US5828694A - Determination of multipath tracking error - Google Patents
Determination of multipath tracking error Download PDFInfo
- Publication number
- US5828694A US5828694A US08/672,977 US67297796A US5828694A US 5828694 A US5828694 A US 5828694A US 67297796 A US67297796 A US 67297796A US 5828694 A US5828694 A US 5828694A
- Authority
- US
- United States
- Prior art keywords
- signal
- value
- time shift
- tracking error
- estimating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005314 correlation function Methods 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 33
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 238000001228 spectrum Methods 0.000 abstract description 12
- 230000000694 effects Effects 0.000 description 14
- 238000013459 approach Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000006735 deficit Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7075—Synchronisation aspects with code phase acquisition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/22—Multipath-related issues
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7085—Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
Definitions
- This invention relates to estimation of error in time of arrival of a composite, digital spread spectrum signal that contains multipath signals.
- Multipath is the term used to define the secondary signals that are locally induced reflections of a primary signal that enter the receiver in question a fraction of a second later than the direct path signal, and because of the relatively short delay between the original signal and the secondary signal, induce a type of destructive interference that results in some type of impairment to the desired signal.
- analog FM band automobile receivers the effects of multipath create an annoying flutter that causes a loss of intelligibility.
- the impairment In television signals, the impairment is called a "ghost" image.
- a similar impairment occurs in other forms of analog communication.
- multipath basically adds noise to the desired signal, resulting in either outright errors or, at least, much noisier data.
- the effects of multipath are generally found in the correlators used to achieve signal timing synchronization.
- GPS or GLONASS receivers which seek to determine location based on triangulation of range distances determined from time delay measurements made from an orbiting constellation of satellites
- the effect of multipath is to induce comparatively large instantaneous errors in the time of arrival measurements which translate into large errors in the indicated positions. Removal of these errors is the subject of most of the work done by previous workers in this field. Previous researchers have sought to deal with the effects of multipath by attempting to estimate the magnitude of the error introduced, and to subtract this error or to otherwise compensate for its effects.
- a GPS signal contains a 50 bit/second navigation message and a unique spreading code (C/A) of length 1.023 kilobits, which is transmitted at a frequency of about 1.023 Mbits/sec.
- C/A unique spreading code
- Signal acquisition requires that phase lock first occur with the radio frequency carrier and that the reference or local replica signal be synchronized with the spreading code.
- a local replica of the particular satellite code is synchronized in time with the incoming satellite signal code.
- the navigation message in the 50 bit/second modulation that forms the composite GPS signal can be demodulated.
- This navigation message contains data on the satellite ephemerides and time pulses that indicate when the transmission originated from the satellite.
- the time delay By measuring the difference between the local clock time and the indicated satellite time of transmission, the time delay, and thus the instantaneous distance from GPS receiver to satellite, can be obtained by multiplying this time delay by the speed of light in the ambient medium.
- Signal synchronization is performed using a signal correlator.
- the correlator constantly compares the incoming signal s(t) with a local replica of the desired signal; a microprocessor adjusts a time shift ⁇ of the local replica signal until satisfactory agreement is obtained. Because the incoming signal and the local replica signal are substantially identical, a measure of the degree of agreement of these two signals is often referred to as a correlation function.
- a variety of correlation functions AC( ⁇ ) are shown in various texts. According to one approach, a measured correlation function AC( ⁇ ) is formed according to the prescription ##EQU1## depending upon whether integration or summation of sampled values over a suitable contribution time interval is used to compute the measured correlation function.
- ⁇ is a time shift variable used to study the degree of correlation between the incoming signal and the local replica signal
- the length T of the contribution time interval used to compute the measured correlation function AC( ⁇ ) in Eq. (1A) or (1B) is often chosen to be N ⁇ t chip , where N is a large positive number and ⁇ t chip is the length of the minimum time interval over which a digital signal can remain constant, referred to as the bit time interval or chip width herein.
- a second correlator measures a second equivalent correlation function when the local replica signal is shifted to a "late" time t L .
- a correlation difference function is formed from the early and late correlation functions and analyzed. The invention disclosed herein does not require use of a correlation difference function.
- Superposition of an equivalent correlation function for the multipath signal (reduced in magnitude and delayed in time) onto the measured correlation function AC( ⁇ ) for the desired satellite code signal is a useful model for analyzing the effects of presence of multipath signals, as noted in the Fenton et al. patent and in the Lennen patents, op. cit. Superposition of any additional signal onto the desired local replica signal that is part of the incoming signal, during the time period when signal correlation is computed, will distort the desired correlation function AC( ⁇ ;direct) and produce an altered correlation function AC( ⁇ ;composite) for the composite signal (direct plus multipath).
- FIG. 1A A correlation function for an uncorrupted or "pure" direct signal (broken line curve) plus a representative, attenuated and time delayed, multipath signal with positive relative polarity, compared to the direct signal, is shown in FIG. 1A.
- a multipath limitation method such as described in the Lennen patents, op. cit., operates the early-minus-late correlation tracking loop with a shorter delay between the early signal and late signal correlators than previous methods usually employed, as small as 0.01 ⁇ t chip -0.15 ⁇ t chip . This limitation method reduces the effects of the presence of multipath substantially.
- the invention includes several embodiments for estimating the multipath tracking error, using measurement of the value and the slope of the measured correlation function at one or two values of the time shift variable ⁇ .
- FIGS. 1A and 1B illustrate the effects on a correlation function of presence in an incoming signal of a multipath signal with relative positive polarity and relative negative polarity, respectively.
- FIG. 2 illustrates a correlation function formed from a known digital spread spectrum signal with itself.
- FIG. 3 illustrates a correlation function formed from an incoming signal with a known digital spread spectrum signal.
- the receiver or an associated computer contains the digital pattern for a time shifted version S d (t- ⁇ ) of the direct signal, where ⁇ is an arbitrary time shift value.
- the measured correlation function AC( ⁇ ) may appear as in FIG. 1A or as in FIG. 1B, if the (dominant) multipath signal has positive relative polarity or negative relative polarity, respectively.
- the correlation function in FIG. 1A is examined here.
- the analysis of FIG. 1B is analogous and yields the same analytical results.
- a "pristine" or reference correlation signal AC( ⁇ ;0) would be measured, as shown in FIG. 2.
- b is a known slope value for the reference function.
- the error ⁇ t P may be positive, negative of zero.
- ⁇ ' is an intermediate value of the time shift variable that is "nearer" to the peak value in the sense that AC( ⁇ 1) ⁇ AC( ⁇ ') and AC( ⁇ 2) ⁇ AC( ⁇ ').
- ⁇ ' is an intermediate value of the time shift variable that is "nearer” to the peak value in the sense that AC( ⁇ 1) ⁇ AC( ⁇ ') and AC( ⁇ 2) ⁇ AC( ⁇ ').
- a multipath signal arrives after the direct signal that acts as a source of the multipath signal so that the late region of the measured correlation function AC( ⁇ ) ( ⁇ > ⁇ ') is likely to be distorted more than the early region ( ⁇ ') of this function.
- the reference correlation function AC( ⁇ ;0) shown in FIG. 2 can be represented for a selected range of time shift values ⁇ in the early region as
- b is the "true” or known slope value of the early region of the reference correlation function AC( ⁇ ;0) from Eqs. (3A) or (3B), but the value a, and thus the initial point value t 0 ,E, is not yet known.
- the measured correlation function, for a range of values of the time shift variable ⁇ in the early region, written AC( ⁇ ;E), is approximated by a selected function
- the function f( ⁇ ;E) is preferably, but not necessarily, monotonically increasing for ⁇ in this range.
- a time shift value ⁇ t f ,E for which
- the approximating function f( ⁇ ;E) is chosen to be
- the approximating function is chosen to be
- the approximation function f( ⁇ ;E) can be chosen to be any other function that offers a suitable approximation for the measured correlation function AC( ⁇ ) over a selected range in the early region ⁇ '.
- the slope value b is known and fixed by the nature of the reference correlation function AC( ⁇ ;0) for the early region.
- the time shift value ⁇ ' may be chosen so that the absolute value of the slope difference
- b-(df/d ⁇ ).sub. ⁇ ⁇ '
- the measured correlation function AC( ⁇ ) for the early region, AC( ⁇ ;E) and the measured correlation function for the late region, AC(t;L), are approximated by the respective functions
- Eq. (5) is used to determine the initial point for the reference correlation function AC( ⁇ ;0).
- the early and late regions of the measured correlation function AC( ⁇ ) are approximated by the respective functions
- the magnitude of the tracking error is estimated by the relation
- the tracking error ⁇ t P can have either sign. Selection of the plus sign or of the minus sign in Eq. (28) requires use of more information. For example, if a dominant multipath signal is present in the incoming composite signal s(t) and has positive (negative) polarity relative to the direct signal S d (t), the quantity ⁇ t P is more likely to be positive (negative) so that the plus sign (minus sign) is the better choice in Eq. (28). A dominant multipath signal, if present in the signal s(t), is more likely to have positive relative polarity or negative relative polarity accordingly, as the peak value of the measured correlation function, AC(t P ), satisfies
- condition ⁇ t P ⁇ 0 may be more likely but is not guaranteed.
- the tracking error is estimated by the relation
- estimation of the multipath tracking error ⁇ t P proceeds as in the third, fourth, fifth, sixth or seventh embodiment.
- the analysis is also applicable for a negative measured correlation function, with AC( ⁇ ;0) max replaced by AC( ⁇ ;0) min .
- any of these seven embodiments can be used to estimate the multipath tracking error ⁇ t P .
- one or more of the preceding estimations of this quantity may be discarded because, for the particular measured correlation function AC( ⁇ ), Eq. (32) is not satisfied.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
ΔT={y1-y2+(d/2)(a1+a2)}/(a1-a2). (2)
AC(τ;0)=a+bτ(t.sub.0,E <τ<t.sub.0,P) (4)
τ=t.sub.0,E =-a/b. (5)
Δt.sub.P =Δt.sub.E =t.sub.E -t.sub.0,E =t.sub.P -Δt.sub.chip +a/b (6)
Δt.sub.P =Δt.sub.E =τ'-Δt.sub.chip +a/b.(7)
AC(τ;E)≈f(τ;E). (8)
f(t.sub.f,E ;E)=0 (9)
Δt.sub.P =t.sub.f,E +a/b, (10)
f(τ;E)=a1+b1τ, (11)
Δt.sub.P =a/b-a1/b1. (12)
f(τ;E)=a1+b1τ+c1τ.sup.2, (13)
Δt.sub.P =a/b-{-b1± (b1).sup.2 -4 a1 c1!.sup.1/2 }/(2c1),(14)
a1+b1τ+c1τ.sup.2 =0. (15)
|b-(df/dτ).sub.τ=τ' |≦δb.(16)
AC(τ;E)≈f(τ;E) (t.sub.E <τ<τ'), (17A)
AC(τ;L)≈f(τ;L) (τ'<τ<t.sub.L), (17B)
f(t'.sub.P ;E)=f(t'.sub.P ;L), (18)
Δt.sub.P =Δt.sub.E =t'.sub.P -Δt.sub.chip +a/b,(19)
f(τ;E)=a1+b1τ(t.sub.E <τ<τ'), (20A)
f(τ;L)=a2+b2τ(τ'<τ<t.sub.L), (20B)
f(τ;E)=a1+b1τ+c1τ.sup.2, (23)
f(τ;L)=a2+b2τ+c2τ.sup.2, (24)
f(t'.sub.P ;E)=f(t'.sub.P ;L). (25)
t'.sub.P {-(b2-b1)± (b2-b1).sup.2 -4(a2-a1)(c2-c1)!.sup.1/2 }/2(c2-c1)(26)
Δt.sub.P =±|t.sub.P -t'.sub.P |,(28)
AC(t.sub.P)>AC(τ;0).sub.max (29A)
AC(t.sub.P)<AC(τ;0).sub.max, (29A)
Δt.sub.P =t'.sub.P +b/a-Δt.sub.chip, (30)
Δt.sub.P =t'.sub.E -t.sub.0,E =t'.sub.E +a/b, (31)
Δt.sub.P ≧0 (32)
Claims (17)
Δt.sub.P =a/b-(-b1+{(b1).sup.2 -4 a1 c1}.sup.1/2 /2c1
Δt.sub.P =a/b-(-b1-{(b1).sup.2 -4 a1 c1}.sup.1/2 /2c1.
Δt.sub.P ={(b2-b1)± (b2-b1).sup.2 -4(a2-a1)((c2-c1)!.sup.1/2 }/2(c2-c1)+a/b-Δτ.sub.chip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/672,977 US5828694A (en) | 1996-07-01 | 1996-07-01 | Determination of multipath tracking error |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/672,977 US5828694A (en) | 1996-07-01 | 1996-07-01 | Determination of multipath tracking error |
Publications (1)
Publication Number | Publication Date |
---|---|
US5828694A true US5828694A (en) | 1998-10-27 |
Family
ID=24700810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/672,977 Expired - Fee Related US5828694A (en) | 1996-07-01 | 1996-07-01 | Determination of multipath tracking error |
Country Status (1)
Country | Link |
---|---|
US (1) | US5828694A (en) |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6198765B1 (en) * | 1996-04-25 | 2001-03-06 | Sirf Technologies, Inc. | Spread spectrum receiver with multi-path correction |
US6278403B1 (en) | 1999-09-17 | 2001-08-21 | Sirf Technology, Inc. | Autonomous hardwired tracking loop coprocessor for GPS and WAAS receiver |
US6282231B1 (en) | 1999-12-14 | 2001-08-28 | Sirf Technology, Inc. | Strong signal cancellation to enhance processing of weak spread spectrum signal |
US6304216B1 (en) | 1999-03-30 | 2001-10-16 | Conexant Systems, Inc. | Signal detector employing correlation analysis of non-uniform and disjoint sample segments |
US6327471B1 (en) | 1998-02-19 | 2001-12-04 | Conexant Systems, Inc. | Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff |
US6348744B1 (en) | 1998-04-14 | 2002-02-19 | Conexant Systems, Inc. | Integrated power management module |
US20020025828A1 (en) * | 2000-08-24 | 2002-02-28 | Turetzky Gregory Bret | Apparatus for reducing auto-correlation or cross-correlation in weak CDMA signals |
US6389291B1 (en) | 2000-08-14 | 2002-05-14 | Sirf Technology | Multi-mode global positioning system for use with wireless networks |
US6448925B1 (en) | 1999-02-04 | 2002-09-10 | Conexant Systems, Inc. | Jamming detection and blanking for GPS receivers |
US6462708B1 (en) | 2001-04-05 | 2002-10-08 | Sirf Technology, Inc. | GPS-based positioning system for mobile GPS terminals |
US20020173322A1 (en) * | 2001-05-21 | 2002-11-21 | Turetzky Gregory B. | Method for synchronizing a radio network using end user radio terminals |
US6496145B2 (en) | 1999-03-30 | 2002-12-17 | Sirf Technology, Inc. | Signal detector employing coherent integration |
US6519277B2 (en) | 1999-05-25 | 2003-02-11 | Sirf Technology, Inc. | Accelerated selection of a base station in a wireless communication system |
US6526322B1 (en) | 1999-12-16 | 2003-02-25 | Sirf Technology, Inc. | Shared memory architecture in GPS signal processing |
US6531982B1 (en) | 1997-09-30 | 2003-03-11 | Sirf Technology, Inc. | Field unit for use in a GPS system |
US6542823B2 (en) | 2000-08-14 | 2003-04-01 | Sirf Technology, Inc. | Information transfer in a multi-mode global positioning system used with wireless networks |
US20030072356A1 (en) * | 2001-05-18 | 2003-04-17 | Charles Abraham | Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference |
US20030099359A1 (en) * | 2001-11-29 | 2003-05-29 | Yan Hui | Method and apparatus for data scrambling/descrambling |
US6606357B1 (en) | 1999-09-10 | 2003-08-12 | Harris Corporation | Carrier injecting waveform-based modulation scheme for reducing satellite transponder power requirements and earth terminal antenna size |
US6606349B1 (en) | 1999-02-04 | 2003-08-12 | Sirf Technology, Inc. | Spread spectrum receiver performance improvement |
US20030215035A1 (en) * | 2002-05-16 | 2003-11-20 | Messay Amerga | System and method for the detection and compensation of radio signal time of arrival errors |
US20030219066A1 (en) * | 2001-05-18 | 2003-11-27 | Charles Abraham, Serge De La Porte | Method and apparatus for performing signal correlation |
WO2003103179A1 (en) * | 2002-05-31 | 2003-12-11 | Sandbridge Technologies, Inc. | Apparatus and method for code tracking in a communication system |
US6671620B1 (en) | 2000-05-18 | 2003-12-30 | Sirf Technology, Inc. | Method and apparatus for determining global position using almanac information |
US6680703B1 (en) | 2001-02-16 | 2004-01-20 | Sirf Technology, Inc. | Method and apparatus for optimally tuning a circularly polarized patch antenna after installation |
US6693592B2 (en) | 2000-12-22 | 2004-02-17 | The Charles Stark Draper Laboratory, Inc. | Geographical navigation using multipath wireless navigation signals |
US6693953B2 (en) | 1998-09-30 | 2004-02-17 | Skyworks Solutions, Inc. | Adaptive wireless communication receiver |
US6703971B2 (en) | 2001-02-21 | 2004-03-09 | Sirf Technologies, Inc. | Mode determination for mobile GPS terminals |
US6714158B1 (en) | 2000-04-18 | 2004-03-30 | Sirf Technology, Inc. | Method and system for data detection in a global positioning system satellite receiver |
US20040077365A1 (en) * | 2001-05-18 | 2004-04-22 | Global Locate Inc. | Apparatus for computing signal correlation at multiple resolutions |
US20040141549A1 (en) * | 2001-05-18 | 2004-07-22 | Charles Abraham | Method and apparatus for performing signal correlation using historical correlation data |
US6778136B2 (en) | 2001-12-13 | 2004-08-17 | Sirf Technology, Inc. | Fast acquisition of GPS signal |
US6788655B1 (en) | 2000-04-18 | 2004-09-07 | Sirf Technology, Inc. | Personal communications device with ratio counter |
US20040192209A1 (en) * | 2001-08-02 | 2004-09-30 | Muterspaugh Max Ward | Apparatus and method for detecting ripples caused by multipath propagation and controlling receiving antenna and tuner |
US6917644B2 (en) * | 1996-04-25 | 2005-07-12 | Sirf Technology, Inc. | Spread spectrum receiver with multi-path correction |
US20050175038A1 (en) * | 2004-01-12 | 2005-08-11 | John Carlson | Method and apparatus for synchronizing wireless location servers |
US6931055B1 (en) | 2000-04-18 | 2005-08-16 | Sirf Technology, Inc. | Signal detector employing a doppler phase correction system |
US6931233B1 (en) | 2000-08-31 | 2005-08-16 | Sirf Technology, Inc. | GPS RF front end IC with programmable frequency synthesizer for use in wireless phones |
US6952440B1 (en) | 2000-04-18 | 2005-10-04 | Sirf Technology, Inc. | Signal detector employing a Doppler phase correction system |
US7047023B1 (en) | 2000-12-01 | 2006-05-16 | Sirf Technology, Inc. | GPS RF front end IC with frequency plan for improved integrability |
US7076256B1 (en) | 2001-04-16 | 2006-07-11 | Sirf Technology, Inc. | Method and apparatus for transmitting position data using control channels in wireless networks |
US7092369B2 (en) | 1995-11-17 | 2006-08-15 | Symbol Technologies, Inc. | Communications network with wireless gateways for mobile terminal access |
US20060209935A1 (en) * | 2001-05-18 | 2006-09-21 | Global Locate, Inc. | Method and apparatus for performing signal processing using historical correlation data |
US7113552B1 (en) | 2000-12-21 | 2006-09-26 | Sirf Technology, Inc. | Phase sampling techniques using amplitude bits for digital receivers |
US7236883B2 (en) | 2000-08-14 | 2007-06-26 | Sirf Technology, Inc. | Aiding in a satellite positioning system |
US7365680B2 (en) | 2004-02-10 | 2008-04-29 | Sirf Technology, Inc. | Location services system that reduces auto-correlation or cross-correlation in weak signals |
US7369830B2 (en) | 2000-07-27 | 2008-05-06 | Sirf Technology, Inc. | Monolithic GPS RF front end integrated circuit |
US20090040103A1 (en) * | 2003-09-02 | 2009-02-12 | Mangesh Chansarkar | Control and features for satellite positioning system receivers |
US20090102711A1 (en) * | 2005-01-19 | 2009-04-23 | Elwell Jr John M | Systems and methods for transparency mapping using multipath signals |
US20090102707A1 (en) * | 2005-01-19 | 2009-04-23 | Elwell Jr John M | Systems and methods for transparency mapping using multipath signals |
US7545854B1 (en) | 1998-09-01 | 2009-06-09 | Sirf Technology, Inc. | Doppler corrected spread spectrum matched filter |
US7616705B1 (en) | 2000-07-27 | 2009-11-10 | Sirf Technology Holdings, Inc. | Monolithic GPS RF front end integrated circuit |
US7668554B2 (en) | 2001-05-21 | 2010-02-23 | Sirf Technology, Inc. | Network system for aided GPS broadcast positioning |
US7671489B1 (en) | 2001-01-26 | 2010-03-02 | Sirf Technology, Inc. | Method and apparatus for selectively maintaining circuit power when higher voltages are present |
US7680178B2 (en) | 2000-08-24 | 2010-03-16 | Sirf Technology, Inc. | Cross-correlation detection and elimination in a receiver |
US7679561B2 (en) | 2005-01-19 | 2010-03-16 | The Charles Stark Draper Laboratory, Inc. | Systems and methods for positioning using multipath signals |
US7711038B1 (en) | 1998-09-01 | 2010-05-04 | Sirf Technology, Inc. | System and method for despreading in a spread spectrum matched filter |
US7747236B1 (en) | 2000-12-11 | 2010-06-29 | Sirf Technology, Inc. | Method and apparatus for estimating local oscillator frequency for GPS receivers |
US7885314B1 (en) | 2000-05-02 | 2011-02-08 | Kenneth Scott Walley | Cancellation system and method for a wireless positioning system |
US7925210B2 (en) | 2001-05-21 | 2011-04-12 | Sirf Technology, Inc. | Synchronizing a radio network with end user radio terminals |
US7929928B2 (en) | 2000-05-18 | 2011-04-19 | Sirf Technology Inc. | Frequency phase correction system |
US20110102258A1 (en) * | 2003-09-02 | 2011-05-05 | Sirf Technology, Inc. | Signal Processing System for Satellite Positioning Signals |
US7949362B2 (en) | 2000-05-18 | 2011-05-24 | Sirf Technology, Inc. | Satellite positioning aided communication system selection |
US7970411B2 (en) | 2000-05-18 | 2011-06-28 | Sirf Technology, Inc. | Aided location communication system |
US7970412B2 (en) | 2000-05-18 | 2011-06-28 | Sirf Technology, Inc. | Aided location communication system |
US8078189B2 (en) | 2000-08-14 | 2011-12-13 | Sirf Technology, Inc. | System and method for providing location based services over a network |
US8116976B2 (en) | 2000-05-18 | 2012-02-14 | Csr Technology Inc. | Satellite based positioning method and system for coarse location positioning |
US8164517B2 (en) | 2003-09-02 | 2012-04-24 | Csr Technology Inc. | Global positioning system receiver timeline management |
US8244271B2 (en) | 2001-05-21 | 2012-08-14 | Csr Technology Inc. | Distributed data collection of satellite data |
US8395542B2 (en) | 2010-08-27 | 2013-03-12 | Trimble Navigation Limited | Systems and methods for computing vertical position |
US8472503B2 (en) | 2003-10-22 | 2013-06-25 | Global Locate, Inc. | Method and apparatus for performing frequency synchronization |
US20150117500A1 (en) * | 2013-10-31 | 2015-04-30 | Thales | Method of detecting interference in a satellite radio-navigation signal by detecting a deformation of the correlation function |
CN110168396A (en) * | 2016-10-28 | 2019-08-23 | 弗劳恩霍夫应用研究促进协会 | Time of Arrival (TOA) measurement |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4007330A (en) * | 1975-08-13 | 1977-02-08 | Bunker Ramo Corporation | Method and apparatus for demodulation of relative phase modulated binary data |
US4168529A (en) * | 1977-03-29 | 1979-09-18 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Code synchronizing apparatus |
US4203070A (en) * | 1978-08-08 | 1980-05-13 | The Charles Stark Draper Laboratory, Inc. | Pseudo-random-number code detection and tracking system |
US4203071A (en) * | 1978-08-08 | 1980-05-13 | The Charles Stark Draper Laboratory, Inc. | Pseudo-random-number-code-detection and tracking system |
US4550414A (en) * | 1983-04-12 | 1985-10-29 | Charles Stark Draper Laboratory, Inc. | Spread spectrum adaptive code tracker |
US4608569A (en) * | 1983-09-09 | 1986-08-26 | General Electric Company | Adaptive signal processor for interference cancellation |
US4660164A (en) * | 1983-12-05 | 1987-04-21 | The United States Of America As Represented By The Secretary Of The Navy | Multiplexed digital correlator |
US4829543A (en) * | 1987-12-04 | 1989-05-09 | Motorola, Inc. | Phase-coherent TDMA quadrature receiver for multipath fading channels |
US4862478A (en) * | 1987-11-06 | 1989-08-29 | Gambatte, Inc. | Spread spectrum communications with resistance to multipath at differential delays both larger and smaller than a chip width |
US5041833A (en) * | 1988-03-28 | 1991-08-20 | Stanford Telecommunications, Inc. | Precise satellite ranging and timing system using pseudo-noise bandwidth synthesis |
US5091918A (en) * | 1988-03-05 | 1992-02-25 | Plessey Overseas Limited | Equalizers |
US5101416A (en) * | 1990-11-28 | 1992-03-31 | Novatel Comunications Ltd. | Multi-channel digital receiver for global positioning system |
US5164959A (en) * | 1991-01-22 | 1992-11-17 | Hughes Aircraft Company | Digital equalization method and apparatus |
US5282228A (en) * | 1991-12-09 | 1994-01-25 | Novatel Communications Ltd. | Timing and automatic frequency control of digital receiver using the cyclic properties of a non-linear operation |
US5343209A (en) * | 1992-05-07 | 1994-08-30 | Sennott James W | Navigation receiver with coupled signal-tracking channels |
US5347536A (en) * | 1993-03-17 | 1994-09-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Multipath noise reduction for spread spectrum signals |
US5390207A (en) * | 1990-11-28 | 1995-02-14 | Novatel Communications Ltd. | Pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correlators |
US5402450A (en) * | 1992-01-22 | 1995-03-28 | Trimble Navigation | Signal timing synchronizer |
US5414729A (en) * | 1992-01-24 | 1995-05-09 | Novatel Communications Ltd. | Pseudorandom noise ranging receiver which compensates for multipath distortion by making use of multiple correlator time delay spacing |
US5420592A (en) * | 1993-04-05 | 1995-05-30 | Radix Technologies, Inc. | Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations |
US5444451A (en) * | 1992-06-29 | 1995-08-22 | Southwest Research Institute | Passive means for single site radio location |
US5481503A (en) * | 1984-12-12 | 1996-01-02 | Martin Marietta Corporation | Apparatus for and method of adaptively processing sonar data |
US5488662A (en) * | 1994-03-10 | 1996-01-30 | Motorola, Inc. | System and method for identifying an arrival time of a communicated signal |
US5493588A (en) * | 1992-01-22 | 1996-02-20 | Trimble Navigation Limited | Multipath compensation for code phase signals |
US5526378A (en) * | 1994-12-14 | 1996-06-11 | Thomson Consumer Electronics, Inc. | Blind multipath correction for digital communication channel |
US5537121A (en) * | 1995-04-28 | 1996-07-16 | Trimble Navigation Limited | Carrier phase multipath reduction technique |
US5671221A (en) * | 1995-06-14 | 1997-09-23 | Sharp Microelectronics Technology, Inc. | Receiving method and apparatus for use in a spread-spectrum communication system |
US5706314A (en) * | 1995-01-04 | 1998-01-06 | Hughes Electronics | Joint maximum likelihood channel and timing error estimation |
-
1996
- 1996-07-01 US US08/672,977 patent/US5828694A/en not_active Expired - Fee Related
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4007330A (en) * | 1975-08-13 | 1977-02-08 | Bunker Ramo Corporation | Method and apparatus for demodulation of relative phase modulated binary data |
US4168529A (en) * | 1977-03-29 | 1979-09-18 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Code synchronizing apparatus |
US4203070A (en) * | 1978-08-08 | 1980-05-13 | The Charles Stark Draper Laboratory, Inc. | Pseudo-random-number code detection and tracking system |
US4203071A (en) * | 1978-08-08 | 1980-05-13 | The Charles Stark Draper Laboratory, Inc. | Pseudo-random-number-code-detection and tracking system |
US4550414A (en) * | 1983-04-12 | 1985-10-29 | Charles Stark Draper Laboratory, Inc. | Spread spectrum adaptive code tracker |
US4608569A (en) * | 1983-09-09 | 1986-08-26 | General Electric Company | Adaptive signal processor for interference cancellation |
US4660164A (en) * | 1983-12-05 | 1987-04-21 | The United States Of America As Represented By The Secretary Of The Navy | Multiplexed digital correlator |
US5481503A (en) * | 1984-12-12 | 1996-01-02 | Martin Marietta Corporation | Apparatus for and method of adaptively processing sonar data |
US4862478A (en) * | 1987-11-06 | 1989-08-29 | Gambatte, Inc. | Spread spectrum communications with resistance to multipath at differential delays both larger and smaller than a chip width |
US4829543A (en) * | 1987-12-04 | 1989-05-09 | Motorola, Inc. | Phase-coherent TDMA quadrature receiver for multipath fading channels |
US5091918A (en) * | 1988-03-05 | 1992-02-25 | Plessey Overseas Limited | Equalizers |
US5041833A (en) * | 1988-03-28 | 1991-08-20 | Stanford Telecommunications, Inc. | Precise satellite ranging and timing system using pseudo-noise bandwidth synthesis |
US5101416A (en) * | 1990-11-28 | 1992-03-31 | Novatel Comunications Ltd. | Multi-channel digital receiver for global positioning system |
US5495499A (en) * | 1990-11-28 | 1996-02-27 | Novatel Communications, Ltd. | Pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correlators |
US5390207A (en) * | 1990-11-28 | 1995-02-14 | Novatel Communications Ltd. | Pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correlators |
US5164959A (en) * | 1991-01-22 | 1992-11-17 | Hughes Aircraft Company | Digital equalization method and apparatus |
US5282228A (en) * | 1991-12-09 | 1994-01-25 | Novatel Communications Ltd. | Timing and automatic frequency control of digital receiver using the cyclic properties of a non-linear operation |
US5402450A (en) * | 1992-01-22 | 1995-03-28 | Trimble Navigation | Signal timing synchronizer |
US5493588A (en) * | 1992-01-22 | 1996-02-20 | Trimble Navigation Limited | Multipath compensation for code phase signals |
US5414729A (en) * | 1992-01-24 | 1995-05-09 | Novatel Communications Ltd. | Pseudorandom noise ranging receiver which compensates for multipath distortion by making use of multiple correlator time delay spacing |
US5343209A (en) * | 1992-05-07 | 1994-08-30 | Sennott James W | Navigation receiver with coupled signal-tracking channels |
US5444451A (en) * | 1992-06-29 | 1995-08-22 | Southwest Research Institute | Passive means for single site radio location |
US5347536A (en) * | 1993-03-17 | 1994-09-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Multipath noise reduction for spread spectrum signals |
US5420592A (en) * | 1993-04-05 | 1995-05-30 | Radix Technologies, Inc. | Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations |
US5488662A (en) * | 1994-03-10 | 1996-01-30 | Motorola, Inc. | System and method for identifying an arrival time of a communicated signal |
US5526378A (en) * | 1994-12-14 | 1996-06-11 | Thomson Consumer Electronics, Inc. | Blind multipath correction for digital communication channel |
US5706314A (en) * | 1995-01-04 | 1998-01-06 | Hughes Electronics | Joint maximum likelihood channel and timing error estimation |
US5537121A (en) * | 1995-04-28 | 1996-07-16 | Trimble Navigation Limited | Carrier phase multipath reduction technique |
US5671221A (en) * | 1995-06-14 | 1997-09-23 | Sharp Microelectronics Technology, Inc. | Receiving method and apparatus for use in a spread-spectrum communication system |
Non-Patent Citations (8)
Title |
---|
Montsolvo and Brown, "A Comparison of Throc Multipath Miltigation Approaches for GPS Receivers", Proceedings of ION GPS-95 (Palm Springs, CA, 12-15 Sep. 1995) pp. 1511-1520. |
Montsolvo and Brown, A Comparison of Throc Multipath Miltigation Approaches for GPS Receivers , Proceedings of ION GPS 95 (Palm Springs, CA, 12 15 Sep. 1995) pp. 1511 1520. * |
R.E.Ziemer and R.L.Peterson, Digital Communications And Spread Spectrum Systems, MacMillan Publ., New York, 1985, pp. 419 447. * |
R.E.Ziemer and R.L.Peterson, Digital Communications And Spread Spectrum Systems, MacMillan Publ., New York, 1985, pp. 419-447. |
Townsend and Fenton, "A Practical Approach to the Reduction of Pseudorange Multipath Errors in a L1 GPS Receivers", Proceedings of ION GPS-94 (Salt Lake City, Utah, 20-23 Sep. 1994), pp. 143-148. |
Townsend and Fenton, A Practical Approach to the Reduction of Pseudorange Multipath Errors in a L1 GPS Receivers , Proceedings of ION GPS 94 (Salt Lake City, Utah, 20 23 Sep. 1994), pp. 143 148. * |
Townsend, B., Fenton, P., Van Dierendonck, K., and van Nee, R., "L1 Carrier Phase Multipath Error Reduction Using MEDLL Technology," in PROC. ION GPS-95, pp. 1539-1544., Sep. 1995. |
Townsend, B., Fenton, P., Van Dierendonck, K., and van Nee, R., L1 Carrier Phase Multipath Error Reduction Using MEDLL Technology, in PROC. ION GPS 95, pp. 1539 1544., Sep. 1995. * |
Cited By (137)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7092369B2 (en) | 1995-11-17 | 2006-08-15 | Symbol Technologies, Inc. | Communications network with wireless gateways for mobile terminal access |
US6917644B2 (en) * | 1996-04-25 | 2005-07-12 | Sirf Technology, Inc. | Spread spectrum receiver with multi-path correction |
US6198765B1 (en) * | 1996-04-25 | 2001-03-06 | Sirf Technologies, Inc. | Spread spectrum receiver with multi-path correction |
US6531982B1 (en) | 1997-09-30 | 2003-03-11 | Sirf Technology, Inc. | Field unit for use in a GPS system |
US6327471B1 (en) | 1998-02-19 | 2001-12-04 | Conexant Systems, Inc. | Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff |
US6348744B1 (en) | 1998-04-14 | 2002-02-19 | Conexant Systems, Inc. | Integrated power management module |
US7545854B1 (en) | 1998-09-01 | 2009-06-09 | Sirf Technology, Inc. | Doppler corrected spread spectrum matched filter |
US7711038B1 (en) | 1998-09-01 | 2010-05-04 | Sirf Technology, Inc. | System and method for despreading in a spread spectrum matched filter |
US7852905B2 (en) | 1998-09-01 | 2010-12-14 | Sirf Technology, Inc. | System and method for despreading in a spread spectrum matched filter |
US6693953B2 (en) | 1998-09-30 | 2004-02-17 | Skyworks Solutions, Inc. | Adaptive wireless communication receiver |
US6448925B1 (en) | 1999-02-04 | 2002-09-10 | Conexant Systems, Inc. | Jamming detection and blanking for GPS receivers |
US6606349B1 (en) | 1999-02-04 | 2003-08-12 | Sirf Technology, Inc. | Spread spectrum receiver performance improvement |
US6636178B2 (en) | 1999-03-30 | 2003-10-21 | Sirf Technology, Inc. | Signal detector employing correlation analysis of non-uniform and disjoint sample segments |
US6304216B1 (en) | 1999-03-30 | 2001-10-16 | Conexant Systems, Inc. | Signal detector employing correlation analysis of non-uniform and disjoint sample segments |
US7002516B2 (en) | 1999-03-30 | 2006-02-21 | Sirf Technology, Inc. | Signal detector employing correlation analysis of non-uniform and disjoint sample segments |
US6577271B1 (en) | 1999-03-30 | 2003-06-10 | Sirf Technology, Inc | Signal detector employing coherent integration |
US6496145B2 (en) | 1999-03-30 | 2002-12-17 | Sirf Technology, Inc. | Signal detector employing coherent integration |
US6519277B2 (en) | 1999-05-25 | 2003-02-11 | Sirf Technology, Inc. | Accelerated selection of a base station in a wireless communication system |
USRE39983E1 (en) | 1999-09-10 | 2008-01-01 | Harris Corporation | Carrier injecting waveform-based modulation scheme for reducing satellite transponder power requirements and earth terminal antenna size |
US6606357B1 (en) | 1999-09-10 | 2003-08-12 | Harris Corporation | Carrier injecting waveform-based modulation scheme for reducing satellite transponder power requirements and earth terminal antenna size |
US6480150B2 (en) | 1999-09-17 | 2002-11-12 | Sirf Technology, Inc. | Autonomous hardwired tracking loop coprocessor for GPS and WAAS receiver |
US6278403B1 (en) | 1999-09-17 | 2001-08-21 | Sirf Technology, Inc. | Autonomous hardwired tracking loop coprocessor for GPS and WAAS receiver |
US6282231B1 (en) | 1999-12-14 | 2001-08-28 | Sirf Technology, Inc. | Strong signal cancellation to enhance processing of weak spread spectrum signal |
US6526322B1 (en) | 1999-12-16 | 2003-02-25 | Sirf Technology, Inc. | Shared memory architecture in GPS signal processing |
US6930634B2 (en) | 1999-12-16 | 2005-08-16 | Sirf Technology, Inc. | Shared memory architecture in GPS signal processing |
US6931055B1 (en) | 2000-04-18 | 2005-08-16 | Sirf Technology, Inc. | Signal detector employing a doppler phase correction system |
US6952440B1 (en) | 2000-04-18 | 2005-10-04 | Sirf Technology, Inc. | Signal detector employing a Doppler phase correction system |
US7269511B2 (en) | 2000-04-18 | 2007-09-11 | Sirf Technology, Inc. | Method and system for data detection in a global positioning system satellite receiver |
US6788655B1 (en) | 2000-04-18 | 2004-09-07 | Sirf Technology, Inc. | Personal communications device with ratio counter |
US6714158B1 (en) | 2000-04-18 | 2004-03-30 | Sirf Technology, Inc. | Method and system for data detection in a global positioning system satellite receiver |
US6961660B2 (en) | 2000-04-18 | 2005-11-01 | Sirf Technology, Inc. | Method and system for data detection in a global positioning system satellite receiver |
US7885314B1 (en) | 2000-05-02 | 2011-02-08 | Kenneth Scott Walley | Cancellation system and method for a wireless positioning system |
US7929928B2 (en) | 2000-05-18 | 2011-04-19 | Sirf Technology Inc. | Frequency phase correction system |
US7970412B2 (en) | 2000-05-18 | 2011-06-28 | Sirf Technology, Inc. | Aided location communication system |
US7970411B2 (en) | 2000-05-18 | 2011-06-28 | Sirf Technology, Inc. | Aided location communication system |
US8260548B2 (en) | 2000-05-18 | 2012-09-04 | Csr Technology Inc. | Satellite based positioning method and system for coarse location positioning |
US6671620B1 (en) | 2000-05-18 | 2003-12-30 | Sirf Technology, Inc. | Method and apparatus for determining global position using almanac information |
US7949362B2 (en) | 2000-05-18 | 2011-05-24 | Sirf Technology, Inc. | Satellite positioning aided communication system selection |
US8116976B2 (en) | 2000-05-18 | 2012-02-14 | Csr Technology Inc. | Satellite based positioning method and system for coarse location positioning |
US7369830B2 (en) | 2000-07-27 | 2008-05-06 | Sirf Technology, Inc. | Monolithic GPS RF front end integrated circuit |
US7616705B1 (en) | 2000-07-27 | 2009-11-10 | Sirf Technology Holdings, Inc. | Monolithic GPS RF front end integrated circuit |
US7577448B2 (en) | 2000-08-14 | 2009-08-18 | Sirf Technology Holdings, Inc. | Multi-mode global positioning system for use with wireless networks |
US6542823B2 (en) | 2000-08-14 | 2003-04-01 | Sirf Technology, Inc. | Information transfer in a multi-mode global positioning system used with wireless networks |
US6519466B2 (en) | 2000-08-14 | 2003-02-11 | Sirf Technology, Inc. | Multi-mode global positioning system for use with wireless networks |
US7236883B2 (en) | 2000-08-14 | 2007-06-26 | Sirf Technology, Inc. | Aiding in a satellite positioning system |
US6389291B1 (en) | 2000-08-14 | 2002-05-14 | Sirf Technology | Multi-mode global positioning system for use with wireless networks |
US8078189B2 (en) | 2000-08-14 | 2011-12-13 | Sirf Technology, Inc. | System and method for providing location based services over a network |
US7197305B2 (en) | 2000-08-24 | 2007-03-27 | Sirf Technology, Inc. | Apparatus for reducing auto-correlation or cross-correlation in weak CDMA signals |
US7106786B2 (en) | 2000-08-24 | 2006-09-12 | Sirf Technology, Inc. | Method for reducing auto-correlation or cross-correlation in weak signals |
US7183972B2 (en) | 2000-08-24 | 2007-02-27 | Sirf Technology, Inc. | Communications system that reduces auto-correlation or cross-correlation in weak signals |
US7680178B2 (en) | 2000-08-24 | 2010-03-16 | Sirf Technology, Inc. | Cross-correlation detection and elimination in a receiver |
US6707423B2 (en) | 2000-08-24 | 2004-03-16 | Sirf Technology, Inc. | Location services system that reduces auto-correlation or cross-correlation in weak signals |
US7719466B2 (en) | 2000-08-24 | 2010-05-18 | Sirf Technology Holdings, Inc. | Communications systems that reduces auto-correlation or cross-correlation in weak signals |
US20040137914A1 (en) * | 2000-08-24 | 2004-07-15 | Turetzky Gregory Bret | Communications system that reduces auto-correlation or cross-correlation in weak signals |
US20020064209A1 (en) * | 2000-08-24 | 2002-05-30 | Turetzky Gregory Bret | Method for reducing auto-correlation or cross-correlation in weak signals |
US6466161B2 (en) | 2000-08-24 | 2002-10-15 | Sirf Technology, Inc. | Location services system that reduces auto-correlation or cross-correlation in weak signals |
US20020025828A1 (en) * | 2000-08-24 | 2002-02-28 | Turetzky Gregory Bret | Apparatus for reducing auto-correlation or cross-correlation in weak CDMA signals |
US6680695B2 (en) | 2000-08-24 | 2004-01-20 | Sirf Technology, Inc. | Communications system that reduces auto-correlation or cross-correlation in weak signals |
US7724807B2 (en) | 2000-08-24 | 2010-05-25 | Sirf Technology | Method for reducing auto-correlation or cross-correlation in weak signals |
US7512385B2 (en) | 2000-08-31 | 2009-03-31 | Sirf Technology, Inc. | GPS RF front end IC with programmable frequency synthesizer for use in wireless phones |
US6931233B1 (en) | 2000-08-31 | 2005-08-16 | Sirf Technology, Inc. | GPS RF front end IC with programmable frequency synthesizer for use in wireless phones |
US7047023B1 (en) | 2000-12-01 | 2006-05-16 | Sirf Technology, Inc. | GPS RF front end IC with frequency plan for improved integrability |
US7933627B2 (en) | 2000-12-01 | 2011-04-26 | Sirf Technology, Inc. | GPS RF front end IC with frequency plan for improved integrability |
US7747236B1 (en) | 2000-12-11 | 2010-06-29 | Sirf Technology, Inc. | Method and apparatus for estimating local oscillator frequency for GPS receivers |
US7113552B1 (en) | 2000-12-21 | 2006-09-26 | Sirf Technology, Inc. | Phase sampling techniques using amplitude bits for digital receivers |
US6693592B2 (en) | 2000-12-22 | 2004-02-17 | The Charles Stark Draper Laboratory, Inc. | Geographical navigation using multipath wireless navigation signals |
US7671489B1 (en) | 2001-01-26 | 2010-03-02 | Sirf Technology, Inc. | Method and apparatus for selectively maintaining circuit power when higher voltages are present |
US6680703B1 (en) | 2001-02-16 | 2004-01-20 | Sirf Technology, Inc. | Method and apparatus for optimally tuning a circularly polarized patch antenna after installation |
US20080180316A1 (en) * | 2001-02-21 | 2008-07-31 | Ashutosh Pande | Mode Determination for Mobile GPS Terminals |
US7969351B2 (en) | 2001-02-21 | 2011-06-28 | Sirf Technology, Inc. | Mode determination for mobile GPS terminals |
US6703971B2 (en) | 2001-02-21 | 2004-03-09 | Sirf Technologies, Inc. | Mode determination for mobile GPS terminals |
US6462708B1 (en) | 2001-04-05 | 2002-10-08 | Sirf Technology, Inc. | GPS-based positioning system for mobile GPS terminals |
US8164516B2 (en) | 2001-04-05 | 2012-04-24 | Csr Technology Inc. | GPS-based positioning system for mobile GPS terminals |
US7009555B2 (en) | 2001-04-05 | 2006-03-07 | Sirf Technology, Inc. | GPS-based positioning system for mobile GPS terminals |
US7986952B2 (en) | 2001-04-16 | 2011-07-26 | Sirf Technology Inc. | Method and apparatus for transmitting position data using control channels in wireless networks |
US7076256B1 (en) | 2001-04-16 | 2006-07-11 | Sirf Technology, Inc. | Method and apparatus for transmitting position data using control channels in wireless networks |
US8170086B2 (en) | 2001-05-18 | 2012-05-01 | Global Locate, Inc. | Method and apparatus for performing signal correlation |
US7995682B2 (en) | 2001-05-18 | 2011-08-09 | Broadcom Corporation | Method and apparatus for performing signal processing using historical correlation data |
US20030219066A1 (en) * | 2001-05-18 | 2003-11-27 | Charles Abraham, Serge De La Porte | Method and apparatus for performing signal correlation |
US20060114970A1 (en) * | 2001-05-18 | 2006-06-01 | Global Locate, Inc. | Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference |
US8411726B2 (en) | 2001-05-18 | 2013-04-02 | Global Locate, Inc. | Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference |
US20060209935A1 (en) * | 2001-05-18 | 2006-09-21 | Global Locate, Inc. | Method and apparatus for performing signal processing using historical correlation data |
US20040077365A1 (en) * | 2001-05-18 | 2004-04-22 | Global Locate Inc. | Apparatus for computing signal correlation at multiple resolutions |
US7567636B2 (en) | 2001-05-18 | 2009-07-28 | Global Locate, Inc. | Method and apparatus for performing signal correlation using historical correlation data |
US7006556B2 (en) | 2001-05-18 | 2006-02-28 | Global Locate, Inc. | Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference |
US7190712B2 (en) | 2001-05-18 | 2007-03-13 | Global Locate, Inc | Method and apparatus for performing signal correlation |
US20040141549A1 (en) * | 2001-05-18 | 2004-07-22 | Charles Abraham | Method and apparatus for performing signal correlation using historical correlation data |
US7184464B2 (en) | 2001-05-18 | 2007-02-27 | Global Locate, Inc | Apparatus for computing signal correlation at multiple resolutions |
US7672358B2 (en) | 2001-05-18 | 2010-03-02 | Broadcom Corporation | Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference |
US20070160121A1 (en) * | 2001-05-18 | 2007-07-12 | Global Locate, Inc. | Method and apparatus for performing signal correlation |
US20030072356A1 (en) * | 2001-05-18 | 2003-04-17 | Charles Abraham | Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference |
US20020173322A1 (en) * | 2001-05-21 | 2002-11-21 | Turetzky Gregory B. | Method for synchronizing a radio network using end user radio terminals |
US7925210B2 (en) | 2001-05-21 | 2011-04-12 | Sirf Technology, Inc. | Synchronizing a radio network with end user radio terminals |
US7668554B2 (en) | 2001-05-21 | 2010-02-23 | Sirf Technology, Inc. | Network system for aided GPS broadcast positioning |
US8244271B2 (en) | 2001-05-21 | 2012-08-14 | Csr Technology Inc. | Distributed data collection of satellite data |
US7877104B2 (en) | 2001-05-21 | 2011-01-25 | Sirf Technology Inc. | Method for synchronizing a radio network using end user radio terminals |
US8437693B2 (en) | 2001-05-21 | 2013-05-07 | Csr Technology Inc. | Synchronizing a radio network with end user radio terminals |
US20040192209A1 (en) * | 2001-08-02 | 2004-09-30 | Muterspaugh Max Ward | Apparatus and method for detecting ripples caused by multipath propagation and controlling receiving antenna and tuner |
US7215939B2 (en) | 2001-08-02 | 2007-05-08 | Thomson Licensing | Apparatus and method for detecting ripples caused by multipath propagation and controlling receiving antenna and tuner |
US20030099359A1 (en) * | 2001-11-29 | 2003-05-29 | Yan Hui | Method and apparatus for data scrambling/descrambling |
US6778136B2 (en) | 2001-12-13 | 2004-08-17 | Sirf Technology, Inc. | Fast acquisition of GPS signal |
US7999733B2 (en) | 2001-12-13 | 2011-08-16 | Sirf Technology Inc. | Fast reacquisition of a GPS signal |
US7095813B2 (en) | 2002-05-16 | 2006-08-22 | Qualcomm Incorporated | System and method for the detection and compensation of radio signal time of arrival errors |
CN100391118C (en) * | 2002-05-16 | 2008-05-28 | 高通股份有限公司 | System and method for the detection and compensation of radio signal time of arrival errors |
WO2003098829A1 (en) * | 2002-05-16 | 2003-11-27 | Qualcomm Incorporated | System and method for the detection and compensation of radio signal time of arrival errors |
AU2003233563B2 (en) * | 2002-05-16 | 2008-05-01 | Qualcomm Incorporated | System and method for the detection and compensation of radio signal time of arrival errors |
US20030215035A1 (en) * | 2002-05-16 | 2003-11-20 | Messay Amerga | System and method for the detection and compensation of radio signal time of arrival errors |
RU2335846C2 (en) * | 2002-05-16 | 2008-10-10 | Квэлкомм Инкорпорейтед | System and method for detection and compensation of radio signal arrival time errors |
US6795452B2 (en) | 2002-05-31 | 2004-09-21 | Sandbridge Technologies, Inc. | Method of tracking time intervals for a communication signal |
KR100949637B1 (en) * | 2002-05-31 | 2010-03-26 | 샌드브리지 테크놀로지스, 인코포레이티드 | Method of tracking time intervals for a communication signal |
WO2003103179A1 (en) * | 2002-05-31 | 2003-12-11 | Sandbridge Technologies, Inc. | Apparatus and method for code tracking in a communication system |
US8164517B2 (en) | 2003-09-02 | 2012-04-24 | Csr Technology Inc. | Global positioning system receiver timeline management |
US8013787B2 (en) | 2003-09-02 | 2011-09-06 | Sirf Technology Inc. | Control and features for satellite positioning system receivers |
US8138972B2 (en) | 2003-09-02 | 2012-03-20 | Csr Technology Inc. | Signal processing system for satellite positioning signals |
US20090040103A1 (en) * | 2003-09-02 | 2009-02-12 | Mangesh Chansarkar | Control and features for satellite positioning system receivers |
US9869770B2 (en) | 2003-09-02 | 2018-01-16 | Qualcomm Incorporated | Control and features for satellite positioning system receivers |
US20110102258A1 (en) * | 2003-09-02 | 2011-05-05 | Sirf Technology, Inc. | Signal Processing System for Satellite Positioning Signals |
US8947300B2 (en) | 2003-09-02 | 2015-02-03 | Csr Technology Inc. | Control and features for satellite positioning system receivers |
US8593345B2 (en) | 2003-09-02 | 2013-11-26 | Csr Technology Inc. | Signal processing system for satellite positioning signals |
US8989236B2 (en) | 2003-10-22 | 2015-03-24 | Global Locate, Inc. | Method and apparatus for performing frequency synchronization |
US8472503B2 (en) | 2003-10-22 | 2013-06-25 | Global Locate, Inc. | Method and apparatus for performing frequency synchronization |
US20050175038A1 (en) * | 2004-01-12 | 2005-08-11 | John Carlson | Method and apparatus for synchronizing wireless location servers |
US7365680B2 (en) | 2004-02-10 | 2008-04-29 | Sirf Technology, Inc. | Location services system that reduces auto-correlation or cross-correlation in weak signals |
US8810450B2 (en) | 2004-09-02 | 2014-08-19 | Csr Technology Inc. | Global positioning system receiver timeline management |
US7973716B2 (en) | 2005-01-19 | 2011-07-05 | The Charles Stark Draper Laboratory, Inc. | Systems and methods for transparency mapping using multipath signals |
US8279119B2 (en) | 2005-01-19 | 2012-10-02 | The Charles Stark Draper Laboratory, Inc. | Systems and methods for transparency mapping using multipath signals |
US20090102707A1 (en) * | 2005-01-19 | 2009-04-23 | Elwell Jr John M | Systems and methods for transparency mapping using multipath signals |
US7679561B2 (en) | 2005-01-19 | 2010-03-16 | The Charles Stark Draper Laboratory, Inc. | Systems and methods for positioning using multipath signals |
US20090102711A1 (en) * | 2005-01-19 | 2009-04-23 | Elwell Jr John M | Systems and methods for transparency mapping using multipath signals |
US8395542B2 (en) | 2010-08-27 | 2013-03-12 | Trimble Navigation Limited | Systems and methods for computing vertical position |
US20150117500A1 (en) * | 2013-10-31 | 2015-04-30 | Thales | Method of detecting interference in a satellite radio-navigation signal by detecting a deformation of the correlation function |
EP2869085A1 (en) * | 2013-10-31 | 2015-05-06 | Thales | Method for detecting interference in a satellite radio-navigation signal by detecting a deformation of the correlation function |
US9166649B2 (en) * | 2013-10-31 | 2015-10-20 | Thales | Method of detecting interference in a satellite radio-navigation signal by detecting a deformation of the correlation function |
FR3012620A1 (en) * | 2013-10-31 | 2015-05-01 | Thales Sa | METHOD FOR DETECTING INTERFERENCE IN A SATELLITE RADIO NAVIGATION SIGNAL BY DETECTING A DEFORMATION OF THE CORRELATION FUNCTION |
CN110168396A (en) * | 2016-10-28 | 2019-08-23 | 弗劳恩霍夫应用研究促进协会 | Time of Arrival (TOA) measurement |
US11187775B2 (en) * | 2016-10-28 | 2021-11-30 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Time of arrival (TOA) measurements |
CN110168396B (en) * | 2016-10-28 | 2023-05-05 | 弗劳恩霍夫应用研究促进协会 | Time of arrival (TOA) measurements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5828694A (en) | Determination of multipath tracking error | |
US6658048B1 (en) | Global positioning system code phase detector with multipath compensation and method for reducing multipath components associated with a received signal | |
US6252863B1 (en) | Multipath compensation for pseudorange signals | |
US5923703A (en) | Variable suppression of multipath signal effects | |
CA2245290C (en) | Telecommunications-assisted satellite positioning system | |
US6661371B2 (en) | Oscillator frequency correction in GPS signal acquisition | |
US6922546B1 (en) | GPS signal acquisition based on frequency-domain and time-domain processing | |
CN100399044C (en) | Method for open loop tracking GPS signals | |
US6281837B1 (en) | Auxiliary system for assisting a wireless terminal in determining its position from signals transmitted from a navigation satellite | |
US5903597A (en) | Suppression on multipath signal effects | |
US8503578B2 (en) | Time delay measurement | |
Sleewaegen et al. | Mitigating short-delay multipath: a promising new technique | |
KR20010098736A (en) | Obtaining pilot phase offset time delay parameter for a wireless terminal of an integrated wireless-global positioning system | |
JP2003533063A (en) | Method and apparatus for determining the position of a mobile terminal | |
EP0925514A1 (en) | Receiver with improved multipath signal rejection | |
US7205935B2 (en) | Method and apparatus for processing signals for ranging applications | |
JP2005538357A (en) | Method and system for calibrating a repeater | |
US20010033627A1 (en) | Method for performing location determination and an electronic device | |
FI109311B (en) | Bit boundary detection method for global positioning system, involves utilizing index of largest element of determination vector formed based on received signal, to indicate bit boundary | |
US6985542B1 (en) | Coherent processing of satellite signals to locate a mobile unit | |
US20050147191A1 (en) | Extended frequency error correction in a wireless communication receiver | |
CA2326292A1 (en) | Method of timing calibration | |
US6128337A (en) | Multipath signal discrimination | |
US8050309B2 (en) | Multipath discriminator module for a navigation system | |
García Molina | GNSS signal processing and spatial diversity exploitation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TRIMBLE NAVIGATION LIMITED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHIPPER, JOHN F.;REEL/FRAME:008072/0147 Effective date: 19960628 |
|
AS | Assignment |
Owner name: ABN AMRO BANK N.V., AS AGENT, ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:TRIMBLE NAVIGATION LIMITED;REEL/FRAME:010996/0643 Effective date: 20000714 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20021027 |