. calc. C^H θΝ 0. 0.5H20: C.58.24; H.6.84; N.27.16. Found: C.58.15; H.6.86; N.27.14.
NJBM/JJ/JCB/2 June 1989 <1
Example (i) - cis-4-i2-Amino-6-((R)-sec-butoxyl)-9H-purin-9-vl1 -2-cyclopenteneJLneth&nal
A flask was charged with sodium hydride (60% oil dispersion, 300mg, 7.5ramol) which was washed with hexanes before the addition of (±)-cis-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol from Example 4 (800mg, 3mmol) in -lOmL of R-(-) -2-butanol. The solution was stirred at room temperature for 3 hours then at 60°C (oil bath) for 1 hour. The solution was allowed to cool to room temperature before neutralization with 112 HC1. The solution was concentrated and the residue chromatographed on silica gel. Title compound was eluted with 5% methanol-chloroform
NJBM/JJ/JCB/2 June 1989
PB0535CM
Λ
-Ί (0.81g, 89%). Crystallisation of such a sample from ethanol-acetonitrile yielded an off-white powder, Mp. 159-161°C; Ή-NMR (MeoS0-d,) 5
i. 0
7.72(s,lH,purine H.8), 6.30(br s,2H, NHj), 6.10 and 5.86(m,2H.HC-CH), 5.44-5.28 (m, 2H, NCH, OCH), 4.71(t, J-5.0, 1, OH), 3.42(m, 2, OCH^, 2.85(m, 1, CH) , 2.60(m 1, 0.5 CH2 cyclopentene), 1.61(m,3H 0.5 CH^ cyclopentene, CHp 1.27(d, J-6.0,3H, CHC^) , 0.89(t, J-7.4,3H, CHp .
Anal. calc. C^H^N^: C.59.39; Found; C.59.28; H.7.01; N.23.02.
H.6.98; N.23.09.
Example 3, (±)-cis-4-(2-Amino-6-cvclobutylamino-9H-purin-9-vl)- 2-cyclopentene-1methanol
A solution of (±)-cis-4-(-2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene1-methanol from Example 4 (0.53g, 2mmol) and cyclobutylamine (1.387g,
19.5mmol) in methanol (15mL) was heated at 7O-75°C (oil bath) for 29 hours. After cooling to room temperature, 2mL of 1.0N NaOH was added. The solution was concentrated and the residue chromatographed on silica gel. Title compound was eluted with 5% methanol-chlorofora as colourless foam which solidified to white powder in acetonitrile (454mg, 75.7%), Mp. 181-183°C; Ή-NMR (DMSO-dg) S 7.59(s,lH, purine H.8), 7.38(br m.lH.NH), 6.10(m,lH 0.5
HC-CH) 5.84 (m overlapping br s, at 5.76, 3H, 0.5 CH-CH, NH^ 5.36 (m.lH.NCH cyclopentene), 4.73(t, overlapping br m, J-5.2,2H, OH,NCH cyclobutane), 3.42(m,2H,OCH2), 2.83(brm, 1H.CH), 2.55 (m overlapping with DMSO, 1/2 CH2 cyclopentene), 2.2O-1.95(br m, 4H, 2CH2 cyclobutane), 1.58(m,3, CH2 cyclobutane, 0.5 CH2 cyclopentene).
Anal. calc. H2 Ng0: C.59.98; H.6.71; N.27.98.
Found: C.60.05; H,6.73; N.27.91.
Example (±)-cis f4-f 2-Amino-6-(cyclopropylamino)-9H-purin-9-yl1 -2-cyclopenten-1-yl1 methvlacetate
AP 0 0 0 1 0 1
A solution of (i)-cis-4-(2-amino-6-cyclopropvlamino-9H-purin-9-vl)-2cyclopentene-1-methanol from Example 4 (400mg, 1.5mmol), acetic anhydride
NJBM/JJ/JCB/2 June 1989
PBO535CM
. 2 (228mg, 2.2mmol),4-N,N-dimethylaminopyridine (8.4mg, 6.9 10 mmol) and dry
Ν,Ν-dlmethylformamide (12mL) were stirred at room temperature overnight. The solution was concentrated under high vacuum and the residues were placed on a silica gel column which was eluted with 5% methanol-chloroform, (240mg, 48.7%). The title compound was diluted in ethanol and foamed under high vacuum. Ή-NMR (DMSO-^g) S 7.52 (s,lH, purine H8), 7.28(d,J-4.5,ΙΗ,ΝΗ), 6.07 and 5.94 (m,2H,HC-CH) 5.81(br,2H,NH2), 5.39(br
m.lH.NCH), 4.06(m, 2H,OCH2) 3.02(br m, 2H, CH, NCH cyclopropane), 2.65 (m,lH 0.5 CH2 cyclopentene) 1.98(s,3H,CH^), 1.56(m,lH, 0.5 CH^ cyclopentene),
0.61(m,4H, 2CH2 cyclopropane).
Anal. calc. c16H20N602'0,4H0,15EtOH: 0,57.16; H.6.39; N.24.54.
Found: C.56.88; H.6.32; N.24.81 0,56.82; H.6.32; N.24.78.
Example (±)-cls-4-(2-Amino-6-butylamino-9H-purlne-9-yl)-2-cyclopentene-l-methanol
A solution of (±)-cis-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1methanol from Example 4 (0.408g, l.Smmol): butylamine (0.549g, 7.5mmol, 5 eqv.) and ethanol (lOmL) was stirred at reflux for 3 hours. The solution was allowed to cool to room temperature before the addition of 1.5 mL of
l. 0H NaOH. The solution was concentrated and the residues were purified by elution from a silica gel column with 5% methanol-chloroform (0.440g, 97%).
The title compound was dissolved in hot acetonitrile then cooled to produce a white powder. Mp. 116-118°C; Ή-NMR (Me^O.^g) 6 7.57 (s, 1H, purine H.8) 7.12(brm,ΙΗ,ΝΗ), 6.09 and 5.85 (m,2H.HC-CH), 5.75(br s,2H,NH2) 5.36(br
m. lH.NCH), 4.74(t,J-5.3,ΙΗ,ΟΗ), 3.42(m,4H ,OCH2 ,ΝΟΗρ , 2.84(br m.lH.CH),
2.58(m,lH, 0.5 CHj cyclopentene), 1.52 (m,3H 0.5 cyclopentene, CHj butyl), 1.30 (a,2H,CH2 butyl), 0.87(t,J-7.2, 3H, CH3).
Anal. calc. C^H^NgO: C.59.58; H.7.34; N.27.80.
Found: C.59.44; H,7.38; N.27.79.
I OlOOOdV
NJBM/JJ/JCB/2 June 1989
PBO535CM
Example
cis - 4-(2-Amino-6-((s) - sec-butoxy)-9H-purin-9-yl)- 2-cyclopentene-1-methanol
A flask was charged with sodium hydride (60% oil dispersion, 300mg, 7.5mraol) which was washed with hexanes before the addition of (±) - cis-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol from
Example 4 (800mg, 3mmol) in S-(7)-2 -butanol (lOmL). The solution was stirred at room temperature for 6 hours before neutralization with lfJ HC1.
The solution was concentrated and the residue was placed on a silica gel column. Title compound was eluted with 5% methanol-chloroform (0.29g, 32%).
Crystallisation of such a sample from ethanol; acetonitrile yielded an off-white powder, Mp. 159-162°C; Ή-NMR (Me.SO-^,) 5 7.72(s,lH, purine H.8), i o
6.30(br s, 2H, NH^ 6.10 and 5.86 (m,2H,HC-CH), 5.44-5.28 (m,2H.NCH.OCH)
4.71(t,J-5.0,ΙΗ,ΟΗ), 3.42(m,2H,OCH2), 2.85(m,1H,CH), 2.60(m,lH, 0.5 0Η? cyclopentene), 1.61(m, 3H, 0.5 CHj cyclopentene, CH2), 1.27(d,J-6.0, 3H, CH, CH3). 0.89(t, J-7.4, 3H, CHp .
Anal. calc. C^H^N^.0.25 H20: C.58.52; H.7.04; N.22.75.
Found: C.58.59; H.6.94; N.22.79.
Example /3^· k' (±) (cis-4-(2-Amino-6-i(6-hvdroxyhexvl)thiol-9H-purin-9-vl)-2-cyclopentene1-methanol
AP 0 0 0 1 0 1
To a solution of (±)-cis-2-amino-l,9-dihydro-9-[(4-hydroxymethyl)-2cyclopenten-l-yl]-6H-purin-6-thione-HCl, from Example 9 (0.50g, 1.45 mmol) in IN NaOH (2.9mL) was added 6-bromo-1-hexano 1 (O.321g, 1.77 mmol) in .£ dioxane (InL). The solution was stirred at room temperature under nitrogen s
for 5 hours during which time additional 6-bromo-1-hexano1 (0.096g, 0.53 mMol) and IN NaOH (0.53ml) were added. The solution was evaporated to remove dioxane and the aqueous layer was extracted with 3 x 25ml chloroform Combined chloroform extracts were dried (MgSO^). Solvent was evaporated and the residual oil was chromatographed on silica gel. The title compound was eluted with 10% methanol-chloroform; white solid was formed after crystallisation from acetonitrile (0.469g, 89%), Mp. 129-13O°C; 'H-NMR
NJBM/JJ/JCB/2 June 1989
PBO535CM (DMSO-dg) δ: 7.84 (s.l.H-8), 6.46(br s,2,NH2), 6.15 and 5.90 (2m,2,CH-CH).
5.45(br m,l,CH-N), 4.73(t,J-5.4,1,OH) 4.36(c,J-5.2,1,(CHO),-OH), 2 6
3.50-3.20(all m, overlapping H2O,2CH2-O CH2S), 2.9O(br m.l.CH),
2.70-2.55(m,1, 0.5 CHp , 1.70-1.50(m, 3 , S-CH2-CHp and 0.5 CHp , 1.5O-1.2O(br ra,6,3CH2S) .
Anal calc. CpH^N^S: C.56.18; H, 6.93 ; N, 19.27; S , 8.82 . Found: C,56.09; H.6.93; N.19.22; S.8.90.
Example ..
(±) -cis-4-(2-Amino-6-(isopropylamino)-9H-purin-l-yl)- 2-cyclopenten1-methanol (±)-cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-l-methanol from Example 4 (0.545g, 2mmol), isopropylamine (2.36g, 40 mmol) and methanol (15mL) were placed in a Parr bomb and heated at 65-70°C for 12 hours. IN NaOH (2mL) was added and the solution evaporated to dryness. The residue was dried by evaporation of ethanol and chromatographed on silica gel. The title compound was eluted with 10% methanol-chloroform; white solid was formed after crystallisation from acetonitrile (0.463g, 80%), Mp. 153-155°C; Ή-NMR (DMSO-dg) δ: 7.60(s,1,H8), 6.90(br m,l,NH), 6.10 and
5.85(2m,2,CH-CH), 5.70(br s,2,NH2), 5.40(br m,l,CH-N), 4.75(tJ-5,0,1,OH),
4.60-4.40(br m,l,CH-NH), 3.45(m,2,CH2-0), 2.85(br m,1,CH), 2.65-2.55(m,1 0.5 CH2) 1.65-1.55(m,1, 0.5 CHj), 1.17(d,J-6.5,6,2CH3) .
Anal. calc. C^H^HgO: C.58.32; H.6.99; N.29.15.
Found: C.58.42; H,7.00; N.29.23.
Example J /Vs (±)-cis-4-(2-Amino-6-(butylthio)-9H-purin-9-vl)-2-cyclopenten-l-methanol
To a solution of (±)-cis-2-amino-l,9-dihydro-9-[(4-hydroxymethyl)-2cyclopenten-l-yl]-61J-purin-6-thione from Example 9 (0.50g, 1.89mmol) in IN
NaOH (1.89mL) was added butyliodide (0.348g, 1.89mmol), in dioxane (5mL).
The solution was stirred for 5 hours under nitrogen at 25°C and extracted with CHCl^ (3 x lOOmL). The combined chloroform extracts were dried
NJBM/JJ/JCB/2 June 1989
PBO535CM
(MgSO^), solvent evaporated and the residual oil crystallised from
acetonitrile to give title compound as yellow powder (0.491g, 81%), Mp.
12O-123°C; 'H-NMR (DMSO-dg) 5: 7.82(s,lH· 8), 6.43 (br s,2,NH2), 6.15 and
5.85(2m,2,CH-CH), 5.40(m,1,CH-N), 4.70(m,l,OH), 3.43(m,2,CH, ,-0),
3.25(t,J-7.4, ove rlapping H20, S-CHp , 2 ,85(br m,1,CH), 2.70-2.55(m,1, 0.5
CH2), 1.70-1.30(m,5 - CHj-CH^ + 1/2 CHj), 0.89(t,J-7.2,3,CHj).
Anal. calc. C^NjOS: C,56.40; H.6.62; N.21.93 S.10.04.
Found: C.56.31; H.6.64: N.21.89; S.10.02.
Example
IK (±)-cis-4-(2-Amlno-6-(Isobutylthlo)-9H-purin-9-vl)-2-cyclopentene-1-methanol
To a solution of (±)-cis-2-amino-1,9-dihydro-9-[(4-hydroxymethyl)-2cyclopenten-l-yl]-6H-purine-6-thione-HCl from Example 9 (0.50g, 1.45mmol), in IN NaOH (2.9ml) was added l-iodo-2-methylpropane (0.326g, 1.77mmol) in dioxane (ImL). The reaction was stirred at room temperature under nitrogen for 24 hours during which time additional l-iodo-2-methyl propane (0.130g, 0.71mmol) and IN NaOH (0.71ml) were added. The solution was then evaporated to remove dioxane and the aqueous layer extracted with 3 x 25ml chloroform. The combined chloroform extracts were dried (MgSO^), solvent evaporated and the residual oil chromatographed on silica gel. The title compound was eluted with 10% methanol-chloroform; white powder was formed after crystallisation from acetonitrile (0.345g, 75%), Mp. 127-129°C; 'H-NMR (DMS0-<ig) 5: 7.82 (s,l,H-8), 6.44(br s,2,NH2), 6.15 and 5.85 (2m,2,CH-CH),
5.45(br m,l,CH-N), 4.71(m,1,0H), 3.45(m,2,CH.-0), 3.18 (d,J-6.6,2,S-CH.),
AP 0 0 0 1 0 1
2.85(br m,l,CH), 2.70-2.50(m, overlapping solvent, 0.5 2.0-1.80(m,l,Me2£H), 1.70-1.50(m,1, 0.5 CHj), 0.983 (d,J-6.6,6,2CH3) ch2),
Anal. calc
Found: C.56.48; Η.6.61; N.21.93; S.10.10.
C15H21NS: C-56-40; Π.6.62; N.21.93; S.10.04.
Example
i)-cis-4-(2-Amino-6-(cyclopentylthio)-9H-purin-9-vl)- 2-cyclopentene-1ae thanol
To a solution of (±)-cis-2-amino-l,9-dihydro-9-[(4-hydroxymethyl)-2NJBM/JJ/JCB/2 June 1989
PBO535CM cyclopentene-l-yl]-6U-purin-6-thione from Example 9 (0.50g, 1.89mmol) In IN NaOH (1.89ml) was added cyclopentylbromlde (O.282g, 1.89mmol) In dioxane (ImL). The solution was stirred under nitrogen at room temperature for 24 hours during which time additional cyclopentyl bromide (0.846g, 5.67mmol) and IN NaOH (5.67ml) were added. The solution was evaporated to remove dioxane and the aqueous layer extracted with 3 x 50ml of chloroform. The combined extracts were dried (MgSO^), solvent evaporated and the residual oil chromatographed on silica gel. The title compound was eluted with 10% methanol-chloroform and solidified in acetonitrile to give title compound as yellow powder (0.310g, 50%), Mp. 167-169°C; Ή-NMR (DMSO-^) δ:
7.83(S,1,H-8), 6.43(brs,2,NH2), 6.13 and 5.87(2M,2,CH-CH), 5.42(br m,l,CH-N), 4.72(t,J-5.3,1, OH), 4.30(m,1,S-CH), 3.44(m,2,CHj-O), 2.85(br m,l,CH), 2.70-2.55(m,1, 0.5 CHp, 2.30-2.15(brm,2,2CH), 1.80-1.50(m,7,2CH2 plus 3/2 CH2).
Anal. calc. C16H2]N5OS: C.57.98; H,6.39; N.21.13; S,9.67.
Found: C.57.82; H.6.42; N.21.10; S.9.57.
Example (±)-cis-4-(2-Amino-6-f(cyclopropylmethyl)thlo1-9H-purin-9-yl)-2cyclopentene-l-methanol
To a solution of (±)-cis-2-amino-l,9-dihydro-9-[(4-hydroxymethyl)-2cyclopenten-l-yl]-6Ji-purin-6-thione-HCl from Example 4 (0.50g, 1.45mmol), IN NaOH (2.9ml) was added bromomethyl cyclopropane (0.239g, 1.77mmol) in dioxane (1ml). The solution stirred under nitrogen at room temperature for 2 hours and was then extracted with 3 x 50mL chloroform. The combined chloroform extracts were dried (MgSO^), solvent evaporated and residual oil chromatographed on silica gel. The title compound was eluted with 10% methanol-chloroform; white solid was formed after crystallisation from acetonitrile. (0.350g, 76%), Mp. 125-127°C; Ή-NMR (DMSO-dg) δ:
7.82(S,l,H-8), 6.44(br s,2,NH2), 6.10 and 5.85(2m,2,CH-CH), 5.40(br m,l,CH-N), 4.71(m,l,0H), 3.43(m, 2 ,(2^-0) , 3.26(d,J-12.1, 2, S-CHp, 2.85(br m,l, CH) , 2.7O-2.5O(m, overlapping solvent, 0.5 CHp, 1.70-1.50 (m, 1, 0.5
CHj), 1.20.1.0(m,1,CH cyclopropyl), 0.55 and 0.35 (both m, 4, cyclopropyl ch2).
NJBM/JJ/JCB/2 June 1989
PBO535CM
Anal calc. C^H^^OS: C.56.76; H.6.03; N.22.07; S.10.10.
Found: C.56.65; H.6.05; N.22.01; S,10.19.
Example ( A (±)-cis-4-(2-Amino-6-((6-hydroxyhexyl)amino)9H-purln-9-yl-2-cyclopentene-lffiethanpl
A solution of (±)-(cis)-4-(2-amino-6-chloro-9fl-purin-9-yl)-2-cyclopentenel-methanol from Example 4 (0.544g 2mmol), triethylamine (0.607g, 6mmol) and 6-amino-l-hexanol (0.234g, 2mmol) in ethanol (5mL) was refluxed under nitrogen for 32 hours. During this time additional 6-amino-l-hexanol (0.117g, lmmol) was added. IN NaOH (2mL) was then added and the solution allowed to stir for 30 minutes. The solution was concentrated under vacuum, and the residual oil was dried by evaporation of ethanol and chromatographed on silica gel. Title compound was eluted with 7% methanol-chloroform; white powder after crystallisation from acetonitrile (0.473g, 68%), Mp. 120-121°C; 'H-NMR(DMSO-d6) «: 7.57 (S.l.H-8), 7.10(br s.l.NH), 6.10 and 5.85 (2m,2,CH-CH), 5.74(br s,2,NH2), 5.40(m,1,CH-N), 4.73(t,J-5.3,1,0H) ,
4.31(t,J-5.2, (CH2)6-OH), 3.50-3.30(all m, overlapping H2O,2,CH2-O and
CH2-N), 2.85(br m,l,CH), 2.70-2.50(m, overlapping solvent, 0.5 CHp,
1.7O-1.2O(all m,9,4 CH2 and 0.5 CHp.
Anal. calc, for C17H26N6°2: 0,58.94; H.7.56; N.24.26
Found: 0,58.84; H.7.60; N.24.21
AP 0 0 0 1 0 1 (±)-cls-4-(2-Aalno-6-(3-butenvlthlo)-9H-purin-9-vl)-2-cyclopentene-lmechenpl $
&
To a solution of (±)-cis-2-amino-l,9-dihydro-9[(4-hydroxymethyl)-2cyclopentene-l-yl]-6H-purin-6-thione-HCl from Example 9 (0.50g, 1.45mmol) in IN NaOH (2.9ml) was added 4-bromo-1-butene (0.196g, 1.45mmol) In dioxane (lml). The solution was allowed to stir at room temperature for 5 hours during which time an additional 4-bromo-l-butene (0.196g, 1.45mmol) and IN NaOH (1.45ml) were added. The solution was then evaporated to remove dioxane and aqueous layer extracted with chloroform (3 x 25ml). The combined chloroform extracts were dried (MgSO^), solvent evaporated and
NJBM/JJ/JCB/2 June 1989
PBO535CM residual oil chromatographed on silica gel. The title compound was eluted with 7% methanol-chloroform; foamed from ethanol under vacuum (0.410g, 85%), Ή-NMR-(DMSO-dg) 5:7.82(s,1,H-8), 6.45(br s,2,NH2), 6.10 and 5.85(2m, overlapping 6.0-5.75,m, total 3, CH-CH and CH-CHp, 5.40(br m, l.CH-N), 5.20-5.0(m,2, CH-CHp, 4.71(t,J-5.3, l,0H), 3.50-3.25 (2m, overlapping H20. CH2Y-S,CH2-0) , 2.85(br m,l,CH), 2.70-2.3O(2m, overlapping solvent, 0.5 CH2 and S-CH2 CHj), 1.70-1.50(m,1, 0.5 CHp .
Anal. calc, for C^H^NjOS. O.25H2O-O.2O EtOH: S.9.68
0,55.86; H.6.30; N.21.15;
Found: C.55.97; H.6.19; N.20.77; S.10.02.
Example Λ
(±) - cis-f4-(2-Amino-6-(cyclopropylmethylamino)-9H-purin-9-yll-2cvclopentene-l-yll-methyl acetate
A solution of (±)-cis-4-(2 amino-6-(cyclopropylmethylamino)-91J-purin-9yl)-2-cyclopentene-l-methanol from Example ZJvL (0.30g, lramol), acetic anhydride (0.204g, 2mmol), Ν,Ν-dimethylaminopyridine (0.005g, 0.04mmol) in Ν,Ν-dimethylformamide (lOmL) was stirred at room temperature under nitrogen overnight. HjO (ImL was added and the solution allowed to stir an additional hour, then concentrated under high vaccum. The residual oil was partitioned between saturated sodium bicarbonate solution (5mL) and chloroform (3x50mL). The combined chloroform extracts were dried (MgSO^), solvent evaporated and residue chromatographed on silica gel. Title compound was eluted with 4% methanol-chloroform; foamed from ethanol under high vacuum (O.33Og, 93%); *H-NMR(DMSO-d6) 7.59(s,1,H-8), 6.10 and 5.9O(2ra, 2, CH-CH), 5.80(br s, 2, NHp, 5.40(brm, l.CH-N), 4.05(d, J-6.1, 2, OCHp , 3.3O-3.2O(m, overlapping s at 3.23, total 4, CH-N-Me and CH^), 3.10(br m,l,CH), 2.75-2.60(m,1,0.5 CH2), 1.65-1.50(m,1, 0.5 CHj).
Anal. calc, for C.,HooNc0..0.45H.0 0.5 EtOH; C.58.21; H.6.63; N.23.82. 1/ ZZ Ο Z Z
Found; C,58.15,58.09; H,6.60,6.61; N,23.91,23.83.
NJBM/JJ/JCB/2 June 1989
PB0535CM
Exm>lg (ί) -cis-4-(2-Amlno-6-(tert-butylamino)-9H-purin-9-vl)-2-cyclopentene-lmethanol (±)-cis-4-(2-Amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1-methanol from Example 4 (0.544g, 2.0mmol) and tert-butylamine (15mL) were heated at 80°C in a Parr bomb for 28 hours. The resulting solution was concentrated and the residual oil was dried by evaporation of ethanol and chromatographed on silica gel. Title compound was eluted with 5% methanol-chloroform; crystallisation from acetonitrile gave white powder (0.392g, 65%), Mp.
161-163°C; 'H-NMR(DMSO-dg) 5: 7.56 (s,l,H-8), 6.10(m, overalpping s at 6.03, total 2, -CH and NH), 5.85(m, overlapping s at 5.78, total 3, -CH and NHj), 5.40(br m,l,CH-N), 4.72 (t,J-5.3,l,OH), ’3.40(m,2,CH2-0), 2.85(br m.l.CH),
2.7O-2.5O(m, overlapping solvent, 0.5 CH2), 1.65-1.40 (m, overlapping s at
1.45, total 10, 0.5 CH2 and 3 CH.j) .
Anal. calc, for C H^l^O: C,59.58; H.7.33; N.27.79
Found: C.59.58, H.7.35; N.27.86.
Example^ (t) -9- f 3-(Hydroxymethyl)-3-cyclopenten-l-vl)guanine
A. (±)-Methyl 4-acetamido-1-cvclopentene-1-carboxylate (t)-Cls-methvl 4-acetamido-2-cyclopentene 1-carboxylate [S. Daluge and R. Vince, J.Org.Chem. 1978. 43. 2311] (3.90g, 21.3mmol) was dissolved in dry methanol (25mL) and added to a solution of sodium methoxide prepared from sodium (0.98g, 43 m.equiv.) and dry methanol (150mL|t. This solution was stirred at 25°C for 2.0 hours and then neutralised with 1JJ hydrochloric acid. The solution was concentrated to 40mL and extracted with chloroform (3x75mL). The chloroform was dried (MgSO^) and evaporated to colourless glass (3.9g). Chromatography on silica gel with 1-2% methanol-chloroform gave title compound as white crystals (4.33g, 82%); Mp. 72-74°C [Lit.: Can.J.Chem. 1985 63. 2787; Mp 75-76°C. Sublimation of such a sample at 100°/0.2mm gave white crystals, Mp.
I 0 I 0 0 0 dV
NJBM/JJ/JCB/2 June 1989
PBO535CM
72-74°C; Ή-NMR (DMSO-d6) S: 8.055 (br d,l,NH), 6.68(m.1,-CH) , 4.3(m,l,CHN), 3.65(s,3,0Me), 2.9-2.7 and 2.4-2.2 (both n, 4, 2CH2),
1.75(s,3,MeC-0).
Anal. calc, for CgH^NO-j. O.lHjO; C,58.43; H,7.19; N.7.57.
Found: C.58.37; H.7.34; N.7.34.
B. (±)-4-Acetamido-l-cvclopentene methanol (±)-Methyl-4-acetamido-l-cyclopentene-l-carboxylate (3.66g, 20.0mmol) was dried by evaporation of toluene givine a solution with a final volume of 50mL. This solution was cooled to -70°C under nitrogen. A solution of diisobutylaluminum hydride in toluene (1.5M, 42mL, 63mmol) was added dropwise over 2 hours. The resulting hazy solution was stirred at -70°C for an additional 40 minutes. Cold methanol (5mL) was added dropwise, followed by a solution of sodium potassium tartrate (11.29g) in water (15mL) with the temperature maintained at -70°C. The resulting mixture was allowed to stir at 0°C for several hours, diluted with methanol (150mL) and filtered. The methanol was evaporated and the residual brown oil (3.44g) chromatographed on silica gel. Title compound was eluted as pale yellow oil with 5% methanol-chloroform; 1.30g (42%); 'H-NMR(DMSO-d6) S: 8.00 (d,l,NH), 5.45(m,1,-CH),
4.71(t,J-5.5,1,OH), 4.35-4.2(m,1,CH-N), 4.0-3.9(m,2,CHjOH), 2.65-2.5 (overlapping DMSO-d5) and 2.2-2.0 (both m, 4, 2CH2) , 1.77 (s , 3 , CH-jCO) ;
El-MS: M-155.
C . (±)-9-f 3-(Hydroxymethyl)-3-cyclopenten-l-yl)guanine (±)-4-Acetamido-l-cyclopentene methanol (1.40g, 9.02mmol) was converted by the procedures of Examples 1-4 to (±)-cis-4-(2-amino-6-chloro-9Hpurine-9-yl)-1-cyclopentene-l-methanol as a pale yellow solid foam (0 .81g, 42%), after elution from a silica gel column with 5-10% methanol-chloroform; Ή-NMR and mass spectrum confirm structure with 5-10% contamination by (±)-cis-4-(2-amino-6-chloro-9H-Purin-9-yl)-1cyclopentyl methanol. Hydrolysis of such a sample (455mg, 1.75mmol) was carried out in dioxane (5mL) and 1ϋ hydrochloric acid (20mL) at 70°C for 12 hours. The resulting solution was brought to pH6 with sodium hydroxide and evaporated to dryness. The residual solids were
NJBM/JJ/JCB/2 June 1989
PBO535CM slurried in methanol and adsorbed on silica gel. Elution with 33% methanol-chloroform gave title compound as a waxy colourless solid. Three crystallisations from water gave white crystals (214mg, 50%); Mp. 260°dec; 'H-NMR(DMSO-dg) S: 10.54 (s.l.NHCO), 8.14 (s,l,purine H-8), 6.44(s,2,NH2), 5.70(s,1,-CH), 4.97(m,1,CH-N), 4.85(br t.l.OH), 4.02(s,2.CHjOH), 2.9-2.7(m,2.CHj), 2.6-2.5(m, overlapping DMSO-sj^, ch2).
Anal. calc, for ε11Η13Ν5θ2 : C.53.43; H.5.30; N.28.32. Found: C.53.24; H.5.33; N.28.27.
Example (i)-cis-4-(2-Amlno-6-((2-(dimethvlamlno)ethyl)amino)-9H-purin-9-yl)-2-cyclopentene -1-methanol
A flask charged with (±)-(cis)-4-(2-amino-6-chloro-9li-purin-9-yl)-2cyclopentene-1-methanol from Example 4 (399mg, 1.5mmol),
Ν,Ν-dimethylaminoethylamine (309mg, 35mmol) and ethanol (lOmL) was stirred at reflux for 3.5 hours. The solution was cooled to room temperature before the addition of 1.5mL of IN NaOH. The solution was then concentrated and the residues were placed on a silica gel column. The title compound was eluted with 30% methanol-chloroform then concentrated to yield a colourless glass. Dilution In methanol (5mL) and HC1(O.3mL,12N), followed by evaporation produced a pale yellow solid which was slurried in EtOH; (380mg,
59%); Mp. dec.>185°C ’H-NMR(Me*SO-d,) 5 10.4, 9.25, 7.67 (all br, NH+, + 2 6
NH2 ), 8.06(s,lH, purine H-8), 6.18-6.15 and 5.89-5.86(both m, 2H, HC-CH^ 5.45(br s,lH,CH-N) 4.20(br s,lH,H-l'), 3.90(br s ,ΣΗ,Ο^Ο),,
3.53-3.3(m,4H,NCH2CH2N), 2.83 and 2.80 (both s,6H, NMep, 2.75-2.55(m, 1% 0.5 CH2), 1.70-1.50(m, 1H, 0.5 CHp .
Anal. calc. for C^H^^O. 0,3HC1.0,25^0: C.41.77; H.6.19; N.22.73;
Cl,24.66.
Found: C.41.51, 41.43; H,5.88,5.90; N,22.52,22.48; Cl,24.61.
AP 0 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989
- 44 PB0535CM
Example (+)-cis-Ethyl 2-f(2-Amino-9-(4-(hydroxymethyl)-2-cyclopenten-l-yl)-9H-purin6 -vl) amino 1 acetate
A solution of (±)-(cis-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1methanol from Example 4 (4oomg, 1.50mmol), ethyl glycinate hydrochloride (237mg, 1.70mmol), and triethylamine (516mg, 5.10mmol) in absolute ethanol (lOmL) was refluxed under nitrogen for 2 days. The ethanol was evporated and the residue partitioned between saturated aqueous sodium bicarbonate and chloroform. The chloroform was dried (MgSO^), evaporated, and the residue chromatographed on silica gel. Title compound was eluted with 5% methanol-chloroform as a pale yellow glass (240mg, 48%) which solidified to off-white powder in acetonitrile ether; 'Mp. 95-97°C; Ή-NMR (DMSO-dg) 6: 7.62(s,l, purine H-8), 7.48(br s,l,NH), 6.10(m,1,-CH), 5.84(m,3,-CH and
NH2), 5.37(m,1,CH-N), 4.73(t,J-5.3,1, OH), 4.08(m,4, OCH2CH3 and NCHj),
3.425(t,J-5.5,2,CH2OH), 2.85(m,1,CH), 2.60 and 1.60(both m, 1 each, CHp.
Anal. calc, for Η C.54.21; H.6.07; N.25.29.
Found: C,54.45; H.5.93; N.25.07.
(+) - cis-4-(2-Amino-6-pjperidino-9H-purin-9-vl)-2-cyclopentene-1-methanol dihydrochloride
A solution of (±)-(cis)-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-1methanol from Example 4 (399mg, l.SOmmol) and piperidine (298mg, 3.5mmol) in absolute ethanol (lOmL) was refluxed under nitrogen for 1 hour. IN sodium hydroxide (1.5mL) was added and the solution evaporated in dryness. The residue was chromatographed on silica gel. The title compound was eluted with 10% methanol-chloroform as pale yellow glass (0.30g). Precipitated as hydrochloride from acetonitrile; white powder (0.30g, 52%); Mp: dec at
175-180°C Ή-NMR (DMSO-dg) S: 7.91 (s,l,purine H-8), 7.70 (br 3,2,NH2)
6.2-6.1 and 5.9-5.8 (both m, 2,CH-CH), 5.55-5.4 (br m,1,CH-N), 5.4-3.8(br m,NH+, 2CH2N,OH), 3.5-3.35(m, l.H-l'), 2.75-2.55(m,1, 0.5 CHp, 1.75-1.50 (m,7,3CH2 and 0.5 CHj).
NJBM/JJ/JCB/2 June 1989
PBO535CM
Anal. calc, for C^H^NgO. 2HC1: C.49.62; H.6.25; N.21.70; Cl.18.31. Found: C.49.54; H.6.26; N.21.64; Cl.18.24.
(i)-cls-4-r2-Amino-6(cyclopropylethylamlno)-9H-purin-9-yll-2-cyclopentene1-methanol
A sample of N-cyclopropyl-N-ethylamine was prepared as follows, Cyclopropylamine (18.44g, 0.323mole), potassium carbonate (45.6g, O.33mole), and dry diethyl ether (250mL) were stirred vigorously with cooling (ice bath) while trifluoroacetic anhydride (50mL, 0.36 mol) was added dropwise over 30 minutes. Ice water (20mL) was added. The ether layer was separated and dried (MgSO^). Concentration gave a- pale yellow liquid (51.lg). A portion of this liquid (15.3g, ca.O.lmole) was dissolved in dry acetone (250mL) with ethyl iodide (46.8g, 0.30 mole) and heated to 70°C (oil bath). Powdered potassium hydroxide (16.8g, 0.300 equiv.) was added. Stirring was continued at 70°C for 30 minutes. Excess ethyl iodide and acetone were removed by evaporation. Water (lOOmL) was added to the residue and the resulting solution brought to reflux over 15 minutes (oil bath 110°C) and maintained at reflux for 5 minutes. The solution was cooled to 25°C, saturated with sodium chloride, and extracted with diethyl ether (3xl00mL). The ether solution was dried (MgSO^) and evaporated to leave pale yellow oil (4.86g. 57%); Ή-NMR (DMSO-jJg) i: 7.74 (q.J-6.0,2, NC^CHp, 2.2-2.08 (m.l.CHN), 1.97 (br s,NH + H20), 1.19 (t,J-6.0, 3, NCH^Hp,
1.9-1.3(m,4,2CH2). Such a sample of N-cyclopropyl-N-ethylamine (1.26g) was heated with (±)-(cis)-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene -1-methanol from Example 4 (544mg, 2.00mmol) in methanol (16mL) in a Par£ bomb at 75°C for 11.5 hours. Sodium hydroxide (IS, 1.5mL) was added and the* solution evaporated to dryness. The residue was chromatographed on silica^ gel. Title compound was eluted with 4% methanol-chloroform as palp yellow-glass which crystallised from acetonitrile; 298mg (47%); Mp.
152-154°C; 'H-NMR(DMSO-^g) S: 7.64(s,lH, purine H-8), 6.11 and
5.88(m,2,HC-CH), 5.8O(br s,2,NH2), 5.42(m,l,NCH cyclopentene) 4.75(t,J-4.8,
l. OH), 3.94(m,2,NCH2), 3.45(m,2,OCH2), 3.05(m,l, NCH cyclopropane), 2.87(br m, l,CH), 2.6O(m, overlapping with DMSO, 0.5 CHj cyclopentene), 1.56(m,l, 0.5 CH2 cyclopentene), 1.10(t,J-6.9,CH.j), 0.85 and 0.65(m,4,2CH2).
AP o 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989 >v
PBO535CM
Anal. calc, for C16H22N6O: c·61·13: H.7.05; N.26.73. Found: C.61.06; H.7.07; N.26.66.
Example gfr (i)-cis-f4-f2-Amino-6-(cyclopropvlamino)- 9H-purin-9-yl1-2-cyclopenten-l-vllmethyl L-valinate trifluoroacetate
N-Butyloxycarbonyl-L-valine (1.200g, 5.19mmol) and Ν,Ν-dicyclohexylcarbodiimide (0.562g, 2.73mmol) were stirred in dry methylene chloride (46mL) for 40 minutes. The mixture was filtered, the precipitate washed with methylene chloride (8mL), and the filtrate-wash evaporated to dryness. This residual white solid (an hydride) was added in two portions to (±)-cis-4-(2-Amino-6-(cyclopropylamino)-9H-purin-9-yl)-2-cyclopentene-1 methanol from Example 5 (572mg, 2.00mmol), dry N,N-dimethylformamide (19mL) and 4-N,N-dimethylaniinopyridine (20mg, 0.16mmol). The reaction was stirred at 7.5°C under nitrogen for 69 hours, before the addition of water (0.3mL). The solution was evaporated to dryness and the residue partitioned between chloroform and NaHCO^ (2.5mmol) in i^O. The aqueous layer was extracted
NJBM/JJ/JCB/2 June 1989
PBO535CM with chloroform and the combined organic layers were dried (MgSO^), filtered. Elution with 4% methanol-chloroform gave the N-butyloxy-carbonylblocked derivative of the title compound as white foam (520g); •H-NMR(Me2SO-46) 6: 7.62 (s,l, purine H-8), 7.30(d,J-3.9, 1, NH cyclopropylamine), 7.16(d,J-7.9,1,CHN), 6.08 and 5.95 (m,2,HC-CH), 5.83(br s, 2, NH2), 5.42(br m, 1, NCH), 4.13(d,J-6.3,2, OCHp, 3.82(t,J-7.4,1, NCH of valyl), 3.08(br m,2, CH cyclopentene, CH cyclopropane) 2.69(m,l, 0.5 CH2 cyclopentene), 1.97(m,l, CHMe2), 1.60(m,l, 0.5 CHj cyclopentene), 1.37(s,9, C(CH)3), 0.88-0.79 (overlapping d, 6, CHCCHpp, 0.64 and 0.59(m,4, 2CH2 cyclopropane). This derivative (510mg) was dissolved in trifluoracetic acid: methylene chloride/l:3 (-25mL) and the solution stirred at 25°C for 30 minutes. Evaporation left the title compound as a yellow foam (745mg); Ή-NMR (DMSO-dg): S 9.85 (br m, 1,NH), 8.37(br m, 3, NH3 +), 8.01(br s, 1, purine H-8), 7.57(br s, 2, NHp, 6.17 and 6.02(m,2, HC-CH), 5.48(m,l,NCH cyclopentene), 4.26(m, overlapping br solvent, OCH2), 3.94(br m, overlapping solvent, valyl CH), 3.17(m,1,CH), 2.9-2.68(br m,2, cyclopropyl CHN, 0.5 CH2 cyclopentene), 2.14(m,l, CHMe2), 1.66(m,l, 0.5 CH2 cyclopentene), 0.94(m,8, CHMe2’ CH2 cyclopropane), 0.78(m,2,cyclopropyl CH2).
Anal. calc, for C^H^N^ . 0.8H2O. 3.8 CF3CO2H: C.38.35; H.3.92; N.11.77. Found: C,38.25; H.3.79; N.11.80.
Example (+)-cis-4-[2-Amino-6(cvclobutvlmethvlamino)-9H-purin-9-yll-2-cyclopentene1-methanol
A sample of N-cyclobutyl-N-methylamine was prepared as follows. Cyclobutylamine (5.00g, 68.9mmol) and potassium carbonate (13.3g, 96.5mmol) were vigorously stirred in dry diethyl ether (250mL) under nitrogen in an ice bath while trifluoroacetic anhydride (10.7mL) was added dropwise over 20 minutes. Ice water (20mL) was added. The ether layer was separated, dried (MgSO^), and concentrated to a colourless liquid (11.50g). This liquid was dissolved in dry acetone (170mL) with methyl iodide (40g, O.28mole) and heated to 40°C. Powdered potassium hydroxide (16g, 0.28 equiv.) was added. Stirring at 40°C was continued for 45 minutes. The excess methyl iodide and acetone were removed by evaporation and water (75mL) was added to the residual liquid and solids. The resulting solution was brought to reflux
AP 0 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989
PBO535CH over 15 minutes (oil bath 110°C) and maintained at reflux for 5 minutes. The solution was cooled to 25°C, saturated with sodium chloride, and extracted with diethyl ether (3xl50mL). The ether solution was dried (MgSO^) and evaporated to leave colourless oil (3.72g, 64%); Ή-NMR (CDCl^) 5: 3.25-3.15(m,1, CHN), 2.34(s,3, NCH3), 2.27-2,03(m,2, 2CH),
1.8-1.6(m,4,CHj and 2CH). Such a sample of N-cyclobutyl-N-methylamine (510mg, 6.0mmol) was heated with (±)-(cis)-4-(2-amino-6-chloro-9H-purin9-yl)-2-cyclopentene-l-methanol from Example 4 (544mg, 2.00mraol) in methanol (16mL) in a Parr bomb at 65°C for 5.5 hours. Sodium hydroxide (IN, 2mL) was added and the solution evaporated to dryness. The residue was chromatographed on silica gel. Title compound was eluted with 10% methanol-chloroform as a pale yellow solid foam, from aceonitrile; 528mg, 84%; Ή-NMR (DMSO-dg) S: 7.62(s,l, purine H-8), 6.15-6.07(m,1,-CH),
6.0-5.7(m,4,-CH, NH^, and cyclobutyl CHN), 5.5-5,3(m,1,CHN), 4.77(t,J-5.3,1, OH), 3.42(m,2, Ci^OH), 3.27(s, overlapped by ^0, N-CH-j) , 2.85(m,1,H-1'), 2.7-2.5(m,l, 0.5 cyclopentyl CHj), 2.4-2.0(m 4, 2 cyclobutyl CHj), 1.7-1.4(m,3, 0.5 cyclopentyl and cyclobutyl CHp.
Anal. calc, for C.,Hn.N,0.03Ho0.0.05 CH,CH: C.60.08; H.7.12; N.26.33 10 ZZ 0 z 3
Found: C,60.02,59.97; H,7.10,7.13; N,26.30,26.26.
PB0535CM r
Example
The reaction was stirred at H20 (ImL) was added and the residual oil was partitioned (±)-cis-f4-f 2-Amino-6-(cvclopropvlmethylamino)-9H-purin-9-vl1-2 cvclopentene-l-yl)-methyl-L-valinate trifluoroacetate
N-Butyloxycarbonyl-Ij-valineCl.09g, 5.0mmol) and N,N-dicyclohexylcarbodiimide (0.515g, 2.5mmol) were stirred in dry methylenechloride (15mL) for 1 hour. The mixture was filtered, the precipitate'was washed with methylene chloride (lOmL), and the filtrate-wash was evaporated to dryness. To this was added (±)-cis-4-(2-amino-6-(cycLopropylmethylamino)-9H-purin-9-yl]-2-cyclopentenel-methanol from Example (0.600g, 2mmol), dry Ν,Ν-dimethylformamide (15mL) and Ν,Ν-dimethylaminopyridine (5mg, 0.04mmol).
room temperature under nitrogen for 16 hours, solution was concentrated under vacuum. The between 0.1N NaOH (2mL) and chloroform(3x50mL). The combined chloroform extracts were dried (MgSO^), solvent evaporated and the residue chromatographed on silica gel. Elution with 5% methanol-chloroform gave the N-butyloxycarbonyl-blocked derivative of the title compound as a white solid (O.75Og, 75%); Ή-NMR (DMSO-dg) S: 7.62(s,l, H-8), 7.15(d,J-8.2,1,NH), 6.10 and 5.90 (2m,2,CH-CH), 5.79(br s,2,NH2), 5.40(br m,l,CH-N),
4.10(d,J-6.4,2,CH2-0), 3.80(m,l valyl CH-N), 3.3O-3.15(m, overlapping s at 3.23, total 4, CH-N-Me) , 3.10-3.0(br m,l,CH), 2.75-2.55 (m, 1, 0.5 CH2)_,
2.05-1.85(m,l,CHMe2) , 1.70-1.50(m, 1, 0.5 CHp , 1.34(m,9 ,CMe.*) ,
0.90-0.60(m,10,CH{leo and cyclopropyl CH0). Such a sample (0.74g, l.Smmol) was dissolved in trifluoroacetic acid: methylene chloride/l:3 (25mL) and the solution stirred at 25°C under nitrogen for 30 minutes. Evaporation left the title compound as a yellow foam (0.957g, 87%) Ή-NMR (DMSO-dg) 5:
8.38(br s,3,NH3 +), 8.0(s,1,H-8), 7.80-7.10(br m,2, NHp, 6.18 and
6.0(2m,2,CH-CH), 5.48(m,1,CH-N), 4.26(br d,J-6.56, overlapped by H20,
CH2-0), 3.93(br m,l, CH-N valyl), 3.55(br s,3, N-Me), 3.20-3.10(br m,2,CH and cyclopropyl CH-N), 2.79 - 2.69(m, 1, 0.5 CHp, 2.20-2.05(m, 1, CHMep ,
1.67-1.60(m,l, 0.5 CHp, 1.10-0.90(m,10,2 CH3 and 2 cyclopropyl CH2).
I 0 I 0 0 0 dV
NJBM/JJ/JCB/2 June 1989
PB0535CM
Anal. calc, for c20H29N7°2.1.OHjO.0.4 ΕίθΗ.2.60 Cfj COjH: C.42.64; H.4.95;
N.13.39.
Found: C.42.63; H.4.91; N,13.42
Example (±)-cis-4-(2-Amlno-6-(cyclobutylthlo)-9H-purln-9-yl)-2-cvclopentene-lmethanol
A mixture of (±)-cis-2-amino-1,9-dihydro-9-[(4-hydroxymethyO-2-cyclopentenl-yl]-6H-purine-6-thione hydrochloride /(500mg, 1.45mmol), potassium carbonate (600mg) and cyclobutylbromide (0.98g, 7.25mmol), added in 5 portions over 18 hours in dry Ν,Ν-dimethylformamide (20mL) was stirred under nitrogen for 24 hours at 25°C. The Ν,Ν-dimethylformamide was removed under reduced pressure. The residual oil was partitioned between chloroform and water. The chloroform layer was dried (MgSO^) and concentrated to a yellow glass which was chromatographed on silica gel. Title compound was eluted with 6% methanol-chloroform and crystallised four times from acetonitrile to give pale yellow granules (0.115g, 25%) Mp. 159-160°C; ,H-NMR (DMSO-<i6) ¢: 7.81(s,1,H-8), 6.41(br s,2,NH2), 6.10 and 5.85(2 m. 2,CH-CH), 5.40(br m,l,CH-N),
4.69(t,J-5.3) overlapping 2.8O(br m,l,CH),
m.
4.70- 4.50(m, total 2, OH
2.70- 1.9O(m, overlapping
1.70- 1.50(m,1, 0.5 CH2).
and S-CH), solvent, 05.
3.45(m,1,CH2-0),
CH. and 3 cyclobutyl ch2),
Anal. calc, for C15HigN50S: C.56.76; H.6.03; N.22.06; S.10.10. Found: C, 56.75; H, ,6.07; N, 21.98; S, 10.04.
Example (±)-c is -4- (2 -Amino -6-((2.3 - dihydroxypropvl) amino) -. 9H -pur in -9-vl)-2.cvclopentene-1-methanol
A solution of (±)-cis-4-(2-amino-6-chloro-9H-purin-9-vl)-2-cyclopentene -1-methanol from Example 4 (0.544, 2mmol), 3-amino-1,2-propanediol (1.87mg, 2mmol), triethylamine (607mg, 6mmol) and methoxyethanol (6ml) were refluxed overnight under nitrogen. INNaOH (2ml) was added and the solution was concentrated under vacuum and dried by evaporation of ethanol. The residual
NJBM/JJ/JCB/2 June 1989 & ,
PBO535CM oil was chromatographed on silica gel. methanol-chloroform; white powder acetonitrile-methanol (0.300g, 47%), Mp.
Title compound was eluted with 20%
after crystallisation from
119-121°C; Ή-NMR (DMSO-dg)S; 7.60
(m,l,-CH), 5.85 (m,3,-CH and nh2),
5.40 (br m,l,CH-N), 4.90 (m,l,0H), 4.72 (t,J-5.3,1,0H), 4.62 (t,J-5.9,1,OH), 3.7-3.25 (all m, overlapping HjO, 2CH2*O and CH-O), 2.85 (br m,l,CH), 2.70-2.50 (m, overlapping solvent, 0.5 CHj), 1.70-1.50 (m,1,0/5 CH2).
Anal. calc. C^H^N^O. 5^0: C, 51.06; H, 6.43; N 25.52. Found: C, 50.99, 50.96; H, 6.45, 6.49; N 25.42, 25.36.
Esaisple«ffi i±3rg_is-4-f2-AmlnQ-6-(cvclopropylamino)-8-methyl-9H-Purin-9-yn-2cyclooentene-1-methanol (±)-cis-4-[(2,5-Diamino-4-chloro-6-pyrlmidlnyl)amlno]-2-cyclopentene-1methanol prepared as in Example 3 (1.12g, 4.38mmol) was stirred in
Ν,Ν-dimethylformamide (5mL) with trimethylorthoacetate (30mL) and ethane sulfonic acid (0.66g, 5.7mmol) at 70°C for 3 days. The resulting solution was evaporated to a yellow syrup. Acetic anhydride (20mL) was added and this solution was refluxed for 2.5 hours. The resulting dark solution was evaporated to a syrup, which was dissolved In lfi hydrochloric acid (50mL). After 24 hours, the pH was adjusted to 6 with sodium hydroxide and most of the water evaporated. Crude product was extracted into 20% isopropyl alcohol-chloroform. This solution was dried (MgSO^) and solvent evaporated to leave (±)-cls-4-(2-amino-6-chloro-8-methyl-9fl-purin-9-yl)-2-cyclopentene1-methanol as a pale yellow glass (0.30g); structure confirmed by Ή-NMR. This sample was dissolved in methanol (lOmL) and stirred In a Parr bomb with cyclopropylamine (ImL) at 70°C for 12 hours. Evaporation and chromatrography on silica gel gave title compound, eluted as a cream-colored solid foam (136mg) with 5% methanol-chloroform; Ή-NMR (DMSO-dg)i: 7.13 (d,J-4.6,1,NH), 6.02 and 5.84 (both m, 2,CH-CH), 5.68-5.56 (m,3,NH2 and
CH-N), 4.85 (t,1,CH2OH), 3.53 (m,2,CH2OH), 3.02 (m,l,CH-N of cyclopropyl),
2.88 (m,l,CH), 2.5 (m, overlapping solvent, 0.5 cyclopentyl CHj), 1.72 (m,l, 0.5 cyclopentyl CHj), 0.7-0.5 (m,4,2 cyclopropyl CH2).
AP 0 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989
PBO535CM
- 52 K-mI. calc, for C^H^NgO. 0. ^CH^OH^/c, 57.23; H.7.02; N.26.26. Found C.57.55; H.6.99; N,25.95.
Example
(±)-cis-4-(2-Amino-6-((2-hydroxy-1-(hvdroxymethyl)ethyl)amino)-9H-purin9-yl)-2-cyclopentene-l-methanol
A solution of serinol hydrochloride (0.765g, 6.00mmol) in methanol (20mL) was stirred with basic ion exchange resin for 10 minutes. The resin was filtered off and the filtrate concentrated to a colorless oil. To this was added (±)-cis-4-(2-amino-6-chloro-9H-purin-9-yl)-2-cyclopentene-l-oethanol (0.544g, 2.00mmol) and methanol (lOmL). The resulting solution was stirred in a Parr bomb at 80°C overnight. IN NaOH (2mL) was added and the solvent evaporated. The residue was chromatrographed on silica gel. Title compound eluted with 20% methanol-chloroform; white powder after crystallization from acetonitrile-methanol (0.404g, 63%), Mp. 160-162°C; Ή-NMR (DMSO-dg)$: 7.60 (s,l,H-8), 6.38 (m,l,NH), 6.10(m,1,-CH), 5.90-5.75 (m, overlapped by s at
5.8; total 3, -CH andNHj), 5.40 (br m,1,CH-N), 4.70 (m,3,30H), 4.20 (br m,l,£H-NH), 3.60-3.40 (2 m,6,3 CH2-0), 2.75 (br m,l,CH), 2.70-2.50 (m,l, 0.5 CH2), 1.65-1.50 (m,l, 0.5 CHp.
Anal. calc, for C^H^NgO^ C.52.49; H.6.29; N.26.24.
Found: C.52.38; H.6.33; N.26.23.
NJBM/JJ/JCB/2 June 1989
PB0535CM
Example A
Tablet Formulations
The following formulations A, B and C are prepared by wet granulation of the
ingredients with a solution of stearate and compression. povidone, followed by addition
Formulation A oe/tablet ffig/tgblet
(a) Active ingredient 250 250
(b) Lactose B.P. 210 26
(c) Povidone B.P. 15 .- 9
(d) Sodium Starch Glycoilate 20 12
(e) Magnesium Stearate —i _2
500 300
Formulation B me/tablet mg/tablet
(a) Active ingredient 250 250
(b) Lactose 150 -
(c) Avicel PH 101 60 26
(d) Povidone B.P. 15 9
(e) Sodium Starch Glycoilate 20 12
(f) Magnesium Stearate
500 300
Formulation C mg/tablet
Active ingredient 100
Lactose 200
Starch 50
Povidone 5
Magnesium stearate _4
AP 0 0 0 1 0 1
359
NJBM/JJ/JCB/2 June 1989
PBO535CM
The following formulations, D and E, are prepared by direct compression of the admixed ingredients. The lactose in formulation E is of the direct compression type (Dairy Crest - Zeparox).
Formulation D mg/tablet
Active ingredient 250
Pregelatinised Starch NF15 150
400
Formulation E
mg/tablet
Active ingredient 250
Lactose 150
Avicel 100
500
Formulation F (Controlled Release Formulation)
The formulation is prepared by wet granulation of the ingredients (below) with a solution of povidone followed by the addition of magnesium stearate and compression.
mg/tablet
(a) Active ingredient 500
(b) HydroxypropylmethyIce1lulose (Methocel K4M Premium) 112
(c) Lactose B.P. 53
(d) Povidone B.P. 28
(e) Magnesium Stearate 700
Drug release takes place over a period of about 6-8 hours and is complete after 12 hours.
NJBM/JJ/JCB/2 June 1989
PBO535CM
Example B
Capsule_iormulations
Formulation A
A capsule formulation is prepared by admixing the ingredients of Formulation D in Example A above and filling into a two-part hard gelatin capsule. Formulation B (infra) is prepared in a similar manner.
Formulation B mg/capsule
(a) Active Ingredient 250
(b) Lactose B.P. 143
(c) Sodium Starch Glycoilate 25
(d) Magnesium Stearate _I
420
Formulation C
me/caosule
(a) Active ingredient 250
(b) Macrogol 4000 B.P. 350
600
Capsules of formulation C are prepared by melting the Macrogol 4000 BP, dispersing the active ingredient in the melt and filling the melt into a two-part hard gelatin capsule.
AP 0 0 0 1 0 1
Formulation D
Active ingredient Lecithin Arachis Oil mg/gap$uU
250
100
100
450
Capsules of formulation D are in the lecithin and arachis elastic gelatin capsules.
prepared by dispersing the active ingredient oil and filling the dispersion into soft,
NJBM/JJ/JCB/2 June 1989
PBO535CM
Formulation E (Controlled Release Capsule)
The following controlled release capsule formulation is prepared by extruding ingredients a, b and c using an extruder, followed by spheronisation of the extrudate and drying. The dried pellets are then coated with release- controlling membrane (d) and filled into a two-piece,
hard gelatin capsule. me/caDsule
(a) Active ingredient 250
(b) Microcrystalline Cellulose 125
(c) Lactose B.P. 125
(d) Ethyl Cellulose _U 513
EXjtmple .€
Injectable Formulation
Formulation A.
Active ingredient
Hydrochloric acid solution, 0.1M, at Sodium hydroxide solution, 0.1M q.s. to pH Sterile water q.s. to
0.200g
4.0 to 7.0 10ml
The active ingredient is dissolved in most of the water (35°-40°C) and the pH adjusted to between 4.0 and 7.0 with the hydrochloric acid or the sodium hydroxide as appropriate. The batch is then made up to volume with the water and filtered through a sterile micropore filter into a sterile 10ml amber glass vial (type 1) and sealed with sterile closures and overseals.
Formulation B.
Active ingredient 0.125 g
Sterile, pyrogen-free, pH 7 phosphate buffer, q.s. to 25 ml
NJBM/JJ/JCB/2 June 1989
PBO535CM
Example J
Intramuscular Injection
Active ingredient
Benzyl Alcohol
Glycofurol 75
Water for Injection q.s. to
0.20 g 0.10 g
1.45 g
3.00 ml
The active ingredient is dissolved in the glycofurol. The benzyl alcohol is then added and dissolved, and water added to 3 ml. The mixture is then filtered through a sterile micropore filter and sealed in sterile 3 ml amber glass vials (type 1).
Example E
Syrup
Active ingredient Sorbitol Solution Glycerol Sodium Benzoate Flavour, Peach 17.42.3169 Purified Water q.s. to
0.25 g 1.50 g 2.00 g 0.005 g
0.0125 ml 5.00 ml
AP 0 0 0 1 0 1
The active ingredient is dissolved in a mixture of the glycerol and most of the purified water. An aqueous solution of the sodium benzoate is then added to the solution, followed by addition of the sorbitol solution and finally the flavour. The volume is made up with purified water and mixed well.
NJBM/JJ/JCB/2 June 1989 ί
&
PBO535CM
Exm>le.-E
Suppository mg/suppository
Active ingredient (63μιη)* 250
Hard Fat, BP (Witepsol H15 - Dynamit NoBel) 1770
2020 *The active ingredient is used as a powder wherein at least 90% of the particles are of 63μα diameter or less.
One-fifth of the Witepsol H15 is melted in a steam-jacketed pan at 45°C maximum. The active ingredient is sifted through a 200μιη sieve and added to the molten base with mixing, using a silverson fitted with a cutting head, until a smooth dispersion is achieved. Maintaining the mixture at 45°C, the remaining Witepsol H15 is added to the suspension and stirred to ensure a homogenous mix. The entire suspension is passed through a 250μπι stainless steel screen and, with continuous stirring, is allowed to cool to 40°C. At a temperature of 38°C to 40°C, 2.02g of the mixture is filled into suitable, 2 ml plastic moulds. The suppositories are allowed to cool to room temperature.
Example G
Pessaries mg/pessary
Active ingredient (63μιη) 250 Anhydrate Dextrose 380 Potato Starch 363 Magnesium Stearate _7
1000
The above ingredients are mixed directly and pessaries prepared by direct compression of the resulting mixture.
NJBM/JJ/JCB/2 June 1989
PBO535CM
Antiviral Activity
The compounds of Examples 5 and 6 were tested for anti-HIV activity in MT^ cells generally in accordance with the method described by Mitsuya et al. Proc.Nat.Acad.Sci; USA Vol 82, pp 7096-7100, October 1985, and were found to have IC5Q values of 32.7 μΆ and 13.7 μΆ, respectively. A repeat determination with the compound of Example 5 gave 11 μΆ.
Determination of anti-HBV activity is carried out by testing the ability of a compound to prevent replication of duck HBV in vitro, in the manner described by Tuttleman, Pugh and Summers (Journal of Virology, 58:17-25, 1986). Duck hepatocytes are obtained and placed in culture, and infected with duck HBV. Three days after infection, the infected cells are exposed to various concentrations of the test compound for an additional period of eight days. After this exposure, DNA is extracted from each culture of infected cells and compound, and the amount of viral DNA is specifically determined and compared with that obtained from similar cultures lacking the test compound.
Toxicity Data
Determination of Growth Inhibition of Uninfected Mammalian Cells
The capability of candidate compounds to inhibit the growth of D98 cells (human) and L cells (murine) was measured by determination of cell number following three days exposure of a standard number of cells to various dilutions of compound (Rideout, J.L., Krenitsky, T.A., Koszalka, G.W., Cohn, N.K., Chao, E.Y. Elion, G.B., Latter, V.S., and Williams, R.B. (1982) J. Med Chem. 22.· 1040-1044). The cell number was then compared to the number obtained in the absence of compound. Cell enumeration was performed by either direct particle counts following trypsinization of the monolayer, or by spectrophotometric determination of the amount of vital stain taken up by the cells. Comparable results were obtained with both methods.
AP 0 0 0 1 0 1
NJBM/JJ/JCB/2 June 1989 *
PBO535CM
Data Analysts
The concentration of compound resulting in 50% of control values (IC50) was calculated either by direct interpolation from graphs of the log of the compound concentration versus the percent of control value, or from a computer program which analyses the data according to the same algorithm. Data in the range of 20% to 80% of control were used in these calculations.
All compounds were tested in D-98 cells and found to have an ΙΟ^θ value of >100μιη.

Claims (9)

  1. CLAIMS (Ό wherein R represents
    Ho
    Ho ranched or straight chain C^ θ alkoxy, optionally substituted by & alkoxy, g cycloalkyl; Cg g cycloalkyl; g cycloalkyloxy; aryloxy; aralkyl or aralkyloxy in which the aryl may optionally be substituted with C1 , alkyl, hydroxy or halogen; alkenylthio; Cg g cycloalkylthio; g alkylthio; arylthio cr aralkylthlo in which the aryl may optionally be substituted with C , *
  2. 2 'L4 alkyl, hydroxy, halogen or nitro; cr R represents a heterocyclic group containing an oxygen atom or one or two nitrogen atoms, and
  3. 3-7 carbon atoms with optional double bonds in the ring and optionally containing one cr more heteroatorr.s selected from sulphur and oxygen and optionally substituted on the ring by one or more alkyl, hydroxy or halogen groups, Cg g cycloalkylthio, aralkylthio in which the aryl may be substituted with alkyl, hydroxy or halogen; or R^-represents an imidazolylthio group in which the imidazolyl moiety may be substituted with one or more substituents selected from C, , alkyl and C-substituted 2 1 with nitro; or R represents an amino group which is mono- or disubstituted bv one or two substituents selected from C. , alkyl, C. . alkoxy, g hydroxyalkyl, ? cycloalkyl optionally substituted by g alkyl, aryl, aralkyl in which the aryl may optionally be
    AP 0 0 0 1 0 1 bad original
    NJBK/JJ/5th June 1989
    -62 PB0535CC substituted with C. , alkyl, hydroxy or halogen, allyl optionally i-4 2 substituted with mono- or di-alkyl or alkoxy groups; and R represents hydrogen, amino or θ alkyl; or a pharmaceutically acceptable derivative thereof.
    A compound of formula (I) according to claim 1 wherein R represents A
    A compound of formula :
    Λ7 - AZ- <t‘ wherein R represents
    A
    Ho
    Ho
    3 6
    R represents hydrogen, amino or $ alkyl; R represents cycloalkyl; and R? represents a hydrogen atom or a substituent selected from alkyl, alkoxy, g hydroxyalkyl, $ cycloalkyl optionally substituted by alkyl, aryl, aralkyl in which the aryl may optionally be substituted with alkyl, hydroxy or halogen, allyl optionally substituted with mono- or di-alkyl or alkoxy groups; or a pharmaceutically acceptable derivative thereof.
    NJBM/JJ/5th June 1989
    I·.·: a
    -^3 PB0535CC
  4. 4. (+)-cis-4-(2-amino-6-cyclopropylamino)-9H-purin-9-yl)-2-cyclopentene -^-methanol (I) and R represents branched or straight chain C, , alkoxy, optionally substituted by alkoxy, & cycloalkyl; cycloalkyl; θ cycloalkyloxy; aryloxy; aralkyl or aralkyloxy In which the aryl may optionally be substituted with alkyl, hydroxy or halogen;
    alkenylthio; cycloalkylthio; & alkylthio; arylthio or aralkylthio in which the aryl may optionally be substituted with C. , 2 alkyl, hydroxy, halogen or nitro; or R represents a heterocyclic group containing an oxygen atom or one or two nitrogen atoms, and 3-7 carbon atoms with optional double bonds in the ring and optionally containing one or more heteroatoms selected from sulphur and oxygen and optionally substituted on the ring by one or more alkyl, hydroxy or halogen groups, C_ , cycloalkylthio, aralkylthio in which the aryl may be
    J·» 2 substituted with alkyl, hydroxy or halogen; or R represents an imidazolylthio group in which the imidazolyl moiety may be substituted with one or more substituents selected from C- . alkyl and C-substituted 2 1-4 with nitro; or R represents an amino group which is mono- or di-substituted by one or two substituents selected from CL , alkyl, CL
    1-0 l-o alkoxy, hydroxyalkyl, ? cycloalkyl optionally substituted by alkyl, aryl, aralkyl in which the aryl may optionally be substituted with CL , alkyl, hydroxy or halogen, allyl optionally 1-4 3 substituted with mono- or di-alkyl or alkoxy groups; and R represents
    AP 0 0 0 1 0 1
    NJBM/JJ/
  5. 5th June 1989
    PB0535CC hydrogen, amino or $ alkyl, or a pharmaceutically acceptable derivative thereof for use in medical therapy.
  6. 6. A compound of formula (I) according to claim 5 for use in the treatment or prophylaxis of HIV infections.
  7. 7. A compound of formula (I) according to claim 5 for use in the treatment or prophylaxis of HBV infections.
  8. 8. A process for the preparation of a compound of formula (1) as defined in claim 1 comprising;
    A) treating a compound of formula (II) t
    z.
    I e1
    1 3 wherein R and R are as hereinbefore defined and Z represents a 2 precursor group for the said R group with an agent or under conditions 2 serving to convert the precursor Z group to the desired R group; or Z represents a thio group onto which may be substituted an appropriate 2 group to form a compound of formula (I) wherein R is a substituted thio group or;
    B) reacting a compound of formula (III) (in)
    NJBM/JJ/5th June 1989
    -{>5
    PB0535CC (wherein R and R are hereinbefore defined) or a pharmaceutically acceptable derivative thereof, with an agent serving to effect formation of the imidazole ring in the desired compound of formula (I); or
    i) where a compound of formula (I) is formed, converting the said compound to a pharmaceutically acceptable derivative thereof; or ii) where a pharmaceutically acceptable derivative of a compound of formula (I) is formed, converting the said derivative to the parent compound of formula (I) or to a further such derivative.
  9. 9. A pharmaceutical formulation comprising as active ingredient a compound of formula (I) as defined in claim 1 and a pharmaceutically acceptable carrier therefor.
APAP/P/1989/000129A 1988-06-27 1989-06-26 Therapeutic Nucleosides AP101A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB888815265A GB8815265D0 (en) 1988-06-27 1988-06-27 Therapeutic nucleosides

Publications (2)

Publication Number Publication Date
AP8900129A0 AP8900129A0 (en) 1989-07-31
AP101A true AP101A (en) 1990-10-23

Family

ID=10639435

Family Applications (1)

Application Number Title Priority Date Filing Date
APAP/P/1989/000129A AP101A (en) 1988-06-27 1989-06-26 Therapeutic Nucleosides

Country Status (26)

Country Link
US (5) US5034394A (en)
EP (1) EP0349242B1 (en)
JP (3) JP2875814B2 (en)
KR (1) KR0140532B1 (en)
AP (1) AP101A (en)
AT (1) ATE120194T1 (en)
AU (1) AU636108B2 (en)
CA (1) CA1340589C (en)
CY (1) CY2018A (en)
CZ (1) CZ283786B6 (en)
DE (1) DE68921798T2 (en)
DK (1) DK174668B1 (en)
ES (1) ES2069582T3 (en)
FI (2) FI893113A (en)
GB (1) GB8815265D0 (en)
GR (1) GR3015966T3 (en)
HK (1) HK85897A (en)
HU (2) HU206353B (en)
IE (1) IE68038B1 (en)
IL (1) IL90752A (en)
LV (1) LV5781B4 (en)
MY (1) MY104043A (en)
NZ (1) NZ229716A (en)
PT (1) PT90973B (en)
UA (1) UA29382C2 (en)
ZA (1) ZA894837B (en)

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR890100033A (en) * 1988-01-20 1994-03-31 Univ Minnesota Method for the preparation of dideoxydidehydrocarbocyclic nucleosides
GB2243609B (en) * 1988-01-20 1992-03-11 Univ Minnesota Dideoxydidehydrocarbocyclic pyrimidines
US5175292A (en) * 1988-01-20 1992-12-29 Regents Of The University Of Minnesota Intermediates for the preparation of dideoxycarbocyclic nucleosides
US5631370A (en) * 1988-01-20 1997-05-20 Regents Of The University Of Minnesota Optically-active isomers of dideoxycarbocyclic nucleosides
US6903224B2 (en) 1988-04-11 2005-06-07 Biochem Pharma Inc. Substituted 1,3-oxathiolanes
US7119202B1 (en) 1989-02-08 2006-10-10 Glaxo Wellcome Inc. Substituted-1,3-oxathiolanes and substituted-1,3-dioxolanes with antiviral properties
US6350753B1 (en) 1988-04-11 2002-02-26 Biochem Pharma Inc. 2-Substituted-4-substituted-1,3-dioxolanes and use thereof
US5270315A (en) * 1988-04-11 1993-12-14 Biochem Pharma Inc. 4-(purinyl bases)-substituted-1,3-dioxlanes
GB8815265D0 (en) * 1988-06-27 1988-08-03 Wellcome Found Therapeutic nucleosides
CA2001401A1 (en) * 1988-10-25 1990-04-25 Claude Piantadosi Quaternary amine containing ether or ester lipid derivatives and therapeutic compositions
EP0452360A4 (en) * 1988-12-12 1992-05-20 Peter M. Palese Methods and compositions for the prophylaxis and treatment of hepatitis b virus infections
UA45942A (en) * 1989-02-08 2002-05-15 Біокем Фарма, Інк. 1,3-OXATHYOLANE, ITS DERIVATIVES, METHOD (OPTIONS) OF ITS PREPARATION AND PHARMACEUTICAL COMPOSITION
JP3164361B2 (en) * 1989-06-27 2001-05-08 ザ ウエルカム ファウンデーション リミテッド Therapeutic nucleoside
MY104575A (en) * 1989-12-22 1994-04-30 The Wellcome Foundation Ltd Therapeutic nucleosides.
US5728575A (en) * 1990-02-01 1998-03-17 Emory University Method of resolution of 1,3-oxathiolane nucleoside enantiomers
US5126452A (en) * 1990-04-06 1992-06-30 Glaxo Inc. Synthesis of purine substituted cyclopentene derivatives
US5144034A (en) * 1990-04-06 1992-09-01 Glaxo Inc. Process for the synthesis of cyclopentene derivatives of purines
GB9009861D0 (en) 1990-05-02 1990-06-27 Glaxo Group Ltd Chemical compounds
US5470857A (en) * 1990-09-14 1995-11-28 Marion Merrell Dow Inc. Carbocyclic nucleoside analogs useful as immunosuppressants
US5340816A (en) * 1990-10-18 1994-08-23 E. R. Squibb & Sons, Inc. Hydroxymethyl(methylenecyclopentyl) purines and pyrimidines
US5206244A (en) * 1990-10-18 1993-04-27 E. R. Squibb & Sons, Inc. Hydroxymethyl (methylenecyclopentyl) purines and pyrimidines
US5587480A (en) * 1990-11-13 1996-12-24 Biochem Pharma, Inc. Substituted 1,3-oxathiolanes and substituted 1,3-dithiolanes with antiviral properties
US6228860B1 (en) 1990-11-13 2001-05-08 Biochem Pharma Inc. Substituted 1,3-oxathiolanes with antiviral properties
US6369066B1 (en) 1990-11-13 2002-04-09 Biochem Pharma, Inc. Substituted 1,3-oxathiolanes with antiviral properties
US5444063A (en) * 1990-12-05 1995-08-22 Emory University Enantiomerically pure β-D-dioxolane nucleosides with selective anti-Hepatitis B virus activity
IL100502A (en) * 1991-01-03 1995-12-08 Iaf Biochem Int Pharmaceutical compositions containing cis-4-amino-1(hydroxymethyl-1,3-oxathiolan-5-yl)-1H-pyrimid-2-one nucleoside or its derivatives
GB9110874D0 (en) * 1991-05-20 1991-07-10 Iaf Biochem Int Medicaments
ZA923640B (en) * 1991-05-21 1993-02-24 Iaf Biochem Int Processes for the diastereoselective synthesis of nucleosides
US5233041A (en) * 1991-10-07 1993-08-03 Glaxo Group Limited Synthesis of a 3,4-dihydroxy-1-cyclopentanylpurinone from a 2,3-unsaturated-1-cyclopentanylpurinone
GB9204015D0 (en) * 1992-02-25 1992-04-08 Wellcome Found Therapeutic nucleosides
GB9217823D0 (en) * 1992-08-21 1992-10-07 Glaxo Group Ltd Chemical process
US5329008A (en) * 1993-04-07 1994-07-12 Glaxo Inc. Synthesis of a 3,4-dihydroxy-1-cyclopentanylpurinone
US5654286A (en) * 1993-05-12 1997-08-05 Hostetler; Karl Y. Nucleotides for topical treatment of psoriasis, and methods for using same
DE69431596D1 (en) * 1993-06-10 2002-11-28 Wake Forest University Winston (PHOSPHO) LIPIDS TO COMBAT HEPATITIS B INFECTION
ATE151423T1 (en) 1993-06-21 1997-04-15 Merrell Pharma Inc CARBOCYCLIC NUCLEOSIDE AGENTS USEFUL AS SELECTIVE INHIBITORS OF PROINFLAMMATORY CYTOKINES
US20020120130A1 (en) * 1993-09-10 2002-08-29 Gilles Gosselin 2' or 3' -deoxy and 2', 3' -dideoxy-beta-L-pentofuranonucleo-side compounds, method of preparation and application in therapy, especially as anti- viral agents
US5587362A (en) * 1994-01-28 1996-12-24 Univ. Of Ga Research Foundation L-nucleosides
GB9402161D0 (en) * 1994-02-04 1994-03-30 Wellcome Found Chloropyrimidine intermediates
US5994361A (en) * 1994-06-22 1999-11-30 Biochem Pharma Substituted purinyl derivatives with immunomodulating activity
GB9417249D0 (en) * 1994-08-26 1994-10-19 Wellcome Found A novel salt
DE69535758D1 (en) 1994-08-29 2008-07-03 Univ Wake Forest LIPID ANALOGUE FOR THE TREATMENT OF VIRAL INFECTIONS
US7135584B2 (en) * 1995-08-07 2006-11-14 Wake Forest University Lipid analogs for treating viral infections
US5703058A (en) 1995-01-27 1997-12-30 Emory University Compositions containing 5-fluoro-2',3'-didehydro-2',3'-dideoxycytidine or a mono-, di-, or triphosphate thereof and a second antiviral agent
US6391859B1 (en) 1995-01-27 2002-05-21 Emory University [5-Carboxamido or 5-fluoro]-[2′,3′-unsaturated or 3′-modified]-pyrimidine nucleosides
US5808040A (en) * 1995-01-30 1998-09-15 Yale University L-nucleosides incorporated into polymeric structure for stabilization of oligonucleotides
MY115461A (en) * 1995-03-30 2003-06-30 Wellcome Found Synergistic combinations of zidovudine, 1592u89 and 3tc
WO1996040164A1 (en) * 1995-06-07 1996-12-19 Emory University Nucleosides with anti-hepatitis b virus activity
CA2190202C (en) 1995-11-17 2005-07-26 Nobuya Katagiri Cyclopentenecarboxamide derivative, method for preparing the same and bicycloamide derivative used therein
GB9721780D0 (en) * 1997-10-14 1997-12-10 Glaxo Group Ltd Process for the synthesis of chloropurine intermediates
SK284594B6 (en) 1997-11-27 2005-07-01 Lonza Ag Process for the preparation of aminoalcohol derivatives and their salts
GB9802472D0 (en) 1998-02-06 1998-04-01 Glaxo Group Ltd Pharmaceutical compositions
DE59905679D1 (en) 1998-10-30 2003-06-26 Lonza Ag METHOD FOR PRODUCING 4 - [(2 ', 5'-DIAMINO-6'-HALOGENPYRIMIDIN-4'-YL) AMINO] -CYCLOPENT-2-ENYLMETHANOLS
US7115584B2 (en) * 1999-01-22 2006-10-03 Emory University HIV-1 mutations selected for by β-2′,3′-didehydro-2′,3′-dideoxy-5-fluorocytidine
US7635690B2 (en) * 1999-01-22 2009-12-22 Emory University HIV-1 mutations selected for by β-2′,3′-didehydro-2′,3′-dideoxy-5-fluorocytidine
GB9903091D0 (en) 1999-02-12 1999-03-31 Glaxo Group Ltd Therapeutic nucleoside compound
US6514979B1 (en) * 1999-03-03 2003-02-04 University Of Maryland Biotechnology Institute Synergistic combinations of guanosine analog reverse transcriptase inhibitors and inosine monophosphate dehydrogenese inhibitors and uses therefor
US7205404B1 (en) 1999-03-05 2007-04-17 Metabasis Therapeutics, Inc. Phosphorus-containing prodrugs
JP4532801B2 (en) 1999-06-28 2010-08-25 バイオクリスト・ファマシューティカルズ インク. Method for preparing (-)-(1S, 4R) N protected 4-amino-2-cyclopentene-1-carboxylic acid ester
US7026469B2 (en) * 2000-10-19 2006-04-11 Wake Forest University School Of Medicine Compositions and methods of double-targeting virus infections and cancer cells
MY164523A (en) * 2000-05-23 2017-12-29 Univ Degli Studi Cagliari Methods and compositions for treating hepatitis c virus
KR20080021797A (en) * 2000-05-26 2008-03-07 이데닉스(케이만)리미티드 Methods and compositions for treatment of flaviviruses and pestiviruses
US7309696B2 (en) 2000-10-19 2007-12-18 Wake Forest University Compositions and methods for targeting cancer cells
CN1486289A (en) * 2001-05-29 2004-03-31 皇家菲利浦电子有限公司 Metal-ceramic bond
JP2003007697A (en) * 2001-06-21 2003-01-10 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device, method and apparatus for processing substrate
MY169670A (en) 2003-09-03 2019-05-08 Tibotec Pharm Ltd Combinations of a pyrimidine containing nnrti with rt inhibitors
CN100469131C (en) * 2001-08-31 2009-03-11 汤姆森许可公司 Sequence counter for an audio visual stream
JP4625637B2 (en) 2002-02-22 2011-02-02 シャイア エルエルシー Active substance delivery system and method for protecting and administering an active substance
CA2479037C (en) * 2002-03-15 2010-11-09 Jiri Zemlicka 2-amino-9[(2-hydroxymethyl)cyclopropylidenemethyl]purines as antiviral agents
AR039540A1 (en) * 2002-05-13 2005-02-23 Tibotec Pharm Ltd MICROBICIDE COMPOUNDS WITH PIRIMIDINE OR TRIAZINE CONTENT
US7662798B2 (en) * 2002-06-28 2010-02-16 Idenix Pharmaceuticals, Inc. 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
US7608600B2 (en) 2002-06-28 2009-10-27 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
CN101172993A (en) * 2002-06-28 2008-05-07 埃迪尼克斯(开曼)有限公司 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
US7824851B2 (en) * 2002-11-15 2010-11-02 Idenix Pharmaceuticals, Inc. 2′-branched nucleosides and Flaviviridae mutation
EP1585529A4 (en) * 2002-12-12 2008-05-28 Idenix Cayman Ltd Process for the production of 2'-branched nucleosides
US20050010916A1 (en) * 2003-05-24 2005-01-13 Hagen David A. System for providing software application updates to multiple clients on a network
WO2005026141A2 (en) * 2003-09-17 2005-03-24 Warner-Lambert Company Llc Process for preparation of substituted butenolides via palladium-free etherification and amination of masked mucohalic acids
US7491794B2 (en) * 2003-10-14 2009-02-17 Intermune, Inc. Macrocyclic compounds as inhibitors of viral replication
WO2005051318A2 (en) * 2003-11-24 2005-06-09 Viropharma Incorporated Compounds, compositions and methods for treatment and prophylaxis of hepatitis c viral infections and associated diseases
US20050187191A1 (en) * 2004-02-20 2005-08-25 Kucera Louis S. Methods and compositions for the treatment of respiratory syncytial virus
EP1778251B1 (en) 2004-07-27 2011-04-13 Gilead Sciences, Inc. Nucleoside phosphonate conjugates as anti hiv agents
JP4516863B2 (en) * 2005-03-11 2010-08-04 株式会社ケンウッド Speech synthesis apparatus, speech synthesis method and program
US20090148407A1 (en) * 2005-07-25 2009-06-11 Intermune, Inc. Novel Macrocyclic Inhibitors of Hepatitis C Virus Replication
CN101415705B (en) 2005-10-11 2011-10-26 因特蒙公司 Compounds and methods for inhibiting hepatitis c viral replication
US7781576B2 (en) * 2005-12-23 2010-08-24 Idenix Pharmaceuticals, Inc. Process for preparing a synthetic intermediate for preparation of branched nucleosides
CN100465174C (en) * 2006-06-13 2009-03-04 中国科学院上海有机化学研究所 Process for the preparation of optically pure abacavir
RU2008152171A (en) * 2006-07-05 2010-08-10 Интермьюн, Инк. (Us) NEW HEPATITIS C VIRAL REPLICATION INHIBITORS
CA2686138A1 (en) * 2007-05-03 2008-11-13 Intermune, Inc. Novel macrocyclic inhibitors of hepatitis c virus replication
CL2008001381A1 (en) 2007-05-10 2008-11-03 Intermune Inc Y Array Biopharma Inc Compounds derived from tripeptides containing nitrogen heterocycles; pharmaceutical composition comprising said compounds; and use to treat a hepatitis c or hiv infection.
EP2322509B1 (en) 2007-06-12 2012-08-22 Concert Pharmaceuticals Inc. Azapeptide derivatives as HIV protease inhibitors
PT2514750E (en) 2007-06-18 2014-01-23 Sunshine Lake Pharma Co Ltd Bromo-phenyl substituted thiazolyl dihydropyrimidines
EP2085397A1 (en) * 2008-01-21 2009-08-05 Esteve Quimica, S.A. Crystalline form of abacavir
CN102046622A (en) 2008-04-15 2011-05-04 因特蒙公司 Novel macrocyclic inhibitors of hepatitis C virus replication
US8173621B2 (en) 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
TWI432436B (en) 2008-12-09 2014-04-01 Gilead Sciences Inc Modulators of toll-like receptors
AU2009329917B2 (en) 2008-12-23 2016-03-31 Gilead Pharmasset Llc Nucleoside analogs
SG194404A1 (en) 2008-12-23 2013-11-29 Gilead Pharmasset Llc Synthesis of purine nucleosides
AR074897A1 (en) 2008-12-23 2011-02-23 Pharmasset Inc NUCLEOSID PHOSPHORAMIDATES
AR075584A1 (en) 2009-02-27 2011-04-20 Intermune Inc THERAPEUTIC COMPOSITIONS THAT INCLUDE beta-D-2'-DESOXI-2'-FLUORO-2'-C-METHYLYCTIDINE AND A CARDIEX ISOINDOL ACID DERIVATIVE AND ITS USES. COMPOUND.
EP2305680A3 (en) * 2009-09-30 2011-05-18 Aurobindo Pharma Limited Novel salts of (1S,4R)-cis-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol
DK3127542T3 (en) 2010-01-27 2018-11-12 Viiv Healthcare Co ANTIVIRAL THERAPY
US20110223131A1 (en) 2010-02-24 2011-09-15 Gilead Sciences, Inc. Antiviral compounds
PT2609923T (en) 2010-03-31 2017-08-30 Gilead Pharmasset Llc Process for the crystallisation of (s)-isopropyl 2-(((s)-(perfluorophenoxy)(phenoxy)phosphoryl)amino)propanoate
JO3387B1 (en) 2011-12-16 2019-03-13 Glaxosmithkline Llc Derivatives of betulin
BR112014016615A8 (en) * 2012-01-03 2017-07-04 Cellceutix Corp carbocyclic nucleosides, their pharmaceutical uses and compositions
US9227990B2 (en) 2012-10-29 2016-01-05 Cipla Limited Antiviral phosphonate analogues and process for preparation thereof
CN104902905A (en) 2012-12-14 2015-09-09 葛兰素史克有限责任公司 Pharmaceutical compositions
EP3052499B1 (en) 2013-10-03 2017-11-15 Lupin Limited Crystalline abacavir hydrochloride monohydrate and process for its preparation
CN106061984A (en) 2014-02-13 2016-10-26 配体药物公司 Prodrug compounds and their uses
KR102252617B1 (en) * 2014-02-24 2021-05-17 삼성전자 주식회사 Method for transmitting data and electronic device implementing the same
WO2016001907A1 (en) 2014-07-02 2016-01-07 Prendergast Patrick T Mogroside iv and mogroside v as agonist/stimulator/un-blocking agent for toll-like receptor 4 and adjuvant for use in human/animal vaccine and to stimulate immunity against disease agents.
EP3164136A4 (en) 2014-07-02 2018-04-04 Ligand Pharmaceuticals, Inc. Prodrug compounds and uses therof
CA2954056C (en) 2014-07-11 2020-04-28 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of hiv
CR20170113A (en) 2014-09-26 2017-05-26 Glaxosmilthkline Intellectual Property (No 2) Ltd PHARMACEUTICAL COMPOSITIONS OF PROLONGED ACTION
US11311545B2 (en) 2014-10-09 2022-04-26 Board Of Regents Of The University Of Nebraska Compositions and methods for the delivery of therapeutics
WO2016067182A2 (en) * 2014-10-27 2016-05-06 Granules India Limited Process for the preparation of amino alcohol derivatives or salts thereof
CN104974051A (en) * 2015-06-30 2015-10-14 苏州开元民生科技股份有限公司 Synthetic method for (1S,4R)-cis-4-amino-2-cyclopentene-1-methanol hydrochloride
GB201513601D0 (en) * 2015-07-31 2015-09-16 Univ Liverpool Antiviral compounds
US20180263985A1 (en) 2015-09-15 2018-09-20 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of hiv
CN108934162A (en) * 2015-12-16 2018-12-04 南方研究所 Pyrrolopyrimidine compounds, as purposes of kinases LRRK2 inhibitor and preparation method thereof
EP3939570A1 (en) * 2016-02-18 2022-01-19 Immune Therapeutics, Inc. Naltrexone for treating or preventing autoimmune and inflammatory diseases
WO2017201179A1 (en) * 2016-05-18 2017-11-23 Innovation Pharmaceuticals Inc. Methods of preparing carbocyclic nucleosides
JP2021509907A (en) 2018-01-09 2021-04-08 リガンド・ファーマシューティカルズ・インコーポレイテッド Acetal compounds and their therapeutic use
WO2019140365A1 (en) 2018-01-12 2019-07-18 Board Of Regents Of The University Of Nebraska Antiviral prodrugs and formulations thereof
US11458136B2 (en) 2018-04-09 2022-10-04 Board Of Regents Of The University Of Nebraska Antiviral prodrugs and formulations thereof
EP3831388B1 (en) * 2018-07-27 2024-02-28 FUJIFILM Corporation Cyclopentenyl purine derivative or salt thereof for use in suppressing adenovirus
EP3831836B1 (en) 2018-07-27 2023-09-06 FUJIFILM Corporation Cyclobutyl purine derivative or salt thereof
CN111393444B (en) * 2019-01-02 2022-10-28 上海迪赛诺化学制药有限公司 Preparation method of abacavir hydroxy acetate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325460A1 (en) * 1988-01-20 1989-07-26 The Regents Of The University Of Minnesota Dideoxydidehydrocarbocyclic nucleosides
US4859677A (en) * 1987-04-17 1989-08-22 University Of Kansas Nucleoside analogues having antiviral activity
EP0338842A1 (en) * 1988-04-22 1989-10-25 Schering Corporation Cyclopentyl purine derivatives, intermediates and processes for preparation
EP0347852A2 (en) * 1988-06-20 1989-12-27 Merrell Dow Pharmaceuticals Inc. Novel neplanocin derivatives

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3148363A1 (en) * 1980-12-12 1982-09-16 Toyo Jozo K.K., Shizuoka NEPLANOCIN A DERIVATIVES
US4543255A (en) * 1984-05-10 1985-09-24 Southern Research Institute Carbocyclic analogs of purine 2'-deoxyribofuranosides
US4605659A (en) * 1985-04-30 1986-08-12 Syntex (U.S.A.) Inc. Purinyl or pyrimidinyl substituted hydroxycyclopentane compounds useful as antivirals
GR862141B (en) * 1985-08-16 1986-12-23 Glaxo Group Ltd Guanine derivatives
JPS62177234A (en) * 1986-01-30 1987-08-04 Mitsubishi Heavy Ind Ltd Production device of carbon fiber by centrifugal spinning
IN164556B (en) * 1986-03-06 1989-04-08 Takeda Chemical Industries Ltd
US4954504A (en) * 1986-11-14 1990-09-04 Ciba-Geigy Corporation N9 -cyclopentyl-substituted adenine derivatives having adenosine-2 receptor stimulating activity
JPS6422853A (en) * 1987-07-17 1989-01-25 Asahi Glass Co Ltd Nucleoside analog
US4916224A (en) * 1988-01-20 1990-04-10 Regents Of The University Of Minnesota Dideoxycarbocyclic nucleosides
US4950758A (en) * 1988-01-20 1990-08-21 Regents Of The University Of Minnesota Optically-active isomers of dideoxycarbocyclic nucleosides
GR890100033A (en) * 1988-01-20 1994-03-31 Univ Minnesota Method for the preparation of dideoxydidehydrocarbocyclic nucleosides
US4787554A (en) * 1988-02-01 1988-11-29 Honeywell Inc. Firing rate control system for a fuel burner
GB8808458D0 (en) * 1988-04-11 1988-05-11 Metal Box Plc Food containers
NZ229453A (en) * 1988-06-10 1991-08-27 Univ Minnesota & Southern Rese A pharmaceutical composition containing purine derivatives with nucleosides such as azt, as antiviral agents
GB8815265D0 (en) * 1988-06-27 1988-08-03 Wellcome Found Therapeutic nucleosides
US4939252A (en) * 1989-04-20 1990-07-03 Hoffmann-La Roche Inc. Novel intermediates for the preparation of Carbovir
EP0424064B1 (en) * 1989-10-16 1995-02-08 Chiroscience Limited Chiral azabicyloheptanone and a process for their preparation
US5126452A (en) * 1990-04-06 1992-06-30 Glaxo Inc. Synthesis of purine substituted cyclopentene derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859677A (en) * 1987-04-17 1989-08-22 University Of Kansas Nucleoside analogues having antiviral activity
EP0325460A1 (en) * 1988-01-20 1989-07-26 The Regents Of The University Of Minnesota Dideoxydidehydrocarbocyclic nucleosides
EP0338842A1 (en) * 1988-04-22 1989-10-25 Schering Corporation Cyclopentyl purine derivatives, intermediates and processes for preparation
EP0347852A2 (en) * 1988-06-20 1989-12-27 Merrell Dow Pharmaceuticals Inc. Novel neplanocin derivatives

Also Published As

Publication number Publication date
LV5781B4 (en) 1997-04-20
FI893113A (en) 1989-12-28
HU211537A9 (en) 1995-12-28
MY104043A (en) 1993-10-30
HUT53644A (en) 1990-11-28
KR0140532B1 (en) 1998-06-01
AU3702589A (en) 1990-01-04
JP2875814B2 (en) 1999-03-31
US5034394A (en) 1991-07-23
AU636108B2 (en) 1993-04-22
IL90752A0 (en) 1990-01-18
UA29382C2 (en) 2000-11-15
JPH0245486A (en) 1990-02-15
HU206353B (en) 1992-10-28
EP0349242A2 (en) 1990-01-03
US5049671A (en) 1991-09-17
CY2018A (en) 1998-02-20
FI102680B (en) 1999-01-29
GR3015966T3 (en) 1995-07-31
FI894545A0 (en) 1989-09-26
ES2069582T3 (en) 1995-05-16
FI893113A0 (en) 1989-06-26
AP8900129A0 (en) 1989-07-31
ZA894837B (en) 1991-03-27
FI102680B1 (en) 1999-01-29
GB8815265D0 (en) 1988-08-03
JPH11139976A (en) 1999-05-25
FI894545A (en) 1989-12-28
JPH0892252A (en) 1996-04-09
US5087697A (en) 1992-02-11
EP0349242B1 (en) 1995-03-22
IE68038B1 (en) 1996-05-15
CZ283786B6 (en) 1998-06-17
HK85897A (en) 1997-06-27
ATE120194T1 (en) 1995-04-15
NZ229716A (en) 1992-11-25
IL90752A (en) 1995-03-15
PT90973B (en) 1994-11-30
DK315689D0 (en) 1989-06-26
US5206435A (en) 1993-04-27
DE68921798T2 (en) 1995-07-13
KR910002326A (en) 1991-01-31
DK174668B1 (en) 2003-08-18
US5089500A (en) 1992-02-18
PT90973A (en) 1989-12-29
EP0349242A3 (en) 1991-05-29
DE68921798D1 (en) 1995-04-27
IE892061L (en) 1989-12-27
CZ247092A3 (en) 1998-04-15
JP2963775B2 (en) 1999-10-18
CA1340589C (en) 1999-06-08
LV5781A4 (en) 1996-12-20
DK315689A (en) 1989-12-28

Similar Documents

Publication Publication Date Title
AP101A (en) Therapeutic Nucleosides
CA2033044C (en) 6-substituted purine carbocyclic nucleosides
US6479673B1 (en) Antiretroviral enantiomeric nucleotide analogs
AU693079B2 (en) Enantiomerically pure beta -D-dioxolane nucleosides with selective anti-hepatitis B virus activity
EP1504004B1 (en) Substituted pyrazolopyrimidines
FI93546B (en) Method for preparing therapeutically useful dideoxycarbocyclic nucleoside analogs
EP0366385B1 (en) Guanine derivatives having antiviral activity and their pharmaceutically acceptable salts
EP0479822B1 (en) Therapeutic nucleosides
EP0394346A1 (en) Pyrimidine and purine 1,2-butadiene-4-ols as anti-retroviral agents
HU211577A9 (en) Therapeutic nucleosides
NO177306B (en) Analogous Process for the Preparation of Therapeutically Active Purine Derivatives