JPH0194618A - Reduction stepper - Google Patents

Reduction stepper

Info

Publication number
JPH0194618A
JPH0194618A JP62251479A JP25147987A JPH0194618A JP H0194618 A JPH0194618 A JP H0194618A JP 62251479 A JP62251479 A JP 62251479A JP 25147987 A JP25147987 A JP 25147987A JP H0194618 A JPH0194618 A JP H0194618A
Authority
JP
Japan
Prior art keywords
exposure
wavelength
light
wavelength band
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62251479A
Other languages
Japanese (ja)
Other versions
JP2619419B2 (en
Inventor
Hiroshi Fukuda
宏 福田
Norio Hasegawa
昇雄 長谷川
Toshihiko Tanaka
稔彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62251479A priority Critical patent/JP2619419B2/en
Publication of JPH0194618A publication Critical patent/JPH0194618A/en
Application granted granted Critical
Publication of JP2619419B2 publication Critical patent/JP2619419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a device capable of assuring high resolution with respect to a general fine pattern on a flat surface as well as assuring both high resolution and sufficient depth of focus with respect to a pattern of contact holes and the like by disposing a means for making the dependency of light intensity on its wavelength in light relating to exposure variable. CONSTITUTION:An exposure device for projecting a mask pattern on a substrate is provided with a means for making the dependency of light intensity on its wavelength in light relating to exposure variable. For example, a reflector 1, a wavelength band setting device 2, an excimer laser resonator 3, a mirror 5, an illumination optical system 6, a reticle 7, a projection lens 8, a substrate stage 9, a control computer 10, etc., are provided. The wavelength band setting device 2 has a plurality of etalons each of which is different in a quality factor. The exposure wavelength band can be arbitrarily set by selecting an etalon having a quality factor corresponding to the desired wavelength band and inserting it into a light path of laser. The wavelength band of exposure is designated by means of input to the control computer 10. Selection and insertion of etalons can be automatically performed by the device 2 on the basis of its data.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子、磁気バブル素子、超電導素子等
の固体素子における微細加工に用いられる縮小投影露光
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reduction projection exposure apparatus used for microfabrication of solid-state devices such as semiconductor devices, magnetic bubble devices, and superconducting devices.

〔従来の技術〕[Conventional technology]

従来、LSI等の固体素子における微細パターンは主に
微小投影露光法を用いて形成されてきた。
Conventionally, fine patterns in solid-state devices such as LSIs have been mainly formed using a fine projection exposure method.

上記方法は、マスクパターンを投影レンズを用い′て、
レジストを塗布した基板上に結像させることにより転写
するものである。縮小投影露光法における限界解像度は
露光波長に比例し、又投影レンズの開口数に反比例する
ので、n先光の短波長化と投影レンズの高開口数化によ
り、その解像度の向上が推進されてきた。一方、投影レ
ンズの焦点深度は露光波長に比例し、投影レンズの開口
数に反比例する。このため上記解像度の向上を計ること
により焦点深度は急激に減少してきている。即ち、上記
従来法では、パターンの微細化と十分な焦点深度の確保
を両立させるのは困難で、特に高解像度をねらった場合
、焦点深度は非常に浅くなる。なお、投影露光法に関し
ては、例えば、半導体リソグラフィ技術、鳳鉱一部、産
業図書 第4章 第87頁より第93頁に論じられてい
る。
The above method uses a projection lens to project a mask pattern.
Transfer is performed by forming an image on a substrate coated with resist. The critical resolution in the reduction projection exposure method is proportional to the exposure wavelength and inversely proportional to the numerical aperture of the projection lens, so improvements in resolution have been promoted by shortening the wavelength of n-point light and increasing the numerical aperture of the projection lens. Ta. On the other hand, the depth of focus of the projection lens is proportional to the exposure wavelength and inversely proportional to the numerical aperture of the projection lens. For this reason, the depth of focus is rapidly decreasing as the resolution is improved. That is, with the above-mentioned conventional method, it is difficult to make the pattern finer and to ensure a sufficient depth of focus at the same time, and especially when aiming at high resolution, the depth of focus becomes very shallow. Incidentally, the projection exposure method is discussed, for example, in Semiconductor Lithography Technology, Hoko Part, Sangyo Tosho, Chapter 4, pages 87 to 93.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

LSIの高集積化とともに、素子の微細化と立体化が同
時に進み、表面に大きな凹凸段差構造を有する基板上に
微細なパターンを形成する必要が益々強くなってきた。
As the integration of LSIs increases, the miniaturization and three-dimensionalization of elements simultaneously progress, and the need to form fine patterns on a substrate having a large uneven step structure on its surface has become stronger.

しかし、前述のごとく現状の縮小投影露光法では解像限
界を上げると焦点深度が浅くなってしまう。このため、
基板表面を全露光領域にわたり上記焦点深度内に納め、
微細パターンを解像させるのが困難となってきた。特に
コンタクトホールの形成においては、その焦点深度がも
ともと小さいことに加えて、一般にかなりの表面段差が
素子上に生じた後に行なわれることが多いので、焦点深
度の不足は深刻である。
However, as mentioned above, in the current reduction projection exposure method, when the resolution limit is raised, the depth of focus becomes shallow. For this reason,
The entire exposed area of the substrate surface is kept within the above depth of focus,
It has become difficult to resolve fine patterns. In particular, when contact holes are formed, in addition to the fact that the depth of focus is originally small, the formation of contact holes is generally performed after a considerable surface step has been formed on the element, so the lack of depth of focus is serious.

本発明の目的は、短い露光波長と大きな開口数を有する
光学系を用いて、平担面上の一般的な微細パターンに対
して高い解像度を確保する一方で、特に上記のコンタク
トホール等のパターンに対して高い解像度と十分な焦点
深度の両方を確保することのできる投影露光装置を提供
することにある。
An object of the present invention is to use an optical system having a short exposure wavelength and a large numerical aperture to ensure high resolution for general fine patterns on a flat surface, while also It is an object of the present invention to provide a projection exposure apparatus that can ensure both high resolution and sufficient depth of focus for images.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、縮小投影露光装置において、その露光に関
与する光の光強度の波長依存性、特にその波長帯域巾を
可変とする手段と、上記波長帯域巾に応じた光軸方向の
一定距離内にマスクパターンを連続的に結像させること
のできる投影露光手段を設けることにより達成さ九る。
The above object is to provide a means for making the wavelength dependence of the light intensity of the light involved in exposure, in particular, the wavelength band width, variable in a reduction projection exposure apparatus, and to provide a means for making the wavelength dependence of the light intensity of light involved in exposure variable, and within a certain distance in the optical axis direction according to the wavelength band width. This is achieved by providing a projection exposure means that can continuously image the mask pattern.

〔作用〕[Effect]

本発明者の検討によれば、穴パターンの様な透光部の割
合の小さな孤立パターンの焦点深度は、上記パターンを
光軸方向に連続的に結像させることにより実効的に増大
する。一方、異なる波長の光を用いて露光を行なうと、
投影レンズの色収差によりマスクパターンは波長に応じ
て異なる位置に結像する。このため、比較的広い波長帯
域の光を用いて露光することにより、マスクパターンを
光軸方向に連続的に結像させることができる。従って、
露光々の波長帯域を広くすることにより、穴パターンの
様な透光部の割合の小さな孤立パターンの焦点深度を実
効的に深くすることができるのである。
According to studies by the present inventors, the depth of focus of an isolated pattern such as a hole pattern with a small proportion of transparent parts can be effectively increased by continuously imaging the pattern in the optical axis direction. On the other hand, when exposure is performed using light of different wavelengths,
Due to the chromatic aberration of the projection lens, the mask pattern is imaged at different positions depending on the wavelength. Therefore, by performing exposure using light having a relatively wide wavelength band, the mask pattern can be continuously imaged in the optical axis direction. Therefore,
By widening the wavelength band of each exposure, it is possible to effectively increase the depth of focus of an isolated pattern with a small proportion of transparent parts, such as a hole pattern.

しかしながら、ライン・アンド・スペースパターンの様
な透光部の割合の比較的大きなパターンでは波長帯域を
広くすると、周知の様に色収差による光強度コントラス
トの低下が生じる。このため、これら透光部の割合の大
きなパターンに対しては波長帯域巾を狭くして、色収差
を十分に低減しなければならない。
However, as is well known, when the wavelength band is widened in a pattern such as a line-and-space pattern that has a relatively large proportion of transparent parts, the light intensity contrast decreases due to chromatic aberration. For this reason, it is necessary to narrow the wavelength band width for these patterns having a large proportion of transparent parts to sufficiently reduce chromatic aberration.

本発明による露光装置は、その露光に関与する光の光強
度の波長依存性を可変とする手段により露光々の波長帯
域巾を変更できるため、穴パターン等透光部の割合の小
さな孤立パターンに対しては、比較的広い波長帯域巾を
設定して露光を行ない、一方、ラインアンドスペースパ
ターン等の透光部の割合が比較的大きなパターンに対し
ては、十分に狭い帯域の光を用いて露光を行なうことが
できる。これにより、大きな開口数と短波長露光光を用
いて、平坦面における微細パターンの形成ができる一方
で、表面に大きな段差を有する基板上にも十分な焦点深
度をもって穴パターンを形成することが可能となる。
The exposure apparatus according to the present invention can change the wavelength band width of each exposure by means of varying the wavelength dependence of the light intensity of the light involved in the exposure. For patterns with a relatively large proportion of transparent parts, such as line-and-space patterns, exposure is performed using a relatively wide wavelength band width. Exposure can be performed. This makes it possible to form fine patterns on flat surfaces using a large numerical aperture and short wavelength exposure light, while also making it possible to form hole patterns with sufficient depth of focus even on substrates with large steps on the surface. becomes.

次に、穴パターンの焦点深度が、上記パターンを光軸方
向に連続的に結像させることにより増大することを示す
Next, it will be shown that the depth of focus of the hole pattern is increased by continuously imaging the pattern in the optical axis direction.

Z軸を光軸とする直交座標系において、 2=0に結像
する穴パターンの光強度分布開数をi、(x。
In an orthogonal coordinate system with the Z-axis as the optical axis, the light intensity distribution numerical value of the hole pattern imaged at 2=0 is i, (x.

y+z)とする。第3図(a)にi(x+ yt z)
の計算例を示す。但し、計算例は、kvF エキシマレ
ーザ光により開口数0.4 の投影レンズを用いて露光
した0、3μm角のコンタクトホールに対するものであ
る。いま、上記パターンが同一光軸上のZ=−ωより+
(1)に−様に結像したとすると、このときの光強度分
布関数工(x、y、z)は となり、光軸方向位置2によらない。ところで、第3図
(a)よりわかる様に、z(−3μm、 3μm<zに
対して1(xyz)二〇とみなせる。従って、 数値計算のために離散化して。
y+z). In Figure 3(a), i(x+yt z)
An example of calculation is shown below. However, the calculation example is for a 0.3 μm square contact hole exposed to kvF excimer laser light using a projection lens with a numerical aperture of 0.4. Now, the above pattern is + from Z=-ω on the same optical axis.
Assuming that the image is formed in a −-like manner in (1), the light intensity distribution function (x, y, z) at this time is as follows, and does not depend on the position 2 in the optical axis direction. By the way, as can be seen from Fig. 3(a), it can be regarded as 1(xyz)20 for z(-3μm, 3μm<z. Therefore, it is discretized for numerical calculation.

r(xtytz)zΣ l (X v ’J p nΔ
2)ΔZn=−12 但し、ΔZ=0.25μm 第3図(b)に上式により求めたI (x v V v
 z )を示す。但し光強度(縦方向)の縮尺は、第3
図(a)のものより変更しである。第3図(a)と第3
図(b)を比較してわかる様に、連続的に結像しても像
質は変化なく、しかも原理的には焦点深度を限りなく大
きくすることができる。
r(xtytz)zΣ l (X v 'J p nΔ
2) ΔZn=-12 However, ΔZ=0.25 μm I (x v V v
z). However, the scale of the light intensity (vertical direction) is
This is a change from the one in Figure (a). Figure 3(a) and 3rd
As can be seen by comparing Figure (b), the image quality does not change even if the images are formed continuously, and in principle, the depth of focus can be made infinitely large.

〔実施例〕〔Example〕

実施例1 以下5本発明の一実施例を図面とともに説明する。 Example 1 Hereinafter, five embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例による縮小投影露光装置の
構成図である。本装置は、反射鏡1.波長帯域設定装置
2.エキシマレーザ共振器3.ミラー5.照明光学系6
.レチクル7、投影レンズ8、基板ステージ9.制御コ
ンピュータ10その他縮小投影露光装置に必要な各種要
素より構成されている。
FIG. 1 is a block diagram of a reduction projection exposure apparatus according to an embodiment of the present invention. This device consists of a reflector 1. Wavelength band setting device 2. Excimer laser resonator 3. Mirror 5. Illumination optical system 6
.. Reticle 7, projection lens 8, substrate stage 9. It is comprised of a control computer 10 and other various elements necessary for a reduction projection exposure apparatus.

波長帯域設定装置2はQ値の異なる複数のエタロンを有
し、その内の任意の1コをレーザ光路へ挿入できる様に
なっている。従って、許容の範囲内で所望の波長帯域に
対応するQ値を有するエタロンを選び、これをレーザ光
路中へ挿入することにより露光波長帯域を任意に設定す
ることができる。この露光波長帯域の指定は、露光装置
の制御コンピュータ10への入力によりなされ、このデ
ータに基づき、波長帯域設定装置2はエタロンの選択及
び挿入を自動的に行なう。
The wavelength band setting device 2 has a plurality of etalons with different Q values, and any one of them can be inserted into the laser optical path. Therefore, by selecting an etalon having a Q value corresponding to a desired wavelength band within an allowable range and inserting it into the laser optical path, the exposure wavelength band can be arbitrarily set. The exposure wavelength band is specified by inputting it into the control computer 10 of the exposure apparatus, and based on this data, the wavelength band setting device 2 automatically selects and inserts the etalon.

なお、第1図では、波長帯域設定装置2はレーザ共振器
3の外に設置されているが、実際にはこの方法に限らな
い。即ち、波長帯域設定袋g12をレーザ共振器3の中
へ挿入したり、又は両者を一体化する等の方法をもとる
ことできる。又、Q値の異なるエタロンの代りに、例え
ばグレーティングを用いてもよい。この場合、比校的狭
い帯域巾は高いQ値を有するエタロンにより、又比較的
広い帯域巾はグレーティングにより設定するのが好まし
い。
In FIG. 1, the wavelength band setting device 2 is installed outside the laser resonator 3, but the method is not limited to this method in reality. That is, the wavelength band setting bag g12 may be inserted into the laser resonator 3, or the two may be integrated. Further, instead of etalons having different Q values, for example, a grating may be used. In this case, a relatively narrow bandwidth is preferably set by an etalon with a high Q value, and a relatively wide bandwidth is preferably set by a grating.

次に、本装置を用いて、レチクル7上のパターンを基板
スターン9上に固定されたレジストを塗布した基板へ投
影露光した後、現像してレジストパターンを形成した。
Next, using this apparatus, the pattern on the reticle 7 was projected and exposed onto a resist-coated substrate fixed on the substrate stern 9, and then developed to form a resist pattern.

エキシマレーザ共振器3の励起ガスにはKrFを用いた
。波長帯域設定装置2による帯域の制御を行なわない場
合のレーザの波長帯域巾は約0.5nmであった。
KrF was used as the excitation gas for the excimer laser resonator 3. The wavelength band width of the laser when the band was not controlled by the wavelength band setting device 2 was about 0.5 nm.

まず、波長帯域設定装置2により露光波長帯域巾を約0
.003nm に設定した。用いた投影レンズに対して
、この帯域巾による色収差は非常に小さく、実用上無視
できるレベルにある。基板の表面配置を光軸方向にいろ
いろに設定して露光を行ない、様々な微細パターンの解
像する光軸方向の範囲、即ち該パターンに対する焦点深
度をしらべた。又、同時に表面が平坦な基板と、表面に
様々な凹凸段差を有する基板を用いて、被露光領域全面
でのパターン解像の均一性をしらべた。その結果、直径
0.3μm及び0.5μmの穴パターンが、各々焦点深
度1μm及び2μmで解像した。
First, the wavelength band setting device 2 sets the exposure wavelength band width to approximately 0.
.. The wavelength was set to 0.003 nm. For the projection lens used, the chromatic aberration due to this bandwidth is extremely small and is at a practically negligible level. Exposure was performed with the surface arrangement of the substrate set variously in the optical axis direction, and the range in the optical axis direction in which various fine patterns were resolved, that is, the depth of focus for the patterns was investigated. At the same time, the uniformity of pattern resolution over the entire exposed area was investigated using a substrate with a flat surface and a substrate with various unevenness and steps on the surface. As a result, hole patterns with diameters of 0.3 μm and 0.5 μm were resolved at focal depths of 1 μm and 2 μm, respectively.

又、0.3μm及び0.5μmのライン・アンド・スペ
ースバタンか、各々焦点深度約1.5μm及び2.5μ
mで解像した。又、基板表面が極めて平坦な場合でも、
投影レンズの像面歪曲の影響で直径0.3μmの穴パタ
ーンを被露光領域の全面に解像させるのは困難だった。
Also, 0.3 μm and 0.5 μm line and space batons, or depths of focus of approximately 1.5 μm and 2.5 μm, respectively.
It was resolved with m. Furthermore, even if the substrate surface is extremely flat,
Due to the field distortion of the projection lens, it was difficult to resolve a hole pattern with a diameter of 0.3 μm over the entire exposed area.

又、その他の上記パターンも基板表面の凹凸が増大する
につれ、全面に解像するのが困難となった。
Furthermore, as the unevenness of the substrate surface increased, it became difficult to resolve the other patterns on the entire surface.

次に、波長帯域設定装置2により露光波長帯域巾を約0
.1μmに変更して、同様のバタン形成を試みた。用い
た投影レンズの設計データによれば上記の帯域中に対し
て、上記パターンはレンズの色収差により光軸方向の約
10μmにわたり連続的に結像する。その結果、ライン
・アンド・スペースバタンに関しては、全く解像させる
ことができなくなったが、一方、直径0.3μm及び0
.5μmの穴パターンの焦点深度は各々約8μmに増大
した。これにより、基板表面が大きく凹凸状を呈してい
る場合にも、被露光領域の全面に上記穴パターンを形成
することができる様になった。
Next, the wavelength band setting device 2 sets the exposure wavelength band width to approximately 0.
.. Similar batten formation was attempted by changing the thickness to 1 μm. According to the design data of the projection lens used, in the above band, the pattern is continuously imaged over about 10 μm in the optical axis direction due to the chromatic aberration of the lens. As a result, it became impossible to resolve the line and space button at all, but on the other hand, the line and space button had a diameter of 0.3 μm and a
.. The depth of focus of each 5 μm hole pattern increased to approximately 8 μm. This makes it possible to form the hole pattern all over the exposed region even when the substrate surface is highly uneven.

実施例2 第2図は、本発明の別の実施例の構成図である。Example 2 FIG. 2 is a block diagram of another embodiment of the present invention.

本装置では、第1実施例における波長帯域設定装置に代
えて、波長スキャン装置12が設けられている。
In this apparatus, a wavelength scanning device 12 is provided in place of the wavelength band setting device in the first embodiment.

波長スキャン装置12は、エタロンとそのレーザ光束に
対する角度を制御する機構より構成され、レーザ光の波
長帯域を約0.003nm程度に狭帯域化するとともに
、上記角度を変えることで上記帯域の中心波長を変化さ
せる。従って、露光中にエタロンの角度を変化させ、露
光波長をスキャンすることにより、マスクパターンの結
像位置を光軸方向へ移動させることができる。又、制御
コンピュータによりエキシマレーザのパルス発振とエタ
ロンの角度設定のタイミングを、あらかじめ指定した様
に同期させることができるので、上記スキャン範囲内の
各波長に対して任意の露光量を用いて露光を行なうこと
ができる。
The wavelength scanning device 12 is composed of an etalon and a mechanism that controls its angle with respect to the laser beam, and narrows the wavelength band of the laser beam to about 0.003 nm, and by changing the angle, the center wavelength of the band is adjusted. change. Therefore, by changing the angle of the etalon during exposure and scanning the exposure wavelength, the imaging position of the mask pattern can be moved in the optical axis direction. In addition, the control computer can synchronize the timing of excimer laser pulse oscillation and etalon angle setting as specified in advance, so exposure can be performed using any exposure amount for each wavelength within the above scanning range. can be done.

なお、上記中心波長を変化させる手段としてはエタロン
のレーザ光束に対する角度を変化させる他に、エタロン
を構成する2枚の平面板の間隔を変化させる、又は2枚
の平面板の間に密閉した気体の圧力や種類を変える等の
公知の手段を用いてもよい。
In addition to changing the angle of the etalon with respect to the laser beam, methods for changing the center wavelength include changing the distance between the two plane plates that make up the etalon, or changing the pressure of the gas sealed between the two plane plates. Known means such as changing the type or type may be used.

本装置を用いて実際にパターンを形成し、第1実施例同
様の効果を確認した。
A pattern was actually formed using this apparatus, and effects similar to those of the first example were confirmed.

次に、本発明のさらに他の実施例について説明する。Next, still another embodiment of the present invention will be described.

本発明者の検討によれば、微細パターンの焦点深度は、
同一光軸上で光軸方向に結像位置が連続的に変化する像
を重ね合せることで実効的に増大する。
According to the inventor's study, the depth of focus of the fine pattern is
It is effectively increased by superimposing images whose imaging positions change continuously in the optical axis direction on the same optical axis.

上記方法は、比較的広い帯域の光を用いてマスクパター
ンを基板上へ投影露光し、上記マスクパターンを、上記
波長帯域に対応する色収差の範囲内で光軸方向に連続的
に結像させることにより。
The above method involves projecting and exposing a mask pattern onto a substrate using light in a relatively wide band, and continuously imaging the mask pattern in the optical axis direction within a range of chromatic aberration corresponding to the wavelength band. By.

実現される。Realized.

本方法は、光透過部の割合の大きな密集パターンでは像
コントラストの低下を招き好ましくないが、光透過部の
割合の小さな孤立穴パターン等においては著しい効果を
有する。
This method is undesirable in dense patterns with a large proportion of light-transmitting parts, as it causes a decrease in image contrast, but is extremely effective in isolated hole patterns, etc., with a small proportion of light-transmitting parts.

本発明の効果を示すために、まず結像位置が光軸方向上
連続的に変化する像を重ね合せたときの像の光強度分布
について論じる。
In order to demonstrate the effects of the present invention, we will first discuss the light intensity distribution of images when images whose imaging positions change continuously in the optical axis direction are superimposed.

Z軸を光軸方向とする直交座標系において、平面Z=0
を結像面とする像の3次元的光強度分布関数を、  1
(xpytz)とする。この像を同一光軸上の位置Z=
−LからZ=Lまで連続的に結像させたときの合成像の
光強度分布関数I(X + 3’ t Z )は と表わされる。但し、ここにw(Q)はZ=Qに結像す
る像のZ=0に結像する像に対する相対強度比である。
In a Cartesian coordinate system with the Z axis as the optical axis direction, plane Z = 0
The three-dimensional light intensity distribution function of the image whose imaging plane is 1
(xpytz). Position this image on the same optical axis Z=
The light intensity distribution function I(X + 3' t Z ) of the composite image when images are formed continuously from -L to Z=L is expressed as follows. However, here, w(Q) is the relative intensity ratio of the image formed at Z=Q to the image formed at Z=0.

N単のため、この相対強度比を全て1と仮定し、積分を
離散化すると、 I(X+yyZ)”Σ x(xyytz  nΔl1)
−ΔL −・・■n=−N 但し 2N+1 を得る。第4図に、N=8.Δff=0.25μmとし
たときの0式の右辺各項、及び左辺の計算結果を示す。
Since it is N simple, assuming that all the relative intensity ratios are 1 and discretizing the integral, I(X+yyZ)"Σ x(xyytz nΔl1)
−ΔL −・・■n=−N However, 2N+1 is obtained. In FIG. 4, N=8. The calculation results for each term on the right side and the left side of Equation 0 when Δff=0.25 μm are shown.

但し、光強度の縮尺は適当に:A整しである。なお、計
算はkrFエキシマレーザ光により開口数0.4の投影
レンズを用いて露光した0、3μm角のコンタクトホー
ルに対するものである。
However, the scale of the light intensity is appropriately: A scale. Note that the calculation is for a 0.3 μm square contact hole exposed to krF excimer laser light using a projection lens with a numerical aperture of 0.4.

I(Xsy+Z)とi(x+ypz)の比較から、上記
の重ね合せにより良好な光強度分布の得られる光軸方向
の範囲、即ち、焦点深度は約70%増大していることが
わかる。
From a comparison of I(Xsy+Z) and i(x+ypz), it can be seen that the range in the optical axis direction where a good light intensity distribution can be obtained, that is, the depth of focus, increases by about 70% due to the above superposition.

焦点深度は、一般にNの値をより大きくするとさらに増
大するが、これに伴なう像の劣化が懸念される。そこで
、Nの値を増大したときのZ=0における光強度分布に
注目する。ところで、Zく−8・ΔQ、8−ΔQ < 
zに対して、l(X+5’tz)二〇、とみなせること
から、上記光強度分布は。
In general, the depth of focus further increases as the value of N increases, but there is a concern that image deterioration may occur as a result. Therefore, we will focus on the light intensity distribution at Z=0 when the value of N is increased. By the way, Zku-8・ΔQ, 8-ΔQ <
Since it can be regarded as l(X+5'tz)20 for z, the above light intensity distribution is.

■(Xsy+z)=Σ 1(Xryv  nΔl2)−
Δ2n=−+v 二Σ 1(xpyy−nΔQ)・ΔQ n=−6 ・・・■ 即ち、8以上のNの値を用いても、得られる光強度分布
はNが8の場合のものとほとんど変わらない。これは、
デフォーカスが増大するにつれ光強度分布が0に近づく
コンタクトホール等で代表される光透過部の割合の小さ
な孤立パターンに特有の現象である。従って上記パター
ンに対しては、Nを増大し、連続的に結像させる範囲を
大きくすることにより、像質を劣化させることなく、焦
点深度だけを原理的にはいくらでも増大させることがで
きる。
■(Xsy+z)=Σ 1(Xryv nΔl2)−
Δ2n=-+v 2 Σ 1(xpyy-nΔQ)・ΔQ n=-6 ・・・■ In other words, even if a value of N of 8 or more is used, the obtained light intensity distribution is almost the same as that when N is 8. does not change. this is,
This is a phenomenon peculiar to isolated patterns with a small proportion of light transmitting parts, such as contact holes, where the light intensity distribution approaches 0 as the defocus increases. Therefore, for the above-mentioned pattern, by increasing N and enlarging the range in which images are continuously formed, it is possible in principle to increase only the depth of focus to any extent without deteriorating the image quality.

有限の波長帯域を有する露光々と上記波長帯域に対して
像点色消しを成されていない投影レンズとを用いて投影
露光を行なうことにより、同一マスクパターンを光軸方
向に連続的に結像させることができる。即ち、色収差に
より上記帯域内の各波長による結像位置が異なるため、
結像面を光軸方向に連続的に分布させることができるの
である。
The same mask pattern can be imaged continuously in the optical axis direction by performing projection exposure using exposure having a finite wavelength band and a projection lens that is not achromatized for the above wavelength band. can be done. That is, because the imaging position for each wavelength within the above band differs due to chromatic aberration,
This allows the image plane to be continuously distributed in the optical axis direction.

この際、上記帯域内における波長の変化により結像面が
光軸方向にシフトしたとき、結像倍率、像面湾曲、D歪
の変動は一定の許容範囲内に保たれていなければならな
い。
At this time, when the imaging plane shifts in the optical axis direction due to a change in wavelength within the above band, fluctuations in imaging magnification, field curvature, and D distortion must be kept within a certain tolerance range.

又、一般に光強度は帯域内で波長に依存して変化するた
め、結像位置により像の光強度は異なる。
Furthermore, since the light intensity generally varies depending on the wavelength within the band, the light intensity of the image differs depending on the imaging position.

ところで、狭い波長範囲を考えると、波長と結像位置の
関係は一般に一次式で表わすことができるので、■式の
w(Q)を露光に関与する光の光強度波長依存性(波長
スペクトル)と同等のものと考えることができる。光軸
方向の像の一様性を得るためには、w(12)を1とみ
なせるのが望ましいことはいうまでもない。従って、露
光に関与する光の波長スペクトルは、前記帯域内でのみ
一定の光強度を有する矩形型又は台形型であることが好
ましい。
By the way, considering a narrow wavelength range, the relationship between the wavelength and the imaging position can generally be expressed by a linear equation, so w(Q) in equation (2) can be expressed as the light intensity wavelength dependence (wavelength spectrum) of the light involved in exposure. can be considered equivalent to Needless to say, in order to obtain uniformity of the image in the optical axis direction, it is desirable that w(12) be regarded as 1. Therefore, the wavelength spectrum of the light involved in exposure is preferably rectangular or trapezoidal with constant light intensity only within the band.

実施例3 波長帯域巾0.1nm に狭帯域化されたkrFエキシ
マレーザ光を用いてマスクパターンを基板上に塗布した
レジスト膜へ転写した後、現像を行ないレジストパター
ンを形成した。投影レンズの設計データによれば、第5
図に示したごとく、上記波長帯域に対応してマスクパタ
ーンは光軸方向に約10μmにわたり連続的に結像する
Example 3 A mask pattern was transferred onto a resist film coated on a substrate using a krF excimer laser beam narrowed to a wavelength band width of 0.1 nm, and then developed to form a resist pattern. According to the design data of the projection lens, the fifth
As shown in the figure, the mask pattern is continuously imaged over a distance of about 10 μm in the optical axis direction corresponding to the above wavelength band.

上記結像位置を含む範囲内で、レジストを塗布した基板
の表面位置を光軸方向にいろいろに設定して露光を行な
い、パターンが解像する範囲をしらべた。評価に用いた
パターンは0.3μm角の穴パターンである。その結果
、上記パターンの解像する基板表面位置の光軸方向範囲
、すなわち実効的な焦点深度は約8μmであることがわ
かった。
Within the range including the above image formation position, the surface position of the resist-coated substrate was set variously in the optical axis direction, and exposure was performed to examine the range in which the pattern was resolved. The pattern used for evaluation was a 0.3 μm square hole pattern. As a result, it was found that the range in the optical axis direction of the substrate surface position where the above pattern is resolved, that is, the effective depth of focus, was about 8 μm.

一方1色収差が無視できるだけ十分に狭帯域化された光
を用いて露光する従来法では、上記パターンの焦点深度
は約1μmにすぎなかった。実際のLSIでは表面に凹
凸段差がある。凹凸段差にかかわらず、露光領域の全面
に上記パターンを解像させるためには、最低2μmの焦
点深度が必要である。従って、従来法では、上記パター
ンを実際のLSIに適用するのは困難であったが1本方
法を用いることにより、これが可能となった。
On the other hand, in the conventional method of exposure using light whose band is sufficiently narrowed so that monochromatic aberration can be ignored, the depth of focus of the pattern described above was only about 1 μm. In an actual LSI, there are uneven steps on the surface. In order to resolve the above-mentioned pattern over the entire exposed area regardless of uneven steps, a depth of focus of at least 2 μm is required. Therefore, with the conventional method, it was difficult to apply the above-mentioned pattern to an actual LSI, but it has become possible by using the one-line method.

なお、本実施例で用いた投影露光装置の投影レンズは1
合成石英の単一材料よりなる単色レンズであった。この
ため、n光波長、即ち結像位置により、若干の結像倍率
の変化がみられ、光軸方向に基板表面位置が異なると、
露光領域の周辺部でパターンの位置ずれが発生した。こ
れは、本発明の意とするところの効果ではなく1本来は
極力抑制されなければならない、従って、投影レンズに
は、露光波長を変化させたとき倍率、像面歪、像面湾曲
等の変動を一定の許容範囲内に保ったままで、結像面を
光軸方向にシフトすることができる様に設計されたもの
を用いるべきである。又、露光に用いる光源、露先々の
波長帯域巾は本実施例に示したものに限らず用いること
ができる。但し上記波長帯域巾は、該帯域巾に対応して
マスクパターンが連続的に結像する光軸上の距離がλ 心波長、NAは露光に用いる投影レンズの開口数)以上
である様に設定されることが望ましい。なぜλ 焦点深度増大の効果が殆んど望めないからである。
Note that the projection lens of the projection exposure apparatus used in this example was 1
It was a monochromatic lens made of a single material, synthetic quartz. Therefore, there is a slight change in the imaging magnification depending on the n-light wavelength, that is, the imaging position, and if the substrate surface position differs in the optical axis direction,
A pattern misalignment occurred at the periphery of the exposure area. This is not an effect intended by the present invention, and must be suppressed as much as possible.Therefore, the projection lens has variations in magnification, field distortion, field curvature, etc. when the exposure wavelength is changed. It is necessary to use one designed so that the imaging plane can be shifted in the optical axis direction while keeping the value within a certain tolerance range. Further, the light source used for exposure and the wavelength band width of each exposure tip are not limited to those shown in this embodiment, and may be used. However, the above wavelength band width is set so that the distance on the optical axis at which the mask pattern is continuously imaged corresponding to the band width is greater than or equal to λ (central wavelength, NA is the numerical aperture of the projection lens used for exposure). It is desirable that This is because the effect of increasing the depth of focus λ can hardly be expected.

実施例4 次に本発明の別の実施例を示す。Example 4 Next, another embodiment of the present invention will be shown.

k r F エキシマレーザ光を、エタロンを用いて波
長帯域巾0.0025 n mに狭帯域化し、かつエタ
ロン角度を変化させることにより、その中心波長を24
8.3nm より248.35nmまで0.0025n
 mずつシフトさせ94パルス分露光した。この際、露
光に寄与する光の光強度の波長依存性を第6図に示すご
とく設定すべく、上記シフトされた各波長毎のパルス数
を第7図の様に変化させた。Xを用いた投影レンズと評
価したパターン及び評価方法は第1実施例と共通である
k r F By using an etalon to narrow the wavelength band width of the excimer laser beam to 0.0025 nm and changing the etalon angle, the center wavelength can be reduced to 24 nm.
0.0025n from 8.3nm to 248.35nm
It was shifted by m and exposed for 94 pulses. At this time, in order to set the wavelength dependence of the light intensity of the light contributing to exposure as shown in FIG. 6, the number of pulses for each of the shifted wavelengths was changed as shown in FIG. 7. The projection lens using X, the evaluated pattern, and the evaluation method are the same as in the first embodiment.

本実施例により0.3μm角の穴パターンを、約4μm
の焦点深度をもって解像することができた。従って下記
パターン形成方法が可能である。
In this example, a hole pattern of 0.3 μm square can be formed with a hole pattern of approximately 4 μm.
It was possible to resolve the image with a depth of focus of . Therefore, the following pattern forming method is possible.

(1)所望の形状を有するマスクパターンを介してレジ
スト膜へ縮小投影露光する工程と、上記レジスト膜を現
像する工程を含み、上記縮小投影露光が、開口数NAの
投影レンズを用いて中心波長λの光により行なわれるパ
ターン形成方法において、前記マスクパターンの光軸上
の結像位置が、中心波長λに対する結像位置を中心にλ
            λ にわたって連続的に分布することを特徴とするパターン
形成方法。
(1) The reduction projection exposure includes a step of performing reduction projection exposure onto a resist film through a mask pattern having a desired shape, and a step of developing the resist film, and the reduction projection exposure is performed using a projection lens having a numerical aperture NA. In a pattern forming method performed using light of wavelength λ, the imaging position on the optical axis of the mask pattern is centered at the imaging position with respect to the center wavelength λ.
A pattern forming method characterized by continuous distribution over λ.

(2)上記縮小投影露光に関与する光の波長帯域巾を、
該帯域巾に対応する上記投影レンズの色収差により、前
記マスクパターンの光軸上の結像位置が、前記範囲内に
連続的に分布する様に定めたことを特徴とする前記(1
)記載のパターン形成方法。
(2) The wavelength band width of the light involved in the reduction projection exposure is
(1) characterized in that the imaging position on the optical axis of the mask pattern is determined to be continuously distributed within the range due to the chromatic aberration of the projection lens corresponding to the bandwidth.
) pattern forming method described.

(3)上記縮小投影露光に関与する光の波長を、上記露
光中にスキャンすることにより、上記投影レンズの色収
差により、前記マスクパターンの光軸上の結像位置を、
前記範囲にわたり移動させると同時に、前記波長のスキ
ャン速度を調整することにより、上記結像位置の移動速
度をあらかじめ指定したごとく制御するか、又は前記波
長のスキャンに同期してあらかじめ指定されたごとく露
光量を変化させて露光を行なうことを特徴とするパター
ン形成方法。
(3) By scanning the wavelength of the light involved in the reduction projection exposure during the exposure, the imaging position on the optical axis of the mask pattern can be determined by the chromatic aberration of the projection lens.
At the same time as moving over the range, the moving speed of the imaging position is controlled as specified in advance by adjusting the scanning speed of the wavelength, or exposure is performed as specified in advance in synchronization with the scanning of the wavelength. A pattern forming method characterized by performing exposure while changing the amount of light.

(4)上記縮小投影露光に関与する光の光強度の波長依
存性が、台形状、又は2山状であることを特徴とする前
記(2)もしくは(3)記載のパターン形成方法。
(4) The pattern forming method according to (2) or (3) above, wherein the wavelength dependence of the light intensity of the light involved in the reduction projection exposure is trapezoidal or bimodal.

(5)上記縮小投影露光に用いる光が、エキシマレーザ
光であることを特徴とする前記(1)記載のパターン形
成方法。
(5) The pattern forming method as described in (1) above, wherein the light used for the reduction projection exposure is excimer laser light.

(6)前記投影レンズにおいて、前記波長帯域巾、  
 ゛又は前記波長スキャンの範囲内の各波長に対して、
前記マスクパターンの結像倍率の変動、前記マスクパタ
ーンの結像面の像面湾曲及び像面歪は所定の許容範囲内
であり、かつ、上記結像面が光軸方向に異なることを特
徴とする前記(2)もしくは(3)記載のパターン形成
方法。
(6) In the projection lens, the wavelength band width;
or for each wavelength within the range of the wavelength scan,
Variations in the imaging magnification of the mask pattern, field curvature and field distortion of the imaging surface of the mask pattern are within predetermined tolerance ranges, and the imaging surfaces differ in the optical axis direction. The pattern forming method according to (2) or (3) above.

〔発明の効果〕〔Effect of the invention〕

上記の様に、本発明による縮小投影露光装置は、マスク
パターンを基板上へ縮小投影露光する縮小投影露光装置
において、上記露光に関与する光の光強度の波長依存性
を可変とする手段を設けることにより、マスク上のパタ
ーンの投影レンズによる結像位置を上記レンズの色収差
を用いて任意に分布させることができるので露光パター
ンに応じて、その焦点深度を増大させることができる。
As described above, the reduction projection exposure apparatus according to the present invention is a reduction projection exposure apparatus that performs reduction projection exposure of a mask pattern onto a substrate, and is provided with means for varying the wavelength dependence of the light intensity of the light involved in the exposure. As a result, the image formation position of the pattern on the mask by the projection lens can be arbitrarily distributed using the chromatic aberration of the lens, so that the depth of focus can be increased according to the exposure pattern.

従って、露光々の短波長化、投影レンズの高開口数化、
及び素子構造の立体化に伴なう基板表面の凹凸段差の増
大等に起因する焦点深度の不足に対処することが可能で
ある。このため、本発明による縮小投影露光装置を用い
ることにより、縮小投影露光法をLSI等の固体素子に
おける微細パターン形成に適用する際の大きな障害をと
り除くことができ、縮小投影露光法の適用範囲をさらに
微細な固体素子の製造へと拡大することができる。
Therefore, shorter exposure wavelengths, higher numerical apertures of projection lenses,
Also, it is possible to cope with the lack of depth of focus caused by an increase in uneven steps on the surface of the substrate due to the three-dimensional element structure. Therefore, by using the reduction projection exposure apparatus according to the present invention, it is possible to remove a major obstacle when applying the reduction projection exposure method to fine pattern formation in solid-state devices such as LSI, and expand the scope of application of the reduction projection exposure method. It can be expanded to the production of even finer solid-state devices.

また、本発明によるパターン形成方法を用いれば、縮小
投影露光法におけるコンタクトホール等に代表される孤
立透光部を有するパターンの焦点深度を増大させること
ができるので、露光々の短波長化、投影レンズの高開口
数化、及び素子構造の立体化に伴なう基板表面の凹凸段
差の増大、基板の傾斜、および投影レンズの像面湾曲等
による焦点深度の不足に対処することが可能である。
Furthermore, by using the pattern forming method according to the present invention, it is possible to increase the depth of focus of a pattern having an isolated transparent part, such as a contact hole in the reduction projection exposure method. It is possible to deal with the lack of depth of focus due to increased unevenness on the substrate surface, tilt of the substrate, and curvature of field of the projection lens due to the increase in the numerical aperture of the lens and the three-dimensional element structure. .

従って、LSI等の固体素子の製造に際して本発明によ
るパターン形成方法を適宜用いることにより、縮小投影
露光法を前記パターンに適用する際の大きな障害を取り
除くことができ、縮小投影露光法の適用範囲をさらに微
細な固体素子の製造へ拡張することができる。
Therefore, by appropriately using the pattern forming method according to the present invention when manufacturing solid-state devices such as LSIs, it is possible to remove major obstacles when applying the reduction projection exposure method to the pattern, and expand the scope of application of the reduction projection exposure method. It can be extended to the manufacture of even finer solid-state devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は、本
発明の他の実施例を示す構成図、第3図は、本発明の効
果を示す特性図、第4図は、本発明の作用を示すyX理
図、第5図は、本発明の一実施例における原理を示す特
性図、第6図は、本発明の一実施例の条件を表わす特性
図2第7図は、本発明の一実施例の条件を設定するため
の図である。 1・・・反射鏡、2・・・波長帯域設定装置、3・・・
エキシマレーザ共振器、4・・・出力鏡、5・・・ミラ
ー、6・・・照明光学系、7・・・レチクル、8・・・
投影レンズ、9・・・基板ステージ、10・・・制御コ
ンピュータ、12慴 7I!1 第 2− 国 第−3区 (に)(b。 第 4 l 第5図 「 第 6 圀 誘・3  兼歓□っ 24iM
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a block diagram showing another embodiment of the present invention, Fig. 3 is a characteristic diagram showing the effects of the present invention, and Fig. 4 is a block diagram showing an embodiment of the present invention. , yX diagram showing the action of the present invention, Fig. 5 is a characteristic diagram showing the principle of an embodiment of the present invention, Fig. 6 is a characteristic diagram 2 showing the conditions of an embodiment of the present invention, Fig. 7 FIG. 2 is a diagram for setting conditions of an embodiment of the present invention. 1...Reflector, 2...Wavelength band setting device, 3...
Excimer laser resonator, 4... Output mirror, 5... Mirror, 6... Illumination optical system, 7... Reticle, 8...
Projection lens, 9...Substrate stage, 10...Control computer, 12 7I! 1 No. 2-3rd Ward of the Country (b. No. 4 l Figure 5)

Claims (1)

【特許請求の範囲】 1、マスクパターンを基板上へ投影露光する装置におい
て、上記投影露光に関与する光の光強度の波長依存性を
可変とする手段を有することを特徴とする縮小投影露光
装置。 2、上記光強度の波長依存性を可変とする手段が、上記
露光に関与する光の波長帯域巾を可変とする手段である
ことを特徴とする特許請求の範囲第1項記載の縮小投影
露光装置。 3、上記光強度の波長依存性を可変とする手段が、上記
露光に関与する光の波長を、上記露光中に変更する手段
であることを特徴とする特許請求の範囲第1項記載の縮
小投影露光装置。 4、前記投影露光を行なう投影レンズにおいて、前記投
影露光に関与する光の各波長に対して、前記マスクパタ
ーンの結像面が光軸方向に異なり、かつ、前記マスクパ
ターンの結像倍率の変動、上記結像面の像面湾曲及び像
面歪は所定の許容範囲内であることを特徴とする特許請
求の範囲第1項記載の縮小投影露光装置。 5、前記投影露光に用いられる光が、エキシマレーザ光
であることを特徴とする特許請求の範囲第1項記載の縮
小投影露光装置。
[Scope of Claims] 1. A reduction projection exposure apparatus for projecting and exposing a mask pattern onto a substrate, comprising means for varying the wavelength dependence of the light intensity of the light involved in the projection exposure. . 2. Reduction projection exposure according to claim 1, wherein the means for varying the wavelength dependence of the light intensity is a means for varying the wavelength band width of the light involved in the exposure. Device. 3. The reduction according to claim 1, wherein the means for making the wavelength dependence of the light intensity variable is a means for changing the wavelength of the light involved in the exposure during the exposure. Projection exposure equipment. 4. In the projection lens that performs the projection exposure, the imaging plane of the mask pattern differs in the optical axis direction for each wavelength of light involved in the projection exposure, and the imaging magnification of the mask pattern varies. 2. The reduction projection exposure apparatus according to claim 1, wherein curvature of field and distortion of field of said image forming surface are within predetermined tolerance ranges. 5. The reduction projection exposure apparatus according to claim 1, wherein the light used for the projection exposure is excimer laser light.
JP62251479A 1987-10-07 1987-10-07 Reduction projection exposure equipment Expired - Lifetime JP2619419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251479A JP2619419B2 (en) 1987-10-07 1987-10-07 Reduction projection exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251479A JP2619419B2 (en) 1987-10-07 1987-10-07 Reduction projection exposure equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6243670A Division JP2576798B2 (en) 1994-10-07 1994-10-07 Projection exposure method and projection exposure apparatus

Publications (2)

Publication Number Publication Date
JPH0194618A true JPH0194618A (en) 1989-04-13
JP2619419B2 JP2619419B2 (en) 1997-06-11

Family

ID=17223425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251479A Expired - Lifetime JP2619419B2 (en) 1987-10-07 1987-10-07 Reduction projection exposure equipment

Country Status (1)

Country Link
JP (1) JP2619419B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552780A (en) * 1995-03-09 1996-09-03 Siemens Automotive Corporation Method and apparatus for transmitting coded light through low transmissible materials
JPH09237953A (en) * 1996-12-20 1997-09-09 Nikon Corp Manufacture of circuit pattern
US5890077A (en) * 1994-06-30 1999-03-30 Fujitsu Limited Mobile terminal selectively operable with a booster and mobile communication system
JP2005079591A (en) * 2003-08-29 2005-03-24 Asml Netherlands Bv Lithograph apparatus, device manufacturing method and device
JP2006114914A (en) * 2004-10-15 2006-04-27 Asml Netherlands Bv Lithographic system, method for adjusting transmission characteristics of an optical path in a lithographic system, semiconductor device, method for manufacturing a reflective element for use in a lithographic system, and reflective element manufactured thereby
WO2007004567A1 (en) * 2005-07-01 2007-01-11 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and system
US11526082B2 (en) 2017-10-19 2022-12-13 Cymer, Llc Forming multiple aerial images in a single lithography exposure pass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257519A (en) * 1984-06-04 1985-12-19 Canon Inc Printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257519A (en) * 1984-06-04 1985-12-19 Canon Inc Printer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890077A (en) * 1994-06-30 1999-03-30 Fujitsu Limited Mobile terminal selectively operable with a booster and mobile communication system
US5552780A (en) * 1995-03-09 1996-09-03 Siemens Automotive Corporation Method and apparatus for transmitting coded light through low transmissible materials
JPH09237953A (en) * 1996-12-20 1997-09-09 Nikon Corp Manufacture of circuit pattern
JP2005079591A (en) * 2003-08-29 2005-03-24 Asml Netherlands Bv Lithograph apparatus, device manufacturing method and device
JP2006114914A (en) * 2004-10-15 2006-04-27 Asml Netherlands Bv Lithographic system, method for adjusting transmission characteristics of an optical path in a lithographic system, semiconductor device, method for manufacturing a reflective element for use in a lithographic system, and reflective element manufactured thereby
JP4639134B2 (en) * 2004-10-15 2011-02-23 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic system and method for adjusting transmission characteristics of an optical path in a lithographic system
WO2007004567A1 (en) * 2005-07-01 2007-01-11 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and system
US11526082B2 (en) 2017-10-19 2022-12-13 Cymer, Llc Forming multiple aerial images in a single lithography exposure pass
US12001144B2 (en) 2017-10-19 2024-06-04 Cymer, Llc Forming multiple aerial images in a single lithography exposure pass

Also Published As

Publication number Publication date
JP2619419B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US4937619A (en) Projection aligner and exposure method
KR100563157B1 (en) Duv scanner linewidth control by mask error factor compensation
US7732110B2 (en) Method for exposing a substrate and lithographic projection apparatus
JP3303758B2 (en) Projection exposure apparatus and device manufacturing method
US5476736A (en) Projection exposure method and system used therefor
Lin The future of subhalf-micrometer optical lithography
US6069739A (en) Method and lens arrangement to improve imaging performance of microlithography exposure tool
JP2000021742A (en) Method of exposure and exposure equipment
JP3123548B2 (en) Exposure method and exposure apparatus
JP4497949B2 (en) Exposure equipment
US6377337B1 (en) Projection exposure apparatus
JPH04226013A (en) Imaging exposure device and exposure method
JP3605047B2 (en) Illumination apparatus, exposure apparatus, device manufacturing method and device
EP0938031B1 (en) A process for integrated circuit device fabrication using a variable transmission aperture
JPH0194618A (en) Reduction stepper
JP2897345B2 (en) Projection exposure equipment
US5982476A (en) Process of forming pattern and exposure apparatus
JP2576798B2 (en) Projection exposure method and projection exposure apparatus
JP2000021716A (en) Exposure device and device manufacturing method using the exposure device
JP3296296B2 (en) Exposure method and exposure apparatus
US7443484B2 (en) Method for exposing a semiconductor wafer by applying periodic movement to a component
JP2000031028A (en) Exposure method and exposure apparatus
JPH01258419A (en) Pattern formation
JPH0619115A (en) Mask for stepper
JP2894914B2 (en) Projection exposure method and apparatus