WO2007111192A1 - Organic electroluminescent element, and organic electroluminescent display - Google Patents

Organic electroluminescent element, and organic electroluminescent display Download PDF

Info

Publication number
WO2007111192A1
WO2007111192A1 PCT/JP2007/055610 JP2007055610W WO2007111192A1 WO 2007111192 A1 WO2007111192 A1 WO 2007111192A1 JP 2007055610 W JP2007055610 W JP 2007055610W WO 2007111192 A1 WO2007111192 A1 WO 2007111192A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
group
layer
light
light emitting
Prior art date
Application number
PCT/JP2007/055610
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kashiwagi
Hiroyuki Hashimoto
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008507443A priority Critical patent/JP5381098B2/en
Publication of WO2007111192A1 publication Critical patent/WO2007111192A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Definitions

  • the present invention relates to an organic electoluminescence device and an organic electroluminescence device.
  • ELD electoluminescence display
  • ELD constituent elements include inorganic electoluminescence devices (inorganic EL devices) and organic electroluminescence devices (hereinafter also referred to as organic EL devices).
  • Inorganic electoric luminescence elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • An organic electoluminescence device has a structure in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and is excited by injecting electrons and holes into the light-emitting layer and recombining them.
  • This is an element that emits light by utilizing the emission of light (fluorescence 'phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts.
  • Metal Cs in particular, has a small work function and a high dopant effect, but it is unstable in the air and is dangerous to handle, and has a drawback that the device deteriorates with time. Therefore, improvements have been made by changing to specific Cs and Rb compounds (for example, see Patent Document 3).
  • Patent Document 3 There is a great need for a drastic improvement in power consumption, which has great expectations for the organic electroluminescence panel luminescence panel. That is, it is a performance improvement with a low driving voltage and a high luminous efficiency and a small performance with time.
  • the concentration of electron donors is all constant, and there is no description or suggestion that it is locally changed.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-270172
  • Patent Document 2 JP 2004-193011 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-335137
  • An object of the present invention is to provide an organic-electric-mouth luminescence device capable of extracting white light with high brightness, high luminous efficiency, excellent continuous drive life, and color reproduction in combination with a color filter using the device. Is to provide an excellent white backlight
  • an organic electret nominence device comprising an anode, at least one organic layer and a cathode on a substrate, at least one of the organic layers contains an electron donor, and the organic layer of the electron donor
  • An organic electoresistive element having an electron donor concentration region having a volume concentration (%) in the range of 5 to 95% and a difference of 5% or more.
  • Each film thickness of the region containing the maximum concentration or the minimum concentration of the electron donor is 1/100 to 1/4 with respect to the film thickness of the organic layer containing the electron donor.
  • the electron donor volume concentration (%) is 10% or less in a region within 1/3 of the thickness of the organic layer containing the electron donor.
  • the organic electoluminescence device according to any one of 1 to 3,
  • the organic layer containing an electron donor is in contact with a cathode.
  • the organic electoluminescence device according to any one of -5.
  • Blue light, green light, and red light are obtained from white light extracted from the organic-electric-luminescence device described in 10 above through a blue filter, a green filter, and a red filter.
  • Organic-elect luminescence display is obtained from white light extracted from the organic-electric-luminescence device described in 10 above through a blue filter, a green filter, and a red filter.
  • an organic electoluminescence device capable of extracting white light with high brightness, high luminous efficiency, excellent continuous drive life, and color reproducibility in combination with a color filter using the device.
  • An excellent white backlight could be provided.
  • FIG. 1 is a view showing CsF volume concentration in an electron injection / transport layer of an organic EL device 101 according to a film thickness from a cathode toward a hole blocking layer.
  • 2 It is a diagram showing the CsF volume concentration in the electron injection / transport layer of the organic EL element 102 according to the film thickness from the cathode toward the hole blocking layer.
  • FIG. 5 is a graph showing CsF volume concentration in the electron injection 'transport layer of the organic EL element 105 according to the film thickness from the cathode toward the hole blocking layer.
  • FIG. 8 is a schematic diagram showing an example of the layer structure of the barrier film and its density profile.
  • FIG. 9 A schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus for treating a substrate.
  • FIG. 10 is a schematic view of a lighting device.
  • FIG. 11 is a cross-sectional view of the lighting device.
  • the organic electoluminescence device of the present invention will be described.
  • the organic electroluminescent element of the present invention is composed of a substrate, an electrode and an organic layer, and the organic layer is composed of at least a light emitting layer and an organic layer containing the electron donor according to the present invention (also simply referred to as a donor).
  • the emission color of the organic electoluminescence device of the present invention is shown in Fig. 4.16 on page 108 of "New Color Science Handbook" (edited by the Japan Society for Color Science, The University of Tokyo Press, 1985). It is determined by the color when the result measured with the luminance meter CS-1000 (Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • the light-emitting layer which is a constituent layer of the organic electoluminescence device according to the present invention, has different emission spectra with emission maximum wavelengths in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively. It contains at least two layers, and preferably has three or more layers.
  • the light-emitting layer unit is a light-emitting layer unit that has at least two light-emitting layers whose emission maximum wavelengths are in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively. Further, the unit preferably has a non-light emitting intermediate layer between the light emitting layers.
  • the electron donor according to the present invention refers to an electron donating compound.
  • An organic layer is formed by mixing with a host as a single pant. The presence of the host reduced by the electron donor in the state of an anion radical reduces the electron barrier near the layer interface on the cathode side, increases the electron supply density, and the effect of lowering the voltage is recognized. That is, the dopant according to the present invention has a higher LUMO level than the organic material to be mixed. It is essential that the thing function is small.
  • the layer containing the electron donor may be a light emitting layer. In this case, the dopant contains the carrier donor and the light emitting source of the present invention. The emission source may be fluorescence or phosphorescence.
  • the electron donor according to the present invention is preferably contained in the electron transport layer.
  • the electron transport layer used in the present invention has an effect on the driving voltage, and the electron density is increased by doping the carrier donor, and the electron mobility by hopping is increased by forming a shallow level and LUMO level. It is interpreted because. Regarding the concentration of impurities to be doped, only a uniform concentration has been studied in the electron transport layer.
  • the present invention has been achieved. That is, when the impurity concentration is locally changed rather than uniformly, in addition to the conventional low driving voltage, surprisingly, the effect of improving the luminous efficiency was recognized. In particular, when a high concentration region was provided locally above the average donor concentration, a remarkable effect was observed. Although there was a slight tendency to increase the driving voltage, it is advantageous in terms of power efficiency. The reason is not clear, but when the donor concentration is locally increased, the number of fixed holes increases and the hole barrier is increased, so that excitons are contained in the light-emitting layer.
  • the power of The electron transport layer according to the present invention can be provided as a single layer or a plurality of layers.
  • the electron transport material known materials can be used. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carpositimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxazazomonore derivatives and the like can be mentioned. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8_quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibu) Lomo 1_Quinolinol) Aluminum, Tris (2-Methyl _8 _Quinolinol) Aluminum Yu , Tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Zn q), etc., and the central metal of these metal complexes are placed in In, Mg, Cu, Ca, Sn, Ga or Pb.
  • Alternative metal complexes can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the electron transporting material.
  • a compound represented by the general formula (1) described in the host section can be preferably applied.
  • the carrier donor material according to the present invention a known material can be used.
  • JP-A-2006-41020 are also preferably used.
  • the electron transport material and the carrier donor are formed by thinning by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • Power S can be.
  • the donor-containing average volume concentration according to the present invention is 5 to 95%, and there is a region where the difference between at least the maximum concentration and the minimum concentration is 5% or more. . 0% is out of the gist of the present invention, and 100% is close to an insulator.
  • the difference between the highest and lowest concentrations is 20-90%, but the preferred highest concentration is 15-95%. More preferably, it is 25 to 90%.
  • the film thickness ratio of the highest concentration region in the electron transport layer is 1 to 50%, more preferably 2. / 0 force 45%.
  • the film thickness is usually from In m to about lxm, preferably from 5 to 200 nm.
  • the carrier donor concentration is lower from the viewpoint of continuous driving life as the conductivity is not impaired. Masle.
  • the light emission efficiency may be further improved, and one example is a case where it changes continuously. Depending on the material, it is often 5 or less.
  • the term “local” as used in the present invention refers to, for example, a case where film thickness configurations of 1 nm or more having different donor volume concentrations are arbitrarily combined. Even in this case, the difference between the maximum and minimum donor volume concentrations is more than 5%.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative and a pyrazolone derivative, a vinylene diamine derivative, an arylamine derivative, an amino-substituted chalcone derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative Examples thereof include hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use porphyrin compounds, aromatic tertiary amine compounds, and st
  • aromatic tertiary amine compound and styrylamine compound include N, N, N ', N'-tetraphenyl 4, ⁇ '-diaminophenyl; ⁇ , N'-diphenylol ⁇ , ⁇ '— Bis (3-methylphenyl) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2-bis (4-di 1 ⁇ -tolylaminophenyl) Propane; 1, 1-bis (4-di- ⁇ -triraminophenyl) cyclohexane; ⁇ , ⁇ , ⁇ ', N' — tetra- ⁇ -tolyl-1,4,4'-diaminobiphenyl; 1, 1— Bis (4-di-1- ⁇ -tolylaminophenyl) 1-phenyl hexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 1 nm to l / im, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • it is a hole transport layer having a high p property doped with impurities. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. Can be mentioned.
  • general formulas (1) to (7) in JP-A No. 2006-41020 are also preferably used.
  • the injection layer is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. May be.
  • the injection layer is a layer that is provided between the electrode and the organic layer in order to reduce the drive voltage and improve the luminance of the light emission. “The organic EL element and its forefront of industrialization (January 30, 1998) 2) Chapter 2 “Electrode Materials” (pages 123-166) of “NTS, Inc.”) is described in detail.
  • anode buffer layer (hole injection layer) The details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • One layer of phthalocyanine buffer typified by copper phthalocyanine
  • one layer of oxide buffer typified by vanadium oxide
  • one layer of amorphous carbon buffer typified by vanadium oxide
  • polymer buffer using a conductive polymer such as polyaniline (emeraldine) or polythiophene, etc.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum or titanium
  • alkali metal compound buffer layer typified by lithium fluoride
  • alkaline earth metal compound buffer layer typified by magnesium fluoride
  • oxide buffer typified by aluminum oxide One layer and so on.
  • the buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 5 / im.
  • Blocking layer hole blocking layer, electron blocking layer
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, see pages 237 of JP-A-11-204258, JP-A-11-204359, and “OLEDs and the Forefront of Industrialization (issued by NTT S. Co., Ltd., November 30, 1998)”. There is a hole blocking layer.
  • the hole blocking layer has a function of an electron transport layer, and is composed of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, and transports electrons. By blocking holes, the recombination probability of electrons and holes can be improved.
  • the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention as required.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • a plurality of light emitting layers having different emission colors are provided.
  • the light emitting layer whose emission maximum wavelength is the shortest wave is closest to the anode among all the light emitting layers.
  • the light emitting layer closest to the anode next to the shortest wave layer and the layer is used.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.2 eV or more larger than the host compound of the shortest wave emitting layer. Les.
  • the ionization potential is defined by the energy required to emit an electron at the HM0 (highest occupied molecular orbital) level of the compound to the vacuum level.
  • the ionization potential can be obtained by the following method. it can.
  • Gaussian98 (Gaussian98, Revision A. 11.4, MJ Frisch, et ai, Gaussian, Inc., Pitts Durg h PA, 2002.) Structural optimization using B3LYP / 6-31G * as keywords
  • the ionic potential can be obtained by rounding off the second decimal place of the value calculated in (eV unit conversion value).
  • the reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • the ionization potential can also be obtained by a method of direct measurement by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports holes.
  • the probability of recombination of electrons and holes can be improved.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is within the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer according to the present invention has at least three colors of a blue light emitting layer having a light emission maximum wavelength in the range of 430 to 480 nm, a green light emitting layer in the range of 510 to 550 nm, and a red light emitting layer in the range of 600 to 640 nm.
  • a two-color configuration may be used. For example, even if two colors are selected from the three categories, the color reproducibility is inferior to that of the three-color configuration, but white is obtained.
  • the total film thickness of the light emitting layer is not particularly limited, but it is possible to prevent film homogeneity, application of unnecessary high voltage during light emission, and improvement of stability of emitted color with respect to driving current. Therefore, it is preferable to adjust to the range of 2 to 30 nm, and more preferably in the range of 5 to 25 nm.
  • a light emitting dopant or a host compound described later is formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. can do.
  • the film thickness of each light emitting layer may be arbitrary as long as it is within the above-mentioned range. There are no particular restrictions on the relationship between the thicknesses of the blue, green, and red light emitting layers, but in order to obtain white light, the thickness of the light emitting layer with the lowest recombination probability is the largest.
  • a plurality of light emitting compounds may be mixed in each light emitting layer within a range in which the maximum wavelength is maintained. For example, a blue light emitting compound having a maximum wavelength of 430 to 480 nm and a green light emitting compound having a maximum wavelength of 510 to 550 nm may be mixed and used in the blue light emitting layer.
  • the host compound contained in the light emitting layer of the organic EL device of the present invention is defined as a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1.
  • the phosphorous photon yield is less than 0.01.
  • the mass ratio in the layer is preferably 20% or more.
  • known host compounds may be used alone or in combination of two or more. By using multiple types of host compounds, it is possible to adjust the charge transfer, which increases the efficiency of organic EL devices. Ability to do S.
  • an example of a compound that is preferably used is a compound represented by the following general formula (1).
  • the compound is also preferably used in a layer adjacent to the light emitting layer (for example, a hole blocking layer).
  • Z represents an aromatic heterocyclic ring which may have a substituent, and each Z has a substituent.
  • 1 2 represents an aromatic heterocycle or aromatic hydrocarbon ring that may be substituted, and Z represents a divalent linking group.
  • R represents a hydrogen atom or a substituent.
  • examples of the aromatic heterocycle represented by Z and Z include a furan ring,
  • Fen ring Fen ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzoimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole And a ring in which the carbon atom of the hydrocarbon ring constituting the ring, quinoxaline ring, quinazoline ring, phthalazine ring, force rubazole ring, carboline ring or carboline ring is further substituted with a nitrogen atom.
  • the aromatic heterocycle is a substituent represented by R described later.
  • Examples of the aromatic hydrocarbon ring represented by Z include a benzene ring, a biphenyl ring, and a naphthalene ring.
  • Examples of the substituent represented by R 1 include an alkyl group (eg, methinole group, ethyl group, propyl group).
  • Ureido group eg, methinoureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecinoureido group, phenylureido group, naphthylureido group, 2-pyridinoreaminoureido group
  • sulfier group Formula example, methylsulfier Ethylsulfinyl group, butylsulfiel group, cyclohexylsulfiel group, 2-ethylhexylsulfiel group, dodecylsulfiel group, phenylsulfiel group, naphthylsulfiel group, 2-pyridylsulfiel group, etc.
  • Alkylsulfonyl group eg, methylsulfonyl group, ethylsulf
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • Preferred substituents are an alkyl group, a cycloalkyl group, a fluorinated hydrocarbon group, an aryl group, and an aromatic heterocyclic group.
  • divalent linking group examples include hydrocarbon groups such as alkylene, alkenylene, alkynylene, and arylene, as well as those containing heteroatoms, and thiophene-2,5-diyl groups, It may be a divalent linking group derived from a compound having an aromatic heterocycle such as a 2,3-diyl group (also referred to as a heteroaromatic compound) or a chalcogen atom such as oxygen or sulfur.
  • it may be a group that joins and connects heteroatoms such as an anolequinolemino group, a dialkylsilane diyl group, and a diarylgermandyl group.
  • a simple bond is a bond that directly connects the linking substituents together.
  • the Z-membered ring represented by the general formula (1) is preferable. This is because the Z-membered ring represented by the general formula (1) is preferable.
  • the luminous efficiency can be further increased. Furthermore, the lifetime can be further increased.
  • the z-membered ring represented by the general formula (1) is preferable. to this
  • the luminous efficiency can be further increased. Furthermore, the life can be further extended. Furthermore, by making Z and Z in the general formula (1) both 6-membered rings, the luminous efficiency can be further increased.
  • the light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a bur group or an epoxy group (deposition). Polymerizable light-emitting host).
  • Known host compounds include hole transport ability and electron transport ability, while preventing the emission of longer wavelengths and high Tg.
  • a compound having a (glass transition temperature) is preferred.
  • specific examples of known host compounds include compounds described in the following documents. For example, JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-88. No. 60, No. 2002-334787, No. 2002-15871, No. 2002-334 788, No. 2002-43056, No. 2002-334789, No. 2002-75 645, No. 2002-75 645, No. 2002 -338579, 2002-105445, 2002-3 43568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002 — No. 231453, No. 20 03-3165, No. 2002-234888, No. 2003-27048, No. 200 2-255934, No. 2002-260861, No. 2002-280183, No. 2 002-299060, 2002-302516, 2002-305083, No. 2002-305084 and No. 2002-308837.
  • the light emitting layer having a light emission maximum wavelength in the range of 430 to 480 nm
  • the light emitting layer has a light emitting layer in the range of 550 nm and the light emitting layer in the range of 600 to 640 nm.
  • the light emitting layer has at least three light emitting layers.
  • Compounds each having 2.9 eV or more and Tg (glass transition point) of 90 ° C or more are preferred, and compounds having 100 ° C or more are more preferred.
  • the molecular structures of the compounds are particularly preferably the same.
  • the physicochemical characteristics of the host compound are the same or the molecular structure is the same. For this reason, the details will be described in the non-light emitting intermediate layer described later. .
  • the organic compound of each layer constituting the organic electoluminescence device of the present invention is characterized by containing a material having a Tg of 100 ° C. or more at least 80% by mass or more of each layer.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K 7121 using DSC (Differential Scanning Colorimetry).
  • a host compound having the same physical characteristics as described above and more preferably using a host compound having the same molecular structure, an organic compound layer (both organic layer and organic layer) of the organic EL element is used. Homogeneous film properties can be obtained throughout, and the phosphorescence emission energy of the host compound can be adjusted to be 2.9 eV or more, effectively suppressing energy transfer from the dopant, High brightness can be obtained.
  • the phosphorescent energy according to the present invention is the peak energy of the 0-0 band of the phosphorescence obtained when the photoluminescence of the deposited film of lOOnm is measured on a support substrate (which may be simply a substrate). Say.
  • the delay time may be shortened, but if the delay time is set so short that it cannot be distinguished from fluorescence, phosphorescence and fluorescence cannot be separated. Therefore, it is necessary to select a delay time that can be separated.
  • any solvent that can dissolve the compound may be used (substantially no problem is caused by the solvent effect of the phosphorescence wavelength in the measurement method described above).
  • the force that is a method for obtaining the 0_0 band is expressed as 0-0 band.
  • the emission spectrum is usually weak in intensity, it may be difficult to distinguish between noise and peak when enlarged.
  • the emission spectrum during irradiation with excitation light (for convenience, this is called the steady light spectrum) is enlarged and superimposed with the emission spectrum after 100 ms after irradiation with excitation light (for convenience, this is called the phosphorescence spectrum).
  • It can be determined by reading the peak wavelength of the phosphorescence spectrum from the portion of the steady light spectrum derived from the spectrum.
  • smoothing the phosphorescence spectrum noise and peak can be separated and peak wavelength can be read.
  • a smoothing method such as Savititzky & Golay can be applied.
  • the light emitting dopant according to the present invention will be described.
  • a fluorescent compound or a phosphorescent compound can be used.
  • the light-emitting layer and the light-emitting layer of the organic EL element of the present invention can be used.
  • the light-emitting dopant used in the unit (sometimes simply referred to as a light-emitting material) contains the above host compound and at least one phosphorescent compound. When a fluorescent compound is used in combination, it is preferable to select blue.
  • the phosphorescent compound according to the present invention is a compound in which light emission from an excited triplet is observed.
  • the phosphorescent compound according to the present invention can be measured in any one of the above-mentioned phosphorescence quantum yields (0.01 or more). If it is achieved,
  • the light emission of the phosphorescent compound includes two types of principles. One is that the recombination of carriers occurs on the host compound to which carriers are transported, and an excited state of the host compound is generated. This energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound. The other is that the phosphorescent compound becomes a carrier trap, and carrier recombination occurs on the phosphorescent compound, causing phosphorescence. In all cases, the excited state energy of the phosphorescent compound is lower than the excited state energy of the phosphine compound. is there.
  • the phosphorescent compound can be appropriately selected and used as a known compound used for the light emitting layer of the organic EL device.
  • the phosphorescent compound according to the present invention is preferably a complex compound containing a group 8 to 10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum).
  • Complex-based compounds) and rare earth complexes, and most preferred are iridium compounds.
  • Specific examples of the compound used as the phosphorescent compound are shown below, but the present invention is not limited thereto. These compounds are synthesized from ⁇ , ⁇ ⁇ , Inorg. Chem. 40 ⁇ , 1704-1711 11, etc.
  • fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorine dyes.
  • Examples include cein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • dopants can also be used in the present invention.
  • JP 2002-50483, JP 2002-100476 JP 2002— JP 173674, JP 2002-359 082, JP 2002-175884, JP 2002-363552, JP 20 02-184582, JP 2003-7469, JP 2002- JP 525808, JP 2003-7471, JP 2002-525833, JP 2003-31366, JP 2002-226495, JP 2002-234894, JP 2002-2 35076 No., JP 2002-241751, JP 2001-319779, JP 2001-319780, JP 2002-62824, JP 2002-100474, JP 2002-203679. JP-A-2002-343572, JP-A-2002-203678, and the like.
  • the non-light emitting intermediate layer according to the present invention will be described.
  • the non-light emitting intermediate layer according to the present invention refers to the above light emitting layer unit having at least three light emitting layers each having a light emission maximum wavelength force S in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively. It is provided between each light emitting layer.
  • the film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 15 nm, and more preferably in the range of 3 to 10 nm to suppress interactions such as energy transfer between adjacent light emitting layers. Moreover, it is preferable from the viewpoint of not giving a large load to the current-voltage characteristics of the element.
  • the material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but is the same as the host material of at least one of the adjacent light emitting layers. It is preferable that
  • the non-emissive intermediate layer may contain a common compound (for example, a host ion compound) with each non-emission light emitting layer, and each common host material (where a common host material is used).
  • a common compound for example, a host ion compound
  • each common host material where a common host material is used.
  • the injection barrier of holes and electrons can be easily maintained even when the voltage (current) is changed. It was also found that the effect of improving color shift when voltage (current) was applied was obtained.
  • the host compound contained in each light-emitting layer in the undoped light-emitting layer uses a host material having the same physical characteristics or the same molecular structure. The complexity of manufacturing a certain device can also be eliminated.
  • the excited triplet energy of the blue phosphorescent compound is the largest, but the blue A host material having an excited triplet energy larger than that of the phosphorescent compound may be included in the light-emitting layer and the non-light-emitting intermediate layer as a common host material.
  • the host material is responsible for carrier transport
  • a material having carrier transport capability is preferred.
  • carrier mobility is used as a physical property representing carrier transport ability
  • the carrier mobility of organic materials generally depends on electric field strength. Since a material with high electric field strength dependency easily breaks the hole-electron injection / transport balance, it is preferable to use a material whose mobility is less dependent on electric field strength for the intermediate layer material and the host material.
  • the optical intermediate layer functions as a blocking layer, that is, a hole blocking layer and an electron blocking layer.
  • the carrier transport layer and the carrier blocking layer according to the present invention will be described below.
  • the carrier means an electron or a hole.
  • the hole transport layer is made of a material having the ability to transport holes, and includes a hole injection layer and an electron blocking layer in a broad sense.
  • the electron transport layer is made of a material having the ability to transport electrons, and includes an electron injection layer and a hole blocking layer in a broad sense.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) according to the organic EL device of the present invention is not particularly limited in the type of glass, plastic and the like, and is transparent or opaque. There may be. In the case where light is extracted from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and transparent resin film. A particularly preferable support base is a resin film capable of imparting flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellose diacetate, cenorelose triacetate, ce / relose acetate butyrate, and cenole mouth.
  • Cellulose acetates such as cellulose acetate propionate (CAP), cellulose acetate phthalate (TAC), cellulose nitrate or their derivatives, polyvinylidene chloride, polybutyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, Polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyether Cycloolefins such as imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethylmethalylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Abel (trade name, manufactured by Mitsui Chemicals) Resin etc. are mentioned.
  • CAP cellulose acetate propionate
  • TAC cellulose acetate phthalate
  • cellulose nitrate or their derivatives polyvinylidene chloride,
  • an inorganic film, an organic film, or a hybrid film of the both may be formed on the surface of the resin film.
  • Water vapor permeability measured by a method based on JIS K 7129-1992 is 0.
  • a barrier film of Olg / m 2 'day atm or less is preferred
  • Even JIS K 7126- oxygen permeability measured in compliance with the method 1992 is 10- 3 g / m 2 / day or less, high barrier water vapor permeability of less than 10- 3 g / m 2 / day Film preferably Dearuko and is fitting the water vapor permeability, oxygen permeability to be both less than or equal 10- 5 g / m 2 / d ay, further preferable.
  • any material may be used as long as it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the barrier film formation method is not particularly limited, for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method
  • a method using an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferred.
  • the opaque support base include metal plates such as aluminum and stainless steel, film opaque resin substrates, and ceramic substrates.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, and is preferably S, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL device / the number of electrons sent to the organic EL device ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • FIG. 8 An example of the layer structure of the transparent barrier film used for the support substrate according to the present invention will be described with reference to FIG. 8, and an example of an atmospheric pressure plasma discharge treatment apparatus preferably used for forming the barrier layer will be described. This will be described with reference to FIG.
  • FIG. 8 is a schematic diagram showing an example of the layer structure of a barrier film (also referred to as a gas barrier film) and its density profile.
  • Barrier film 201 (which may be transparent or opaque) is densely placed on substrate 202.
  • a structure in which layers of different degrees are laminated is adopted.
  • a medium density layer 204 is provided between the low density layer 203 and the high density layer 205, and further, a medium density layer 204 is provided on the high density layer 205.
  • a configuration composed of a density layer, a high-density layer, and a medium-density layer is one unit, and FIG. 8 shows an example in which two units are stacked.
  • the density distribution in each density layer is uniform, and the density change between the P-contacting layers is stepped.
  • the force shown with the medium density layer 204 as one layer may be configured with two or more layers as required.
  • a layer structure of the barrier film (gas barrier film) according to the present invention at least one of three layers having different densities (a high density layer, a medium density layer, and a low density layer) is provided. It is preferable to have 2 or 3 layers of different density, preferably
  • an atmospheric pressure plasma discharge treatment apparatus as shown in FIG. 9 below is used as an example for forming the high-density layer, the medium-density layer, and the low-density layer.
  • Examples of density setting values for high-density layers, medium-density layers, and low-density layers, materials used for forming each layer (for example, silicon oxide, silicon oxynitride, alumina oxide, etc.) and formation conditions are shown in Examples. Will be described in detail.
  • FIG. 9 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus for treating a substrate.
  • the atmospheric pressure plasma discharge processing apparatus is an apparatus having at least a plasma discharge processing apparatus 230, an electric field applying means 240 having two power supplies, a gas supply means 250, and an electrode temperature adjusting means 260.
  • Fig. 9 shows the distance between the counter electrode (discharge space) between the roll rotating electrode (first electrode) 235 and the square tube type fixed electrode group (second electrode) 236 (each electrode is also called the square tube type fixed electrode 236).
  • the substrate F is subjected to plasma discharge treatment to form a thin film.
  • one pair of rectangular tube type fixed electrode group (second electrode) 236 and roll rotating electrode (first electrode) 235 form one electric field. Form.
  • Figure 9 shows an example of a configuration with a total of five units with such a configuration, and by arbitrarily independently controlling the types of raw materials and output voltage supplied by each unit, A type of noria film (also referred to as a transparent gas nolia layer) can be formed continuously.
  • a type of noria film also referred to as a transparent gas nolia layer
  • the roll rotating electrode (first electrode) 235 Around 1st power supply 241
  • the first high-frequency electric field of wave number ⁇ 1, electric field strength VI, current II, and rectangular tube-shaped fixed electrode group (second electrode) 236 has a frequency ⁇ 2 and electric field strength V2 from the corresponding second power source 242.
  • a second high frequency electric field with a current of 12 is applied.
  • a first filter 243 is installed between the roll rotating electrode (first electrode) 235 and the first power source 241. The first filter 243 can easily pass current from the first power source 241 to the first electrode.
  • a second filter 244 is installed between the square tube type fixed electrode group (second electrode) 236 and the second power source 242 respectively, and the second filter 244 is connected to the second electrode from the second power source 242. It is designed to facilitate the passage of current, ground the current from the first power supply 241 and make it difficult to pass the current from the first power supply 241 to the second power supply.
  • the roll rotating electrode 235 may be the second electrode, and the square tube fixed electrode group 236 may be the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power supply applies higher high-frequency electric field strength (VI> V2) than the second power supply.
  • the frequency has the ability to be ⁇ ⁇ ⁇ 2.
  • the current should be II to 12.
  • Current II of the first high-frequency electric field is preferably 0. 3 ⁇ 20mA / cm 2, further rather preferably is 1. 0 ⁇ 20mA / cm 2.
  • the current 12 of the second high-frequency electric field is preferably 10 to 100 mA / cm 2 , more preferably 20 to 100 mA / cm 2 .
  • the gas G generated by the gas generator 251 of the gas supply means 250 is introduced into the plasma discharge treatment vessel 231 through the supply port while controlling the flow rate. Air that is transported by unwinding the base material F from the unillustrated base or front process force Air that is transported and entrained on the base material by the nip roll 265 via the guide roll 264, etc. , And while being in contact with the roll rotating electrode 235, it is transported between the square tube fixed electrode group 236 and the roll rotating electrode (first electrode) 235 and the square tube fixed electrode group (second electrode). Electrode is applied from both of the electrode 236 and discharge plasma is generated between the opposing electrodes (discharge space) 232.
  • Substrate F forms a thin film with a gas in a plasma state while being rolled while being in contact with roll rotating electrode 235.
  • the base material F is transferred to the next process through a nip roll 266 and a guide roll 267, and the force to be scraped off by a scraper (not shown).
  • Discharged treated exhaust gas G ' is discharged from the exhaust port 25 3.
  • roll rotating electrode (first electrode) 235 and square tube fixed electrode To heat or cool the group (second electrode) 236, the medium whose temperature is adjusted by the electrode temperature adjusting means 260 is sent to both electrodes via the pipe 261 by the liquid feed pump P, and the temperature is adjusted from the inside of the electrode.
  • Reference numerals 268 and 269 denote partition plates that partition the plasma discharge processing vessel 231 and the outside.
  • Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support base with an adhesive.
  • the sealing member can be either concave or flat as long as it is arranged to cover the display area of the organic EL element.
  • transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate 'film, and a metal plate' film. Examples of the glass plate include sodalite ash glass, norium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate is made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, anorium, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. Can be mentioned.
  • a polymer film and a metal film can be preferably used because the device can be formed into a thin film.
  • the polymer film oxygen permeability 10- 3 g / m 2 / day or less it is preferable that the following water vapor permeability 10- 5 g / m 2 / day . Further, the water vapor permeability, it is more preferable oxygen permeability excessively are both less 10- 5 g / m 2 / day .
  • the sealing member is processed into a concave shape by sandblasting, chemical etching or the like.
  • adhesives include photocuring and thermosetting adhesives having reactive bully groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanacrylic acid esters. Can be mentioned.
  • heat- and chemical-curing types such as epoxy type can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • organic EL elements are deteriorated by heat treatment Therefore, those that can be adhesively cured from room temperature to 80 ° C are preferable.
  • a desiccant may be dispersed in the adhesive. Application of the adhesive to the sealing portion may be performed using a commercially available dispenser, or may be printed like screen printing.
  • the electrode and the organic layer may be coated on the outer side of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer may be formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, etc. can be used.
  • the method for forming these films is not particularly limited, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster one ion beam method, ion plating method, plasma polymerization method, Atmospheric pressure plasma polymerization, plasma CVD, laser CVD, thermal CVD, coating, etc. can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas and liquid phases. Is preferred.
  • a vacuum can also be used.
  • a hygroscopic compound may be enclosed inside.
  • the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, Cobalt sulfate, etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid) Barium chlorate, magnesium perchlorate, etc.), and anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween, or the sealing film.
  • the mechanical strength is not limited.
  • the same glass plate, polymer plate 'film, metal plate' film, and the like used for the sealing can be used. It is preferable to use a film.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, conductive transparent materials such as Cul, indium tinoxide (IT 0), SnO, and ZnO. IDIXO (In O _Zn ⁇ )
  • a material such as 2 2 3 that is amorphous and capable of producing a transparent conductive film may be used.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by a single photolithography method.
  • a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • wet film forming methods such as a printing system and a coating system, can also be used.
  • the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is a force depending on the material, usually 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium Z indium mixture, aluminum Z aluminum oxide (Al O) mixture, indium, lithium Z aluminum mixture, rare earth metal etc.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixture, magnesium / Indium mixture, aluminum / aluminum oxide (Al 2 O 3) mixture, lithium /
  • Aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less, and the preferred film thickness is usually 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • the transparent conductive material described in the description of the anode is formed thereon, whereby a transparent or translucent cathode is manufactured.
  • organic EL devices for backlights, it is usually desirable that the light is emitted in all directions and the brightness does not change even if the viewing angle changes, but depending on the type of use, the front brightness is increased. It is desirable to reduce the brightness at large viewing angles (angles observed from an oblique direction). For this purpose, it is preferable to combine a diffuser plate, prism sheet, etc. to control the radiation angle on top of the organic EL element.
  • the first diffusion plate is in contact with the substrate surface opposite to the light emitting layer of the glass substrate.
  • the first lens sheet for example, 3M BEF II
  • the second lens sheet on the first lens sheet.
  • the lens is arranged so that it is orthogonal to the lens stripe and the lens surface faces away from the glass substrate.
  • a second diffusion plate is disposed so as to contact the second lens sheet.
  • an octagonal stripe having an apex angle of 90 degrees and a pitch of 50 111 is formed of acrylic resin on a PET base material.
  • Shapes with rounded apex angles (3M RBEF), shapes with randomly changing pitch (3M BEF III), and other similar shapes may be used.
  • the first diffusion plate is a film in which beads that diffuse light are mixed on an approximately 100 ⁇ m PET substrate.
  • the transmittance is approximately 85% and the haze value is approximately 75%. is there.
  • the second diffusing plate is a film in which beads that diffuse light are mixed on a PET substrate of about 100 ⁇ m.
  • the transmittance is about 90% and the haze value is about 30%. is there.
  • the diffusion plate arranged in contact with the glass substrate may be bonded to the glass substrate via an optical adhesive. Further, a layer for diffusing light may be directly applied on the surface of the glass substrate, or a fine structure for diffusing light on the surface of the glass substrate may be provided.
  • the substrate may be a resin substrate.
  • a microlens array sheet is placed on the surface of the glass substrate opposite to the surface on which the light emitting layer is provided. Paste through.
  • Each microlens array sheet has a 50 / m square shape (pyramid shape) and a microlens whose apex angle is 90 degrees.
  • a UV curable resin is injected between a metal mold which is a mother mold of a microlens array and a glass plate placed with a spacer of 0.5 mm.
  • the resin is cured by UV exposure from a glass substrate to obtain a microlens array sheet.
  • a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable.
  • the microlens array sheet may be attached to the resin substrate.
  • My A configuration in which a transparent electrode / light emitting layer / electrode / sealing layer is provided on the surface opposite to the surface on which the microlens array of the black lens array sheet is provided may be employed.
  • a microlens array sheet is formed on the surface of the glass substrate opposite to the surface on which the light-emitting layer is provided. Affix with an optical adhesive so that the surface faces the glass substrate.
  • the microlens array sheet has a shape in which microlenses having a structure in which the apexes of a quadrangular shape with a side of 50 x m are flattened are arranged 1J at a pitch of 50 ⁇ m. The flat apex is bonded to the surface of the glass substrate.
  • each microlens a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable.
  • the microlens array sheet has been described as being attached to the glass substrate, the microlens array sheet may be attached to the resin substrate.
  • a low refractive index layer between the transparent electrode and the transparent substrate.
  • a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to about 1.7, it is preferable that the low refractive index layer has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is longer than the wavelength in the light medium, preferably more than twice. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • a method for producing a glass substrate having a low refractive index layer in which hollow silica is dispersed by a sol-gel method will be described.
  • a low refractive index layer can be formed on a glass substrate by the following procedure.
  • a force dip coating described as spin coating may be used as long as a uniform film thickness can be obtained.
  • a glass substrate is shown as the substrate, since the process temperature is 150 ° C. or less, it can be applied directly on the resin substrate. Further effects can be expected by selecting a lower refractive index as a raw material compound or a low refractive index material and making the resulting low refractive index layer have a refractive index of 1.37 or less.
  • the film thickness is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • hollow silica is described in, for example, JP-A No. 2001-167637, JP-A No. 2001-233611, and JP-A No. 2002-79616.
  • the transparent low refractive index layer is formed by a silica air mouth gel obtained by supercritical drying of a wet gel formed by a sol-gel reaction of silicon alkoxide.
  • Siri-force air mouth gel is a light-transmitting porous material with a uniform ultra-fine structure.
  • Liquid A was prepared by mixing tetramethoxysilane oligomer and methanol
  • liquid B was prepared by mixing water, aqueous ammonia, and methanol.
  • the alkoxysilane solution obtained by mixing the A and B solutions is applied onto the substrate 2.
  • the alkoxysilane is gelled, it is immersed in a curing solution of water, aqueous ammonia and methanol, and then cured at room temperature for one day and night.
  • the cured gel-like compound is immersed in an isopropanol solution of hexamethyldisilazane, hydrophobized, and then subjected to supercritical drying to form a silica
  • porous silica A film of low dielectric constant material containing water repellent hexamethyldisiloxane or hexamethyldisilazane as a low refractive index material is applied to a substrate.
  • water-repellent materials such as hexamethyldisiloxane and hexamethyldisilazane
  • alcohol or butyl acetate may be added as an additive to the solution of the low dielectric constant material used here, if necessary. .
  • a low refractive index film made of a porous silica material is formed by evaporating the solvent, water, acid, alkali catalyst, surfactant or the like in the solution of the low relative dielectric constant material by a baking treatment or the like. This is washed to obtain a low refractive index film.
  • an intermediate layer is formed on the low refractive index film directly or with a transparent insulating film made of a SiO film by, for example, RF sputtering, afterwards,
  • An IT ⁇ film is formed on the intermediate layer by DC sputtering to form a substrate with a transparent electrode.
  • a diffraction grating is introduced into an interface or a medium that causes total reflection. It is preferable to use a combination of these methods. For example, a diffraction grating is formed on a glass substrate.
  • This method utilizes the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction and second-order diffraction.
  • Bragg diffraction such as first-order diffraction and second-order diffraction.
  • the light that cannot go out due to total reflection between layers is introduced by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). Is diffracted to extract light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction can be obtained. It is not diffracted, and the light extraction efficiency is greatly improved.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or transparent electrode) as described above, but is preferably in the vicinity of the light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength in the medium of the light to be amplified.
  • Diffraction grating array is square It is preferable that the arrangement is repeated two-dimensionally, such as a lattice lattice shape, a triangular lattice shape, or a honeycomb lattice shape.
  • a glass-type resist is applied to the surface after washing the glass substrate.
  • two parallel lights of wavelength ⁇ are applied to the resist so as to face each other at an angle of ⁇ degrees from the vertical direction of the substrate.
  • interference fringes having a pitch d are formed in the resist.
  • d / (2cos ⁇ ).
  • the substrate is rotated 90 degrees in the plane of the substrate to form second interference fringes so as to be orthogonal to the first interference fringes. If the light beam to be exposed is maintained as it is, second interference fringes are formed at a pitch of 300 nm.
  • the resist is exposed with two interference fringes superimposed to form a grid-like exposure pattern. By appropriately setting the exposure power and development conditions, development is performed so that the resist is removed only in the areas where two interference fringes overlap and are strongly exposed.
  • a pattern in which the resist is removed in a substantially circular shape is formed in the overlapping part of the lattices with vertical and horizontal pitches of 300 nm each.
  • the diameter of the circle is, for example, 220 ⁇ m.
  • a glass substrate is formed in which holes having a depth of 200 nm and a diameter of 220 nm are arranged on the surface at the apexes of square lattices having a pitch of 300 nm.
  • an ITO film with a film thickness of about 300 nm measured from the bottom of the hole is formed by bias sputtering, and the surface irregularities can be flattened to 50 nm or less by appropriately controlling the bias sputtering conditions. it can.
  • a glass substrate with ITO for organic EL is formed.
  • a glass mold is formed by a similar method, and a UV-curable resist is transferred onto the glass substrate by a nanoimprint method.
  • a method of etching the substrate is also possible.
  • the pattern formed on the glass substrate It is possible to carry out the present invention even on a resin substrate by using as a substrate a substrate that has been transferred to a mold by a method such as a luminaire and transferred to a resin by a nanoimprinting method.
  • the front luminance amplification factor is increased.
  • the emission color is classified into blue light emission of 420 nm or more and less than 500 nm, blue light emission of 500 nm or more and less than 550 nm, and red light of 600 nm or more to less than 650 nm.
  • the front luminance peak value of the organic EL element when there is no light extraction and / or light collection sheet in the present invention is different depending on the material that emits light (substantially a dopant).
  • blue is the smallest ratio.
  • the blue light emitting layer can be made thin and the driving voltage can be lowered, it can have a longer life than when no light extraction and / or condensing sheet is provided. Can get to.
  • the amplification factor of the front luminance by the light extraction and / or condensing sheet is measured from the front using a spectral radiance meter (for example, CS-1000 (manufactured by Konica Minolta Sensing)).
  • the light emission brightness (2 ° C viewing angle front brightness) is adjusted so that the optical axis of the spectroradiometer matches the normal from the light emitting surface with and without light extraction and with Z or a light collecting sheet. Measure and integrate in the necessary visible light wavelength range and take the ratio.
  • a method for producing an organic EL device comprising an anode Z hole injection layer Z hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
  • a desired electrode material such as an anode material is formed on a suitable support substrate.
  • a thin film is formed by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ or less, preferably 10 200 nm, to produce an anode.
  • a method of thinning the organic compound thin film there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above.
  • the vacuum deposition method, spin coating method, ink jet method, and printing method are particularly preferred because they are difficult to generate pinholes. Further, different film forming methods may be applied for each layer.
  • the deposition conditions are different due to kinds of materials used, generally boat temperature 50 450 ° C, vacuum degree. 10 to: 10- 2 Pa, deposition rate 0 01 50nmZ seconds, substrate temperature—50 300 C, film thickness 0.15 xm, preferably 5 200 nm, preferably selected appropriately.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably 50 to 200 nm.
  • the desired organic EL device can be obtained by forming the cathode and providing the cathode.
  • the organic EL element is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the cathode the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 240 V with the anode as + and the cathode as one polarity.
  • An alternating voltage may be applied.
  • the applied AC waveform may be arbitrary.
  • the organic electoluminescence element of the present invention can be used as a display device, a display, or various light sources.
  • light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sensors.
  • Light source, etc. Although not specified, it can be effectively used particularly as a backlight of a liquid crystal display device combined with a color filter and an illumination light source.
  • patterning may be performed by a metal mask or an ink jet printing method when forming a film, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the display device of the present invention will be described.
  • the display device of the present invention is used for a multicolor or white display device.
  • a shadow mask is provided only when the light emitting layer is formed, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable.
  • patterning using a shadow mask is preferable.
  • the cathode, electron transport layer, hole blocking layer, and light emitting layer unit (having at least three light emitting layers and non-light emitting intermediate layers between the light emitting layers) It is also possible to produce the hole transport layer and the anode in this order.
  • the lighting device of the present invention will be described.
  • the organic EL device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image.
  • a display device (display) May be used.
  • either the simple matrix (passive matrix) method or the active matrix method can be used.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the white metal complex according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics.
  • any one of known light emitting materials may be selected and combined, or may be combined with the light extraction and / or light collecting sheet according to the present invention to be whitened.
  • the white organic EL element used in the present invention is combined with the CF (color filter), and the element and the driving transistor circuit are arranged in accordance with the CF (color filter) pattern.
  • blue light, green light, and red light are obtained through a blue filter, a green filter, and a red filter using white light extracted from the organic electroluminescence element as a backlight.
  • a long-life, full-color organic electoluminescence display can be obtained with a low driving voltage, which is preferable.
  • various light-emitting light sources and lighting devices are also useful for display devices such as backlights for liquid crystal display devices as household lighting, interior lighting, and a kind of lamp such as an exposure light source. Used for.
  • backlights such as watches, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc.
  • light sources for optical communication processing machines such as a wide range of uses such as household appliances.
  • a substrate also called a support substrate
  • indium oxide
  • a glass substrate of 30 mm X 30 mm and a thickness of 0.4 mm as an anode
  • This transparent support substrate with a TO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes.
  • This transparent support base was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with F4_TCNQ, m_MTDATA, BCz VBi, DPVBi, CBP, phosphorescence G, phosphorescence R, HB, BCP, and CsF, respectively, in the optimum amounts for device fabrication.
  • the crucible for vapor deposition was made of molybdenum or tungsten resistance heating material.
  • the pressure was reduced to a vacuum degree 4 X 10- 4 Pa, heated by supplying an electric current to the evaporation crucible containing the m_MTDATA and F4_TCNQ, total as volume concentration of F4-TCNQ is 2% uniformly Vapor deposition was performed on the ITO electrode side of the transparent support substrate at a deposition rate of 0. InmZ seconds, and a 40 nm hole injection and transport layer containing an electron acceptor was provided.
  • the vaporization crucible loaded with each material was energized so that each layer was formed in the materials and mixing ratios shown in Table 1, and then co-evaporated or vapor-deposited to produce the light-emitting layer 1 and the intermediate layer 1
  • a light emitting layer 2 an intermediate layer, a light emitting layer 3, a hole blocking layer, and an electron injecting / transporting layer were formed.
  • the electron injection / transport layer was deposited on the hole blocking layer at a total deposition rate of 0.1 nm / sec so that the volume concentration of CsF was uniformly 20%, and 30 nm electron injection containing an electron donor was performed. ⁇ A transport layer was provided.
  • the organic EL element 102 was produced in the same manner as the organic EL element 101 except that the volume concentration of CsF was uniformly 40%.
  • FIGS. 1 and 2 show that the CsF volume concentration in the electron injection / transport layer is 20% and 40%, respectively, depending on the film thickness from the cathode toward the hole blocking layer.
  • the vapor deposition surface side is covered with a glass case, and a glove box in a nitrogen atmosphere (with an atmosphere of high-purity nitrogen gas with a purity of 99.999% or higher is used without contacting the organic-electric luminescence element 101 with the atmosphere).
  • a nitrogen atmosphere with an atmosphere of high-purity nitrogen gas with a purity of 99.999% or higher is used without contacting the organic-electric luminescence element 101 with the atmosphere.
  • 10 and 11 are schematic views and cross-sectional views of the lighting device.
  • 15 indicates a cathode
  • 16 indicates an organic EL layer
  • 17 indicates a glass substrate with a transparent electrode.
  • the glass cover 12 is filled with nitrogen gas 18 and a water catching agent 19 is provided. ing.
  • the organic EL devices 103-107 change the volume concentration of CsF in the electron injection / transport layer according to the film thickness in the direction from the cathode to the hole blocking layer.
  • Each component in the injection / transport layer was fabricated in the same manner as the organic EL device 101.
  • the organic EL element 108 was manufactured in the same manner as the organic EL element 107 except that Fir (pic) was used instead of BCzVBi in the light emitting layer 1.
  • Organic EL devices 109 to 111 were prepared in the same manner except that in the organic EL device 108, BCP in the electron injection and transport layer was replaced with H_3, H_7, and compound (1), respectively.
  • the CsF volume is 14 nm from the cathode side out of the total film thickness of 30 nm of the electron injection / transport layer under the condition of a total deposition rate of 0.1 nm / sec.
  • the concentration was adjusted to 20%, then 2nm was reduced to 50%, and then back to 20% at 14nm.
  • the organic EL elements 104 to 111 were produced in the same manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This invention provides an organic electroluminescent element, which can realize high brightness and high luminescence efficiency, has excellent power consumption and continuous drive service life and can take out white light, and a white backlight capable of realizing excellent color reproduction in use of the element in combination with a color filter. The organic electroluminescent element comprises a substrate, and an anode and at least one organic layer and a cathode provided on the substrate. The organic electroluminescent element is characterized in that at least one layer constituting the organic layer contains an electron donor, the volume concentration (%) of the electron donor in the organic layer is 5 to 95%, and an electron donor concentration region, which is different by not less than 5% in concentration, is present. The white backlight comprises the element in combination with a color filter.

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子、及び有機エレクト口ルミネッセンスディ スプレイ  Organic Elect Mouth Luminescence Device and Organic Elect Mouth Luminescence Display
技術分野  Technical field
[0001] 本発明は、有機エレクト口ルミネッセンス素子、及び有機エレクト口ルミネッセンスデ イスプレイに関する。  TECHNICAL FIELD [0001] The present invention relates to an organic electoluminescence device and an organic electroluminescence device.
背景技術  Background art
[0002] 発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレイ(EL D)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス素子(無機 EL素 子)や有機エレクト口ルミネッセンス素子(以下、有機 EL素子ともいう)が挙げられる。 無機エレクト口ルミネッセンス素子は平面型光源として使用されてきたが、発光素子を 駆動させるためには交流の高電圧が必要である。  As a light-emitting electronic display device, there is an electoluminescence display (EL D). Examples of ELD constituent elements include inorganic electoluminescence devices (inorganic EL devices) and organic electroluminescence devices (hereinafter also referred to as organic EL devices). Inorganic electoric luminescence elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
[0003] 有機エレクト口ルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と 陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることに より励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光' 燐光)を利用して発光する素子であり、数 V〜数十 V程度の電圧で発光が可能であり [0003] An organic electoluminescence device has a structure in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and is excited by injecting electrons and holes into the light-emitting layer and recombining them. This is an element that emits light by utilizing the emission of light (fluorescence 'phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts.
、更に自己発光型であるために視野角に富み、視認性が高ぐ薄膜型の完全固体素 子であるために省スペース、携帯性等の観点から注目されている。 Furthermore, since it is a self-luminous type, it has a wide viewing angle, and since it is a thin-film type completely solid element with high visibility, it is attracting attention from the viewpoint of space saving and portability.
[0004] 消費電力の削減要望が高いので、駆動電圧の低下方法が開示されてきている。例 えば、有機層を薄膜すれば一定電流を流すための駆動電圧は更に下げることができ る力 キャリアの流出が大きくなり、発光効率が低下してしまう。そこで、電子輸送層と して電子輸送性有機化合物中にアルカリ金属、アルカリ土類金属をドープしている( 例えば、特許文献 1参照。)。所謂 n型半導体層の設計利用である。更に、電子輸送 性有機化合物からの改良アプローチがなされている(例えば、特許文献 2参照。)。 特に金属 Csは仕事関数が小さぐドーパント効果が高いが、空気中で不安定なので 取扱上危険であり、且つ素子の経時劣化が大きい欠点を有していた。そこで、特定 の Csや Rb化合物に変更した改善工夫がなされている(例えば、特許文献 3参照。)。 [0005] し力しながら、有機エレクト口ルミネッセンスパネルに対する巿場の期待が大きぐ消 費電力の大幅な改善が望まれている。即ち、低駆動電圧化と共に高い発光効率であ り、且つ経時と共に性能が小さい性能向上である。前記文献では、エレクトロンドナー の濃度は全て一定であり、局所的に変化させる記載は認められず示唆もされていな レ、。 [0004] Since there is a high demand for reduction in power consumption, methods for reducing drive voltage have been disclosed. For example, if the organic layer is made thin, the driving voltage for allowing a constant current to flow can be further reduced. The outflow of carriers increases, and the luminous efficiency decreases. In view of this, an electron transporting organic compound is doped with an alkali metal or an alkaline earth metal as an electron transporting layer (see, for example, Patent Document 1). This is the design and utilization of a so-called n-type semiconductor layer. Furthermore, an improved approach from an electron transporting organic compound has been made (see, for example, Patent Document 2). Metal Cs, in particular, has a small work function and a high dopant effect, but it is unstable in the air and is dangerous to handle, and has a drawback that the device deteriorates with time. Therefore, improvements have been made by changing to specific Cs and Rb compounds (for example, see Patent Document 3). [0005] However, there is a great need for a drastic improvement in power consumption, which has great expectations for the organic electroluminescence panel luminescence panel. That is, it is a performance improvement with a low driving voltage and a high luminous efficiency and a small performance with time. In the above document, the concentration of electron donors is all constant, and there is no description or suggestion that it is locally changed.
特許文献 1 :特開平 10— 270172号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-270172
特許文献 2 :特開 2004— 193011号公報  Patent Document 2: JP 2004-193011 A
特許文献 3:特開 2004— 335137号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-335137
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の目的は、高輝度で発光効率が高ぐ消費電力、連続駆動寿命に優れた白 色光を取り出せる有機エレクト口ルミネッセンス素子、及び該素子を用い、カラーフィ ルターとの組合せにおいて色再現性に優れた白色バックライトを提供することである [0006] An object of the present invention is to provide an organic-electric-mouth luminescence device capable of extracting white light with high brightness, high luminous efficiency, excellent continuous drive life, and color reproduction in combination with a color filter using the device. Is to provide an excellent white backlight
課題を解決するための手段 Means for solving the problem
[0007] 本発明の上記目的は、下記構成により達成される。 [0007] The above object of the present invention is achieved by the following configurations.
[0008] 1.基板上に陽極、少なくとも 1層の有機層及び陰極から構成される有機エレクト口 ノレミネッセンス素子において、前記有機層の少なくとも 1層がエレクトロンドナーを含 有し、該エレクトロンドナーの有機層中における体積濃度(%)が 5〜95%であり、 5 %以上異なるエレクトロンドナー濃度領域が存在することを特徴とする有機エレクト口 ノレミネッセンス素子。  [0008] 1. In an organic electret nominence device comprising an anode, at least one organic layer and a cathode on a substrate, at least one of the organic layers contains an electron donor, and the organic layer of the electron donor An organic electoresistive element having an electron donor concentration region having a volume concentration (%) in the range of 5 to 95% and a difference of 5% or more.
[0009] 2.前記エレクトロンドナーが含有される体積濃度(Q/o)の最大濃度と最低濃度の差 力 ¾0〜90%であることを特徴とする前記 1に記載の有機エレクト口ルミネッセンス素 子。  [0009] 2. The organic electroluminescent device according to 1 above, wherein the difference between the maximum concentration and the minimum concentration of the volume concentration (Q / o) containing the electron donor is ¾0 to 90%. .
[0010] 3.前記エレクトロンドナーの最大濃度または最低濃度を含有する領域の各膜厚が 該エレクトロンドナーを含有する有機層の膜厚に対して 1/100〜1/4であることを 特徴とする前記 1または 2に記載の有機エレクト口ルミネッセンス素子。  [0010] 3. Each film thickness of the region containing the maximum concentration or the minimum concentration of the electron donor is 1/100 to 1/4 with respect to the film thickness of the organic layer containing the electron donor. The organic electoluminescence device according to 1 or 2 above.
[0011] 4.前記エレクトロンドナーを含有する有機層における陽極側で隣接する層界面と の距離が該エレクトロンドナーを含有する有機層の膜厚に対して 1/3以内の領域に おいて、エレクトロンドナー体積濃度(%)が 10%以下であることを特徴とする前記 1[0011] 4. A layer interface adjacent on the anode side in the organic layer containing the electron donor; The electron donor volume concentration (%) is 10% or less in a region within 1/3 of the thickness of the organic layer containing the electron donor.
〜3のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 The organic electoluminescence device according to any one of 1 to 3,
[0012] 5.前記 5%以上異なるエレクトロンドナー濃度領域が少なくとも 3領域あることを特 徴とする前記 1〜4のいずれ力、 1項に記載の有機エレクト口ルミネッセンス素子。 [0012] 5. The organic electroluminescent device according to any one of items 1 to 4, characterized in that there are at least three electron donor concentration regions different from each other by 5% or more.
[0013] 6.前記エレクトロンドナーを含有する有機層が陰極と接することを特徴とする前記 1[0013] 6. The organic layer containing an electron donor is in contact with a cathode.
〜5のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。 The organic electoluminescence device according to any one of -5.
[0014] 7.前記有機層として少なくとも 1種の燐光を発光する発光ドーパント (燐光性化合 物)を含有する発光層を有することを特徴とする前記 1〜6のいずれ力、 1項に記載の 有機エレクト口ルミネッセンス素子。 [0014] 7. The power according to any one of 1 to 6, wherein the organic layer has a light-emitting layer containing a light-emitting dopant (phosphorescent compound) that emits at least one phosphorescence. Organic electoluminescence element.
[0015] 8.前記有機層として燐光性化合物を含有する発光層と蛍光性化合物を含有する 発光層とを有することを特徴とする前記:!〜 6のいずれか 1項に記載の有機エレクト口 ノレミネッセンス素子。 [0015] 8. The organic electoscope according to any one of the above:! To 6, wherein the organic layer includes a light emitting layer containing a phosphorescent compound and a light emitting layer containing a fluorescent compound. Nominescence element.
[0016] 9.前記蛍光性化合物を含有する発光層が青色発光であることを特徴とする前記 8 に記載の有機エレクト口ルミネッセンス素子。  [0016] 9. The organic electroluminescence device according to 8 above, wherein the light emitting layer containing the fluorescent compound emits blue light.
[0017] 10. 白色発光であることを特徴とする前記 1〜9のいずれ力 1項に記載の有機エレ タトロルミネッセンス素子。 [0017] 10. The organic electroluminescent element as described in any one of 1 to 9 above, which emits white light.
[0018] 11.前記 10に記載の有機エレクト口ルミネッセンス素子から取り出される白色光か ら、青色フィルタ、緑色フィルタ、赤色フィルタを介して青色光、緑色光、赤色光を得 ることを特徴とする有機エレクト口ルミネッセンスディスプレイ。  [0018] 11. Blue light, green light, and red light are obtained from white light extracted from the organic-electric-luminescence device described in 10 above through a blue filter, a green filter, and a red filter. Organic-elect luminescence display.
発明の効果  The invention's effect
[0019] 本発明によって、高輝度で発光効率が高ぐ消費電力、連続駆動寿命に優れた白 色光を取り出せる有機エレクト口ルミネッセンス素子、及び該素子を用い、カラーフィ ルターとの組合せにおいて色再現性に優れた白色バックライトを提供することができ た。  [0019] According to the present invention, an organic electoluminescence device capable of extracting white light with high brightness, high luminous efficiency, excellent continuous drive life, and color reproducibility in combination with a color filter using the device. An excellent white backlight could be provided.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]有機 EL素子 101の電子注入'輸送層における CsF体積濃度を陰極から正孔 阻止層方向への膜厚に応じて示す図である 園 2]有機 EL素子 102の電子注入 ·輸送層における CsF体積濃度を陰極から正孔 阻止層方向への膜厚に応じて示す図である FIG. 1 is a view showing CsF volume concentration in an electron injection / transport layer of an organic EL device 101 according to a film thickness from a cathode toward a hole blocking layer. 2] It is a diagram showing the CsF volume concentration in the electron injection / transport layer of the organic EL element 102 according to the film thickness from the cathode toward the hole blocking layer.
園 3]有機 EL素子 103の電子注入 ·輸送層における CsF体積濃度を陰極から正孔 阻止層方向への膜厚に応じて示す図である 3] It is a diagram showing the CsF volume concentration in the electron injection / transport layer of the organic EL device 103 according to the film thickness from the cathode toward the hole blocking layer.
園 4]有機 EL素子 104の電子注入'輸送層における CsF体積濃度を陰極から正孔 阻止層方向への膜厚に応じて示す図である 4] A diagram showing the volume concentration of CsF in the electron injection / transport layer of the organic EL element 104 according to the film thickness from the cathode toward the hole blocking layer.
園 5]有機 EL素子 105の電子注入'輸送層における CsF体積濃度を陰極から正孔 阻止層方向への膜厚に応じて示す図である FIG. 5 is a graph showing CsF volume concentration in the electron injection 'transport layer of the organic EL element 105 according to the film thickness from the cathode toward the hole blocking layer.
園 6]有機 EL素子 106の電子注入'輸送層における CsF体積濃度を陰極から正孔 阻止層方向への膜厚に応じて示す図である 6] A graph showing the CsF volume concentration in the electron injection 'transport layer of the organic EL element 106 according to the film thickness from the cathode toward the hole blocking layer.
園 7]有機 EL素子 107の電子注入'輸送層における CsF体積濃度を陰極から正孔 阻止層方向への膜厚に応じて示す図である 7] A graph showing the volume concentration of CsF in the electron injection 'transport layer of the organic EL element 107 according to the film thickness from the cathode toward the hole blocking layer.
園 8]バリア膜の層構成とその密度プロファイルの一例を示す模式図である。 園 9]基材を処理する大気圧プラズマ放電処理装置の一例を示す概略図である。 FIG. 8 is a schematic diagram showing an example of the layer structure of the barrier film and its density profile. FIG. 9] A schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus for treating a substrate.
[図 10]照明装置の概略図である。  FIG. 10 is a schematic view of a lighting device.
[図 11]照明装置の断面図である。  FIG. 11 is a cross-sectional view of the lighting device.
符号の説明 Explanation of symbols
11 ガラス基板  11 Glass substrate
12 ガラスケース  12 Glass case
15 陰極  15 Cathode
16 有機 EL層  16 OLED layer
17 透明電極  17 Transparent electrode
18 窒素ガス  18 Nitrogen gas
19 捕水剤  19 Water catcher
201 ノくリア膜  201 Noria membrane
202 基材  202 Base material
203 低密度層  203 Low density layer
204 中密度層 205 尚密度層 204 Medium density layer 205 Low density layer
230 プラズマ放電処理装置  230 Plasma discharge treatment equipment
231 プラズマ放電処理容器  231 Plasma discharge treatment vessel
235 ロール回転電極  235 roll rotating electrode
236 角筒型固定電極群  236 Square tube type fixed electrode group
240 電界印加手段  240 Electric field application means
250 ガス供給手段  250 Gas supply means
251 ガス発生装置  251 Gas generator
253 排気口  253 Exhaust port
260 電極温度調節手段  260 Electrode temperature control means
F 基材  F Substrate
P 送液ポンプ  P liquid pump
261 配管  261 piping
266 ニップロール  266 Nip roll
267 ガイドロール  267 Guide roll
268、 269 仕切板  268, 269 divider
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明に係る各構成要素の詳細について順次説明する。  [0022] Hereinafter, details of each component according to the present invention will be sequentially described.
[0023] 《有機エレクト口ルミネッセンス素子》 [0023] << Organic Elect Mouth Luminescence Element >>
本発明の有機エレクト口ルミネッセンス素子について説明する。本発明の有機エレ タトロルミネッセンス素子とは、基板、電極、有機層から構成され、有機層は少なくとも 発光層と本発明に係るエレクトロンドナー(単に、ドナーとも言う)を含有する有機層か らなる。  The organic electoluminescence device of the present invention will be described. The organic electroluminescent element of the present invention is composed of a substrate, an electrode and an organic layer, and the organic layer is composed of at least a light emitting layer and an organic layer containing the electron donor according to the present invention (also simply referred to as a donor).
[0024] 《有機エレクト口ルミネッセンス素子の発光、正面輝度、色度》  [0024] << Emission, Front Luminance, Chromaticity of Organic Electric Luminescence Element >>
本発明の有機エレクト口ルミネッセンス素子ゃ該素子に係る化合物の発光色は、「 新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108頁 の図 4. 16において、分光放射輝度計 CS— 1000 (コニカミノルタセンシング社製)で 測定した結果を CIE色度座標に当てはめたときの色で決定される。本発明の有機ェ レクト口ルミネッセンス素子における白色とは、 2°C視野角正面輝度を上記方法により 測定した際に、 CIE1931 表色系の色度力 ½=0. 33 ± 0. 07、y=0. 33 ± 0. 07 の領域内にあることが特徴である。 The emission color of the organic electoluminescence device of the present invention is shown in Fig. 4.16 on page 108 of "New Color Science Handbook" (edited by the Japan Society for Color Science, The University of Tokyo Press, 1985). It is determined by the color when the result measured with the luminance meter CS-1000 (Konica Minolta Sensing) is applied to the CIE chromaticity coordinates. Organic organic of the present invention The white color in the Recto-Luminescence device means the chromaticity of the CIE1931 color system ½ = 0.33 ± 0.07, y = 0.33 ± 0 when the front luminance at 2 ° C viewing angle is measured by the above method. It is characterized by being in the 07 area.
[0025] 《層構成》 [0025] << layer structure >>
白色の光を取り出すために、本発明に係る有機エレクト口ルミネッセンス素子の構 成層である発光層は、発光極大波長が各々 430〜480nm、 510〜550nm、 600〜 640nmの範囲にある発光スペクトルの異なる少なくとも 2層以上の層を含み、好まし くは 3層以上である。  In order to extract white light, the light-emitting layer, which is a constituent layer of the organic electoluminescence device according to the present invention, has different emission spectra with emission maximum wavelengths in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively. It contains at least two layers, and preferably has three or more layers.
[0026] 本発明における層構成の好ましい具体例を以下に示すが、本発明はこれらに限定 されない。  [0026] Preferred specific examples of the layer structure in the present invention are shown below, but the present invention is not limited thereto.
[0027] (i)陽極 Z正孔輸送層 Z電子阻止層 Z発光層ユニット Z正孔阻止層 Z電子輸送 層/陰極  (I) Anode Z hole transport layer Z electron blocking layer Z light emitting layer unit Z hole blocking layer Z electron transport layer / cathode
(ii)陽極/正孔輸送層/電子阻止層/発光層ユニット/正孔阻止層/電子輸送 層/陰極バッファー層/陰極  (ii) Anode / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode
(m)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層ユニット/正孔 阻止層/電子輸送層/陰極  (m) Anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode
(iv)陽極/陽極バッファ一層/正孔輸送層/電子阻止層/発光層ユニット/正孔 阻止層/電子輸送層/陰極バッファー層/陰極  (iv) Anode / anode buffer layer / hole transport layer / electron blocking layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode
ここで、発光層ユニットとは、発光極大波長が各々 430〜480nm、 510〜550nm 、 600〜640nmの範囲にある少なくとも 2層の発光層を有するものを発光層ユニット とする。また、該ユニットは、各発光層間に非発光性の中間層を有していることが好ま しい。  Here, the light-emitting layer unit is a light-emitting layer unit that has at least two light-emitting layers whose emission maximum wavelengths are in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively. Further, the unit preferably has a non-light emitting intermediate layer between the light emitting layers.
[0028] 《エレクトロンドナー》  [0028] 《Electron Donor》
本発明に係るエレクトロンドナーとは、電子供与性化合物を指す。単体ではなぐド 一パントとしてホストと混合することにより有機層を形成する。エレクトロンドナーにより 還元されたホストがァニオンラジカル状態で存在することで、陰極側の層界面付近に おける電子障壁が軽減され、電子の供給密度が高まり、低電圧化効果が認められる 。即ち、本発明に係るドーパントは、混合する有機材料よりも LUMO準位が高ぐ仕 事関数が小さいことが必須である。エレクトロンドナーを含有する層は発光層でも構 わない。この場合のドーパントは、本発明のキャリアドナーと発光源を含有することと なる。発光源は蛍光でも燐光でも構わない。本発明に係るエレクトロンドナーは、好ま しくは電子輸送層に含有される。 The electron donor according to the present invention refers to an electron donating compound. An organic layer is formed by mixing with a host as a single pant. The presence of the host reduced by the electron donor in the state of an anion radical reduces the electron barrier near the layer interface on the cathode side, increases the electron supply density, and the effect of lowering the voltage is recognized. That is, the dopant according to the present invention has a higher LUMO level than the organic material to be mixed. It is essential that the thing function is small. The layer containing the electron donor may be a light emitting layer. In this case, the dopant contains the carrier donor and the light emitting source of the present invention. The emission source may be fluorescence or phosphorescence. The electron donor according to the present invention is preferably contained in the electron transport layer.
[0029] 《電子輸送層》  [0029] << Electron Transport Layer >>
本発明に使用される電子輸送層は駆動電圧に効果が認められ、キャリアドナーのド ープにより電子密度を高めたり、浅レ、 LUMO準位を形成しホッピングによる電子移 動度を高めているためと解釈されている。ドープされる不純物の濃度については、電 子輸送層中におレ、て一律な濃度の検討のみなされてきた。  The electron transport layer used in the present invention has an effect on the driving voltage, and the electron density is increased by doping the carrier donor, and the electron mobility by hopping is increased by forming a shallow level and LUMO level. It is interpreted because. Regarding the concentration of impurities to be doped, only a uniform concentration has been studied in the electron transport layer.
[0030] 本発明者が詳細に不純物の濃度依存性を検討した結果、本発明に至った。即ち、 不純物の濃度が一律ではなぐ局所的に変化させると従来の低駆動電圧化に加えて 、驚くべきことに発光効率の向上効果が認められた。特に平均ドナー濃度よりも局所 的に高濃度領域を設けた場合に、顕著な効果が認められた。僅かではあるが、駆動 電圧の上昇傾向が認められたが、電力効率としては有利である。理由は定かではな いが、ドナー濃度が局所的に高くなると、固定正孔数が増え、正孔障壁が高くなるた めに発光層内における正孔ゃ励起子の封じ込めがなされてレ、るの力しれなレ、。本発 明に係る電子輸送層は単層または複数層設けることができる。  [0030] As a result of the inventor's detailed study on the impurity concentration dependence, the present invention has been achieved. That is, when the impurity concentration is locally changed rather than uniformly, in addition to the conventional low driving voltage, surprisingly, the effect of improving the luminous efficiency was recognized. In particular, when a high concentration region was provided locally above the average donor concentration, a remarkable effect was observed. Although there was a slight tendency to increase the driving voltage, it is advantageous in terms of power efficiency. The reason is not clear, but when the donor concentration is locally increased, the number of fixed holes increases and the hole barrier is increased, so that excitons are contained in the light-emitting layer. The power of The electron transport layer according to the present invention can be provided as a single layer or a plurality of layers.
[0031] 電子輸送材料としては、既知のものを使用できる。例えば、ニトロ置換フルオレン誘 導体、ジフエ二ルキノン誘導体、チォピランジオキシド誘導体、カルポジイミド、フレオ レニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾ一 ノレ誘導体等が挙げられる。更に、上記ォキサジァゾール誘導体において、ォキサジ ァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基 として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料とし て用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料 を高分子の主鎖とした高分子材料を用いることもできる。  [0031] As the electron transport material, known materials can be used. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carpositimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxazazomonore derivatives and the like can be mentioned. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
[0032] また、 8 _キノリノール誘導体の金属錯体、例えば、トリス(8—キノリノール)アルミ二 ゥム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ ロモ一 8_キノリノール)アルミニウム、トリス(2—メチル _8 _キノリノール)アルミユウ ム、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Zn q)等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに 置き替わった金属錯体も、電子輸送材料として用いることができる。 [0032] In addition, metal complexes of 8_quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibu) Lomo 1_Quinolinol) Aluminum, Tris (2-Methyl _8 _Quinolinol) Aluminum Yu , Tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Zn q), etc., and the central metal of these metal complexes are placed in In, Mg, Cu, Ca, Sn, Ga or Pb. Alternative metal complexes can also be used as electron transport materials.
[0033] その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル 基ゃスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いること ができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送 材料として用いることができる。また、ホストの項に記述した一般式(1)で表されるィ匕 合物も好ましく適用できる。  In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Further, the distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the electron transporting material. In addition, a compound represented by the general formula (1) described in the host section can be preferably applied.
[0034] 本発明に係るキャリアドナー材料としては、既知の材料を使用できる。例えば、特開 平 4— 297076号公報、特開平 10— 270172号公報、特開 2000— 196140号公報 、特開 2001— 102175号公報、 J. Appl. Phys., 95, 5773 (2004)などに記載さ れたものが挙げられる。また、特開 2006— 41020号公報における一般式(8)〜(: 10 )も好ましく用いられる。本発明においては、このような n性の高い電子輸送層を本発 明の P性半導体層と併用することにより、低消費電力の素子を作製することが可能と なる。  [0034] As the carrier donor material according to the present invention, a known material can be used. For example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. Those listed are listed. Further, general formulas (8) to (: 10) in JP-A-2006-41020 are also preferably used. In the present invention, by using such an electron transport layer having a high n property together with the P property semiconductor layer of the present invention, it is possible to produce a low power consumption element.
[0035] 上記電子輸送材料やキャリアドナーは、例えば、真空蒸着法、スピンコート法、キヤ スト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜化すること により形成すること力 Sできる。  [0035] The electron transport material and the carrier donor are formed by thinning by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Power S can be.
[0036] 材料の種類により特定できないが、本発明に係るドナー含有平均体積濃度は 5〜9 5%であり、少なくとも最大濃度と最低濃度の差が、 5%以上濃度が異なる領域が存 在する。 0%は本発明の主旨から外れ、 100%では絶縁体に近くなるため力、本発明 の効果が得  [0036] Although not specified by the type of material, the donor-containing average volume concentration according to the present invention is 5 to 95%, and there is a region where the difference between at least the maximum concentration and the minimum concentration is 5% or more. . 0% is out of the gist of the present invention, and 100% is close to an insulator.
られなレ、。最高濃度と最低濃度の差は 20〜90%であるが、好ましい最高濃度は 15 〜95%。更に好ましくは 25〜90%である。電子輸送層における最高濃度領域の膜 厚比は 1〜50%であり、更に好ましくは 2。/0力 45%である。膜厚としては通常は In m〜: l x m程度、好ましくは 5〜200nmである。陽極側に隣接する有機層界面から本 発明の電子輸送層の 1/3の膜厚における領域では、キャリアドナーの濃度は導電 性を損なわなレ、範囲で低いほど、連続駆動寿命の観点から好ましレ、。 [0037] 本発明はドナー体積濃度が 5%以上異なる領域が 3以上あると発光効率が更に向 上する場合があり、その一例は連続的に変化する場合である。材料によって異なるが 、 5以下である場合が多い。本発明で言う局所的とは、例えば、ドナー体積濃度が異 なる lnm以上の膜厚構成を任意に組み合わせた場合を挙げることができる。この場 合でも、ドナー体積濃度は最大濃度と最低濃度の差は 5%以上である。 Rena, The difference between the highest and lowest concentrations is 20-90%, but the preferred highest concentration is 15-95%. More preferably, it is 25 to 90%. The film thickness ratio of the highest concentration region in the electron transport layer is 1 to 50%, more preferably 2. / 0 force 45%. The film thickness is usually from In m to about lxm, preferably from 5 to 200 nm. In the region from the interface of the organic layer adjacent to the anode side to 1/3 of the thickness of the electron transport layer of the present invention, the carrier donor concentration is lower from the viewpoint of continuous driving life as the conductivity is not impaired. Masle. [0037] In the present invention, if there are 3 or more regions where the donor volume concentration differs by 5% or more, the light emission efficiency may be further improved, and one example is a case where it changes continuously. Depending on the material, it is often 5 or less. The term “local” as used in the present invention refers to, for example, a case where film thickness configurations of 1 nm or more having different donor volume concentrations are arbitrarily combined. Even in this case, the difference between the maximum and minimum donor volume concentrations is more than 5%.
[0038] 《正孔輸送層》  [0038] << Hole Transport Layer >>
正孔輸送層は単層または複数層設けることができる。正孔輸送材料としては、正孔 の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物 のいずれであってもよレ、。例えば、トリァゾール誘導体、ォキサジァゾール誘導体、ィ ミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘 導体、フヱニレンジァミン誘導体、ァリールァミン誘導体、ァミノ置換カルコン誘導体、 ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレノン誘導体、ヒドラゾン誘 導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重合体、また導電性高分子 オリゴマー、特にチォフェンオリゴマー等が挙げられる。正孔輸送材料としては上記 のものを使用することができるが、ポルフィリン化合物、芳香族第 3級ァミン化合物及 びスチリルァミン化合物、特に芳香族第 3級ァミン化合物を用いることが好ましい。  The hole transport layer can be provided as a single layer or a plurality of layers. The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative and a pyrazolone derivative, a vinylene diamine derivative, an arylamine derivative, an amino-substituted chalcone derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, Examples thereof include hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. The above-mentioned materials can be used as the hole transport material, but it is preferable to use porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds.
[0039] 芳香族第 3級ァミン化合物及びスチリルァミン化合物の代表例としては、 N, N, N ' , N' —テトラフエ二ルー 4, Α' —ジァミノフエニル; Ν, N' —ジフエ二ノレ一 Ν, Ν ' —ビス(3—メチルフエ二ル)一〔1 , 1' —ビフエ二ル〕一 4, 4' —ジァミン(TPD) ; 2, 2—ビス(4—ジ一 ρ—トリルァミノフエニル)プロパン; 1 , 1—ビス(4—ジ一 ρ—トリ ルァミノフエニル)シクロへキサン; Ν, Ν, Ν' , N' —テトラ一 ρ—トリル一 4, 4' - ジアミノビフエニル; 1, 1—ビス(4—ジ一 ρ—トリルァミノフエニル)一4—フエ二ルシク 口へキサン;ビス(4 -ジメチルアミノー 2 -メチルフエニル)フエニルメタン;ビス(4 -ジ —ρ—トリルァミノフエニル)フエニルメタン; Ν, N' —ジフエ二ノレ一 N, N' —ジ(4— メトキシフエ二ル)一 4, 4' —ジアミノビフエニル; N, N, N' , N' —テトラフェニル —4, 一ジアミノジフエニルエーテル; 4, 一ビス(ジフエニルァミノ)クオ一ドリフ ヱニル; Ν, Ν, Ν—トリ(ρ—トリル)ァミン; 4 _ (ジ— ρ—トリルァミノ) _4' _〔4—(ジ _ ρ—トリルァミノ)スチリル〕スチルベン; 4 _ Ν, Ν—ジフヱニルァミノ一(2—ジフヱ二 ノレビニノレ)ベンゼン; 3—メトキシ一 N, N ジフエニルアミノスチルベンゼン; N フエ二ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて レ、る 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' —ビス —(1—ナ フチル) _ N _フエニルァミノ〕ビフヱニル(NPD)、特開平 4— 308688号公報に記 載されているトリフエニルァミンユニットが 3つスターバースト型に連結された 4, 4' , " —トリス〔^^ _ (3 _メチルフエニル) _ N _フエニルァミノ〕トリフエニルァミン(MTD ATA)等が挙げられる。更にこれらの材料を高分子鎖に導入した、またはこれらの材 料を高分子の主鎖とした高分子材料を用いることもできる。また、 p型 _ Si、 p型一Si C等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 [0039] Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ', N'-tetraphenyl 4, Α'-diaminophenyl; Ν, N'-diphenylol Ν, Ν '— Bis (3-methylphenyl) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2-bis (4-di 1 ρ-tolylaminophenyl) Propane; 1, 1-bis (4-di-ρ-triraminophenyl) cyclohexane; Ν, Ν, Ν ', N' — tetra-ρ-tolyl-1,4,4'-diaminobiphenyl; 1, 1— Bis (4-di-1-ρ-tolylaminophenyl) 1-phenyl hexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-ρ-tolylaminophenyl) phenylmethane Ν, N '— Diphenylenol N, N ′ — Di (4-methoxyphenyl) 1, 4 ′ — Diaminobihue N, N, N ′, N ′ —tetraphenyl —4, 1-diaminodiphenyl ether; 4, 1-bis (diphenylamino) quadryl ヱ nyl; Ν, Ν, Ν-tri (ρ-tolyl) amine; 4 _ (Di-ρ-tolylamino) _4 '_ [4- (di_ρ-tolylamino) styryl] stilbene; 4 _ Ν, Ν-diphenylaminomino (2-diphenyl) Norevininole) benzene; 3-methoxy-1-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and further described in US Pat. No. 5,061,569. In the molecule, for example, 4,4'-bis- (1-naphthyl) _N_phenylamino] biphenyl (NPD), a triphenylamine unit described in JP-A-4-308688 4, 4 ', "— Tris [^^ _ (3 _methylphenyl) _ N _phenylamino] triphenylamine (MTD ATA), etc. Polymer materials introduced into polymer chains or using these materials as the main chain of the polymer can also be used, and inorganic compounds such as p-type _Si and p-type single SiC can also be used as hole injection materials. Can be used as a hole transport material.
[0040] また、特開平 1 1— 251067号公報、 J. Huang et. al.著文献 (Applied Physic s Letters 80 (2002) , p. 139)に記載されているような所謂、 p型正孔輸送材料 を用いることもできる。本発明においては、より高効率の発光素子が得られることから 、これらの材料を用いることが好ましい。正孔輸送層は上記正孔輸送材料を、例えば 、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、 LB法等の 公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚に ついては特に制限はなレ、が、通常は lnm〜l /i m程度、好ましくは 5〜200nmであ る。この正孔輸送層は上記材料の 1種または 2種以上からなる一層構造であってもよ レ、。また、不純物をドープした p性の高い正孔輸送層である。その例としては、特開平 4— 297076号公報、特開 2000— 196140号公報、特開 2001— 102175号公報、 J. Appl. Phys . , 95, 5773 (2004)等に記載されたもの力 S挙げられる。また、特開 2 006— 41020号公報における一般式(1)〜(7)も好ましく用いられる。本発明におい ては、このような p性の高い正孔輸送層を用いることが、より低消費電力の素子を作製 することができるため好ましい。  [0040] Also, the so-called p-type hole described in JP-A-11-251067 and J. Huang et. Al. (Applied Physics Letters 80 (2002), p. 139). Transport materials can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained. The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. The thickness of the hole transport layer is not particularly limited, but is usually about 1 nm to l / im, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials. In addition, it is a hole transport layer having a high p property doped with impurities. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. Can be mentioned. Further, general formulas (1) to (7) in JP-A No. 2006-41020 are also preferably used. In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
[0041] 《注入層:電子注入層、正孔注入層》  [0041] << Injection layer: electron injection layer, hole injection layer >>
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてもよい。注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間 に設けられる層のことで、「有機 EL素子とその工業化最前線(1998年 1 1月 30日ェ ヌ.ティー.エス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載さ れており、正孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある The injection layer is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. May be. The injection layer is a layer that is provided between the electrode and the organic layer in order to reduce the drive voltage and improve the luminance of the light emission. “The organic EL element and its forefront of industrialization (January 30, 1998) 2) Chapter 2 “Electrode Materials” (pages 123-166) of “NTS, Inc.”) is described in detail. The hole injection layer (anode buffer layer) and the electron injection layer (cathode) Buffer one layer)
[0042] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9一 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸化バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア二リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる [0042] The details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. One layer of phthalocyanine buffer typified by copper phthalocyanine, one layer of oxide buffer typified by vanadium oxide, one layer of amorphous carbon buffer, one layer of polymer buffer using a conductive polymer such as polyaniline (emeraldine) or polythiophene, etc. Can be mentioned
[0043] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9一 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロン チウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表される アルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸化アルミニウムに代表される酸化物バッファ一層等が挙げ られる。上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよる がその膜厚は 0. lnm〜5 /i mの範囲が好ましい。 [0043] The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Metal buffer layer typified by aluminum or titanium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer typified by aluminum oxide One layer and so on. The buffer layer (injection layer) is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 5 / im.
[0044] 《阻止層:正孔阻止層、電子阻止層》  [0044] << Blocking layer: hole blocking layer, electron blocking layer >>
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けら れるものである。例えば、特開平 11— 204258号公報、同 11 204359号公報、及 び「有機 EL素子とその工業化最前線(1998年 11月 30日ェヌ'ティー ·エス社発行) 」の 237頁等に記載されている正孔阻止(ホールブロック)層がある。  The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, see pages 237 of JP-A-11-204258, JP-A-11-204359, and “OLEDs and the Forefront of Industrialization (issued by NTT S. Co., Ltd., November 30, 1998)”. There is a hole blocking layer.
[0045] 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつ つ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、 後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用い ること力 Sできる。本発明の有機 EL素子の正孔阻止層は、発光層に隣接して設けられ ていることが好ましい。  [0045] In a broad sense, the hole blocking layer has a function of an electron transport layer, and is composed of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, and transports electrons. By blocking holes, the recombination probability of electrons and holes can be improved. In addition, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention as required. The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
[0046] また、本発明においては複数の発光色の異なる発光層を有するが、このような場合 にはその発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いこ とが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間 に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻 止層に含有される化合物の 50質量%以上が、前記最短波発光層のホスト化合物に 対しそのイオン化ポテンシャルが 0. 2eV以上大きレ、ことが好ましレ、。 [0046] In the present invention, a plurality of light emitting layers having different emission colors are provided. In this case, it is preferable that the light emitting layer whose emission maximum wavelength is the shortest wave is closest to the anode among all the light emitting layers. In such a case, the light emitting layer closest to the anode next to the shortest wave layer and the layer is used. It is preferable to additionally provide a hole blocking layer therebetween. Further, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.2 eV or more larger than the host compound of the shortest wave emitting layer. Les.
[0047] イオン化ポテンシャルは化合物の H〇M〇(最高被占分子軌道)レベルにある電子 を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような 方法により求めることができる。  [0047] The ionization potential is defined by the energy required to emit an electron at the HM0 (highest occupied molecular orbital) level of the compound to the vacuum level. For example, the ionization potential can be obtained by the following method. it can.
[0048] (1)米国 Gaussian社製の分子軌道計算用ソフトウェアである Gaussian98 (Gauss ian98、 Revision A. 11. 4, M. J. Frisch, et ai, Gaussian, Inc., Pitts Durg h PA, 2002. )を用レ、、キーワードとして B3LYP/6— 31G*を用いて構造最適化 を行うこと  [0048] (1) Gaussian98 (Gaussian98, Revision A. 11.4, MJ Frisch, et ai, Gaussian, Inc., Pitts Durg h PA, 2002.) Structural optimization using B3LYP / 6-31G * as keywords
により算出した値(eV単位換算値)の小数点第 2位を四捨五入した値としてイオンィ匕 ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求め た計算値と実験値の相関が高いためである。  The ionic potential can be obtained by rounding off the second decimal place of the value calculated in (eV unit conversion value). The reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
[0049] (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることも できる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC— 1」を 用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができ る。 [0049] (2) The ionization potential can also be obtained by a method of direct measurement by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
[0050] 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明 に係る正孔阻止層、電子輸送層の膜厚としては好ましくは 3〜100nmであり、更に 好ましくは 5〜30nmである。  [0050] On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports holes. However, by blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
[0051] 《発光層》  [0051] <Light emitting layer>
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる 電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であつ ても発光層と隣接層との界面であってもよい。本発明に係る発光層は、発光極大波 長が 430〜480nmの範囲にある青発光層、 510〜550nmの範囲にある緑発光層、 600〜640nmの範囲にある赤発光層の少なくとも 3色の発光層を有していることが 好ましいが、 2色構成でも構わない。例えば、前記 3区分の中から 2色を選択しても、 色再現性は 3色構成よりも劣るが白色が得られるからである。 The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is within the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer. The light emitting layer according to the present invention has at least three colors of a blue light emitting layer having a light emission maximum wavelength in the range of 430 to 480 nm, a green light emitting layer in the range of 510 to 550 nm, and a red light emitting layer in the range of 600 to 640 nm. Although it is preferable to have a light emitting layer, a two-color configuration may be used. For example, even if two colors are selected from the three categories, the color reproducibility is inferior to that of the three-color configuration, but white is obtained.
[0052] また、発光層の数力 層より多い場合には、同一区分内の発光スペクトルや発光極 大波長を有する層が複数層あってもよい。発光層の積層順としては特に制限はない 。各発光層間に非発光性の中間層を有してレ、ることが好ましレ、。  [0052] When there are more light emitting layers than several power layers, there may be a plurality of layers having an emission spectrum or emission maximum wavelength in the same section. There is no restriction | limiting in particular as a lamination order of a light emitting layer. It is preferable to have a non-light emitting intermediate layer between each light emitting layer.
[0053] 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高 電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上の観点か ら、 2〜30nmの範囲に調整することが好ましぐ更に好ましくは 5〜25nmの範囲で ある。  [0053] The total film thickness of the light emitting layer is not particularly limited, but it is possible to prevent film homogeneity, application of unnecessary high voltage during light emission, and improvement of stability of emitted color with respect to driving current. Therefore, it is preferable to adjust to the range of 2 to 30 nm, and more preferably in the range of 5 to 25 nm.
[0054] 発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着 法、スピンコート法、キャスト法、 LB法、インクジェット法等の公知の薄膜化法により製 膜して形成することができる。各々の発光層の膜厚としては、前述の範囲であれば任 意で構わない。青、緑、赤の各発光層の膜厚の関係については特に制限はないが、 白色光を得るためには再結合確率が低い発光層の膜厚が最も厚くなる。また、前記 の極大波長を維持する範囲にぉレヽて、各発光層には複数の発光性化合物を混合し てもよレ、。例えば、青発光層に極大波長 430〜480nmの青発光性化合物と、極大 波長 510〜550nmの緑発光性化合物を混合して用いてもよい。  [0054] For the production of the light emitting layer, a light emitting dopant or a host compound described later is formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. can do. The film thickness of each light emitting layer may be arbitrary as long as it is within the above-mentioned range. There are no particular restrictions on the relationship between the thicknesses of the blue, green, and red light emitting layers, but in order to obtain white light, the thickness of the light emitting layer with the lowest recombination probability is the largest. In addition, a plurality of light emitting compounds may be mixed in each light emitting layer within a range in which the maximum wavelength is maintained. For example, a blue light emitting compound having a maximum wavelength of 430 to 480 nm and a green light emitting compound having a maximum wavelength of 510 to 550 nm may be mixed and used in the blue light emitting layer.
[0055] 次に、発光層に含まれるホスト化合物、発光ドーパントについて説明する。  [0055] Next, a host compound and a light emitting dopant contained in the light emitting layer will be described.
[0056] (ホスト化合物)  [0056] (Host compound)
本発明の有機 EL素子の発光層に含まれるホストィヒ合物とは、室温(25°C)におけ る燐光発光の燐光量子収率が、 0. 1未満の化合物と定義される。好ましくは燐光量 子収率が 0. 01未満である。また、発光層に含有される化合物の中で、その層中での 質量比が 20%以上であることが好ましい。ホストイ匕合物としては、公知のホストイ匕合 物を単独で用いてもよぐまたは複数種併用して用いてもよい。ホスト化合物を複数 種用いることで電荷の移動を調整することが可能であり、有機 EL素子を高効率化す ること力 Sできる。また、後述する発光ドーパントとして用いられる燐光性化合物等を複 数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を 得ること力 Sできる。燐光性化合物の種類、ドープ量を調整することが可能であり、照明 、バックライトへの応用もできる。 The host compound contained in the light emitting layer of the organic EL device of the present invention is defined as a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1. Preferably, the phosphorous photon yield is less than 0.01. Further, among the compounds contained in the light emitting layer, the mass ratio in the layer is preferably 20% or more. As the host compound, known host compounds may be used alone or in combination of two or more. By using multiple types of host compounds, it is possible to adjust the charge transfer, which increases the efficiency of organic EL devices. Ability to do S. Further, by using a plurality of phosphorescent compounds used as light-emitting dopants, which will be described later, it becomes possible to mix different light emissions, thereby obtaining an arbitrary emission color. It is possible to adjust the kind of phosphorescent compound and the amount of doping, and it can be applied to illumination and backlight.
[0057] 本発明に係るホストイ匕合物としては、下記一般式(1)で表される化合物が好ましく 用いられる化合物の一例として挙げられる。また、前記化合物は発光層の隣接層(例 えば、正孔阻止層等)にも好ましく用いられる。  As the host compound according to the present invention, an example of a compound that is preferably used is a compound represented by the following general formula (1). The compound is also preferably used in a layer adjacent to the light emitting layer (for example, a hole blocking layer).
[0058] [化 1]  [0058] [Chemical 1]
-般細
Figure imgf000016_0001
-General
Figure imgf000016_0001
[0059] 式中、 Zは置換基を有していてもよい芳香族複素環を表し、 Zは各々置換基を有 [0059] In the formula, Z represents an aromatic heterocyclic ring which may have a substituent, and each Z has a substituent.
1 2 していてもよい芳香族複素環または芳香族炭化水素環を表し、 Zは 2価の連結基ま  1 2 represents an aromatic heterocycle or aromatic hydrocarbon ring that may be substituted, and Z represents a divalent linking group.
3  Three
たは単なる結合手を表す。 R は水素原子または置換基を表す。  Or just a bond. R represents a hydrogen atom or a substituent.
101  101
[0060] 前記一般式(1)において、 Z、 Zで表される芳香族複素環としては、フラン環、チォ  In the general formula (1), examples of the aromatic heterocycle represented by Z and Z include a furan ring,
1 2  1 2
フェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾィ ミダゾール環、ォキサジァゾール環、トリァゾール環、イミダゾール環、ピラゾール環、 チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾォ キサゾール環、キノキサリン環、キナゾリン環、フタラジン環、力ルバゾール環、カルボ リン環、カルボリン環を構成する炭化水素環の炭素原子が更に窒素原子で置換され ている環等が挙げられる。更に、前記芳香族複素環は後述する R で表される置換  Fen ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzoimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole And a ring in which the carbon atom of the hydrocarbon ring constituting the ring, quinoxaline ring, quinazoline ring, phthalazine ring, force rubazole ring, carboline ring or carboline ring is further substituted with a nitrogen atom. Further, the aromatic heterocycle is a substituent represented by R described later.
101  101
基を有してもよい。  It may have a group.
[0061] Zで表される芳香族炭化水素環としては、ベンゼン環、ビフエニル環、ナフタレン環  [0061] Examples of the aromatic hydrocarbon ring represented by Z include a benzene ring, a biphenyl ring, and a naphthalene ring.
2  2
、ァズレン環、アントラセン環、フエナントレン環、ピレン環、タリセン環、ナフタセン環、 トリフエ二レン環、 o_テルフエニル環、 m—テルフエニル環、 p—テルフエニル環、ァ セナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタ セン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラァ ントレン環等が挙げられる。更に、前記芳香族炭化水素環は後述する R で表される , Azulene ring, anthracene ring, phenanthrene ring, pyrene ring, talycene ring, naphthacene ring, triphenylene ring, o_terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluorene ring Olanthrene ring, naphthacene ring, penta Examples include a cene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthanthrene ring. Further, the aromatic hydrocarbon ring is represented by R described later.
101 置換基を有してもよい。  101 may have a substituent.
R で表される置換基としては、アルキル基(例えば、メチノレ基、ェチル基、プロピル Examples of the substituent represented by R 1 include an alkyl group (eg, methinole group, ethyl group, propyl group).
101 101
基、イソプロピル基、 t _ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル 基、トリデシノレ基、テトラデシノレ基、ペンタデシノレ基等)、シクロアルキル基(例えば、 シクロペンチル基、シクロへキシル基等)、アルケニル基(例えば、ビュル基、ァリル基 等)、アルキニル基(例えば、ェチュル基、プロパルギル基等)、ァリール基(例えば、 フエニル基、ナフチル基等)、芳香族複素環基 (例えば、フリル基、チェニル基、ピリ ジノレ基、ピリダジニル基、ピリミジニル基、ピラジュル基、トリアジニル基、イミダゾリノレ 基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジュル基等)、複素環基 (例 えば、ピロリジル基、イミダゾリジル基、モルホリル基、ォキサゾリジル基等)、アルコキ シ基(例えば、メトキシ基、エトキシ基、プロピルォキシ基、ペンチルォキシ基、へキシ ルォキシ基、ォクチルォキシ基、ドデシノレォキシ基等)、シクロアルコキシ基(例えば、 シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァリールォキシ基(例えば、フ エノキシ基、ナフチルォキシ基等)、アルキルチオ基(例えば、メチルチオ基、ェチル チォ基、プロピルチオ基、ペンチルチオ基、へキシルチオ基、ォクチルチオ基、ドシ ルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロへキシ ルチオ基等)、ァリールチオ基 (例えば、フエ二ルチオ基、ナフチルチオ基等)、アル コキシカルボニル基(例えば、メチルォキシカルボニル基、ェチルォキシカルボニル 基、ブチルォキシカルボニル基、ォクチルォキシカルボニル基、ドデシルォキシカル ボニル基等)、ァリールォキシカルボニル基(例えば、フエニルォキシカルボニル基、 ナフチルォキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メ チルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、へ キシルアミノスルホニル基、シクロへキシルアミノスルホニル基、ォクチルアミノスルホ ニル基、ドデシルアミノスルホニル基、フエニルアミノスルホニル基、ナフチルアミノス ノレホニル基、 2 _ピリジルアミノスルホニル基等)、ァシル基(例えば、ァセチル基、ェ チルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロへキシノレ カルボニル基、ォクチルカルボニル基、 2—ェチルへキシルカルボニル基、ドデシル カルボニル基、フエニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル 基等)、ァシルォキシ基(例えば、ァセチルォキシ基、ェチルカルボニルォキシ基、ブ チルカルボニルォキシ基、ォクチルカルボニルォキシ基、ドデシルカルボニルォキシ 基、フエ二ルカルボニルォキシ基等)、アミド基(例えば、メチノレカノレポニノレアミノ基、 ェチルカルボニルァミノ基、ジメチルカルボニルァミノ基、プロピルカルボニルァミノ基 、ペンチルカルボニルァミノ基、シクロへキシルカルボニルァミノ基、 2—ェチルへキ シルカルボニルァミノ基、ォクチルカルボニルァミノ基、ドデシルカルボニルァミノ基、 フエニルカルボニルァミノ基、ナフチルカルボニルァミノ基等)、力ルバモイル基(例え ば、ァミノカルボニル基、メチルァミノカルボニル基、ジメチルァミノカルボニル基、プ 口ピルアミノカルボニル基、ペンチルァミノカルボニル基、シクロへキシルァミノカルボ ニル基、ォクチルァミノカルボニル基、 2—ェチルへキシルァミノカルボニル基、ドデ シルァミノカルボニル基、フエニルァミノカルボニル基、ナフチルァミノカルボニル基、 2—ピリジルァミノカルボニル基等)、ウレイド基(例えば、メチノレウレイド基、ェチルゥ レイド基、ペンチルゥレイド基、シクロへキシルウレイド基、ォクチルゥレイド基、ドデシ ノレウレイド基、フエニルウレイド基ナフチルウレイド基、 2—ピリジノレアミノウレイド基等) 、スルフィエル基(例えば、メチルスルフィエル基、ェチルスルフィニル基、ブチルスル フィエル基、シクロへキシルスルフィエル基、 2—ェチルへキシルスルフィエル基、ド デシルスルフィエル基、フエニルスルフィエル基、ナフチルスルフィエル基、 2—ピリジ ルスルフィエル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、ェチル スルホニル基、ブチルスルホニル基、シクロへキシルスルホニル基、 2—ェチルへキ シルスルホニル基、ドデシルスルホニル基等)、ァリールスルホニル基(例えば、フエ ニルスルホニル基、ナフチルスルホニル、 2 _ピリジルスルホニル基等)、アミノ基(例 えば、アミノ基、ェチルァミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチルァ ミノ基、 2—ェチノレへキシノレ ミノ基、ドデシノレァミノ基、 二リノ基、ナフチノレアミノ基、 2_ピリジルァミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等 )、フッ化炭化水素基(例えば、フルォロメチル基、トリフルォロメチル基、ペンタフル ォロェチル基、ペンタフルオロフェニル基等)、シァノ基、ニトロ基、ヒドロキシ基、メル カプト基、シリル基(例えば、トリメチルシリル基、トリイソプロビルシリル基、トリフエニル シリル基、フエ二ルジェチルシリル基等)等が挙げられる。これらの置換基は上記の 置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結 合して環を形成していてもよレ、。好ましい置換基としては、アルキル基、シクロアルキ ル基、フッ化炭化水素基、ァリール基、芳香族複素環基である。 Group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecinole group, tetradecinole group, pentadecinole group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group etc.), An alkenyl group (for example, a buyl group, a aryl group, etc.), an alkynyl group (for example, an ethul group, a propargyl group, etc.), an aryl group (for example, a phenyl group, a naphthyl group, etc.), an aromatic heterocyclic group (for example, a furyl group, Chenyl group, pyridinole group, pyridazinyl group, pyrimidinyl group, pyriduryl group, triazinyl group, imidazolinole group, pyrazolyl group, thiazolyl group, quinazolinyl group, phthaladyl group, etc.), heterocyclic group (for example, pyrrolidyl group, imidazolidyl group, morpholyl) Group, oxazolidyl group, etc.), alkoxy group (for example, Methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecinoleoxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (for example, phenoxy group) Group, naphthyloxy group, etc.), alkylthio group (for example, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, docythio group, etc.), cycloalkylthio group (for example, cyclopentylthio group, cyclo Hexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butoxycarbonyl group, Cutylical Bonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenylcarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, etc.) , Dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2_ Pyridylaminosulfonyl group, etc.), acyl groups (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylene group). A carbonyl group, an octylcarbonyl group, a 2-ethylhexylcarbonyl group, a dodecylcarbonyl group, a phenylcarbonyl group, a naphthylcarbonyl group, a pyridylcarbonyl group, etc.), an acyloxy group (for example, an acetylyloxy group, an ethylcarbonyloxy group, Butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methenorecanoleponinoreamino group, ethylcarbonylamino group, Dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, Phenylcarbonylamino group, naphth Rucarbonylamino groups, etc.), strong ruberamoyl groups (for example, aminocarbonyl groups, methylaminocarbonyl groups, dimethylaminocarbonyl groups, pylaminocarbonyl groups, pentylaminocarbonyl groups, cyclohexylamino groups). Carbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc. ), Ureido group (eg, methinoureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecinoureido group, phenylureido group, naphthylureido group, 2-pyridinoreaminoureido group), sulfier group (For example, methylsulfier Ethylsulfinyl group, butylsulfiel group, cyclohexylsulfiel group, 2-ethylhexylsulfiel group, dodecylsulfiel group, phenylsulfiel group, naphthylsulfiel group, 2-pyridylsulfiel group, etc.) Alkylsulfonyl group (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group (eg, phenylsulfonyl) Group, naphthylsulfonyl, 2_pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethynolehexinoremino group, dodecinoreamino group, dilino group , Naftino Amino group, 2_pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl) Group), cyano group, nitro group, hydroxy group, mel Examples thereof include a capto group and a silyl group (for example, a trimethylsilyl group, a triisopropyl silyl group, a triphenylsilyl group, a phenyljetylsilyl group, etc.). These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring. Preferred substituents are an alkyl group, a cycloalkyl group, a fluorinated hydrocarbon group, an aryl group, and an aromatic heterocyclic group.
[0063] 2価の連結基としては、アルキレン、アルケニレン、アルキニレン、ァリーレンなどの 炭化水素基のほか、ヘテロ原子を含むものであってもよぐまたチォフェン— 2, 5 - ジィル基や、ピラジン一 2, 3—ジィル基のような芳香族複素環を有する化合物(へテ 口芳香族化合物ともいう)に由来する 2価の連結基であってもよいし、酸素や硫黄など のカルコゲン原子であってもよレ、。また、ァノレキノレイミノ基、ジアルキルシランジィル基 ゃジァリールゲルマンジィル基のような、ヘテロ原子を会して連結する基でもよレ、。単 なる結合手とは連結する置換基同士を直接結合する結合手である。  [0063] Examples of the divalent linking group include hydrocarbon groups such as alkylene, alkenylene, alkynylene, and arylene, as well as those containing heteroatoms, and thiophene-2,5-diyl groups, It may be a divalent linking group derived from a compound having an aromatic heterocycle such as a 2,3-diyl group (also referred to as a heteroaromatic compound) or a chalcogen atom such as oxygen or sulfur. Anyway. In addition, it may be a group that joins and connects heteroatoms such as an anolequinolemino group, a dialkylsilane diyl group, and a diarylgermandyl group. A simple bond is a bond that directly connects the linking substituents together.
[0064] 本発明においては、前記一般式(1)の Z力 員環であることが好ましい。これにより In the present invention, the Z-membered ring represented by the general formula (1) is preferable. This
1  1
、より発光効率を高くすることができる。更に、一層長寿命化させることができる。また 、本発明においては、前記一般式(1)の z力 員環であることが好ましい。これに  , The luminous efficiency can be further increased. Furthermore, the lifetime can be further increased. In the present invention, the z-membered ring represented by the general formula (1) is preferable. to this
2  2
より、より発光効率を高くすることができる。更に、より一層長寿命化させることがでる。 更に、前記一般式(1)の Zと Zを共に 6員環とすることで、より一層発光効率と高くす  Thus, the luminous efficiency can be further increased. Furthermore, the life can be further extended. Furthermore, by making Z and Z in the general formula (1) both 6-membered rings, the luminous efficiency can be further increased.
1 2  1 2
ることができるので好ましい。更に、より一層長寿命化させることができるので好ましい 。以下、本発明に係る一般式(1)で表される化合物の具体例を示すが、本発明はこ れらに限定されない。  This is preferable. Furthermore, it is preferable because the lifetime can be further increased. Specific examples of the compound represented by the general formula (1) according to the present invention are shown below, but the present invention is not limited thereto.
[0065] [化 2] [0065] [Chemical 2]
[S^] [9900] [S ^] [9900]
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000021_0001
また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り 返し単位をもつ高分子化合物でもよぐビュル基やエポキシ基のような重合性基を有 する低分子化合物 (蒸着重合性発光ホスト)でもいい。公知のホストイ匕合物としては、 正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高 Tg
Figure imgf000021_0001
The light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a bur group or an epoxy group (deposition). Polymerizable light-emitting host). Known host compounds include hole transport ability and electron transport ability, while preventing the emission of longer wavelengths and high Tg.
(ガラス転移温度)である化合物が好ましい。公知のホストイ匕合物の具体例としては、 以下の文献に記載されている化合物が挙げられる。例えば、特開 2001— 257076 号公報、同 2002— 308855号公報、同 2001— 313179号公報、同 2002— 3194 91号公報、同 2001— 357977号公報、同 2002— 334786号公報、同 2002— 88 60号公報、同 2002— 334787号公報、同 2002— 15871号公報、同 2002— 334 788号公報、同 2002— 43056号公報、同 2002— 334789号公報、同 2002— 75 645号公報、同 2002— 338579号公報、同 2002— 105445号公報、同 2002— 3 43568号公報、同 2002— 141173号公報、同 2002— 352957号公報、同 2002 — 203683号公報、同 2002— 363227号公報、同 2002— 231453号公報、同 20 03— 3165号公報、同 2002— 234888号公報、同 2003— 27048号公報、同 200 2— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2 002— 299060号公報、同 2002— 302516号公報、同 2002— 305083号公報、 同 2002— 305084号公報、同 2002— 308837号公報等力 S挙げられる。 A compound having a (glass transition temperature) is preferred. Specific examples of known host compounds include compounds described in the following documents. For example, JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-88. No. 60, No. 2002-334787, No. 2002-15871, No. 2002-334 788, No. 2002-43056, No. 2002-334789, No. 2002-75 645, No. 2002-75 645, No. 2002 -338579, 2002-105445, 2002-3 43568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002 — No. 231453, No. 20 03-3165, No. 2002-234888, No. 2003-27048, No. 200 2-255934, No. 2002-260861, No. 2002-280183, No. 2 002-299060, 2002-302516, 2002-305083, No. 2002-305084 and No. 2002-308837.
[0068] 本発明においては、発光極大波長が 430〜480nmの範囲にある発光層、 510〜 [0068] In the present invention, the light emitting layer having a light emission maximum wavelength in the range of 430 to 480 nm,
550nmの範囲にある発光層、 600〜640nmの範囲にある発光層の少なくとも 3層の 発光層を有するが、前記 3層の少なくとも 2層のホスト化合物の 50質量%以上が、燐 光発光エネルギーが各々 2. 9eV以上であり、且つ Tg (ガラス転移点)が各々 90°C 以上の化合物が好ましぐ更に好ましくは 100°C以上の化合物である。中でも、有機 EL素子保存性向上(耐久性向上ともいう)、発光層界面での化合物の分布のむらを 低減させる観点から、特に好ましくは前記化合物の分子構造が同一であることが好ま しい。ここで、ホストイ匕合物の物理化学的特性が同一または分子構造が同一であるこ とが好ましレ、理由にっレ、ては、後述する非発光性の中間層のところで詳細に説明す る。  The light emitting layer has a light emitting layer in the range of 550 nm and the light emitting layer in the range of 600 to 640 nm. The light emitting layer has at least three light emitting layers. Compounds each having 2.9 eV or more and Tg (glass transition point) of 90 ° C or more are preferred, and compounds having 100 ° C or more are more preferred. Among these, from the viewpoint of improving the storage stability of the organic EL device (also referred to as durability improvement) and reducing the uneven distribution of the compound at the light emitting layer interface, the molecular structures of the compounds are particularly preferably the same. Here, it is preferable that the physicochemical characteristics of the host compound are the same or the molecular structure is the same. For this reason, the details will be described in the non-light emitting intermediate layer described later. .
[0069] (Tg (ガラス転移点))  [0069] (Tg (glass transition point))
本発明の有機エレクト口ルミネッセンス素子を構成する各層の有機化合物は、 100 °C以上の Tgを有する材料を、各々の層の少なくとも 80質量%以上含有することを特 徴とする。  The organic compound of each layer constituting the organic electoluminescence device of the present invention is characterized by containing a material having a Tg of 100 ° C. or more at least 80% by mass or more of each layer.
[0070] ここで、ガラス転移点(Tg)とは、 DSC (Differential Scanning Colorimetry: 示差走査熱量法)を用いて、 JIS— K 7121に準拠した方法により求められる値であ る。上記のような同一の物理的特性を有するホストイ匕合物を用いること、更に好ましく は同一の分子構造を有するホストイ匕合物を用いることにより、有機 EL素子の有機化 合物層(有機層ともいう)全体に渡って均質な膜性状が得られ、更にまたホストイ匕合 物の燐光発光エネルギーを 2· 9eV以上になるように調整することが、ドーパントから のエネルギー移動を効率的に抑制し、高輝度を得ることができる。  Here, the glass transition point (Tg) is a value determined by a method based on JIS-K 7121 using DSC (Differential Scanning Colorimetry). By using a host compound having the same physical characteristics as described above, and more preferably using a host compound having the same molecular structure, an organic compound layer (both organic layer and organic layer) of the organic EL element is used. Homogeneous film properties can be obtained throughout, and the phosphorescence emission energy of the host compound can be adjusted to be 2.9 eV or more, effectively suppressing energy transfer from the dopant, High brightness can be obtained.
[0071] (燐光発光エネルギー)  [0071] (Phosphorescence energy)
本発明に係る燐光発光エネルギーについて説明する。本発明に係る燐光発光ェ ネルギ一とは、ホスト化合物を支持基盤(単に基板でもよい)上に lOOnmの蒸着膜の フォトルミネッセンスを測定した時、得られる燐光発光の 0— 0バンドのピークエネルギ 一を言う。  The phosphorescent energy according to the present invention will be described. The phosphorescent energy according to the present invention is the peak energy of the 0-0 band of the phosphorescence obtained when the photoluminescence of the deposited film of lOOnm is measured on a support substrate (which may be simply a substrate). Say.
[0072] まず、燐光スペクトルの測定方法について説明する。測定する発光ホスト化合物を 、よく脱酸素されたエタノール/メタノール =4/1 (体積/体積)の混合溶媒に溶か し、燐光測定用セルに入れた後、液体窒素温度 77° Kで励起光を照射し、励起光 照射後 100msでの発光スペクトルを測定する。燐光は蛍光に比べ発光寿命が長い ため、 100ms後に残存する光はほぼ燐光であると考えることができる。 First, a method for measuring a phosphorescence spectrum will be described. The luminescent host compound to be measured Dissolve in a well-deoxygenated ethanol / methanol = 4/1 (volume / volume) mixed solvent, put in a phosphorescence measurement cell, and then irradiate excitation light at a liquid nitrogen temperature of 77 ° K. Measure the emission spectrum at 100ms after irradiation. Since phosphorescence has a longer emission lifetime than fluorescence, it can be considered that the light remaining after 100 ms is almost phosphorescent.
[0073] なお、燐光寿命が 100msより短い化合物に対しては遅延時間を短くして測定して も構わないが、蛍光と区別できなくなるほど遅延時間を短く設定すると燐光と蛍光が 分離できないので問題となるため、その分離が可能な遅延時間を選択する必要があ る。また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任 意の溶剤を使用してもよい (実質上、上記測定法では燐光波長の溶媒効果はごくわ ずかなので問題ない)。 [0073] For compounds with a phosphorescence lifetime shorter than 100 ms, the delay time may be shortened, but if the delay time is set so short that it cannot be distinguished from fluorescence, phosphorescence and fluorescence cannot be separated. Therefore, it is necessary to select a delay time that can be separated. In addition, for a compound that cannot be dissolved in the solvent system, any solvent that can dissolve the compound may be used (substantially no problem is caused by the solvent effect of the phosphorescence wavelength in the measurement method described above).
[0074] 次に 0 _ 0バンドの求め方である力 本発明においては、上記測定法で得られた燐 光スペクトルチャートのなかで最も短波長側に現れる発光極大波長をもって 0— 0バ ンドと定義する。燐光スペクトルは通常強度が弱いことが多いため、拡大するとノイズ とピークの判別が難しくなるケースがある。このような場合には励起光照射中の発光 スペクトル (便宜上これを定常光スペクトルと言う)を拡大し、励起光照射後 100ms後 の発光スペクトル (便宜上これを燐光スペクトルと言う)と重ね合わせ、燐光スぺクトノレ に由来する定常光スペクトル部分から燐光スペクトルのピーク波長を読みとることで 決定すること力できる。また、燐光スペクトルをスムージング処理することでノイズとピ ークを分離しピーク波長を読みとることもできる。なお、スムージング処理としては、 Sa vitzky&Golayの平滑化法等を適用することができる。  [0074] Next, the force that is a method for obtaining the 0_0 band In the present invention, the emission maximum wavelength that appears on the shortest wavelength side in the phosphorescence spectrum chart obtained by the above-described measurement method is expressed as 0-0 band. Define. Since the phosphorescence spectrum is usually weak in intensity, it may be difficult to distinguish between noise and peak when enlarged. In such a case, the emission spectrum during irradiation with excitation light (for convenience, this is called the steady light spectrum) is enlarged and superimposed with the emission spectrum after 100 ms after irradiation with excitation light (for convenience, this is called the phosphorescence spectrum). It can be determined by reading the peak wavelength of the phosphorescence spectrum from the portion of the steady light spectrum derived from the spectrum. In addition, by smoothing the phosphorescence spectrum, noise and peak can be separated and peak wavelength can be read. As the smoothing process, a smoothing method such as Savititzky & Golay can be applied.
[0075] (発光ドーパント)  [0075] (Luminescent dopant)
本発明に係る発光ドーパントについて説明する。本発明に係る発光ドーパントとし ては、蛍光性化合物、燐光性化合物を用いることができるが、より発光効率の高い有 機 EL素子を得る観点からは、本発明の有機 EL素子の発光層や発光ユニットに使用 される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物 を含有すると同時に少なくとも 1種以上の燐光性化合物を含有する。蛍光性化合物 を併用する場合は、青色を選択することが好ましい。  The light emitting dopant according to the present invention will be described. As the light-emitting dopant according to the present invention, a fluorescent compound or a phosphorescent compound can be used. From the viewpoint of obtaining an organic EL element with higher luminous efficiency, the light-emitting layer and the light-emitting layer of the organic EL element of the present invention can be used. The light-emitting dopant used in the unit (sometimes simply referred to as a light-emitting material) contains the above host compound and at least one phosphorescent compound. When a fluorescent compound is used in combination, it is preferable to select blue.
[0076] (燐光性化合物) 本発明に係る燐光性化合物は、励起三重項からの発光が観測される化合物であり[0076] (phosphorescent compound) The phosphorescent compound according to the present invention is a compound in which light emission from an excited triplet is observed.
、具体的には、室温(25°C)にて燐光発光する化合物であり、燐光量子収率が、 25 °Cにおいて 0. 01以上の化合物であると定義されるが、好ましい燐光量子収率は 0. 1以上である。上記燐光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(199 2年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の 溶媒を用いて測定できるが、本発明に係る燐光性化合物は、任意の溶媒のいずれ かにおレ、て上記燐光量子収率(0. 01以上)が達成されればょレ、。 Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. Is greater than or equal to 0.1. The phosphorescence quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of 4th edition, Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescent compound according to the present invention can be measured in any one of the above-mentioned phosphorescence quantum yields (0.01 or more). If it is achieved,
[0077] 燐光性化合物の発光は原理としては 2種挙げられ、一つはキャリアが輸送されるホ ストィ匕合物上でキャリアの再結合が起こってホストイ匕合物の励起状態が生成し、この エネルギーを燐光性化合物に移動させることで燐光性化合物からの発光を得るとい うエネルギー移動型、もう一つは燐光性化合物がキャリアトラップとなり、燐光性化合 物上でキャリアの再結合が起こり燐光性化合物からの発光が得られるというキャリアト ラップ型であるが、いずれの場合においても、燐光性化合物の励起状態のエネルギ 一はホス H匕合物の励起状態のエネルギーよりも低いことが条件である。 [0077] The light emission of the phosphorescent compound includes two types of principles. One is that the recombination of carriers occurs on the host compound to which carriers are transported, and an excited state of the host compound is generated. This energy is transferred to the phosphorescent compound to obtain light emission from the phosphorescent compound. The other is that the phosphorescent compound becomes a carrier trap, and carrier recombination occurs on the phosphorescent compound, causing phosphorescence. In all cases, the excited state energy of the phosphorescent compound is lower than the excited state energy of the phosphine compound. is there.
[0078] 燐光性化合物は、有機 EL素子の発光層に使用される公知のものの中力 適宜選 択して用いることができる。本発明に係る燐光性化合物としては、好ましくは元素の周 期表で 8〜: 10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化 合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であ り、中でも最も好ましいのはイリジウム化合物である。以下に、燐光性化合物として用 いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合 物 ίま、 ί列免 ίま、 Inorg. Chem. 40卷、 1704〜1711 ίこ記載の方法等 ίこより合成でさ る。 [0078] The phosphorescent compound can be appropriately selected and used as a known compound used for the light emitting layer of the organic EL device. The phosphorescent compound according to the present invention is preferably a complex compound containing a group 8 to 10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum). Complex-based compounds) and rare earth complexes, and most preferred are iridium compounds. Specific examples of the compound used as the phosphorescent compound are shown below, but the present invention is not limited thereto. These compounds are synthesized from ί, 列 免, Inorg. Chem. 40 卷, 1704-1711 11, etc.
[0079] 燐光性化合物として用いられる化合物の具体例としては、特開 2004— 311410号 公報段落〔0106〕〜〔0109〕に記載された化合物が挙げられる。本発明はこれらに 限定されない。  [0079] Specific examples of the compound used as the phosphorescent compound include compounds described in paragraphs [0106] to [0109] of JP-A-2004-311410. The present invention is not limited to these.
[0080] (蛍光性化合物)  [0080] (Fluorescent compound)
蛍光性化合物の代表例としては、クマリン系色素、ピラン系色素、シァニン系色素、 クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素、フルォレ セイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系 色素、ポリチォフェン系色素、または希土類錯体系蛍光体等が挙げられる。 Representative examples of fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorine dyes. Examples include cein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
[0081] また、従来公知のドーパントも本発明に用いることができ、例えば、国際公開第 00 /70655号パンフレツ卜、特開 2002— 280178号公報、特開 2001— 181616号公 報、特開 2002— 280179号公報、特開 2001— 181617号公報、特開 2002— 280 180号公報、特開 2001— 247859号公報、特開 2002— 299060号公報、特開 20 01— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報 、特開 2002— 324679号公報、国際公開第 02/15645号パンフレット、特開 2002 — 332291号公幸艮、特開 2002— 50484号公幸艮、特開 2002— 332292号公幸艮、特 開 2002— 83684号公報、特表 2002— 540572号公報、特開 2002— 117978号 公報、特開 2002— 338588号公報、特開 2002— 170684号公報、特開 2002— 3 52960号公報、国際公開第 01Z93642号パンフレット、特開 2002— 50483号公 報、特開 2002— 100476号公報、特開 2002— 173674号公報、特開 2002— 359 082号公報、特開 2002— 175884号公報、特開 2002— 363552号公報、特開 20 02— 184582号公報、特開 2003— 7469号公報、特表 2002— 525808号公報、 特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003— 31366号 公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特開 2002— 2 35076号公報、特開 2002— 241751号公報、特開 2001— 319779号公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 100474号公 報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2002— 203 678号公報等が挙げられる。  Conventionally known dopants can also be used in the present invention. For example, WO 00/70655, Pamphlet, JP 2002-280178, JP 2001-181616, JP 2002 — 280179, JP 2001-181617, JP 2002-280 180, JP 2001-247859, JP 2002-299060, JP 20 01-313178, JP 2002 — 302671, JP 2001-345183, 2002-324679, WO 02/15645, JP 2002-332291, JP 2002-50484, JP No. 2002-332292, No. 2002-83684, No. 2002-540572, No. 2002-117978, No. 2002-338588, No. 2002-170684, No. 2002 — 3 52960, International Publication No. 01Z93642, JP 2002-50483, JP 2002-100476, JP 2002— JP 173674, JP 2002-359 082, JP 2002-175884, JP 2002-363552, JP 20 02-184582, JP 2003-7469, JP 2002- JP 525808, JP 2003-7471, JP 2002-525833, JP 2003-31366, JP 2002-226495, JP 2002-234894, JP 2002-2 35076 No., JP 2002-241751, JP 2001-319779, JP 2001-319780, JP 2002-62824, JP 2002-100474, JP 2002-203679. JP-A-2002-343572, JP-A-2002-203678, and the like.
[0082] 《非発光性の中間層》  [0082] Non-light emitting intermediate layer
本発明に係る非発光性の中間層につレ、て説明する。本発明に係る非発光性の中 間層とは、発光極大波長力 S各々 430〜480nm、 510〜550nm、 600〜640nmの 範囲にある少なくとも 3層の発光層を有する、上記の発光層ユニットの各発光層の間 に設けられる。  The non-light emitting intermediate layer according to the present invention will be described. The non-light emitting intermediate layer according to the present invention refers to the above light emitting layer unit having at least three light emitting layers each having a light emission maximum wavelength force S in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively. It is provided between each light emitting layer.
[0083] 非発光性の中間層の膜厚としては 1〜: 15nmの範囲にあるのが好ましぐ更には 3 〜10nmの範囲にあることが隣接発光層間のエネルギー移動など相互作用を抑制し 、且つ素子の電流電圧特性に大きな負荷を与えないという観点から好ましい。 [0083] The film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 15 nm, and more preferably in the range of 3 to 10 nm to suppress interactions such as energy transfer between adjacent light emitting layers. Moreover, it is preferable from the viewpoint of not giving a large load to the current-voltage characteristics of the element.
[0084] この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一で も異なっていてもよいが、隣接する 2つの発光層のすくなくとも一方の発光層のホスト 材料と同一であることが好ましい。  [0084] The material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but is the same as the host material of at least one of the adjacent light emitting layers. It is preferable that
[0085] 非発光性の中間層は、非発光各発光層と共通の化合物 (例えば、ホストイヒ合物等) を含有していてもよぐ各々共通ホスト材料 (ここで共通ホスト材料が用いられるとは、 燐光発光エネルギー、ガラス転移点等の物理化学的特性が同一である場合やホスト 化合物の分子構造が同一である場合等を示す。)を含有することにより、発光層一非 発光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の 注入バランスが保ちやすいという効果を得ることができる。また、電圧(電流)をかけた ときの色ずれが改善されるという効果が得られることも判った。更に、非ドープ発光層 に各発光層に含まれるホストイ匕合物とが、同一の物理的特性または同一の分子構造 を有するホスト材料を用いることにより、従来の有機 EL素子作製の大きな問題点であ る素子作製の煩雑さをも併せて解消することが出来る。  [0085] The non-emissive intermediate layer may contain a common compound (for example, a host ion compound) with each non-emission light emitting layer, and each common host material (where a common host material is used). Indicates the case where the physicochemical characteristics such as phosphorescence emission energy and glass transition point are the same, or the case where the molecular structure of the host compound is the same.) As a result, the injection barrier of holes and electrons can be easily maintained even when the voltage (current) is changed. It was also found that the effect of improving color shift when voltage (current) was applied was obtained. Furthermore, the host compound contained in each light-emitting layer in the undoped light-emitting layer uses a host material having the same physical characteristics or the same molecular structure. The complexity of manufacturing a certain device can also be eliminated.
[0086] 更に、上記のように共通ホスト材料の最低励起三重項エネルギー準位 T1が、燐光 性化合物の最低励起三重項エネルギー準位 T2よりも高い励起三重項エネルギーを 有する材料を用いることで、発光層の三重項励起子を効果的に発光層内に閉じ込め るので高効率な素子を得られることが判った。また、青'緑 '赤の 3色の有機 EL素子 においては、各々の発光材料に燐光性化合物を用いる場合、青色の燐光性化合物 の励起 3重項エネルギーが一番大きくなるが、前記青色の燐光性化合物よりも大きい 励起 3重項エネルギーを有するホスト材料を発光層と非発光性の中間層とが共通の ホスト材料として含んでいてもよい。  [0086] Further, as described above, by using a material in which the lowest excited triplet energy level T1 of the common host material is higher than the lowest excited triplet energy level T2 of the phosphorescent compound, It has been found that a highly efficient device can be obtained because the triplet excitons of the light emitting layer are effectively confined in the light emitting layer. In addition, in the organic EL device of three colors of blue 'green' and red, when a phosphorescent compound is used for each light emitting material, the excited triplet energy of the blue phosphorescent compound is the largest, but the blue A host material having an excited triplet energy larger than that of the phosphorescent compound may be included in the light-emitting layer and the non-light-emitting intermediate layer as a common host material.
[0087] 本発明の有機 EL素子においては、ホスト材料はキャリアの輸送を担うためキャリア 輸送能を有する材料が好ましレ、。キャリア輸送能を表す物性としてキャリア移動度が 用レ、られるが、有機材料のキャリア移動度は一般的に電界強度に依存性が見られる 。電界強度依存性の高い材料は正孔と電子注入'輸送バランスを崩しやすい為、中 間層材料、ホスト材料は移動度の電界強度依存性の少ない材料を用いることが好ま しい。また、一方では正孔ゃ電子の注入バランスを最適に調整するためには、非発 光性の中間層は阻止層、即ち正孔阻止層、電子阻止層として機能することも好まし い態様として挙げられる。 [0087] In the organic EL device of the present invention, since the host material is responsible for carrier transport, a material having carrier transport capability is preferred. Although carrier mobility is used as a physical property representing carrier transport ability, the carrier mobility of organic materials generally depends on electric field strength. Since a material with high electric field strength dependency easily breaks the hole-electron injection / transport balance, it is preferable to use a material whose mobility is less dependent on electric field strength for the intermediate layer material and the host material. On the other hand, in order to optimally adjust the injection balance of holes and electrons, It is also preferable that the optical intermediate layer functions as a blocking layer, that is, a hole blocking layer and an electron blocking layer.
[0088] 以下に、本発明に係るキャリア輸送層、キャリア阻止層について説明する。なお、キ ャリアとは電子または正孔を指す。一般に正孔輸送層とは正孔輸送する能力を有す る材料からなり、広い意味で正孔注入層、電子阻止層も含まれる。同様に電子輸送 層とは電子輸送する能力を有する材料からなり、広い意味で電子注入層、正孔阻止 層も含まれる。  [0088] The carrier transport layer and the carrier blocking layer according to the present invention will be described below. The carrier means an electron or a hole. In general, the hole transport layer is made of a material having the ability to transport holes, and includes a hole injection layer and an electron blocking layer in a broad sense. Similarly, the electron transport layer is made of a material having the ability to transport electrons, and includes an electron injection layer and a hole blocking layer in a broad sense.
[0089] 《支持基盤》  [0089] 《Support base》
本発明の有機 EL素子に係る支持基盤 (以下、基体、基板、基材、支持体等ともいう )としては、ガラス、プラスチック等の種類には特に限定はなぐまた透明であっても不 透明であってもよい。支持基盤側から光を取り出す場合には、支持基盤は透明であ ることが好ましい。好ましく用いられる透明な支持基盤としては、ガラス、石英、透明樹 脂フィルムを挙げることができる。特に好ましい支持基盤は、有機 EL素子にフレキシ ブル性を与えることが可能な樹脂フィルムである。  The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) according to the organic EL device of the present invention is not particularly limited in the type of glass, plastic and the like, and is transparent or opaque. There may be. In the case where light is extracted from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and transparent resin film. A particularly preferable support base is a resin film capable of imparting flexibility to the organic EL element.
[0090] 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セル口 ースジアセテート、セノレローストリアセテート、セ/レロースアセテートブチレート、セノレ口 ースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セル ロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリ デン、ポリビュルアルコール、ポリエチレンビニルアルコール、シンジォタクティックポ リスチレン、ポリカーボネート、ノルボルネン榭脂、ポリメチルペンテン、ポリエーテルケ トン、ポリイミド、ポリエーテルスルホン(PES)、ポリフエ二レンスルフイド、ポリスルホン 類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポ リメチルメタタリレート、アクリル或いはポリアリレート類、アートン(商品名 JSR社製)或 いはアベル (商品名三井化学社製)といったシクロォレフイン系樹脂等を挙げられる。  [0090] Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellose diacetate, cenorelose triacetate, ce / relose acetate butyrate, and cenole mouth. Cellulose acetates such as cellulose acetate propionate (CAP), cellulose acetate phthalate (TAC), cellulose nitrate or their derivatives, polyvinylidene chloride, polybutyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, Polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyether Cycloolefins such as imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethylmethalylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Abel (trade name, manufactured by Mitsui Chemicals) Resin etc. are mentioned.
[0091] 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被 膜が形成されていてもよぐ JIS K 7129— 1992に準拠した方法で測定された水 蒸気透過度が、 0. Olg/m2' day atm以下のバリア性フィルムであることが好ましく 、更には JIS K 7126— 1992に準拠した方法で測定された酸素透過度が 10— 3g/ m2/day以下、水蒸気透過度が 10— 3g/m2/day以下の高バリア性フィルムであるこ とが好ましぐ前記の水蒸気透過度、酸素透過度がいずれも 10— 5g/m2/day以下 であることが、更に好ましい。 [0091] On the surface of the resin film, an inorganic film, an organic film, or a hybrid film of the both may be formed. Water vapor permeability measured by a method based on JIS K 7129-1992 is 0. A barrier film of Olg / m 2 'day atm or less is preferred , Even JIS K 7126- oxygen permeability measured in compliance with the method 1992 is 10- 3 g / m 2 / day or less, high barrier water vapor permeability of less than 10- 3 g / m 2 / day Film preferably Dearuko and is fitting the water vapor permeability, oxygen permeability to be both less than or equal 10- 5 g / m 2 / d ay, further preferable.
[0092] 高バリア性フィルムとするために樹脂フィルム表面に形成されるバリア膜を形成する 材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を 有する材料であればよぐ例えば、酸化珪素、二酸化珪素、窒化珪素などを用いるこ とができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる 層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については 特に制限はないが、両者を交互に複数回積層させることが好ましい。 [0092] As a material for forming a barrier film formed on the surface of the resin film in order to obtain a high barrier film, any material may be used as long as it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Furthermore, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
[0093] 《バリア膜の形成方法》 << Method for Forming Barrier Film >>
バリア膜の形成方法については特に限定はなぐ例えば、真空蒸着法、スパッタリ ング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、 イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD法 、レーザー CVD法、熱 CVD法、コーティング法などを用いることができる力 特開 20 04— 68143号公報に記載されているような大気圧プラズマ重合法によるものが特に 好ましレ、。不透明な支持基盤としては、例えば、アルミ、ステンレス等の金属板 'フィ ルムゃ不透明樹脂基板、セラミック製の基板等が挙げられる。  The barrier film formation method is not particularly limited, for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method The ability to use a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, etc. A method using an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferred. . Examples of the opaque support base include metal plates such as aluminum and stainless steel, film opaque resin substrates, and ceramic substrates.
[0094] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1 %以上であるこ と力 S好ましく、より好ましくは 5%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数/有機 EL素子に流した電子数 X 100である。また 、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機 EL素子からの発光 色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。  [0094] The external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, and is preferably S, more preferably 5% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL device / the number of electrons sent to the organic EL device × 100. In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
[0095] ここで、本発明に係る支持基盤に用いられる透明なバリア膜の層構成の一例を図 8 により説明し、更にバリア層の形成に好ましく用いられる大気圧プラズマ放電処理装 置の一例を図 9を用いて説明する。  Here, an example of the layer structure of the transparent barrier film used for the support substrate according to the present invention will be described with reference to FIG. 8, and an example of an atmospheric pressure plasma discharge treatment apparatus preferably used for forming the barrier layer will be described. This will be described with reference to FIG.
[0096] 図 8はバリア膜 (ガスバリアフィルムともいう)の層構成とその密度プロファイルの一例 を示す模式図である。バリア膜 201 (透明でも不透明でもよい)は、基材 202上に密 度の異なる層を積層した構成をとる。本発明においては、低密度層 203と高密度層 2 05との間に中密度層 204を設け、更に高密度層 205上にも中密度層 204を設け、こ れらの低密度層、中密度層、高密度層及び中密度層からなる構成を 1ユニットとし、 図 8においては 2ユニット分を積層した例を示してある。この時、各密度層内における 密度分布は均一とし、 P 接する層間での密度変化が階段状となるような構成をとる。 なお、図 8においては中密度層 204を 1層として示した力 必要に応じて 2層以上の 構成を採ってもよレ、。なお、本発明に係るバリア膜 (ガスバリアフィルム)の層構成とし ては、密度違いの 3層(高密度層、中密度層、低密度層)のうち、少なくとも 1層が設 けられてレ、ればよレ、が、好ましくは密度違レ、の 2層または 3層を有することが好ましレヽ FIG. 8 is a schematic diagram showing an example of the layer structure of a barrier film (also referred to as a gas barrier film) and its density profile. Barrier film 201 (which may be transparent or opaque) is densely placed on substrate 202. A structure in which layers of different degrees are laminated is adopted. In the present invention, a medium density layer 204 is provided between the low density layer 203 and the high density layer 205, and further, a medium density layer 204 is provided on the high density layer 205. A configuration composed of a density layer, a high-density layer, and a medium-density layer is one unit, and FIG. 8 shows an example in which two units are stacked. At this time, the density distribution in each density layer is uniform, and the density change between the P-contacting layers is stepped. In FIG. 8, the force shown with the medium density layer 204 as one layer may be configured with two or more layers as required. In addition, as a layer structure of the barrier film (gas barrier film) according to the present invention, at least one of three layers having different densities (a high density layer, a medium density layer, and a low density layer) is provided. It is preferable to have 2 or 3 layers of different density, preferably
[0097] ここで、上記の高密度層、中密度層、低密度層の形成には下記の図 9に示すような 大気圧プラズマ放電処理装置が一例として用いられる。また、高密度層、中密度層、 低密度層の密度の設定値、各層の形成に用いられる材料 (例えば、酸化珪素、酸化 窒化珪素、酸化アルミナ等)及び形成条件等の一例は、実施例において具体的に記 載する。 Here, an atmospheric pressure plasma discharge treatment apparatus as shown in FIG. 9 below is used as an example for forming the high-density layer, the medium-density layer, and the low-density layer. Examples of density setting values for high-density layers, medium-density layers, and low-density layers, materials used for forming each layer (for example, silicon oxide, silicon oxynitride, alumina oxide, etc.) and formation conditions are shown in Examples. Will be described in detail.
[0098] 図 9は基材を処理する大気圧プラズマ放電処理装置の一例を示す概略図である。  FIG. 9 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus for treating a substrate.
大気圧プラズマ放電処理装置としては、少なくともプラズマ放電処理装置 230、二つ の電源を有する電界印加手段 240、ガス供給手段 250、電極温度調節手段 260を 有している装置である。図 9はロール回転電極(第 1電極) 235と角筒型固定電極群( 第 2電極) 236 (個々の電極も角筒型固定電極 236とする)との対向電極間(放電空 間) 232で、基材 Fをプラズマ放電処理して薄膜を形成するものである。図 9において は、 1対の角筒型固定電極群(第 2電極) 236とロール回転電極(第 1電極) 235とで 1 つの電界を形成し、この 1ユニットで、例えば、低密度層の形成を行う。図 9において は、この様な構成からなるユニットを計 5力所備えた構成例を示し、それぞれのュニッ トで供給する原材料の種類、出力電圧等を任意に独立して制御することにより、積層 型のノ リア膜 (透明ガスノ リア層ともいう)を連続して形成することができる。  The atmospheric pressure plasma discharge processing apparatus is an apparatus having at least a plasma discharge processing apparatus 230, an electric field applying means 240 having two power supplies, a gas supply means 250, and an electrode temperature adjusting means 260. Fig. 9 shows the distance between the counter electrode (discharge space) between the roll rotating electrode (first electrode) 235 and the square tube type fixed electrode group (second electrode) 236 (each electrode is also called the square tube type fixed electrode 236). Thus, the substrate F is subjected to plasma discharge treatment to form a thin film. In FIG. 9, one pair of rectangular tube type fixed electrode group (second electrode) 236 and roll rotating electrode (first electrode) 235 form one electric field. Form. Figure 9 shows an example of a configuration with a total of five units with such a configuration, and by arbitrarily independently controlling the types of raw materials and output voltage supplied by each unit, A type of noria film (also referred to as a transparent gas nolia layer) can be formed continuously.
[0099] ロール回転電極(第 1電極) 235と角筒型固定電極群(第 2電極) 236との間の放電 空間(対向電極間) 232に、ロール回転電極(第 1電極) 235には第 1電源 241から周 波数 ω 1、電界強度 VI、電流 IIの第 1の高周波電界を、また角筒型固定電極群(第 2電極) 236にはそれぞれに対応する各第 2電源 242から周波数 ω 2、電界強度 V2 、電流 12の第 2の高周波電界をかけるようになつている。ロール回転電極(第 1電極) 235と第 1電源 241との間には、第 1フィルタ 243が設置されており、第 1フィルタ 243 は第 1電源 241から第 1電極への電流を通過しやすくし、第 2電源 242からの電流を アースして、第 2電源 242から第 1電源への電流を通過しにくくするように設計されて いる。また、角筒型固定電極群(第 2電極) 236と第 2電源 242との間にはそれぞれ第 2フィルタ 244が設置されており、第 2フィルター 244は第 2電源 242から第 2電極へ の電流を通過しやすくし、第 1電源 241からの電流をアースして、第 1電源 241から第 2電源への電流を通過しにくくするように設計されている。なお、ロール回転電極 235 を第 2電極、また角筒型固定電極群 236を第 1電極としてもよい。いずれにしろ第 1電 極には第 1電源が、また第 2電極には第 2電源が接続される。 [0099] In the discharge space (between the counter electrodes) 232 between the roll rotating electrode (first electrode) 235 and the rectangular tube-shaped fixed electrode group (second electrode) 236, the roll rotating electrode (first electrode) 235 Around 1st power supply 241 The first high-frequency electric field of wave number ω 1, electric field strength VI, current II, and rectangular tube-shaped fixed electrode group (second electrode) 236 has a frequency ω 2 and electric field strength V2 from the corresponding second power source 242. A second high frequency electric field with a current of 12 is applied. A first filter 243 is installed between the roll rotating electrode (first electrode) 235 and the first power source 241. The first filter 243 can easily pass current from the first power source 241 to the first electrode. In addition, the current from the second power source 242 is grounded so that the current from the second power source 242 to the first power source is difficult to pass. In addition, a second filter 244 is installed between the square tube type fixed electrode group (second electrode) 236 and the second power source 242 respectively, and the second filter 244 is connected to the second electrode from the second power source 242. It is designed to facilitate the passage of current, ground the current from the first power supply 241 and make it difficult to pass the current from the first power supply 241 to the second power supply. The roll rotating electrode 235 may be the second electrode, and the square tube fixed electrode group 236 may be the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
[0100] 第 1電源は第 2電源より高い高周波電界強度 (VI >V2)を印加することが好ましい 。また、周波数は ω ΐく ω 2となる能力を有している。また、電流は IIく 12となることが 好ましレ、。第 1の高周波電界の電流 IIは好ましくは 0. 3〜20mA/cm2、更に好まし くは 1. 0〜20mA/cm2である。また、第 2の高周波電界の電流 12は好ましくは 10〜 100mA/cm2、更に好ましくは 20〜: 100mA/ cm2である。 [0100] It is preferable that the first power supply applies higher high-frequency electric field strength (VI> V2) than the second power supply. In addition, the frequency has the ability to be ω ΐ ω 2. Also, the current should be II to 12. Current II of the first high-frequency electric field is preferably 0. 3~20mA / cm 2, further rather preferably is 1. 0~20mA / cm 2. The current 12 of the second high-frequency electric field is preferably 10 to 100 mA / cm 2 , more preferably 20 to 100 mA / cm 2 .
[0101] ガス供給手段 250のガス発生装置 251で発生させたガス Gは、流量を制御して給 気口よりプラズマ放電処理容器 231内に導入する。基材 Fを、図示されていない元卷 きから卷きほぐして搬送されて来るカ または前工程力 搬送されて来て、ガイドロー ル 264を経てニップロール 265で基材に同伴されて来る空気等を遮断し、ロール回 転電極 235に接触したまま卷き回しながら角筒型固定電極群 236との間に移送し、 ロール回転電極(第 1電極) 235と角筒型固定電極群(第 2電極) 236との両方から電 界をかけ、対向電極間(放電空間) 232で放電プラズマを発生させる。基材 Fはロー ル回転電極 235に接触したまま卷き回されながらプラズマ状態のガスにより薄膜を形 成する。基材 Fは、ニップロ一ノレ 266、ガイドロール 267を経て、図示してない卷き取 り機で卷き取る力、、次工程に移送する。放電処理済みの処理排ガス G'は排気口 25 3より排出する。薄膜形成中、ロール回転電極 (第 1電極) 235及び角筒型固定電極 群(第 2電極) 236を加熱または冷却するために、電極温度調節手段 260で温度を調 節した媒体を送液ポンプ Pで配管 261を経て両電極に送り、電極内側から温度を調 節する。なお、 268及び 269はプラズマ放電処理容器 231と外界とを仕切る仕切板 である。 [0101] The gas G generated by the gas generator 251 of the gas supply means 250 is introduced into the plasma discharge treatment vessel 231 through the supply port while controlling the flow rate. Air that is transported by unwinding the base material F from the unillustrated base or front process force Air that is transported and entrained on the base material by the nip roll 265 via the guide roll 264, etc. , And while being in contact with the roll rotating electrode 235, it is transported between the square tube fixed electrode group 236 and the roll rotating electrode (first electrode) 235 and the square tube fixed electrode group (second electrode). Electrode is applied from both of the electrode 236 and discharge plasma is generated between the opposing electrodes (discharge space) 232. Substrate F forms a thin film with a gas in a plasma state while being rolled while being in contact with roll rotating electrode 235. The base material F is transferred to the next process through a nip roll 266 and a guide roll 267, and the force to be scraped off by a scraper (not shown). Discharged treated exhaust gas G 'is discharged from the exhaust port 25 3. During thin film formation, roll rotating electrode (first electrode) 235 and square tube fixed electrode To heat or cool the group (second electrode) 236, the medium whose temperature is adjusted by the electrode temperature adjusting means 260 is sent to both electrodes via the pipe 261 by the liquid feed pump P, and the temperature is adjusted from the inside of the electrode. . Reference numerals 268 and 269 denote partition plates that partition the plasma discharge processing vessel 231 and the outside.
[0102] 《封止》 [0102] 《Sealing》
本発明の有機 EL素子の封止に用いられる封止手段としては、例えば、封止部材と 電極、支持基盤とを接着剤で接着する方法を挙げることができる。封止部材としては 、有機 EL素子の表示領域を覆うように配置されておればよぐ凹板状でも、平板状で もよレ、。また、透明性、電気絶縁性は特に限定されなレ、。具体的には、ガラス板、ポリ マー板'フィルム、金属板'フィルム等が挙げられる。ガラス板としては、特にソーダ石 灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウケ ィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等を挙げることができる。  Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support base with an adhesive. The sealing member can be either concave or flat as long as it is arranged to cover the display area of the organic EL element. Also, transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate 'film, and a metal plate' film. Examples of the glass plate include sodalite ash glass, norium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
[0103] またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポ リエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ス テンレス、鉄、銅、ァノレミニゥム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブ テン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属ま たは合金からなるものが挙げられる。本発明においては、素子を薄膜ィ匕できるというこ とからポリマーフィルム、金属フィルムを好ましく使用することができる。  [0103] Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. The metal plate is made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, anorium, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. Can be mentioned. In the present invention, a polymer film and a metal film can be preferably used because the device can be formed into a thin film.
[0104] 更には、ポリマーフィルムは酸素透過度 10— 3g/m2/day以下、水蒸気透過度 10— 5 g/m2/day以下のものであることが好ましい。また、前記の水蒸気透過度、酸素透 過度がいずれも 10— 5g/m2/day以下であることが更に好ましい。封止部材を凹状に 加工するのは、サンドブラスト加工、化学エッチングカ卩ェ等が使われる。 [0104] Furthermore, the polymer film oxygen permeability 10- 3 g / m 2 / day or less, it is preferable that the following water vapor permeability 10- 5 g / m 2 / day . Further, the water vapor permeability, it is more preferable oxygen permeability excessively are both less 10- 5 g / m 2 / day . The sealing member is processed into a concave shape by sandblasting, chemical etching or the like.
[0105] 接着剤として、具体的にはアクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応 性ビュル基を有する光硬化及び熱硬化型接着剤、 2—シァノアクリル酸エステルなど の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱及び化学 硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステ ノレ、ポリオレフインを挙げることができる。また、カチオン硬化タイプの紫外線硬化型 エポキシ樹脂接着剤を挙げることができる。なお、有機 EL素子が熱処理により劣化 する場合があるので、室温から 80°Cまでに接着硬化できるものが好ましい。また、前 記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は巿 販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 [0105] Specific examples of adhesives include photocuring and thermosetting adhesives having reactive bully groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanacrylic acid esters. Can be mentioned. In addition, heat- and chemical-curing types (two-component mixing) such as epoxy type can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned. In addition, organic EL elements are deteriorated by heat treatment Therefore, those that can be adhesively cured from room temperature to 80 ° C are preferable. Further, a desiccant may be dispersed in the adhesive. Application of the adhesive to the sealing portion may be performed using a commercially available dispenser, or may be printed like screen printing.
[0106] また、有機層を挟み支持基盤と対向する側の電極の外側に該電極と有機層を被覆 し、支持基盤と接する形で無機物、有機物の層を形成し封止膜とすることも好適にで きる。この場合、該膜を形成する材料としては、水分や酸素など素子の劣化をもたら すものの浸入を抑制する機能を有する材料であればよぐ例えば、酸化珪素、二酸 化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこ れら無機層と有機材料からなる層の積層構造を持たせることが好ましい。  [0106] Alternatively, the electrode and the organic layer may be coated on the outer side of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer may be formed in contact with the support substrate to form a sealing film. It can be preferred. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, etc. Can be used. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
[0107] これらの膜の形成方法については特に限定はなぐ例えば、真空蒸着法、スパッタ リング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ一イオンビーム法 、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマ CVD 法、レーザー CVD法、熱 CVD法、コーティング法などを用いることができる。封止部 材と有機 EL素子の表示領域との間隙には、気相及び液相では窒素、アルゴン等の 不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入すること が好ましい。また、真空とすることも可能である。  [0107] The method for forming these films is not particularly limited, for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster one ion beam method, ion plating method, plasma polymerization method, Atmospheric pressure plasma polymerization, plasma CVD, laser CVD, thermal CVD, coating, etc. can be used. In the gap between the sealing material and the display area of the organic EL device, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas and liquid phases. Is preferred. A vacuum can also be used.
[0108] また、内部に吸湿性化合物を封入することもできる。吸湿性化合物としては、例え ば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリゥ ム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩 (例えば、硫酸ナトリウム、硫酸 カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化 カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化 マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類 (例えば、過塩素酸 バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び 過塩素酸類においては無水塩が好適に用いられる。  [0108] In addition, a hygroscopic compound may be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, Cobalt sulfate, etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid) Barium chlorate, magnesium perchlorate, etc.), and anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.
[0109] 《保護膜、保護板》  [0109] 《Protective film, protective plate》
有機層を挟み支持基盤と対向する側の前記封止膜、あるいは前記封止用フィルム の外側に素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい 。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずし も高くない為このような保護膜、保護板を設けることが好ましい。これに使用すること ができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板'フィルム 、金属板'フィルム等を用いることができる力 軽量、且つ薄膜化ということからポリマ 一フィルムを用いることが好ましい。 In order to increase the mechanical strength of the device, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween, or the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not limited. However, it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate 'film, metal plate' film, and the like used for the sealing can be used. It is preferable to use a film.
[0110] 《陽極》  [0110] Anode
有機 EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。こ のような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォキシド(IT 0)、 Sn〇、 Zn〇等の導電性透明材料が挙げられる。また、 IDIXO (In O _Zn〇)  As the anode in the organic EL device, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, conductive transparent materials such as Cul, indium tinoxide (IT 0), SnO, and ZnO. IDIXO (In O _Zn〇)
2 2 3 等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物 質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィ一法で所 望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要としない場 合は(100 μ m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状の マスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布 可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用い ることもできる。この陽極より発光を取り出す場合には、透過率を 10%より大きくするこ とが望ましぐまた陽極としてのシート抵抗は数百 Ω /口以下が好ましい。更に膜厚 は材料にもよる力 通常 10〜: 1000nm、好ましくは 10〜200nmの範囲で選ばれる。  A material such as 2 2 3 that is amorphous and capable of producing a transparent conductive film may be used. For the anode, these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by a single photolithography method. A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductive compound, wet film forming methods, such as a printing system and a coating system, can also be used. In the case of taking out light emission from this anode, it is desirable to increase the transmittance to more than 10%, and the sheet resistance as the anode is preferably several hundred Ω / mouth or less. Further, the film thickness is a force depending on the material, usually 10 to 1000 nm, preferably 10 to 200 nm.
[0111] 《陰極》 [0111] 《Cathode》
一方、陰極としては、仕事関数の小さい (4eV以下)金属(電子注入性金属と称する )、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる 。このような電極物質の具体例としては、ナトリウム、ナトリウム—カリウム合金、マグネ シゥム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム /アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸化アルミ ニゥム (Al O )混合物、インジウム、リチウム Zアルミニウム混合物、希土類金属等が  On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium Z indium mixture, aluminum Z aluminum oxide (Al O) mixture, indium, lithium Z aluminum mixture, rare earth metal etc.
2 3  twenty three
挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子 注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物 、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシゥ ム/インジウム混合物、アルミニウム/酸化アルミニウム (Al O )混合物、リチウム/ Can be mentioned. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixture, magnesium / Indium mixture, aluminum / aluminum oxide (Al 2 O 3) mixture, lithium /
2 3  twenty three
アルミニウム混合物、アルミニウム等が好適である。  Aluminum mixtures, aluminum and the like are preferred.
[0112] 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させる ことにより、作製することができる。また、陰極としてのシート抵抗は数百 Ω /口以下 が好ましぐ膜厚は通常 10nm〜5 x m、好ましくは 50〜200nmの範囲で選ばれる。 なお、発光した光を透過させるため、有機 EL素子の陽極または陰極のいずれか一 方が透明または半透明であれば発光輝度が向上し好都合である。  [0112] The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / mouth or less, and the preferred film thickness is usually 10 nm to 5 × m, preferably 50 to 200 nm. In order to transmit the emitted light, if either the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.
[0113] また、陰極に上記金属を l〜20nmの膜厚で作製した後に、陽極の説明で挙げた 導電性透明材料をその上に作製することで、透明または半透明の陰極を作製するこ とができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製する こと力 Sできる。  [0113] In addition, after the metal is formed to a thickness of 1 to 20 nm on the cathode, the transparent conductive material described in the description of the anode is formed thereon, whereby a transparent or translucent cathode is manufactured. By applying this, it is possible to produce a device in which both the anode and the cathode are transparent.
[0114] 《光取り出し及び/または集光シート》  [0114] << Light extraction and / or light collecting sheet >>
特にバックライト用の有機 EL素子においては、通常、全方位に光が放射され視野 角が変わっても明るさが変わらないような特性が望ましいが、使用形態によっては正 面輝度をより高くし、大きな視野角(斜め方向から観察する角度)においては輝度を 低下させることが望ましい。そのために、有機 EL素子の上に放射角を制御する拡散 板、プリズムシート等が組み合わされることが好ましレ、。  In particular, for organic EL devices for backlights, it is usually desirable that the light is emitted in all directions and the brightness does not change even if the viewing angle changes, but depending on the type of use, the front brightness is increased. It is desirable to reduce the brightness at large viewing angles (angles observed from an oblique direction). For this purpose, it is preferable to combine a diffuser plate, prism sheet, etc. to control the radiation angle on top of the organic EL element.
[0115] 通常、基板 (ガラス基板、樹脂基板など)から光を放射するような有機 EL素子にお いては、発光層から放射された光の一部が基板と空気との界面において全反射を起 こし、光を損失するという問題が発生する。この問題を解決するために、基板の表面 にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリズムシートやレンズシ ートを貼り付けることにより、全反射を抑制して光の取り出し効率を向上させる。  [0115] Normally, in an organic EL element that emits light from a substrate (glass substrate, resin substrate, etc.), part of the light emitted from the light emitting layer is totally reflected at the interface between the substrate and air. This causes the problem of loss of light. To solve this problem, the surface of the substrate is processed into a prism or lens, or a prism sheet or lens sheet is applied to the surface of the substrate to suppress total reflection and improve light extraction efficiency. Let
[0116] 以下に、光取り出し及び Zまたは集光シートの好ましい形態を説明するが、本発明 では目的効果を損なわない範囲内であれば、これらを用いて光取りだし効率を向上 させること力できる。  [0116] In the following, preferred forms of the light extraction and Z or condensing sheet will be described. However, in the present invention, the light extraction efficiency can be improved by using these as long as the objective effects are not impaired.
[0117] (1)ガラス基板の上に拡散板とプリズムシートを置く構成  [0117] (1) Configuration in which a diffusion plate and a prism sheet are placed on a glass substrate
例えば、ガラス基板 Z透明導電膜 Z発光層 Z電極 Z封止層からなる有機 EL素子 において、ガラス基板の発光層とは反対側の基板表面に接するように第 1の拡散板 を置く。拡散板に接するように第 1のレンズシート(例えば、 3M製 BEF II)をレンズ 面がガラス基板と反対側に向くように配置し、更に第 2のレンズシートをレンズのストラ イブが第 1のレンズのストライプと直交し、且つそのレンズ面がガラス基板と反対側に 向くように配置する。次に第 2のレンズシートに接するように第 2の拡散板を配置する 。第 1ならびに第 2のレンズシートの形状としては、 PET基材上にアクリル樹脂で頂角 90度、ピッチ 50 111の八状のストライプが形成されたものである。頂角が丸みを帯び た形状(3M製 RBEF)、ピッチをランダムに変化させた形状(3M製 BEF III)、そ の他類似の形状であってもよい。 For example, in an organic EL device consisting of a glass substrate Z transparent conductive film Z light emitting layer Z electrode Z sealing layer, the first diffusion plate is in contact with the substrate surface opposite to the light emitting layer of the glass substrate. Put. Position the first lens sheet (for example, 3M BEF II) so that the lens surface faces away from the glass substrate so that it is in contact with the diffuser, and then place the second lens sheet on the first lens sheet. The lens is arranged so that it is orthogonal to the lens stripe and the lens surface faces away from the glass substrate. Next, a second diffusion plate is disposed so as to contact the second lens sheet. As the shape of the first and second lens sheets, an octagonal stripe having an apex angle of 90 degrees and a pitch of 50 111 is formed of acrylic resin on a PET base material. Shapes with rounded apex angles (3M RBEF), shapes with randomly changing pitch (3M BEF III), and other similar shapes may be used.
[0118] 第 1の拡散板としては、約 100 μ mの PET基材上に光を拡散するビーズを混ぜた 膜を形成したもので、透過率は約 85%でヘイズ値は約 75%である。第 2の拡散板と しては、約 100 μ mの PET基材上に光を拡散するビーズを混ぜた膜を形成したもの で、透過率は約 90%で、ヘイズ値は約 30%である。ガラス基板に接して配置する拡 散板は、ガラス基板に光学接着剤を介して接着されていてもよい。また、ガラス基板 表面に光を拡散する層を直接塗布する、もしくはガラス基板の表面に光を拡散する ための微細な構造が設けられたものであってもよい。以上、ガラス基板で説明したが 、基板は樹脂基板であってもよい。  [0118] The first diffusion plate is a film in which beads that diffuse light are mixed on an approximately 100 μm PET substrate. The transmittance is approximately 85% and the haze value is approximately 75%. is there. The second diffusing plate is a film in which beads that diffuse light are mixed on a PET substrate of about 100 μm. The transmittance is about 90% and the haze value is about 30%. is there. The diffusion plate arranged in contact with the glass substrate may be bonded to the glass substrate via an optical adhesive. Further, a layer for diffusing light may be directly applied on the surface of the glass substrate, or a fine structure for diffusing light on the surface of the glass substrate may be provided. Although the glass substrate has been described above, the substrate may be a resin substrate.
[0119] (2)基板の表面にマイクロレンズアレイを形成する場合  [0119] (2) When forming a microlens array on the surface of a substrate
ガラス基板/透明導電膜/発光層/電極/封止層からなる有機 EL素子において 、ガラス基板の発光層が設けられた面とは反対側の表面に、マイクロレンズアレイシ ートを光学接着剤を介して貼り付ける。マイクロレンズアレイシートは、各々 50 / mの 四角垂(ピラミッドの形状)でその頂角が 90度のマイクロレンズを、 50 μ mピッチで整 歹 IJさせた形状をしている。  In an organic EL device consisting of a glass substrate / transparent conductive film / light emitting layer / electrode / sealing layer, a microlens array sheet is placed on the surface of the glass substrate opposite to the surface on which the light emitting layer is provided. Paste through. Each microlens array sheet has a 50 / m square shape (pyramid shape) and a microlens whose apex angle is 90 degrees.
[0120] シートの製造方法としては、マイクロレンズアレイの母型となる金属の金型と、 0. 5m mのスぺーサをはさんで設置されたガラス平板の間に UV硬化樹脂を注入し、ガラス 基板から UV露光することで樹脂を硬化させてマイクロレンズアレイシートを得る。ここ で、各々のマイクロレンズの形状としては、円錐形状、三角錐形状、凸レンズ形状等 を適用可能である。ガラス基板にマイクロレンズアレイシートを貼り付ける構造として 説明したが、樹脂基板にマイクロレンズアレイシートを貼り付けるでもよい。また、マイ クロレンズアレイシートのマイクロレンズアレイが設けられた面と反対面に、透明電極 /発光層/電極/封止層を設けるという構成でもよい。 [0120] As a sheet manufacturing method, a UV curable resin is injected between a metal mold which is a mother mold of a microlens array and a glass plate placed with a spacer of 0.5 mm. The resin is cured by UV exposure from a glass substrate to obtain a microlens array sheet. Here, as the shape of each microlens, a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable. Although described as a structure in which the microlens array sheet is attached to the glass substrate, the microlens array sheet may be attached to the resin substrate. My A configuration in which a transparent electrode / light emitting layer / electrode / sealing layer is provided on the surface opposite to the surface on which the microlens array of the black lens array sheet is provided may be employed.
[0121] (3)基板の表面にマイクロレンズアレイシートを下向きに接着する構造  [0121] (3) Structure in which the microlens array sheet is bonded downward on the surface of the substrate
ガラス基板 Z透明導電膜 Z発光層 Z電極 Z封止層からなる有機 EL素子において 、ガラス基板の発光層が設けられた面とは反対側の表面にマイクロレンズァレイシー トを、マイクロレンズの凹凸面がガラス基板側に向くように光学接着剤を介して貼り付 ける。マイクロレンズアレイシートは、各々一辺が 50 x mの四角垂形状の頂点を平坦 にした構造をしたマイクロレンズをピッチ 50 μ mで整歹 1Jした形状をしている。平坦とな つた頂点部分がガラス基板の表面に接着される。ここで、各々のマイクロレンズの形 状としては、円錐形状、三角錐形状、凸レンズ形状等を適用可能である。ガラス基板 にマイクロレンズアレイシートを貼り付ける構造として説明したが、樹脂基板にマイクロ レンズアレイシートを貼り付けてもよい。  Glass substrate Z Transparent conductive film Z Light-emitting layer Z electrode In an organic EL device consisting of a Z sealing layer, a microlens array sheet is formed on the surface of the glass substrate opposite to the surface on which the light-emitting layer is provided. Affix with an optical adhesive so that the surface faces the glass substrate. The microlens array sheet has a shape in which microlenses having a structure in which the apexes of a quadrangular shape with a side of 50 x m are flattened are arranged 1J at a pitch of 50 μm. The flat apex is bonded to the surface of the glass substrate. Here, as the shape of each microlens, a conical shape, a triangular pyramid shape, a convex lens shape, or the like is applicable. Although the microlens array sheet has been described as being attached to the glass substrate, the microlens array sheet may be attached to the resin substrate.
[0122] 光取り出し効率を更に高めるためには、透明電極と透明基板の間に低屈折率層を 挿入することが好ましい。透明電極と透明基板の間に低屈折率の媒質を光の波長よ りも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど 外部への取り出し効率が高くなる。低屈折率層としては、例えば、エア口ゲル、多孔 質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折 率は一般に 1. 5〜: 1. 7程度であるので、低屈折率層は屈折率がおよそ 1. 5以下で あることが好ましい。また更に 1. 35以下であることが好ましい。また、低屈折率媒質 の厚みは、光の媒質中の波長よりも長い厚み、好ましくは 2倍以上となるのが望まし レ、。これは、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み 出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからで ある。  [0122] In order to further increase the light extraction efficiency, it is preferable to insert a low refractive index layer between the transparent electrode and the transparent substrate. When a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. . Examples of the low refractive index layer include air mouth gel, porous silica, magnesium fluoride, and fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to about 1.7, it is preferable that the low refractive index layer has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less. Also, it is desirable that the thickness of the low refractive index medium is longer than the wavelength in the light medium, preferably more than twice. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
[0123] 以下に、本発明に係る低屈折率層の例を説明するが、本発明では目的効果を損な わなレ、範囲内であれば、これらに限定されなレ、。  [0123] Hereinafter, examples of the low refractive index layer according to the present invention will be described. However, the present invention does not impair the target effect, and is not limited thereto as long as it is within the range.
[0124] (a)中空シリカを分散させる場合 [0124] (a) When hollow silica is dispersed
ゾル一ゲル法により中空シリカを分散させた低屈折率層を形成したガラス基板の作 製方法を説明する。ガラス基板上に以下の手順で低屈折率層を形成することができ る。 A method for producing a glass substrate having a low refractive index layer in which hollow silica is dispersed by a sol-gel method will be described. A low refractive index layer can be formed on a glass substrate by the following procedure. The
[0125] 原料化合物として金属アルコキシド(正珪酸四ェチル Si (OC H ) [略して TEOS]  [0125] Metal alkoxide (original tetraethyl silicate Si (OC H) [TEOS for short] as a raw material compound
2 5 4  2 5 4
)、溶媒としてエタノール、触媒として酢酸、それに加水分解に必要な水を加えた調 合液に、低屈折率材料 (触媒化成工業製、シリカ粒子 (屈折率 1. 35) )をイソプロピ ルアルコールに加えた液を混合させ、数十。 Cに保って加水分解と重縮合反応を起こ させ、液体のゾルを生成する。作成されたゾルをスピンコートでガラス基板上に塗布し て反応させるとゲルとして固化する。これを更に 150度の雰囲気中で乾燥させて乾燥 ゲノレとし、その時の膜厚が 0. 5 mとなるように、溶液の調合とスピンコートの条件を 設定する。その結果、膜厚 0. 5 x m、屈折率 1. 37の低屈折率層が形成される。  ), Ethanol as solvent, acetic acid as catalyst, and water required for hydrolysis, and low refractive index material (Catalyst Chemical Industries, silica particles (refractive index 1.35)) in isopropyl alcohol. Mix the added liquid and dozens. It is kept at C to cause hydrolysis and polycondensation reaction to produce a liquid sol. When the prepared sol is applied onto a glass substrate by spin coating and reacted, it solidifies as a gel. This is further dried in an atmosphere of 150 ° C. to obtain a dry genolet, and the conditions of solution preparation and spin coating are set so that the film thickness at that time becomes 0.5 m. As a result, a low refractive index layer having a film thickness of 0.5 × m and a refractive index of 1.37 is formed.
[0126] ここで、溶液の塗布方法としてスピンコートと記述した力 ディップコート他、均一な 膜厚を得られる手法であればよい。基板としてガラス基板の例を示したが、プロセス 温度が 150度以下であるので樹脂基板の上に直接塗布することも可能である。また、 原料化合物や低屈折率材料として更に低い屈折率を選択し、得られる低屈折率層 の屈折率が 1. 37以下にすることで更なる効果が期待できる。膜厚については 0. 5 μ m以上が望ましぐ 1 μ m以上であれば更に好ましい。  [0126] Here, as a solution coating method, a force dip coating described as spin coating may be used as long as a uniform film thickness can be obtained. Although an example of a glass substrate is shown as the substrate, since the process temperature is 150 ° C. or less, it can be applied directly on the resin substrate. Further effects can be expected by selecting a lower refractive index as a raw material compound or a low refractive index material and making the resulting low refractive index layer have a refractive index of 1.37 or less. The film thickness is preferably 0.5 μm or more, more preferably 1 μm or more.
[0127] 中空シリカの作製は、例えば、特開 2001— 167637号公報、特開 2001— 23361 1号公報、特開 2002— 79616号公報等に記載されている。  [0127] The production of hollow silica is described in, for example, JP-A No. 2001-167637, JP-A No. 2001-233611, and JP-A No. 2002-79616.
[0128] (b)シリカエア口ゲルの場合  [0128] (b) Silica air mouth gel
透明低屈折率層は、シリコンアルコキシドのゾルゲル反応により形成される湿潤ゲ ルを超臨界乾燥することによって得られるシリカエア口ゲルによって形成される。シリ 力エア口ゲルとは、均一な超微細構造を持った光透過性の多孔質体である。テトラメ トキシシランのオリゴマーとメタノールを混合して A液を調製し、また水、アンモニア水 、メタノールを混合して B液を調製した。 A液と B液を混合して得たアルコキシシラン溶 液を、基板 2上に塗布する。アルコキシシランをゲル化させた後、水、アンモニア水、 メタノールの養生溶液中に浸漬し、室温にて 1昼夜養生する。次に、養生を行なった 薄膜状のゲル状化合物をへキサメチルジシラザンのイソプロパノール溶液中に浸漬 し、疎水化処理をし、その後、超臨界乾燥を行ってシリカエア口ゲルを形成する。  The transparent low refractive index layer is formed by a silica air mouth gel obtained by supercritical drying of a wet gel formed by a sol-gel reaction of silicon alkoxide. Siri-force air mouth gel is a light-transmitting porous material with a uniform ultra-fine structure. Liquid A was prepared by mixing tetramethoxysilane oligomer and methanol, and liquid B was prepared by mixing water, aqueous ammonia, and methanol. The alkoxysilane solution obtained by mixing the A and B solutions is applied onto the substrate 2. After the alkoxysilane is gelled, it is immersed in a curing solution of water, aqueous ammonia and methanol, and then cured at room temperature for one day and night. Next, the cured gel-like compound is immersed in an isopropanol solution of hexamethyldisilazane, hydrophobized, and then subjected to supercritical drying to form a silica air mouth gel.
[0129] (c)多孔質シリカの場合 低屈折率材料として、撥水性を有するへキサメチルジシロキサンやへキサメチルジ シラザンを含有した低比誘電率物質の溶液を、基板上に塗布して成膜を行う。ここで 用いる低比誘電率物質の溶液には、へキサメチルジシロキサンやへキサメチルジシ ラザンのような撥水性の物質以外にも、必要に応じてアルコールや酢酸ブチルなどを 添加物として加えてもよい。そして、焼成処理などにより、上記低比誘電率物質の溶 液中の溶媒や水、酸またはアルカリ触媒や界面活性剤などを蒸発させながら多孔質 シリカ材料から成る低屈折率膜を形成する。これを洗浄し、低屈折率膜を得る。 [0129] (c) In the case of porous silica A film of low dielectric constant material containing water repellent hexamethyldisiloxane or hexamethyldisilazane as a low refractive index material is applied to a substrate. In addition to water-repellent materials such as hexamethyldisiloxane and hexamethyldisilazane, alcohol or butyl acetate may be added as an additive to the solution of the low dielectric constant material used here, if necessary. . Then, a low refractive index film made of a porous silica material is formed by evaporating the solvent, water, acid, alkali catalyst, surfactant or the like in the solution of the low relative dielectric constant material by a baking treatment or the like. This is washed to obtain a low refractive index film.
[0130] この様に基板上に低屈折率膜を形成した後、低屈折率膜上に直接、または、例え ば、 RFスパッタ法等により SiO膜からなる透明絶縁膜で中間層を形成し、その後、  [0130] After forming the low refractive index film on the substrate in this way, an intermediate layer is formed on the low refractive index film directly or with a transparent insulating film made of a SiO film by, for example, RF sputtering, afterwards,
2  2
中間層の上に DCスパッタ法により IT〇膜の成膜を行レ、、透明電極付き基板とする。  An IT ○ film is formed on the intermediate layer by DC sputtering to form a substrate with a transparent electrode.
[0131] また、更に光取り出し効率を高めるためには、例えば、特開平 11— 283751号公 報に記載されたように、全反射を起こす界面もしくはレ、ずれかの媒質中に回折格子 を導入する方法を併用するのが好ましい。例えば、ガラス基板上に回折格子を形成 する。 [0131] Further, in order to further improve the light extraction efficiency, for example, as described in Japanese Laid-Open Patent Publication No. 11-283751, a diffraction grating is introduced into an interface or a medium that causes total reflection. It is preferable to use a combination of these methods. For example, a diffraction grating is formed on a glass substrate.
[0132] この方法は、回折格子が 1次の回折や 2次の回折といった、所謂ブラッグ回折により 、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光 層から発生した光のうち、層間での全反射等により外に出ることができない光を、レヽ ずれかの層間、もしくは媒質中(透明基板内や透明電極内)に回折格子を導入する ことで光を回折させ、光を外に取り出そうとするものである。  [0132] This method utilizes the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction and second-order diffraction. Of the light generated from the light, the light that cannot go out due to total reflection between layers is introduced by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). Is diffracted to extract light out.
[0133] 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは 、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周 期的な屈折率分布を持っている一般的な 1次元回折格子では、特定の方向に進む 光しか回折されず、光の取り出し効率がさほど上がらなレ、。  [0133] It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction can be obtained. It is not diffracted, and the light extraction efficiency is greatly improved.
[0134] し力 ながら、屈折率分布を二次元的な分布にすることによりあらゆる方向に進む 光が回折され、光の取り出し効率が上がる。回折格子を導入する位置としては、前述 のとおりいずれかの層間、もしくは媒質中(透明基板内や透明電極内)でもよいが、 光が発生する場所である発光層の近傍が望ましい。このとき、回折格子の周期は増 幅する光の媒質中の波長の約 1/2〜3倍程度が好ましい。回折格子の配列は正方 形のラチス状、三角形のラチス状、ハニカムラチス状など、 2次元的に配列が繰り返さ れることが好ましい。 However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency increases. The position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or transparent electrode) as described above, but is preferably in the vicinity of the light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength in the medium of the light to be amplified. Diffraction grating array is square It is preferable that the arrangement is repeated two-dimensionally, such as a lattice lattice shape, a triangular lattice shape, or a honeycomb lattice shape.
[0135] 例えば、ガラス基板上に回折格子を形成するには、ガラス基板を洗浄後、表面にポ ジ型のレジストを塗布する。次にレジスト上に基板垂直方向から Θ度の角度で対向す るように互いにコヒーレントな波長 λの 2つの平行光を照射する。このとき、レジストに はピッチ dの干渉縞が形成される。ここで、 d= / (2cos θ )となる。波長 488nmの アルゴンレーザを用いると、フォトニック結晶のピッチとして 300nmを作製するとき、 2 つの光束ともに基板に垂直な方向から角度 35. 6度で露光すると、ピッチ 300nmの 第 1の干渉縞が形成される。  [0135] For example, in order to form a diffraction grating on a glass substrate, a glass-type resist is applied to the surface after washing the glass substrate. Next, two parallel lights of wavelength λ are applied to the resist so as to face each other at an angle of Θ degrees from the vertical direction of the substrate. At this time, interference fringes having a pitch d are formed in the resist. Here, d = / (2cos θ). Using an argon laser with a wavelength of 488 nm, when producing 300 nm as the pitch of the photonic crystal, if both light beams are exposed at an angle of 35.6 degrees from the direction perpendicular to the substrate, a first interference fringe with a pitch of 300 nm is formed. Is done.
[0136] 次に基板を基板の面内に 90度回転させて、第 1の干渉縞に直交するように第 2の 干渉縞を形成する。露光する光束をそのまま維持しておけばピッチ 300nmで第 2の 干渉縞が形成される。レジストには 2つの干渉縞が重畳されて露光され、格子状の露 光パターンが形成される。露光パワーと現像条件を適切に設定することにより、 2つの 干渉縞が重なりあって強く露光された部分のみレジストが除去されるように現像する。 ガラス基板上には縦横のピッチが各々 300nmの格子の重なりあった部分に、ほぼ円 形にレジストが除去されたようなパターンが形成される。円の直径は、例えば、 220η mとする。  [0136] Next, the substrate is rotated 90 degrees in the plane of the substrate to form second interference fringes so as to be orthogonal to the first interference fringes. If the light beam to be exposed is maintained as it is, second interference fringes are formed at a pitch of 300 nm. The resist is exposed with two interference fringes superimposed to form a grid-like exposure pattern. By appropriately setting the exposure power and development conditions, development is performed so that the resist is removed only in the areas where two interference fringes overlap and are strongly exposed. On the glass substrate, a pattern in which the resist is removed in a substantially circular shape is formed in the overlapping part of the lattices with vertical and horizontal pitches of 300 nm each. The diameter of the circle is, for example, 220ηm.
[0137] 次にドライエッチングを施すことにより、レンジストが除去された部分に深さ 200nm の孔を形成する。その後レジストを除去し、ガラス基板を洗浄する。  Next, by performing dry etching, a hole having a depth of 200 nm is formed in the portion from which the range has been removed. Thereafter, the resist is removed and the glass substrate is washed.
[0138] 以上により、表面に深さ 200nm、直径 220nmの孔が縦横 300nmピッチの正方格 子の頂点に並んだガラス基板が形成される。次に、穴の底から測って膜厚 300nm程 度の ITO膜をバイアススパッタリングにより成膜し、バイアススパッタリングの条件を適 切にコントロールすることで、表面の凹凸を 50nm以下に平坦にすることができる。  As described above, a glass substrate is formed in which holes having a depth of 200 nm and a diameter of 220 nm are arranged on the surface at the apexes of square lattices having a pitch of 300 nm. Next, an ITO film with a film thickness of about 300 nm measured from the bottom of the hole is formed by bias sputtering, and the surface irregularities can be flattened to 50 nm or less by appropriately controlling the bias sputtering conditions. it can.
[0139] 以上のように作製された ITO付きのガラス基板の表面に研磨を施すことで、有機 E L用の ITO付きガラス基板が形成される。ガラス基板にフォトレジストを塗布してパタ 一ユングし、ガラス基板をエッチングする方法のほか、同様の手法でガラス型を形成 し、ガラス基板上に UV硬化のレジストをナノインプリントの手法で転写してガラス基板 をエッチングする方法も可能である。また、ガラス基板に形成されたパターンをニッケ ル電铸などの手法で金型に転写し、その金型をナノインプリントの手法で樹脂に転写 したものを基板として用いるこで、樹脂基板でも本発明を実施することが可能である。 [0139] By polishing the surface of the glass substrate with ITO produced as described above, a glass substrate with ITO for organic EL is formed. In addition to the method of coating and patterning a photoresist on a glass substrate and etching the glass substrate, a glass mold is formed by a similar method, and a UV-curable resist is transferred onto the glass substrate by a nanoimprint method. A method of etching the substrate is also possible. Also, the pattern formed on the glass substrate It is possible to carry out the present invention even on a resin substrate by using as a substrate a substrate that has been transferred to a mold by a method such as a luminaire and transferred to a resin by a nanoimprinting method.
[0140] 上記のような光取り出し及び/または集光シートを用いた有機 EL素子においては 、正面輝度増幅率が高められている。このようにして取り出された光は、前記の 2°C視 野角正面輝度を上記方法により測定したときに、 CIE1931表色系の色度で x = 0. 3 3 ± 0. 07、y = 0. 33 ± 0. 07の領域内にある所謂白色光であるように調整される。 通常、発光色は 420nm以上 500nm未満の発光を青色、 500nm以上 550nm未満 の発光を緑色、 600nm以上〜 650nm未満の発光を赤色に区分する。  [0140] In the organic EL element using the light extraction and / or condensing sheet as described above, the front luminance amplification factor is increased. The light extracted in this way has a chromaticity of CIE1931 color system of x = 0.33 ± 0.07, y = 0 when the 2 ° C viewing angle front luminance is measured by the above method. It is adjusted to be so-called white light in the region of 33 ± 0.07. Usually, the emission color is classified into blue light emission of 420 nm or more and less than 500 nm, blue light emission of 500 nm or more and less than 550 nm, and red light of 600 nm or more to less than 650 nm.
[0141] 従って、発光する材料 (実質的にドーパント)によっても異なるが、本発明において 、光取り出し及び/または集光シートが無い場合の有機 EL素子の正面輝度ピーク 値は、該シートがある場合に対して、定性的には青色が最も小さい比率となる。  Accordingly, the front luminance peak value of the organic EL element when there is no light extraction and / or light collection sheet in the present invention is different depending on the material that emits light (substantially a dopant). On the other hand, qualitatively, blue is the smallest ratio.
[0142] 連続駆動等における寿命においては、一般的に青色が律速になるのでこの様な光 取りだし及び/または集光シートを用いた場合、有機 EL素子においてより高寿命が 可能となる。また、駆動電圧の制約となるのは HOMOと LUMOのエネルギーギヤッ プが最も大きい青色であるため、前記光取り出しを向上させた有機 EL素子は、青色 の正面輝度が少なくて済む設計となり、駆動電圧を下げることが可能となる。  [0142] In the lifetime in continuous driving or the like, generally, blue is rate-determined, and therefore, when such a light extraction and / or light collecting sheet is used, a longer lifetime can be achieved in the organic EL element. In addition, the driving voltage is limited by blue, which has the largest energy gap between HOMO and LUMO. Therefore, the organic EL element with improved light extraction is designed to require less blue front luminance and drive. The voltage can be lowered.
[0143] 即ち、青色発光層の膜厚が薄くでき、且つ駆動電圧が下げられるため、光取り出し 及び/または集光シートがない場合に比べ、高寿命が可能となり、この組み合わせ によりトータルで白色光を得るようにすることができる。  [0143] That is, since the blue light emitting layer can be made thin and the driving voltage can be lowered, it can have a longer life than when no light extraction and / or condensing sheet is provided. Can get to.
[0144] ここにおいて、光取り出し及び/または集光シートによる正面輝度の増幅率は、分 光放射輝度計 (例えば、 CS— 1000 (コニカミノルタセンシング社製))等を用レ、、正 面からの発光輝度(2°C視野角正面輝度)を、光取出し及び Zまたは集光シートがあ る状態とない状態で発光面からの法線に分光放射輝度計の光軸が一致するようにし て、必要な可視光波長範囲で測定、積算し、比をとればよい。  [0144] Here, the amplification factor of the front luminance by the light extraction and / or condensing sheet is measured from the front using a spectral radiance meter (for example, CS-1000 (manufactured by Konica Minolta Sensing)). The light emission brightness (2 ° C viewing angle front brightness) is adjusted so that the optical axis of the spectroradiometer matches the normal from the light emitting surface with and without light extraction and with Z or a light collecting sheet. Measure and integrate in the necessary visible light wavelength range and take the ratio.
[0145] 《有機 EL素子の作製方法》  [0145] <Method for manufacturing organic EL element>
本発明の有機 EL素子の作製方法の一例として、陽極 Z正孔注入層 Z正孔輸送層 /発光層/正孔阻止層/電子輸送層/陰極からなる有機 EL素子の作製法につい て説明する。まず適当な支持基盤上に所望の電極物質、例えば、陽極用物質からな る薄膜を 1 μ ΐη以下、好ましくは 10 200nmの膜厚になるように、蒸着やスパッタリ ング等の方法により形成させ、陽極を作製する。 As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode Z hole injection layer Z hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described. . First, a desired electrode material such as an anode material is formed on a suitable support substrate. A thin film is formed by a method such as vapor deposition or sputtering so as to have a thickness of 1 μΐη or less, preferably 10 200 nm, to produce an anode.
[0146] 次に、この上に有機 EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻 止層、電子輸送層の有機化合物薄膜を形成させる。この有機化合物薄膜の薄膜化 の方法としては、前記の如く蒸着法、ウエットプロセス (スピンコート法、キャスト法、ィ ンクジェット法、印刷法)等があるが、均質な膜が得られやすぐ且つピンホールが生 成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に 好ましレ、。更に層毎に異なる製膜法を適用してもよい。  Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, is formed thereon. As a method of thinning the organic compound thin film, there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above. The vacuum deposition method, spin coating method, ink jet method, and printing method are particularly preferred because they are difficult to generate pinholes. Further, different film forming methods may be applied for each layer.
[0147] 製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異 なるが、一般にボート加熱温度 50 450°C、真空度 10〜: 10— 2Pa、蒸着速度 0. 01 50nmZ秒、基板温度— 50 300 C、膜厚 0. 1 5 x m、好ましくは 5 200 nmの範囲で適宜選ぶことが望ましレ、。 [0147] Film when adopting the deposition, the deposition conditions are different due to kinds of materials used, generally boat temperature 50 450 ° C, vacuum degree. 10 to: 10- 2 Pa, deposition rate 0 01 50nmZ seconds, substrate temperature—50 300 C, film thickness 0.15 xm, preferably 5 200 nm, preferably selected appropriately.
[0148] これらの層を形成後、その上に陰極用物質からなる薄膜を 1 μ m以下、好ましくは 5 0 200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法によ り形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL素 子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ま しいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不 活性ガス雰囲気下で行う等の配慮が必要となる。また作製順序を逆にして、陰極、電 子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製するこ とも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場 合には、陽極を +、陰極を一の極性として電圧 2 40V程度を印加すると、発光が観 測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい  [0148] After these layers are formed, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so that the film thickness is 1 μm or less, preferably 50 to 200 nm. The desired organic EL device can be obtained by forming the cathode and providing the cathode. The organic EL element is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. Further, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 240 V with the anode as + and the cathode as one polarity. An alternating voltage may be applied. The applied AC waveform may be arbitrary.
[0149] 《用途》 [0149] << Application >>
本発明の有機エレクト口ルミネッセンス素子は、表示デバイス、ディスプレイ、各種発 光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、 時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複 写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限 定するものではないが、特に、カラーフィルターと組み合わせた液晶表示装置のバッ クライト、照明用光源としての用途に有効に用いることができる。本発明の有機エレク トロルミネッセンス素子においては、必要に応じ製膜時にメタルマスクやインクジェット プリンティング法等でパターユングを施してもよレ、。パターユングする場合は、電極の みをパターユングしてもよいし、電極と発光層をパターユングしてもよいし、素子全層 をパターユングしてもよい。 The organic electoluminescence element of the present invention can be used as a display device, a display, or various light sources. Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sensors. Light source, etc. Although not specified, it can be effectively used particularly as a backlight of a liquid crystal display device combined with a color filter and an illumination light source. In the organic electroluminescence element of the present invention, patterning may be performed by a metal mask or an ink jet printing method when forming a film, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
[0150] 《表示装置》  [0150] <Display device>
本発明の表示装置について説明する。本発明の表示装置は多色または白色の表 示装置に用いられる。多色または白色の表示装置の場合は、発光層形成時のみシ ャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印 刷法等で膜を形成できる。発光層のみパターニングを行う場合、その方法に限定は ないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合に おいてはシャドーマスクを用いたパターユングが好ましい。また、作製順序を逆にして 、陰極、電子輸送層、正孔阻止層、発光層ユニット (少なくとも 3層の発光層を有し、 各発光層間に非発光性の中間層を有していてもよい)、正孔輸送層、陽極の順に作 製することも可能である。  The display device of the present invention will be described. The display device of the present invention is used for a multicolor or white display device. In the case of a multicolor or white display device, a shadow mask is provided only when the light emitting layer is formed, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like. In the case of patterning only the light emitting layer, the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable. When using the vapor deposition method, patterning using a shadow mask is preferable. In addition, the cathode, electron transport layer, hole blocking layer, and light emitting layer unit (having at least three light emitting layers and non-light emitting intermediate layers between the light emitting layers) It is also possible to produce the hole transport layer and the anode in this order.
[0151] このようにして得られた多色または白色の表示装置に、直流電圧を印加する場合に は、陽極を +、陰極を一の極性として電圧 2〜40V程度を印加すると発光が観測で きる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に 、交流電圧を印加する場合には、陽極が +、陰極が一の状態になったときのみ発光 する。なお、印加する交流の波形は任意でよい。発光光源としては家庭用照明、車 内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子 写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこ れらに限定されない。  [0151] When a DC voltage is applied to the multicolor or white display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity. wear. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Furthermore, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the single state. The alternating current waveform to be applied may be arbitrary. Light emitting sources include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor light sources, etc. However, it is not limited to these.
[0152] 《照明装置》  [0152] 《Lighting device》
本発明の照明装置について説明する。本発明の有機 EL素子は、照明用や露光光 源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクシ ヨン装置や、静止画像や動画像を直接視認するタイプの表示装置 (ディスプレイ)とし て使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は単純マ トリタス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよレ、。本発 明に用いられる白色有機エレクト口ルミネッセンス素子においては、必要に応じ製膜 時にメタルマスクやインクジェットプリンティング法等でパターユングを施してもよい。 パターユングする場合は、電極のみをパターユングしてもよいし、電極と発光層をパ ターニングしてもよいし、素子全層をパターユングしてもよい。発光層に用いる発光材 料としては特に制限はなぐ例えば、液晶表示素子におけるバックライトであれば、 C F (カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係わる白 金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて、また本 発明に係る光取りだし及び/または集光シートと組み合わせて、白色化すればよい。 The lighting device of the present invention will be described. The organic EL device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. As a display device (display) May be used. When used as a display device for video playback, either the simple matrix (passive matrix) method or the active matrix method can be used. In the white organic electroluminescence device used in the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned. The light emitting material used for the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display device, the white metal complex according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. In addition, any one of known light emitting materials may be selected and combined, or may be combined with the light extraction and / or light collecting sheet according to the present invention to be whitened.
[0153] このように、本発明に用いられる白色の有機 EL素子は、 CF (カラーフィルター)と組 み合わせて、また CF (カラーフィルター)パターンに合わせ素子及び駆動トランジスタ 回路を配置することで、請求の範囲第 11項に記載されるように、有機エレクトロルミネ ッセンス素子から取り出される白色光をバックライトとして、青色フィルタ、緑色フィルタ 、赤色フィルタを介して、青色光、緑色光、赤色光を得ることで、低駆動電圧で、長寿 命のフルカラーの有機エレクト口ルミネッセンスディスプレイができ、好ましい。  As described above, the white organic EL element used in the present invention is combined with the CF (color filter), and the element and the driving transistor circuit are arranged in accordance with the CF (color filter) pattern. As described in claim 11, blue light, green light, and red light are obtained through a blue filter, a green filter, and a red filter using white light extracted from the organic electroluminescence element as a backlight. Thus, a long-life, full-color organic electoluminescence display can be obtained with a low driving voltage, which is preferable.
[0154] また、これらディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、 車内照明、また露光光源のような一種のランプとして、液晶表示装置のバックライト等 、表示装置にも有用に用レ、られる。その他、時計等のバックライト、看板広告、信号機 、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサ 一の光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用 途が挙げられる。  [0154] In addition to these displays, various light-emitting light sources and lighting devices are also useful for display devices such as backlights for liquid crystal display devices as household lighting, interior lighting, and a kind of lamp such as an exposure light source. Used for. In addition, backlights such as watches, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc. There are a wide range of uses such as household appliances.
実施例  Example
[0155] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。  [0155] Hereinafter, the present invention will be described by way of examples, but the present invention is not limited thereto.
[0156] 実施例 1 [0156] Example 1
《有機 EL素子 101、 102の作製》  << Production of organic EL elements 101 and 102 >>
陽極として 30mm X 30mm、厚さ 0· 4mmのガラス基板上に ΙΤΟ (インジウムチンォ キシド)を 120nm成膜した基板(支持基盤ともいう)にパターニングを行った後、この I TO透明電極を付けた透明支持基盤をイソプロピルアルコールで超音波洗浄し、乾 燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この透明支持基盤を市販の真 空蒸着装置の基板ホルダーに固定した。 After patterning a substrate (also called a support substrate) with a 120 nm film of ΙΤΟ (indium oxide) on a glass substrate of 30 mm X 30 mm and a thickness of 0.4 mm as an anode, this I The transparent support substrate with a TO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. This transparent support base was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
[0157] 真空蒸着装置内の蒸着用るつぼの各々に、 F4_TCNQ、 m_MTDATA、 BCz VBi、 DPVBi、 CBP、燐光 G、燐光 R、 HB、 BCP、 CsFを各々素子作製に最適の量 充填した。蒸着用るつぼはモリブデン製またはタングステン製抵抗加熱用材料で作 製されたものを用いた。 [0157] Each of the deposition crucibles in the vacuum deposition apparatus was filled with F4_TCNQ, m_MTDATA, BCz VBi, DPVBi, CBP, phosphorescence G, phosphorescence R, HB, BCP, and CsF, respectively, in the optimum amounts for device fabrication. The crucible for vapor deposition was made of molybdenum or tungsten resistance heating material.
[0158] 次いで、真空度 4 X 10— 4Paまで減圧した後、 m_MTDATA及びF4_TCNQの 入った前記蒸着用るつぼに通電して加熱し、 F4—TCNQの体積濃度が一律 2%に なるようにトータル蒸着速度 0. InmZ秒で透明支持基盤の ITO電極側に蒸着し、ェ レクトロンァクセプターを含有した 40nmの正孔注入'輸送層を設けた。 [0158] Then, the pressure was reduced to a vacuum degree 4 X 10- 4 Pa, heated by supplying an electric current to the evaporation crucible containing the m_MTDATA and F4_TCNQ, total as volume concentration of F4-TCNQ is 2% uniformly Vapor deposition was performed on the ITO electrode side of the transparent support substrate at a deposition rate of 0. InmZ seconds, and a 40 nm hole injection and transport layer containing an electron acceptor was provided.
[0159] 更に、表 1に記載の材料、混合比で各層が形成されるように各材料が装填された蒸 着用るつぼに通電を行い、共蒸着または単独蒸着して発光層 1、中間層 1、発光層 2 、中間層、発光層 3、正孔阻止層、電子注入 ·輸送層を各々成膜した。  [0159] Further, the vaporization crucible loaded with each material was energized so that each layer was formed in the materials and mixing ratios shown in Table 1, and then co-evaporated or vapor-deposited to produce the light-emitting layer 1 and the intermediate layer 1 A light emitting layer 2, an intermediate layer, a light emitting layer 3, a hole blocking layer, and an electron injecting / transporting layer were formed.
[0160] なお、電子注入 ·輸送層は CsFの体積濃度が一律 20%になるようにトータル蒸着 速度 0. lnm/秒で正孔阻止層上に蒸着し、エレクトロンドナーを含有した 30nmの 電子注入 ·輸送層を設けた。  [0160] The electron injection / transport layer was deposited on the hole blocking layer at a total deposition rate of 0.1 nm / sec so that the volume concentration of CsF was uniformly 20%, and 30 nm electron injection containing an electron donor was performed. · A transport layer was provided.
[0161] 最後にアルミニウム l lOnmを蒸着して陰極を形成し、有機 EL素子 101を作製した  [0161] Finally, aluminum lOnm was vapor-deposited to form a cathode, and an organic EL device 101 was produced.
[0162] 有機 EL素子 102は CsFの体積濃度を一律 40%とした以外は、有機 EL素子 101と 同様にして作製した。 [0162] The organic EL element 102 was produced in the same manner as the organic EL element 101 except that the volume concentration of CsF was uniformly 40%.
[0163] 図 1、 2は電子注入 ·輸送層における CsF体積濃度が陰極から正孔阻止層方向へ の膜厚に応じて、それぞれ一律 20%、 40%であることを示している。  FIGS. 1 and 2 show that the CsF volume concentration in the electron injection / transport layer is 20% and 40%, respectively, depending on the film thickness from the cathode toward the hole blocking layer.
[0164] 最後に前記蒸着面側をガラスケースで覆レ、、有機エレクト口ルミネッセンス素子 101 を大気に接触させることなく窒素雰囲気下のグローブボックス(純度 99. 999%以上 の高純度窒素ガスの雰囲気下)で行った。図 10、 11は照明装置の概略図、断面図 を示し、図 11において、 15は陰極、 16は有機 EL層、 17は透明電極付きガラス基板 を示す。なお、ガラスカバー 12内には窒素ガス 18が充填され、捕水剤 19が設けられ ている。 [0164] Finally, the vapor deposition surface side is covered with a glass case, and a glove box in a nitrogen atmosphere (with an atmosphere of high-purity nitrogen gas with a purity of 99.999% or higher is used without contacting the organic-electric luminescence element 101 with the atmosphere). (Below). 10 and 11 are schematic views and cross-sectional views of the lighting device. In FIG. 11, 15 indicates a cathode, 16 indicates an organic EL layer, and 17 indicates a glass substrate with a transparent electrode. The glass cover 12 is filled with nitrogen gas 18 and a water catching agent 19 is provided. ing.
[0165] 《有機 EL素子 103〜111の作製》  [0165] << Production of organic EL elements 103 to 111 >>
有機 EL素子 103〜107は図 3〜7に示すように、電子注入.輸送層における CsF 体積濃度を陰極から正孔阻止層方向への膜厚に応じて変化させ、正孔阻止層〜正 孔注入 ·輸送層における各構成は有機 EL素子 101と同様にして作製した。なお、有 機 EL素子 108は発光層 1の BCzVBiに代えて Fir (pic)とした以外は、有機 EL素子 107と同様に作製した。  As shown in Figs. 3-7, the organic EL devices 103-107 change the volume concentration of CsF in the electron injection / transport layer according to the film thickness in the direction from the cathode to the hole blocking layer. Each component in the injection / transport layer was fabricated in the same manner as the organic EL device 101. The organic EL element 108 was manufactured in the same manner as the organic EL element 107 except that Fir (pic) was used instead of BCzVBi in the light emitting layer 1.
[0166] 有機 EL素子 109〜111は、有機 EL素子 108において電子注入'輸送層における BCPをそれぞれ H_ 3、 H_ 7、化合物(1)に代えた以外は、同様にして作製した。  [0166] Organic EL devices 109 to 111 were prepared in the same manner except that in the organic EL device 108, BCP in the electron injection and transport layer was replaced with H_3, H_7, and compound (1), respectively.
[0167] 具体的作製は、例えば、有機 EL素子 103については、トータル蒸着速度 0. lnm /秒の条件において、電子注入'輸送層のトータル膜厚 30nmのうち、陰極側から 1 4nmでは CsF体積濃度を 20%とし、次いで 2nmは 50%、更に 14nmでは 20%に戻 し、順次蒸着した。有機 EL素子 104〜111についても、同様にして作製した。  [0167] Specifically, for example, for the organic EL element 103, the CsF volume is 14 nm from the cathode side out of the total film thickness of 30 nm of the electron injection / transport layer under the condition of a total deposition rate of 0.1 nm / sec. The concentration was adjusted to 20%, then 2nm was reduced to 50%, and then back to 20% at 14nm. The organic EL elements 104 to 111 were produced in the same manner.
[0168] 更に、有機 EL素子 101と同様に封止を行って、照明装置を作製した。  [0168] Further, sealing was performed in the same manner as the organic EL element 101, and a lighting device was manufactured.
[0169] [化 4] [0169] [Chemical 4]
i VIVOSE I i VIVOSE I
Figure imgf000046_0001
Figure imgf000046_0001
墓〔0 Tomb [0
Figure imgf000047_0001
Figure imgf000047_0001
[0171] [表 1] [0171] [Table 1]
Figure imgf000047_0002
Figure imgf000047_0002
[0172] 表 1中の括弧内数字は質量%を表す。 [0173] 《有機 EL素子の評価》 [0172] The numbers in parentheses in Table 1 represent mass%. [0173] << Evaluation of organic EL elements >>
前記のごとく作製した各素子の正面輝度を評価した。ここで全ての素子は、 2°C視 野角正面輝度が 1000cd/m2での CIE1931表色系における色度が Χ=0· 33 ± 0 . 07、 Υ=0. 33 ± 0. 07の範囲であり、白色であることを確認した。素子の発光条件 は一定輝度(lOOOcdZcm2)で測定し、得られた駆動電圧結果を表 2に示す。また、 初期輝度(lOOOcdZcm2)における輝度半減期を評価し、結果を表 2に示した。 The front luminance of each element produced as described above was evaluated. Wherein all elements, 2 ° C Field of view angle front luminance chromaticity Χ = 0 · 33 ± in CIE1931 color system at 1000cd / m 2 0. 07, Υ = 0. 33 range of ± 0. 07 And it was confirmed to be white. The light emission conditions of the device were measured at a constant luminance (lOOOOcdZcm 2 ), and the obtained drive voltage results are shown in Table 2. In addition, the luminance half-life at the initial luminance (lOOOOcdZcm 2 ) was evaluated, and the results are shown in Table 2.
[0174] [表 2]  [0174] [Table 2]
Figure imgf000048_0001
Figure imgf000048_0001
[0175] 表 2より、電子注入及び輸送層の膜厚 30nmに対して、中央付近の 2nmにおいて 局所的に高濃度領域を有機 EL素子 103〜105において設けると、僅かに駆動電圧 が上昇する傾向が見られるが電流効率が改良された。有機 EL素子 104と 106を比 較すると、省電力化の程度は略同等であるが、一律濃度よりも改善が認められた。ま た、有機 EL素子 107の如く陽極側の CsF濃度を低くしたところ、省電力効果が認め られ、なお且つ駆動寿命の改善認められた。これは予想できなかった驚くべき効果で ある。更に BCPに代えて H_ 3、 H_ 7、化合物(1)に変更した有機 EL素子 109〜1 11につレ、ては、駆動電圧の寿命の改善効果が認められた。 [0175] From Table 2, when the high-concentration region is locally provided in the organic EL elements 103 to 105 at 2 nm near the center with respect to the thickness of the electron injection and transport layer of 30 nm, the drive voltage tends to increase slightly. Is seen, but current efficiency is improved. When comparing the organic EL elements 104 and 106, the degree of power saving was almost the same, but an improvement over the uniform concentration was observed. In addition, when the CsF concentration on the anode side was lowered as in the case of the organic EL element 107, a power saving effect was observed, and an improvement in the driving life was recognized. This is a surprising effect that was unexpected. Furthermore, the organic EL elements 109 to 111 changed to H_3, H_7, and compound (1) in place of BCP showed an effect of improving the driving voltage life.

Claims

請求の範囲 The scope of the claims
[1] 基板上に陽極、少なくとも 1層の有機層及び陰極から構成される有機エレクトロルミネ ッセンス素子において、前記有機層の少なくとも 1層がエレクトロンドナーを含有し、 該エレクトロンドナーの有機層中における体積濃度(%)が 5〜95%であり、 5%以上 異なるエレクトロンドナー濃度領域が存在することを特徴とする有機エレクト口ルミネッ センス素子。  [1] In an organic electroluminescence device composed of an anode, at least one organic layer and a cathode on a substrate, at least one of the organic layers contains an electron donor, and the volume of the electron donor in the organic layer An organic electoluminescence device having an electron donor concentration region having a concentration (%) of 5 to 95% and a difference of 5% or more.
[2] 前記エレクトロンドナーが含有される体積濃度(%)の最大濃度と最低濃度の差が 20 〜90%であることを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセ ンス素子。  [2] The organic electoluminescence device according to claim 1, wherein the difference between the maximum concentration and the minimum concentration of the volume concentration (%) containing the electron donor is 20 to 90%. .
[3] 前記エレクトロンドナーの最大濃度または最低濃度を含有する領域の各膜厚が該ェ レクトロンドナーを含有する有機層の膜厚に対して 1/100〜1/4であることを特徴 とする請求の範囲第 1項または第 2項に記載の有機エレクト口ルミネッセンス素子。  [3] The thickness of the region containing the maximum concentration or the minimum concentration of the electron donor is 1/100 to 1/4 of the thickness of the organic layer containing the electron donor. The organic electoluminescence device according to claim 1 or claim 2.
[4] 前記エレクトロンドナーを含有する有機層における陽極側で隣接する層界面との距 離が該エレクトロンドナーを含有する有機層の膜厚に対して 1/3以内の領域におい て、エレクトロンドナー体積濃度(%)が 10%以下であることを特徴とする請求の範囲 第 1項乃至第 3項のいずれ力 4項に記載の有機エレクト口ルミネッセンス素子。  [4] The electron donor volume in a region where the distance between the organic layer containing the electron donor and the adjacent layer interface on the anode side is within 1/3 of the film thickness of the organic layer containing the electron donor. The organic electoluminescence device according to any one of claims 1 to 3, wherein the concentration (%) is 10% or less.
[5] 前記 5%以上異なるエレクトロンドナー濃度領域が少なくとも 3領域あることを特徴と する請求の範囲第 1項乃至第 4項のいずれ力 4項に記載の有機エレクト口ルミネッセ ンス素子。  [5] The organic electoluminescence device according to any one of [1] to [4], wherein there are at least three electron donor concentration regions different by 5% or more.
[6] 前記エレクトロンドナーを含有する有機層が陰極と接することを特徴とする請求の範 囲第 1項乃至第 5項のいずれ力 4項に記載の有機エレクト口ルミネッセンス素子。  [6] The organic electroluminescent device according to any one of [1] to [5], wherein the organic layer containing the electron donor is in contact with the cathode.
[7] 前記有機層として少なくとも 1種の燐光を発光する発光ドーパント (燐光性化合物)を 含有する発光層を有することを特徴とする請求の範囲第 1項乃至第 6項のいずれ力、 1 項に記載の有機エレクト口ルミネッセンス素子。 7. The power according to any one of claims 1 to 6, wherein the organic layer has a light emitting layer containing a light emitting dopant (phosphorescent compound) that emits at least one kind of phosphorescence. The organic-elect mouth luminescence element of description.
[8] 前記有機層として燐光性化合物を含有する発光層と蛍光性化合物を含有する発光 層とを有することを特徴とする請求の範囲第 1項乃至第 6項のいずれか 1項に記載の 有機エレクト口ルミネッセンス素子。 [8] The organic layer according to any one of claims 1 to 6, wherein the organic layer includes a light emitting layer containing a phosphorescent compound and a light emitting layer containing a fluorescent compound. Organic electoluminescence element.
[9] 前記蛍光性化合物を含有する発光層が青色発光であることを特徴とする請求の範 囲第 8項に記載の有機エレクト口ルミネッセンス素子。 [9] The light emitting layer containing the fluorescent compound emits blue light. 9. An organic electoluminescence device according to item 8.
[10] 白色発光であることを特徴とする請求の範囲第 1項乃至第 9項のいずれ力 1項に記 載の有機エレクト口ルミネッセンス素子。 [10] The organic electoluminescence device according to any one of [1] to [9], which emits white light.
[11] 請求の範囲第 10項に記載の有機エレクト口ルミネッセンス素子から取り出される白色 光から、青色フィルタ、緑色フィルタ、赤色フィルタを介して青色光、緑色光、赤色光 を得ることを特徴とする有機エレクト口ルミネッセンスディスプレイ。 [11] A blue light, a green light, and a red light are obtained from white light extracted from the organic electoluminescence device according to claim 10 through a blue filter, a green filter, and a red filter. Organic-elect luminescence display.
PCT/JP2007/055610 2006-03-24 2007-03-20 Organic electroluminescent element, and organic electroluminescent display WO2007111192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008507443A JP5381098B2 (en) 2006-03-24 2007-03-20 Organic electroluminescence device and organic electroluminescence display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006082421 2006-03-24
JP2006-082421 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007111192A1 true WO2007111192A1 (en) 2007-10-04

Family

ID=38541112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055610 WO2007111192A1 (en) 2006-03-24 2007-03-20 Organic electroluminescent element, and organic electroluminescent display

Country Status (2)

Country Link
JP (1) JP5381098B2 (en)
WO (1) WO2007111192A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137733A1 (en) 2009-05-29 2010-12-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and method for manufacturing the same
JP2011119047A (en) * 2009-12-01 2011-06-16 Sony Corp Light-emitting element and its manufacturing method
CN102694001A (en) * 2011-03-25 2012-09-26 索尼公司 Organic electroluminescence display and method of manufacturing the same
JP2012204165A (en) * 2011-03-25 2012-10-22 Sony Corp Organic el display device and method for manufacturing the same
WO2016121561A1 (en) * 2015-01-26 2016-08-04 シャープ株式会社 Organic electroluminescent element and organic electroluminescent panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063910A (en) * 2003-08-20 2005-03-10 Canon Inc Organic light emitting element and its manufacturing method
JP2005310637A (en) * 2004-04-23 2005-11-04 Canon Inc Organic el element
JP2006332633A (en) * 2005-04-28 2006-12-07 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device and method of manufacturing light-emitting element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270171A (en) * 1997-01-27 1998-10-09 Junji Kido Organic electroluminescent element
JP2000113976A (en) * 1998-10-07 2000-04-21 Tdk Corp Organic EL device
JP2005135623A (en) * 2003-10-28 2005-05-26 Sharp Corp Organic el element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063910A (en) * 2003-08-20 2005-03-10 Canon Inc Organic light emitting element and its manufacturing method
JP2005310637A (en) * 2004-04-23 2005-11-04 Canon Inc Organic el element
JP2006332633A (en) * 2005-04-28 2006-12-07 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device and method of manufacturing light-emitting element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137733A1 (en) 2009-05-29 2010-12-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and method for manufacturing the same
EP2436234A1 (en) * 2009-05-29 2012-04-04 Semiconductor Energy Laboratory Co, Ltd. Light-emitting element, light-emitting device, and method for manufacturing the same
EP2436234A4 (en) * 2009-05-29 2013-06-19 Semiconductor Energy Lab Light-emitting element, light-emitting device, and method for manufacturing the same
US9741955B2 (en) 2009-05-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and method for manufacturing the same
JP2011119047A (en) * 2009-12-01 2011-06-16 Sony Corp Light-emitting element and its manufacturing method
US8841658B2 (en) 2009-12-01 2014-09-23 Sony Corporation Light-emitting element
CN102694001A (en) * 2011-03-25 2012-09-26 索尼公司 Organic electroluminescence display and method of manufacturing the same
JP2012204165A (en) * 2011-03-25 2012-10-22 Sony Corp Organic el display device and method for manufacturing the same
JP2012204164A (en) * 2011-03-25 2012-10-22 Sony Corp Organic el display device and method for manufacturing the same
WO2016121561A1 (en) * 2015-01-26 2016-08-04 シャープ株式会社 Organic electroluminescent element and organic electroluminescent panel
US10305056B2 (en) 2015-01-26 2019-05-28 Sharp Kabushiki Kaisha Organic electroluminescent element and organic electroluminescent panel

Also Published As

Publication number Publication date
JP5381098B2 (en) 2014-01-08
JPWO2007111192A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5556014B2 (en) Organic electroluminescence device
JP5381719B2 (en) White light emitting organic electroluminescence device
JP5697856B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP4910435B2 (en) Organic electroluminescence device and organic electroluminescence display
JP5499708B2 (en) Organic electroluminescence device
JP6225915B2 (en) Organic electroluminescence device
JP5353006B2 (en) Organic electroluminescence element, liquid crystal display device and lighting device
JP4853010B2 (en) Organic electroluminescence device and organic electroluminescence display
JP5261745B2 (en) Organic electroluminescence element, display device, liquid crystal display device, and illumination device
JP5256486B2 (en) Organic electroluminescence element, light emitting panel, liquid crystal display device and lighting device
JP5381098B2 (en) Organic electroluminescence device and organic electroluminescence display
JP5061423B2 (en) Organic electroluminescence device
JP2007258526A (en) Organic electroluminescence element and display
JP2007059310A (en) Organic electroluminescence element and lighting system
JP2009152435A (en) White organic electroluminescent device, manufacturing method thereof, display unit, and lighting apparatus
JP2008235503A (en) Organic electroluminescent device and illuminator using the same
JP2007250239A (en) Organic electroluminescence element, and organic electroluminescence display
JP2007251096A (en) Organic electroluminescence element and organic electroluminescence display
JP6197650B2 (en) Organic EL device
JP5835217B2 (en) Organic electroluminescence device
JP2007059119A (en) Organic electroluminescence element and organic electroluminescence display
WO2014034341A1 (en) Organic electroluminescent element
JP4923651B2 (en) Organic electroluminescence element, display device and lighting device
JP2007059189A (en) Organic electroluminescence element and organic electroluminescence display
JP2016100238A (en) Double-sided light emission type organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008507443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739053

Country of ref document: EP

Kind code of ref document: A1