WO2006010290A1 - 2, 2-bipyridine ligand, sensitizing dye and dye sensitized solar cell - Google Patents
2, 2-bipyridine ligand, sensitizing dye and dye sensitized solar cell Download PDFInfo
- Publication number
- WO2006010290A1 WO2006010290A1 PCT/CH2005/000452 CH2005000452W WO2006010290A1 WO 2006010290 A1 WO2006010290 A1 WO 2006010290A1 CH 2005000452 W CH2005000452 W CH 2005000452W WO 2006010290 A1 WO2006010290 A1 WO 2006010290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- formula
- group
- compound
- dye
- Prior art date
Links
- 239000003446 ligand Substances 0.000 title claims abstract description 29
- 230000001235 sensitizing effect Effects 0.000 title claims description 24
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 title claims description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 58
- 239000010410 layer Substances 0.000 claims abstract description 29
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 17
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 17
- 238000004873 anchoring Methods 0.000 claims abstract description 14
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 11
- 229910052762 osmium Inorganic materials 0.000 claims abstract description 7
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 239000002094 self assembled monolayer Substances 0.000 claims abstract description 3
- 239000013545 self-assembled monolayer Substances 0.000 claims abstract description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 30
- 239000003792 electrolyte Substances 0.000 claims description 30
- 125000001424 substituent group Chemical group 0.000 claims description 23
- 150000003839 salts Chemical class 0.000 claims description 21
- -1 4-hexyloxystyryl Chemical group 0.000 claims description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 16
- FXPLCAKVOYHAJA-UHFFFAOYSA-N 2-(4-carboxypyridin-2-yl)pyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1 FXPLCAKVOYHAJA-UHFFFAOYSA-N 0.000 claims description 12
- 239000002356 single layer Substances 0.000 claims description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 8
- 230000007935 neutral effect Effects 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 150000001450 anions Chemical class 0.000 claims description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- 239000003504 photosensitizing agent Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 125000002524 organometallic group Chemical group 0.000 claims description 6
- 230000002165 photosensitisation Effects 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 5
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- 150000001768 cations Chemical class 0.000 claims description 5
- 125000005504 styryl group Chemical group 0.000 claims description 5
- 229910018828 PO3H2 Inorganic materials 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 150000007513 acids Chemical class 0.000 claims description 4
- 125000003342 alkenyl group Chemical group 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- 125000002950 monocyclic group Chemical group 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 125000000304 alkynyl group Chemical group 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 150000002825 nitriles Chemical group 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 125000005599 alkyl carboxylate group Chemical group 0.000 claims description 2
- 125000005600 alkyl phosphonate group Chemical group 0.000 claims description 2
- 125000001518 isoselenocyanato group Chemical group *N=C=[Se] 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 239000003495 polar organic solvent Substances 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- KPBRDNNYYUPHNS-UHFFFAOYSA-N 3-ethoxypropanenitrile;3-methoxypropanenitrile Chemical compound COCCC#N.CCOCCC#N KPBRDNNYYUPHNS-UHFFFAOYSA-N 0.000 claims 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 230000001965 increasing effect Effects 0.000 abstract description 3
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 abstract description 3
- 238000002835 absorbance Methods 0.000 abstract description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 58
- 239000000975 dye Substances 0.000 description 56
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- 239000007787 solid Substances 0.000 description 26
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 19
- 239000000203 mixture Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 12
- WRTMQOHKMFDUKX-UHFFFAOYSA-N triiodide Chemical compound I[I-]I WRTMQOHKMFDUKX-UHFFFAOYSA-N 0.000 description 11
- 238000005160 1H NMR spectroscopy Methods 0.000 description 10
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 8
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical group COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 0 *c1c(*)c(*)nc(-c2nc(*)c(*)c(*)c2*)c1* Chemical compound *c1c(*)c(*)nc(-c2nc(*)c(*)c(*)c2*)c1* 0.000 description 6
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000002791 soaking Methods 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 238000003306 harvesting Methods 0.000 description 5
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- 239000004904 UV filter Substances 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 4
- 239000012943 hotmelt Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- LAXRNWSASWOFOT-UHFFFAOYSA-J (cymene)ruthenium dichloride dimer Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Ru+2].[Ru+2].CC(C)C1=CC=C(C)C=C1.CC(C)C1=CC=C(C)C=C1 LAXRNWSASWOFOT-UHFFFAOYSA-J 0.000 description 3
- FGYADSCZTQOAFK-UHFFFAOYSA-N 1-methylbenzimidazole Chemical compound C1=CC=C2N(C)C=NC2=C1 FGYADSCZTQOAFK-UHFFFAOYSA-N 0.000 description 3
- LALSZYPVVQFXIC-UHFFFAOYSA-N 2-(4-carboxypyridin-2-yl)pyridine-4-carboxylic acid;4-nonyl-2-(4-nonylpyridin-2-yl)pyridine;ruthenium(2+);diisothiocyanate Chemical compound [Ru+2].[N-]=C=S.[N-]=C=S.OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1.CCCCCCCCCC1=CC=NC(C=2N=CC=C(CCCCCCCCC)C=2)=C1 LALSZYPVVQFXIC-UHFFFAOYSA-N 0.000 description 3
- MVDKKZZVTWHVMC-UHFFFAOYSA-N 2-hexadecylpropanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)=O MVDKKZZVTWHVMC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910018830 PO3H Inorganic materials 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 239000012507 Sephadex™ Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 229910052799 carbon Chemical group 0.000 description 3
- 229940125904 compound 1 Drugs 0.000 description 3
- 229940125782 compound 2 Drugs 0.000 description 3
- 229940126214 compound 3 Drugs 0.000 description 3
- 229940125898 compound 5 Drugs 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- ISHFYECQSXFODS-UHFFFAOYSA-M 1,2-dimethyl-3-propylimidazol-1-ium;iodide Chemical compound [I-].CCCN1C=C[N+](C)=C1C ISHFYECQSXFODS-UHFFFAOYSA-M 0.000 description 2
- ANOOTOPTCJRUPK-UHFFFAOYSA-N 1-iodohexane Chemical compound CCCCCCI ANOOTOPTCJRUPK-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- OQVYMXCRDHDTTH-UHFFFAOYSA-N 4-(diethoxyphosphorylmethyl)-2-[4-(diethoxyphosphorylmethyl)pyridin-2-yl]pyridine Chemical compound CCOP(=O)(OCC)CC1=CC=NC(C=2N=CC=C(CP(=O)(OCC)OCC)C=2)=C1 OQVYMXCRDHDTTH-UHFFFAOYSA-N 0.000 description 2
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 2
- HEMHJVSKTPXQMS-DYCDLGHISA-M Sodium hydroxide-d Chemical compound [Na+].[2H][O-] HEMHJVSKTPXQMS-DYCDLGHISA-M 0.000 description 2
- 238000001720 action spectrum Methods 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 125000004424 polypyridyl Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 150000003303 ruthenium Chemical class 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 2
- RUDATBOHQWOJDD-UHFFFAOYSA-N (3beta,5beta,7alpha)-3,7-Dihydroxycholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 RUDATBOHQWOJDD-UHFFFAOYSA-N 0.000 description 1
- PJQIBTFOXWGAEN-UHFFFAOYSA-N 1,2-dimethylbenzimidazole Chemical compound C1=CC=C2N(C)C(C)=NC2=C1 PJQIBTFOXWGAEN-UHFFFAOYSA-N 0.000 description 1
- POSRBSJJCMKQNU-UHFFFAOYSA-N 1-methyl-2-phenylbenzimidazole Chemical compound N=1C2=CC=CC=C2N(C)C=1C1=CC=CC=C1 POSRBSJJCMKQNU-UHFFFAOYSA-N 0.000 description 1
- IVCMUVGRRDWTDK-UHFFFAOYSA-M 1-methyl-3-propylimidazol-1-ium;iodide Chemical compound [I-].CCCN1C=C[N+](C)=C1 IVCMUVGRRDWTDK-UHFFFAOYSA-M 0.000 description 1
- IAQHPZFALQQESM-UHFFFAOYSA-N 1-pentylbicyclo[2.2.2]octane-4-carboxylic acid Chemical compound C1CC2(C(O)=O)CCC1(CCCCC)CC2 IAQHPZFALQQESM-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- VZKSOWFFOHQARA-UHFFFAOYSA-N 4-(chloromethyl)-2-[4-(chloromethyl)pyridin-2-yl]pyridine Chemical compound ClCC1=CC=NC(C=2N=CC=C(CCl)C=2)=C1 VZKSOWFFOHQARA-UHFFFAOYSA-N 0.000 description 1
- NPYGILQVQLESKX-UHFFFAOYSA-N 4-[2-(4-hexoxyphenyl)ethenyl]-2-[4-[2-(4-hexoxyphenyl)ethenyl]pyridin-2-yl]pyridine Chemical compound C1=CC(OCCCCCC)=CC=C1C=CC1=CC=NC(C=2N=CC=C(C=CC=3C=CC(OCCCCCC)=CC=3)C=2)=C1 NPYGILQVQLESKX-UHFFFAOYSA-N 0.000 description 1
- GWXUVWKBVROFDM-UHFFFAOYSA-N 4-hexoxybenzaldehyde Chemical compound CCCCCCOC1=CC=C(C=O)C=C1 GWXUVWKBVROFDM-UHFFFAOYSA-N 0.000 description 1
- NBPGPQJFYXNFKN-UHFFFAOYSA-N 4-methyl-2-(4-methylpyridin-2-yl)pyridine Chemical compound CC1=CC=NC(C=2N=CC=C(C)C=2)=C1 NBPGPQJFYXNFKN-UHFFFAOYSA-N 0.000 description 1
- OHSRAWAUPZWNKY-UHFFFAOYSA-N 4-methyl-2-pyridin-2-ylpyridine Chemical compound CC1=CC=NC(C=2N=CC=CC=2)=C1 OHSRAWAUPZWNKY-UHFFFAOYSA-N 0.000 description 1
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 229910019213 POCl3 Inorganic materials 0.000 description 1
- RFFFKMOABOFIDF-UHFFFAOYSA-N Pentanenitrile Chemical compound CCCCC#N RFFFKMOABOFIDF-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002099 adlayer Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000004303 annulenes Chemical class 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- WPTCSQBWLUUYDV-UHFFFAOYSA-N c(cc1)cc(cc2)c1nc2-c1nc2ccccc2cc1 Chemical compound c(cc1)cc(cc2)c1nc2-c1nc2ccccc2cc1 WPTCSQBWLUUYDV-UHFFFAOYSA-N 0.000 description 1
- GSUKVTZXJFHNEU-UHFFFAOYSA-N c(ccc1n2)cc1ccc2Oc1nc(cccc2)c2cc1 Chemical compound c(ccc1n2)cc1ccc2Oc1nc(cccc2)c2cc1 GSUKVTZXJFHNEU-UHFFFAOYSA-N 0.000 description 1
- JMTMWFZXOIWTLX-UHFFFAOYSA-N c1cc(Oc2ncccc2)ncc1 Chemical compound c1cc(Oc2ncccc2)ncc1 JMTMWFZXOIWTLX-UHFFFAOYSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N c1cnc2c3ncccc3ccc2c1 Chemical compound c1cnc2c3ncccc3ccc2c1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- RUDATBOHQWOJDD-BSWAIDMHSA-N chenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-BSWAIDMHSA-N 0.000 description 1
- 229960001091 chenodeoxycholic acid Drugs 0.000 description 1
- 229940125773 compound 10 Drugs 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- DHCWLIOIJZJFJE-UHFFFAOYSA-L dichlororuthenium Chemical compound Cl[Ru]Cl DHCWLIOIJZJFJE-UHFFFAOYSA-L 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000001663 electronic absorption spectrum Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- FPIQZBQZKBKLEI-UHFFFAOYSA-N ethyl 1-[[2-chloroethyl(nitroso)carbamoyl]amino]cyclohexane-1-carboxylate Chemical compound ClCCN(N=O)C(=O)NC1(C(=O)OCC)CCCCC1 FPIQZBQZKBKLEI-UHFFFAOYSA-N 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- XELZGAJCZANUQH-UHFFFAOYSA-N methyl 1-acetylthieno[3,2-c]pyrazole-5-carboxylate Chemical compound CC(=O)N1N=CC2=C1C=C(C(=O)OC)S2 XELZGAJCZANUQH-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 238000000424 optical density measurement Methods 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000001824 selenocyanato group Chemical group *[Se]C#N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- WMERMRCMCKWWLE-UHFFFAOYSA-N trimethyl-[[2-[4-(trimethylsilylmethyl)pyridin-2-yl]pyridin-4-yl]methyl]silane Chemical compound C[Si](C)(C)CC1=CC=NC(C=2N=CC=C(C[Si](C)(C)C)C=2)=C1 WMERMRCMCKWWLE-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0046—Ruthenium compounds
- C07F15/0053—Ruthenium compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/28—Radicals substituted by singly-bound oxygen or sulphur atoms
- C07D213/30—Oxygen atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/10—Metal complexes of organic compounds not being dyes in uncomplexed form
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/344—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2004—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
- H01G9/2013—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention concerns an organic compound.
- the present invention further concerns a sensitizing dye incorporating said organic compound.
- the present invention concerns a dye-sensitized solar cell.
- Dye-sensitized solar cells, or DSSCs are regenerative photo-electrochemical cells comprising a photoanode, said photoanode comprising at least one semiconductive metal oxide layer on a conductive substrate, sensitized by at least one chromophoric substance, a counter-electrode, and an electrolyte positioned between these electrodes.
- the afore-said semi-conductive metal oxide layer is conveniently made of oxides of transition metals or elements either of the third main group, or of the fourth, fifth and sixth sub-groups of periodic table of elements, the surface of the photoanode in contact with the electrolyte being porous, with a porosity factor of preferably at least 20.
- the "porosity factor” is defined as the ratio of the photo- electrochemically active surface of the photoanode to the surface area of the substrate covered by the layer(s) of semiconductive metal oxide.
- nanocrystalline titanium dioxide was shown to be particularly advantageous.
- nanocrystalline means that the semiconductive metal oxide, in particular TiO 2 , is in polycrystalline form with a granulometry of the order of several nanometers, for example 10 to 50 nanometers.
- a chromophoric substance In this type of cell, a chromophoric substance, often called photosensitizer or photosensitizing dye, forms a substantially monomolecular layer attached to the semiconductive metal oxide layer, in particular the nanocrystalline TiO 2 layer.
- the chromophoric substance may be bound to the metal oxide layer by means of anchoring groups like carboxylate or phosphonate or cyano groups or chelating groups with ⁇ -conducting character like oxymes, dioxymes, hydroxyquinolin.es, salicylates and (-keto-enolates.
- transition metal complexes in particular ruthenium complexes, but also osmium or iron complexes, with heterocyclic ligands like bidentate, tridentate or polydentate polypyridil compounds, have been shown to be efficient photosensitizing dyes.
- Sensitizing dyes and cells of this type are described inter alia in EP 0333641, EP 0525070, EP 0613466 and EP 0758337.
- the mesoporous texture of the TiO 2 film in these cells significantly increases the cross section of light harvesting by surface-anchored charge transfer sensitizers while maintaining a good contact with electrolytes.
- ultrafast electron-injection from a photoexcited dye into the conduction band of an oxide semiconductor, and subsequently dye regeneration and hole transportation to the counter electrode, are responsible for the efficient generation of electricity.
- suitable electrolytes are those including a redox system consisting of a mixture of at least one electrochemically active salt and at least one molecule designed to form an oxidation-reduction system with either the anion or cation of the said salt.
- Electrolytes wherein said electrochemically active salt has a melting point below ambient temperature or forms with the afore-said molecule a phase with a melting point below ambient temperature have been described in EP 0737358.
- gelified materials incorporating triiodide/iodide as a redox couple as disclosed by EP 1087412, were introduced to substitute the liquid electrolytes by quasi-solid state materials.
- heteroleptic amphiphilic complexes of formula RuLL 1 (NCS) 2 where L is the anchoring ligand 4,4 ' -dicarboxy- 2,2 ' -bipyridine and L 1 is a 2,2 ' -bipyridine substituted by one or 2 long alkyl chains, are an interesting class of sensitizing dyes for DSSCs.
- the long alkyl chains in all likelihood interact laterally to form an aliphatic network, thereby impeding triiodide from reaching the TiO 2 surface, resulting in increased open circuit potential of the cell and enhanced stability versus time.
- HDMA contains two carboxylate groups to anchor it on the TiO 2 surface.
- Co-grafting of the two amphiphiles results in the formation of a mixed monolayer which should be more tightly packed than when the sensitizing dye is adsorbed alone, providing a more effective insulating barrier for the back electron transfer from TiO 2 conduction band to triiodide in the electrode. Retarding this unwanted redox process by the hydrophobic spacer reduces the dark current and increases the open circuit voltage of the solar cell. The cell also showed good stability under light soaking at 55°C in simulated sunlight.
- the aim of the invention is to improve the light- harvesting capacity of amphiphilic sensitizing dyes by a rational design of the molecule while not decreasing their LUMO energy, allowing a high quantum efficiency of electron injection without lowering the conduction band of the mesoporous semiconductor and thus having a loss of device photovoltage.
- substituents -R, -Ri, -R 2 , -R 3 , -R 1 , -Ri 1 , -R 2 ', -R3 1 , -R' 1 comprises an additional ⁇ system located in conjugated relationship with the primary ⁇ system of the bidentate or respectively tridentate structure of formulae (a) to (j) .
- the said substituent is of the type wherein -f- ⁇ -J- represents schematically the ⁇ system of the aforesaid substituent, RaI represents an aliphatic substituent with a saturated chain portion bound to the ⁇ system, and wherein q represents an integer, indicating that +n4- may bear more than one substituent RaI.
- the ⁇ system -fn- ⁇ - may be an unsaturated chain of conjugated double or triple bonds of the type
- p is an integer from 1 to 8.
- suitable aromatic groups there are monocyclic aryls like benzene and annulenes, oligocyclic aryls like biphenyle, naphthalene, biphenylene, azulene, phenanthrene, anthracene, tetracene, pentacene, or perylene.
- the cyclic structure of Rar may incorporate heteroatoms.
- Preferred ligands according to the invention are organic compounds Ll having a formula selected from the group of formulae (a) to (j)
- substituents -R, -Ri, -R 2 ⁇ ⁇ R 3 ⁇ -R 1 , -Ri', -R 2 ', -R3', -R' ' is of formula (1), (2) or (3)
- p is an integer from 1 to 4, wherein q is an integer from 1 to 4, wherein Rar is a monocyclic or oligocyclic aryl from C6 to C22, wherein -RaI is H, -Rl, (-0-Rl) n , -N(Rl) 2 , -NHRl,
- substituent (s) -R, -Ri, -R 2 , -R 3 , -R 1 , -Ri 1 , -R 2 1 , -R3 1 , -R' ' is (are) the same or a different substituent of formula (1) , (2) or (3) , or is (are) selected from -H, -OH, -R 2 , -OR 2 or -N(R 2 ) 2/ wherein R 2 is an alkyl of 1 to 20 carbon atoms.
- the invention faces more particularly compounds Ll, wherein said compound is a 4,4 ' -disubstituted bipyridine of formula
- Particularly preferred compounds Ll are:
- Figs 11 and 12 show further examples 1 to 10 of Ll compounds.
- the resulting sensitizing dye is an organometallic complex of a metal Me selected from the group consisting of Ru, Os and Fe, comprising as a ligand a compound Ll as described herein before, said complex being of formula
- Ll is a compound of formula (a' ) , (b) , (c) , (d) , (g) , (h), (i) or (j)
- L is a ligand selected from the group of ligands of formula
- a and A 1 are anchoring groups selected from COOH, PO 3 H 2 , PO 4 H 2 , SO 3 H 2 , SO 4 H 2 , CONHOH, deprotonated forms thereof and chelating groups with ⁇ conducting character, wherein Z is selected from the group consisting of H 2 O, Cl, Br, CN, NCO, NCS and NCSe and
- substituents R, R' , R 1 ' comprises a ⁇ system in conjugated relationship with the ⁇ system of the bidentate, respectively the tridentate structure of formulae (a') to (j),
- substituents R, R 1 , R' ⁇ is (are) the same or a different substituent including a ⁇ system, or is (are) selected from H, OH, R2, (0R2) n , N(R2) 2 , where R2 is an alkyl of 1-20 carbon atoms and 0 ⁇ n ⁇ 5.
- the sensitizing dye according to the invention is a complex of formula
- Me designates Ru, Os or Fe, wherein L is selected from ligands
- Z is selected from H 2 O, -Cl, -Br, -I, -CN, -NCO, -NCS and -NCSe.
- Ll is a 4,4' disubstituted bipyridine of formula
- R is a substituent selected from the group of substituents (1) , (2) and (3) , and R' has the same meaning as above.
- p is an integer from 1 to 4 or is 0 wherein q is an integer from 1 to 4 wherein Rar is a monocyclic or polycyclic aryl from C ⁇ to C22 wherein each -RaI is, independently one from the others, -H,
- heteroleptic ruthenium (II) sensitizing dyes may be preferred over the symmetrical ones.
- Heteroleptic sensitizing dyes can incorporate required properties in one molecule by selecting suitable ligands to enhance the photovoltaic performance.
- a preferred family of sensitizers are Ru complexes of formula
- Particularly preferred sensitizers are:
- UV photons can directly excite the wide band-gap metal oxide semiconductor to produce chemically active holes and thus decompose sensitizing dyes and organic electrolyte components or hole-transport materials.
- excitons can move rapidly from the donating ligand to the metal center, leaving a hole there and giving an electron to the anchoring ligand, and the electron will be injected to the semiconductor film and realize interfacial charge separation.
- the strong UV photon absorbing ability makes this type of sensitizer like a "UV filter" while having the advantage of converting the normally unwanted UV photons for dye sensitized solar cells to useful electrons.
- These new sensitizing dyes with enhanced light-harvesting capacity are particularly advantageous when used in combination with transparent mesoporous films (no scattering layer) , and/or high-viscosity ionic liquid electrolytes, with which thinner mesoporous films are needed to reduce the mass transport problem, said thinner films having a relatively low surface area (larger metal oxide semiconductor particles) for inducing less back electron transfer. Additionally, with this excellent light harvesting property of these sensitizing dyes, less amount of materials are required for efficient devices.
- an amphiphilic compacting compound is co- adsorbed with the dye on the surface of the semiconductive metal oxide layer forming a mixed monolayer.
- the molecular structure of said compacting compound comprises at least one anchoring group, a hydrophobic portion and a terminal group.
- the anchoring group of the compacting compound binding to the surface of the semiconductive metal oxide layer, may be the same as the anchoring group of the sensitizing dye or a different one. It may be selected from the group consisting of COOH, PO 3 H 2 , PO 4 H 2 , SO 3 H 2 , SO 4 H 2 , CONHOH or deprotonated forms thereof.
- the anchoring group of the compacting compound may also be a chelating group with ⁇ -conducting character, in particular an oxyme, dioxyme, hydroxyquinoline, salicylate or ⁇ -keto-enolate group.
- the molar ratio of said sensitizing dye to said co- adsorbed compacting compound may be of between 10 and 1/2, and preferably of between 5 and 1.
- the ratio of dye and co-adsorbent can be varied from 1:10 to 10:1 in their common solvent if they are adsorbed simultaneously, i.e. within the same preparative step.
- the compacting compound may be adsorbed in a preliminary adsorption step, before the adsorption of the dye, as a pre-treatment, or after the adsorption of the dye, as a post-treatment separate adsorption step.
- the hydrophobic part of the amphiphilic sensitizing dye molecules and the hydrophobic portion of the compacting compound molecules co-adsorbed in the afore-said ratios constitute a closely packed hydrophobic monolayer forming a barrier shielding the surface of the semiconductor metal oxide layer, in particular versus triiodide. It is believed that the triiodide can no more reach the TiO 2 surface and that therefore the dark current decreases by decreasing the back electron transfer from the photo injected electrons of TiO 2 to triiodide. It is also believed that the hydrophobic portion of the mixed monolayer constitutes a barrier against H 2 O, hindering water residues to reach the surface of the photoanode.
- the terminal group of the compacting compound may be an uncharged group.
- the terminal group may consist of the free end of an alkyl, alkenyl, alkynyl, alkoxyl or poly-ether chain.
- the terminal group may consist of a neutral group taking up more space, like a branched alkyl, or a carbon atom substituted by several cycloalkyl or phenyl groups.
- the terminal group of the compacting compound may be an anionic group. Such terminal group may be selected among the same group as the anchoring groups, that is to say SO 3 " , CO 2 " , PO 2" 3 , PO 3 H “ , CONHO " .
- the terminal group of the compacting compound may be a cationic group. Such terminal group may be selected among ammonium, phosphonium, sulfonium, imidazolium, pyrrolidonium and pyridinium groups.
- these groups surmount the hydrophobic level of the mono-layer and are capable of repelling species present in the electrolyte, thereby preventing once again direct interaction of the species of the electrolyte with parts of the semiconductive metal oxide surface itself.
- the compacting compound is preferably selected so that said self-assembled monolayer is a dense packed monolayer having an order-disorder transition temperature above 80 0 C.
- Preferred compacting compounds are selected among compounds of following formulae (1) to (27)
- n, n 1 and n 1 ' designate the same or different integers from 1 to 20 that Y and Y 1 are, independently one from the other, one of the groups SO 3 " , CO 2 " , PO 3 2" , PO 3 H “ and CONHO " or a group having one of formulae (101) to (106)
- Ri, R 2 , R 3 designate independently one from the other H, a phenyl group or an alkyl group of 1 to 20 carbon atoms.
- the compacting compound may be selected from the group consisting of alkyl carboxylic acids, alkyl dicarboxylic acids, alkyl carboxylates, alkyl phosphonic acids, alkyl phosphonates, alkyl diphosphonic acids, alkyl diphosphonates, alkyl sulphonic acids, alkyl sulphonates, alkyl hydroxamic acids, alkyl hydroxamates, wherein alkyl is linear or branched from Ci to C 2 O/ derivatives of said alkyl hydroxamic acids bearing a terminal group Y of one of formulae (101) to (106) or an anionic terminal group as aforesaid, cyclohexane- carboxylic acid, adamentane acetic acid, adamentane propionic acid and 4-pentylbicyclo (2,2,2) -octane-1-carboxylic acid.
- the chain length of the compacting compound i.e. the length of the hydrophobic portion, is adapted to the dimension of the dye molecule, in particular to the length of substituent R, i.e. -E- ⁇ -3—(-RaI) q .
- the electrolyte of the DSSC may comprise a polar organic solvent having a high boiling point. Boiling points over 100 0 C at standard atmospheric pressure are preferred.
- a suitable compound to be used as organic solvent in the framework of the present invention may be found among nitriles.
- a preferred nitrile is 3-methoxypropionitrile (MPN) .
- the solvent may be useful on one hand for solubilizing an electrochemically active salt present in the electrolyte, and/or the compound forming the redox couple with an ion of said salt .
- the electrolyte may comprise, instead of an electrochemically active salt which is solid at ambient temperature and shall be dissolved in a solvent, a so-called "room temperature molten salt", an electrochemically active salt having a melting point lower than ambient temperature, or a salt selected so that the mixture formed by this salt and another species of the redox system has a melting point lower than ambient temperature. Then, presence of a solvent may be avoided.
- the cation of the electrochemically active salt may comprise at least one quaternary nitrogen.
- the quaternary nitrogen may be comprised in a group selected from imidazolium and triazolium type groups, corresponding to the following general formulae (a) or (b) :
- the cation of the electrochemically active salt may also be an ammonium, a phosphonium or a sulfonium group corresponding to the following general formulae (c) , (d) or (e) :
- the anion of said ionic liquid salt may be selected from halide ions, or a polyhalide ion, or a complex anion containing at least one halide ion, CF 3 SO 3 ", or CF 3 COO” or (CF 3 SO 2 ) 3 C ⁇ or NO 3 - or PF 6 " or BF 4 " or N(CN) 2 " or NCS " SeCN” or ClO 4 - or C(CN) 3 - or R 6 SO 3 " or RgS ⁇ 4 -, where R 6 is selected from hydrogen and linear or branched alkyl groups, with 1 to 20 carbon atoms, linear, or branched alkoxy groups with 1 to 20 atoms of carbon.
- the redox system of the electrolyte may comprise two salts or more, each having a melting point below ambient temperature, the anions forming a couple of two different electrolytes, for example the iodide/bromide couple.
- the electrolyte incorporates a first compound co-operating with either the anion or the cation of the electrochemically active salt, that is to say forming a redox couple with said ion.
- a first compound co-operating with either the anion or the cation of the electrochemically active salt that is to say forming a redox couple with said ion.
- the anion of the electrochemically salt is I "
- the neutral molecule, respectively element is iodine.
- the electrolyte may incorporate a stabilizing additive in form of a neutral molecule comprising one or more nitrogen atom(s) with a lone electron pair.
- Said neutral molecule may be selected from molecules having following formula:
- R' x and R' 2 can be H, alkyl, alkoxyl, alkenyl, alkynyl, alkoxy-alkyl, poly-ether, and/or phenyl, independently one from the other, the number of carbon atoms of each substituent ranging from 1 to 20, the substitute being linear or branched.
- Preferred compounds are Benzimidazole, 1-methylbenzi- midazole, 1-methyl-2-phenyl benzimidazole and 1,2 dimethyl benzimidazole.
- - Fig. 10 detailed photovoltaic parameters of devices E with K19 dye and 1-decylphosphonic acid as coadsorbent during successive one sun visible-light soaking at 55 0 C; - Fig. 11 and 12: the molecular structures of examples of ligands Ll;
- POCl 3 (3.22 g, 21 mmol) was dropwise added to a solution of compound 2 (4 g, 17.5 mmol) in anh. DMF (5 ml) at room temperature and under N 2 . The resulting dark red solution was heated to 100 0 C for 3 hours. Concentrated AcONa solution (5 ml) was then added and heating was continued for 2 hours more. After being cooled to room temperature, water (100 ml) was added. The mixture was extracted with Et 2 O (2 x 150 ml) , the ethereal combined fractions were washed with 10 % HCl solution (100 ml) , water (100 ml) , dried over MgSO 4 , filtered and evaporated to dryness. Recrystallisation of the brown solid from EtOH afford 2.1 g (47 %) of compound 3 as brownish crystals.
- Solid tBuOK (1.5 g, 13.4 mmol) was added to a solution of 4,4'- bis (diethylmethylphosphonate) -2,2' -bipyridine (1.5 g, 3.3 mmol) and 4- (1,4, 7, 10-Tetraoxyundecyl)benzaldehyde (2.1 g, 7.8 mmol) in anhydrous DMF (80 ml) .
- the resulting mixture was stirred overnight at room temperature under nitrogen. After evaporation of DMF, water (100 ml) was added and extracted with CH 2 Cl 2 (3x150 ml) .
- the reaction mixture was cooled down to room temperature and the solvent was removed by using rotary-evaporator under vacuum.
- Water was added to the flask and the insoluble solid was collected on a sintered glass crucible by suction filtration.
- the crude was dissolved in a basic methanol solution and purified by passing through a Sephadex LH-20 column with methanol as an eluent. After collecting main band and evaporating the solvent, the resultant solid was redissolved in water. Lowering the pH to 3.1 by titration with dilute nitric acid produced Z910 as a precipitate.
- the final product was washed thoroughly with water and dried under vacuum.
- Fig. 3 compares the electronic absorption spectra of 8 fm mesoporous TiO 2 films grafted respectively with Z907, N719 and Z910 dyes.
- the metal-to-ligand charge transfer (MLCT) transitions are red shifted with higher molar extinction coefficient.
- MLCT metal-to-ligand charge transfer
- Example VI Fabrication and photovoltaic performance of Z910 sensitized solar cells
- a screen-printed double layer of Ti ⁇ 2 particles was used s photoanode.
- a 10 ⁇ m thick film of 20 nm sized TiO 2 particles was first printed on the fluorine-doped SnO 2 conducting glass electrode and further coated by 4 ⁇ m thick second layer of 400 nm sized light scattering anatase particles. Fabrication procedure for the nanocrystalline TiO 2 photoanodes and the assembly as well as photoelectrochemical characterization of complete, hot-melt sealed cells has been described by P. Wang et al. (J. Phys. Chem. B, 2003, 107, 14336-14341) .
- the electrolyte used for device A contained 0.6 M l-propyl-3- methylimidazolium iodide (PMII), 30 mM M I2, 0.13 M guanidinium thiocyanate, and 0.5 M 4-tert-butylpyridine in the 1:1 volume mixture of acetonitrile and valeronitrile.
- the TiO 2 electrodes were immersed at room temperature for 12 h into a solution containing 300 ⁇ M Z910 and 300 ⁇ M chenodeoxycholic acid in acetonitrile and tert-butanol (volume ratio: 1:1) .
- the electrolyte was composed of 0.6 M PMII, 0.1 M I 2 , and 0.5 M JW-methylbenzimidazole in 3- methoxypropionitrile and the corresponding device with the Z910 dye alone is denoted as device B.
- the photocurrent action spectrum of device A with Z910 as sensitizer is shown in Fig. 4.
- the incident photon to current conversion efficiency (IPCE) exceeds 80% in a spectral range from 470 to 620 nm, reaching its maximum of 87% at 520 nm.
- IPCE incident photon to current conversion efficiency
- the maximum efficiency for absorbed photon to current conversion efficiency is practically unity over this spectral range.
- Jsc short-circuit photocurrent density
- 3-methoxypropionitrile based electrolyte was used for the stability test of sensitizer Z910 under moderate thermal stress and visible light soaking.
- the advantage of using 3-methoxypropionitrile lies in its high boiling point, low volatility, non-toxicity and good photochemical stability, making it viable for practical application.
- Photovoltaic parameters (Jsc, Voc, ff, and I) of device B are 14.8 mA cm D2 , 696 mV, 0.695, and 7.2 %, respectively.
- the cells covered with a 50 ⁇ m thick of polyester film (Preservation Equipment Ltd, UK) as a UV cut ⁇ off filter (up to 400 nm) were irradiated at open circuit under a Suntest CPS plus lamp (ATLAS GmbH, 100 mW cm "2 , 55 0 C) .
- a Suntest CPS plus lamp ATLAS GmbH, 100 mW cm "2 , 55 0 C
- all parameters of the device are rather stable during 1000 h accelerating tests. It should be noted that under this condition the sensitizer showed similar stability but higher efficiency compared with Z-907 dye.
- Example VII Fabrication and photovoltaic performance of K19 sensitized solar cells with a organic solvent based electrolyte
- a screen-printed double layer of Ti ⁇ 2 particles was used as photoanode.
- a 10 ⁇ m thick film of 20 nm sized TiO 2 particles was first printed on the fluorine-doped SnO 2 conducting glass electrode and further coated by 4 ⁇ m thick second layer of 400 nm sized light scattering anatase particles. Fabrication procedure for the nanocrystalline TiO 2 photoanodes and the assembly as well as photoelectrochemical characterization of complete, hot-melt sealed cells C has been described above.
- the electrolyte used for device C contained 0.6 M 1,2- dimethyl-3-propylimidazolium iodide (DMPII), 0.1 mM M I2, and 0.5 M iV-methylbenzimidazole in 3-methoxypropionitrile.
- the TiO 2 electrodes were immersed at room temperature for 12 h into a solution containing 300 ⁇ M K19 in the mixture of acetonitrile and tert-butanol (volume ratio: 1:1) .
- Figure 7 shows the evolution of photovoltaic parameters of device C at 80 0 C in the dark.
- Figure 8 shows the evolution of photovoltaic parameters of device C covered with a UV filter at 55-60 0 C under AM 1.5 sunlight (100 mW/cm 2 ) .
- Example VIII Fabrication and photovoltaic performance of K19 sensitized solar cells with a organic solvent based electrolyte
- a screen-printed double layer of TiOa particles was used as photoanode.
- a 10 ⁇ m thick film of 20 nm sized TiO 2 particles was first printed on the fluorine-doped SnO 2 conducting glass electrode and further coated by 4 ⁇ m thick second layer of 400 nm sized light scattering anatase particles. Fabrication procedure for the nanocrystalline TiO 2 photoanodes and the assembly as well as photoelectrochemical characterization of complete, hot-melt sealed cells has been described as above.
- the electrolyte used for device D contained 0.2 M I 2 , and 0.5 M N-methylbenzimidazole in the 65/35 volume mixture of 1- propyl-3-methylimidazolium iodide (PMII) and l-ethyl-2- methylimidazolium tricyanomethide [EMIC(CN) 3 ) .
- the TiO 2 electrodes were immersed at room temperature for 12 h into a solution containing 300 ⁇ M Ki 9 in the mixture of acetonitrile and tert-butanol (volume ratio: 1:1) .
- Table 1 gives the detailed photovoltaic paprameters of device D under illumination of different light intensities.
- the spectral distribution of the lamp simulates air mass 1.5 solar light.
- Incident power intensity Pi n ;
- Example IX Fabrication and photovoltaic performance of cells with a TiO 2 film cografted with K19 dye and 1-decylphosphonic acid coadsorbent
- a screen-printed double layer of Ti ⁇ 2 particles was used as photoanode.
- a 10 ⁇ m thick film of 20 nm sized TiO 2 particles was first printed on the fluorine-doped SnO 2 conducting glass electrode and further coated by 4 ⁇ m thick second layer of 400 nm sized light scattering anatase particles. Fabrication procedure for the nanocrystalline TiO 2 photoanodes and the assembly as well as photoelectrochemical characterization of complete, hot-melt sealed cells has been described above.
- the electrolyte used for device E contained 0.6 M 1,2-dimethyl-3- propylimidazolium iodide (DMPII), 0.1 mM M I2, and 0.5 M N- methylbenzimidazole in 3-methoxypropionitrile.
- DMPII 1,2-dimethyl-3- propylimidazolium iodide
- the TiO 2 electrodes were immersed at room temperature for 12 h into a solution containing 300 ⁇ M Ki 9 dye and 75 ⁇ M 1-decylphosphonic acid coadsorbent in the mixture of acetonitrile and tert- butanol (volume ratio: 1:1) .
- Figure 9 shows the evolution of photovoltaic parameters of device E at 80 0 C in the dark. It is clear that the presence of 1-de ⁇ ylphosphonics has enhanced the stability of photovoltage under the thermal stress at 80 0 C.
- Figure 10 shows the evolution of photovoltaic parameters of device E covered with a UV filter at 55-60 0 C under AM 1.5 sunlight (100 mW/cm 2 ) .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Hybrid Cells (AREA)
- Photovoltaic Devices (AREA)
- Pyridine Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/658,780 US7932404B2 (en) | 2004-07-29 | 2005-07-29 | 2,2-bipyridine ligand, sensitizing dye and dye sensitized solar cell |
EP05762935A EP1774550B9 (en) | 2004-07-29 | 2005-07-29 | 2,2 -bipyridine ligand, sensitizing dye and dye sensitized solar cell |
AU2005266755A AU2005266755B2 (en) | 2004-07-29 | 2005-07-29 | 2, 2-bipyridine ligand, sensitizing dye and dye sensitized solard cell |
CN2005800314722A CN101023502B (en) | 2004-07-29 | 2005-07-29 | 2,2-bipyridine ligands, sensitizing dyes and dye-sensitized solar cells |
JP2007522897A JP5065021B2 (en) | 2004-07-29 | 2005-07-29 | 2,2-bipyridine ligand, sensitizing dye and dye-sensitized solar cell |
KR1020077004852A KR101125391B1 (en) | 2004-07-29 | 2005-07-29 | 2,2-bipyridine ligand, sensitizing dye and dye sensitized solar cell |
DE602005010087T DE602005010087D1 (en) | 2004-07-29 | 2005-07-29 | 2,2-BIPYRIDINE LIGAND, SENSITIZATION DYE AND COLOR-SENSITIZED SOLAR CELL |
US13/066,114 US8440843B2 (en) | 2004-07-29 | 2011-04-07 | 2, 2-bipyridine ligand, sensitizing dye and dye sensitized solar cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04405484A EP1622178A1 (en) | 2004-07-29 | 2004-07-29 | 2,2 -Bipyridine ligand, sensitizing dye and dye sensitized solar cell |
EP04405484.9 | 2004-07-29 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/658,780 A-371-Of-International US7932404B2 (en) | 2004-07-29 | 2005-07-29 | 2,2-bipyridine ligand, sensitizing dye and dye sensitized solar cell |
US13/066,114 Division US8440843B2 (en) | 2004-07-29 | 2011-04-07 | 2, 2-bipyridine ligand, sensitizing dye and dye sensitized solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006010290A1 true WO2006010290A1 (en) | 2006-02-02 |
WO2006010290A8 WO2006010290A8 (en) | 2007-03-08 |
Family
ID=34932222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH2005/000452 WO2006010290A1 (en) | 2004-07-29 | 2005-07-29 | 2, 2-bipyridine ligand, sensitizing dye and dye sensitized solar cell |
Country Status (9)
Country | Link |
---|---|
US (2) | US7932404B2 (en) |
EP (2) | EP1622178A1 (en) |
JP (1) | JP5065021B2 (en) |
KR (1) | KR101125391B1 (en) |
CN (1) | CN101023502B (en) |
AT (1) | ATE409948T1 (en) |
AU (1) | AU2005266755B2 (en) |
DE (1) | DE602005010087D1 (en) |
WO (1) | WO2006010290A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007091525A1 (en) | 2006-02-08 | 2007-08-16 | Shimane Prefectural Government | Photosensitizer dye |
JP2007277166A (en) * | 2006-04-07 | 2007-10-25 | Ube Ind Ltd | Metal complex raw material containing terpyridyl ligand and method for producing the same |
WO2008120810A1 (en) * | 2007-03-29 | 2008-10-09 | Sumitomo Chemical Company, Limited | Compound, photoelectric converter and photoelectrochemical cell |
JP2008266634A (en) * | 2007-03-29 | 2008-11-06 | Sumitomo Chemical Co Ltd | Compound, photoelectric conversion element and photoelectrochemical cell |
GB2457527A (en) * | 2008-01-31 | 2009-08-19 | Everlight Usa Inc | Ruthenium complexes and their use for a Dye-Sensitized Solar Cell |
EP2230702A1 (en) | 2009-03-19 | 2010-09-22 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Modified surface |
JP2011501862A (en) * | 2007-10-19 | 2011-01-13 | アイシス イノベーション リミテッド | Dye-sensitized photovoltaic device |
EP2301932A1 (en) | 2009-09-29 | 2011-03-30 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Novel ligands for sensitizing dyes of dye-sensitized solar cells |
EP2492277A1 (en) | 2011-02-25 | 2012-08-29 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Improved redox couple for electrochemical and optoelectronic devices |
WO2012114315A1 (en) | 2011-02-25 | 2012-08-30 | Ecole Polytechnique Federale De Lausanne (Epfl) | Improved redox couple for electrochemical and optoelectronic devices |
WO2012114316A1 (en) | 2011-02-25 | 2012-08-30 | Ecole Polytechnique Federale De Lausanne (Epfl) | Metal complexes for use as dopants and other uses |
EP2551949A1 (en) | 2011-07-28 | 2013-01-30 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Metal complexes for use as dopants and other uses |
WO2013057538A1 (en) | 2011-10-18 | 2013-04-25 | École Polytechnique Fédérale De Lausanne (Epfl) | Compounds for electrochemical and/or optoelectronic devices |
EP2589058A1 (en) * | 2010-06-29 | 2013-05-08 | Basf Se | Photoelectric conversion device comprising hydroxamic acid derivative or salt thereof as additive and process for producing same |
DE102010033026B4 (en) * | 2010-07-29 | 2014-10-09 | Mainrad Martus | Process for the construction of a further developed as a tandem cell organic plastic solar cell |
US10038150B2 (en) | 2011-02-25 | 2018-07-31 | Ecole Polytechnique Federale De Lausanne (Epfl) | Metal complexes for use as dopants and other uses |
EP3407361A1 (en) | 2017-05-24 | 2018-11-28 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Redox melts formed by copper (i)/(ii) complexes as charge transfer and charge storage materials |
EP3489240A1 (en) | 2017-11-28 | 2019-05-29 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | In-situ cross-linkable hole transporting triazatruxene monomers for optoelectronic devicestr |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005096392A2 (en) * | 2004-03-31 | 2005-10-13 | The Yokohama Rubber Co., Ltd. | Electrolyte for photovoltaic device as well as photovoltaic device and dye-sensitized solar cell including that electrolyte |
JP4507834B2 (en) * | 2004-11-04 | 2010-07-21 | ソニー株式会社 | Dye-sensitized photoelectric conversion element and method for producing the same |
US8124777B2 (en) | 2005-09-22 | 2012-02-28 | Sumitomo Chemical Company, Limited | Compound, photoelectric converter and photoelectrochemical cell |
WO2007046452A1 (en) * | 2005-10-19 | 2007-04-26 | Jsr Corporation | Dye and dye-sensitized solar cell |
JP2008021496A (en) * | 2006-07-12 | 2008-01-31 | Nippon Kayaku Co Ltd | Dye-sensitized photoelectric conversion element |
DE502006004313D1 (en) * | 2006-08-07 | 2009-09-03 | Bucher Ag Langenthal | Nanoparticles of an authentication system |
JP2008053631A (en) * | 2006-08-28 | 2008-03-06 | Toyota Motor Corp | Organic thin film having electrochemical activity, method for producing the same, and device using the same |
US20100101650A1 (en) * | 2006-12-18 | 2010-04-29 | Sumitomo Chemical Company ,Limited | Compound, photoelectric conversion device and photoelectrochemical battery |
KR101472308B1 (en) * | 2007-02-21 | 2014-12-15 | 주식회사 동진쎄미켐 | A NOBLE Ru-TYPE SENSITIZERS AND METHOD FOR PREPARING OF IT |
KR100932901B1 (en) * | 2007-08-21 | 2009-12-22 | 한국전자통신연구원 | Dye-Sensitized Solar Cell and Manufacturing Method Thereof |
EP2036955B1 (en) | 2007-09-17 | 2012-05-16 | JSR Corporation | Dyestuff, dye-sensitized solar cell, and method for manufacturing same |
JP2009080988A (en) * | 2007-09-25 | 2009-04-16 | Panasonic Electric Works Co Ltd | Photoelectric conversion element |
CN101215298B (en) * | 2007-12-29 | 2011-08-17 | 清华大学 | Ruthenium polypyridyl complexes and synthesis method for derivatives thereof |
WO2009091773A2 (en) * | 2008-01-14 | 2009-07-23 | Massachusetts Institute Of Technology | Solar concentrator and devices and methods using them |
US20110041915A1 (en) * | 2008-05-02 | 2011-02-24 | Peccell Technologies, Inc. | Dye-sensitized photoelectric conversion element |
CN101723983B (en) * | 2008-10-21 | 2012-08-08 | 明德国际仓储贸易(上海)有限公司 | Ruthenium metal complex and photoelectric element manufactured by using same |
CN101538416B (en) * | 2009-04-03 | 2013-09-18 | 新奥科技发展有限公司 | Organometallic dye, dye sensitized electrode, solar cell and reactor |
KR101054250B1 (en) * | 2009-04-20 | 2011-08-08 | 포항공과대학교 산학협력단 | Metal oxide semiconductor electrode in which a very hydrophobic compound is introduced. Dye-sensitized solar cell comprising the same and method for manufacturing same |
CN101570645B (en) * | 2009-06-05 | 2012-09-19 | 中国科学院长春应用化学研究所 | Ruthenium dyes containing dinitrofluorene ligands and dye-sensitized solar cells prepared using them |
KR101027714B1 (en) * | 2009-09-29 | 2011-04-12 | 한국에너지기술연구원 | Dye-sensitized / ligand metal charge hybrid solar cell including cathode-based electrode including nano oxide layer adsorbed with dye and ligand and method for manufacturing same |
CN102656236A (en) * | 2009-10-20 | 2012-09-05 | 宇部兴产株式会社 | Photoelectric conversion device wherein dye consisting of binuclear ruthenium complex having substituted bipyridyl groups is used, and photochemical cell |
CN101735641B (en) * | 2009-11-12 | 2012-12-12 | 中国科学院长春应用化学研究所 | Organic dye and application thereof |
CN102115481B (en) * | 2009-12-31 | 2014-07-02 | 国立成功大学 | Iron complex, and preparation method |
JP2011204662A (en) * | 2010-03-05 | 2011-10-13 | Sony Corp | Photoelectric conversion element and method of manufacturing the same, and electronic apparatus |
WO2011125024A1 (en) | 2010-04-05 | 2011-10-13 | Ecole Polytechnique Federale De Lausanne (Epfl) | Improved electrode |
US8535574B2 (en) * | 2010-04-15 | 2013-09-17 | National Taipei University Of Technology | Transition metal complexes, manufacturing method thereof, photovoltaic cells and manufacturing method thereof |
KR101297258B1 (en) * | 2010-07-09 | 2013-08-16 | 삼성에스디아이 주식회사 | Dyes for dye-sensitive solar cells, manufacturing method thereof and solar cells using the same |
CN103209975B (en) | 2010-09-16 | 2016-01-13 | 日东电工株式会社 | For the dipyridyl of the replacement of organic light-emitting device |
DE102010046412B4 (en) | 2010-09-23 | 2022-01-13 | Merck Patent Gmbh | metal-ligand coordination compounds |
JP5894372B2 (en) * | 2010-11-01 | 2016-03-30 | パナソニック株式会社 | OPTOELECTRIC ELEMENT AND METHOD FOR PRODUCING OPTOELECTRIC ELEMENT |
DE102010054525A1 (en) | 2010-12-15 | 2012-04-26 | Merck Patent Gmbh | Organic electroluminescent device |
DE102010055902A1 (en) | 2010-12-23 | 2012-06-28 | Merck Patent Gmbh | Organic electroluminescent device |
EP2511924A1 (en) | 2011-04-11 | 2012-10-17 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Transition metal complexes as redox couples for electrochemical and optoelectronic devices |
US8585926B2 (en) * | 2011-03-03 | 2013-11-19 | Nitto Denko Corporation | Substituted bipyridines for use in light-emitting devices |
EP2688646A1 (en) | 2011-03-24 | 2014-01-29 | Merck Patent GmbH | Organic ionic functional materials |
JP6223961B2 (en) | 2011-05-12 | 2017-11-01 | メルク パテント ゲーエムベーハー | Organic ionic functional material, composition and electronic device |
JP2013026082A (en) * | 2011-07-22 | 2013-02-04 | Sony Corp | Photoelectric conversion device, electronic apparatus, and building |
DE102012016192A1 (en) | 2011-08-19 | 2013-02-21 | Merck Patent Gmbh | New compounds capable of forming hydrogen bonds are useful in electronic device, e.g. organic electroluminescent device, organic light-emitting transistor and organic light-emitting electrochemical cell |
US9328094B2 (en) | 2011-09-19 | 2016-05-03 | Nitto Denko Corporation | Substituted biaryl compounds for light-emitting devices |
WO2013049019A1 (en) | 2011-09-26 | 2013-04-04 | North Carolina State University | Antenna ligands for dye-sensitized solar cells |
WO2013085285A1 (en) * | 2011-12-05 | 2013-06-13 | 고려대학교 산학협력단 | Co-absorbent for dye-sensitized solar cell having hole conduction properties and dye-sensitized solar cell including same |
EP2788995B9 (en) | 2011-12-08 | 2018-07-04 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Semiconductor electrode comprising a blocking layer |
JP5809954B2 (en) * | 2011-12-15 | 2015-11-11 | 富士フイルム株式会社 | Photoelectric conversion element and dye-sensitized solar cell |
JP5840040B2 (en) * | 2012-03-15 | 2016-01-06 | 大阪瓦斯株式会社 | Photoelectrode for photoelectric conversion element and method for producing the same |
WO2014026285A1 (en) * | 2012-08-15 | 2014-02-20 | Curtis Berlinguette | System for sensitization of metal oxides by dyes stabilized by distinctive anchoring groups |
US8801965B2 (en) | 2012-10-09 | 2014-08-12 | Shenzen China Star Optoelectronic Technology co., Ltd. | Liquid crystal medium composition and liquid crystal display panel manufactured with same |
CN102851036A (en) * | 2012-10-09 | 2013-01-02 | 深圳市华星光电技术有限公司 | Liquid crystal medium composition and liquid crystal display panel prepared from same |
JP6407877B2 (en) | 2012-11-20 | 2018-10-17 | メルク パテント ゲーエムベーハー | Formulations in high purity solvents for the manufacture of electronic devices |
KR101320394B1 (en) * | 2013-01-18 | 2013-10-23 | 삼성에스디아이 주식회사 | Dyes for dye-sensitive solar cells, manufacturing method thereof and solar cells using the same |
CN103205135B (en) * | 2013-04-25 | 2015-10-28 | 大连理工大学 | Photosensitive dye osmium complex and preparation method thereof, carcinogenesis DNA oxidative damage quick detection kit and detection method |
EP2822009A1 (en) | 2013-07-01 | 2015-01-07 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Solar cell and process for producing the same |
EP2846371A1 (en) | 2013-09-10 | 2015-03-11 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Inverted solar cell and process for producing the same |
EP2896660A1 (en) | 2014-01-16 | 2015-07-22 | Ecole Polytechnique Federale De Lausanne (Epfl) | Hole transporting and light absorbing material for solid state solar cells |
EP2903047A1 (en) | 2014-01-31 | 2015-08-05 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Hole transporting and light absorbing material for solid state solar cells |
US10141118B2 (en) | 2014-02-06 | 2018-11-27 | Adeka Corporation | Carrier system and photoelectric conversion device |
EP2966703A1 (en) | 2014-07-11 | 2016-01-13 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Template enhanced organic inorganic perovskite heterojunction photovoltaic device |
WO2016038501A2 (en) | 2014-09-10 | 2016-03-17 | Ecole Polytechnique Federale De Lausanne (Epfl) | Photodetector |
EP3065190A1 (en) | 2015-03-02 | 2016-09-07 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Small molecule hole transporting material for optoelectronic and photoelectrochemical devices |
LT6540B (en) | 2016-09-19 | 2018-06-25 | Kauno technologijos universitetas | Hole transporting organic molecules containing enamine groups for optoelectronic and photoelectrochemical devices |
US11094473B2 (en) * | 2016-10-24 | 2021-08-17 | University Of Massachusetts | All-day solar cell system integrating high capacity photochromic storage and discharge |
CN109628042A (en) * | 2018-12-26 | 2019-04-16 | 深圳日高胶带新材料有限公司 | A kind of photo-crosslinking adhesive |
CN113512068B (en) * | 2021-04-13 | 2022-05-31 | 山西大学 | A kind of double-ligand ruthenium nitrosyl complex and its preparation method and application |
EP4460491A1 (en) * | 2022-02-18 | 2024-11-13 | The Board of Regents of The Nevada System of Higher Education on behalf of the University of Nevada, Las Vegas | Dicationic ionic liquid electrolytes with high ionic conductivity |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1091373A1 (en) * | 1997-10-23 | 2001-04-11 | Fuji Photo Film Co., Ltd. | Gel electrolyte for a photo-electrochemical cell |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4545028A (en) * | 1982-10-13 | 1985-10-01 | Hewlett-Packard Company | Partial product accumulation in high performance multipliers |
EP0389067B1 (en) * | 1985-11-20 | 1994-10-19 | The Mead Corporation | Ionic dye compounds |
CH674596A5 (en) | 1988-02-12 | 1990-06-15 | Sulzer Ag | |
US5216134A (en) * | 1989-10-23 | 1993-06-01 | Wallac Oy | Spectrofluorometric method and compounds that are of value for the method |
EP0525070B1 (en) * | 1990-04-17 | 1995-12-20 | Ecole Polytechnique Federale De Lausanne | Photovoltaic cells |
JPH0733410B2 (en) * | 1990-08-03 | 1995-04-12 | 東洋シール工業株式会社 | Method for producing crosslinkable acrylic rubber |
GB9217811D0 (en) | 1992-08-21 | 1992-10-07 | Graetzel Michael | Organic compounds |
EP0737358B1 (en) | 1993-12-29 | 1999-02-03 | Ecole Polytechnique Federale De Lausanne | Photoelectrochemical cell and electrolyte therefor |
JP3783872B2 (en) | 1994-05-02 | 2006-06-07 | エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) | Phosphonated polypyridyl compounds and complexes thereof |
EP1087412B1 (en) | 1999-09-24 | 2008-10-01 | Kabushiki Kaisha Toshiba | Electrolyte composition, photosensitized solar cell using said electrolyte composition, and method of manufacturing photosensitized solar cell |
JP4874454B2 (en) * | 2000-01-31 | 2012-02-15 | 富士フイルム株式会社 | Photoelectric conversion element and photovoltaic cell |
EP2218762A3 (en) * | 2001-07-20 | 2010-09-29 | Life Technologies Corporation | Luminescent nanoparticles and methods for their preparation |
US20030073712A1 (en) * | 2001-07-23 | 2003-04-17 | Bing Wang | Cytoprotective compounds, pharmaceutical and cosmetic formulations, and methods |
FR2838241B1 (en) * | 2002-04-09 | 2004-06-25 | Commissariat Energie Atomique | LUMINESCENT MATERIALS CONSISTING OF HEART / SHELL STRUCTURE NANOCRYSTALS AND PROCESS FOR THEIR PREPARATION |
TW200422374A (en) * | 2002-09-05 | 2004-11-01 | Nanosys Inc | Organic species that facilitate charge transfer to or from nanostructures |
JP4377148B2 (en) * | 2003-03-26 | 2009-12-02 | 三井化学株式会社 | Material for photoelectric conversion element and photoelectric conversion element |
JP4409261B2 (en) * | 2003-11-26 | 2010-02-03 | 株式会社豊田中央研究所 | Metal complex dye, photoelectrode and dye-sensitized solar cell |
-
2004
- 2004-07-29 EP EP04405484A patent/EP1622178A1/en not_active Withdrawn
-
2005
- 2005-07-29 CN CN2005800314722A patent/CN101023502B/en active Active
- 2005-07-29 US US11/658,780 patent/US7932404B2/en active Active
- 2005-07-29 WO PCT/CH2005/000452 patent/WO2006010290A1/en active IP Right Grant
- 2005-07-29 AT AT05762935T patent/ATE409948T1/en not_active IP Right Cessation
- 2005-07-29 EP EP05762935A patent/EP1774550B9/en active Active
- 2005-07-29 DE DE602005010087T patent/DE602005010087D1/en active Active
- 2005-07-29 AU AU2005266755A patent/AU2005266755B2/en active Active
- 2005-07-29 KR KR1020077004852A patent/KR101125391B1/en active IP Right Grant
- 2005-07-29 JP JP2007522897A patent/JP5065021B2/en active Active
-
2011
- 2011-04-07 US US13/066,114 patent/US8440843B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1091373A1 (en) * | 1997-10-23 | 2001-04-11 | Fuji Photo Film Co., Ltd. | Gel electrolyte for a photo-electrochemical cell |
Non-Patent Citations (11)
Title |
---|
BOUGAULT, M. ET AL, CAN. J. CHEM., vol. 75, no. 3, 1997, pages 318 - 325 * |
CHEMISTRY OF MATERIALS , 12(2), 461-471 CODEN: CMATEX; ISSN: 0897-4756, 2000 * |
DATABASE BEILSTEIN [online] BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; 1988, XP002312044, Database accession no. BRN 546399 * |
DATABASE BEILSTEIN [online] BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT-MAIN, DE; 1998, XP002312043, Database accession no. BRN 7782850, BRN 7780084 * |
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ATTIAS, ANDRE-JEAN ET AL: "Tuning of the Mesogenic, Electronic, and Optical Properties of New Conjugated 3,3'-Bipyridine Derivatives", XP002317527, retrieved from STN Database accession no. 2000:57960 * |
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; BEER, PAUL D. ET AL: "Syntheses, coordination, spectroscopy and electropolymerization studies of new alkynyl and vinyl linked benzo- and aza-crown ether-bipyridyl ruthenium(II) complexes. Spectrochemical recognition of Group IA/IIA metal cations", XP002312045, retrieved from STN Database accession no. 1992:47898 * |
JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS , (20), 1460-3 CODEN: JCCCAT; ISSN: 0022-4936, 1991 * |
LE BOUDER ET AL.: "Hydroxy-Functionalized Bipyridine and Tris(bipyridine)metal Chromophores: Synthesis and Optical Properties", EUR. J. ORG. CHEM., 2002, pages 3024 - 3033, XP002312041 * |
LEIDNER, C. R. ET AL: "Synthesis and electropolymerization of distyrylbipyridine and methyldistyrylbipyridine complexes of iron, ruthenium, osmium, rhenium, and cobalt", INORGANIC CHEMISTRY , 26(6), 882-91 CODEN: INOCAJ; ISSN: 0020-1669, 1987, XP002312042 * |
SASSE ET AL., J. CHEM. SOC, 1961, pages 1347 - 1349 * |
WANG P ET AL: "A STABLE QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELL WITH AN AMPHIPHILIC RUTHENIUM SENSITIZER AND POLYMER GEL ELECTROLYTE", NATURE MATERIALS, NATURE PUBLISHING GROUP, LONDON, GB, vol. 2, no. 6, June 2003 (2003-06-01), pages 402 - 407, XP008023570, ISSN: 1476-4660 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8106198B2 (en) | 2006-02-08 | 2012-01-31 | Shimane Prefectural Government | Photosensitizer dye |
WO2007091525A1 (en) | 2006-02-08 | 2007-08-16 | Shimane Prefectural Government | Photosensitizer dye |
JP2007277166A (en) * | 2006-04-07 | 2007-10-25 | Ube Ind Ltd | Metal complex raw material containing terpyridyl ligand and method for producing the same |
WO2008120810A1 (en) * | 2007-03-29 | 2008-10-09 | Sumitomo Chemical Company, Limited | Compound, photoelectric converter and photoelectrochemical cell |
JP2008266634A (en) * | 2007-03-29 | 2008-11-06 | Sumitomo Chemical Co Ltd | Compound, photoelectric conversion element and photoelectrochemical cell |
JP2011501862A (en) * | 2007-10-19 | 2011-01-13 | アイシス イノベーション リミテッド | Dye-sensitized photovoltaic device |
GB2457527A (en) * | 2008-01-31 | 2009-08-19 | Everlight Usa Inc | Ruthenium complexes and their use for a Dye-Sensitized Solar Cell |
GB2457527B (en) * | 2008-01-31 | 2012-06-20 | Everlight Usa Inc | Ruthenium Complex |
WO2010106528A1 (en) | 2009-03-19 | 2010-09-23 | Ecole Polytechnique Federale De Lausanne (Epfl) | Modified surface |
EP2230702A1 (en) | 2009-03-19 | 2010-09-22 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Modified surface |
WO2011039715A1 (en) | 2009-09-29 | 2011-04-07 | Ecole Polytechnique Federale De Lausanne (Epfl) | Novel ligands for sensitizing dyes of dye-sensitized solar cells |
EP2301932A1 (en) | 2009-09-29 | 2011-03-30 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Novel ligands for sensitizing dyes of dye-sensitized solar cells |
EP2589058A1 (en) * | 2010-06-29 | 2013-05-08 | Basf Se | Photoelectric conversion device comprising hydroxamic acid derivative or salt thereof as additive and process for producing same |
AU2011273006B2 (en) * | 2010-06-29 | 2016-05-26 | Basf Se | Photoelectric conversion device comprising hydroxamic acid derivative or salt thereof as additive and process for producing same |
EP2589058A4 (en) * | 2010-06-29 | 2014-10-15 | Basf Se | PHOTOELECTRIC CONVERSION DEVICE CONTAINING A HYDROXAMIC ACID DERIVATIVE OR ONE OF ITS SALT AS AN ADDITIVE AND PRODUCTION METHOD THEREOF |
DE102010033026B4 (en) * | 2010-07-29 | 2014-10-09 | Mainrad Martus | Process for the construction of a further developed as a tandem cell organic plastic solar cell |
WO2012114316A1 (en) | 2011-02-25 | 2012-08-30 | Ecole Polytechnique Federale De Lausanne (Epfl) | Metal complexes for use as dopants and other uses |
WO2012114315A1 (en) | 2011-02-25 | 2012-08-30 | Ecole Polytechnique Federale De Lausanne (Epfl) | Improved redox couple for electrochemical and optoelectronic devices |
EP2492277A1 (en) | 2011-02-25 | 2012-08-29 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Improved redox couple for electrochemical and optoelectronic devices |
US10038150B2 (en) | 2011-02-25 | 2018-07-31 | Ecole Polytechnique Federale De Lausanne (Epfl) | Metal complexes for use as dopants and other uses |
EP2551949A1 (en) | 2011-07-28 | 2013-01-30 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Metal complexes for use as dopants and other uses |
WO2013057538A1 (en) | 2011-10-18 | 2013-04-25 | École Polytechnique Fédérale De Lausanne (Epfl) | Compounds for electrochemical and/or optoelectronic devices |
EP3407361A1 (en) | 2017-05-24 | 2018-11-28 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Redox melts formed by copper (i)/(ii) complexes as charge transfer and charge storage materials |
EP3489240A1 (en) | 2017-11-28 | 2019-05-29 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | In-situ cross-linkable hole transporting triazatruxene monomers for optoelectronic devicestr |
Also Published As
Publication number | Publication date |
---|---|
EP1622178A1 (en) | 2006-02-01 |
CN101023502A (en) | 2007-08-22 |
EP1774550A1 (en) | 2007-04-18 |
US20110190501A1 (en) | 2011-08-04 |
AU2005266755B2 (en) | 2011-12-08 |
US8440843B2 (en) | 2013-05-14 |
WO2006010290A8 (en) | 2007-03-08 |
EP1774550B9 (en) | 2009-04-01 |
DE602005010087D1 (en) | 2008-11-13 |
JP5065021B2 (en) | 2012-10-31 |
EP1774550B1 (en) | 2008-10-01 |
AU2005266755A1 (en) | 2006-02-02 |
JP2008507570A (en) | 2008-03-13 |
KR20070085221A (en) | 2007-08-27 |
ATE409948T1 (en) | 2008-10-15 |
KR101125391B1 (en) | 2012-04-02 |
US7932404B2 (en) | 2011-04-26 |
CN101023502B (en) | 2010-07-28 |
US20090000658A1 (en) | 2009-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1774550B1 (en) | 2,2 -bipyridine ligand, sensitizing dye and dye sensitized solar cell | |
JP4768599B2 (en) | Dye-sensitized solar cell | |
EP2483265B9 (en) | Novel ligands for sensitizing dyes of dye-sensitized solar cells | |
JP6092787B2 (en) | Improved redox couple for electrochemical and optoelectronic devices | |
JP2012508227A (en) | A novel anchoring ligand for sensitizers in dye-sensitized photovoltaic devices | |
Karthikeyan et al. | Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes | |
Ko et al. | Alkyloxy substituted organic dyes for high voltage dye-sensitized solar cell: Effect of alkyloxy chain length on open-circuit voltage | |
Abdellah et al. | The molecular engineering, synthesis and photovoltaic studies of a novel highly efficient Ru (ii) complex incorporating a bulky TPA ancillary ligand for DSSCs: donor versus π-spacer effects | |
WO2012155247A1 (en) | Cyclometalated transition metal dyes | |
Idígoras et al. | Organic dyes for the sensitization of nanostructured ZnO photoanodes: effect of the anchoring functions | |
JP6101625B2 (en) | Dye for photoelectric conversion element, photoelectric conversion film, electrode and solar cell using the same | |
Xie et al. | Molecular design of ruthenium complexes for dye-sensitized solar cells based on nanocrystalline TiO2 | |
Gasiorowski et al. | Porphyrin containing lipophilic amide groups as a photosensitizer for dye-sensitized solar cells | |
Kim et al. | A New Ruthenium Sensitizer Containing Benzo [1, 9] quinolizino (acridin‐2‐yl) vinyl‐2, 2′‐bipyridine Ligand for Effective Nanocrystalline Dye‐Sensitized Solar Cells | |
Hu | Exploring Thiophene Oligomers and Ruthenium (II) Complexes for Their Use in Dye-sensitised Solar Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007522897 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005762935 Country of ref document: EP Ref document number: 2005266755 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077004852 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2005266755 Country of ref document: AU Date of ref document: 20050729 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005266755 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580031472.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11658780 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2005762935 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2005762935 Country of ref document: EP |