TWI523119B - Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials - Google Patents

Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials Download PDF

Info

Publication number
TWI523119B
TWI523119B TW099132906A TW99132906A TWI523119B TW I523119 B TWI523119 B TW I523119B TW 099132906 A TW099132906 A TW 099132906A TW 99132906 A TW99132906 A TW 99132906A TW I523119 B TWI523119 B TW I523119B
Authority
TW
Taiwan
Prior art keywords
furnace
temperature
end cap
region
substrate
Prior art date
Application number
TW099132906A
Other languages
Chinese (zh)
Other versions
TW201123314A (en
Inventor
羅伯特D 維廷
Original Assignee
思陽公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/568,656 external-priority patent/US8053274B2/en
Application filed by 思陽公司 filed Critical 思陽公司
Publication of TW201123314A publication Critical patent/TW201123314A/en
Application granted granted Critical
Publication of TWI523119B publication Critical patent/TWI523119B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

用於薄膜光伏材料的硒化的自清潔大規模方法和熔爐系統Self-cleaning large scale method and furnace system for selenization of thin film photovoltaic materials

本發明總體上涉及光伏技術。更具體地,本發明提供了一種用於使用銅銦二硒化物物質(或硒化銦銅,CIS)、銅銦鎵二硒化物物質(或銅銦鎵硒,CIGS)和/或其他物質的薄膜光伏裝置的方法和結構。本發明可應用於光伏模組、柔性片、建築物或窗戶的玻璃、汽車等。The present invention generally relates to photovoltaic technology. More specifically, the present invention provides a method for using copper indium diselenide material (or indium copper selenide, CIS), copper indium gallium diselenide material (or copper indium gallium selenide, CIGS) and/or other substances. Method and structure of a thin film photovoltaic device. The invention can be applied to photovoltaic modules, flexible sheets, glass for buildings or windows, automobiles, and the like.

在製造CIS和/或CIGS類型的薄膜的過程中,存在各種製造上的難題,例如,保持基板材料的結構完整性,確保薄膜材料的均勻性和細微性等。雖然過去的傳統技術已經解決了這些問題中的一些,但是其在許多情況下經常是不夠的。其中,用來製造CIS和/或CIGS薄膜的系統(例如,處理室)通常難於清洗。因此,期望改進的用於製造薄膜光伏裝置的系統和方法。In the manufacture of films of the CIS and/or CIGS type, there are various manufacturing difficulties, such as maintaining the structural integrity of the substrate material, ensuring uniformity and fineness of the film material, and the like. While some of these problems have been solved by past traditional techniques, they are often insufficient in many cases. Among other things, systems used to make CIS and/or CIGS films (eg, processing chambers) are often difficult to clean. Accordingly, there is a desire for improved systems and methods for fabricating thin film photovoltaic devices.

本發明總體上涉及光伏技術。更具體地,本發明提供了一種用於使用銅銦二硒化物物質(CIS)、銅銦鎵二硒化物物質(CIGS)和/或其他物質的薄膜光伏裝置的方法和結構。本發明可應用於光伏模組、柔性片、建築物或窗戶的玻璃、汽車等。The present invention generally relates to photovoltaic technology. More specifically, the present invention provides a method and structure for a thin film photovoltaic device using copper indium diselenide material (CIS), copper indium gallium diselenide material (CIGS), and/or other materials. The invention can be applied to photovoltaic modules, flexible sheets, glass for buildings or windows, automobiles, and the like.

根據一種實施方式,本發明提供了一種利用自清潔熔爐製造銅銦二硒半導體膜的方法。該方法包括將多個基板轉移至熔爐中,熔爐包括處理區域和至少一個與處理區域可拆卸接合的端帽區域,將多個基板中的每一個相對於重力方向垂直定向而設置,用數字N限定多個基板,其中N大於5,每個基板具有銅和銦複合結構。該方法還包括將包括氫物質和硒化物物質以及載氣的氣態物質引入熔爐中,並將熱能轉移入熔爐中以使溫度從第一溫度升高至第二溫度,第二溫度的範圍是從約350℃到約450℃,從而在每個基板上至少開始由銅和銦複合結構形成銅銦二硒膜。該方法進一步包括使熔爐的處理區域的內部區域的殘餘硒化物物質分解。該方法進一步包括在可在第三溫度下操作的端帽區域的附近沉積元素硒化物物質(elemental selenide species)。而且,該方法包括,通過至少從處理區域的內部區域分解殘餘的硒化物物質,將內部區域保持為基本上沒有元素硒化物物質。According to one embodiment, the present invention provides a method of manufacturing a copper indium diselenide semiconductor film using a self-cleaning furnace. The method includes transferring a plurality of substrates into a furnace, the furnace including a processing region and at least one end cap region detachably coupled to the processing region, the plurality of substrates being vertically oriented with respect to a direction of gravity, with a number N A plurality of substrates are defined, wherein N is greater than 5, and each substrate has a copper and indium composite structure. The method also includes introducing a gaseous substance comprising a hydrogen species and a selenide species and a carrier gas into the furnace, and transferring the thermal energy into the furnace to raise the temperature from the first temperature to a second temperature, the second temperature being range From about 350 ° C to about 450 ° C, a copper indium diselenide film is at least initially formed from a copper and indium composite structure on each substrate. The method further includes decomposing residual selenide species in an interior region of the treated region of the furnace. The method further includes depositing elemental selenide species in the vicinity of the end cap region operable at the third temperature. Moreover, the method includes maintaining the inner region substantially free of elemental selenide species by decomposing residual selenide species from at least the interior region of the processing region.

在一種具體實施方式中,在熔爐中使用硒化氫氣體作為工作氣體。當溫度為400℃左右或更高時,熱啟動硒化氫氣體以使其熱解,形成元素硒(Se)或硒簇(Se2或Se3)。端帽區域包括蓋子,通過流動活水進行冷卻並用燈進行加熱來控制蓋子的溫度。監測蓋子的溫度保持冷卻以用作“低溫泵”,使得可在蓋子上沉積硒物質(元素硒和硒簇),並抑制硒和其他膜材料(例如銦)之間的反應。在完成一個或多個處理迴圈之後,可用布(例如亞麻布,或類似的材料)進一步清潔端帽區域的蓋子以去除沉積的硒殘餘物和顆粒。In a specific embodiment, hydrogen selenide gas is used as a working gas in the furnace. When the temperature is about 400 ° C or higher, the hydrogen selenide gas is thermally activated to pyrolyze it to form elemental selenium (Se) or selenium clusters (Se 2 or Se 3 ). The end cap region includes a lid that is cooled by flowing living water and heated by a lamp to control the temperature of the lid. The temperature of the monitor lid is kept cool to serve as a "cryopump" so that selenium species (elemental selenium and selenium clusters) can be deposited on the lid and inhibit the reaction between selenium and other membrane materials such as indium. After completing one or more of the processing loops, the lid of the end cap region may be further cleaned with a cloth (eg, linen, or the like) to remove deposited selenium residues and particles.

應該理解,本發明提供了許多優於常規技術的益處。其中,本發明的系統和方法與傳統系統相容,這能夠實現節約成本。在各種實施方式中,將殘餘氣體合併入處理室的特定區域中,從而能夠容易地進行清洗。此外還具有其他的益處。It should be understood that the present invention provides many benefits over conventional techniques. Among other things, the system and method of the present invention are compatible with conventional systems, which enables cost savings. In various embodiments, the residual gas is incorporated into a particular region of the processing chamber so that cleaning can be readily performed. There are also other benefits.

本發明總體上涉及光伏技術。更具體地,本發明提供了一種用於使用銅銦二硒化物物質(CIS)、銅銦鎵二硒化物物質(CIGS)和/或其他的薄膜光伏裝置的方法和結構。本發明可應用於光伏模組、柔性片、建築或窗戶的玻璃、汽車等。The present invention generally relates to photovoltaic technology. More specifically, the present invention provides a method and structure for using copper indium diselenide materials (CIS), copper indium gallium diselenide materials (CIGS), and/or other thin film photovoltaic devices. The invention can be applied to photovoltaic modules, flexible sheets, glass for buildings or windows, automobiles, and the like.

圖1是根據本發明的一種實施方式的具有重疊電極層的透明基板的簡圖。此圖僅是一個實施例,在本文中其不應限制權利要求的範圍。如所示出的,結構100包括透明基板104。在一種實施方式中,基板104可以是玻璃基板,例如鈉鈣玻璃。然而,也可使用其他類型的基板。基板的實例包括硼矽玻璃、丙烯酸玻璃、糖玻璃、特製CorningTM玻璃等。如所示出的,在基板104上沉積包含金屬電極層102的接觸層。根據一種實施方式,金屬電極層102包含特徵在於具有基於太陽能電池應用的薄膜是最佳的預定導電率的金屬材料。根據應用情況,可以各種方式沉積金屬電極層102。例如,金屬電極層102主要包括通過濺射來沉積的鉬膜。例如,厚度的範圍可以是200至700 nm。可以使用濺射裝置(例如,直流磁控管濺射裝置)在基板上沉積材料的薄膜。這種裝置是公知的,並且可商購獲得。但是,應該理解,也可以使用其他類型的設備和/或方法,例如,在基於真空的環境中蒸發。作為一個實施例,下面描述濺射沉積方法。1 is a simplified diagram of a transparent substrate having overlapping electrode layers in accordance with an embodiment of the present invention. This figure is only an embodiment, and it should not limit the scope of the claims herein. As shown, the structure 100 includes a transparent substrate 104 . In one embodiment, the substrate 104 can be a glass substrate, such as soda lime glass. However, other types of substrates can also be used. Examples of substrates include borosilicate glass, acrylic glass, sugar glass, specialty Corning TM glass. As shown, a contact layer comprising metal electrode layer 102 is deposited on substrate 104 . According to one embodiment, the metal electrode layer 102 comprises a metallic material characterized by having a predetermined conductivity based on a solar cell application-based film. The metal electrode layer 102 can be deposited in various ways depending on the application. For example, the metal electrode layer 102 mainly includes a molybdenum film deposited by sputtering. For example, the thickness can range from 200 to 700 nm. A thin film of material can be deposited on the substrate using a sputtering device (eg, a DC magnetron sputtering device). Such devices are well known and commercially available. However, it should be understood that other types of devices and/or methods may be used, such as evaporation in a vacuum based environment. As an embodiment, a sputter deposition method will be described below.

濺射沉積是通過從“靶(目標)”或源濺射或噴射材料,然後將其沉積在基板(例如,矽晶片或玻璃)上來沉積薄膜的物理氣相沉積(PVD)方法。從靶噴射的所濺射的原子具有較寬的能量分佈,典型地高達數10 eV(100000 K)。通過改變背景氣壓,可獲得從高能量彈道衝擊到低能量熱運動的整個範圍。濺射氣體通常是惰性氣體,例如氬。為了有效地實施動量轉移,濺射氣體的原子量應接近靶的原子量,因此,對於濺射輕元素來說,優選氖,而對於重元素來說則使用氪或氙。也可以使用反應性氣體來濺射化合物。根據工藝參數,可在靶表面上、在飛行中或在基板上形成化合物。控制濺射沉積的許多參數的可用性使得其是一個複雜過程,但也使得熟練的技術人員能夠在很大程度上控制膜的生長和微結構。Sputter deposition is a physical vapor deposition (PVD) method of depositing a thin film by sputtering or ejecting a material from a "target (target)" or source and then depositing it on a substrate (eg, a germanium wafer or glass). The sputtered atoms ejected from the target have a broad energy distribution, typically up to a few 10 eV (100,000 K). By varying the background air pressure, the entire range from high energy ballistic impact to low energy thermal motion can be obtained. The sputtering gas is typically an inert gas such as argon. In order to effectively perform the momentum transfer, the atomic weight of the sputtering gas should be close to the atomic weight of the target, and therefore, ruthenium is preferred for sputtering light elements, and ruthenium or osmium is used for heavy elements. A reactive gas can also be used to sputter the compound. Depending on the process parameters, compounds can be formed on the target surface, in flight, or on the substrate. The availability of many of the parameters controlling sputter deposition makes it a complex process, but also allows the skilled artisan to control the growth and microstructure of the film to a large extent.

圖2是根據本發明的一種實施方式的包括銅和銦材料的複合結構的簡圖。此圖僅是一個實例,在本文中不應限制權利要求的範圍。在此實施方式中,結構200包括玻璃基板208,優選鈉鈣玻璃,其厚度約為1至3 mm。例如,玻璃基板208用作支撐層。在基板208上沉積金屬層206。例如,金屬層206用作金屬電極層以提供電接觸。例如,層206主要包括已經通過濺射而沉積的鉬膜,其厚度為200至700 nm。在一種具體實施方式中,在玻璃208上首先沉積初始鉻膜。例如,提供鉻層以確保整個結構與基板208的良好粘接。阻擋層中也可使用其他類型的材料,例如二氧化矽、氮化矽等。層204202主要包括通過濺射處理而沉積在金屬層206上的銅層和銦層。如圖2所示,銦層覆蓋銅層。但是應該理解,也可以採用其他佈置。在另一實施方式中,銅層覆蓋銦層。作為一個實例,用濺射裝置(例如,直流磁控管濺射裝置)在基板上沉積材料的薄膜(例如層202204和/或206)。應該理解,可以使用各種類型的濺射裝置。這種裝置是公知的並且是可商購的。也可使用其他材料。應該理解,在本申請的全文中描述的技術是可靈活運用的,並且也可以使用其他類型的設備和/或方法,例如,在基於真空的環境中蒸發來沉積銅和銦材料。在某些實施方式中,除了銅和銦材料以外,可以形成沉積的鎵材料(圖2中未示出)。根據一種實施方式,銅和銦材料之比小於1(例如,0.92~0.96);即,每一份銦材料中少於一份的銅。2 is a simplified diagram of a composite structure including copper and indium materials in accordance with an embodiment of the present invention. This figure is only an example and the scope of the claims should not be limited herein. In this embodiment, structure 200 includes a glass substrate 208 , preferably soda lime glass, having a thickness of about 1 to 3 mm. For example, the glass substrate 208 serves as a support layer. A metal layer 206 is deposited on the substrate 208 . For example, metal layer 206 acts as a metal electrode layer to provide electrical contact. For example, layer 206 primarily comprises a molybdenum film that has been deposited by sputtering and has a thickness of 200 to 700 nm. In a specific embodiment, an initial chromium film is first deposited on the glass 208 . For example, a chrome layer is provided to ensure good bonding of the entire structure to the substrate 208 . Other types of materials can also be used in the barrier layer, such as hafnium oxide, tantalum nitride, and the like. Layers 204 and 202 primarily comprise a copper layer and an indium layer deposited on metal layer 206 by a sputtering process. As shown in FIG. 2, the indium layer covers the copper layer. However, it should be understood that other arrangements are possible. In another embodiment, the copper layer covers the indium layer. As an example, a thin film of material (e.g., layers 202 , 204, and/or 206 ) is deposited on a substrate using a sputtering apparatus (e.g., a DC magnetron sputtering apparatus). It should be understood that various types of sputtering devices can be used. Such devices are well known and commercially available. Other materials can also be used. It should be understood that the techniques described throughout this application are flexible and that other types of devices and/or methods may be used, such as evaporation of copper and indium materials in a vacuum-based environment. In some embodiments, a deposited gallium material (not shown in Figure 2) can be formed in addition to the copper and indium materials. According to one embodiment, the ratio of copper to indium material is less than one (eg, 0.92 to 0.96); that is, less than one part of copper per indium material.

作為一個實施例,通過處理結構100來形成結構200。例如,在結構100上沉積Cu和In以形成結構200。如上所述,用濺射處理來形成銅和/或銦層。在圖2所示的實施方式中,Cu膜和In膜示出為兩個分開的層。在另一實施方式中,如圖2A所示,在濺射處理的過程中形成Cu/In複合物或Cu/In合金。應該理解,在本申請全文中描述的技術是可靈活運用的,並且也可以使用其他類型的設備和/或方法,例如,在基於真空的環境中蒸發來沉積銅和銦材料。在某些實施方式中,除了銅和銦材料以外,可以形成沉積的鎵材料(圖2中未示出)。As an embodiment, structure 200 is formed by processing structure 100 . For example, Cu and In are deposited on structure 100 to form structure 200 . As described above, a copper and/or indium layer is formed by a sputtering process. In the embodiment shown in Figure 2, the Cu film and the In film are shown as two separate layers. In another embodiment, as shown in FIG. 2A, a Cu/In composite or a Cu/In alloy is formed during the sputtering process. It should be understood that the techniques described throughout this application are flexible and that other types of devices and/or methods may be used, such as evaporation of copper and indium materials in a vacuum-based environment. In some embodiments, a deposited gallium material (not shown in Figure 2) can be formed in addition to the copper and indium materials.

圖2A是根據本發明的另一實施方式的包括銅和銦複合薄膜的複合結構210的簡圖。此圖僅是一個實例,其在本文中不應限制權利要求的範圍。如所示出的,結構210包括透明基板216。在一種實施方式中,基板216可以是玻璃基板,例如鈉鈣玻璃。後觸點(靜合觸點,back contact)包括沉積在基板216上的金屬電極層214。例如,層214主要包括通過濺射而沉積的鉬材料的膜。在一種具體實施方式中,在沉積鉬材料之前在玻璃216上沉積初始的鉻膜,以提供整個結構與基板210的良好的粘接。層212主要包括銅銦合金或銅銦複合材料。例如,銅銦的混合或合金化導致複合銅銦膜的均勻性或有利的形態得到改進。在硒化步驟之後,將此改進的結構載入到期望的CIS膜中。根據一種實施方式,由擴散到彼此之中的銅和銦材料的單獨的層形成銅銦合金材料。例如,能夠通過使該結構經受高溫來促進形成銅銦合金材料的處理。2A is a simplified diagram of a composite structure 210 including a composite film of copper and indium, in accordance with another embodiment of the present invention. This figure is only an example and should not limit the scope of the claims herein. As shown, structure 210 includes a transparent substrate 216 . In one embodiment, the substrate 216 can be a glass substrate, such as soda lime glass. The back contact (back contact) includes a metal electrode layer 214 deposited on the substrate 216 . For example, layer 214 primarily includes a film of molybdenum material deposited by sputtering. In one embodiment, an initial chromium film is deposited on the glass 216 prior to depositing the molybdenum material to provide a good bond of the entire structure to the substrate 210 . Layer 212 primarily comprises a copper indium alloy or a copper indium composite. For example, the mixing or alloying of copper indium results in improved uniformity or advantageous morphology of the composite copper indium film. This modified structure is loaded into the desired CIS film after the selenization step. According to one embodiment, a copper indium alloy material is formed from separate layers of copper and indium materials that diffuse into each other. For example, the process of forming a copper indium alloy material can be promoted by subjecting the structure to high temperatures.

圖3是根據本發明的一種實施方式的熔爐的簡圖。此圖僅是一個實施例,其在本文中不應限制申請專利範圍。如所示出的,熔爐300包括處理室302和室的端帽304。根據一種實施方式,反應室302的特徵在於大於200升的容積。將處理室302的內表面和空間區域描述為內部處理區域320。在一種實施方式中,處理室302可包括石英管。端帽區域322代表端帽304的內表面和部分地暴露於內部處理區域320的管子附近的表面。在一種實施方式中,端帽304可由金屬材料製成。在某些實施方式中,端帽304和處理室302由不同的表面反應性、導熱率、粘性、和/或其他特性表徵。例如,在某一條件下,各種類型的材料都可以沉積在端帽304上,而不是沉積在直接暴露於樣品或將要裝載於腔室中的基板的腔室302的內表面上。在一種具體實施方式中,端帽區域302由具有比處理室302低的比熱的材料製成。如圖3所示,熔爐300包括真空泵送機,該真空泵送機包括渦輪分子泵310和旋轉泵312。根據應用情況,真空泵送機可通過機械增壓泵和幹泵的組合的方式來執行。例如,如果特定的應用和/或處理需要,則可經由注氣管道314將原料氣體和/或稀釋氣體(例如,氦氣、氮氣、氬氣或氫氣)引入處理室302。用渦輪分子泵310經由旋轉泵312對腔室302抽真空,旋轉泵312經由閘閥和傳導閥318與歧管316連接。例如,在歧管中或在反應熔爐中沒有專用的隔板。在反應室302的外部安裝加熱元件3063 is a simplified diagram of a furnace in accordance with an embodiment of the present invention. This figure is only an example, which should not limit the scope of the patent application herein. As shown, the furnace 300 includes a process chamber 302 and an end cap 304 of the chamber. According to one embodiment, the reaction chamber 302 is characterized by a volume greater than 200 liters. The inner surface and the spatial region of the processing chamber 302 are depicted as an internal processing region 320 . In one embodiment, the processing chamber 302 can include a quartz tube. End cap region 322 represents the inner surface of end cap 304 and a surface that is partially exposed to the tube of inner processing region 320 . In one embodiment, the end cap 304 can be made of a metallic material. In certain embodiments, end cap 304 and processing chamber 302 are characterized by different surface reactivity, thermal conductivity, viscosity, and/or other characteristics. For example, under certain conditions, various types of materials may be deposited on the end cap 304 rather than on the inner surface of the chamber 302 that is directly exposed to the sample or substrate to be loaded into the chamber. In a specific embodiment, the end cap region 302 is made of a material having a lower specific heat than the processing chamber 302 . As shown in FIG. 3, the furnace 300 includes a vacuum pumping machine including a turbo molecular pump 310 and a rotary pump 312 . Depending on the application, the vacuum pumping machine can be implemented by a combination of a mechanical booster pump and a dry pump. For example, a feed gas and/or a diluent gas (eg, helium, nitrogen, argon, or hydrogen) may be introduced into the process chamber 302 via a gas injection conduit 314 if desired for a particular application and/or process. 312 turbo-molecular pump 310 defining a cavity 302 is evacuated via a rotary pump, a rotary pump 312 via valve 318 and the conductance valve 316 is connected with the manifold. For example, there are no dedicated baffles in the manifold or in the reaction furnace. A heating element 306 is mounted external to the reaction chamber 302 .

熔爐300可用於許多應用。根據一種實施方式,用熔爐300用於對各種類型的基板施加熱能,並且用於引入各種類型的氣態物質。在一種實施方式中,在腔室302的中心附近垂直地定位一個或多個玻璃板或基板。作為一個實例,基板308可與圖2和圖2A中描述的那些相似(例如,在基板上覆蓋金屬接觸層的Cu/In層或複合Cu/In層)。在包含硒的氣體(例如,H2Se)存在的情況下,將這些層放在處理室中。在對材料進行給定時間段的退火之後,銅、銦和硒彼此擴散並發生反應,以形成高品質的銅銦二硒化物(CIS)膜。Furnace 300 can be used in many applications. According to one embodiment, furnace 300 is used to apply thermal energy to various types of substrates and to introduce various types of gaseous materials. In one embodiment, one or more glass sheets or substrates are positioned vertically adjacent the center of the chamber 302 . As an example, substrate 308 can be similar to those described in Figures 2 and 2A (e.g., a Cu/In layer or a composite Cu/In layer overlying a metal contact layer on a substrate). Gas comprising selenium (e.g., H 2 Se) in the presence of the layers in the processing chamber. After annealing the material for a given period of time, copper, indium, and selenium diffuse and react with each other to form a high quality copper indium diselenide (CIS) film.

圖4是根據本發明的一種實施方式的用於形成銅銦二硒化物層的過程的簡圖。此圖僅是一個實例,其在本文中不應限制權利要求的範圍。本領域普通技術人員將認識到許多其他變型、修改和替代方式。還應該理解,本文中描述的實施例和實施方式僅用於示意性目的,而且對於本領域的技術人員來說,暗示了能夠據此進行各種修改或變化,這些修改和變化均包括在本方法的精神和範圍以及所附申請專利範圍內。4 is a simplified diagram of a process for forming a copper indium diselenide layer in accordance with an embodiment of the present invention. This figure is only an example and should not limit the scope of the claims herein. Many other variations, modifications, and alternatives will be apparent to those of ordinary skill in the art. It is to be understood that the embodiments and the embodiments described herein are for illustrative purposes only and that it is intended to The spirit and scope of the invention and the scope of the appended patent application.

如圖4所示,可簡要地概括本方法以下。As shown in Figure 4, the method can be summarized briefly below.

1. 開始;Start

2. 提供多個具有銅和銦複合結構的基板;2. providing a plurality of substrates having a composite structure of copper and indium;

3. 將包括氫物質和硒物質以及載氣的氣態物質引入熔爐中;3. Introducing a gaseous substance including a hydrogen substance and a selenium substance and a carrier gas into the furnace;

4. 將熱能轉移入熔爐中,以使溫度從第一溫度升高至第二溫度;4. transferring thermal energy into the furnace to raise the temperature from the first temperature to the second temperature;

5. 使溫度保持在約第二溫度一段時間;5. maintaining the temperature at about the second temperature for a period of time;

6. 使熔爐的處理區域的內部區域的任何殘餘的硒化物物質分解;6. Decompose any residual selenide material in the inner region of the treated area of the furnace;

7. 將溫度降至第三溫度;7. Lower the temperature to the third temperature;

8. 使溫度保持在約第三溫度一段時間;8. maintaining the temperature at about the third temperature for a period of time;

9. 在可在第三溫度下操作的端帽區域的附近內沉積元素硒物質;9. depositing elemental selenium species in the vicinity of the end cap region operable at the third temperature;

10. 將溫度從第三溫度坡度降低至大約第一溫度;10. Lowering the temperature from the third temperature gradient to approximately the first temperature;

11. 去除氣體;以及11. Remove the gas;

12. 停止。12. Stop.

這些步驟僅是實施例,而不應限制本發明申請專利範圍。本領域普通技術人員將認識到許多其他變型、修改和替代方式。例如,當在本發明的範圍內考慮時,可以增加、去除、修改、重新安排、重複和/或重疊以上略述的各種步驟。如所示出的,方法400從開始步驟402開始。在此,該方法的使用者以處理室例如上文中提到的、以及其他的步驟開始。在實施本方法之前,可將處理室保持在大約室溫。These steps are only examples and should not limit the scope of the invention. Many other variations, modifications, and alternatives will be apparent to those of ordinary skill in the art. For example, various steps outlined above may be added, removed, modified, rearranged, repeated, and/or overlapped as contemplated within the scope of the invention. As shown, method 400 begins at start step 402 . Here, the user of the method begins with a processing chamber such as those mentioned above, as well as other steps. The processing chamber can be maintained at about room temperature prior to carrying out the method.

步驟402是將多個基板轉移入處理室中。可將多個基板中的每一個相對於重力垂直定向而設置。可用數字N限定多個基板,其中N大於5。此多個基板可以包括5個或更多個單獨的基板。在另一實施方式中,此多個基板可包括40個或更多個單獨的基板。例如,每個基板的尺寸可以是約65 cm×165 cm。將每個基板保持為基本平面的結構,沒有翹曲或損壞。例如,如果將基板設置在除了相對於重力垂直的方向以外的方向上,那麼重力就會導致基板下垂並翹曲。當基板材料達到軟化溫度時會出現這種情況,危及基板的結構完整性。典型地,玻璃基板,尤其是鈉鈣玻璃基板,在480℃(通常稱為應變點)時開始變軟。在一種實施方式中,基板也根據預定間隔而彼此隔離,以確保均勻加熱和與將要引入熔爐的氣態物質的反應。Step 402 is to transfer a plurality of substrates into the processing chamber. Each of the plurality of substrates may be disposed to be oriented perpendicular to gravity. A plurality of substrates may be defined by a number N, where N is greater than five. The plurality of substrates may include five or more separate substrates. In another embodiment, the plurality of substrates can include 40 or more separate substrates. For example, each substrate may have a size of about 65 cm x 165 cm. Each substrate is held in a substantially planar configuration with no warpage or damage. For example, if the substrate is placed in a direction other than a direction perpendicular to gravity, gravity causes the substrate to sag and warp. This occurs when the substrate material reaches a softening temperature, jeopardizing the structural integrity of the substrate. Typically, glass substrates, especially soda lime glass substrates, begin to soften at 480 ° C (commonly referred to as strain point). In one embodiment, the substrates are also isolated from each other according to a predetermined interval to ensure uniform heating and reaction with gaseous species to be introduced into the furnace.

在將基板定位在處理室中之後,在步驟406中,將氣態物質(包括氫物質、硒物質、和/或載氣)引入處理室中。在一種實施方式中,氣態物質至少包括硒化物物質(例如,H2Se)和氮氣。在另一實施方式中,氣態物質包括其他類型的化學惰性氣體,例如,氦、氬等。例如,將基板放在含硒的氣體(例如,H2Se)中。After positioning the substrate in the processing chamber, in step 406 , gaseous species (including hydrogen species, selenium species, and/or carrier gas) are introduced into the processing chamber. In one embodiment, the gaseous species comprise at least a selenide species (eg, H 2 Se) and nitrogen. In another embodiment, the gaseous species include other types of chemically inert gases such as helium, argon, and the like. For example, the substrate is placed in a gas containing selenium (for example, H 2 Se).

然後,在步驟408中,將熔爐加熱至溫度範圍為約350℃到450℃的第二溫度。為了加熱處理室,可通過加熱元件、加熱線圈等來實現熱能的轉移。例如,在步驟408中,至少開始通過氣態物質與每個基板上的銅和銦複合(或分層)結構之間的反應來形成銅銦二硒化物膜。在一種具體實施方式中,銅和銦材料的分開的層擴散至彼此之中,以形成單層銅銦合金材料。在步驟410中,在熱處理間隔中,將第二溫度保持在350℃和450℃之間持續約10至60分鐘(時間段)。在另一實施方式中,第二溫度的範圍可以為390℃到410℃。例如,步驟410提供的用於保持溫度的時間段使得能夠形成CIS膜材料。隨著溫度的升高,熔爐內部的壓力也會增加。在一種具體實施方式中,用壓力釋放閥將熔爐內部的壓力保持在約650托。Then, in step 408 , the furnace is heated to a second temperature in the range of from about 350 °C to 450 °C. In order to heat the processing chamber, thermal energy transfer can be achieved by heating elements, heating coils, and the like. For example, in step 408 , at least a copper indium diselenide film is formed by a reaction between a gaseous species and a composite (or layered) structure of copper and indium on each substrate. In a specific embodiment, separate layers of copper and indium materials diffuse into each other to form a single layer of copper indium alloy material. In step 410 , the second temperature is maintained between 350 ° C and 450 ° C for about 10 to 60 minutes (time period) during the heat treatment interval. In another embodiment, the second temperature can range from 390 °C to 410 °C. For example, the period of time provided by step 410 for maintaining the temperature enables the formation of a CIS film material. As the temperature increases, the pressure inside the furnace also increases. In a specific embodiment, the pressure inside the furnace is maintained at about 650 Torr with a pressure relief valve.

在一種實施方式中,在溫度從第一溫度爬升(ramping)至第二溫度並在第二溫度達到穩定的過程中,硒化氫H2Se會被部分地熱裂解為H原子和Se蒸氣。可以在一個或多個處理中部分地去除Se蒸氣。例如,可安裝低溫泵,以從腔室中直接抽出Se蒸氣。在另一實施例中,冷卻的端面帽可以起到低溫泵的作用,以吸收或冷凝由從熱的室內處理區域至冷卻的端帽區域的對流所攜帶的Se蒸氣或Se簇,有效地抽出硒物質。In one embodiment, the hydrogen selenide H 2 Se is partially thermally cracked into H atoms and Se vapors during a temperature ramping from a first temperature to a second temperature and at a second temperature. The Se vapor can be partially removed in one or more processes. For example, a cryopump can be installed to extract Se vapor directly from the chamber. In another embodiment, the cooled end cap can function as a cryopump to absorb or condense Se vapor or Se clusters carried by convection from the hot chamber processing zone to the cooled end cap region, effectively extracting Selenium substance.

在溫度保持的過程中(步驟410),在步驟412中,開始附加地去除殘餘的硒化物物質。在步驟414中,通過真空泵在處理室中形成真空。在一種具體實施方式中,可繼續進行殘餘硒化物去除處理,直到如在以上段落中建議的處理室處於真空構造中為止。在步驟416中,一旦在處理室中產生真空(步驟414),就引入硫化氫(H2S)物質。處於第二溫度穩定水準的所引入的H2S會導致與包含在銅銦複合膜中的硒物質的交換反應。例如,會發生以下反應,CuInSe2+H2S→CuInSexS1-x+H2Se,從基板上的膜部分地去除Se,並在腔室內的環境中重新產生H2Se。同時,可由從熱反應室到包括端帽區域的更冷的區域的對流連續地運輸Se顆粒或細粉,使得其可沉積在端帽表面上,保持反應室基本沒有元素硒。在已經改變熔爐中的氣體環境以使得硒化物物質被去除並引入硫化氫物質之後,開始第二溫度爬升處理,步驟418。在一種具體實施方式中,起到載氣作用的氮氣與硒化物物質一起引入。將熔爐的溫度升高至約500℃到525℃範圍的第三溫度。例如,為了使熔爐中的硫化氫物質和基板之間發生反應而校準第三溫度。在一種優選實施方式中,由於金屬端帽304具有更高的熱導率,金屬端帽304比石英處理室302冷卻地快得多。甚至當腔室管302是熱的時,金屬端帽304也能夠保持“冷卻”(基本上在200℃之下)。產生溫度梯度,這在內部處理區域320內產生對流。結果,硒和/或其他殘餘物聚集並沉積在端帽上。在一種具體實施方式中,如上所述的熔爐300具有可單獨控制的加熱單元,其用來保持熔爐內的溫度均勻度。例如,這些加熱器也可用來產生溫差,該溫差導致硒和/或其他殘餘物移動至端帽區域。During the temperature maintenance process (step 410 ), in step 412 , additional removal of residual selenide species begins. In step 414 , a vacuum is created in the processing chamber by a vacuum pump. In a specific embodiment, the residual selenide removal process can continue until the process chamber as suggested in the above paragraph is in a vacuum configuration. In step 416, once the vacuum is generated (step 414) in the processing chamber, on the introduction of hydrogen sulfide (H 2 S) material. The introduced H 2 S at the second temperature stabilization level causes an exchange reaction with the selenium species contained in the copper indium composite film. For example, the following reaction occurs, CuInSe 2 + H 2 S → CuInSe x S 1-x + H 2 Se, Se is partially removed from the film on the substrate, and H 2 Se is regenerated in the environment inside the chamber. At the same time, Se particles or fines can be continuously transported by convection from the thermal reaction chamber to a cooler region including the end cap region such that it can be deposited on the end cap surface, keeping the reaction chamber substantially free of elemental selenium. After the gas environment in the furnace has been changed such that the selenide material is removed and the hydrogen sulfide species is introduced, a second temperature climb process is initiated, step 418 . In a specific embodiment, nitrogen gas that acts as a carrier gas is introduced with the selenide species. The temperature of the furnace is raised to a third temperature ranging from about 500 °C to 525 °C. For example, the third temperature is calibrated in order to react between the hydrogen sulfide species in the furnace and the substrate. In one preferred embodiment, since the metal end cap 304 has a higher thermal conductivity, a metal end cap 304 is much faster than a quartz process chamber 302 to cool. The metal end cap 304 can remain "cooled" (substantially below 200 °C) even when the chamber tube 302 is hot. A temperature gradient is created which creates convection within the internal processing region 320 . As a result, selenium and/or other residues accumulate and deposit on the end cap. In a specific embodiment, the furnace 300 as described above has a separately controllable heating unit for maintaining temperature uniformity within the furnace. For example, these heaters can also be used to create a temperature differential that causes selenium and/or other residues to move to the end cap region.

在步驟420,將溫度保持在第三溫度一定時間段,直到完成CIS層的形成為止。根據從銅銦二硒化物膜提取出一種或多種硒物質的目的,設置在包括硫物質的熔爐的環境中在此間隔時的保持時間。去除預定量的硒物質是有益的。在一種具體實施方式中,從膜去除大約5%的硒,並用大約5%的硫代替。根據一種實施方式,希望在硒材料和CIS膜之間進行完全的反應。在步驟422中,在去除硒物質之後,開始進行可控的溫度坡度下降處理。在步驟424中,將熔爐冷卻至大約室溫的第一溫度,並從熔爐去除剩餘的氣態物質。例如,用真空泵送機去除氣態物質。可在圖5中的溫度分佈中示出上述溫度序列。At step 420 , the temperature is maintained at the third temperature for a certain period of time until the formation of the CIS layer is completed. The retention time at this interval in the environment of the furnace including the sulfur substance is set for the purpose of extracting one or more selenium substances from the copper indium diselenide film. It is beneficial to remove a predetermined amount of selenium species. In a specific embodiment, about 5% selenium is removed from the membrane and replaced with about 5% sulfur. According to one embodiment, it is desirable to carry out a complete reaction between the selenium material and the CIS membrane. In step 422 , after the selenium species is removed, a controlled temperature ramp down process begins. In step 424 , the furnace is cooled to a first temperature of about room temperature and the remaining gaseous species are removed from the furnace. For example, a vacuum pump is used to remove gaseous species. The above temperature sequence can be shown in the temperature distribution in FIG.

在步驟420中,在分解殘餘的硒化物物質之後,開始進行溫度坡度下降處理。將熔爐冷卻至大約室溫的第一溫度,並從熔爐去除剩餘的氣態物質。在一種具體實施方式中,熔爐的端帽材料由比處理室的石英管冷卻更快的材料製成。結果,在熔爐中朝著端帽(更低溫度)產生氣流,導致殘餘物沉積在端帽上。在一種實施方式中,用真空泵送機去除氣態物質。可在圖5中的溫度分佈中示出上述溫度序列。In step 420 , after decomposing the residual selenide species, a temperature ramp down process is initiated. The furnace is cooled to a first temperature of about room temperature and the remaining gaseous material is removed from the furnace. In a specific embodiment, the end cap material of the furnace is made of a material that cools faster than the quartz tube of the processing chamber. As a result, a gas flow is generated in the furnace toward the end cap (lower temperature), causing residue to deposit on the end cap. In one embodiment, the gaseous material is removed using a vacuum pump. The above temperature sequence can be shown in the temperature distribution in FIG.

在步驟422之後,執行最終的清潔處理以去除沉積在熔爐端帽上的各種殘餘物。根據條件,可以通過簡單地擦拭端帽、刮擦、拋光、和/或其他方法來去除殘餘物。應該理解,清潔可從熔爐上輕鬆去除的端帽比清潔處理室的內部方便得多。After step 422 , a final cleaning process is performed to remove various residues deposited on the furnace end cap. Depending on the conditions, the residue can be removed by simply wiping the end cap, scratching, polishing, and/or other methods. It should be understood that cleaning the end cap that can be easily removed from the furnace is much more convenient than cleaning the interior of the processing chamber.

根據所期望的最終產品,也可以執行其他的步驟。例如,如果期望CIS或CIGS類型的薄膜太陽能電池,那麼提供額外的處理以提供另外的結構,例如透明材料層,例如覆蓋CIS層的ZnO。Other steps can also be performed depending on the desired end product. For example, if a thin film solar cell of the CIS or CIGS type is desired, additional processing is provided to provide additional structures, such as a layer of transparent material, such as ZnO overlying the CIS layer.

還應理解,本文中描述的實施例和實施方式僅用於示意性目的,並且對本領域的技術人員來說存在據此進行的各種修改或變化的暗示,這些修改或變化將包括在本申請的精神和範圍以及所附申請專利範圍內。It is also to be understood that the embodiments and the embodiments described herein are for illustrative purposes only and that various modifications and changes may be made by those skilled in the art that are included in the present application. Spirit and scope and the scope of the attached patent application.

圖5和圖5A是根據本發明的一種實施方式的熔爐的溫度分佈的簡圖。這些圖僅是一個實施例,其在本文中不應限制申請專利範圍。溫度分佈進一步詳細說明了上述方法的概要(圖4)和說明書中的溫度坡度變化處理。提供最佳的溫度分佈(圖5和圖5A)以舉例說明根據本發明的一種實施方式的加熱處理。此最佳分佈調節處理室,以防止熱梯度和大基板在高溫時的翹曲。如果溫度爬升得過高過快,那麼可能會由於玻璃的軟化而出現翹曲或損壞。另外,考慮基板可用的總儲熱量來確定熱能的總量,並保持玻璃基板的均勻性和結構完整性。例如,通過在多個步驟中週期性地控制加熱處理的溫度,使基板保持一定水準的穩定和鬆弛(relaxing)並保持必需的結構完整性。如上文所說明的,材料(例如玻璃)趨向於在480℃或更高的溫度時變形,因此,要小心避免延長基板暴露於高溫的時間。參考圖5,在用包括硒化物物質和載氣的氣態物質保持處理室環境的同時,將多個基板放到熔爐中。在一種實施方式中,在將氣態物質填充入處理室之前抽出處理室內的空氣。在一種示例性實施方式中,載氣包含氮氣。例如,氣態物質將處理室填充至約650托的壓力。將多個基板相對於重力方向垂直定向而設置,用數字N限定多個基板,其中N大於5。在一種實施方式中,基板包括玻璃基板,例如鈉鈣玻璃。熔爐處於低於100℃的第一溫度。然後,將熔爐加熱至溫度範圍為約350℃到450℃的第二溫度。5 and 5A are diagrams of temperature distribution of a furnace in accordance with an embodiment of the present invention. These figures are only one example and should not limit the scope of the patent application herein. The temperature distribution further details the outline of the above method (Fig. 4) and the temperature gradient change process in the specification. An optimum temperature distribution (Figs. 5 and 5A) is provided to illustrate the heat treatment in accordance with an embodiment of the present invention. This optimal distribution adjusts the processing chamber to prevent thermal gradients and warpage of large substrates at high temperatures. If the temperature climbs too high and too fast, warping or damage may occur due to softening of the glass. In addition, the total amount of heat stored by the substrate is considered to determine the total amount of thermal energy and to maintain the uniformity and structural integrity of the glass substrate. For example, by periodically controlling the temperature of the heat treatment in multiple steps, the substrate is maintained at a certain level of stability and relaxation and maintains the necessary structural integrity. As explained above, materials such as glass tend to deform at temperatures of 480 ° C or higher, so care should be taken to avoid prolonging the exposure of the substrate to elevated temperatures. Referring to FIG. 5, a plurality of substrates are placed in a furnace while maintaining a processing chamber environment with a gaseous substance including a selenide substance and a carrier gas. In one embodiment, the air in the processing chamber is withdrawn prior to filling the gaseous material into the processing chamber. In an exemplary embodiment, the carrier gas comprises nitrogen. For example, the gaseous material fills the processing chamber to a pressure of about 650 Torr. A plurality of substrates are vertically oriented with respect to the direction of gravity, and a plurality of substrates are defined by a number N, where N is greater than five. In one embodiment, the substrate comprises a glass substrate, such as soda lime glass. The furnace is at a first temperature below 100 °C. The furnace is then heated to a second temperature in the range of from about 350 °C to 450 °C.

在熱處理間隔中,將第二溫度保持在350℃至450℃之間約10至60分鐘(時間段)。玻璃基板的尺寸可以是,但不限於,65 cm×165 cm。處理這樣的大基板的一個挑戰是基板在高溫時的翹曲。如果使溫度直接升至T3,就會出現翹曲或損壞。如所示出的,校準從T2爬升至T3的斜率,以減小和/或消除損壞基板的風險。在一種實施方式中,如圖5A所示,當溫度從T2爬升至T3時,去除部分硒化物氣體。通過將處理室中的溫度保持在T2一段時間,使基板鬆弛並穩定。根據從每個基板上的銅和銦複合結構至少初始地形成銅銦二硒化物膜的目的,設置此間隔時的保持時間。In the heat treatment interval, the second temperature is maintained between 350 ° C and 450 ° C for about 10 to 60 minutes (time period). The size of the glass substrate may be, but is not limited to, 65 cm x 165 cm. One challenge in handling such large substrates is the warpage of the substrate at high temperatures. If the temperature is raised directly to T3, warpage or damage will occur. As shown, the slope from T2 to T3 is calibrated to reduce and/or eliminate the risk of damage to the substrate. In one embodiment, as shown in Figure 5A, a portion of the selenide gas is removed as the temperature climbs from T2 to T3. The substrate is relaxed and stabilized by maintaining the temperature in the processing chamber at T2 for a period of time. The retention time at this interval is set in accordance with the purpose of at least initially forming a copper indium diselenide film from the copper and indium composite structures on each of the substrates.

然後,將熔爐冷卻至從500℃至室溫範圍的第三溫度。在硒化處理的過程中,殘餘的硒化物物質會聚集在之前在圖3中示出的內部處理區域320中。在高溫下,硒化物物質在內部處理區域320內保持蒸氣形式。隨著溫度降低,硒化物物質沉積在更冷的表面上。在一種優選實施方式中,沒有隔絕的金屬端帽304由於具有更高的熱導率而比石英處理室302冷卻得快得多。產生溫度梯度,這在內部處理區域320內產生對流。對流導致元素硒朝著端帽304流動,並沉積在更冷的端帽區域322上。通過此方法,通過使處理區域的內部區域的殘餘硒化物物質分解,可使內部處理區域320保持為基本沒有元素硒物質。The furnace is then cooled to a third temperature ranging from 500 °C to room temperature. During the selenization process, residual selenide species will collect in the internal processing zone 320 previously shown in FIG. At elevated temperatures, the selenide species remains in vapor form within the internal processing zone 320 . As the temperature decreases, the selenide material deposits on the colder surface. In a preferred embodiment, the uninsulated metal end cap 304 cools much faster than the quartz processing chamber 302 due to its higher thermal conductivity. A temperature gradient is created which creates convection within the internal processing region 320 . Convection causes elemental selenium to flow toward the end cap 304 and deposit on the cooler end cap region 322 . By this method, the internal treatment zone 320 can be maintained substantially free of elemental selenium species by decomposing residual selenide species in the interior region of the treatment zone.

在已經改變熔爐中的環境使得任何殘餘的硒化物物質被分解並且沉積在端帽區域322處之後,根據在基板的表面上形成CIS層的處理,可引入另外的步驟。在另一實施方式中,在形成CIS膜時,可使用另外的溫度坡度變化和保持步驟,以防止基板翹曲或變得損壞。After the environment in the furnace has been altered such that any residual selenide species is decomposed and deposited at the end cap region 322 , an additional step can be introduced depending on the process of forming the CIS layer on the surface of the substrate. In another embodiment, an additional temperature gradient change and retention step can be used to form the CIS film to prevent the substrate from warping or becoming damaged.

在形成CIS層之後,開始進行溫度坡度下降處理,然後將熔爐冷卻至大約室溫的第一溫度。根據一種實施方式,具體地校準冷卻處理。此處理的結果是,銅、銦和硒彼此擴散並發生反應,以形成高品質的銅銦二硒薄膜。在一種實施方式中,在冷卻處理的過程中,使用諸如氮氣的氣態物質。After the formation of the CIS layer, a temperature ramp down process is initiated and the furnace is then cooled to a first temperature of about room temperature. According to one embodiment, the cooling process is specifically calibrated. As a result of this treatment, copper, indium, and selenium diffuse and react with each other to form a high-quality copper indium diselenide film. In one embodiment, a gaseous substance such as nitrogen is used during the cooling process.

圖6A是根據本發明的一種實施方式的薄膜銅銦二硒化物器件的簡圖。此圖僅是一個實例,其在本文中不應限制申請專利範圍。如所示出的,在玻璃基板610上支撐結構600。根據一種實施方式,玻璃基板包括鈉鈣玻璃,其厚度為約1至3 mm。在基板610上沉積包括金屬層608的後觸點(back contact)。根據一種實施方式,層608主要包括通過濺射而沉積的鉬膜。結構600的第一有源區包括半導體層606。在一種實施方式中,半導體層包括p型銅銦二硒化物(CIS)材料,該材料的特徵在於其整體厚度為500至1500 μm。應該理解,其他半導體層可以包括其他類型的材料,例如CIGS。結構600的第二有源部分包括n型半導體材料的層604602,例如CdS或ZnO。圖6A示出了包括具有不同電阻係數水準的兩個CdS層602604的結構600的第二有源部分。圖6B中示出了另一實施方式,其中,該結構的第二有源部分包括CdS層和ZnO層。6A is a simplified diagram of a thin film copper indium diselenide device in accordance with an embodiment of the present invention. This figure is only an example and should not limit the scope of the patent application herein. As shown, structure 600 is supported on glass substrate 610 . According to one embodiment, the glass substrate comprises soda lime glass having a thickness of about 1 to 3 mm. A back contact including a metal layer 608 is deposited on the substrate 610 . According to one embodiment, layer 608 primarily comprises a molybdenum film deposited by sputtering. The first active region of structure 600 includes a semiconductor layer 606 . In one embodiment, the semiconductor layer comprises a p-type copper indium diselenide (CIS) material characterized by an overall thickness of 500 to 1500 μm. It should be understood that other semiconductor layers may include other types of materials, such as CIGS. The second active portion of structure 600 includes layers 604 and 602 of an n-type semiconductor material, such as CdS or ZnO. FIG. 6A illustrates a second active portion of structure 600 including two CdS layers 602 and 604 having different levels of resistivity. Another embodiment is illustrated in Figure 6B, wherein the second active portion of the structure comprises a CdS layer and a ZnO layer.

圖6B是根據本發明的另一實施方式的薄膜銅銦二硒化物器件的簡圖。此圖僅是一個實例,在本文中其不應限制申請專利範圍。如所示出的,結構620支撐於玻璃基板630上。根據一種實施方式,玻璃基板包括鈉鈣玻璃,其厚度約為1至3 mm。在基板630上沉積包括金屬層628的後觸點。根據一種實施方式,層628主要包括通過濺射而沉積的鉬膜。結構620的第一有源區包括半導體層626。在一種實施方式中,半導體層包括p型銅銦二硒化物(CIS)材料。應該理解,其他半導體層可以包括其他類型的材料,例如CIGS。結構620的第二有源部分包括n型半導體材料的層CdS 624和ZnO 6226B is a simplified diagram of a thin film copper indium diselenide device in accordance with another embodiment of the present invention. This figure is only an example and should not limit the scope of the patent application herein. As shown, the structure 620 is supported on a glass substrate 630 . According to one embodiment, the glass substrate comprises soda lime glass having a thickness of about 1 to 3 mm. A back contact comprising a metal layer 628 is deposited on the substrate 630 . According to one embodiment, layer 628 primarily comprises a molybdenum film deposited by sputtering. The first active region of structure 620 includes a semiconductor layer 626 . In one embodiment, the semiconductor layer comprises a p-type copper indium diselenide (CIS) material. It should be understood that other semiconductor layers may include other types of materials, such as CIGS. The second active portion of structure 620 includes layers CdS 624 and ZnO 622 of n-type semiconductor material.

將光伏電池或太陽能電池(例如,上述裝置600)構造為大面積p-n結。當太陽光中的光子撞擊光伏電池時,光子會被反射而穿過透明電極層,或被吸收。半導體層吸收導致產生電子空穴對的能量。光子需要具有比帶隙的能量更大的能量,以激勵電子從價帶進入導帶。這允許電子流過材料以產生電流。互補的正電荷或空穴,在與光伏電池中的電子相對的方向上流動。具有許多光伏電池的太陽能電池板可將太陽能轉化成直流電。A photovoltaic cell or solar cell (eg, device 600 described above) is constructed as a large area pn junction. When photons in the sun strike the photovoltaic cell, the photons are reflected through the transparent electrode layer or absorbed. The semiconductor layer absorbs energy that causes the generation of electron-hole pairs. Photons need to have more energy than the band gap to excite electrons from the valence band into the conduction band. This allows electrons to flow through the material to generate electricity. Complementary positive charges or holes flow in a direction opposite to the electrons in the photovoltaic cell. Solar panels with many photovoltaic cells convert solar energy into direct current.

對於薄膜太陽能電池應用來說,基於銅銦二硒化物(CIS)構造的半導體由於其具有高光學吸收係數和通用的光電特性而尤其具有吸引力。原則上,對於給定裝置中的特定需要,可操作並調節這些特性。硒能夠使整個層具有更好的均勻性,並由此減少膜中的重組位置的數量,這有利於提高量子效率並由此提高轉換效率。For thin film solar cell applications, semiconductors based on copper indium diselenide (CIS) construction are particularly attractive due to their high optical absorption coefficient and general optoelectronic properties. In principle, these characteristics can be manipulated and adjusted for specific needs in a given device. Selenium enables better uniformity of the entire layer and thereby reduces the number of recombination sites in the film, which facilitates improved quantum efficiency and thereby improved conversion efficiency.

本發明提供在用於太陽能電池板的大玻璃基板上製造基於CIS和/或基於CIGS的太陽能電池的方法。可將圖6中描述的器件結構圖案化形成玻璃基板上的單獨的太陽能電池,並彼此連接以形成太陽能電池板。因此,本發明提供了一種製造薄膜太陽能電池板的節省成本的方法。The present invention provides a method of fabricating a CIS-based and/or CIGS-based solar cell on a large glass substrate for a solar panel. The device structures depicted in Figure 6 can be patterned to form individual solar cells on a glass substrate and connected to each other to form a solar panel. Accordingly, the present invention provides a cost effective method of fabricating thin film solar panels.

應該理解,不論銅和銦膜的沉積順序如何都能夠實現本發明的所有益處。也就是說,可首先沉積銦,或將膜作為夾入物或堆疊的更薄的多個層而沉積。It should be understood that all of the benefits of the present invention can be achieved regardless of the order of deposition of the copper and indium films. That is, indium may be deposited first, or the film may be deposited as a sandwich or a thinner plurality of layers of the stack.

還應理解,本文中描述的實施例和實施方式僅用於示例性目的,並且對於本領域技術人員來說,存在據此進行的各種修改或變化的暗示,這些修改或變化包括在本申請的精神和範圍以及所附申請專利範圍內。It is also to be understood that the embodiments and embodiments described herein are for illustrative purposes only, and that there are various modifications or variations that may be made by those skilled in the art, which are included in the present application. Spirit and scope and the scope of the attached patent application.

圖7是根據本發明的一種實施方式的在硒化物物質的分解之前的自清潔熔爐的簡圖。此圖僅是一個實例,其在本文中不應限制申請專利範圍。如所示出的,熔爐700包括處理室702和室的端帽704。將處理室702的內表面和空間區域描述為內部處理區域706。在一種實施方式中,處理室702可包括石英管。端帽區域708代表暴露於內部處理區域706的端帽704的內表面。如上所述,端帽704和處理室702的特徵在於表面反應性和/或對於各種類型的氣態物質的粘性不同。例如,在某一條件下,各種類型的材料可能沉積在端帽704上,但是不沉積在腔室702的內表面上。在一種具體實施方式中,端帽區域702由具有比處理室702低的比熱的材料製成。在一種實施方式中,端帽704至少由金屬材料組成。在硒化處理的過程中,殘餘的硒化物710可能沉積在內部處理區域706中。根據一種實施方式,可通過在內部處理區域和端帽區域之間引入機械擋板來形成溫度梯度,使得對流能夠將殘餘物從內部處理區域帶走,並防止殘餘的硒化物710沉積在內部處理區域706中。7 is a simplified diagram of a self-cleaning furnace prior to decomposition of a selenide material, in accordance with an embodiment of the present invention. This figure is only an example and should not limit the scope of the patent application herein. As shown, furnace 700 includes a process chamber 702 and an end cap 704 for the chamber. The inner surface and the spatial region of the process chamber 702 are depicted as an inner processing region 706 . In one embodiment, the processing chamber 702 can include a quartz tube. End cap region 708 represents the inner surface of end cap 704 that is exposed to inner processing region 706 . As noted above, end cap 704 and processing chamber 702 are characterized by surface reactivity and/or viscosity differences for various types of gaseous materials. For example, under certain conditions, various types of materials may be deposited on the end cap 704 , but not on the inner surface of the chamber 702 . In a specific embodiment, the end cap region 702 is made of a material having a lower specific heat than the processing chamber 702 . In one embodiment, the end cap 704 is composed of at least a metallic material. Residual selenide 710 may be deposited in internal processing region 706 during the selenization process. According to one embodiment, the temperature gradient can be formed by introducing a mechanical baffle between the inner treatment zone and the end cap region such that convection can carry the residue away from the inner treatment zone and prevent residual selenide 710 from being deposited internally. In area 706 .

還應理解,本文中描述的實施例和實施方式僅用於示例性目的,並且對於本領域技術人員來說,存在據此進行的各種修改或變化的暗示,這些修改或變化包括在本申請的精神和範圍以及所附申請專利範圍內。It is also to be understood that the embodiments and embodiments described herein are for illustrative purposes only, and that there are various modifications or variations that may be made by those skilled in the art, which are included in the present application. Spirit and scope and the scope of the attached patent application.

圖8A是根據本發明的一種實施方式的在硒化物物質的分解之前的自清潔熔爐的簡圖。此圖僅是一個實例,其在本文中不應限制申請專利範圍。如所示出的,熔爐800包括處理室802和室的端帽804。將處理室802的內表面和空間區域描述為內部處理區域806。在一種實施方式中,處理室802可包括石英管。端帽區域808代表暴露於內部處理區域806的端帽804的內表面。在一種實施方式中,端帽804可由金屬材料製成。在硒化處理的過程中,殘餘的硒化物810可已經沉積在內部處理區域806中。根據一種實施方式,可通過在內部處理區域806和端帽區域808之間引入機械擋板來形成溫度梯度,使得對流能夠將殘餘顆粒從內部處理區域帶走,並基本上防止殘餘的硒化物810沉積在內部處理區域806中。Figure 8A is a simplified diagram of a self-cleaning furnace prior to decomposition of a selenide material, in accordance with an embodiment of the present invention. This figure is only an example and should not limit the scope of the patent application herein. As shown, furnace 800 includes a process chamber 802 and an end cap 804 for the chamber. The inner surface and spatial area of the processing chamber 802 are depicted as internal processing regions 806 . In one embodiment, the processing chamber 802 can include a quartz tube. End cap region 808 represents the inner surface of end cap 804 that is exposed to inner processing region 806 . In one embodiment, the end cap 804 can be made of a metallic material. Residual selenide 810 may have been deposited in internal processing region 806 during the selenization process. According to one embodiment, a temperature gradient can be formed by introducing a mechanical baffle between the inner processing region 806 and the end cap region 808 such that convection can carry residual particles away from the inner processing region and substantially prevent residual selenide 810 Deposited in internal processing region 806 .

圖8B是根據本發明的一種實施方式的在硒化物物質的分解和元素硒在端帽處的沉積的過程中的自清潔熔爐的簡圖。此圖僅是一個實例,其在本文中不應限制申請專利範圍。如所示出的,熔爐820包括處理室822和室的端帽824。將處理室822的內表面和空間區域描述為內部處理區域826。在一種實施方式中,處理室822可包括石英管。端帽區域828代表暴露於內部處理區域826的端帽824的內表面。在一種實施方式中,端帽824可由金屬材料製成。在硒化物物質的分解過程中,包括元素硒的殘餘物質830被蒸發,並(由熱梯度所導致的對流攜帶)從內部處理區域826朝著端帽區域824流動。8B is a simplified diagram of a self-cleaning furnace during the decomposition of selenide species and the deposition of elemental selenium at the end caps, in accordance with an embodiment of the present invention. This figure is only an example and should not limit the scope of the patent application herein. As shown, furnace 820 includes a processing chamber 822 and an end cap 824 of the chamber. The inner surface and the spatial region of the processing chamber 822 are depicted as internal processing regions 826 . In one embodiment, the processing chamber 822 can include a quartz tube. End cap region 828 represents the inner surface of end cap 824 that is exposed to inner processing region 826 . In one embodiment, the end cap 824 can be made of a metallic material. During the decomposition of the selenide species, residual material 830 , including elemental selenium, is vaporized and carried (by convection carried by the thermal gradient) from internal processing region 826 toward end cap region 824 .

圖8C是根據本發明的一種實施方式的在硒化物物質分解和元素硒在端帽處沉積之後的自清潔熔爐的簡圖。此圖僅是一個實例,其在本文中不應限制申請專利範圍。如所示出的,熔爐840包括處理室842和室的端帽844。將處理室842的內表面和空間區域描述為內部處理區域846。在一種實施方式中,處理室842可包括石英管。端帽區域848代表暴露於內部處理區域846的端帽844的內表面。在一種實施方式中,端帽844可由金屬材料製成。在硒化物物質的分解和沉積之後,殘餘的硒化物850包含在端帽區域848中。例如,由於端帽和處理室之間的溫度梯度,至少部分地由對流導致殘餘硒化物810的沉積或冷凝。通過增加用作可控可滲透屏障的擋板結構,可使溫度梯度大幅增強。在完成CIS層的形成並從處理室842去除基板之後,可用布(例如,亞麻布,或類似的材料)機械地清除殘餘的硒化物。應理解,通過使硒化物和/或其他殘餘物聚集在端帽結構上,可使清除處理變得方便,可容易地擦去端帽結構上的殘餘物。而在各種常規技術中,從熔爐清除殘餘物通常需要清潔處理室的內部。8C is a simplified diagram of a self-cleaning furnace after decomposition of a selenide species and deposition of elemental selenium at an end cap, in accordance with an embodiment of the present invention. This figure is only an example and should not limit the scope of the patent application herein. As shown, furnace 840 includes a process chamber 842 and an end cap 844 for the chamber. The inner surface and the spatial region of the processing chamber 842 are depicted as an inner processing region 846 . In one embodiment, the processing chamber 842 can include a quartz tube. End cap region 848 represents the inner surface of end cap 844 that is exposed to inner processing region 846 . In one embodiment, the end cap 844 can be made of a metallic material. Residual selenide 850 is included in end cap region 848 after decomposition and deposition of the selenide species. For example, due to the temperature gradient between the end cap and the processing chamber, deposition or condensation of residual selenide 810 is caused, at least in part, by convection. The temperature gradient can be greatly enhanced by the addition of a baffle structure that acts as a controllable permeable barrier. After the formation of the CIS layer is completed and the substrate is removed from the processing chamber 842 , the residual selenide can be mechanically removed with a cloth (eg, linen, or the like). It will be appreciated that by allowing selenide and/or other residues to accumulate on the end cap structure, the cleaning process can be facilitated and the residue on the end cap structure can be easily wiped off. In various conventional techniques, cleaning the residue from the furnace typically requires cleaning the interior of the processing chamber.

圖8A、圖8B和圖8C是殘餘的硒化物的分解和當元素硒沉積在處理室的端帽區域處時的路徑的步驟的簡圖。8A, 8B, and 8C are diagrams showing the steps of decomposition of residual selenide and a path when elemental selenium is deposited at the end cap region of the processing chamber.

還應理解,本文中描述的實例和實施方式僅用於示例性目的,並且對於本領域技術人員來說,存在據此進行的各種修改或變化的暗示,這些修改或變化包括在本申請的精神和範圍以及所附申請專利範圍內。It should also be understood that the examples and embodiments described herein are for illustrative purposes only and that there are various modifications or variations that are apparent to those skilled in the art that are included in the spirit of the present application. And scope and the scope of the appended patent application.

圖9是根據本發明的一種實施方式的在硒化物物質分解和元素硒在端帽處沉積之後的自清潔熔爐的簡圖。此圖僅是一個實例,其在本文中不應限制申請專利範圍。如所示出的,熔爐900包括處理室902和室的端帽904。將處理室902的內表面和空間區域描述為內部處理區域906。在一種實施方式中,處理室902可包括石英管。端帽區域908代表暴露于內部處理區域906的端帽904的內表面。在一種實施方式中,端帽904可由金屬材料製成。在硒化物物質分解和沉積之後,殘餘的硒化物910包含在端帽區域908中。在完成CIS層的形成並從處理室902去除基板之後,可以使用布(例如亞麻布,或類似的材料)來機械地清除殘餘的硒化物。9 is a simplified diagram of a self-cleaning furnace after decomposition of a selenide species and deposition of elemental selenium at an end cap, in accordance with an embodiment of the present invention. This figure is only an example and should not limit the scope of the patent application herein. As shown, furnace 900 includes a process chamber 902 and an end cap 904 for the chamber. The inner surface and the spatial region of the processing chamber 902 are depicted as an inner processing region 906 . In one embodiment, the processing chamber 902 can include a quartz tube. End cap region 908 represents the inner surface of end cap 904 that is exposed to inner processing region 906 . In one embodiment, the end cap 904 can be made of a metallic material. Residual selenide 910 is included in end cap region 908 after decomposition and deposition of the selenide species. After the formation of the CIS layer is completed and the substrate is removed from the processing chamber 902 , a cloth such as linen, or the like, may be used to mechanically remove residual selenide.

還應理解,本文中描述的實施例和實施方式僅用於示意性目的,並且暗示了本領域的技術人員可以據此進行的各種修改或變化,這些修改或變化都將包括在本申請的精神和範圍以及所附申請專利範圍內。雖然上文中已經主要描述了用於CIS和/或CIGS薄膜電池的特定結構,但是,在不背離由本文申請專利範圍所描述的發明的前提下,也可使用其他特定的CIS和/或CIGS構造,例如,那些在已授權的美國專利第4,611,091號和第4,612,411號中提到的,其結合於此以供參考。It is also to be understood that the embodiments and the embodiments described herein are for the purpose of illustrations And scope and the scope of the appended patent application. Although specific structures for CIS and/or CIGS thin film batteries have been primarily described above, other specific CIS and/or CIGS configurations may be used without departing from the invention described by the scope of the present application. , for example, those mentioned in the U.S. Patent Nos. 4,611,091 and 4,612,411, the disclosures of each of which are incorporated herein by reference.

100...處理結構、結構100. . . Processing structure, structure

102...金屬電極層102. . . Metal electrode layer

104...透明基板、基板104. . . Transparent substrate, substrate

200...結構200. . . structure

202...層202. . . Floor

204...層204. . . Floor

206...沉積金屬層、金屬層、層206. . . Depositing metal layers, metal layers, layers

208...玻璃、玻璃基板、基板208. . . Glass, glass substrate, substrate

210...複合結構、結構、基板210. . . Composite structure, structure, substrate

212...層212. . . Floor

214...金屬電極層、層214. . . Metal electrode layer

216...透明基板、玻璃、基板216. . . Transparent substrate, glass, substrate

300...熔爐300. . . furnace

302...處理室302. . . Processing room

304...端帽304. . . End cap

306...加熱元件306. . . Heating element

308...基板308. . . Substrate

310...渦輪分子泵310. . . Turbomolecular pump

312...旋轉泵312. . . Rotary pump

314...注氣管道314. . . Gas injection pipeline

316...歧管316. . . Manifold

318...傳導閥318. . . Conduction valve

400...方法400. . . method

402...步驟402. . . step

404...步驟404. . . step

406...步驟406. . . step

408...步驟408. . . step

410...步驟410. . . step

412...步驟412. . . step

414...步驟414. . . step

416...步驟416. . . step

418...步驟418. . . step

420...步驟420. . . step

422...步驟422. . . step

424...步驟424. . . step

426...步驟426. . . step

428...步驟428. . . step

600...支撐結構600. . . supporting structure

602...層602. . . Floor

604...層604. . . Floor

606...半導體層606. . . Semiconductor layer

608...金屬層608. . . Metal layer

610...基板610. . . Substrate

620...結構620. . . structure

622...ZnO622. . . ZnO

624...層CdS624. . . Layer CdS

626...半導體層626. . . Semiconductor layer

628...層628. . . Floor

630...玻璃基板630. . . glass substrate

700...熔爐700. . . furnace

702...處理室702. . . Processing room

704...端帽704. . . End cap

706...內部處理區域706. . . Internal processing area

708...端帽區域708. . . End cap area

710...硒化物710. . . Selenide

800...熔爐800. . . furnace

802...處理室802. . . Processing room

804...端帽804. . . End cap

806...內部處理區域806. . . Internal processing area

808...端帽區域808. . . End cap area

810...硒化物810. . . Selenide

820...熔爐820. . . furnace

822...處理室822. . . Processing room

824...端帽824. . . End cap

826...內部處理區域826. . . Internal processing area

828...端帽區域828. . . End cap area

830...殘餘物質830. . . Residual substance

840...熔爐840. . . furnace

842...處理室842. . . Processing room

844...端帽844. . . End cap

846...內部處理區域846. . . Internal processing area

848...端帽區域848. . . End cap area

850...硒化物850. . . Selenide

900...熔爐900. . . furnace

902...處理室902. . . Processing room

904...端帽904. . . End cap

906...內部處理區域906. . . Internal processing area

908...端帽區域908. . . End cap area

910...硒化物910. . . Selenide

圖1是根據本發明的一種實施方式的具有重疊電極層的透明基板的簡圖;1 is a simplified diagram of a transparent substrate having overlapping electrode layers in accordance with an embodiment of the present invention;

圖2是根據本發明的一種實施方式的包括銅和銦膜的複合結構的簡圖;2 is a simplified diagram of a composite structure including a copper and an indium film in accordance with an embodiment of the present invention;

圖2A是根據本發明的一種實施方式的包括銅銦複合物/合金的複合結構的簡圖;2A is a simplified diagram of a composite structure including a copper indium composite/alloy according to an embodiment of the present invention;

圖3是根據本發明的一種實施方式的熔爐的簡圖;Figure 3 is a schematic view of a furnace in accordance with an embodiment of the present invention;

圖4是根據本發明的一種實施方式的用於形成銅銦二硒化物層的過程的簡圖;4 is a simplified diagram of a process for forming a copper indium diselenide layer in accordance with an embodiment of the present invention;

圖5和圖5A是根據本發明的一種實施方式的熔爐的溫度分佈的簡圖;5 and 5A are diagrams showing a temperature distribution of a furnace according to an embodiment of the present invention;

圖6A是根據本發明的一種實施方式的薄膜銅銦二硒化物器件的簡圖;6A is a schematic diagram of a thin film copper indium diselenide device in accordance with an embodiment of the present invention;

圖6B是根據本發明的另一實施方式的薄膜銅銦二硒化物器件的簡圖;6B is a schematic diagram of a thin film copper indium diselenide device in accordance with another embodiment of the present invention;

圖7是根據本發明的一種實施方式的在硒化物物質的分解之前的自清潔熔爐的簡圖;7 is a simplified diagram of a self-cleaning furnace prior to decomposition of a selenide material, in accordance with an embodiment of the present invention;

圖8A是根據本發明的一種實施方式的在硒化物物質的分解之前的自清潔熔爐的簡圖;8A is a simplified diagram of a self-cleaning furnace prior to decomposition of a selenide material, in accordance with an embodiment of the present invention;

圖8B是根據本發明的一種實施方式的在硒化物物質的分解和元素硒在端帽處的沉積的過程中的自清潔熔爐的簡圖;8B is a simplified diagram of a self-cleaning furnace during decomposition of a selenide species and deposition of elemental selenium at an end cap, in accordance with an embodiment of the present invention;

圖8C是根據本發明的一種實施方式的在硒化物物質的分解和元素硒在端帽處的沉積之後的自清潔熔爐的簡圖;8C is a simplified diagram of a self-cleaning furnace after decomposition of a selenide species and deposition of elemental selenium at an end cap, in accordance with an embodiment of the present invention;

圖9是根據本發明的一種實施方式的在硒化物物質的分解和元素硒在端帽處的沉積之後的自清潔熔爐的簡圖。9 is a simplified diagram of a self-cleaning furnace after decomposition of a selenide species and deposition of elemental selenium at an end cap, in accordance with an embodiment of the present invention.

400...方法400. . . method

402...步驟402. . . step

404...步驟404. . . step

406...步驟406. . . step

408...步驟408. . . step

410...步驟410. . . step

412...步驟412. . . step

414...步驟414. . . step

416...步驟416. . . step

418...步驟418. . . step

420...步驟420. . . step

422...步驟422. . . step

424...步驟424. . . step

426...步驟426. . . step

428...步驟428. . . step

Claims (20)

一種利用自清潔熔爐製造銅銦二硒化物半導體膜的方法,包括:將多個基板轉移至熔爐中,所述熔爐包括處理區域和至少一個與所述處理區域可拆卸接合的端帽區域,將所述多個基板中的每一個相對於重力方向垂直定向而設置,用數字N限定所述多個基板,其中N大於5,每一個基板具有銅和銦複合結構;將包括氫物質和硒化物物質以及載氣的氣態物質引入所述熔爐中,並將熱能轉移到所述熔爐中,以使溫度從第一溫度升高至第二溫度,所述第二溫度的範圍是從約350℃至約450℃,從而在每一個所述基板上至少開始由銅和銦複合結構形成銅銦二硒化物膜;使所述熔爐的所述處理區域的內部區域的殘餘硒化物物質分解;在可在第三溫度下操作的端帽區域的附近沉積元素硒物質;並且通過至少使所述處理區域的內部區域的殘餘硒化物物質分解而保持內部區域為基本上沒有元素硒物質。A method of fabricating a copper indium diselenide semiconductor film using a self-cleaning furnace, comprising: transferring a plurality of substrates into a furnace, the furnace including a processing region and at least one end cap region detachably engaged with the processing region, Each of the plurality of substrates is disposed perpendicularly with respect to a direction of gravity, the plurality of substrates being defined by a number N, wherein N is greater than 5, each substrate having a composite structure of copper and indium; comprising hydrogen species and selenide A gaseous substance of a substance and a carrier gas is introduced into the furnace, and thermal energy is transferred to the furnace to raise the temperature from a first temperature to a second temperature, the second temperature ranging from about 350 ° C to At about 450 ° C, thereby forming a copper indium diselenide film from at least a copper and indium composite structure on each of the substrates; decomposing residual selenide material in an inner region of the processing region of the furnace; Depositing elemental selenium species in the vicinity of the end cap region operated at the third temperature; and maintaining the inner region by decomposing at least residual selenide species in the inner region of the treated region Substantially free of elemental selenium species. 如申請專利範圍第1項所述之方法,其中,在沉積元素硒物質的過程中,所述端帽區域的附近的特徵在於,其溫度低於熔爐腔室的溫度。The method of claim 1, wherein in the process of depositing the elemental selenium material, the vicinity of the end cap region is characterized by a temperature lower than a temperature of the furnace chamber. 如申請專利範圍第1項所述之方法,其中,所述端帽區域的特徵在於,其比熱低於熔爐腔室的比熱。The method of claim 1, wherein the end cap region is characterized by a specific heat lower than a specific heat of the furnace chamber. 如申請專利範圍第1項所述之方法,其中,沉積元素硒物質包括以預定的量冷卻所述熔爐。The method of claim 1, wherein depositing the elemental selenium material comprises cooling the furnace by a predetermined amount. 如申請專利範圍第1項所述之方法,進一步包括從所述端帽區域去除沉積的硒物質。The method of claim 1, further comprising removing deposited selenium species from the end cap region. 如申請專利範圍第1項所述之方法,其中,所述基板包含鎵材料。The method of claim 1, wherein the substrate comprises a gallium material. 如申請專利範圍第1項所述之方法,其中,所述第二溫度的範圍為約390℃至約410℃。The method of claim 1, wherein the second temperature ranges from about 390 ° C to about 410 ° C. 如申請專利範圍第1項所述之方法,其中,所述第一溫度約為室溫。The method of claim 1, wherein the first temperature is about room temperature. 如申請專利範圍第1項所述之方法,其中,將所述第二溫度保持約10至60分鐘。The method of claim 1, wherein the second temperature is maintained for about 10 to 60 minutes. 如申請專利範圍第1項所述之方法,其中,所述氣態物質包含H2Se。The method of claim 1, wherein the gaseous substance comprises H 2 Se. 如申請專利範圍第1項所述之方法,其中,所述載氣包含氮氣。The method of claim 1, wherein the carrier gas comprises nitrogen. 如申請專利範圍第1項所述之方法,其中,N大於40。The method of claim 1, wherein N is greater than 40. 如申請專利範圍第1項所述之方法,其中,所述熔爐的特徵在於,所述熔爐中具有小於約10℃的均勻度的溫度分佈。The method of claim 1, wherein the furnace is characterized by a temperature distribution in the furnace having a uniformity of less than about 10 °C. 如申請專利範圍第1項所述之方法,其中,每一個基板保持沒有翹曲或損壞的基本上平面的構造。The method of claim 1, wherein each of the substrates maintains a substantially planar configuration without warping or damage. 如申請專利範圍第1項所述之方法,其中,所述熔爐的特徵在於體積為200升或更大。The method of claim 1, wherein the furnace is characterized by a volume of 200 liters or more. 如申請專利範圍第1項所述之方法,其中,所述熔爐的所述處理區域包含石英材料。The method of claim 1, wherein the processing region of the furnace comprises a quartz material. 如申請專利範圍第1項所述之方法,其中,所述第三溫度低於所述第二溫度。The method of claim 1, wherein the third temperature is lower than the second temperature. 如申請專利範圍第1項所述之方法,其中,所述第三溫度的範圍為約500℃至約550℃。The method of claim 1, wherein the third temperature ranges from about 500 ° C to about 550 ° C. 如申請專利範圍第1項所述之方法,其中,端帽區域包含金屬材料。The method of claim 1, wherein the end cap region comprises a metallic material. 如申請專利範圍第1項所述之方法,進一步包括,去除所述端帽區域的一部分並機械地去除所述元素硒物質從而清潔所述熔爐。The method of claim 1, further comprising removing a portion of the end cap region and mechanically removing the elemental selenium material to clean the furnace.
TW099132906A 2009-09-28 2010-09-28 Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials TWI523119B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/568,656 US8053274B2 (en) 2008-09-30 2009-09-28 Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials

Publications (2)

Publication Number Publication Date
TW201123314A TW201123314A (en) 2011-07-01
TWI523119B true TWI523119B (en) 2016-02-21

Family

ID=43887504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099132906A TWI523119B (en) 2009-09-28 2010-09-28 Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials

Country Status (2)

Country Link
CN (1) CN102034896B (en)
TW (1) TWI523119B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201313950A (en) * 2011-09-27 2013-04-01 Axuntek Solar Energy Thin film solar cell manufacturing system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ224820A (en) * 1987-07-01 1992-08-26 Ppg Industries Inc Method and apparatus for melting material
US6979838B2 (en) * 2003-09-03 2005-12-27 Hewlett-Packard Development Company, L.P. Ultra-high density storage device using phase change diode memory cells and methods of fabrication thereof
JP4131965B2 (en) * 2004-12-28 2008-08-13 昭和シェル石油株式会社 Method for producing light absorption layer of CIS thin film solar cell

Also Published As

Publication number Publication date
CN102034896A (en) 2011-04-27
CN102034896B (en) 2015-03-11
TW201123314A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
US8053274B2 (en) Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials
US7993954B2 (en) Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8377736B2 (en) System and method for transferring substrates in large scale processing of CIGS and/or CIS devices
US8828479B2 (en) Process for producing light absorbing layer for chalcopyrite type thin-film solar cell
TWI488313B (en) Thermal management and method for CIS and/or CIGS-based films for large scale processing of cover glass substrates
TWI521729B (en) Method for manufacturing copper indium diselenide semiconductor film
TWI523119B (en) Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials
US8372684B1 (en) Method and system for selenization in fabricating CIGS/CIS solar cells
KR101356212B1 (en) Fabrication method of absorber layers in the cis solar sell system and fabrication equipment thereof
TWI391505B (en) In situ method for depositing a cuins2 film and a solar device comprising the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees