US2819761A - Process of removing viscous oil from a well bore - Google Patents
Process of removing viscous oil from a well bore Download PDFInfo
- Publication number
- US2819761A US2819761A US560171A US56017156A US2819761A US 2819761 A US2819761 A US 2819761A US 560171 A US560171 A US 560171A US 56017156 A US56017156 A US 56017156A US 2819761 A US2819761 A US 2819761A
- Authority
- US
- United States
- Prior art keywords
- well bore
- oil
- strata
- formation
- casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 30
- 238000002485 combustion reaction Methods 0.000 claims description 26
- 230000000977 initiatory effect Effects 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 description 46
- 238000005755 formation reaction Methods 0.000 description 46
- 239000007789 gas Substances 0.000 description 28
- 239000004568 cement Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 4
- 241001647090 Ponca Species 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004058 oil shale Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003027 oil sand Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
- E21B43/247—Combustion in situ in association with fracturing processes or crevice forming processes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/005—Heater surrounding production tube
Definitions
- vsicous oil may be defined as liquid hydrocarbons entrained in any type of strata and not naturally flowable into a well bore trav ersing the strata.
- this invention relates to what is commonly known as secondary recovery of oil which will not normally flow into a well bore, such as the heavy crude in sands, or oil in tar sands.
- Various methods of secondary recovery by the use of heat and/or gas drive have been proposed, but, to the best of applicants knowledge, none have proved economically feasible.
- One general type of such methods involves the circulation of a heated fluid, such as oil, gas or steam through the lower portion of a well bore in contact with a formation containing the entrained oil.
- a heated fluid such as oil, gas or steam
- Another type of proposed secondary recovery method utilizes two or more spaced well bores.
- combustion is initiated in one well bore and driven through the formation to an adjacent well bore.
- the formation is sufficiently permeable to permit pumping gas from one well to another, and where the well bores are closely spaced, such methods are effective in recovering a large portion of the oil which will not normally flow into the well bores.
- the use of two well bores unduly increases the cost of the method, and in many formations it is extremely diflicult to establish gas communication between the wells.
- This invention is also useful in the removal of oil from oil shale.
- Present known methods for this purpose ordinarily involve the formation of horizontal tunnels through the shale, with or without interconnecting channels. Hot gas or an absorbent is circulated through the various passageways to heat the shale in the immediate vicinity of the passageways and provide a drainage of oil into the passageways for subsequent removal. It will be apparent that the formation of the passageways is an extremely expensive operation and only the oil in the immediate vicinity of the passageways is removed.
- the present invention contemplates a novel process for removing viscous oil from a strata or formation through the use of a single well bore.
- Combustion is initiated in the top portion of the strata around the well bore, and the resulting flame front is moved downwardly around the well bore to progressively heat the strata.
- the entrained oil becomes less viscous and flows into the lower portion of the well bore ahead of the flame front.
- the movement of the oil is assisted by a gas drive 2 consisting of the products of combustion from the flame front and air forced through the strata to support the combustion but not used in the combustion process.
- An important object of this invention is to provide an economical process of removing viscous oil from subsurface strata.
- Another object of this invention is to provide an improved process of removing viscous oil from subsurface formations by utilizing a single well bore.
- Another object of this invention is to provide a process utilizing a combination heat and gas drive for removing viscous oil from around a single well bore.
- a further object of this invention is to provide a maximum recovery of oil from around a well bore.
- Another object of this invention is to remove viscous oil from a subsurface strata through a substantial distance around a well bore.
- a still further object of this invention is to provide a downward flow of heat through an oil-bearing formation surrounding a well bore.
- the single figure is a vertical sectional view through a well bore illustrating (partially schematically) one form of apparatus which may be used in practicing this invention.
- the present invention may be defined as a process of removing viscous oil from a subsurface strata traversed by a vertical well bore, including the steps of:
- reference character 2 designates a well bore extending downwardly from the surface 4 through formations 6 and 8 and terminating in a lower formation 10. It will be understood that the well bore 2 will actually extend through a plurality of subsurface formations and that only two of such formations are shown for simplification.
- the formation or strata 8 may be any type of oil-containing material where the oil will not normally flow into the well bore 2, such as an oil sand containing heavy crude, or an oil shale.
- a well casing 12 extends downwardly through the well bore 2 and terminates at a point above the lower formation 10 Within the lower portion of the oil-bearing formation 8.
- the upper end 14 of the casing 12 is capped or closed off above the surface 4, and a conduit 16 communicates with the casing 2 above the surface for purposes which will be hereinafter set forth.
- Three strings of tubing, 18, 20 and 22, are disposed concentrically in the casing 12.
- the outer tubing string 18 terminates slightly below the lower end of the casing 12, and the upper end 24 of the tubing 18 is capped or closed off around the next smaller tubing string 20.
- a conduit 26 communicates with the upper end portion of the tubing 18 above the upper end 14 of the casing 12.
- the middle-sized tubing string 20 extends downwardly through the tubing 18 and preferably terminates in proximity with the lower end 28 of the well bore 2 for posihereinafter set forth.
- the upper end 30 of the tubing Patented Jan. 14, 1958 20 extends above the tubing 18 and is capped around the smaller tubing 22.
- a conduit 32 communicates with the tubing string 20 above the upper end 24 of the tubing 18.
- the smaller tubing string 22 extends downwardly in the tubing string 20 to a depth approximating the depth of the tubing 20, and the upper end 34 of the tubing 22 extends outwardly to receive air or gas as will be more fully hereinafter set forth.
- the casing 12 is cemented to the walls of the well bore 2 through the central portion of the oil-bearing formation 8 as indicated by reference character 36.
- the formation 8 is in direct communication with the casing 12 throughout the upper portion of the formation, and the formation is in direct communication with the large tubing string 18 through the lower end portion of the formation.
- the cement 36 extend through the major portion of the formation 8 to provide relatively small exposed portions of the formation above and below the cement 36.
- a plurality of perforations 38 are formed in the casing 12 above the cement 36 and opposite the upper portion of the oil-bearing formation 8. Also, a suitable packer or concrete ring 40 is preferably disposed between the outer surface of the casing 12 and the walls of the well bore 2 above the perforations 38 adjacent the upper end of the oil-bearing formation 8.
- a horizontal fracture 42 is formed in the upper portion of the oil-bearing formation 8 opposite the perforations 38.
- one or more fractures may be formed in the lower portion of the formation 8 below the lower end 46 of the casing 12. These lower fractures may be either horizontal (as shown at 44) Or vertical (as shown at 45) fractures.
- Air is then forced through the conduit 16 downwardly through the annulus between the casing 12 and the tubing 18 and then outwardly through the perforations 38 into the upper horizontal fracture 42.
- the packers 40 and 48 and cement 36 direct the air into the perforations 38 and fracture 42.
- the oil in the fracture 42 may then be igmted by any suitable means and the air will supply the necessary oxygen to promote combustion. In some formatrons, the oil entrained in the formation 8 surrounding the fracture 42 will be ignited upon being contacted by the fresh a r discharging through the perforations 38.
- the flame front resulting from the combustion of the arr and the oil entrained in the formation 8 will proceed downwardly through the formation 8 around the well bore 2 in the direction indicated by the arrows. Also, the gases of combustion will be forced downwardly through the formation 8 by the high pressure incoming air and will re-enter the well bore 2 below the lower end 46 of the casing 12.
- the oil entrained in the formation 8 around the well bore 2 will be removed and directed into the lower portion of the well bore by a combination of two different effects.
- the heat of combustion will heat the formation 8 and reduce the viscosity of the entrained oil to induce a downward flow of the oil toward the lower portion of the well bore 2.
- the gases of combustion along with a portion of the air not utilized in the combustion process, will provide a gas drive to force the entrained oil downwardly toward the lower portion of the well bore 2.
- the lower fractures 44 or 45 will facilitate flow of the entrained oil into the well bore.
- the gases of combustion entering the lower portion of the well bore 2 will be discharged upwardly through the tubing string 18 and out the conduit 26; whereas the oil removed from the formation 8 will accumulate iuthe lower portion of the well bore 2 and may be removed by any desired artificial lifting means. However, in some formations the amount and pressure of the gas discharging into the lower portion of the well bore 2 may be suflicient to provide a removal of the accumulated oil along with the combustion gases through the tubing 18.
- any desired artificial lifting means may be utilized to remove the oil accumulated in the lower portion of the well bore 2.
- a gas lift arrangement comprising the tubing strings 2i and 22. Air or under pressure may be forced downwardly through the inner tubing 22 and discharged upwardly through the tubing string 20. As this high pressure gas reverses direction and proceeds upwardly through the tubing string 20 it will pick up a portion of the accumulated oil and provide a gas lift of the oil through the tubing string 20. The combined oil and gas is discharged through the upper conduit 32 to a suitable separator or the like (not shown).
- the packer or cement ring 40 prevents an upward flow of the air through the annulus between the casing 12 and the well bore 2 to direct the high pressure air into the fracture 42.
- the fracture 42 will normally be formed below the interface 50 between the formations 6 and 8, whereby the interface 50 provides a barrier to an upward flow of air from the fracture 42 through the formation 6.
- the air will be constrained to flow in a generally downward direction from the fracture 42 through the formation 8.
- the air (as well as the gases of combustion resulting from the flame front) will follow the path of least resistance and flow into the lower portion of the well bore 2.
- the upper fracture 42 provides an extension of the flame front to a substantial distance from the well bore 2.
- the air introduced into the fracture 42 will completely fill the fracture to induce combustion all the way out to the outer limits of the fracture 42.
- the lower fractures 44 assist in the establishment of gas communication from the upper fracture 42 to the lower portion of the Well bore 2 and facilitate the flow of the heated oil into the well bore. It will be apparent, however, that in relatively permeable formations it will not be necessary to form the lower fractures 44 or 45, since gas communication will be easily established between the upper fracture 42 and the lower portion of the well bore 2.
- the present invention provides an economical process of removing viscous oil from subsurface strata.
- the process utilizes a single well bore and involves the use of a combination heat and gas drive for removing the viscous oil.
- the maximum amount of oil may be removed from a single well bore and the present process will reach the viscous oil a substantial distance from the well bore.
- the flame I front progresses downwardly around the well bore in the same direction as the gas flow to provide an efficient heat and gas drive.
- a process of removing viscous oil from a subsurface strata traversed by a vertical well bore including the steps of: ((1) initiating combustion in the upper portion of the strata around the well bore to form a flame front, and (b) continuously forcing gas only into the upper portion of the strata for feeding the flame front and forcing the flame front downwardly around the well bore, whereby the strata is progressively heated in a downward direction and the products of combustion are forced downwardly to release oil entrained in the strata and direct the released oil into the well bore at the lower portion of the strata.
- a process as defined in claim 1 characterized further in that the upper portion of the strata is horizontally fractured around the well bore and combustion is initiated in the fracture.
- a process as defined in claim 1 characterized further in that the upper and lower portions of the strata are fractured around the well bore and combustion is initiated in the upper fracture.
- a process as defined in claim 1 characterized further in that gas communication is established from the well bore at the upper portion of the strata downwardly through the strata around the well bore and back into the well bore at the lower end of the strata prior to initiation of combustion.
- a .process as defined in claim 1 characterized further in that the lower portion of the strata is vertically fractured around the well bore prior to the initiation of combustion.
- a process of removing viscous oil from a subsurface strata traversed by a vertical well bore including the steps of: (a) placing a casing in the well bore at a depth where the casing terminates in the lower portion of the strata, (b) cementing the casing in the well bore from the lower end of the casing through the major portion of the strata, (c) perforating the casing opposite the upper end portion of the strata above the cement, (d) suspending a tubing in the casing, (e) packing the tubing to the casing below the perforations in the casing, (1) forcing air down through the annulus between the tubing and casing, outwardly through the perforations, downwardly through the strata around the well bore, and back into the well bore and the lower end of the tubing, and (g) initiating combustion of the air and the oil in the strata at the upper end portion of the strata to form a flame front around the well bore, whereby the air feeds and forces the flame front progressively downward around the well bore
- a process as defined in claim 6 characterized further by including the step of horizontally fracturing the strata around the well bore opposite the perforations in the casing prior to the initiation of combustion.
- a process as defined in claim 6 characterized further by including the steps of horizontally fracturing the strata around the well bore opposite the perforations in the casing, and fracturing the strata around the well bore below the lower end of the casing.
- a process as defined in claim 1 characterized further by including the step of removing the released oil from the well bore upwardly through the well bare to the surface.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Jan. 14, 1958 J. L. P6PHAM ETAL 1 PROCESS OF REMOVING VISCOUS OIL FROM A WELL BORE Filed Jan. 19, 1956 IIQVENTORS ,1 1.. POPHAM 0. 4. SHOCK ATTORNEY PROCESS OF REMOVING VISCOUS OIL FROM A WELL BORE lack L. Popham and DArcy A. Shock, Ponca City, Okla, assignors to Continental Oil Company, Ponca City, Okla, a corporation of Delaware Application January 19, 1556, Serial No. 560,171
9 Claims. (Cl. 166-39) This invention relates to an improved process of recovering viscous oil from subsurface strata, and more particularly, but not by way of limitation, to an improved process of recovering viscous oil by utilizing a combination heat and gas drive. For the purpose of this specification and the appended claims, vsicous oil may be defined as liquid hydrocarbons entrained in any type of strata and not naturally flowable into a well bore trav ersing the strata.
In one aspect, this invention relates to what is commonly known as secondary recovery of oil which will not normally flow into a well bore, such as the heavy crude in sands, or oil in tar sands. Various methods of secondary recovery by the use of heat and/or gas drive have been proposed, but, to the best of applicants knowledge, none have proved economically feasible. One general type of such methods involves the circulation of a heated fluid, such as oil, gas or steam through the lower portion of a well bore in contact with a formation containing the entrained oil. Perhaps the greatest deficiency of these methods is the lack of penetration of heat through the formation. Ordinarily, only the formation in the immediate proximity of the well bore is effectively heated to reduce the viscosity of the oil and induce the oil to flow into the well bore.
Another type of proposed secondary recovery method utilizes two or more spaced well bores. In general, combustion is initiated in one well bore and driven through the formation to an adjacent well bore. In rather ideal formations, Where the formation is sufficiently permeable to permit pumping gas from one well to another, and where the well bores are closely spaced, such methods are effective in recovering a large portion of the oil which will not normally flow into the well bores. However, the use of two well bores unduly increases the cost of the method, and in many formations it is extremely diflicult to establish gas communication between the wells.
This invention is also useful in the removal of oil from oil shale. Present known methods for this purpose ordinarily involve the formation of horizontal tunnels through the shale, with or without interconnecting channels. Hot gas or an absorbent is circulated through the various passageways to heat the shale in the immediate vicinity of the passageways and provide a drainage of oil into the passageways for subsequent removal. It will be apparent that the formation of the passageways is an extremely expensive operation and only the oil in the immediate vicinity of the passageways is removed.
The present invention contemplates a novel process for removing viscous oil from a strata or formation through the use of a single well bore. Combustion is initiated in the top portion of the strata around the well bore, and the resulting flame front is moved downwardly around the well bore to progressively heat the strata. As the strata is heated, the entrained oil becomes less viscous and flows into the lower portion of the well bore ahead of the flame front. The movement of the oil is assisted by a gas drive 2 consisting of the products of combustion from the flame front and air forced through the strata to support the combustion but not used in the combustion process.
An important object of this invention is to provide an economical process of removing viscous oil from subsurface strata.
Another object of this invention is to provide an improved process of removing viscous oil from subsurface formations by utilizing a single well bore.
Another object of this invention is to provide a process utilizing a combination heat and gas drive for removing viscous oil from around a single well bore.
A further object of this invention is to provide a maximum recovery of oil from around a well bore.
Another object of this invention is to remove viscous oil from a subsurface strata through a substantial distance around a well bore.
A still further object of this invention is to provide a downward flow of heat through an oil-bearing formation surrounding a well bore.
Other objects and advantages of the invention will be evident from the following detailed description, when read in conjunction with the accompanying drawing which illustrates our invention.
in the drawing, the single figure is a vertical sectional view through a well bore illustrating (partially schematically) one form of apparatus which may be used in practicing this invention.
Stated broadly, the present invention may be defined as a process of removing viscous oil from a subsurface strata traversed by a vertical well bore, including the steps of:
(a) Initiating combustion in the upper portion of the strata around the well bore to form a flame front, and
(b) Continuously forcing gas into the upper portion of the strata for feeding the flame front and forcing the flame front downwardly around the well bore, whereby the strata is progressively heated in a downward direction and the products of combustion are forced downwardly to release oil entrained in the strata and direct the re leased oil into the well bore at the lower portion of the strata.
Referring to the drawing in detail, reference character 2 designates a well bore extending downwardly from the surface 4 through formations 6 and 8 and terminating in a lower formation 10. It will be understood that the well bore 2 will actually extend through a plurality of subsurface formations and that only two of such formations are shown for simplification. The formation or strata 8 may be any type of oil-containing material where the oil will not normally flow into the well bore 2, such as an oil sand containing heavy crude, or an oil shale.
A well casing 12 extends downwardly through the well bore 2 and terminates at a point above the lower formation 10 Within the lower portion of the oil-bearing formation 8. The upper end 14 of the casing 12 is capped or closed off above the surface 4, and a conduit 16 communicates with the casing 2 above the surface for purposes which will be hereinafter set forth. Three strings of tubing, 18, 20 and 22, are disposed concentrically in the casing 12. The outer tubing string 18 terminates slightly below the lower end of the casing 12, and the upper end 24 of the tubing 18 is capped or closed off around the next smaller tubing string 20. A conduit 26 communicates with the upper end portion of the tubing 18 above the upper end 14 of the casing 12.
The middle-sized tubing string 20 extends downwardly through the tubing 18 and preferably terminates in proximity with the lower end 28 of the well bore 2 for posihereinafter set forth. The upper end 30 of the tubing Patented Jan. 14, 1958 20 extends above the tubing 18 and is capped around the smaller tubing 22. Also, a conduit 32 communicates with the tubing string 20 above the upper end 24 of the tubing 18.
The smaller tubing string 22 extends downwardly in the tubing string 20 to a depth approximating the depth of the tubing 20, and the upper end 34 of the tubing 22 extends outwardly to receive air or gas as will be more fully hereinafter set forth.
In practicing the present invention, the casing 12 is cemented to the walls of the well bore 2 through the central portion of the oil-bearing formation 8 as indicated by reference character 36. Thus, the formation 8 is in direct communication with the casing 12 throughout the upper portion of the formation, and the formation is in direct communication with the large tubing string 18 through the lower end portion of the formation. It is preferred that the cement 36 extend through the major portion of the formation 8 to provide relatively small exposed portions of the formation above and below the cement 36.
A plurality of perforations 38 are formed in the casing 12 above the cement 36 and opposite the upper portion of the oil-bearing formation 8. Also, a suitable packer or concrete ring 40 is preferably disposed between the outer surface of the casing 12 and the walls of the well bore 2 above the perforations 38 adjacent the upper end of the oil-bearing formation 8.
In one embodiment of this invention a horizontal fracture 42 is formed in the upper portion of the oil-bearing formation 8 opposite the perforations 38. Also, one or more fractures may be formed in the lower portion of the formation 8 below the lower end 46 of the casing 12. These lower fractures may be either horizontal (as shown at 44) Or vertical (as shown at 45) fractures. After the fractures 42 and 44 or 45 have been formed and the casing 12 is set in the well bore 2 as illustrated in the drawing, the tubing string 18 is run inside the casing 12 and a packer 48 is set between the tubing 18 and the casing 12 opposite the cement 36.
Air is then forced through the conduit 16 downwardly through the annulus between the casing 12 and the tubing 18 and then outwardly through the perforations 38 into the upper horizontal fracture 42. The packers 40 and 48 and cement 36 direct the air into the perforations 38 and fracture 42. The oil in the fracture 42 may then be igmted by any suitable means and the air will supply the necessary oxygen to promote combustion. In some formatrons, the oil entrained in the formation 8 surrounding the fracture 42 will be ignited upon being contacted by the fresh a r discharging through the perforations 38.
As the high pressure air is supplied through the fracture 42, the flame front resulting from the combustion of the arr and the oil entrained in the formation 8 will proceed downwardly through the formation 8 around the well bore 2 in the direction indicated by the arrows. Also, the gases of combustion will be forced downwardly through the formation 8 by the high pressure incoming air and will re-enter the well bore 2 below the lower end 46 of the casing 12.
It will thus be apparent that the oil entrained in the formation 8 around the well bore 2 will be removed and directed into the lower portion of the well bore by a combination of two different effects. The heat of combustion will heat the formation 8 and reduce the viscosity of the entrained oil to induce a downward flow of the oil toward the lower portion of the well bore 2. In addition, the gases of combustion, along with a portion of the air not utilized in the combustion process, will provide a gas drive to force the entrained oil downwardly toward the lower portion of the well bore 2. The lower fractures 44 or 45 will facilitate flow of the entrained oil into the well bore.
The gases of combustion entering the lower portion of the well bore 2 will be discharged upwardly through the tubing string 18 and out the conduit 26; whereas the oil removed from the formation 8 will accumulate iuthe lower portion of the well bore 2 and may be removed by any desired artificial lifting means. However, in some formations the amount and pressure of the gas discharging into the lower portion of the well bore 2 may be suflicient to provide a removal of the accumulated oil along with the combustion gases through the tubing 18.
As previously noted, any desired artificial lifting means may be utilized to remove the oil accumulated in the lower portion of the well bore 2. For purposes of illustration we have shown, schematically, a gas lift arrangement comprising the tubing strings 2i and 22. Air or under pressure may be forced downwardly through the inner tubing 22 and discharged upwardly through the tubing string 20. As this high pressure gas reverses direction and proceeds upwardly through the tubing string 20 it will pick up a portion of the accumulated oil and provide a gas lift of the oil through the tubing string 20. The combined oil and gas is discharged through the upper conduit 32 to a suitable separator or the like (not shown).
Prior to initiating combustion in the upper fracture 42, it may be desirable to establish gas communication downwardly through the formation 8 around the Well bore 2. In that event, the high pressure air supplied through the perforations 38 will be forced downwardly through the formation 8 around the well bore 2 and the cement sleeve 36 into the lower portion of the Well bore 2, until a return of the air is noted through the outlet conduit 26. When this condition occurs the air and the oil entrained in the formation 8 may be ignited within the fracture 42 to start the downwardly moving flame front.
It will be noted that the packer or cement ring 40 prevents an upward flow of the air through the annulus between the casing 12 and the well bore 2 to direct the high pressure air into the fracture 42. Also, the fracture 42 will normally be formed below the interface 50 between the formations 6 and 8, whereby the interface 50 provides a barrier to an upward flow of air from the fracture 42 through the formation 6. Thus, the air will be constrained to flow in a generally downward direction from the fracture 42 through the formation 8. And since the lower portion of the well bore 2 will be at a lower pressure than any other accessible portion of the formation 8, the air (as well as the gases of combustion resulting from the flame front) will follow the path of least resistance and flow into the lower portion of the well bore 2.
The upper fracture 42 provides an extension of the flame front to a substantial distance from the well bore 2. The air introduced into the fracture 42 will completely fill the fracture to induce combustion all the way out to the outer limits of the fracture 42. The lower fractures 44 assist in the establishment of gas communication from the upper fracture 42 to the lower portion of the Well bore 2 and facilitate the flow of the heated oil into the well bore. It will be apparent, however, that in relatively permeable formations it will not be necessary to form the lower fractures 44 or 45, since gas communication will be easily established between the upper fracture 42 and the lower portion of the well bore 2.
From the foregoing it will be apparent that the present invention provides an economical process of removing viscous oil from subsurface strata. The process utilizes a single well bore and involves the use of a combination heat and gas drive for removing the viscous oil. The maximum amount of oil may be removed from a single well bore and the present process will reach the viscous oil a substantial distance from the well bore. The flame I front progresses downwardly around the well bore in the same direction as the gas flow to provide an efficient heat and gas drive.
While particular embodiments of the invention have been described, it will be understood, of course, that the invention is not limited thereto since many modifications may be made, and it is, therefore, contemplated to cover by the appended claims any such modifications as fall within the true spirit and scope of the invention.
The invention having thus been described, what is claimed and desired to be secured by Letters Patent is:
1. A process of removing viscous oil from a subsurface strata traversed by a vertical well bore, including the steps of: ((1) initiating combustion in the upper portion of the strata around the well bore to form a flame front, and (b) continuously forcing gas only into the upper portion of the strata for feeding the flame front and forcing the flame front downwardly around the well bore, whereby the strata is progressively heated in a downward direction and the products of combustion are forced downwardly to release oil entrained in the strata and direct the released oil into the well bore at the lower portion of the strata.
2. A process as defined in claim 1 characterized further in that the upper portion of the strata is horizontally fractured around the well bore and combustion is initiated in the fracture.
3. A process as defined in claim 1 characterized further in that the upper and lower portions of the strata are fractured around the well bore and combustion is initiated in the upper fracture.
4. A process as defined in claim 1 characterized further in that gas communication is established from the well bore at the upper portion of the strata downwardly through the strata around the well bore and back into the well bore at the lower end of the strata prior to initiation of combustion.
5. A .process as defined in claim 1 characterized further in that the lower portion of the strata is vertically fractured around the well bore prior to the initiation of combustion.
6. A process of removing viscous oil from a subsurface strata traversed by a vertical well bore, including the steps of: (a) placing a casing in the well bore at a depth where the casing terminates in the lower portion of the strata, (b) cementing the casing in the well bore from the lower end of the casing through the major portion of the strata, (c) perforating the casing opposite the upper end portion of the strata above the cement, (d) suspending a tubing in the casing, (e) packing the tubing to the casing below the perforations in the casing, (1) forcing air down through the annulus between the tubing and casing, outwardly through the perforations, downwardly through the strata around the well bore, and back into the well bore and the lower end of the tubing, and (g) initiating combustion of the air and the oil in the strata at the upper end portion of the strata to form a flame front around the well bore, whereby the air feeds and forces the flame front progressively downward around the well bore to heat the strata and drive oil from the strata into the well bore at the lower end portion of the strata.
7. A process as defined in claim 6 characterized further by including the step of horizontally fracturing the strata around the well bore opposite the perforations in the casing prior to the initiation of combustion.
8. A process as defined in claim 6 characterized further by including the steps of horizontally fracturing the strata around the well bore opposite the perforations in the casing, and fracturing the strata around the well bore below the lower end of the casing.
9. A process as defined in claim 1 characterized further by including the step of removing the released oil from the well bore upwardly through the well bare to the surface.
References Cited in the file of this patent UNITED STATES PATENTS 1,457,479 Wolcott June 5, 1923 2,675,081 Nowak Apr. 13, 1954 FOREIGN PATENTS 481,151 Canada Feb. 12, 1952
Claims (1)
1. A PROCESS FOR REMOCING VISCOUS OIL FROM A SUBSURFACE STRATE TRANSVERSED BY A VERTICAL WELL BORE, INCLUDING THE STEPS OF: (A) INITIATING COMBUSTION IN THE UPPER PORTION OF THE STRATA AROUND THE WELL BORE TO FORM A FLAME FRONT, AND (B) CONTINUOUSLY FORCING GAS ONLY INTO THE UPPER PORTION OF THE STRATA FOR FEEDING THE FLAME FRONT AND FORCING THE FLAME FRONT DOWNWARDLY AROUND THE WELL
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US560171A US2819761A (en) | 1956-01-19 | 1956-01-19 | Process of removing viscous oil from a well bore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US560171A US2819761A (en) | 1956-01-19 | 1956-01-19 | Process of removing viscous oil from a well bore |
Publications (1)
Publication Number | Publication Date |
---|---|
US2819761A true US2819761A (en) | 1958-01-14 |
Family
ID=24236673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US560171A Expired - Lifetime US2819761A (en) | 1956-01-19 | 1956-01-19 | Process of removing viscous oil from a well bore |
Country Status (1)
Country | Link |
---|---|
US (1) | US2819761A (en) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2970826A (en) * | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US2978025A (en) * | 1957-02-18 | 1961-04-04 | Pan American Petroleum Corp | Fracturing well formations |
US3004596A (en) * | 1958-03-28 | 1961-10-17 | Phillips Petroleum Co | Process for recovery of hydrocarbons by in situ combustion |
US3004600A (en) * | 1957-06-17 | 1961-10-17 | Gulf Research Development Co | Single well in-situ combustion process for production of oil |
US3018827A (en) * | 1957-06-17 | 1962-01-30 | Gulf Research Development Co | Single well vertical drive in-situ combustion process |
US3024013A (en) * | 1958-04-24 | 1962-03-06 | Phillips Petroleum Co | Recovery of hydrocarbons by in situ combustion |
US3026935A (en) * | 1958-07-18 | 1962-03-27 | Texaco Inc | In situ combustion |
US3040809A (en) * | 1957-06-05 | 1962-06-26 | Sinclair Oil & Gas Company | Process for recovering viscous crude oil from unconsolidated formations |
US3048221A (en) * | 1958-05-12 | 1962-08-07 | Phillips Petroleum Co | Hydrocarbon recovery by thermal drive |
US3110345A (en) * | 1959-02-26 | 1963-11-12 | Gulf Research Development Co | Low temperature reverse combustion process |
US3113620A (en) * | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3180414A (en) * | 1961-03-27 | 1965-04-27 | Phillips Petroleum Co | Production of hydrocarbons by fracturing and fluid drive |
US3195632A (en) * | 1957-06-17 | 1965-07-20 | Gulf Res & Developement Compan | Radial burning in-situ combustion process utilizing a single well |
US3208527A (en) * | 1961-07-10 | 1965-09-28 | Exxon Production Research Co | Method and apparatus for controlling flow of well fluids |
US3342257A (en) * | 1963-12-30 | 1967-09-19 | Standard Oil Co | In situ retorting of oil shale using nuclear energy |
US3511282A (en) * | 1966-02-07 | 1970-05-12 | Continental Oil Co | Prestressed conduit for heated fluids |
US3608637A (en) * | 1969-11-12 | 1971-09-28 | Phillips Petroleum Co | In situ combustion production method |
US3654691A (en) * | 1966-02-07 | 1972-04-11 | Continental Oil Co | Process for constructing prestressed conduit for heated fluids |
US4083404A (en) * | 1976-03-10 | 1978-04-11 | Texaco Inc. | Oil recovery process utilizing air and superheated steam |
US20030080604A1 (en) * | 2001-04-24 | 2003-05-01 | Vinegar Harold J. | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20030079877A1 (en) * | 2001-04-24 | 2003-05-01 | Wellington Scott Lee | In situ thermal processing of a relatively impermeable formation in a reducing environment |
US20030098605A1 (en) * | 2001-04-24 | 2003-05-29 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation |
US20030155111A1 (en) * | 2001-04-24 | 2003-08-21 | Shell Oil Co | In situ thermal processing of a tar sands formation |
US20030173081A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | In situ thermal processing of an oil reservoir formation |
US20030173085A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Upgrading and mining of coal |
US20030173072A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US20030178191A1 (en) * | 2000-04-24 | 2003-09-25 | Maher Kevin Albert | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US20030192693A1 (en) * | 2001-10-24 | 2003-10-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US20040020642A1 (en) * | 2001-10-24 | 2004-02-05 | Vinegar Harold J. | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US20040146288A1 (en) * | 2002-10-24 | 2004-07-29 | Vinegar Harold J. | Temperature limited heaters for heating subsurface formations or wellbores |
US20050269095A1 (en) * | 2004-04-23 | 2005-12-08 | Fairbanks Michael D | Inhibiting reflux in a heated well of an in situ conversion system |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US20060210936A1 (en) * | 2005-03-10 | 2006-09-21 | Peter Veenstra | Multi-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof |
US20060210468A1 (en) * | 2005-03-10 | 2006-09-21 | Peter Veenstra | Heat transfer system for the combustion of a fuel and heating of a process fluid and a process that uses same |
US20060222578A1 (en) * | 2005-03-10 | 2006-10-05 | Peter Veenstra | Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US20070045268A1 (en) * | 2005-04-22 | 2007-03-01 | Vinegar Harold J | Varying properties along lengths of temperature limited heaters |
US20070095537A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US20070108201A1 (en) * | 2005-04-22 | 2007-05-17 | Vinegar Harold J | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration |
US20070284108A1 (en) * | 2006-04-21 | 2007-12-13 | Roes Augustinus W M | Compositions produced using an in situ heat treatment process |
US20080236831A1 (en) * | 2006-10-20 | 2008-10-02 | Chia-Fu Hsu | Condensing vaporized water in situ to treat tar sands formations |
US20090053660A1 (en) * | 2007-07-20 | 2009-02-26 | Thomas Mikus | Flameless combustion heater |
US20090056696A1 (en) * | 2007-07-20 | 2009-03-05 | Abdul Wahid Munshi | Flameless combustion heater |
US20090090158A1 (en) * | 2007-04-20 | 2009-04-09 | Ian Alexander Davidson | Wellbore manufacturing processes for in situ heat treatment processes |
US20090159277A1 (en) * | 2006-02-27 | 2009-06-25 | Grant Hocking | Enhanced Hydrocarbon Recovery by in Situ Combustion of Oil Sand Formations |
US20090194286A1 (en) * | 2007-10-19 | 2009-08-06 | Stanley Leroy Mason | Multi-step heater deployment in a subsurface formation |
US20090272526A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US20100258309A1 (en) * | 2009-04-10 | 2010-10-14 | Oluropo Rufus Ayodele | Heater assisted fluid treatment of a subsurface formation |
US20110088904A1 (en) * | 2000-04-24 | 2011-04-21 | De Rouffignac Eric Pierre | In situ recovery from a hydrocarbon containing formation |
US20130333874A1 (en) * | 2012-04-16 | 2013-12-19 | Leonard Alan Bollingham | Through Tubing gas lift mandrel |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1457479A (en) * | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
CA481151A (en) * | 1952-02-12 | Ranney Leo | Recovery of fluid products from sub-surface mineral deposits | |
US2675081A (en) * | 1950-10-23 | 1954-04-13 | Union Oil Co | Method and apparatus for pumping and heating oil wells |
-
1956
- 1956-01-19 US US560171A patent/US2819761A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA481151A (en) * | 1952-02-12 | Ranney Leo | Recovery of fluid products from sub-surface mineral deposits | |
US1457479A (en) * | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
US2675081A (en) * | 1950-10-23 | 1954-04-13 | Union Oil Co | Method and apparatus for pumping and heating oil wells |
Cited By (330)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2978025A (en) * | 1957-02-18 | 1961-04-04 | Pan American Petroleum Corp | Fracturing well formations |
US3040809A (en) * | 1957-06-05 | 1962-06-26 | Sinclair Oil & Gas Company | Process for recovering viscous crude oil from unconsolidated formations |
US3004600A (en) * | 1957-06-17 | 1961-10-17 | Gulf Research Development Co | Single well in-situ combustion process for production of oil |
US3018827A (en) * | 1957-06-17 | 1962-01-30 | Gulf Research Development Co | Single well vertical drive in-situ combustion process |
US3195632A (en) * | 1957-06-17 | 1965-07-20 | Gulf Res & Developement Compan | Radial burning in-situ combustion process utilizing a single well |
US3004596A (en) * | 1958-03-28 | 1961-10-17 | Phillips Petroleum Co | Process for recovery of hydrocarbons by in situ combustion |
US3024013A (en) * | 1958-04-24 | 1962-03-06 | Phillips Petroleum Co | Recovery of hydrocarbons by in situ combustion |
US3048221A (en) * | 1958-05-12 | 1962-08-07 | Phillips Petroleum Co | Hydrocarbon recovery by thermal drive |
US3026935A (en) * | 1958-07-18 | 1962-03-27 | Texaco Inc | In situ combustion |
US2970826A (en) * | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US3110345A (en) * | 1959-02-26 | 1963-11-12 | Gulf Research Development Co | Low temperature reverse combustion process |
US3113620A (en) * | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3180414A (en) * | 1961-03-27 | 1965-04-27 | Phillips Petroleum Co | Production of hydrocarbons by fracturing and fluid drive |
US3208527A (en) * | 1961-07-10 | 1965-09-28 | Exxon Production Research Co | Method and apparatus for controlling flow of well fluids |
US3342257A (en) * | 1963-12-30 | 1967-09-19 | Standard Oil Co | In situ retorting of oil shale using nuclear energy |
US3654691A (en) * | 1966-02-07 | 1972-04-11 | Continental Oil Co | Process for constructing prestressed conduit for heated fluids |
US3511282A (en) * | 1966-02-07 | 1970-05-12 | Continental Oil Co | Prestressed conduit for heated fluids |
US3608637A (en) * | 1969-11-12 | 1971-09-28 | Phillips Petroleum Co | In situ combustion production method |
US4083404A (en) * | 1976-03-10 | 1978-04-11 | Texaco Inc. | Oil recovery process utilizing air and superheated steam |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US20030178191A1 (en) * | 2000-04-24 | 2003-09-25 | Maher Kevin Albert | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US20110088904A1 (en) * | 2000-04-24 | 2011-04-21 | De Rouffignac Eric Pierre | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6880633B2 (en) | 2001-04-24 | 2005-04-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a desired product |
US7051807B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with quality control |
US20030111223A1 (en) * | 2001-04-24 | 2003-06-19 | Rouffignac Eric Pierre De | In situ thermal processing of an oil shale formation using horizontal heat sources |
US20030116315A1 (en) * | 2001-04-24 | 2003-06-26 | Wellington Scott Lee | In situ thermal processing of a relatively permeable formation |
US20030131995A1 (en) * | 2001-04-24 | 2003-07-17 | De Rouffignac Eric Pierre | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US20030131993A1 (en) * | 2001-04-24 | 2003-07-17 | Etuan Zhang | In situ thermal processing of an oil shale formation with a selected property |
US20030131996A1 (en) * | 2001-04-24 | 2003-07-17 | Vinegar Harold J. | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US20030137181A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range |
US20030136559A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing while controlling pressure in an oil shale formation |
US20030136558A1 (en) * | 2001-04-24 | 2003-07-24 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a desired product |
US20030141068A1 (en) * | 2001-04-24 | 2003-07-31 | Pierre De Rouffignac Eric | In situ thermal processing through an open wellbore in an oil shale formation |
US20030142964A1 (en) * | 2001-04-24 | 2003-07-31 | Wellington Scott Lee | In situ thermal processing of an oil shale formation using a controlled heating rate |
US20030141067A1 (en) * | 2001-04-24 | 2003-07-31 | Rouffignac Eric Pierre De | In situ thermal processing of an oil shale formation to increase permeability of the formation |
US20030141066A1 (en) * | 2001-04-24 | 2003-07-31 | Karanikas John Michael | In situ thermal processing of an oil shale formation while inhibiting coking |
US20030148894A1 (en) * | 2001-04-24 | 2003-08-07 | Vinegar Harold J. | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US20030146002A1 (en) * | 2001-04-24 | 2003-08-07 | Vinegar Harold J. | Removable heat sources for in situ thermal processing of an oil shale formation |
US20030155111A1 (en) * | 2001-04-24 | 2003-08-21 | Shell Oil Co | In situ thermal processing of a tar sands formation |
US20030164239A1 (en) * | 2001-04-24 | 2003-09-04 | Wellington Scott Lee | In situ thermal processing of an oil shale formation in a reducing environment |
US20030173080A1 (en) * | 2001-04-24 | 2003-09-18 | Berchenko Ilya Emil | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US20030173078A1 (en) * | 2001-04-24 | 2003-09-18 | Wellington Scott Lee | In situ thermal processing of an oil shale formation to produce a condensate |
US20030080604A1 (en) * | 2001-04-24 | 2003-05-01 | Vinegar Harold J. | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US20060213657A1 (en) * | 2001-04-24 | 2006-09-28 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US20030102130A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation with quality control |
US20030079877A1 (en) * | 2001-04-24 | 2003-05-01 | Wellington Scott Lee | In situ thermal processing of a relatively impermeable formation in a reducing environment |
US7225866B2 (en) | 2001-04-24 | 2007-06-05 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US20030102124A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal processing of a blending agent from a relatively permeable formation |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US6981548B2 (en) | 2001-04-24 | 2006-01-03 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation |
US7040399B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of an oil shale formation using a controlled heating rate |
US7040398B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively permeable formation in a reducing environment |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US6782947B2 (en) | 2001-04-24 | 2004-08-31 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US20040211554A1 (en) * | 2001-04-24 | 2004-10-28 | Vinegar Harold J. | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US7013972B2 (en) | 2001-04-24 | 2006-03-21 | Shell Oil Company | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US20040211557A1 (en) * | 2001-04-24 | 2004-10-28 | Cole Anthony Thomas | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US20030098605A1 (en) * | 2001-04-24 | 2003-05-29 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation |
US6877555B2 (en) | 2001-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of an oil shale formation while inhibiting coking |
US20030102125A1 (en) * | 2001-04-24 | 2003-06-05 | Wellington Scott Lee | In situ thermal processing of a relatively permeable formation in a reducing environment |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US6915850B2 (en) | 2001-04-24 | 2005-07-12 | Shell Oil Company | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US6918442B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation in a reducing environment |
US6918443B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range |
US6923257B2 (en) | 2001-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a condensate |
US6929067B2 (en) | 2001-04-24 | 2005-08-16 | Shell Oil Company | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US7004251B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | In situ thermal processing and remediation of an oil shale formation |
US6948562B2 (en) | 2001-04-24 | 2005-09-27 | Shell Oil Company | Production of a blending agent using an in situ thermal process in a relatively permeable formation |
US6951247B2 (en) | 2001-04-24 | 2005-10-04 | Shell Oil Company | In situ thermal processing of an oil shale formation using horizontal heat sources |
US6964300B2 (en) | 2001-04-24 | 2005-11-15 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US6966374B2 (en) | 2001-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US6997518B2 (en) | 2001-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing and solution mining of an oil shale formation |
US20080314593A1 (en) * | 2001-04-24 | 2008-12-25 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US6994169B2 (en) | 2001-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of an oil shale formation with a selected property |
US6991032B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US6991036B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | Thermal processing of a relatively permeable formation |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US20100270015A1 (en) * | 2001-04-24 | 2010-10-28 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US20030102126A1 (en) * | 2001-04-24 | 2003-06-05 | Sumnu-Dindoruk Meliha Deniz | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US20030098149A1 (en) * | 2001-04-24 | 2003-05-29 | Wellington Scott Lee | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US6991033B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing while controlling pressure in an oil shale formation |
US20030196810A1 (en) * | 2001-10-24 | 2003-10-23 | Vinegar Harold J. | Treatment of a hydrocarbon containing formation after heating |
US7066257B2 (en) | 2001-10-24 | 2006-06-27 | Shell Oil Company | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US20030173081A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | In situ thermal processing of an oil reservoir formation |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6991045B2 (en) | 2001-10-24 | 2006-01-31 | Shell Oil Company | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US20030173085A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Upgrading and mining of coal |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US7461691B2 (en) | 2001-10-24 | 2008-12-09 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US6932155B2 (en) | 2001-10-24 | 2005-08-23 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US20050092483A1 (en) * | 2001-10-24 | 2005-05-05 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US7156176B2 (en) | 2001-10-24 | 2007-01-02 | Shell Oil Company | Installation and use of removable heaters in a hydrocarbon containing formation |
US20040211569A1 (en) * | 2001-10-24 | 2004-10-28 | Vinegar Harold J. | Installation and use of removable heaters in a hydrocarbon containing formation |
US7128153B2 (en) | 2001-10-24 | 2006-10-31 | Shell Oil Company | Treatment of a hydrocarbon containing formation after heating |
US20030173072A1 (en) * | 2001-10-24 | 2003-09-18 | Vinegar Harold J. | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US20040040715A1 (en) * | 2001-10-24 | 2004-03-04 | Wellington Scott Lee | In situ production of a blending agent from a hydrocarbon containing formation |
US20040020642A1 (en) * | 2001-10-24 | 2004-02-05 | Vinegar Harold J. | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US7051808B1 (en) | 2001-10-24 | 2006-05-30 | Shell Oil Company | Seismic monitoring of in situ conversion in a hydrocarbon containing formation |
US20030205378A1 (en) * | 2001-10-24 | 2003-11-06 | Wellington Scott Lee | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US20030201098A1 (en) * | 2001-10-24 | 2003-10-30 | Karanikas John Michael | In situ recovery from a hydrocarbon containing formation using one or more simulations |
US20030196789A1 (en) * | 2001-10-24 | 2003-10-23 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation and upgrading of produced fluids prior to further treatment |
US7063145B2 (en) | 2001-10-24 | 2006-06-20 | Shell Oil Company | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US20030196788A1 (en) * | 2001-10-24 | 2003-10-23 | Vinegar Harold J. | Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation |
US20030192693A1 (en) * | 2001-10-24 | 2003-10-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US20030192691A1 (en) * | 2001-10-24 | 2003-10-16 | Vinegar Harold J. | In situ recovery from a hydrocarbon containing formation using barriers |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7077198B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using barriers |
US7086465B2 (en) | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US20030196801A1 (en) * | 2001-10-24 | 2003-10-23 | Vinegar Harold J. | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US7100994B2 (en) | 2001-10-24 | 2006-09-05 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US20040144540A1 (en) * | 2002-10-24 | 2004-07-29 | Sandberg Chester Ledlie | High voltage temperature limited heaters |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US20040146288A1 (en) * | 2002-10-24 | 2004-07-29 | Vinegar Harold J. | Temperature limited heaters for heating subsurface formations or wellbores |
US7219734B2 (en) | 2002-10-24 | 2007-05-22 | Shell Oil Company | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US7121341B2 (en) | 2002-10-24 | 2006-10-17 | Shell Oil Company | Conductor-in-conduit temperature limited heaters |
US20050006097A1 (en) * | 2002-10-24 | 2005-01-13 | Sandberg Chester Ledlie | Variable frequency temperature limited heaters |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7360588B2 (en) | 2003-04-24 | 2008-04-22 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7640980B2 (en) | 2003-04-24 | 2010-01-05 | Shell Oil Company | Thermal processes for subsurface formations |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US20050269092A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Vacuum pumping of conductor-in-conduit heaters |
US20050269094A1 (en) * | 2004-04-23 | 2005-12-08 | Harris Christopher K | Triaxial temperature limited heater |
US20060289536A1 (en) * | 2004-04-23 | 2006-12-28 | Vinegar Harold J | Subsurface electrical heaters using nitride insulation |
US7490665B2 (en) | 2004-04-23 | 2009-02-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7481274B2 (en) | 2004-04-23 | 2009-01-27 | Shell Oil Company | Temperature limited heaters with relatively constant current |
US20050269095A1 (en) * | 2004-04-23 | 2005-12-08 | Fairbanks Michael D | Inhibiting reflux in a heated well of an in situ conversion system |
US20060005968A1 (en) * | 2004-04-23 | 2006-01-12 | Vinegar Harold J | Temperature limited heaters with relatively constant current |
US20050269088A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Inhibiting effects of sloughing in wellbores |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US20050269093A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Variable frequency temperature limited heaters |
US20050269313A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Temperature limited heaters with high power factors |
US7431076B2 (en) | 2004-04-23 | 2008-10-07 | Shell Oil Company | Temperature limited heaters using modulated DC power |
US20050269091A1 (en) * | 2004-04-23 | 2005-12-08 | Guillermo Pastor-Sanz | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US20050269089A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Temperature limited heaters using modulated DC power |
US7353872B2 (en) | 2004-04-23 | 2008-04-08 | Shell Oil Company | Start-up of temperature limited heaters using direct current (DC) |
US7357180B2 (en) | 2004-04-23 | 2008-04-15 | Shell Oil Company | Inhibiting effects of sloughing in wellbores |
US20050269077A1 (en) * | 2004-04-23 | 2005-12-08 | Sandberg Chester L | Start-up of temperature limited heaters using direct current (DC) |
US7370704B2 (en) | 2004-04-23 | 2008-05-13 | Shell Oil Company | Triaxial temperature limited heater |
US7383877B2 (en) | 2004-04-23 | 2008-06-10 | Shell Oil Company | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US20050269090A1 (en) * | 2004-04-23 | 2005-12-08 | Vinegar Harold J | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US7424915B2 (en) | 2004-04-23 | 2008-09-16 | Shell Oil Company | Vacuum pumping of conductor-in-conduit heaters |
US7510000B2 (en) | 2004-04-23 | 2009-03-31 | Shell Oil Company | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US8016589B2 (en) | 2005-03-10 | 2011-09-13 | Shell Oil Company | Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid |
US7651331B2 (en) * | 2005-03-10 | 2010-01-26 | Shell Oil Company | Multi-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof |
US7704070B2 (en) * | 2005-03-10 | 2010-04-27 | Shell Oil Company | Heat transfer system for the combustion of a fuel heating of a process fluid and a process that uses same |
US20060210936A1 (en) * | 2005-03-10 | 2006-09-21 | Peter Veenstra | Multi-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof |
US20060210468A1 (en) * | 2005-03-10 | 2006-09-21 | Peter Veenstra | Heat transfer system for the combustion of a fuel and heating of a process fluid and a process that uses same |
US20060222578A1 (en) * | 2005-03-10 | 2006-10-05 | Peter Veenstra | Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US20080217321A1 (en) * | 2005-04-22 | 2008-09-11 | Vinegar Harold J | Temperature limited heater utilizing non-ferromagnetic conductor |
US7500528B2 (en) | 2005-04-22 | 2009-03-10 | Shell Oil Company | Low temperature barrier wellbores formed using water flushing |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US20070045268A1 (en) * | 2005-04-22 | 2007-03-01 | Vinegar Harold J | Varying properties along lengths of temperature limited heaters |
US7527094B2 (en) | 2005-04-22 | 2009-05-05 | Shell Oil Company | Double barrier system for an in situ conversion process |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US20070045267A1 (en) * | 2005-04-22 | 2007-03-01 | Vinegar Harold J | Subsurface connection methods for subsurface heaters |
US7546873B2 (en) | 2005-04-22 | 2009-06-16 | Shell Oil Company | Low temperature barriers for use with in situ processes |
US20070144732A1 (en) * | 2005-04-22 | 2007-06-28 | Kim Dong S | Low temperature barriers for use with in situ processes |
US20070137856A1 (en) * | 2005-04-22 | 2007-06-21 | Mckinzie Billy J | Double barrier system for an in situ conversion process |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US20070133961A1 (en) * | 2005-04-22 | 2007-06-14 | Fairbanks Michael D | Methods and systems for producing fluid from an in situ conversion process |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US20070133960A1 (en) * | 2005-04-22 | 2007-06-14 | Vinegar Harold J | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US20070045265A1 (en) * | 2005-04-22 | 2007-03-01 | Mckinzie Billy J Ii | Low temperature barriers with heat interceptor wells for in situ processes |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US20070045266A1 (en) * | 2005-04-22 | 2007-03-01 | Sandberg Chester L | In situ conversion process utilizing a closed loop heating system |
US20070133959A1 (en) * | 2005-04-22 | 2007-06-14 | Vinegar Harold J | Grouped exposed metal heaters |
US20070108201A1 (en) * | 2005-04-22 | 2007-05-17 | Vinegar Harold J | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration |
US7575053B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | Low temperature monitoring system for subsurface barriers |
US7575052B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | In situ conversion process utilizing a closed loop heating system |
US7435037B2 (en) | 2005-04-22 | 2008-10-14 | Shell Oil Company | Low temperature barriers with heat interceptor wells for in situ processes |
US20070119098A1 (en) * | 2005-04-22 | 2007-05-31 | Zaida Diaz | Treatment of gas from an in situ conversion process |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US20070108200A1 (en) * | 2005-04-22 | 2007-05-17 | Mckinzie Billy J Ii | Low temperature barrier wellbores formed using water flushing |
US7584789B2 (en) | 2005-10-24 | 2009-09-08 | Shell Oil Company | Methods of cracking a crude product to produce additional crude products |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US20110168394A1 (en) * | 2005-10-24 | 2011-07-14 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US7591310B2 (en) | 2005-10-24 | 2009-09-22 | Shell Oil Company | Methods of hydrotreating a liquid stream to remove clogging compounds |
US7635025B2 (en) | 2005-10-24 | 2009-12-22 | Shell Oil Company | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US7581589B2 (en) | 2005-10-24 | 2009-09-01 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US7559368B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Solution mining systems and methods for treating hydrocarbon containing formations |
US20070095537A1 (en) * | 2005-10-24 | 2007-05-03 | Vinegar Harold J | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US7556096B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7562706B2 (en) | 2005-10-24 | 2009-07-21 | Shell Oil Company | Systems and methods for producing hydrocarbons from tar sands formations |
US7556095B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US7559367B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Temperature limited heater with a conduit substantially electrically isolated from the formation |
US20090159277A1 (en) * | 2006-02-27 | 2009-06-25 | Grant Hocking | Enhanced Hydrocarbon Recovery by in Situ Combustion of Oil Sand Formations |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US20080017380A1 (en) * | 2006-04-21 | 2008-01-24 | Vinegar Harold J | Non-ferromagnetic overburden casing |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US20070289733A1 (en) * | 2006-04-21 | 2007-12-20 | Hinson Richard A | Wellhead with non-ferromagnetic materials |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7635023B2 (en) | 2006-04-21 | 2009-12-22 | Shell Oil Company | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US7631689B2 (en) | 2006-04-21 | 2009-12-15 | Shell Oil Company | Sulfur barrier for use with in situ processes for treating formations |
US7597147B2 (en) | 2006-04-21 | 2009-10-06 | Shell Oil Company | Temperature limited heaters using phase transformation of ferromagnetic material |
US7610962B2 (en) | 2006-04-21 | 2009-11-03 | Shell Oil Company | Sour gas injection for use with in situ heat treatment |
US7604052B2 (en) | 2006-04-21 | 2009-10-20 | Shell Oil Company | Compositions produced using an in situ heat treatment process |
US20070284108A1 (en) * | 2006-04-21 | 2007-12-13 | Roes Augustinus W M | Compositions produced using an in situ heat treatment process |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US20100272595A1 (en) * | 2006-04-21 | 2010-10-28 | Shell Oil Company | High strength alloys |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7631690B2 (en) | 2006-10-20 | 2009-12-15 | Shell Oil Company | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US7635024B2 (en) | 2006-10-20 | 2009-12-22 | Shell Oil Company | Heating tar sands formations to visbreaking temperatures |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US20100276141A1 (en) * | 2006-10-20 | 2010-11-04 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US20080236831A1 (en) * | 2006-10-20 | 2008-10-02 | Chia-Fu Hsu | Condensing vaporized water in situ to treat tar sands formations |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US7562707B2 (en) | 2006-10-20 | 2009-07-21 | Shell Oil Company | Heating hydrocarbon containing formations in a line drive staged process |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US20090090158A1 (en) * | 2007-04-20 | 2009-04-09 | Ian Alexander Davidson | Wellbore manufacturing processes for in situ heat treatment processes |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US20090056696A1 (en) * | 2007-07-20 | 2009-03-05 | Abdul Wahid Munshi | Flameless combustion heater |
US20090053660A1 (en) * | 2007-07-20 | 2009-02-26 | Thomas Mikus | Flameless combustion heater |
US20090200022A1 (en) * | 2007-10-19 | 2009-08-13 | Jose Luis Bravo | Cryogenic treatment of gas |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US20090194333A1 (en) * | 2007-10-19 | 2009-08-06 | Macdonald Duncan | Ranging methods for developing wellbores in subsurface formations |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US20090200290A1 (en) * | 2007-10-19 | 2009-08-13 | Paul Gregory Cardinal | Variable voltage load tap changing transformer |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US20090194286A1 (en) * | 2007-10-19 | 2009-08-06 | Stanley Leroy Mason | Multi-step heater deployment in a subsurface formation |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US20090272536A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US20100071903A1 (en) * | 2008-04-18 | 2010-03-25 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US20090272526A1 (en) * | 2008-04-18 | 2009-11-05 | David Booth Burns | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US20100147522A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Systems and methods for treating a subsurface formation with electrical conductors |
US20100155070A1 (en) * | 2008-10-13 | 2010-06-24 | Augustinus Wilhelmus Maria Roes | Organonitrogen compounds used in treating hydrocarbon containing formations |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US20100224368A1 (en) * | 2008-10-13 | 2010-09-09 | Stanley Leroy Mason | Deployment of insulated conductors for treating subsurface formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US20100206570A1 (en) * | 2008-10-13 | 2010-08-19 | Ernesto Rafael Fonseca Ocampos | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US20100258291A1 (en) * | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
US20100258265A1 (en) * | 2009-04-10 | 2010-10-14 | John Michael Karanikas | Recovering energy from a subsurface formation |
US20100258290A1 (en) * | 2009-04-10 | 2010-10-14 | Ronald Marshall Bass | Non-conducting heater casings |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US20100258309A1 (en) * | 2009-04-10 | 2010-10-14 | Oluropo Rufus Ayodele | Heater assisted fluid treatment of a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US20110042084A1 (en) * | 2009-04-10 | 2011-02-24 | Robert Bos | Irregular pattern treatment of a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US20130333874A1 (en) * | 2012-04-16 | 2013-12-19 | Leonard Alan Bollingham | Through Tubing gas lift mandrel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2819761A (en) | Process of removing viscous oil from a well bore | |
US10024148B2 (en) | Hydrocarbon recovery process exploiting multiple induced fractures | |
US3120264A (en) | Recovery of oil by in situ combustion | |
US3513914A (en) | Method for producing shale oil from an oil shale formation | |
US4550779A (en) | Process for the recovery of hydrocarbons for mineral oil deposits | |
US2859818A (en) | Method of recovering petroleum | |
US4296969A (en) | Thermal recovery of viscous hydrocarbons using arrays of radially spaced horizontal wells | |
US3692111A (en) | Stair-step thermal recovery of oil | |
US4489783A (en) | Viscous oil recovery method | |
US5771973A (en) | Single well vapor extraction process | |
US2897894A (en) | Recovery of oil from subterranean reservoirs | |
US4362213A (en) | Method of in situ oil extraction using hot solvent vapor injection | |
US5289881A (en) | Horizontal well completion | |
US3221813A (en) | Recovery of viscous petroleum materials | |
US3951457A (en) | Hydraulic mining technique for recovering bitumen from tar sand deposit | |
RU2295030C1 (en) | Method for extracting layer-zone-wise heterogeneous formation of highly viscous oil or bitumen | |
US3542131A (en) | Method of recovering hydrocarbons from oil shale | |
US3775073A (en) | In situ gasification of coal by gas fracturing | |
RU2436943C1 (en) | Procedure for extraction of high viscous oil from deviating hole by method of steam cyclic pumping into reservoir | |
US3358759A (en) | Steam drive in an oil-bearing stratum adjacent a gas zone | |
US4042029A (en) | Carbon-dioxide-assisted production from extensively fractured reservoirs | |
US2784787A (en) | Method of suppressing water and gas coning in oil wells | |
US4034812A (en) | Method for recovering viscous petroleum from unconsolidated mineral formations | |
US4227743A (en) | Method of thermal-mine recovery of oil and fluent bitumens | |
US3040809A (en) | Process for recovering viscous crude oil from unconsolidated formations |