CN1989575A - Superconducting cable line - Google Patents
Superconducting cable line Download PDFInfo
- Publication number
- CN1989575A CN1989575A CNA2005800250379A CN200580025037A CN1989575A CN 1989575 A CN1989575 A CN 1989575A CN A2005800250379 A CNA2005800250379 A CN A2005800250379A CN 200580025037 A CN200580025037 A CN 200580025037A CN 1989575 A CN1989575 A CN 1989575A
- Authority
- CN
- China
- Prior art keywords
- cable
- superconducting
- superconducting cable
- layer
- liquid hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 118
- 239000001257 hydrogen Substances 0.000 claims abstract description 115
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 115
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 104
- 239000002826 coolant Substances 0.000 claims abstract description 94
- 239000012530 fluid Substances 0.000 claims abstract description 58
- 238000009413 insulation Methods 0.000 claims abstract description 55
- 238000001816 cooling Methods 0.000 claims abstract description 41
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 19
- 239000002887 superconductor Substances 0.000 claims description 45
- 230000002093 peripheral effect Effects 0.000 claims description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 5
- 230000005684 electric field Effects 0.000 claims description 5
- 238000009499 grossing Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 161
- 239000004020 conductor Substances 0.000 description 90
- 230000005540 biological transmission Effects 0.000 description 89
- 239000000123 paper Substances 0.000 description 19
- 239000002655 kraft paper Substances 0.000 description 14
- 238000004513 sizing Methods 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 238000004804 winding Methods 0.000 description 9
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000010292 electrical insulation Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000110 cooling liquid Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 239000003949 liquefied natural gas Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
本发明公开了一种超导电缆,其包括用来输送液氢(1)的用于流体的热绝缘管(2)、装在用于流体的热绝缘管(2)中的超导电缆(10)以及用于在液氢(1)和电缆(10)之间执行热交换的热交换装置。由于超导电缆(10)包括在用于电缆的热绝缘管内部的电缆芯,并装设在用于流体(2)的热绝缘管中,从而电缆(10)外周边暴露于低温环境,且该超导电缆形成为与热绝缘管(2)相关的双层热绝缘结构。因此,由于侵入超导电缆(10)中的热降低并用液氢(1)来将冷却剂冷却,所以可以降低冷却冷却剂所需的能量。
The invention discloses a superconducting cable, which comprises a heat insulating pipe (2) for liquid hydrogen (1), a superconducting cable ( 10) and heat exchange means for performing heat exchange between the liquid hydrogen (1) and the cable (10). Since the superconducting cable (10) includes the cable core inside the heat insulating tube for the cable and is housed in the heat insulating tube for the fluid (2), the outer periphery of the cable (10) is exposed to a low temperature environment, and The superconducting cable is formed as a double thermal insulation structure in relation to the thermal insulation tube (2). Therefore, since the heat intruded into the superconducting cable (10) is reduced and the coolant is cooled with liquid hydrogen (1), the energy required for cooling the coolant can be reduced.
Description
技术领域technical field
本发明涉及一种包括超导电缆的电源线路。更具体地说,本发明涉及一种超导电缆线路,该超导电缆线路降低侵入超导电缆中的热量,从而降低用于冷却电缆中所用的冷却剂的能量,并该电缆线作为一个整体,能够增加性能系数(COP)。The invention relates to a power circuit comprising a superconducting cable. More specifically, the present invention relates to a superconducting cable line that reduces the intrusion of heat into the superconducting cable, thereby reducing the energy used to cool the coolant used in the cable, and the cable as a whole , which can increase the coefficient of performance (COP).
背景技术Background technique
通常已知一种包括热绝缘管的超导电缆,该热绝缘管容纳带有超导体层的电缆芯。这种超导电缆例如包括具有容纳一个电缆芯的热绝缘管的单芯电缆或者容纳成一束的三个电缆芯的三芯电缆。图7是用于三相交流电的三芯超导电缆的横截面视图。图8是每个电缆芯102的横截面视图。这种超导电缆100具有在一个热绝缘管101中容纳三股电缆102的结构。热绝缘管101的结构是热绝缘材料(未示出)设置在双层管之间,该双层管由外管101a和内管101b形成,并排出管101a、101b之间的空气。每个电缆芯102从其中心部分开始包括定径管200、超导体层201、电绝缘层202、超导屏蔽层203和保护层204。内管101b和每个电缆芯102围绕的空间103用作冷却剂如液氮的通道。通过冷却剂冷却来维持电缆芯102的超导体层201和超导屏蔽层203的超导状态。在热绝缘管101的外周边上设有防腐蚀层104。A superconducting cable comprising a thermally insulating tube housing a cable core with a superconductor layer is generally known. Such superconducting cables include, for example, a single-core cable having a thermal insulation tube housing one cable core or a three-core cable housing three cable cores in a bundle. Fig. 7 is a cross-sectional view of a three-core superconducting cable for three-phase alternating current. FIG. 8 is a cross-sectional view of each
超导电缆必须用冷却剂如液氮来连续地冷却,从而维持超导体层和超导屏蔽层的超导状态。因此,使用超导电缆的线路通常包括用于冷却剂的冷却系统。利用这种系统来执行循环冷却,其中,将从电缆喷射出的冷却剂冷却,并且该冷却后的冷却剂再次流入电缆。Superconducting cables must be continuously cooled with a coolant such as liquid nitrogen to maintain the superconducting state of the superconducting layer and the superconducting shield. Therefore, lines using superconducting cables usually include cooling systems for coolants. Cyclic cooling is performed with such a system in which the coolant sprayed from the cable is cooled and the cooled coolant flows into the cable again.
通过利用冷却系统将冷却剂冷却至适当的温度,通过充分降低冷却剂因电流通过而产生的热或者从外部如环境侵入的热所造成的冷却剂温度增加,超导电缆能够维持超导体层和超导屏蔽层的超导状态。然而,在冷却剂是液氮时,将冷却剂冷却以克服这种产生的或者侵入的热所需的能量变成至少高于由冷却剂来冷却电缆所需的能量的10倍。因此,在包括用于冷却剂的冷却系统的超导电缆线路作为一个整体来考虑时,性能系数(COP)变成0.1或更低。这种低COP是降低超导装置如超导电缆的应用效果的其中一个原因。因此,日本专利申请公开号JP2002-130851(专利文献1)和日本专利申请公开号JP10-092627(专利文献2)中的每一个提出利用液化天然气(LNG)的冷热(cold heat)来冷却超导线圈的冷却剂。By using the cooling system to cool the coolant to an appropriate temperature, and by sufficiently reducing the heat generated by the coolant through the passage of current or the temperature increase of the coolant caused by heat intruding from the outside such as the environment, the superconducting cable can maintain the superconductor layer and the superconducting cable. The superconducting state of the conducting shield. However, where the coolant is liquid nitrogen, the energy required to cool the coolant to overcome this generated or intrusive heat becomes at least 10 times higher than the energy required to cool the cable by the coolant. Therefore, when the superconducting cable line including the cooling system for the coolant is considered as a whole, the coefficient of performance (COP) becomes 0.1 or lower. This low COP is one of the reasons for reducing the application effect of superconducting devices such as superconducting cables. Therefore, each of Japanese Patent Application Publication No. JP2002-130851 (Patent Document 1) and Japanese Patent Application Publication No. JP10-092627 (Patent Document 2) proposes to use the cold heat of liquefied natural gas (LNG) to cool super Coolant for wire coils.
另一方面,随着燃料电池车辆的研制,计划在日本的许多地方建立氢气站,以存储用来供给燃料电池车辆的压缩氢气或者液氢。氢气站例如包括用于存储在工厂生产并输送的液氢或者在氢气站生产的液氢的罐,以及用于将汽化的氢液化以维持其在液态的冷却系统。尽管可以利用冷却系统来冷却至适当的温度,从而可以将氢气维持在液态,但是,由于液氢具有大约20K的低温沸点,这与环境的常温显著不同,从外部侵入的热变得很大。因此,就需要大量的能量来冷却液氢,以降低因热侵入所产生的温度增加。On the other hand, with the development of fuel cell vehicles, it is planned to establish hydrogen stations in many places in Japan to store compressed hydrogen gas or liquid hydrogen for supplying fuel cell vehicles. The hydrogen station includes, for example, a tank for storing liquid hydrogen produced at a factory and transported or produced at a hydrogen station, and a cooling system for liquefying vaporized hydrogen to maintain it in a liquid state. Although hydrogen gas can be maintained in a liquid state by cooling to an appropriate temperature using a cooling system, since liquid hydrogen has a low-temperature boiling point of about 20K, which is significantly different from normal ambient temperature, heat intruded from the outside becomes large. Therefore, a large amount of energy is required to cool the liquid hydrogen to reduce the temperature increase due to thermal intrusion.
专利文献1:日本专利申请公开号JP2002-130851Patent Document 1: Japanese Patent Application Publication No. JP2002-130851
专利文献2:日本专利申请公开号JP10-092627Patent Document 2: Japanese Patent Application Publication No. JP10-092627
发明内容Contents of the invention
上述的各个专利文献1和2只是披露了使用LNG的冷热来用于冷却超导线圈的冷却剂,并且没有考虑降低从外部侵入的热。另一方面,在液氢气站,也希望能够降低用于冷却氢的能量,如上所述。Each of the above-mentioned
因此,本发明的主要目的是提供超导电缆线路,其能够降低侵入超导电缆中的热,并能够总体上降低用于冷却超导电缆的能量和用于冷却液氢的能量。Therefore, the main object of the present invention is to provide a superconducting cable line which can reduce the heat intrusion into the superconducting cable and can reduce the energy for cooling the superconducting cable and the energy for cooling liquid hydrogen as a whole.
本发明通过在输送液氢的热绝缘管中设置超导电缆并在液氢和电缆的冷却剂之间交换热来获得上述目的。也就是说,本发明的超导电缆线路包括用于输送液氢的用于流体的热绝缘管和超导电缆,该超导电缆置于该用于流体的热绝缘管内,以用温度高于该液氢的冷却剂冷却超导部分。还包括用于冷却液氢和提升由液氢冷却的超导电缆的冷却剂的温度的热交换装置。以下将更加详细地叙述本发明。The present invention achieves the above objects by arranging a superconducting cable in a thermally insulating pipe for transporting liquid hydrogen and exchanging heat between the liquid hydrogen and the coolant of the cable. That is to say, the superconducting cable line of the present invention includes a heat-insulating pipe for fluid for transporting liquid hydrogen and a superconducting cable, and the superconducting cable is placed in the heat-insulating pipe for fluid to use a temperature higher than The coolant of liquid hydrogen cools the superconducting part. Also included are heat exchange means for cooling the liquid hydrogen and elevating the temperature of the coolant of the superconducting cable cooled by the liquid hydrogen. The present invention will be described in more detail below.
用于本发明的超导电缆的结构包括超导部分和热绝缘管,该超导部分由超导材料形成,该热绝缘管(以下称作用于电缆的热绝缘管)容纳超导部分并充满用于冷却超导部分的冷却剂。超导部分可包括超导体层和外部超导层,其中,超导体层用于流经电源电流,外部超导层用于在相反方向上流经与超导体层的电流值大致相同的电流。超导部分通常形成在电缆芯中。因此,超导电缆可通过将包括超导层的超导电缆装入用于电缆的热绝缘管中而构成。电缆芯的更具体结构从其中心部分开始包括定径管、超导体层、电绝缘层、外部超导层和保护层。用于电缆的热绝缘管可容纳一个电缆芯(单芯(一个芯))或多个电缆芯(多个芯)。更具体地说,例如,在本发明的线路用于三相AC传输时,可以使用具有用于容纳三股芯的用于电缆的热绝缘管的三芯电缆,在本发明的线路用于单相AC传输时,可以使用单芯电缆,该单芯电缆具有容纳一个芯的用于电缆的热绝缘管。例如,在本发明的线路用于DC传输(单极传输)时,可以使用具有用于容纳一个芯的用于电缆的热绝缘管的单芯电缆,在本发明的线路用于DC传输(双极传输)时,可以使用具有容纳两束或三束芯的用于电缆的热绝缘管的两芯电缆或者三芯电缆。如上所述,本发明的超导电缆线路可以用于DC传输或AC传输。The structure of the superconducting cable used in the present invention includes a superconducting part formed of a superconducting material, and a thermal insulating tube (hereinafter referred to as a thermal insulating tube for the cable) that accommodates the superconducting part and is filled with Coolant for cooling the superconducting part. The superconducting portion may comprise a superconductor layer for passing a power supply current and an outer superconducting layer for passing a current in an opposite direction of approximately the same value as the superconductor layer. The superconducting portion is usually formed in the cable core. Therefore, a superconducting cable can be constructed by enclosing a superconducting cable including a superconducting layer in a heat insulating tube for the cable. The more specific structure of the cable core includes a sizing tube, a superconductor layer, an electrical insulation layer, an outer superconductor layer and a protective layer starting from its central part. Thermal insulation tubes for cables can accommodate one cable core (single core (one core)) or multiple cable cores (multiple cores). More specifically, for example, when the line of the present invention is used for three-phase AC transmission, a three-core cable having a heat insulating tube for the cable for accommodating three-strand cores can be used, and when the line of the present invention is used for single-phase For AC transmission, a single-core cable having a heat insulating tube for the cable accommodating one core may be used. For example, when the line of the present invention is used for DC transmission (unipolar transmission), a single-core cable with a heat insulating tube for the cable for accommodating one core can be used, and when the line of the present invention is used for DC transmission (bipolar transmission). For pole transmission), a two-core cable or a three-core cable with a heat insulating tube for the cable accommodating two or three cores can be used. As described above, the superconducting cable line of the present invention can be used for DC transmission or AC transmission.
例如,可通过螺旋地卷绕带形导线来形成超导体层,该带形导线包括由基于Bi的氧化物的超导材料的多个金属丝,更具体地说,是基于Bi2223的超导材料的多个金属丝制成,该金属丝设置在如银护套的基体中。超导体层可具有单层或多层结构。在超导体层具有多层结构时,可在其中设置层间绝缘层。层间绝缘层可通过卷绕绝缘纸如牛皮纸或者半合成的绝缘纸如PPLP(Sumitomo Electric Industries,Ltd.的商标)而形成。超导体层通过将由超导材料制成的导线围绕定径管卷绕而形成。定径管可以是由金属材料如铜或铝形成的实心体或中空体,并且具有例如为多束铜导线的结构。可以使用带绝缘涂层的铜导线。定径管用作超导体层的形状维持部件。垫层可插入在定径管和超导体层之间。垫层避免了在定径管和超导导线之间金属的直接接触,从而避免超导导线受到损害。特别地,在定径管为绞合结构时,垫层也具有使得定径管的表面光滑的功能。绝缘纸或复写纸可以适当地用作垫层的指定材料。For example, the superconductor layer can be formed by helically winding a tape-shaped wire comprising a plurality of wires made of a Bi oxide-based superconducting material, more specifically, a Bi2223-based superconducting material. A plurality of wires are provided in a matrix such as a silver sheath. The superconductor layer may have a single-layer or multi-layer structure. When the superconductor layer has a multilayer structure, an interlayer insulating layer may be provided therein. The interlaminar insulating layer may be formed by winding insulating paper such as kraft paper or semi-synthetic insulating paper such as PPLP (trademark of Sumitomo Electric Industries, Ltd.). The superconductor layer is formed by winding a wire made of superconducting material around the sizing tube. The sizing tube may be a solid or hollow body formed of a metallic material such as copper or aluminum, and have a structure such as bundles of copper wires. Insulated copper conductors can be used. The sizing tube serves as a shape-maintaining member for the superconductor layer. A bedding layer may be inserted between the sizing tube and the superconductor layer. The cushion layer avoids direct metal contact between the sizing tube and the superconducting wire, thereby preventing the superconducting wire from being damaged. In particular, when the sizing pipe is in a twisted structure, the cushion also has the function of smoothing the surface of the sizing pipe. Insulating paper or carbon paper can be suitably used as the specified material for the underlayment.
电绝缘层可通过将半合成绝缘纸如PPLP(商标)或者绝缘纸如牛皮纸卷绕在超导体层上而形成。半导体层可由复写纸等形成在电绝缘层的内周边或外周边中的至少一个上,也就是说,形成在超导体层和电绝缘层之间以及电绝缘层和外部超导层(以下叙述)之间。通过形成内部半导体层(作为前者),或者形成外部半导体层(作为后者),超导体层和电绝缘层之间或者电绝缘层和外部超导层之间的附着力增加,从而抑制因部分放电等而产生的劣化。The electrical insulating layer may be formed by winding a semi-synthetic insulating paper such as PPLP (trade mark) or insulating paper such as kraft paper on the superconductor layer. The semiconductor layer may be formed by carbon paper or the like on at least one of the inner periphery or the outer periphery of the electrical insulating layer, that is, formed between the superconductor layer and the electrical insulating layer and between the electrical insulating layer and the outer superconducting layer (described below). between. By forming an inner semiconducting layer (as the former), or forming an outer semiconducting layer (as the latter), the adhesion between the superconductor layer and the electrically insulating layer or between the electrically insulating layer and the outer superconducting layer is increased, thereby suppressing partial discharge caused by etc. resulting in deterioration.
在本发明的线路用于DC传输时,电绝缘层可受到ρ分级,以在电绝缘层的内周边侧获得低电阻率,在外周边侧获得高电阻率,从而使得在其直径方向(厚度方向)上的DC电场分布变得平滑。如上所述,“ρ分级”是指在电绝缘层的厚度方向上的电阻率以阶梯方式改变,这可使得电绝缘层的整个厚度方向上的DC电场分布变得平滑,并能够减小电绝缘层的厚度。尽管不具体限制具有不同电阻率的层数,但是,实际采用两层或三层。特别地,在各层的厚度均衡时,可以更有效地执行DC电场分布的平滑度。When the circuit of the present invention is used for DC transmission, the electrical insulating layer can be subjected to p grading to obtain low resistivity on the inner peripheral side of the electrical insulating layer and high resistivity on the outer peripheral side, so that in its diameter direction (thickness direction) ) on the DC electric field distribution becomes smooth. As mentioned above, "ρ grading" means that the resistivity in the thickness direction of the electrical insulating layer changes in a stepwise manner, which can smooth the distribution of the DC electric field in the entire thickness direction of the electrical insulating layer and can reduce the electrical resistance. The thickness of the insulating layer. Although the number of layers having different resistivities is not specifically limited, two or three layers are actually used. In particular, when the thicknesses of the layers are equalized, the smoothness of the DC electric field distribution can be performed more effectively.
可以使用电阻率(ρ)相互不同的绝缘材料来执行ρ分级。在使用绝缘纸如牛皮纸时,例如,可以通过改变牛皮纸的密度或者向牛皮纸中加入双氰胺来改变电阻率。在使用由绝缘纸和塑料薄膜如PPLP(商标)形成的复合纸时,可通过改变比率k、或者通过改变绝缘纸的密度、材料、添加剂等来改变电阻率,其中,比率k=(tp/T)×100,为塑料薄膜的厚度tp与整个复合纸的厚度T之间的比率。比率k的值优选例如在40-90%的范围内。通常,电阻率ρ随着比率k增加而升高。The ρ classification can be performed using insulating materials having different resistivities (ρ) from each other. When using insulating paper such as kraft paper, for example, the resistivity can be changed by changing the density of the kraft paper or adding dicyandiamide to the kraft paper. When using a composite paper formed of insulating paper and plastic film such as PPLP (trademark), the resistivity can be changed by changing the ratio k, or by changing the density, material, additive, etc. of the insulating paper, wherein the ratio k=(tp/ T)×100, which is the ratio between the thickness tp of the plastic film and the thickness T of the entire composite paper. The value of the ratio k is preferably, for example, in the range of 40-90%. In general, the resistivity ρ increases as the ratio k increases.
此外,在电绝缘层具有高ε层时,除了增加直流耐压特性之外,还可增加Imp.耐压特性,其中高ε层设置在超导导体附近并具有比另一部分高的介电常数。介电常数ε(20℃)在一般牛皮纸中为大约3.2-4.5,在比率为40%的复合纸中为大约2.8,在比率为60%的复合纸中为大约2.6,以及在比率为80%的复合纸中为大约2.4。特别优选由使用高比率k和高气密性的牛皮纸的复合纸构造的电绝缘层,这是因为直流耐压和Imp.耐压增加。In addition, the Imp. withstand voltage characteristic can be increased in addition to the DC withstand voltage characteristic when the electrical insulating layer has a high ε layer which is provided near the superconducting conductor and has a higher dielectric constant than the other part . The dielectric constant ε (20°C) is about 3.2-4.5 in general kraft paper, about 2.8 in composite paper with a ratio of 40%, about 2.6 in composite paper with a ratio of 60%, and about 2.6 in a ratio of 80% Composite paper is about 2.4. An electrical insulation layer constructed of composite paper using kraft paper with a high ratio k and high airtightness is particularly preferred because of the increased DC withstand voltage and Imp. withstand voltage.
除了上述的ρ分级之外,通过构造介电常数ε向着内周边侧增加并向着外周边侧降低的电绝缘层,形成也适用于AC传输的电缆。在电绝缘层的直径方向上的整个区域内也执行“ε分级”。另外,进行了上述ρ分级的超导电缆的DC特征较好,并且可适用作DC传输线路。另一方面,大部分电流传输线路构造用于AC传输。在传输系统从AC系统转换为DC系统时,会发生其中AC传输在转换成DC传输之前利用进行了ρ分级的超导电缆进行瞬时传输的情况。例如在一部分传输线路的电缆用进行了ρ分级的超导电缆取代,而其他部分仍是用于AC传输的电缆时,或者在用于传输线路的AC传输的电缆用进行了ρ分级的超导电缆取代,而连接到电缆的传输装置仍是用于AC的装置时,可出现这种情况。在这种情况下,利用进行了ρ分级的超导电缆来瞬时执行AC传输,然后,系统最终转换成DC传输。因此,超导电缆优选不仅可设计为具有良好的DC特征,而且还考虑具有AC特征。在也考虑AC特征时,可通过构造介电常数ε朝向内周边侧增加且朝向外周边侧降低的电绝缘层来构造具有良好脉冲特征如浪涌的超导电缆。然后,在上述的瞬变期间结束并且执行DC传输时,在瞬变期间使用的进行了ρ分级的超导电缆可连续地用作DC电缆。也就是说,使用除了ρ分级之外还进行ε分级的超导电缆可适用于各个DC传输和AC传输,并且也适用作AC和DC传输的线路。In addition to the ρ classification described above, by constructing an electrical insulating layer whose dielectric constant ε increases toward the inner peripheral side and decreases toward the outer peripheral side, a cable suitable also for AC transmission is formed. "ε classification" is also performed over the entire area in the diameter direction of the electrical insulating layer. In addition, the superconducting cable subjected to the above-mentioned ρ classification has better DC characteristics, and can be suitably used as a DC transmission line. On the other hand, most current transmission lines are constructed for AC transmission. When a transmission system is converted from an AC system to a DC system, a case occurs in which AC transmission is performed instantaneously using a ρ-graded superconducting cable before conversion to DC transmission. For example, when a part of the cable of the transmission line is replaced by a ρ-graded superconducting cable, while the other part is still a cable for AC transmission, or the cable used for the AC transmission of the transmission line is replaced by a ρ-graded superconducting cable This can occur when the cable is replaced and the transmission device connected to the cable is still a device for AC. In this case, AC transmission is instantaneously performed using a ρ-graded superconducting cable, and then the system is finally converted to DC transmission. Therefore, superconducting cables can preferably be designed not only to have good DC characteristics, but also to take into account AC characteristics. When AC characteristics are also considered, a superconducting cable having good pulse characteristics such as surge can be constructed by constructing an electrical insulating layer whose dielectric constant ε increases toward the inner peripheral side and decreases toward the outer peripheral side. Then, when the above-mentioned transient period ends and DC transmission is performed, the ρ-graded superconducting cable used during the transient period can be continuously used as a DC cable. That is, using a superconducting cable that is ε-graded in addition to ρ-classified is applicable to each of DC transmission and AC transmission, and is also suitable as a line for AC and DC transmission.
上述的PPLP(商标)一般随着比率k增加而具有较高的ρ值和较低的ε值。因此,在电绝缘层用比率k向着电绝缘层的外周边侧增加的PPLP(商标)构成时,ρ可朝向外周边侧增加,同时,ε可朝向外周边侧降低。The PPLP (trademark) described above generally has higher p values and lower ε values as the ratio k increases. Therefore, when the electrical insulating layer is constituted with PPLP (trademark) in which the ratio k increases toward the outer peripheral side of the electrical insulating layer, ρ can be increased toward the outer peripheral side, and at the same time, ε can be decreased toward the outer peripheral side.
另一方面,牛皮纸一般随着气密性增加而具有较高的ρ值和较高的ε值。因此,只使用牛皮纸难以构造ρ值朝向外周边侧增加且ε值朝向外周边侧降低的电绝缘层。因此,可使用牛皮纸与复合纸结合构成电绝缘层。作为一个示例,牛皮纸层可形成在电绝缘层的内周边侧上,PPLP层可形成在其外侧上,从而使得牛皮纸的电阻率ρ值低于PPLP层的ρ值,牛皮纸的介电常数ε值高于PPLP的介电常数ε值。Kraft paper, on the other hand, generally has higher p values and higher ε values as air tightness increases. Therefore, it is difficult to construct an electrical insulating layer in which the p value increases toward the outer peripheral side and the ε value decreases toward the outer peripheral side using only kraft paper. Therefore, kraft paper and composite paper can be used to form an electrical insulation layer. As an example, a kraft paper layer may be formed on the inner peripheral side of the electrical insulating layer, and a PPLP layer may be formed on the outer side thereof, so that the kraft paper has a resistivity ρ value lower than that of the PPLP layer, and a kraft paper has a dielectric constant ε value lower than that of the PPLP layer. Higher than the dielectric constant ε value of PPLP.
外部超导层设在上述的电绝缘层的外周边上。外部超导层用超导材料形成,如用于形成超导体层的材料。与用来形成超导体层的材料相同的超导材料可用在外部超导层中。在本发明的超导电缆线路用于DC传输时,外部超导层例如可在单极传输中用作回路导线,在双极传输中用作中性导线层。特别地,在执行双极传输时,外部超导层可用来在正极和负极之间产生不平衡时流经不平衡电流。另外,在一个电极处于异常状态且双极传输变为单极传输时,外部超导层可用作回路导线,以用于流经相当于流过超导体层的传输电流的电流。在本发明的超导电缆线路用于AC传输时,外部超导层可用作屏蔽层,该屏蔽层用来流过由流经超导体层的电流感应形成的屏蔽电流。也用于绝缘的保护层设置在外部超导层的外周边上。An outer superconducting layer is provided on the outer periphery of the aforementioned electrically insulating layer. The outer superconducting layer is formed of a superconducting material, such as the material used to form superconducting layers. The same superconducting material as that used to form the superconductor layer can be used in the outer superconducting layer. When the superconducting cable line of the invention is used for DC transmission, the outer superconducting layer can be used, for example, as a return conductor in unipolar transmission and as a neutral conductor layer in bipolar transmission. In particular, when performing bipolar transport, the outer superconducting layer can be used to flow an unbalanced current when an imbalance is created between the positive and negative poles. In addition, when one electrode is abnormal and bipolar transmission changes to unipolar transmission, the outer superconducting layer can be used as a return wire for passing a current equivalent to the transport current flowing through the superconducting layer. When the superconducting cable line of the present invention is used for AC transmission, the outer superconducting layer can be used as a shield for passing a shielding current induced by the current flowing through the superconducting layer. A protective layer also for insulation is provided on the outer periphery of the outer superconducting layer.
具有如上结构的用于容纳电缆芯的电缆的热绝缘管可具有由内管和外管形成的双层管结构,在管间设有热绝缘材料,并进行抽真空,从而获得用于形成真空绝缘结构所需的规定真空度。内管内部的空间用作冷却剂通道,其充满用于冷却电缆芯(特别是超导体层和外部超导层)的冷却剂如液氮。同样地,用于电缆的热绝缘管优选是柔性波纹管。特别地,用于电缆的热绝缘管优选由金属材料如高强度的不锈钢形成。The thermal insulating tube for accommodating a cable having the above structure may have a double-layered tube structure formed by an inner tube and an outer tube, and a thermal insulating material is provided between the tubes, and a vacuum is applied to obtain a vacuum for forming a vacuum. The specified degree of vacuum required for insulating structures. The space inside the inner tube is used as a coolant channel, which is filled with a coolant such as liquid nitrogen for cooling the cable core, especially the superconductor layer and the outer superconductor layer. Likewise, the thermal insulation tube for the cable is preferably a flexible corrugated tube. In particular, heat insulating pipes for cables are preferably formed of metallic materials such as high-strength stainless steel.
充满用于电缆的热绝缘管(其用于本发明中)的冷却剂的温度高于用于流体的热绝缘管内部所输送的液氢的温度。例如,液氮用作冷却剂。由于液氢的温度低于超导电缆的冷却剂的温度,可用液氢将装在用于流体的热绝缘管中的超导电缆的冷却剂冷却。因此,在本发明的线路中,在没有设置用来冷却超导电缆的冷却剂的单独的用于冷却剂的冷却系统的情况下,可设置能够维持超导部分的超导状态的温度。The temperature of the coolant filling the thermal insulation tube for cables (which is used in the present invention) is higher than the temperature of the liquid hydrogen conveyed inside the thermal insulation tube for fluid. For example, liquid nitrogen is used as a coolant. Since the temperature of liquid hydrogen is lower than that of the coolant of the superconducting cable, the coolant of the superconducting cable contained in the heat insulating tube for fluid can be cooled with liquid hydrogen. Therefore, in the circuit of the present invention, a temperature capable of maintaining the superconducting state of the superconducting portion can be set without providing a separate cooling system for the coolant for cooling the coolant of the superconducting cable.
在本发明的线路中,带有用于电缆的热绝缘管的超导电缆装在用于流体的热绝缘管中,该热绝缘管用于输送液氢。利用这种结构,装在用于流体的热绝缘管中的超导电缆具有温度低于常温的电缆周围的环境,更具体地说,大约20K(其为液氢的温度)的低温环境,并由此与置于环境中的情况相比,用于电缆的热绝缘管的内部和外部之间的温差降低至小于200K。特别地,在液氮用作电缆冷却剂时,用于电缆的热绝缘管的内部和外部之间的温差变成大约50K。另外,装在用于流体的热绝缘管内的超导电缆具有双层热绝缘结构,其由用于液氢的热绝缘结构和用于电缆自身的热绝缘结构形成。因此,由于本发明的线路在用于电缆的热绝缘管的内部和外部之间具有小的温差,且超导电缆具有如上所述的双层热绝缘结构,与置于环境中的超导电缆线路相比,可有效地降低从外部侵入电缆部分中的热。In the circuit of the present invention, a superconducting cable with a thermally insulating tube for the cable is housed in a thermally insulating tube for fluid, which is used to transport liquid hydrogen. With this structure, the superconducting cable housed in the heat insulating tube for fluid has an environment around the cable whose temperature is lower than normal temperature, more specifically, a low temperature environment of about 20K which is the temperature of liquid hydrogen, and The temperature difference between the inside and the outside of the thermally insulating tube for the cable is thereby reduced to less than 200K compared to the case of placement in the environment. In particular, when liquid nitrogen is used as a cable coolant, the temperature difference between the inside and outside of the heat insulating tube for the cable becomes about 50K. In addition, a superconducting cable housed in a thermal insulation tube for fluid has a double-layer thermal insulation structure formed of a thermal insulation structure for liquid hydrogen and a thermal insulation structure for the cable itself. Therefore, since the line of the present invention has a small temperature difference between the inside and the outside of the thermal insulation tube for the cable, and the superconducting cable has the double-layer thermal insulation structure as described above, it is different from the superconducting cable placed in the environment Compared with the line, it can effectively reduce the heat intruded into the cable part from the outside.
具有与其内输送的液氢相应的热绝缘性能的热绝缘管可用作用于容纳超导电缆的用于流体的热绝缘管。作为一个示例,可以使用具有与超导电缆的结构类似的热绝缘管,也就是说,具有由外管和内管形成的双层管结构,其包括管间的热绝缘材料并对其抽真空。在这种情况下,内管内部的空间变成用于液氢的输送通道。A heat insulating pipe having a heat insulating property corresponding to liquid hydrogen conveyed therein can be used as a heat insulating pipe for fluid for accommodating a superconducting cable. As an example, it is possible to use a thermally insulating tube having a structure similar to that of a superconducting cable, that is, having a double-layered tube structure formed by an outer tube and an inner tube, including a thermal insulating material between the tubes and evacuating it . In this case, the space inside the inner tube becomes a delivery channel for liquid hydrogen.
例如,在通过焊接由不锈钢、钢等制成的金属板来形成用于流体的热绝缘管时,通过将电缆设置在金属板上、弯曲该金属板以覆盖电缆并焊接该金属板的边缘,可将超导电缆装在用于流体的热绝缘管中。在由不锈钢、钢等制成的金属管用作用于流体的热绝缘管时,通过将超导电缆插入管内,可将电缆装在用于流体的热绝缘管中。在这种情况下,滑线(skidwire)(滑动导线)可螺旋卷绕在电缆周围,从而提高超导电缆的插入特性。特别地,在用于电缆的热绝缘管是具有突起和凹陷的波纹管时,通过用节距大于波纹管的突起和凹陷间的节距(长螺距(1ong pitch))来卷绕滑线,从而防止滑线进入波纹管的凹陷部分,并且从而将滑线置于波纹管的突起和凹陷的上方,以防止波纹管的外周边与用于流体的热绝缘管直接接触,也就是说,以获得卷绕在波纹管周围的滑线和用于流体的热绝缘管之间的点接触,从而可以提高插入特性。此外,张紧部件等可连接到超导电缆,从而可将其拉入用于流体的热绝缘管中。For example, when forming a heat insulating pipe for fluid by welding a metal plate made of stainless steel, steel, etc., by arranging cables on the metal plate, bending the metal plate to cover the cables, and welding the edges of the metal plate, Superconducting cables can be housed in thermally insulated tubes for fluids. When a metal pipe made of stainless steel, steel, or the like is used as the heat insulating pipe for fluid, by inserting a superconducting cable into the pipe, the cable can be housed in the heat insulating pipe for fluid. In this case, a skidwire (sliding wire) may be helically wound around the cable, thereby improving the insertion characteristics of the superconducting cable. In particular, when the heat insulating tube for the cable is a corrugated tube having protrusions and dents, by winding the slide wire with a pitch larger than that between the protrusions and dents of the corrugated tube (long pitch (1ong pitch)), Thereby preventing the slide wire from entering the recessed portion of the bellows, and thereby placing the slide wire over the protrusions and depressions of the bellows to prevent the outer periphery of the bellows from coming into direct contact with the heat insulating tube for the fluid, that is, to A point contact is obtained between the slide wire wound around the bellows and the heat insulating tube for the fluid, so that insertion characteristics can be improved. In addition, tension members and the like can be connected to the superconducting cable so that it can be pulled into a thermally insulated tube for the fluid.
装在用于流体的热绝缘管中的超导电缆可设置成与用于流体的热绝缘管内部所输送的液氢接触或者不与液氢接触。在前一种情况下,超导电缆可浸入液氢中。在这种情况下,由于超导电缆的整个周边与低温液氢接触,可有效地降低从外部侵入到电缆中的热,并且可利用液氢将电缆冷却剂充分地冷却。The superconducting cable housed in the thermally insulating tube for fluid may be arranged to be in contact with or not to be in contact with liquid hydrogen conveyed inside the thermally insulating tube for fluid. In the former case, the superconducting cables can be submerged in liquid hydrogen. In this case, since the entire periphery of the superconducting cable is in contact with low-temperature liquid hydrogen, heat intruded into the cable from the outside can be effectively reduced, and the cable coolant can be sufficiently cooled by the liquid hydrogen.
另一方面,在超导电缆浸入液氢中时,例如在超导电缆短路从而产生火花的情况下会发生诸如液氢爆炸等问题。因此,用于流体的热绝缘管内部的区域可划分成用于液氢的输送区域和用于将超导电缆设置在其内的区域。作为输送区域,例如,用于液氢的输送管可分离地设置在用于流体的热绝缘管内部,超导电缆可沿着输送管纵向设置。在这种情况下,在导热率高的热交换器隔板设置在用于流体的热绝缘管内部的未由输送管和超导电缆占据的空间内时,可通过热交换器隔板将液氢的热有效地传导给电缆,并由此有效地冷却该电缆。这种热交换器隔板例如可由导热率高的材料如铝形成。更具体地说,热交换器隔板可通过卷绕铝箔而形成。On the other hand, when the superconducting cable is immersed in liquid hydrogen, for example, in the case where the superconducting cable is short-circuited to generate a spark, problems such as explosion of liquid hydrogen may occur. Thus, the area inside the thermally insulating tube for the fluid can be divided into a transport area for liquid hydrogen and an area for arranging the superconducting cable therein. As a delivery area, for example, a delivery pipe for liquid hydrogen may be provided separately inside a heat insulating pipe for fluid, and a superconducting cable may be provided longitudinally along the delivery pipe. In this case, when the heat exchanger partition with high thermal conductivity is placed in the space not occupied by the delivery pipe and the superconducting cable inside the thermal insulation pipe for the fluid, the liquid can be transported through the heat exchanger partition. The heat of the hydrogen is efficiently conducted to the cable and thereby effectively cools the cable. Such heat exchanger partitions can be formed, for example, from a material with high thermal conductivity, such as aluminum. More specifically, heat exchanger separators may be formed by winding aluminum foil.
在本发明中,可以使用利用温度高于液氢的温度的冷却剂的超导电缆,并且由于电缆装在用于流体的热绝缘管(其用于输送液氢)内,可利用液氢将冷却剂冷却。然而,超导电缆的冷却剂可被液氢过度冷却,并可发生冷却剂固化。因此,需要将装在用于流体的热绝缘管内的超导电缆的过度冷却的冷却剂的温度升高至能够维持超导状态的范围内。另一方面,需要将液氢冷却,以维持液态(液化)。因此,本发明包括用于交换液氢和液氮之间的热的热交换装置,以便冷却液氢并升高由液氢过度冷却都冷却剂的温度。In the present invention, a superconducting cable using a coolant whose temperature is higher than that of liquid hydrogen can be used, and since the cable is housed in a thermally insulated tube for fluid (which is used to transport liquid hydrogen), the liquid hydrogen can be used to Coolant cools. However, the coolant of the superconducting cable can be supercooled by liquid hydrogen, and solidification of the coolant can occur. Therefore, it is necessary to raise the temperature of the supercooled coolant of the superconducting cable housed in the heat insulating tube for fluid within a range capable of maintaining the superconducting state. On the other hand, liquid hydrogen needs to be cooled to maintain a liquid state (liquefaction). Accordingly, the present invention includes heat exchange means for exchanging heat between liquid hydrogen and liquid nitrogen in order to cool the liquid hydrogen and raise the temperature of the coolant supercooled by the liquid hydrogen.
热交换装置可具有这种结构,其例如包括用于循环热交换介质的通道、使热交换介质膨胀的膨胀阀、用于压缩热交换介质的压缩机以及用于容纳所述通道、膨胀阀和压缩机的热绝缘壳体。用于液氢的输送管路设置在一部分通道上,该部分通道穿过膨胀阀,以便用膨胀的热交换介质冷却液氢,而用于电缆的冷却剂的输送管路设置在一部分通道上,该部分通道穿过压缩机,以利用压缩的热交换介质将超导电缆的冷却剂的温度升高。用于液氢的输送管路例如可设置形成循环路径,该循环路径中的从用于流体的热绝缘管内喷射的液氢会再次流入该用于流体的热绝缘管。可替换地,存储液氢的液罐可连接到用于流体的热绝缘管,并且可设置输送管路,以形成循环路径,该循环路径中,从液罐喷射的液氢会再次流入该液罐。然后,一部分这种用于液氢的输送管路可设置成与穿过膨胀阀的热交换介质的一部分通道接触,或者设置在该部分附近。用于冷却剂的输送管路可设置成其中从用于电缆的热绝缘管喷射的冷却剂会再次流入该用于电缆的热绝缘管的循环路径。然后,一部分这种用于冷却剂的输送管路可设置成与穿过压缩机的热交换介质的一部分通道接触,或者设置在该部分附近。在热交换装置中,冷却剂的温度上升至能够维持超导部分的超导状态的温度范围内。由于包含用于冷却液氢并同时加热电缆的冷却剂的热交换装置,本发明能够同时满足将超导电缆的冷却剂的温度升高的要求和冷却液氢的要求。The heat exchanging device may have a structure comprising, for example, passages for circulating the heat exchanging medium, expansion valves for expanding the heat exchanging medium, compressors for compressing the heat exchanging medium, and for accommodating the passages, expansion valves and Thermally insulated casing of the compressor. The delivery line for the liquid hydrogen is arranged on a part of the channel which passes through the expansion valve in order to cool the liquid hydrogen with the expanded heat exchange medium, and the delivery line for the coolant of the cable is arranged on a part of the channel, This part of the channel passes through the compressor to raise the temperature of the coolant of the superconducting cable with the compressed heat exchange medium. The delivery pipeline for liquid hydrogen can, for example, be arranged to form a circulation path in which the liquid hydrogen sprayed from the heat insulation pipe for fluid flows into the heat insulation pipe for fluid again. Alternatively, a liquid tank storing liquid hydrogen may be connected to a thermally insulated pipe for fluid, and a transfer line may be provided to form a circulation path in which liquid hydrogen sprayed from the liquid tank flows into the liquid again. Can. A portion of this delivery line for liquid hydrogen may then be placed in contact with, or adjacent to, a portion of the passage of the heat exchange medium passing through the expansion valve. The delivery line for the coolant may be provided as a circulation path in which the coolant sprayed from the heat insulation pipe for cables flows into the heat insulation pipe for cables again. A portion of this delivery line for coolant may then be arranged in contact with, or in the vicinity of, a portion of the passage of the heat exchange medium passing through the compressor. In the heat exchange device, the temperature of the coolant is raised within a temperature range capable of maintaining the superconducting state of the superconducting portion. Due to the inclusion of heat exchange means for cooling the liquid hydrogen and heating the coolant of the cable at the same time, the present invention can satisfy both the requirement of raising the temperature of the coolant of the superconducting cable and the requirement of cooling the liquid hydrogen.
要指出的是,在本发明中,由于如上所述可降低侵入到装在用于流体的热绝缘管内的超导电缆中的热,可以简化用于电缆的热绝缘管的热绝缘结构,也就是说,从外部侵入电缆内的热的热绝缘性能水平可以降低。在用于电缆的热绝缘管具有由外管和内管形成的双层管结构时,例如可通过改变外管和内管之间的真空度、改变设置在外管和内管之间的热绝缘材料的卷绕数目或者改变热绝缘材料的材料来改变热绝缘性能,其中,所述热绝缘材料设置在管间,并进行抽真空。It is to be noted that, in the present invention, since the heat intruded into the superconducting cable housed in the heat insulating tube for fluid can be reduced as described above, the thermal insulation structure of the thermal insulating tube for the cable can be simplified, and also That is, the level of thermal insulation performance of heat intruding into the cable from the outside can be reduced. When the thermal insulation tube used for the cable has a double-layer tube structure formed by the outer tube and the inner tube, for example, by changing the degree of vacuum between the outer tube and the inner tube, changing the thermal insulation provided between the outer tube and the inner tube The number of windings of the material or the material of the thermal insulation material is changed to change the thermal insulation performance, wherein the thermal insulation material is arranged between the tubes and vacuumized.
另外,在本发明的超导电缆线路中,形成线路的超导电缆的纵向上的整个长度可装在用于流体的热绝缘管中,或者只有一部分电缆装在用于流体的热绝缘管中。考虑到降低侵入的热,优选在用于流体的热绝缘管中装入超导电缆的整个长度。In addition, in the superconducting cable line of the present invention, the entire length in the longitudinal direction of the superconducting cable forming the line may be housed in the heat insulating pipe for fluid, or only a part of the cable may be housed in the heat insulating pipe for fluid . In view of reducing intrusive heat, it is preferred to enclose the entire length of the superconducting cable in a thermally insulating tube for the fluid.
例如可以这样构成本发明的这种超导电缆线路,即,将超导电缆装入具有热绝缘结构的管路中,其中,该管路用于将生产液氢的氢气厂与存储液氢的氢气站相连,或者将超导电缆在氢气站装入用于输送液氢的热绝缘管中,并在氢气站附近设置热交换装置。本发明的线路可用来将电力供给氢气站使用的各种电力装置,或者用来从管路中吸收所需的电力,以将电力供给到各个地方。For example, the superconducting cable line of the present invention can be constructed in such a way that the superconducting cable is packed into a pipeline with a thermal insulation structure, wherein the pipeline is used to connect a hydrogen plant for producing liquid hydrogen with a storage facility for liquid hydrogen. The hydrogen station is connected, or the superconducting cable is installed in the heat insulation pipe used to transport liquid hydrogen at the hydrogen station, and a heat exchange device is installed near the hydrogen station. The circuit of the present invention can be used to supply electric power to various electric devices used in the hydrogen station, or to absorb required electric power from pipelines to supply electric power to various places.
如上所述,本发明的超导电缆线路可用作DC传输或AC传输。例如在进行三相AC传输时,电缆可形成为三芯超导电缆,其中,各个芯的超导体层用于各相传输,各个芯的外部超导层用作屏蔽层。在进行单相AC传输时,电缆可形成为单芯超导电缆,其中,包含在芯中的超导体层可用于相传输,外部超导层可用作屏蔽层。在执行单极DC传输时,电缆可形成为单芯超导电缆,其中,芯的超导体层可用作“去”线(go conductor),外部超导层可用作回路导线。在执行双极DC传输时,电缆可形成为两芯超导电缆,其中,一个芯的超导体层可用于正极传输,另一个芯的超导体层用于负极传输,各个芯的外部超导层可用作中性导线。As described above, the superconducting cable line of the present invention can be used for DC transmission or AC transmission. For example in the case of three-phase AC transmission, the cable can be formed as a three-core superconducting cable, wherein the superconducting layer of each core is used for the transmission of each phase, and the outer superconducting layer of each core is used as a shielding layer. For single-phase AC transmission, the cable can be formed as a single-core superconducting cable, where a superconductor layer contained in the core can be used for phase transmission and an outer superconducting layer can be used as a shield. When performing unipolar DC transmission, the cable can be formed as a single core superconducting cable, where the superconducting layer of the core can be used as a "go conductor" and the outer superconducting layer can be used as a return conductor. When performing bipolar DC transmission, the cable can be formed as a two-core superconducting cable, where the superconducting layer of one core can be used for positive pole transmission and the superconducting layer of the other core can be used for negative pole transmission, and the outer superconducting layer of each core can be used as a neutral conductor.
另外,通过使用包含如上所述的进行了ρ分级和ε分级的电绝缘层的电缆芯的超导电缆,本发明的超导电缆也可用作DC和AC传输的线路。在这种情况下,不仅超导电缆而且终端结构优选构造成适于DC和AC传输,其中,该终端结构形成在线路的端部内,用于将超导电缆与常温侧的传导部分相连(普通传导电缆,连接到普通传导电缆的引导部)。终端结构的代表性结构包括从超导电缆的端部延伸的电缆芯端部、连接到常温侧的传导部分的抽出导体部、利用抽出导体部电连接到电缆芯端部的连接部以及端接接线盒,其中,该端接接线盒用来容纳电缆芯端部、在连接到电缆芯一侧上的抽出导体部的端部以及连接部。该端接接线盒通常包括冷却剂池和真空绝热池,该冷却剂池用于冷却电缆芯端部或者抽出导体部的端部,该真空绝热池设置在冷却剂池的外周边上。在这种终端结构中,抽出导体部的导体的横截面积按需要可变,这是因为流过抽出导体部的电流量在AC传输和DC传输中不同。因此,用于AC和DC传输的终端结构的适当结构具有可根据负载改变的抽出导体部的导体横截面积。这种终端结构例如可具有其中抽出导体部划分成连接到电缆芯端部的低温侧导体部和设置在常温侧上的传导部分一侧上的常温侧导体部的这种结构,其中,该低温侧导体部和常温侧导体部可相互拆开。此外,包含多个可拆卸的这种抽出导体部,以容许整个抽出导体部的导体的横截面积根据低温侧导体部和常温侧导体部之间的接头数而改变。各个抽出导体部的导体的横截面积可以彼此相同或互不相同。通过执行抽出导体部的附装和拆卸,本发明的包含这种终端结构的超导电缆线路可容易地从DC传输改变成AC传输,或者从AC传输改变成DC传输。另外,由于抽出导体部的导体的横截面积可作如上所述的变化,导体的横截面积也可在供给的电力量在AC传输或DC传输过程中改变时而适当地变化。In addition, the superconducting cable of the present invention can also be used as a line for DC and AC transmission by using a superconducting cable comprising a cable core having a ρ-classified and ε-classified electrical insulating layer as described above. In this case, not only the superconducting cable but also the terminal structure, which is formed in the end of the line for connecting the superconducting cable to the conductive part on the normal temperature side, is preferably configured to be suitable for DC and AC transmission (common conductive cable, connected to the lead of a normal conductive cable). A representative structure of the terminal structure includes a cable core end extending from the end of the superconducting cable, a drawn conductor part connected to the conduction part on the normal temperature side, a connection part electrically connected to the cable core end using the drawn conductor part, and a termination. A junction box, wherein the terminating junction box is used to accommodate the cable core end, the end of the withdrawn conductor part on the side connected to the cable core, and the connection part. The terminating junction box generally includes a coolant pool for cooling the cable core end or the end of the withdrawn conductor section, and a vacuum insulation pool arranged on the outer periphery of the coolant pool. In this terminal structure, the cross-sectional area of the conductor of the drawn conductor portion is variable as needed because the amount of current flowing through the drawn conductor portion differs in AC transmission and DC transmission. Therefore, an appropriate structure of the terminal structure for AC and DC transmission has a conductor cross-sectional area of the drawn conductor portion that can be changed according to the load. Such a terminal structure may have, for example, a structure in which the drawn-out conductor portion is divided into a low-temperature-side conductor portion connected to the end portion of the cable core and a normal-temperature-side conductor portion disposed on the side of the conduction portion on the normal-temperature side, wherein the low-temperature The side conductor part and the normal temperature side conductor part are detachable from each other. In addition, a plurality of such withdrawable conductor parts are included to allow the cross-sectional area of the conductors of the entire withdrawn conductor part to be changed according to the number of joints between the low temperature side conductor part and the normal temperature side conductor part. The cross-sectional areas of the conductors of the respective drawn conductor portions may be the same as or different from each other. The superconducting cable line of the present invention including such a terminal structure can be easily changed from DC transmission to AC transmission, or from AC transmission to DC transmission, by performing attachment and detachment of the drawn conductor portion. In addition, since the cross-sectional area of the conductor drawn from the conductor portion can be changed as described above, the cross-sectional area of the conductor can also be appropriately changed when the amount of supplied power is changed during AC transmission or DC transmission.
在依照本发明的具有如上结构的超导电缆线路中,超导电缆装在用来输送液氢的热绝缘管中,以降低用于电缆的热绝缘管的内部和外部间的温差,且电缆的热绝缘结构形成为双层热绝缘结构,该双层结构包括用于电缆的热绝缘管和用于流体的热绝缘管,以有效地降低侵入电缆的热。另外,在本发明的线路中,超导电缆的冷却剂可用在用于流体的热绝缘管中输送的液氢冷却。在如上所述的热侵入降低和利用所述的流体将冷却剂冷却的情况下,本发明的线路可充分降低或者充分消除用于冷却用于电缆的冷却剂所需的能量。特别地,不需要用于将超导电缆的冷却剂冷却的冷却系统,或者即使设置了冷却系统,与传统系统相比,可以使其冷却性能的水平更低。In the superconducting cable line having the above structure according to the present invention, the superconducting cable is housed in the heat insulating pipe for transporting liquid hydrogen to reduce the temperature difference between the inside and outside of the heat insulating pipe for the cable, and the cable The thermal insulation structure is formed as a double-layer thermal insulation structure, which includes a thermal insulation tube for the cable and a thermal insulation tube for the fluid, so as to effectively reduce the heat intruding into the cable. In addition, in the circuit of the present invention, the coolant of the superconducting cable can be cooled by liquid hydrogen conveyed in the heat insulating tube for the fluid. With the reduced heat intrusion as described above and cooling of the coolant with said fluid, the circuit of the invention substantially reduces or substantially eliminates the energy required for cooling the coolant for the cable. In particular, a cooling system for cooling the coolant of the superconducting cable is not required, or even if a cooling system is provided, the level of cooling performance can be lowered compared with conventional systems.
因此,如上所述,在也将超导电缆的冷却剂冷却考虑在内时,与传统的线路相比,本发明的具有如上所述结构的超导电缆的性能系数增加,这是因为如上所述通过降低侵入电缆中的热,可以充分地降低用于将冷却剂冷却所需的能量。特别地,在本发明的线路用作DC传输的线路时,热侵入的降低对增加性能系数极其有效,其中,在本发明的线路中,电流通道几乎不产生热(导体损失),这是由于在这种情况下热侵入变成能量损失的主要原因。Therefore, as described above, when the coolant cooling of the superconducting cable is also taken into consideration, the coefficient of performance of the superconducting cable having the above-mentioned structure of the present invention is increased compared with the conventional line, because the above-mentioned By reducing the heat intrusion into the cable as described above, the energy required for cooling the coolant can be substantially reduced. In particular, the reduction of heat intrusion is extremely effective for increasing the coefficient of performance when the circuit of the present invention is used as a circuit for DC transmission, wherein, in the circuit of the present invention, the current path generates little heat (conductor loss), because In this case heat intrusion becomes the main cause of energy loss.
另外,在本发明的线路中,用于冷却液氢的能量也通过使用超导电缆的冷却剂来作为用于将液氢冷却的热交换对象而大大地降低。因此,本发明可完全降低用于冷却超导电缆的冷却剂所需的能量以及用于冷却液氢所需的能量,从而充分地增加性能系数。In addition, in the circuit of the present invention, the energy for cooling the liquid hydrogen is also greatly reduced by using the coolant of the superconducting cable as a heat exchange object for cooling the liquid hydrogen. Therefore, the present invention can completely reduce the energy required for cooling the coolant of the superconducting cable and the energy required for cooling liquid hydrogen, thereby substantially increasing the coefficient of performance.
此外,在本发明的线路中使用包括具有进行了ρ分级的电绝缘层的电缆芯的超导电缆时,该线路可具有良好的DC耐压特性并适于DC传输。另外,在本发明的线路中使用包括具有进行了ρ分级并且在靠近超导体层的部分设置为高ε值的电绝缘层的电缆芯的超导电缆,除了上述的DC耐压特性增加之外,Imp.耐压特性也可增加。特别地,在电绝缘层形成为朝向内周边侧的ε值增加且朝向外周边侧的ε值降低时,本发明的线路也可具有良好的AC电特征。因此,本发明的超导电缆可适用于各个DC传输和AC传输。另外,在包括具有进行了ρ分级和ε分级的电绝缘层的电缆芯的超导电缆用作本发明的线路且形成在线路端部的终端结构具有抽出导体部的导体的横截面积可变的结构时,本发明的线路可适用于其中传输系统从AC系统改变为DC系统的瞬变周期,其中,抽出导体部设置在超导电缆和常温侧的传导部分之间。Furthermore, when a superconducting cable including a cable core having a ρ-graded electric insulating layer is used in the line of the present invention, the line can have good DC withstand voltage characteristics and be suitable for DC transmission. In addition, in the circuit of the present invention, using a superconducting cable including a cable core having an electric insulation layer that is p-graded and provided with a high ε value at a portion close to the superconductor layer, in addition to the above-mentioned increase in the DC withstand voltage characteristic, Imp. withstand voltage characteristics can also be increased. In particular, when the electrical insulating layer is formed so that the ε value increases toward the inner peripheral side and the ε value decreases toward the outer peripheral side, the wiring of the present invention can also have good AC electrical characteristics. Therefore, the superconducting cable of the present invention is applicable to each of DC transmission and AC transmission. In addition, a superconducting cable including a cable core having a ρ-classified and ε-classified electrical insulating layer is used as the line of the present invention and the terminal structure formed at the end of the line has a conductor whose cross-sectional area is variable. When having a structure, the circuit of the present invention is applicable to a transient period in which the transmission system is changed from an AC system to a DC system, wherein the extraction conductor portion is provided between the superconducting cable and the conduction portion on the normal temperature side.
附图说明Description of drawings
图1是本发明的超导电缆线路的结构的示意性横截面视图;Fig. 1 is a schematic cross-sectional view of the structure of a superconducting cable line of the present invention;
图2是本发明的超导电缆线路中的超导电缆附近的一部分结构的示意性横截面视图;2 is a schematic cross-sectional view of a part of the structure near the superconducting cable in the superconducting cable circuit of the present invention;
图3是其中构造了本发明的超导电缆线路的结构的示意性视图;Fig. 3 is a schematic view of the structure in which the superconducting cable line of the present invention is constructed;
图4是本发明的超导电缆线路的结构的示意图,其中,该超导电缆线路的结构包括用于液氢的输送管、超导电缆和用于流体的热绝缘管内部的热交换器隔板,该图为电缆附近的一部分结构的示意性横截面视图;Fig. 4 is a schematic diagram of the structure of the superconducting cable line of the present invention, wherein the structure of the superconducting cable line includes a transport pipe for liquid hydrogen, a superconducting cable, and a heat exchanger insulation inside the heat insulation pipe for fluid plate, which is a schematic cross-sectional view of a part of the structure near the cable;
图5是在AC传输线路情况下利用三芯型式的超导电缆形成在本发明的超导电缆的端部中的终端结构的构造的示意图;5 is a schematic diagram of the construction of a terminal structure formed in the end of the superconducting cable of the present invention using a three-core type superconducting cable in the case of an AC transmission line;
图6是在DC传输线路情况下利用三芯型式的超导电缆形成在本发明的超导电缆的端部中的终端结构的构造的示意图;6 is a schematic diagram of the construction of a terminal structure formed in the end of the superconducting cable of the present invention using a three-core type superconducting cable in the case of a DC transmission line;
图7是用于三相AC传输的三芯型式的超导电缆的横截面视图;7 is a cross-sectional view of a three-core type superconducting cable for three-phase AC transmission;
图8是各个电缆芯的横截面视图。Fig. 8 is a cross-sectional view of each cable core.
附图标记说明Explanation of reference signs
1:液氢,2:用于流体的热绝缘管,2a:外管,2b:内管,3:输送管,4:热交换器隔板,10:超导电缆,11:用于电缆的热绝缘管,11a:外管,11b:内管,12:电缆芯,13:空间,14:超导体层,15:外部超导层,16:输送管路,20:氢气站,21:罐,22:输送管路,30:热交换装置,31:通道,32:膨胀阀,33:压缩机,34:热绝缘外壳,40:抽出导体部,41:低温侧导体部分,41a:低温侧密封部分,42:常温侧导体部分,42a:常温侧密封部分,43:引导部,44:接地线,50:端接接线盒,51,52:冷却剂池,53:真空绝缘池,53a:可延伸部分,60:绝缘套管,61:抽出导体部,62:瓷管,63:环氧单元,70:短路部分,100:用于三相AC传输的超导电缆,101:热绝缘管,101a:外管,101b:内管,102:电缆芯,103:空间,104:防腐层,200:定径管,201:超导体层,202:电绝缘层,203:超导屏蔽层,204:保护层。1: liquid hydrogen, 2: thermal insulation tube for fluid, 2a: outer tube, 2b: inner tube, 3: delivery tube, 4: heat exchanger separator, 10: superconducting cable, 11: for cable Thermal insulation tube, 11a: outer tube, 11b: inner tube, 12: cable core, 13: space, 14: superconductor layer, 15: outer superconductor layer, 16: delivery pipeline, 20: hydrogen station, 21: tank, 22: Conveying pipeline, 30: Heat exchange device, 31: Passage, 32: Expansion valve, 33: Compressor, 34: Thermal insulation casing, 40: Pull out conductor part, 41: Low temperature side conductor part, 41a: Low temperature side seal Parts, 42: Normal temperature side conductor part, 42a: Normal temperature side sealing part, 43: Guide part, 44: Ground wire, 50: Termination junction box, 51, 52: Coolant pool, 53: Vacuum insulation pool, 53a: Possible Extension part, 60: insulating sleeve, 61: extracted conductor part, 62: porcelain tube, 63: epoxy unit, 70: short circuit part, 100: superconducting cable for three-phase AC transmission, 101: thermal insulation tube, 101a: outer tube, 101b: inner tube, 102: cable core, 103: space, 104: anticorrosion layer, 200: sizing tube, 201: superconductor layer, 202: electrical insulation layer, 203: superconducting shielding layer, 204: The protective layer.
具体实施方式Detailed ways
现将叙述本发明的实施例Embodiments of the present invention will now be described
示例1Example 1
图1是本发明的超导电缆线路的结构的示意性横截面图。图2是在本发明的超导电缆中,超导电缆附近部分的结构的示意性横截面图。图3是其中构造了本发明的传导电缆线路的结构的示意图。附图中的相同字符指示同一部分。本发明的超导电缆包括用来输送液氢1的用于流体的热绝缘管2、装在用于流体的热绝缘管2中的超导电缆10以及用于调节液氢1的温度和电缆的冷却剂的温度的热交换装置30。Fig. 1 is a schematic cross-sectional view of the structure of a superconducting cable line of the present invention. Fig. 2 is a schematic cross-sectional view of the structure of a portion near the superconducting cable in the superconducting cable of the present invention. Fig. 3 is a schematic diagram of a structure in which the conductive cabling of the present invention is constructed. The same characters in the drawings indicate the same parts. The superconducting cable of the present invention includes a
用于这个示例中的超导电缆10具有这种结构,即其中,三个电缆芯12绞合并装在用于电缆的热绝缘管11中,其结构大致与图7所示的超导电缆的结构类似。各个电缆芯12从中心部分开始包括定径管、超导体层、电绝缘层、外部超导层和保护层。超导体层和外部超导层都由基于Bi2223的超导带形线路形成(Ag-Mn护套线路)。通过将超导带形线路分别卷绕在定径管的外周边以及电绝缘层的外周边上形成超导体层和外部超导层。多根绞合铜线可用作定径管。垫层利用绝缘纸形成在定径管和超导体层之间。通过将半合成绝缘纸(PPLP:Sumitomo Electric Industries,Ltd.的商标)卷绕在超导体层的外周边上来构造电绝缘层。通过将牛皮纸卷绕在外部超导层的外周边上来形成保护层。内部半导体层和外部半导体层可分别设在电绝缘层的内周边侧和外周边侧(在外部超导层之下)。这种三个电缆芯12被制备、松散地绞合以具有热收缩的公差,并装在用于电缆的热绝缘管11内。在这个示例中,SUS波纹管用于形成用于电缆的热绝缘管11,其中,具有多层结构的热绝缘材料(未示出)设置在由外管11a和内管11b形成的双层管之间,并将外管11a和内管11b之间的空气抽出,从而获得形成真空多层绝缘结构的规定真空度。由内管11b的内周边和三芯电缆12的外周边封闭的空间13就变成冷却剂的通道。用于将超导体层和外部超导层冷却的冷却剂利用泵等在这个通道中循环流动。在这个示例中,液氮(大约77K)用作冷却剂。管路16连接到超导电缆10的用于电缆的热绝缘管11,以执行冷却剂的循环输送,其中,例如,冷却剂从热绝缘管11喷射到热交换装置30的一侧,且该冷却剂从热交换装置30的一侧流入热绝缘管11。泵(未示出)设置在一部分管路16上,以使冷却剂循环流动。The
具有上述结构的超导电缆10装在用于流体的热绝缘管2中。在这个示例中,用于流体的热绝缘管2具有由外管2a和内管2b形成的双层管结构,其中,热绝缘材料(未示出)设置在管2a、2b之间,并将管间的空气抽空。由内管2b的内周边和超导电缆10的外周边围成的空间变成用于液氢1的输送通道。各个管2a、2b是用钢制成的焊管,通过将超导电缆10设在用于形成内管2b的钢板上,并将钢板的两边缘焊接,可将电缆10装在内管2b中。在这个示例中,超导电缆10设置在内管2b中,同时浸入液氢中。在这个示例中,用于流体的热绝缘管2构造用于从氢气厂(未示出)向各个氢气站20输送液氢的管路。各个氢气站20包括用来存储液氢的罐21以及用于在液氢1和超导电缆10的冷却剂之间的热交换的热交换装置30。罐21连接到用于流体的热绝缘管2并存储通过用于流体的热绝缘管2输送的液氢。另外,管路22连接到罐21,以执行液氢的循环输送,其中,例如,液氢从罐21喷射到热交换装置30一侧,之后液氢从热交换装置30流入罐21。泵(未示出)包括在一部分管路22中,从而使得液氢循环输送。The
在这个示例中,热交换装置30包括使热交换介质如氦气循环输送的通道31、使热交换介质膨胀的膨胀阀32、将膨胀的热交换介质压缩的压缩机33和装设这些元件的热绝缘外壳34。设置管路22,使得用于循环输送液氢的一部分管路22与穿过膨胀阀32的一部分通道31接触,以便用膨胀的热交换介质冷却液氢。利用这种结构,液氢在与穿过膨胀阀32的一部分通道31接触的该部分管路22附近被冷却。因此,从罐21喷射的液氢流过管路22、由热交换装置30冷却并返回罐21。另外,设置管路16,使得用于循环输送电缆10的冷却剂(液氮)的一部分管路16与穿过压缩机33的一部分通道31接触,以便利用处于能够维持超导状态的温度范围内的压缩的热交换介质来升高电缆10的冷却剂的温度,其中,该电缆10的冷却剂用液氢冷却。利用这种结构,冷却剂的温度在与穿过压缩机33的该部分通道31接触的该部分管路16附近上升。因此,从用于电缆的热绝缘管11喷射的冷却剂流过管路16、用热交换装置30来提升其温度并返回热绝缘管11。In this example, the heat exchanging device 30 includes a channel 31 for circulating a heat exchanging medium such as helium, an expansion valve 32 for expanding the heat exchanging medium, a compressor 33 for compressing the expanded heat exchanging medium, and a heat exchanger for installing these elements. Insulating housing 34 . The pipeline 22 is arranged such that a part of the pipeline 22 for circulating liquid hydrogen is in contact with a part of the channel 31 passing through an expansion valve 32 to cool the liquid hydrogen with the expanding heat exchange medium. With this structure, the liquid hydrogen is cooled near the part of the pipe 22 that is in contact with the part of the passage 31 passing through the expansion valve 32 . Therefore, the liquid hydrogen injected from the tank 21 flows through the pipeline 22 , is cooled by the heat exchange device 30 and returns to the tank 21 . In addition, the pipeline 16 is provided so that a part of the pipeline 16 for circulating the coolant (liquid nitrogen) of the
装在用于流体的热绝缘管中的超导电缆具有由低温液氢覆盖的外周边,并具有用电缆自身的热绝缘管和用于液氢的热绝缘管形成的双层热绝缘结构。利用这种结构,本发明的线路可充分降低从外部侵入到超导电缆内的热。另外,由于超导电缆的外周边由低温液氢覆盖,液氢的热被传导至电缆,并将电缆的冷却剂冷却。因此,不必需要用来将超导电缆的冷却剂冷却的冷却系统。结果,通过构造本发明的超导电缆线路,用于将超导电缆的冷却剂冷却所需的能量降低,并可增加性能系数。The superconducting cable housed in a thermal insulation tube for fluid has an outer periphery covered with cryogenic liquid hydrogen, and has a double-layer thermal insulation structure formed with a thermal insulation tube for the cable itself and a thermal insulation tube for liquid hydrogen. With such a structure, the wiring of the present invention can sufficiently reduce heat intruding into the superconducting cable from the outside. In addition, since the outer periphery of the superconducting cable is covered with cryogenic liquid hydrogen, the heat of the liquid hydrogen is conducted to the cable and cools the coolant of the cable. Therefore, a cooling system for cooling the coolant of the superconducting cable is not necessary. As a result, by constructing the superconducting cable line of the present invention, the energy required for cooling the coolant of the superconducting cable is reduced, and the coefficient of performance can be increased.
此外,由于本发明的线路包括热交换装置,以用于超导电缆的冷却剂和液氢之间的热交换,从而同时执行冷却剂的加热和液氢的冷却,所以,利用热交换装置,热交换对象间的温差可以降低,用于冷却液氢所需的能量也可降低。另外,利用包括在本发明的线路中的热交换装置,与液氢的冷却相关的热可用于提高超导电缆的冷却剂的温度,该超导电缆的冷却剂由于装在用于流体的热绝缘管内而被过度冷却。因此,利用构造用于在液氢和超导电缆的冷却剂之间进行热交换的热交换装置,本发明的线路可调节液氢的温度至适当的温度,并也可调节电缆冷却剂的温度至适当的温度。结果,用于冷却超导电缆的冷却剂所需的能量以及用于冷却液氢所需的能量都可以通过构造本发明的超导电缆线路而降低。In addition, since the circuit of the present invention includes heat exchange means for heat exchange between the coolant of the superconducting cable and liquid hydrogen, thereby simultaneously performing heating of the coolant and cooling of the liquid hydrogen, using the heat exchange means, The temperature difference between heat exchange objects can be reduced, and the energy required for cooling the liquid hydrogen can also be reduced. In addition, with the heat exchange means included in the circuit of the invention, the heat associated with the cooling of liquid hydrogen can be used to increase the temperature of the coolant of the superconducting cable due to the heat contained in the fluid used Insulated tubes are overcooled. Therefore, the circuit of the present invention can adjust the temperature of the liquid hydrogen to an appropriate temperature and can also adjust the temperature of the cable coolant by using the heat exchange device configured for heat exchange between the liquid hydrogen and the coolant of the superconducting cable to the proper temperature. As a result, the energy required for cooling the coolant of the superconducting cable and the energy required for cooling liquid hydrogen can be reduced by constructing the superconducting cable line of the present invention.
应该指出,尽管这个示例中示出的结构在超导电缆的纵向上的整个长度装在用于流体的热绝缘管中,但也可只有一部分电缆装在用于流体的热绝缘管中。在本发明的线路中,可以降低热侵入的效果,并且在只有一小部分超导电缆装在用于流体的热绝缘管中时,用热交换装置来调节超导电缆的冷却剂的温度就变得困难。因此,在本发明的线路中,将足够部分的超导电缆装在用于流体的热绝缘管中,从而容许用热交换装置来调节超导电缆的冷却剂的温度。It should be noted that although the structure shown in this example has the entire length in the longitudinal direction of the superconducting cable housed in the heat insulating tube for fluid, only a part of the cable may be housed in the heat insulating tube for fluid. In the circuit of the present invention, the effect of heat intrusion can be reduced, and when only a small part of the superconducting cable is contained in the heat insulating tube for the fluid, it is easy to adjust the temperature of the coolant of the superconducting cable with the heat exchange device. become difficult. Thus, in the circuit of the invention, a sufficient portion of the superconducting cable is enclosed in a thermally insulating tube for the fluid, allowing the temperature of the coolant of the superconducting cable to be adjusted by means of heat exchange.
示例2Example 2
尽管超导电缆在上述示例1中浸入液氢中,但是,超导电缆可装在用于流体的热绝缘管中,而不浸入液氢中。作为一个示例,用于液氢的输送通道可分离地设置在用于流体的热绝缘管中。图4是本发明的超导电缆的结构的示意图,其包括用于液氢的输送管和用于流体的热绝缘管内部的热交换器隔板,该图为电缆附近的结构的示意性横截面图。该超导电缆具有包括分离的输送管3的结构,该分离的输送管3用于输送在用于流体的热绝缘管2的内管2b中的液氢。导热率高的热交换器隔板4设在由内管2b的内周边、输送管3的外周边以及超导电缆10的外周边所围成的空间中。利用这种结构,超导电缆10具有如示例1中由用于流体的热绝缘管2和电缆10自身的热绝缘管11(参见图1,2)所形成的双层热绝缘结构,并由此从可以降低从外部侵入电缆的热。另外,由于液氢的热经由热交换器隔板4传导至超导电缆10,电缆10也可由液氢1冷却。此外,由于输送管3将超导电缆10与液氢1物理上分离,在发生事故如电缆10短路或者产生火花时,就可防止液氢1发生燃烧之类的问题。在这个示例中,热交换器隔板通过卷绕铝而形成。Although the superconducting cable is immersed in liquid hydrogen in the above-mentioned Example 1, the superconducting cable may be housed in a heat insulating pipe for fluid without being immersed in liquid hydrogen. As an example, a delivery channel for liquid hydrogen may be provided separately in a thermally insulating tube for fluid. Fig. 4 is a schematic diagram of the structure of the superconducting cable of the present invention, which includes a delivery tube for liquid hydrogen and a heat exchanger partition inside the thermal insulation tube for fluid, which is a schematic horizontal view of the structure near the cable Sectional view. The superconducting cable has a structure including a separate delivery tube 3 for delivery of liquid hydrogen in the
在上述示例1和2每一个中示出的本发明的超导电缆可用于DC传输或者AC传输。在DC传输情况下,在使用包含电缆芯的超导电缆时,其中,该电缆芯具有进行了ρ分级以在内周边侧上具有低电阻率并在外周边侧上具有高电阻率的电绝缘层,能够使电绝缘层厚度方向上的DC电场分布平滑,并增加DC耐压特性。电阻率可利用具有各种比率k的PPLP(商标)而改变。电阻率随着比率k增加而趋于增加。另外,在高ε层在超导体层附近设在电绝缘层内时,除了增加DC耐压特性之外,还增加了Imp.耐压特性。高ε层例如可用低比率k的PPLP(商标)形成。在这种情况下,高ε层也变成低ρ层。此外,包含电缆芯的超导电缆也具有良好的AC特征,其中,该电缆芯具有进行了ρ分级的电绝缘层,并且也形成为朝向内周边侧的介电常数ε增加,朝向外周边侧的介电常数ε降低。因此,采用这种电缆的本发明的线路也可适用于AC传输。作为一个示例,可使用PPLP(商标)来提供电绝缘层,其中,PPLP具有如下指出的各种比率k,以具有三种不同的电阻率和介电常数。下述的三层可从内周边侧依次设置(X和Y是常数)。The superconducting cable of the present invention shown in each of Examples 1 and 2 above can be used for either DC transmission or AC transmission. In the case of DC transmission, when using a superconducting cable comprising a cable core with an electrical insulating layer p-graded to have a low resistivity on the inner peripheral side and a high resistivity on the outer peripheral side , can make the DC electric field distribution in the thickness direction of the electrical insulating layer smooth, and increase the DC withstand voltage characteristic. Resistivity can be varied using PPLP (trade mark) with various ratios k. The resistivity tends to increase as the ratio k increases. In addition, when the high ε layer is provided in the electrical insulating layer near the superconductor layer, the Imp. withstand voltage characteristic is increased in addition to the DC withstand voltage characteristic. High ε layers may be formed, for example, with low-k ratio PPLP (trademark). In this case, the high ε layer also becomes a low ρ layer. In addition, a superconducting cable including a cable core having a ρ-graded electrical insulating layer and also formed such that the dielectric constant ε increases toward the inner peripheral side and toward the outer peripheral side has good AC characteristics. The dielectric constant ε decreases. Therefore, the circuit of the present invention using such a cable is also applicable to AC transmission. As an example, PPLP (trade mark) may be used to provide the electrically insulating layer, wherein the PPLP has various ratios k as indicated below, to have three different resistivities and permittivity. The three layers described below can be arranged in order from the inner peripheral side (X and Y are constants).
低ρ层:比率k=60%,电阻率ρ(20℃)=X[Ω·cm],介电常数ε=YLow ρ layer: ratio k=60%, resistivity ρ(20°C)=X[Ω·cm], dielectric constant ε=Y
中间ρ层:比率k=70%,电阻率ρ(20℃)=大约1.2X[Ω·cm],介电常数ε=大约0.95YIntermediate ρ layer: ratio k=70%, resistivity ρ(20°C)=about 1.2X[Ω·cm], dielectric constant ε=about 0.95Y
高ρ层:比率k=80%,电阻率ρ(20℃)=大约1.4X[Ω·cm],介电常数ε=大约0.9YHigh ρ layer: ratio k=80%, resistivity ρ(20°C)=about 1.4X[Ω·cm], dielectric constant ε=about 0.9Y
在利用本发明的线路(其使用进行了ρ分级和ε分级的超导电缆)执行单极传输时,三个电缆芯12(参见图2)中的两个电缆芯可用作辅助芯,一个芯的超导体层可用作“去”线,且该芯的外部超导层可用作回路导线。可替换地,各个芯的超导体层可用作“去”线,各个芯的外部超导层可用作回路导线,以构成三线路单极传输线路。另一方面,在执行双极传输时,三芯中的一个芯可用作辅助芯,一个芯的超导体层可用作正极线路,另一个芯的超导体层可用作负极线路,且两芯的外部超导层可用作中性导体层。When performing unipolar transmission with the line of the present invention using ρ-classified and ε-classified superconducting cables, two of the three cable cores 12 (see FIG. 2 ) can be used as auxiliary cores, one The superconducting layer of the core can be used as a "go" wire, and the outer superconducting layer of the core can be used as a return wire. Alternatively, the superconducting layer of each core can be used as a "go" wire and the outer superconducting layer of each core can be used as a return wire to form a three-line unipolar transmission line. On the other hand, when performing bipolar transmission, one of the three cores can be used as an auxiliary core, the superconductor layer of one core can be used as a positive electrode line, the superconductor layer of the other core can be used as a negative electrode line, and the two-core The outer superconducting layer can be used as a neutral conductor layer.
使用进行了ρ分级和ε分级的超导电缆并包括如上所述的终端结构的本发明的线路可在AC传输之后容易地执行DC传输如单极传输或双极传输,或者在DC传输之后执行AC传输。图5和图6都是具有可拆卸抽出导体部的终端结构的构造的示意图,其利用三芯型式的超导电缆形成在本发明的超导电缆线路的端部。图5示出AC传输线路的情况,图6示出DC传输线路的情况。尽管在图5和6中只示出两个电缆芯12,但其实际上为三芯。The line of the present invention using a superconducting cable subjected to ρ-grading and ε-grading and including the terminal structure as described above can easily perform DC transmission such as unipolar transmission or bipolar transmission after AC transmission, or after DC transmission AC transmission. 5 and 6 are schematic diagrams of the construction of a terminal structure having a detachable extractable conductor portion formed at the end of the superconducting cable line of the present invention using a three-core type superconducting cable. FIG. 5 shows the case of an AC transmission line, and FIG. 6 shows the case of a DC transmission line. Although only two
终端结构包括从超导电缆10的端部延伸的电缆芯12的端部、在常温侧连接到传导部分(未示出)的抽出导体部40、61、将电缆芯12的端部与抽出导体部40电连接以及将电缆芯12的端部与抽出导体部61电连接的连接部、以及装设电缆芯12的端部、抽出导体部40、61在连接到电缆芯的一侧上的端部以及连接部的端接接线盒50。端接接线盒50包括充满用于冷却超导体层14的冷却剂池51、用于冷却外部超导层15的冷却剂池52以及设置在冷却剂池51、52的外周边上的真空绝缘池53,其中,将通过台阶形剥去电缆芯12的端部而露出的超导体层14引入冷却剂池51中,将通过台阶形剥去而露出的外部超导层15引入冷却剂池52中。抽出导体部61经由接头(连接部)连接到超导体层14,从而容许超导电缆10和常温侧的传导部分之间的电力传输和接收,其中,抽出导体部61嵌入设在常温侧的传导部分和超导体层14之间的绝缘套管60中。连接到常温侧的传导部分上的绝缘套管60的一侧(常温侧)从真空绝缘池53突出,并装在从真空绝缘池53突出的瓷管62中。The terminal structure includes the end portion of the
另一方面,外部超导层15经由下述的短路部分70(连接部)连接到设置在常温侧的传导部分和该外部超导层15之间的抽出导体部40上,从而容许超导电缆10和常温侧的传导部分之间电力的传输和接收。抽出导体部40形成有连接到短路部分70的低温侧导体部41和设置在常温侧的常温侧导体部42,该常温侧导体部42可从低温侧导体部41拆卸下来。在这个示例中,常温侧导体部42形成为规定横截面积的杆形,低温侧导体部41形成为圆柱形,其内可装配杆形的常温侧导体部42。在常温侧导体部42插入低温侧导体部41内时,该导体部41、42都相互电连接,从而容许低温侧和常温侧之间的电力的传输和接收。在将常温侧导体部42从低温侧导体部41内拆卸下来时,导体部41和42之间的传导取消。在终端结构中包括多个这种抽出导体部40。低温侧导体部41固定在冷却剂池52中,并且其一端电连接到短路部分70,另一端进入真空绝缘池53中。FRP制成的低温侧密封部分41a设在低温侧导体部41的固定部的外周边上,从而避免冷却剂泄漏、冷却剂池52和导体部41的短路等。常温侧导体部42固定在真空绝缘池上,并且其一端设置在真空绝缘池53内,另一端布置成露出到常温的外侧。FRP制成的常温侧密封部分42a设在常温侧导体部42的固定部的外周边上,从而容许热侵入降低,并避免真空绝缘池53和导体部42短路等。另外,由波纹管形成的可伸长部分53a在常温侧导体部42的固定部附近设在真空绝缘池53上,以在抽出导体部40的附装和拆卸过程中维持真空绝缘池53的真空状态。应该指出,三个芯12中每一个的外部超导层15都在短路部分70中短路。另外,连接到外部装置等或者接地线44的引导部43附装到常温侧导体部42的常温侧端部。环氧单元63设置在一部分超导体层14的外周边上,并设在冷却剂池51、52之间的部分的附近。On the other hand, the
在包括具有如上所述结构的终端结构的本发明的超导电缆例如用作三相AC线路时,连接到外部超导层15的抽出导体部40应具有获得对地电压所需的导体的横截面积。因此,如图5所示,在将需要的抽出导体部40的低温侧导体部41和常温侧导体部42相互连接时,不需要将抽出导体部40的低温侧导体部41和常温侧导体部42相互分离开,以获得所需的导体横截面积。在这个示例中,用于接地的接地线连接到被连接的抽出导体部40的常温侧导体部42的常温侧的端部上。When the superconducting cable of the present invention including the terminal structure having the above-mentioned structure is used as a three-phase AC line, for example, the drawn
另一方面,在需要将如图5所示的三相AC传输转换为DC传输时,与用于超导体层14相当的电流流过外部超导层15。也就是说,与图5所示的AC传输的情况中的那些电流相比,流过外部超导层15的电流增大,且流过抽出导体部40的电流也增大。因此,如图6所示,将在AC传输过程中相互分离开的抽出导体部40的低温侧导体部41和常温侧导体部42相互连接,从而确保用于流过所需电流量所需的足够导体横截面积。在这个示例中,用于接地的引导部43连接到被连接的抽出导体部40的常温侧导体部42的常温侧端部。相反地,在需要将如图6所示的DC传输转换成AC传输时,将在DC传输过程中形成传导的其中一个抽出导体部40分离开,就使其传导断开。On the other hand, when it is necessary to convert the three-phase AC transmission as shown in FIG. 5 into DC transmission, a current equivalent to that for the
本发明的超导电缆线路适用于执行将电力传输到各个电源设备(powerapparatus)的线路。例如可通过将超导电缆装入用于输送液氢的管路中并将热交换装置设在连接到管路的氢气站,从而构造成本发明的超导电缆。在这种情况下,本发明的线路可用作氢气站内部的电源装置的电力供给线路或者用作任意电源装置的电力供给线路,该线路按需要从用于流体的热绝缘管吸收电力。另外,由于本发明的电缆线路可在构造用于液氢的输送通道或氢气站过程中构成,因此,可增加铺设的可操作性。The superconducting cable line of the present invention is suitable for performing a line for transmitting electric power to various power apparatuses. The superconducting cable of the present invention can be constructed, for example, by incorporating a superconducting cable into a pipeline for transporting liquid hydrogen and providing a heat exchange device at a hydrogen station connected to the pipeline. In this case, the circuit of the invention can be used as the power supply line of the power supply unit inside the hydrogen station or as the power supply line of any power supply unit which absorbs power as required from the thermally insulated pipes for the fluid. In addition, since the cable line of the present invention can be constructed during the construction of a transport channel for liquid hydrogen or a hydrogen station, the operability of laying can be increased.
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP222525/2004 | 2004-07-29 | ||
JP2004222525 | 2004-07-29 | ||
JP072053/2005 | 2005-03-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1989575A true CN1989575A (en) | 2007-06-27 |
CN100524546C CN100524546C (en) | 2009-08-05 |
Family
ID=38185472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005800250379A Expired - Fee Related CN100524546C (en) | 2004-07-29 | 2005-07-12 | Superconducting cable line |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100524546C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103594172A (en) * | 2013-10-27 | 2014-02-19 | 安徽蓝德集团股份有限公司 | Inner pipe outer pipe hollow elastic anti-bending control cable |
CN106659069A (en) * | 2016-11-25 | 2017-05-10 | 深圳市沃尔核材股份有限公司 | Charging gun heat exchange structure and charging gun |
CN107300129A (en) * | 2017-06-13 | 2017-10-27 | 中国科学院电工研究所 | The superconducting energy pipeline of low temp fuel cooling fire-retardant gas protection |
CN107610835A (en) * | 2017-08-22 | 2018-01-19 | 中国科学院电工研究所 | Superconducting energy pipeline protected by LNG cooling CF4 |
CN107631104A (en) * | 2017-09-15 | 2018-01-26 | 四川师范大学 | Liquefy shale gas liquefied nitrogen, superconducting direct current cables compound energy pipe design method |
CN109494011A (en) * | 2018-12-27 | 2019-03-19 | 上海胜华电气股份有限公司 | A kind of low cost hyperconductive cable |
CN109654376A (en) * | 2019-01-02 | 2019-04-19 | 西南石油大学 | A kind of superconducting energy pipe-line system based on LNG pre-cooling transmission |
CN110494998A (en) * | 2017-04-11 | 2019-11-22 | 微软技术许可有限责任公司 | Heat management for superconduction interconnection piece |
CN112249292A (en) * | 2020-10-13 | 2021-01-22 | 中国船舶科学研究中心 | Full electric propulsion system of liquid hydrogen high-temperature superconducting motor |
CN113140752A (en) * | 2021-03-24 | 2021-07-20 | 北京长征天民高科技有限公司 | Superconducting motor fuel cell power system using liquid hydrogen |
CN114992429A (en) * | 2021-03-01 | 2022-09-02 | 中国石化工程建设有限公司 | Long-distance conveying system for double-medium and superconducting energy source same pipeline conveying |
CN114992519A (en) * | 2021-03-01 | 2022-09-02 | 中国石化工程建设有限公司 | Long-distance transportation system for transporting LNG and superconducting energy together through pipeline |
CN115312259A (en) * | 2022-10-11 | 2022-11-08 | 富通集团(天津)超导技术应用有限公司 | Superconducting cable terminal device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1665721C3 (en) * | 1966-08-18 | 1975-05-15 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Superconducting power cable |
-
2005
- 2005-07-12 CN CNB2005800250379A patent/CN100524546C/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103594172B (en) * | 2013-10-27 | 2016-03-09 | 安徽蓝德集团股份有限公司 | A kind of inner and outer pipes hollow elasticity bend resistance control cables |
CN103594172A (en) * | 2013-10-27 | 2014-02-19 | 安徽蓝德集团股份有限公司 | Inner pipe outer pipe hollow elastic anti-bending control cable |
CN106659069A (en) * | 2016-11-25 | 2017-05-10 | 深圳市沃尔核材股份有限公司 | Charging gun heat exchange structure and charging gun |
CN106659069B (en) * | 2016-11-25 | 2023-07-07 | 深圳市沃尔核材股份有限公司 | Heat exchange structure of charging gun and charging gun |
CN110494998B (en) * | 2017-04-11 | 2023-06-30 | 微软技术许可有限责任公司 | Thermal management for superconducting interconnects |
CN110494998A (en) * | 2017-04-11 | 2019-11-22 | 微软技术许可有限责任公司 | Heat management for superconduction interconnection piece |
CN107300129A (en) * | 2017-06-13 | 2017-10-27 | 中国科学院电工研究所 | The superconducting energy pipeline of low temp fuel cooling fire-retardant gas protection |
CN107610835A (en) * | 2017-08-22 | 2018-01-19 | 中国科学院电工研究所 | Superconducting energy pipeline protected by LNG cooling CF4 |
CN107631104A (en) * | 2017-09-15 | 2018-01-26 | 四川师范大学 | Liquefy shale gas liquefied nitrogen, superconducting direct current cables compound energy pipe design method |
CN107631104B (en) * | 2017-09-15 | 2019-01-22 | 四川师范大学 | Design method of liquefied shale gas-liquid nitrogen-superconducting DC cable composite energy pipeline |
CN109494011A (en) * | 2018-12-27 | 2019-03-19 | 上海胜华电气股份有限公司 | A kind of low cost hyperconductive cable |
CN109654376A (en) * | 2019-01-02 | 2019-04-19 | 西南石油大学 | A kind of superconducting energy pipe-line system based on LNG pre-cooling transmission |
CN112249292A (en) * | 2020-10-13 | 2021-01-22 | 中国船舶科学研究中心 | Full electric propulsion system of liquid hydrogen high-temperature superconducting motor |
CN114992429A (en) * | 2021-03-01 | 2022-09-02 | 中国石化工程建设有限公司 | Long-distance conveying system for double-medium and superconducting energy source same pipeline conveying |
CN114992519A (en) * | 2021-03-01 | 2022-09-02 | 中国石化工程建设有限公司 | Long-distance transportation system for transporting LNG and superconducting energy together through pipeline |
CN114992519B (en) * | 2021-03-01 | 2024-05-14 | 中国石化工程建设有限公司 | LNG and superconductive energy source same-pipeline conveying long-distance conveying system |
CN114992429B (en) * | 2021-03-01 | 2024-06-18 | 中国石化工程建设有限公司 | Long-distance conveying system for conveying double media and superconducting energy sources through same pipeline |
CN113140752A (en) * | 2021-03-24 | 2021-07-20 | 北京长征天民高科技有限公司 | Superconducting motor fuel cell power system using liquid hydrogen |
CN115312259A (en) * | 2022-10-11 | 2022-11-08 | 富通集团(天津)超导技术应用有限公司 | Superconducting cable terminal device |
Also Published As
Publication number | Publication date |
---|---|
CN100524546C (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101118374B1 (en) | Superconductive cable line | |
US8173897B2 (en) | Superconducting cable line | |
JP4835821B2 (en) | Superconducting cable | |
CN107646134B (en) | Apparatus and cooling method for direct current transmission | |
CN1989575A (en) | Superconducting cable line | |
US8354591B2 (en) | Superconducting cable | |
US12020831B2 (en) | Suspended superconducting transmission lines | |
JP2014146585A (en) | Superconductive cable and superconductive cable rail track | |
Minnich et al. | Cryogenic power transmission | |
JP4273525B2 (en) | Terminal structure of superconducting equipment | |
JP2005341767A (en) | Superconducting cable terminal structure | |
Morandi et al. | Feasibility of high voltage DC superconducting cables with extruded warm dielectric | |
JP5454892B2 (en) | Normal conductor lead-out structure | |
JP5754160B2 (en) | Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable | |
JP2009048794A (en) | Superconducting cable line | |
JP2006140123A (en) | Superconducting cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1100720 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1100720 Country of ref document: HK |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090805 Termination date: 20150712 |
|
EXPY | Termination of patent right or utility model |