US3889270A - Ink jet recording material - Google Patents
Ink jet recording material Download PDFInfo
- Publication number
- US3889270A US3889270A US378014A US37801473A US3889270A US 3889270 A US3889270 A US 3889270A US 378014 A US378014 A US 378014A US 37801473 A US37801473 A US 37801473A US 3889270 A US3889270 A US 3889270A
- Authority
- US
- United States
- Prior art keywords
- receiving layer
- image receiving
- process according
- image
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44D—PAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
- B44D3/00—Accessories or implements for use in connection with painting or artistic drawing, not otherwise provided for; Methods or devices for colour determination, selection, or synthesis, e.g. use of colour tables
- B44D3/18—Boards or sheets with surfaces prepared for painting or drawing pictures; Stretching frames for canvases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5218—Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5236—Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5254—Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
Definitions
- ABSTRACT Ink jet images are produced by spraying the recording substrate with a fine jet of a coloured liquid which is mudulated according to the image.
- the new type of recording material consists of a transparent or opaque substrate and an image receiving layer is formed by a molecular disperse or colloidal disperse substance. It is important that the image receiving layer should be wetted by the coloured liquid and that, after spraying, the coloured liquid should penetrate the layer to a depth of at least several microns. Ink jet images of high quality can be obtained with such a recording material.
- This invention relates to a recording material for inkjet images which are produced by spraying a fine jet of a coloured liquid which is modulated according to the image.
- the recording material basically comprises a transparent or opaque substrate and an image receiving layer on this substrate.
- a recording technique has recently become known by the term ink-jet, process, in which technique a very fine jet of coloured liquid sprayed from a capillary tube is modulated in density according to theimage by an electric field.
- the jet of coloured liquid from the capillary impinges on the substrate at a high velocity (approximately 20 m/sec).
- the ink jet process has been described, for example, in German Auslegeschrift DT-AS No. 1,271,754 and in British Patent Specification No. 1,123,587.
- the materials used for recording substrates have previously been paper or synthetic resin materials resembling paper in consistency or transparent foils, depending on whether the image to be produced is a transparency or an image viewed by reflected light.
- the substrates used for the production of transparencies by the ink-jet process are generally transparent foils (e.g. Cellite or polyester) but these foils generally have the disadvantage that their surfaces repel dye solutions, and the ink droplets coalesce to larger drops on the surface. Continuous colour surfaces are therefore not obtained.
- the individual properties in which improvement is required are:
- the dye solution should not run after it has been sprayed on the surface and it should be fixed as quickly as possible on, or also in, the image receptor layer.
- a gloss effect is desired in order to achieve high visual density of reflection and high colour brilliance in reflection copies.
- the image receiving layer comprises, according to the invention, of a moleculae disperse or colloidal disperse substance which is wetted by the coloured liquid and into which the sprayed coloured liquid preferably penetrates to a depth of at least several microns.
- the image receiving layer preferably consists of a protein, polysaccharide, cellulose or cellulose derivative, polyvinyl alcohol or a copolymer of vinyl alcohols.
- Image receiving layers of gelatine, albumen or casein are found to be particularly suitable. Very good results.
- an image receiving layer consisting of a hydrophilic silica gel.
- a gloss effect can advantageously be produced by casting the image receiving layer on a layer of a polyolefine such as polyethylene or a polypropylene.
- An alternative method of producing a glass effect consists of pouring a layer of polyolefin or'polypropylene onthe image receiving layer after the recording has been made.
- a glossy surface on the image receiving layer can also be produced by heating in a glaiing press or by calender-
- the new recording material fulfils the above mentioned requirements very satisfactorily and-in particular the resolution and brilliance can be substantially in,-
- an ink (aqueous solution of a cyan, magenta or yellow dye) which has a viscosity of 1.2 cp at room temperature is sprayed at a pressure of 40 excess atmospheres through a glass capillary which has anopening of 7 pm.
- the scanning velocity i.e. the relative velocity between the recording substrate and the ink-jet, is 5 m/sec. With scan line densities of 10 lines per mm, viewing densities on reflection copies of between 1.0 and 1.3 are obtained in the case of a single colour. Reflection copies of very high quality were obtained under these conditions in the following image receiving layers:
- EXAMPLE 1 A suitably pigmented paper (e.g. the photographic raw paper weighing g/m manufactured by Schoeller, Burg Gretesch) was coated with a gelatine layer with the addition of AGEPON as wetting agent and chrome alum as hardener. The layer had a thickness of 10 pm when dry. The dye penetrated the layer to a depth of about 4 pm, as shown by a thin layer section under the microscope. The depth of penetration of the dye could be adjusted by varying the quantity of hardener added. In the case of the reflection copies, it was seen under the microscope that the track of a single scan line had a width of less than 50 um whereas in uncoated paper this track spread to a width of about ,u.m. When the ink was sprayed under the conditions defined above, viewing densities obtained on reflection copies were 1.1 for a single colour as compared with 0.7 in the case of an uncoated paper surface.
- AGEPON wetting agent
- chrome alum as hardener
- EXAMPLE 2 The pigmented paper was coated with a 5 pm thick layer of silicic acid sol (K100, Wegriken Bayer) Y 3 with the addition of AGEPON as wetting agent. The depth of penetration of the dye solution was approximately equal to the thickness of the layer. The viewing density under reflected light was about l.2 for one colour.
- EXAMPLE 3 Gelatine and barium sulphate (ratio: 1:10) were mixed with water to form a spread coating suspension (temperature -50 to 60C). Hardener (chrome alum) were added to this supsension and in addition white toner and pigment dyes. were added to adjust the suspension to the optimum degree of whiteness. The suspension was then applied to the raw paper to produce a layer which has a thickness of pm when dry. The dye penetrated the layer to a depth of about 6 um. The viewing densities under reflected light were in the region of 1.1.
- EXAMPLE 4 The pigmented paper was first covered with a coating of polyethylene as gloss layer. .Over this, a layer of gelatine was cast as described in Example 1. Brilliant colours were obtained and the viewing density was increased to 1.3.
- Example 5 Before application of the ink-jet image, the layer prepared according to Example 3 was passed over a calendering press in which the rollers were heated to about C. A glazing effect was thereby obtained and the viewingdensities under reflected light were increased to 1.3 as in Example 3.
- a process for information recording comprising producing a fine jet of colored liquid, directing the jet of colored liquid onto a recording medium, modulating the density of the applied jet by an electric field in accordance with the information to be recorded, the improvement comprising the recording medium consisting of a support with an image-receiving layer, wherein the image-receiving layer is a molecular'or colloidal disperse substance, which is wetted by the colored liquid and into which the colored liquid penetrates to a depth in the order of a few microns.
- the image receiving layer comprises a protein, a polysaccharide, cellulose, a cellulose derivative, a polyvinyl alcohol, a copolymer of vinyl alcohols or a hydrophilic silica gel.
- a process according to claim 2 wherein the image receiving layer comprisesgelatin, albumen or casein.
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Paper (AREA)
- Duplication Or Marking (AREA)
Abstract
Ink jet images are produced by spraying the recording substrate with a fine jet of a coloured liquid which is mudulated according to the image. The new type of recording material consists of a transparent or opaque substrate and an image receiving layer is formed by a molecular disperse or colloidal disperse substance. It is important that the image receiving layer should be wetted by the coloured liquid and that, after spraying, the coloured liquid should penetrate the layer to a depth of at least several microns. Ink jet images of high quality can be obtained with such a recording material.
Description
Hoifmann et a1.
[ June 10, 1975 INK JET RECORDING MATERIAL lnventors: Klaus Hofimann; Hans-Dieter Kb'nig; Rudolf Meyer, all of Leverkusen, Germany Agfa-Gevaert Aktiengesellschaft, Leverkusen-Bayerwerk, Germany Filed: July 10, 1973 Appl. No.: 378,014
Assignee:
Foreign Application Priority Data July 15, 1972 Germany 2234823 US. Cl. 346/1; 117/37 LE; l17/93.4 A; 1l7/93.4 NC;117/155 UA; 117/156;
Int. Cl G01d 15/18; GOld 15/20 Field 01 Search 346/1, 75, 135; 117/155 UA, 156, 157, 37 LE, 93.4 NC
References Cited UNITED STATES PATENTS 1/1967 Lewis et a1 346/75 11/1968 Stalter 117/156 3,411,925 11/1968 Lauterbach 117/156 3,415,671 12/1968 Rice 117/156 3,523,818 8/1970 BlumenthaL. 346/135 3,535,202 10/1970 Huang 117/156 3,554,781 l/1971 Matsukawa 117/156 3,655,527 4/1972 Curran et al..... 204/2 3,715,219 2/1973 Kurz et al. 117/93.4 A
Primary Examiner-Michael Sofocleous Attorney, Agent, or F irm--Connolly and Hutz [5 7] ABSTRACT Ink jet images are produced by spraying the recording substrate with a fine jet of a coloured liquid which is mudulated according to the image. The new type of recording material consists of a transparent or opaque substrate and an image receiving layer is formed by a molecular disperse or colloidal disperse substance. It is important that the image receiving layer should be wetted by the coloured liquid and that, after spraying, the coloured liquid should penetrate the layer to a depth of at least several microns. Ink jet images of high quality can be obtained with such a recording material.
8 Claims, No Drawings INK JET RECORDING MATERIAL This invention relates to a recording material for inkjet images which are produced by spraying a fine jet of a coloured liquid which is modulated according to the image. The recording material basically comprises a transparent or opaque substrate and an image receiving layer on this substrate.
A recording technique has recently become known by the term ink-jet, process, in which technique a very fine jet of coloured liquid sprayed from a capillary tube is modulated in density according to theimage by an electric field. The jet of coloured liquid from the capillary impinges on the substrate at a high velocity (approximately 20 m/sec). The ink jet process has been described, for example, in German Auslegeschrift DT-AS No. 1,271,754 and in British Patent Specification No. 1,123,587.
It has now been found that the quality of the image depends to a large extent on the properties of the recording material. The materials used for recording substrates have previously been paper or synthetic resin materials resembling paper in consistency or transparent foils, depending on whether the image to be produced is a transparency or an image viewed by reflected light.
The practice has already been adopted of improving the quality of the images viewed by reflected light by adding white or tinted pigments to the paper. In the case of paper which hasnot been coated, however, it is observed that the droplets of coloured liquid break on the surface of the paper or the ink solution spreads out so that the quality of the image is deleteriously affected as regards its resolution and visual density and the colours are matt and dull. If for the production of colour images, several different dye solutions are sprayed simultaneously or at short intervals onto the substrate, there is the added risk that the solutions will not dry or be absorbed by the surface sufficiently rapidly but will intermingle. In that case, cloudy irregularities are observed, especially in the case of large coloured or black areas. In addition, the colours sprayed on uncoated surfaces are generally not smudge-proof.
The substrates used for the production of transparencies by the ink-jet process are generally transparent foils (e.g. Cellite or polyester) but these foils generally have the disadvantage that their surfaces repel dye solutions, and the ink droplets coalesce to larger drops on the surface. Continuous colour surfaces are therefore not obtained.
It is an object of this invention to find an improved recording material for reflection copies and for transparencies. The individual properties in which improvement is required are:
l. The power of resolution should be increased.
2. The dye solution should not run after it has been sprayed on the surface and it should be fixed as quickly as possible on, or also in, the image receptor layer.
3. The smudge resistance should be increased.
4. A gloss effect is desired in order to achieve high visual density of reflection and high colour brilliance in reflection copies.
5. Uniform optical densities should be achieved in transparencies.
In a recording material which comprises a transparent or opaque substrate and an image receiving layer on this substrate, these conditions are substantially fulfilled if the image receiving layer comprises, according to the invention, of a moleculae disperse or colloidal disperse substance which is wetted by the coloured liquid and into which the sprayed coloured liquid preferably penetrates to a depth of at least several microns.
The image receiving layer preferably consists of a protein, polysaccharide, cellulose or cellulose derivative, polyvinyl alcohol or a copolymer of vinyl alcohols. Image receiving layers of gelatine, albumen or casein are found to be particularly suitable. Very good results.
have also been obtained with an image receiving layer consisting of a hydrophilic silica gel.
For reflection copies, it is advantageous to add dyes and/or white toners to the image receiving layer to increase the degree of whiteness. v
For reflection copies, the recording material may be further improved by=v treating the image receiving layer with substances which produce a directional reflection in the optically visible wavelength range. Such a gloss effect can advantageously be produced by casting the image receiving layer on a layer of a polyolefine such as polyethylene or a polypropylene. An alternative method of producing a glass effect consists of pouring a layer of polyolefin or'polypropylene onthe image receiving layer after the recording has been made. A glossy surface on the image receiving layer can also be produced by heating in a glaiing press or by calender- The new recording material fulfils the above mentioned requirements very satisfactorily and-in particular the resolution and brilliance can be substantially in,-
creased. t
To test the image quality of the recording material, an ink (aqueous solution of a cyan, magenta or yellow dye) which has a viscosity of 1.2 cp at room temperature is sprayed at a pressure of 40 excess atmospheres through a glass capillary which has anopening of 7 pm. The scanning velocity, i.e. the relative velocity between the recording substrate and the ink-jet, is 5 m/sec. With scan line densities of 10 lines per mm, viewing densities on reflection copies of between 1.0 and 1.3 are obtained in the case of a single colour. Reflection copies of very high quality were obtained under these conditions in the following image receiving layers:
EXAMPLE 1 A suitably pigmented paper (e.g. the photographic raw paper weighing g/m manufactured by Schoeller, Burg Gretesch) was coated with a gelatine layer with the addition of AGEPON as wetting agent and chrome alum as hardener. The layer had a thickness of 10 pm when dry. The dye penetrated the layer to a depth of about 4 pm, as shown by a thin layer section under the microscope. The depth of penetration of the dye could be adjusted by varying the quantity of hardener added. In the case of the reflection copies, it was seen under the microscope that the track of a single scan line had a width of less than 50 um whereas in uncoated paper this track spread to a width of about ,u.m. When the ink was sprayed under the conditions defined above, viewing densities obtained on reflection copies were 1.1 for a single colour as compared with 0.7 in the case of an uncoated paper surface.
EXAMPLE 2 The pigmented paper was coated with a 5 pm thick layer of silicic acid sol (K100, Farbenfabriken Bayer) Y 3 with the addition of AGEPON as wetting agent. The depth of penetration of the dye solution was approximately equal to the thickness of the layer. The viewing density under reflected light was about l.2 for one colour.
EXAMPLE 3 Gelatine and barium sulphate (ratio: 1:10) were mixed with water to form a spread coating suspension (temperature -50 to 60C). Hardener (chrome alum) were added to this supsension and in addition white toner and pigment dyes. were added to adjust the suspension to the optimum degree of whiteness. The suspension was then applied to the raw paper to produce a layer which has a thickness of pm when dry. The dye penetrated the layer to a depth of about 6 um. The viewing densities under reflected light were in the region of 1.1.
EXAMPLE 4 The pigmented paper was first covered with a coating of polyethylene as gloss layer. .Over this, a layer of gelatine was cast as described in Example 1. Brilliant colours were obtained and the viewing density was increased to 1.3.
. EXAMPLE 5 Before application of the ink-jet image, the layer prepared according to Example 3 was passed over a calendering press in which the rollers were heated to about C. A glazing effect was thereby obtained and the viewingdensities under reflected light were increased to 1.3 as in Example 3.
What we claim is:
1. In a process for information recording comprising producing a fine jet of colored liquid, directing the jet of colored liquid onto a recording medium, modulating the density of the applied jet by an electric field in accordance with the information to be recorded, the improvement comprising the recording medium consisting of a support with an image-receiving layer, wherein the image-receiving layer is a molecular'or colloidal disperse substance, which is wetted by the colored liquid and into which the colored liquid penetrates to a depth in the order of a few microns.
2. A process according to claim] wherein the image receiving layer comprises a protein, a polysaccharide, cellulose, a cellulose derivative, a polyvinyl alcohol, a copolymer of vinyl alcohols or a hydrophilic silica gel.
3. A process according to claim 2 wherein the image receiving layer comprisesgelatin, albumen or casein.
'4. A process according toclaim 1 wherein a white toner is added to the image receiving layer.
5. A process according to claim 1 wherein the image receiving layer is treated with a substance which produces a directional reflection in the optically visible wave-length range.
6. A process according to claim 5 wherein the image receiving layer is cast on a polyolefine layer.
7. A process according to claim 5 wherein a layer of polyoleflne is cast on the image receiving layer after the recording has been made.
8. A process according to claim 5 wherein a glossy surface is imparted to the image receiving layer by heating in a glazing press or by calendering.
Claims (8)
1. IN A PROCESS FOR INFORMATION RECORDING COMPRISING PRODUCING A FINE JET OF COLORED LIQUID, DIRECTING THE JET OF COLORED LIQUID ONTO A RECORDING MEDIUM, MODULATING THE DENSITY OF THE APPLIED JET BY AN ELECTRIC FIELD IN ACCORDANCE WITH THE INFORMATION TO BE RECORDED, THE IMPROVEMENT COMPRISING THE RECORDING MEDIUM CONSISTING OF A SUPPORT WITH AN IMAGE-RECEIVING LAYER, WHEREIN THE IMAGE-RECEIVING LAYER IS A MOLECULAR OR COLLOIDAL DISPERSE SUBSTANCE, WHICH IS WETTED BY THE COLORED LIQUID AND INTO WHICH THE COLORED LIQUID PENETRATES TO A DEPTH IN THE ORDER OF A FEW MICRONS.
2. A process according to claim 1 wherein the image receiving layer comprises a protein, a polysaccharide, cellulose, a cellulose derivative, a polyvinyl alcohol, a copolymer of vinyl alcohols or a hydrophilic silica gel.
3. A process according to claim 2 wherein the image receiving layer comprises gelatin, albumen or casein.
4. A process according to claim 1 wherein a white toner is added to the image receiving layer.
5. A process according to claim 1 wherein the image receiving layer is treated with a substance which produces a directional reflection in the optically visible wave-length range.
6. A process according to claim 5 wherein the image receiving layer is cast on a polyolefine layer.
7. A process according to claim 5 wherein a layer of polyolefine is cast on the image receiving layer after the recording has been made.
8. A process according to claim 5 wherein a glossy surface is imparted to the image receiving layer by heating in a glazing press or by calendering.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2234823A DE2234823C3 (en) | 1972-07-15 | 1972-07-15 | Recording material for ink-jet images |
Publications (1)
Publication Number | Publication Date |
---|---|
US3889270A true US3889270A (en) | 1975-06-10 |
Family
ID=5850711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US378014A Expired - Lifetime US3889270A (en) | 1972-07-15 | 1973-07-10 | Ink jet recording material |
Country Status (4)
Country | Link |
---|---|
US (1) | US3889270A (en) |
BE (1) | BE802169A (en) |
DE (1) | DE2234823C3 (en) |
GB (1) | GB1426341A (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4269891A (en) * | 1978-06-28 | 1981-05-26 | Fuji Photo Film Co., Ltd. | Recording sheet for ink jet recording |
US4308542A (en) * | 1979-05-14 | 1981-12-29 | Fuji Photo Film Co., Ltd. | Ink jet recording method |
US4503111A (en) * | 1983-05-09 | 1985-03-05 | Tektronix, Inc. | Hydrophobic substrate with coating receptive to inks |
US4649064A (en) * | 1986-03-10 | 1987-03-10 | Eastman Kodak Company | Rapid-drying recording element for liquid ink marking |
US4956223A (en) * | 1984-10-23 | 1990-09-11 | Canon Kabushiki Kaisha | Recording medium and recording method utilizing the same |
US5045864A (en) * | 1990-12-03 | 1991-09-03 | Eastman Kodak Company | Ink-receiving transparent recording elements |
US5084340A (en) * | 1990-12-03 | 1992-01-28 | Eastman Kodak Company | Transparent ink jet receiving elements |
US5084338A (en) * | 1990-12-03 | 1992-01-28 | Eastman Kodak Company | Transparent image-recording elements containing ink-receptive layers |
US5126194A (en) * | 1990-12-03 | 1992-06-30 | Eastman Kodak Company | Ink jet transparency |
US5126195A (en) * | 1990-12-03 | 1992-06-30 | Eastman Kodak Company | Transparent image-recording elements |
US5190805A (en) * | 1991-09-20 | 1993-03-02 | Arkwright Incorporated | Annotatable ink jet recording media |
EP0696516A1 (en) | 1994-08-08 | 1996-02-14 | Arkwright Inc. | A full range ink jet recording medium |
EP0827840A2 (en) * | 1996-09-05 | 1998-03-11 | Sterling Diagnostic Imaging, Inc. | Transparent media for phase change ink printing |
EP0958932A1 (en) * | 1998-05-22 | 1999-11-24 | STERLING DIAGNOSTIC IMAGING, Inc. | Transparent media containing silica for phase change ink printing |
US6099956A (en) * | 1998-07-17 | 2000-08-08 | Agfa Corporation | Recording medium |
US6129785A (en) * | 1997-06-13 | 2000-10-10 | Consolidated Papers, Inc. | Low pH coating composition for ink jet recording medium and method |
US6140406A (en) * | 1996-06-28 | 2000-10-31 | Consolidated Papers, Inc. | High solids interactive coating composition, ink jet recording medium, and method |
US6153288A (en) * | 1997-07-24 | 2000-11-28 | Avery Dennison Corporation | Ink-receptive compositions and coated products |
US6157865A (en) * | 1997-06-13 | 2000-12-05 | Mattel, Inc. | User-created curios made from heat-shrinkable material |
US6180255B1 (en) | 1998-02-05 | 2001-01-30 | Agfa Gevaert N.V. | Structured media for phase change ink printing |
US6203153B1 (en) | 1996-02-28 | 2001-03-20 | Hewlett-Packard Company | Method and apparatus for printing on gelatin coated media |
US6258451B1 (en) | 1998-11-20 | 2001-07-10 | Agfa Gevaert N.V. | Recording medium |
EP1186435A1 (en) * | 2000-09-12 | 2002-03-13 | ZANDERS Feinpapiere AG | Recording material bearing an embedded image |
US6465081B2 (en) | 2000-04-17 | 2002-10-15 | 3M Innovative Properties Company | Image receptor sheet |
US6656545B1 (en) | 1997-06-13 | 2003-12-02 | Stora Enso North America Corporation | Low pH coating composition for ink jet recording medium and method |
US20030232210A1 (en) * | 2002-06-18 | 2003-12-18 | 3M Innovative Properties Company | Ink-receptive foam article |
US6713550B2 (en) | 1996-06-28 | 2004-03-30 | Stora Enso North America Corporation | Method for making a high solids interactive coating composition and ink jet recording medium |
US20040061747A1 (en) * | 2001-05-09 | 2004-04-01 | Keiichi Nakao | Ink jet device, ink jet ink, and method of manufacturing electronic component using the device and the ink |
US6720043B1 (en) | 1999-09-03 | 2004-04-13 | Ferrania, S.P.A. | Receiving sheet for ink-jet printing comprising a gelatin and saccharides combination |
WO2004087435A1 (en) | 2003-04-01 | 2004-10-14 | Creo Il. Ltd. | Method and media for printing aqueous ink jet inks on plastic surfaces |
US6808767B2 (en) | 2001-04-19 | 2004-10-26 | Stora Enso North America Corporation | High gloss ink jet recording media |
US6811253B1 (en) | 1999-08-04 | 2004-11-02 | Ilford Imaging Uk Limited | Ink jet printing method |
US20040265515A1 (en) * | 2003-06-25 | 2004-12-30 | Agfa-Gevaert | Ink-receiving material |
US6902268B1 (en) | 1999-11-18 | 2005-06-07 | Ilford Imaging Switzerland Gmbh | Printing process |
WO2006019079A1 (en) | 2004-08-19 | 2006-02-23 | Q.P. Corporation | Composition for forming ink-receiver layer, method of producing the same and printing base |
US20060051531A1 (en) * | 2004-09-09 | 2006-03-09 | Konica Minolta Holdings, Inc. | Ink-jet recording sheet |
US20070178295A1 (en) * | 2003-04-10 | 2007-08-02 | 3M Innovative Properties Company | Foam security substrate |
EP1849618A1 (en) | 2006-04-27 | 2007-10-31 | FUJIFILM Manufacturing Europe B.V. | Crosslinked polymer sheets and methods for making such |
US7655296B2 (en) | 2003-04-10 | 2010-02-02 | 3M Innovative Properties Company | Ink-receptive foam article |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3024205C2 (en) * | 1980-06-27 | 1990-11-15 | Felix Schoeller jr. GmbH & Co KG, 4500 Osnabrück | Recording paper for ink jet recording processes |
CA1186574A (en) * | 1980-08-20 | 1985-05-07 | Mutsuaki Murakami | Ink jet recording sheet |
US4540628A (en) * | 1980-11-18 | 1985-09-10 | John R. Koza | Hydrophilic sheet and method of making |
JPS588685A (en) * | 1981-07-10 | 1983-01-18 | Jujo Paper Co Ltd | Ink jet recording paper |
JPS59174381A (en) * | 1983-03-24 | 1984-10-02 | Canon Inc | Recording medium |
JPS59204560A (en) * | 1983-05-10 | 1984-11-19 | Canon Inc | Recording apparatus |
JPS59207277A (en) * | 1983-05-12 | 1984-11-24 | Canon Inc | Light-transmitting recording material |
US4617580A (en) * | 1983-08-26 | 1986-10-14 | Canon Kabushiki Kaisha | Apparatus for recording on different types of mediums |
JPS60236794A (en) * | 1984-05-10 | 1985-11-25 | Matsushita Electric Ind Co Ltd | Image-receiving material for sublimation-type thermal recording |
GB2175516A (en) * | 1985-04-16 | 1986-12-03 | Canon Kk | Recording medium |
DE4017246A1 (en) * | 1990-05-29 | 1991-12-05 | Agfa Gevaert Ag | ACCEPTOR ELEMENT FOR THERMAL SUBLIMATION PRINTING PROCESS |
DE4101441A1 (en) * | 1991-01-17 | 1992-07-23 | Francotyp Postalia Gmbh | Producing document quality prints - using water-soluble ink, e.g. in franking machine, and coating prints with lacquer immediately after printing |
DE4135388A1 (en) * | 1991-10-26 | 1993-04-29 | Schoeller Felix Jun Papier | RECORD MATERIAL FOR INK JET PROCEDURE |
DE9303350U1 (en) * | 1993-03-08 | 1993-06-24 | Steinbeis Temming Papier GmbH & Co, 2208 Glückstadt | Wood-containing recording paper for inkjet recording processes |
ATE367273T1 (en) | 2002-12-04 | 2007-08-15 | Fujifilm Mfg Europe Bv | INKJET RECORDING MATERIAL |
WO2005032834A1 (en) | 2003-10-03 | 2005-04-14 | Fuji Photo Film B.V. | Recording medium |
WO2005032836A1 (en) | 2003-10-03 | 2005-04-14 | Fuji Photo Film B.V. | Recording medium |
WO2005032833A1 (en) | 2003-10-03 | 2005-04-14 | Fuji Photo Film B.V. | Recording medium |
EP1675727B1 (en) | 2003-10-03 | 2007-07-18 | FUJIFILM Manufacturing Europe B.V. | Recording medium |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3298030A (en) * | 1965-07-12 | 1967-01-10 | Clevite Corp | Electrically operated character printer |
US3409453A (en) * | 1966-10-31 | 1968-11-05 | Miles Lab | Process for production of a coating composition comprising dialdehyde polysaccharideand substituted polysaccharides |
US3411925A (en) * | 1966-03-24 | 1968-11-19 | Kimberly Clark Co | Oxidized starch-protein composition and methods for producing and using the same |
US3415671A (en) * | 1964-10-12 | 1968-12-10 | Lowe Paper Co | Process and apparatus for producing high gloss coated paper |
US3523818A (en) * | 1967-12-11 | 1970-08-11 | Clevite Corp | Recording instrument resinous film |
US3535202A (en) * | 1968-02-16 | 1970-10-20 | Westvaco Corp | Process of inhibiting discoloration of paper and paperboard by cross-linking carbohydrates with melamine or urea formaldehyde resins |
US3554781A (en) * | 1967-01-24 | 1971-01-12 | Fuji Photo Film Co Ltd | Method of producing pressure-sensitive recording papers |
US3655527A (en) * | 1970-09-14 | 1972-04-11 | Bell Telephone Labor Inc | Electrolytic printing using polyvinyl alcohol |
US3715219A (en) * | 1969-09-23 | 1973-02-06 | Teletype Corp | Electrostatically improvement in electo static printing |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2776912A (en) * | 1952-04-30 | 1957-01-08 | Hercules Powder Co Ltd | Process of coating paper with a gellable water-soluble cellulose derivative and pigment and gelling said coating |
NL224801A (en) * | 1958-02-11 | |||
US3084131A (en) * | 1958-06-06 | 1963-04-02 | Monsanto Chemicals | Aqueous coating compositions containing a water soluble acrylamide polymer having colloidal silica sol dispersed therein and method of coating therewith |
DE1546439A1 (en) * | 1964-10-28 | 1970-07-02 | Renker Belipa Gmbh | Process for improving papers |
US3357846A (en) * | 1965-01-25 | 1967-12-12 | Allied Paper Corp | Glyoxal-polyhydroxy binderpigmented coating |
-
1972
- 1972-07-15 DE DE2234823A patent/DE2234823C3/en not_active Expired
-
1973
- 1973-07-10 US US378014A patent/US3889270A/en not_active Expired - Lifetime
- 1973-07-11 BE BE1005223A patent/BE802169A/en not_active IP Right Cessation
- 1973-07-13 GB GB3343673A patent/GB1426341A/en not_active Expired
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415671A (en) * | 1964-10-12 | 1968-12-10 | Lowe Paper Co | Process and apparatus for producing high gloss coated paper |
US3298030A (en) * | 1965-07-12 | 1967-01-10 | Clevite Corp | Electrically operated character printer |
US3411925A (en) * | 1966-03-24 | 1968-11-19 | Kimberly Clark Co | Oxidized starch-protein composition and methods for producing and using the same |
US3409453A (en) * | 1966-10-31 | 1968-11-05 | Miles Lab | Process for production of a coating composition comprising dialdehyde polysaccharideand substituted polysaccharides |
US3554781A (en) * | 1967-01-24 | 1971-01-12 | Fuji Photo Film Co Ltd | Method of producing pressure-sensitive recording papers |
US3523818A (en) * | 1967-12-11 | 1970-08-11 | Clevite Corp | Recording instrument resinous film |
US3535202A (en) * | 1968-02-16 | 1970-10-20 | Westvaco Corp | Process of inhibiting discoloration of paper and paperboard by cross-linking carbohydrates with melamine or urea formaldehyde resins |
US3715219A (en) * | 1969-09-23 | 1973-02-06 | Teletype Corp | Electrostatically improvement in electo static printing |
US3655527A (en) * | 1970-09-14 | 1972-04-11 | Bell Telephone Labor Inc | Electrolytic printing using polyvinyl alcohol |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4269891A (en) * | 1978-06-28 | 1981-05-26 | Fuji Photo Film Co., Ltd. | Recording sheet for ink jet recording |
US4308542A (en) * | 1979-05-14 | 1981-12-29 | Fuji Photo Film Co., Ltd. | Ink jet recording method |
US4503111A (en) * | 1983-05-09 | 1985-03-05 | Tektronix, Inc. | Hydrophobic substrate with coating receptive to inks |
US4956223A (en) * | 1984-10-23 | 1990-09-11 | Canon Kabushiki Kaisha | Recording medium and recording method utilizing the same |
US4649064A (en) * | 1986-03-10 | 1987-03-10 | Eastman Kodak Company | Rapid-drying recording element for liquid ink marking |
WO1987005265A1 (en) * | 1986-03-10 | 1987-09-11 | Eastman Kodak Company | Rapid-drying recording element for liquid ink marking |
US5045864A (en) * | 1990-12-03 | 1991-09-03 | Eastman Kodak Company | Ink-receiving transparent recording elements |
US5084340A (en) * | 1990-12-03 | 1992-01-28 | Eastman Kodak Company | Transparent ink jet receiving elements |
US5084338A (en) * | 1990-12-03 | 1992-01-28 | Eastman Kodak Company | Transparent image-recording elements containing ink-receptive layers |
US5126194A (en) * | 1990-12-03 | 1992-06-30 | Eastman Kodak Company | Ink jet transparency |
US5126195A (en) * | 1990-12-03 | 1992-06-30 | Eastman Kodak Company | Transparent image-recording elements |
US5190805A (en) * | 1991-09-20 | 1993-03-02 | Arkwright Incorporated | Annotatable ink jet recording media |
US5888635A (en) * | 1994-08-08 | 1999-03-30 | Arkwright Incorporated | Full range ink jet recording medium |
EP0696516A1 (en) | 1994-08-08 | 1996-02-14 | Arkwright Inc. | A full range ink jet recording medium |
US6261669B1 (en) | 1994-08-08 | 2001-07-17 | Arkwright Incorporated | Full range ink jet recording medium |
US6203153B1 (en) | 1996-02-28 | 2001-03-20 | Hewlett-Packard Company | Method and apparatus for printing on gelatin coated media |
US6140406A (en) * | 1996-06-28 | 2000-10-31 | Consolidated Papers, Inc. | High solids interactive coating composition, ink jet recording medium, and method |
US6713550B2 (en) | 1996-06-28 | 2004-03-30 | Stora Enso North America Corporation | Method for making a high solids interactive coating composition and ink jet recording medium |
US6309709B1 (en) | 1996-09-05 | 2001-10-30 | Agfa Gevaert | Transparent media for phase change ink printing |
EP0827840A3 (en) * | 1996-09-05 | 1998-08-19 | Sterling Diagnostic Imaging, Inc. | Transparent media for phase change ink printing |
US6086700A (en) * | 1996-09-05 | 2000-07-11 | Agfa-Gevaert N.V. | Transparent media for phase change ink printing |
US5756226A (en) * | 1996-09-05 | 1998-05-26 | Sterling Diagnostic Imaging, Inc. | Transparent media for phase change ink printing |
EP0827840A2 (en) * | 1996-09-05 | 1998-03-11 | Sterling Diagnostic Imaging, Inc. | Transparent media for phase change ink printing |
US6129785A (en) * | 1997-06-13 | 2000-10-10 | Consolidated Papers, Inc. | Low pH coating composition for ink jet recording medium and method |
US6656545B1 (en) | 1997-06-13 | 2003-12-02 | Stora Enso North America Corporation | Low pH coating composition for ink jet recording medium and method |
US6157865A (en) * | 1997-06-13 | 2000-12-05 | Mattel, Inc. | User-created curios made from heat-shrinkable material |
US6153288A (en) * | 1997-07-24 | 2000-11-28 | Avery Dennison Corporation | Ink-receptive compositions and coated products |
US6346333B1 (en) | 1998-02-05 | 2002-02-12 | Jose E. Valentini | Structured media for phase change ink printing |
US6180255B1 (en) | 1998-02-05 | 2001-01-30 | Agfa Gevaert N.V. | Structured media for phase change ink printing |
EP0958932A1 (en) * | 1998-05-22 | 1999-11-24 | STERLING DIAGNOSTIC IMAGING, Inc. | Transparent media containing silica for phase change ink printing |
US6099956A (en) * | 1998-07-17 | 2000-08-08 | Agfa Corporation | Recording medium |
US6258451B1 (en) | 1998-11-20 | 2001-07-10 | Agfa Gevaert N.V. | Recording medium |
US6811253B1 (en) | 1999-08-04 | 2004-11-02 | Ilford Imaging Uk Limited | Ink jet printing method |
US6720043B1 (en) | 1999-09-03 | 2004-04-13 | Ferrania, S.P.A. | Receiving sheet for ink-jet printing comprising a gelatin and saccharides combination |
US20050196561A1 (en) * | 1999-11-18 | 2005-09-08 | Ilford Imaging Uk Limited | Printing process |
US6902268B1 (en) | 1999-11-18 | 2005-06-07 | Ilford Imaging Switzerland Gmbh | Printing process |
US6465081B2 (en) | 2000-04-17 | 2002-10-15 | 3M Innovative Properties Company | Image receptor sheet |
EP1186435A1 (en) * | 2000-09-12 | 2002-03-13 | ZANDERS Feinpapiere AG | Recording material bearing an embedded image |
WO2002022373A1 (en) * | 2000-09-12 | 2002-03-21 | Zanders Feinpapiere Ag | Recording material bearing an embedded image |
US6869658B2 (en) | 2000-09-12 | 2005-03-22 | Zanders Feinpapier Ag | Recording material bearing an embedded image |
US6808767B2 (en) | 2001-04-19 | 2004-10-26 | Stora Enso North America Corporation | High gloss ink jet recording media |
US7097287B2 (en) | 2001-05-09 | 2006-08-29 | Matsushita Electric Industrial Co., Ltd. | Ink jet device, ink jet ink, and method of manufacturing electronic component using the device and the ink |
US20040061747A1 (en) * | 2001-05-09 | 2004-04-01 | Keiichi Nakao | Ink jet device, ink jet ink, and method of manufacturing electronic component using the device and the ink |
US20030232210A1 (en) * | 2002-06-18 | 2003-12-18 | 3M Innovative Properties Company | Ink-receptive foam article |
US20050104365A1 (en) * | 2002-06-18 | 2005-05-19 | Haas Christopher K. | Foam security substrate |
US20060203062A1 (en) * | 2003-04-01 | 2006-09-14 | Murray Figov | Method and media for printing aqueous ink jet inks on plastic surfaces |
WO2004087435A1 (en) | 2003-04-01 | 2004-10-14 | Creo Il. Ltd. | Method and media for printing aqueous ink jet inks on plastic surfaces |
US7370956B2 (en) | 2003-04-01 | 2008-05-13 | Kodak Il Ltd. | Method and media for printing aqueous ink jet inks on plastic surfaces |
US7655296B2 (en) | 2003-04-10 | 2010-02-02 | 3M Innovative Properties Company | Ink-receptive foam article |
US7820282B2 (en) | 2003-04-10 | 2010-10-26 | 3M Innovative Properties Company | Foam security substrate |
US20070178295A1 (en) * | 2003-04-10 | 2007-08-02 | 3M Innovative Properties Company | Foam security substrate |
US20040265515A1 (en) * | 2003-06-25 | 2004-12-30 | Agfa-Gevaert | Ink-receiving material |
WO2006019079A1 (en) | 2004-08-19 | 2006-02-23 | Q.P. Corporation | Composition for forming ink-receiver layer, method of producing the same and printing base |
EP1800884A1 (en) * | 2004-08-19 | 2007-06-27 | Q.P. Corporation | Composition for forming ink-receiver layer, method of producing the same and printing base |
US7671116B2 (en) | 2004-08-19 | 2010-03-02 | Q.P. Corporation | Composition for forming ink-receiver layer, method of producing the same, and printing base |
US20080003375A1 (en) * | 2004-08-19 | 2008-01-03 | Q.P. Corporation | Composition for Forming Ink-Receiver Layer, Method of Producing the Same, and Printing Base |
EP1800884A4 (en) * | 2004-08-19 | 2008-08-27 | Q P Corp | Composition for forming ink-receiver layer, method of producing the same and printing base |
US20060051531A1 (en) * | 2004-09-09 | 2006-03-09 | Konica Minolta Holdings, Inc. | Ink-jet recording sheet |
EP1634721A1 (en) | 2004-09-09 | 2006-03-15 | Konica Minolta Holdings, Inc. | Ink-jet recording sheet |
EP1849618A1 (en) | 2006-04-27 | 2007-10-31 | FUJIFILM Manufacturing Europe B.V. | Crosslinked polymer sheets and methods for making such |
Also Published As
Publication number | Publication date |
---|---|
DE2234823C3 (en) | 1984-06-20 |
DE2234823B2 (en) | 1980-01-31 |
GB1426341A (en) | 1976-02-25 |
DE2234823A1 (en) | 1974-01-24 |
BE802169A (en) | 1974-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3889270A (en) | Ink jet recording material | |
JP2693278B2 (en) | Recording material with glossy surface for inkjet recording method | |
US4592954A (en) | Ink jet transparencies with coating compositions thereover | |
US4503111A (en) | Hydrophobic substrate with coating receptive to inks | |
US4664952A (en) | Recording medium and recording method utilizing the same | |
US7341768B2 (en) | Transfer paper for printing with an inkjet printer | |
US5966150A (en) | Method to improve solid ink output resolution | |
US4865914A (en) | Transparency and paper coatings | |
JPH0530190B2 (en) | ||
US4567114A (en) | Thermal dye-transfer type recording sheet | |
US4902670A (en) | Heat transfer sheet | |
US4733247A (en) | Ink jet recording method in which the projected ink droplets have a Weber number of no more than 500 | |
US3996056A (en) | Diazotype reproduction layer formed from matrix of spheric particle polystyrene pigment and diazotype components | |
US3272629A (en) | Photosensitive diazotype materials | |
JPS58136480A (en) | Inkjet recording sheet | |
JPH05221157A (en) | Heat sensitive coloring matter transfer group | |
JPH05131741A (en) | Recording material for ink jet recording method | |
DE69027102T2 (en) | Substrate for a heat-sensitive recording paper | |
JPS58136481A (en) | Printing sheet | |
JP3210097B2 (en) | Recording material for ink jet method and coating material for manufacturing ink receiving layer | |
CN105102236A (en) | Thermal image receiver elements prepared using aqueous formulations | |
US5683475A (en) | Method for fabricating a backlit illumination display film and a translucent film for use therefor | |
KR20040012874A (en) | Thermal mass transfer imaging system | |
US3539376A (en) | Method of making copying paper | |
JPH0534154B2 (en) |