WO2011052013A1 - Nucleic acid strand binding method and nucleic acid strand modification method - Google Patents
Nucleic acid strand binding method and nucleic acid strand modification method Download PDFInfo
- Publication number
- WO2011052013A1 WO2011052013A1 PCT/JP2009/005755 JP2009005755W WO2011052013A1 WO 2011052013 A1 WO2011052013 A1 WO 2011052013A1 JP 2009005755 W JP2009005755 W JP 2009005755W WO 2011052013 A1 WO2011052013 A1 WO 2011052013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- acid strand
- strand
- rna
- base
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
Definitions
- the present invention relates to a method for binding a 3 'hydrosyl group of a first nucleic acid strand and a 5' phosphate group of a second nucleic acid strand, and a method for modifying the second nucleic acid strand thereby.
- Non-Patent Document 1 the 3 'end of the RNA strand is modified using a non-radioactive isotope.
- a non-radioactive isotope since a non-radioactive isotope is used, an experiment can be performed safely.
- RNA biosynthesis extends from the 5 ′ end to the 3 ′ end, an extension reaction can be performed on the modified RNA strand. It becomes impossible.
- Non-Patent Document 2 the 5 ′ end is modified with T4 polynucleotide kinase, but at the same time, the radioactive isotope [ ⁇ - 32 P] ATP must be used. Therefore, a dedicated facility is required, and a large burden is imposed on the disposal of radioactive waste. Also, a technique that is familiar with handling is necessary from the viewpoint of safety.
- Patent Document 1 In order to solve such a problem, in recent years, by using a technique such as Non-Patent Documents 3 and 4 or Patent Document 1, a modified strand prepared in advance is bound to a target nucleic acid strand. Techniques for modifying and labeling the nucleic acid strands have been proposed.
- Patent Document 1 a first nucleic acid chain and a second nucleic acid chain are arranged via a third nucleic acid chain, thereby binding the first nucleic acid chain and the second nucleic acid chain. .
- RNA ligase-mediated method for the efficient creation of large, synthetic RNAs RNA 12: 2014-2019
- Non-Patent Documents 3 and 4 or Patent Document 1 in order to bind the first nucleic acid strand and the second nucleic acid strand, the 3 ′ end of the first nucleic acid strand and the second nucleic acid strand.
- the first nucleic acid strand so that several bases of the 3′-end sequence and the 5′-end sequence, each containing 2 bases at the 5 ′ end, form a loop structure called “broken interior loop” (see Non-Patent Document 3).
- the second nucleic acid strand must be arranged on the third nucleic acid strand, and the sequence must be configured so that base pairing between bases does not occur in the generated loop structure. . Therefore, structural restrictions are imposed on both the 3 'terminal sequence of the first nucleic acid strand and the 5' terminal sequence of the second nucleic acid strand, or at least one of the sequences.
- the present invention has been made in view of such a situation, and the first nucleic acid strand that can be completed in a short time using the first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand. It is an object of the present invention to provide a method for binding a nucleic acid strand to a second nucleic acid strand, and a method for labeling a nucleic acid strand that can be used to safely perform experiments without using a radioisotope.
- a method for binding a 3 ′ hydrosyl group of a first nucleic acid strand and a 5 ′ phosphate group of a second nucleic acid strand comprising: In the presence of a third nucleic acid strand that complementarily binds to at least a part of the first nucleic acid strand and at least a portion of the second nucleic acid strand, it has at least one or more ribonucleotides at the 3 ′ end.
- the base sequence in the third nucleic acid strand having a base sequence complementary to at least one continuous base sequence containing a base and complementary to the second nucleic acid strand is the second base sequence.
- Such a configuration can provide a simple method for binding the first nucleic acid strand and the second nucleic acid strand.
- self-circulation of the RNA strand can be performed by protecting the 3 ′ end of one RNA strand as in the conventional method using T4 RNA ligase 1. There is no need to perform such processing.
- there are disadvantages in binding RNAs using T4 DNA ligase that is, a large amount of enzyme must be used, a long reaction time is required, and further, The disadvantage that the rate is low can be solved.
- the nucleic acid strands can be prevented from being circularized and the nucleic acid strands can be bonded to each other. This can also be used to enable 5 'end modification of nucleic acid strands.
- the RNA ligase is T4 RNA ligase 2 derived from T4 bacteriophage.
- the third nucleic acid strand has a base sequence in the third nucleic acid strand that is complementary to the second nucleic acid strand. It will be 10 bases or less.
- the second nucleic acid strand is an RNA strand.
- the first nucleic acid strand has a base sequence in which a single base is continuous for 6 bases or more.
- the first nucleic acid strand has a 5 'end labeled with a dye, a fluorescent dye or biotin.
- kits for use in the above-described method wherein the first nucleic acid strand having at least one or more ribonucleotides at the 3 ′ end, and EC 6.5.1.
- a kit comprising: an RNA ligase classified as .3 and having a double-stranded nucleic acid nick repair activity; and a reaction buffer for the binding reaction.
- the RNA ligase is T4 RNA ligase 2 derived from T4 bacteriophage.
- the first nucleic acid strand has a base sequence in which a single base is continuous for 6 bases or more.
- the first nucleic acid strand has a 5 'end labeled with a dye, a fluorescent dye or biotin.
- FIG. 1 is an electrophoretogram showing a modification experiment by ligation of an oligo RNA strand according to one embodiment of the present invention.
- FIG. 2 is a schematic diagram of a base sequence pairing experiment according to an embodiment of the present invention.
- FIG. 3 is an electrophoretogram showing the involvement of base sequence pairing in the modification according to one embodiment of the present invention.
- FIG. 4 is a schematic diagram showing a stringency experiment of base sequence pairing according to an embodiment of the present invention.
- FIG. 5 is an electrophoretogram showing the stringency of base sequence pairing in the modification according to one embodiment of the present invention.
- FIG. 6 is an electrophoretogram showing a miRNA modification experiment according to an embodiment of the present invention.
- FIG. 1 is an electrophoretogram showing a modification experiment by ligation of an oligo RNA strand according to one embodiment of the present invention.
- FIG. 2 is a schematic diagram of a base sequence pairing experiment according to an embodiment of the present invention.
- FIG. 3 is
- FIG. 7 is an electrophoretogram showing a modification experiment with four types of homo-oligomers according to one embodiment of the present invention.
- FIG. 8 is a schematic view of an oligoribonucleotide tag addition reaction experiment according to an embodiment of the present invention.
- FIG. 9 is an electrophoretogram showing an oligoribonucleotide tag addition reaction experiment according to an embodiment of the present invention.
- FIG. 10 is an electropherogram showing a modification experiment of 73mer RNA according to one embodiment of the present invention.
- FIG. 11 is an electrophoretogram showing an RNA pull-down experiment by biotinylation according to one embodiment of the present invention.
- FIG. 12 is a schematic view of ligation using auxiliary nucleic acid strands having different strand lengths in the sequence of the pairing portion according to one embodiment of the present invention.
- FIG. 13 is an electrophoretogram showing the relationship between the ligation speed and the chain length of the auxiliary nucleic acid chain according to one embodiment of the present invention.
- a method for binding a first nucleic acid strand and a second nucleic acid strand using a third nucleic acid strand and a predetermined RNA ligase and a method for use in the method A kit is provided.
- any second nucleic acid strand can be labeled or modified via the first nucleic acid strand using the method as described above. Can do.
- the first nucleic acid strand used in the present invention may be a nucleic acid strand having any base sequence as long as at least the 3'-end base is RNA. Further, the first nucleic acid chain may be a sequence in which DNA and RNA are mixed. Moreover, the first nucleic acid chain according to the present invention may have a base sequence in which a single base is continuous for 6 bases or more.
- the second nucleic acid strand used in the present invention may be any base sequence as long as it is a single-stranded nucleic acid sequence. That is, the second nucleic acid chain may be a DNA sequence, an RNA sequence, or a sequence in which DNA and RNA are mixed. Further, the length of the second nucleic acid chain is not particularly limited, and may be 70 mer or longer.
- the 5 ′ terminal sequence is the 5 ′ terminal sequence of the second nucleic acid strand
- the 3 ′ terminal sequence is the 3 ′ terminal side of the first nucleic acid strand. It forms a base pair in a complementary manner with the sequence and functions to assist the binding between the first nucleic acid strand and the second nucleic acid strand.
- the third nucleic acid strand according to the present invention may be an RNA strand, a DNA strand, or a sequence in which DNA and RNA are mixed, but it is economical for those skilled in the art who carry out the method according to the present invention. In this respect, the use of a DNA strand is preferable.
- the third nucleic acid chain according to the present invention prevents the second nucleic acid chain from being circularized when the first nucleic acid chain and the second nucleic acid chain are combined. Furthermore, by carrying out the method according to the present invention, the binding reaction between the first nucleic acid strand and the second nucleic acid strand is accelerated, which is another factor for preventing the self-circularization of the second nucleic acid strand. It has become.
- the third nucleic acid strand includes at least one or more consecutive base sequences having a base at the 3 ′ end of the first nucleic acid strand, and the second nucleic acid strand, It is preferable to have at least one continuous base sequence having a base at the 5 ′ end of the nucleic acid strand and a complementary base sequence.
- the complementary binding between the first nucleic acid strand and the third nucleic acid strand, and the complementary binding between the second nucleic acid strand and the third nucleic acid strand are strictly base paired. Preferably, it is formed.
- the present inventors have found that the complementary reaction between the second nucleic acid strand and the third nucleic acid strand increases the speed of the binding reaction when the paired strand length is shortened ( See Example 10 below).
- Bullard et al. Studied the substrate specificity of ligase using a double-stranded nucleic acid with a nick in one strand, but in this enzyme activity measurement experiment, the base of the nucleic acid strand on the non-nicked side was nicked.
- Nick repair activity is delayed because all base pairs are formed with a base of a complementary nucleic acid strand (Bullard, DR and Bowater, RP 2006. Direct comparison of nickjoining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J . 398: 135-144.).
- the RNA ligase according to the present invention is preferably T4 RNA ligase 2 derived from T4 bacteriophage.
- RNA ligase according to the present invention is T4 bacteriophage-derived T4 RNA ligase 2, vibriophage KVP40-derived ligase 2, Trypanosoma brucei RNA ligase, Deinococcus radiodurans RNA ligase RNAiol or ligase RNAi ligase RNAi ligase RNAiol or ligase RNAi ligase RNAiol ligase RNAiolase or LeiRNA Any RNA ligase classified as EC 6.5.1.3 and having a double-stranded nucleic acid repair activity is not limited to these ligases.
- the binding between the first nucleic acid strand and the second nucleic acid strand is a condition of ligase reaction commonly used in the field of molecular biology as long as the RNA ligase according to the present invention functions.
- the reaction may be carried out under any conditions within the range of conditions. For example, as described in Examples described later, a first nucleic acid strand, a second nucleic acid strand, a third nucleic acid strand, a buffer solution, and pure water are mixed, and the RNA ligase according to the present invention is added to the mixture. And then reacting at a temperature at which the ligase functions (eg, 37 ° C.) for a predetermined time (eg, 1 hour).
- a temperature at which the ligase functions eg, 37 ° C.
- a predetermined time eg, 1 hour
- the second nucleic acid strand used in the present invention can be labeled or modified.
- these labels or modifications are not particularly limited as long as they are performed by a substance or compound that can label or modify a nucleic acid.
- the second nucleic acid strand according to the present invention can be labeled with biotin, a dye or a fluorescent dye, and the fluorescent dye may be Cy (trademark) 3, Cy (trademark) 5, FITC, etc. It may be a sign, a DIG sign, or the like.
- the labeled or modified nucleic acid strand after the reaction can be used for the purpose of hybridization or the like as it is or after purification.
- column separation or electrophoresis can be used. Conditions generally used in the field of molecular biology can be used for electrophoresis and column separation.
- the second nucleic acid strand according to the present invention is labeled or modified, it is performed through the binding between the first nucleic acid strand and the second nucleic acid strand as described above. That is, before performing the binding reaction between the first nucleic acid strand and the second nucleic acid strand, as a pretreatment, the first nucleic acid strand is labeled with the predetermined label, and the labeled first
- the second nucleic acid strand can be modified or labeled by performing a binding reaction using the above nucleic acid strand.
- the position of the label in the first nucleic acid chain is not particularly limited, and the label can be arranged at an arbitrary position in the first nucleic acid chain.
- it may be at the 5 'end of the first nucleic acid strand or near the 3' end that binds to the second nucleic acid strand.
- a modification may be a label in the strand of the second nucleic acid strand.
- RNA ligase-mediated binding method as described above, it is necessary to form a broken interior loop with the two nucleic acid strands to be bound, and structural restrictions are imposed on the sequences in the two nucleic acid strands. End up. Furthermore, when one nucleic acid strand is to be labeled by binding the nucleic acid strands, in the RNA ligase-mediated binding method, the position of the label such as a fluorescent dye in the other nucleic acid strand is positioned near the nucleic acid binding site. At present, it has not been confirmed whether it can be arranged.
- T4 RNA ligase 2 derived from T4 bacteriophage according to an embodiment of the present invention described later was discovered and cloned in 2002 (Ho, Shuman 2002), and its properties have been studied.
- Yin et al. (2003) examined the activity of T4 RNA ligase 2 using stem loop RNA consisting of two RNAs as a substrate.
- Nandakumar et al. (2004) use two nucleic acid strands of 24 bases that form a 12 bp pair, and the polymerization of the nucleic acid strands is used as an indicator of the activity of T4 RNA ligase 2. Bullard et al.
- Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc Natl Acad Sci USA.99: 12709-12714., Yin, S., Ho, CK, and Shuman, S. 2003. Structure-function analysis of T4 RNA ligase 2. J Biol. Chem. 278: 17601-17608. Biol. Chem. 279: 31337-31347., Bullard, DR and Bowater, RP 2006. Direct comparis on of nickjoining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J. 398: 135-144.).
- the 5 'end of the nucleic acid chain can be modified easily without using a radioactive isotope.
- various fluorescent dyes, biotin, and other labels can be used for the modification.
- oligo RNA strands themselves are cheaper and easier to obtain than before, but labeled nucleic acids such as labeled RNA are currently expensive.
- the method according to the present invention is a useful method because it can easily label a nucleic acid chain such as an arbitrary RNA, thereby reducing the economic burden.
- the method according to the present invention makes it possible to easily generate a nucleic acid chain labeled with a non-radioactive isotope, and to add a new base sequence to the 5 'end of the nucleic acid chain.
- RNA can be bound to each other using the third nucleic acid strand, the auxiliary nucleic acid strand, and T4 DNA ligase, but the reaction time is long, a large amount of enzyme is required, the yield is low, etc. There was a problem.
- a method using an auxiliary nucleic acid strand, which is a third nucleic acid strand, and T4 RNA ligase 1 has also been reported.
- the above-described Broken interior loop structure must be provided, and RNA that can bind to it. There was a restriction on the sequence.
- the method according to the present invention solves the problem of using a T4 DNA ligase without providing a Broken interior loop structure.
- RNA-RNA / DNA binding as shown in # 6, it is not necessary to prepare a third nucleic acid strand, but it is necessary to form a complementary base pair for a part of the nucleic acid strands to be joined. Yes, as in # 5, there are limitations on the arrangement.
- nucleic acid chain binding method First, typical examples of the nucleic acid chain binding method according to the present invention will be described.
- the first nucleic acid strand and the third nucleic acid strand are base-paired in a buffer solution, and a complex of the base-paired first nucleic acid strand and third nucleic acid strand is obtained (nucleic acid strand).
- Complex A Thereafter, the nucleic acid strand complex A and the second nucleic acid strand are base-paired in a buffer solution to obtain a complex in which the first nucleic acid strand and the second nucleic acid strand are base-paired to the third nucleic acid strand.
- Nucleic acid chain complex B Nucleic acid chain complex B).
- RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group.
- the first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand are mixed in a buffer.
- This nucleic acid chain mixture is subjected to base pairing in a buffer solution to obtain a complex in which the first nucleic acid chain and the second nucleic acid chain are base paired with the third nucleic acid chain (nucleic acid chain complex B).
- RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group.
- nucleic acid strand complex A and the second nucleic acid strand are base-paired in a buffer solution to obtain a complex in which the first nucleic acid strand and the second nucleic acid strand are base-paired to the third nucleic acid strand.
- Nucleic acid chain complex B an RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the 3 ′ hydrosyl group of the first nucleic acid strand labeled by this catalytic action and the second nucleic acid strand To the 5 'phosphate group. This labels the 5 ′ end of the second nucleic acid strand.
- nucleic acid chain complex B (nucleic acid chain complex B).
- RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group. This labels the 5 ′ end of the second nucleic acid strand.
- RNA to be modified 0.1 nmol of RNA to be modified (pR21), 2 ⁇ l of buffer 1 and 0.5 nmol of acceptor RNA (AcF-1) were added, and pure water was added to make 19 ⁇ l.
- Experiment c was performed by adding RNA to be modified (pR21), 0.1 nmol, 2 ⁇ l of buffer 1, 0.5 nmol of acceptor RNA (AcF-1), 2.7 ⁇ l of polyethylene glycol, and adding pure water to 19 ⁇ l.
- Experiments e, f, and g were 0.1 nmol of RNA to be modified (pR21), 2 ⁇ l of buffer 1 and 5 ⁇ l of annealing solution were added, and experiment f was further added with 2.7 ⁇ l of polyethylene glycol and then with pure water. 19 ⁇ l and annealed at 65 ° C. for 5 minutes.
- acceptor RNA (AcF-1) is ligated to the RNA strand to be modified (pR21) only in experiment g, and the RNA strand to be modified (pR21) is labeled with FITC. (FIG. 1, lane 7).
- the 5 ′ phosphate group and 3 ′ hydroxyl group of the RNA strand to be modified (pR21) are ligated and circularized, but the acceptor RNA ( Ligation with AcF-1) was not observed (FIG. 1, lanes 2, 3, 5, 6).
- T4 RNA ligase 2 when there was no auxiliary nucleic acid strand, the acceptor RNA (AcF-1) was not ligated with the RNA to be modified (pR21) (Experiment d, FIG. 1, lane 4).
- T4 RNA ligase 2 and an auxiliary nucleic acid strand are essential for ligation of the acceptor RNA (AcF-1) and the RNA to be modified (pR21).
- the RNA to be modified (pR21) is prevented from self-circulation, and the acceptor The RNA (AcF-1) and the RNA strand to be modified (pR21) can be successfully ligated.
- each experiment in order to examine the base pairing of the 5 ′ side sequence of the RNA strand to be modified (pR21) in the ligation and the 5 ′ side sequence of the auxiliary nucleic acid strand, each experiment c, d, e, f, g, k
- the auxiliary nucleic acid strand (DNA strand), BrR21-1 (c), BrR21-2 (d), BrR21-3 (e), BrR21-4 (f), BrR21-5 (g), BrR21-6 ( h), BrR21-7 (i), BrR21-8 (j), BrR21-F (k) were used.
- BrR21-1, BrR21-2, BrR21-3, BrR21-4, BrR21-5, BrR21-6, BrR21-7, BrR21-8, BrR21-F are RNA strands to be modified (pR21) as shown in FIG. 1, 2, 3, 4, 5, 6, 7, 8, 21 base pairs with respect to the 5′-side sequence.
- RNA strand to be modified was added 0.1 ⁇ mol of RNA strand to be modified (pR21) and 2 ⁇ l of buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP), and adding pure water to 19 ⁇ l. I made it.
- the auxiliary nucleic acid strand used in this experiment has 8 nucleotides in the paired sequence portion based on BrR21-8 whose 8 ′ sequence in the 5 ′ side is matched with 8 nucleotides in the 5 ′ side sequence of the RNA strand to be modified (pR21).
- T was used for U of the RNA strand (pR21) to be modified (FIG. 4).
- auxiliary nucleic acid strand DNA strand
- BrR21-8 a
- BrR21-8-1T b
- BrR21-8-2G c
- BrR21-8-3A d
- BrR21-8-4G e
- BrR21-8-5G f
- BrR21-8-6T g
- BrR21-8 -7A h
- BrR21-8-8G i
- RNA (AcF-1) 1.5 nmol, auxiliary nucleic acid strand (DNA strand), BrLin-4 (experiment c), BrMir-34 (experiment d), BrMir-52 (Experiment e), BrMir-87 (Experiment f) 1.5 nmol was dissolved in 15 ⁇ l of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, annealed at 65 ° C. for 5 minutes, and each annealed. Solutions c, d, e, and f were used.
- Experiments c, d, e, and f are respectively two tubes (c1 and c2, d1 and d2, e1 and e2, f1 and f2, respectively), RNA to be modified, cel-lin-4 (experiment c), cel- miR-34 (experiment d), cel-miR-52 (experiment e), cel-miR-87 (experiment f) 0.1 nmol, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 2 ⁇ l of 100 mM DTT, 10 mM ATP) and the corresponding annealing solution c, d, e, f, 5 ⁇ l were added, and pure water was added to make 19 ⁇ l, followed by annealing at 65 ° C. for 5 minutes.
- buffer 1 500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 2 ⁇ l of 100
- RNA 2 nmol acceptor RNA (AcF-2), 2 nmol auxiliary nucleic acid strand (DNA strand: BrR21-12) were dissolved in 20 ⁇ l of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, and 65 Annealing treatment was performed at 5 ° C. for 5 minutes, and this was used as an annealing solution d.
- Experiments c, d, e, and f are: 0.1 nmol of RNA to be modified (pR21), buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 ⁇ l, respectively, annealing solution 5 ⁇ l of c, d, e, and f was added, and pure water was added to make 19 ⁇ l, followed by annealing at 65 ° C. for 5 minutes.
- Experiment a 1 ⁇ l of pure water was added, and in Experiments c, d, e, and f, 0.29 ⁇ g of T4 RNA ligase 2 (1 ⁇ l) was added, and the reaction was started at 37 ° C. After 1 hour, a, Take 12.5 ⁇ l from the reaction mixture of b, c, d, e, and f, add an equal amount of a reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue) and immediately add 80 Heat treatment at 5 ° C.
- a reaction stop solution 80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue
- RNA chain pR21 The ligation rates of adenosine ribonucleotide (experiment c), uridine ribonucleotide (experiment d), guanine ribonucleotide (experiment e), cytosine ribonucleotide (experiment e) and RNA chain pR21 are as shown in Table 3 below.
- the reaction proceeds with adenine ribonucleotide, guanine ribonucleotide, and cytosine ribonucleotide homo-oligomer, but the reaction hardly proceeds with uridine ribonucleotide homo-oligomer.
- FIG. 7 shows a stained image of ethidium bromide, but no band corresponding to the ligation product is detected in the uridine ribonucleotide homo-oligomer.
- the ligation product is the largest in the reaction of cytosine ribonucleotide homo-oligomer, but there are many by-products.
- many ligation products with guanine ribonucleotide homo-oligomer appear, and this seems to be because the guanine ribonucleotide chain is easily stained with ethidium bromide.
- FIG. 9 shows the ethidium bromide stained image, and AcEx09 and AcEx14 could be added efficiently as in the case where the acceptor RNA, Ac-1, was ligated to the RNA strand (pR21).
- 8mer Ac-1 binds to the RNA strand (pR21) and a 29mer band is seen.
- 16mer AcEx09 binds to the RNA strand (pR21) and a 29mer band appears.
- RNA in vitro transcription was performed using 0.1 ⁇ g / ⁇ l of template 73, 2 u / ⁇ l in a buffer containing 40 mM Tris-HCl (pH 7.9), 6 mM MgCl 2 , 2 mM permidine, 10 mM DTT, 1 mM ATP, UTP, CTP, GTP.
- T7 RNA polymerase was added and reacted at 37 ° C. for 3 hours, followed by phenol / chloroform extraction and ethanol precipitation to purify 73-mer RNA.
- Purified 73mer RNA was dephosphorylated with alkaline phosphatase and rephosphorylated with T4 polynucleotide kinase (pR73).
- RNA strand to be modified 0.05 nmol of RNA strand to be modified (pR73), buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 ⁇ l, annealing solution 5 ⁇ l were added, and pure Water was added to 19 ⁇ l, and annealing was performed at 65 ° C. for 5 minutes.
- experiment a 1 ⁇ l of pure water was added, and in experiment b, 0.29 ⁇ g of T4 RNA ligase 2 (1 ⁇ l) was added, and the reaction was started at 37 ° C. After 1 hour, from the reaction solutions of a and b Take 1 ⁇ l, add an equal volume of reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue), immediately heat-treat at 80 ° C. for 5 minutes, then place on ice and quench rapidly Electrophoresis was performed using a 10% concentration denaturing acrylamide gel (1 ⁇ TBE buffer, containing 7.5 M urea) and 1 ⁇ TBE buffer as an electrophoresis solution.
- reaction stop solution 80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue
- FITC labeling by ligation with the acceptor RNA could be performed on the 73-nucleotide RNA chain (pR73). From the ethidium bromide staining, unreacted pR73 was estimated to be 30% or less, and 70% or more of pR73 was labeled with FITC (FIG. 10).
- Experiments a and b are 0.2 nmol of an RNA strand (plin4-FITC) with a FITC label at the 3 ′ end of plin4, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 ⁇ l and 5 ⁇ l of annealing solution F were added, and pure water was added to make 18 ⁇ l, followed by annealing at 65 ° C. for 5 minutes.
- buffer 1 500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 ⁇ l and 5 ⁇ l of annealing solution F were added, and pure water was added to make 18 ⁇ l, followed by annealing at 65 ° C. for 5 minutes.
- T4 gene 24.1 was obtained from T4 phage genomic DNA and cloned into the restriction enzyme sites of BamHI and NotI of the E. coli expression vector pETBA (Biodynamics Laboratory Inc.) (this plasmid is designated as pETBT4L2).
- Escherichia coli strain BL21 (DE3) was transformed with pETBT4L2 to obtain Escherichia coli BL21 (DE3) / pETBT4L2 retaining pETBT4L2.
- This BL21 (DE3) / pETBT4L2 was inoculated into LB medium containing 0.1 mg / ml ampicillin, and when OD600 reached 0.5, 1 mM IPTG (Isopropyl ⁇ -D-1-thiogalactopyroside) was added, and further 3 The cells were cultured for a period of time and collected with a centrifuge. 9 ml of 50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole pH 8.0 buffer was added to the cell pellet obtained from the 50 ml culture solution, and the cell pellet was resuspended, and then 1 ml of 10 mg / ml lysozyme solution was added. Stir and let stand on ice for 30 minutes. This was centrifuged to obtain a supernatant, followed by filtration with a 0.2 ⁇ m pore syringe filter to obtain a crude enzyme filtrate.
- a resin volume of 1 ml of Proband column (Invitrogen) was equilibrated with 50 mM NaH 2 PO 4 300 mM NaCl, 10 mM imidazole, pH 8.0 buffer solution, and the above-mentioned crude enzyme filtrate was provided thereto, followed by 10 ml of 50 mM NaH.
- RNA strand pR21 2 ⁇ g (0.27 nmol) of RNA strand pR21 to be modified and 2 ⁇ l of buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) were added, and pure water was added. 19 ⁇ l.
- buffer 1 500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP
- acceptor RNA (Ac-1) 2 nmol, auxiliary nucleic acid strand (DNA strand), BrR21-6 (experiment b), BrR21-12 (experiment c), BrR21-F (experiment d) 2 nmol was dissolved in 20 ⁇ l of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, and annealed at 65 ° C. for 5 minutes, which were designated as annealing solutions b, c, and d, respectively.
- Experiments b, c and d are 2 ⁇ g (0.27 nmol) of RNA strand pR21 to be modified, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 5 ⁇ l, corresponding annealing 12.5 ⁇ l of solutions b, c and d were added, and pure water was added to make 19 ⁇ l, followed by annealing at 65 ° C. for 5 minutes.
- buffer 1 500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP
- Experiment a 1 ⁇ l of pure water was added, and in Experiments b, c and d, 0.29 ⁇ g of T4 RNA ligase 2 (1 ⁇ l) was added, and the reaction was started at room temperature (25 ° C.). After 10 minutes, 30 minutes Then, 1 hour later, 2.5 ⁇ l was taken from the reaction solution, and an equal amount of a reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue) was added thereto, and immediately at 80 ° C.
- a reaction stop solution 80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue
- Heat treatment was performed for 1 minute, then placed on ice, rapidly cooled, and electrophoresed on a 12.5% denaturing acrylamide gel (1 ⁇ TBE buffer solution containing 7.5 M urea) using 1 ⁇ TBE buffer solution as an electrophoresis solution. . After the electrophoresis, the gel was taken out from the apparatus, and the gel was stained with ethidium bromide, then irradiated with ultraviolet rays, and photographed again.
- lanes 2, 3, and 4 are auxiliary nucleic acid strand BrR21-6 (RNA strand pR21 and 6 base pairs), and lanes 5, 6, and 7 are BrR21-12 (RNA strand pR21 and 12 base pairs).
- Lanes 8, 9, and 10 show the results of the ligation experiment of acceptor RNA strand Ac-1 and RNA strand pR21 using BrR21-F (RNA base pR21 and 21 base pairing).
- RNA strand pR21-6 When the auxiliary nucleic acid strand BrR21-6 was used, most of 2 ⁇ g of the RNA strand pR21 was converted into a 29-mer RNA strand ligated with the RNA strand Ac-1 in 10 minutes, and after 30 minutes, the RNA strand pR21 was all 29 mer. It has been converted to an RNA strand and the reaction is complete.
- the auxiliary nucleic acid strand BrR21-12 about 50% of 2 ⁇ g of RNA strand pR21 was converted into a 29-mer RNA strand ligated with RNA strand Ac-1 in 30 minutes, and after 1 hour, 60% or more was 29-mer. Although converted to an RNA strand, the reaction is not complete.
- RNA strand pR21 When the auxiliary nucleic acid strand BrR21-F was used, 2 ⁇ g of the RNA strand pR21 was converted into a 29-mer RNA strand ligated with RNA strand Ac-1 in 30 minutes, and about 50% of the RNA strand pR21 was converted even after 1 hour. It remained unreacted.
- the present invention can be variously modified, and is not limited to the above-described embodiment, and can be variously modified without changing the gist of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Disclosed is a method for binding a first nucleic acid strand to a second nucleic acid strand, in which the experiment can be carried out safely within a short reaction time by using the first nucleic acid strand, the second nucleic acid strand and a third nucleic acid strand without the need of using any radioactive isotope. Also disclosed is a method for labeling a nucleic acid strand by utilizing the binding method.
Specifically disclosed is a method for binding a 3’-hydroxyl group in a first nucleic acid strand having at least one ribonucleotide at the 3'-terminal to a 5’-phosphate group in a second nucleic acid strand. The method is characterized by comprising the following steps: carrying out the base pair formation between the first nucleic acid strand and a third nucleic acid strand capable of binding complementary to at least a part of the first nucleic acid strand and at least a part of the second nucleic acid strand and the base pair formation between the second nucleic acid strand and the third nucleic acid strand simultaneously or separately in the presence of the third nucleic acid strand; and adding an RNA ligase that is classified into EC6.5.1.3 and has an activity to repair a nick in a double-stranded nucleic acid to a mixture of the first, second and third nucleic acid strands obtained in the preceding step, wherein the third nucleic acid strand has a nucleotide sequence complementary to a nucleotide sequence composed of one or more contiguous nucleotides including a nucleotide located at the 3'-terminal of the first nucleic acid strand and also has a nucleotide sequence complementary to a nucleotide sequence composed of one or more contiguous nucleotides including a nucleotide located at the 5'-terminal of the second nucleic acid strand, and wherein the length of the nucleotide sequence that is contained in the third nucleic acid strand and is complementary to the second nucleic acid strand is less than half the length of the second nucleic acid strand.
Description
本発明は、第一の核酸鎖の3’ヒドロシル基と、第二の核酸鎖の5’リン酸基とを結合する方法、また、これにより前記第二の核酸鎖を修飾する方法に関する。
The present invention relates to a method for binding a 3 'hydrosyl group of a first nucleic acid strand and a 5' phosphate group of a second nucleic acid strand, and a method for modifying the second nucleic acid strand thereby.
従来、分子生物学や遺伝子工学の分野において、RNA等の核酸鎖を修飾または標識することは、研究開発をする上で必須となる実験手法のうちの一つであり、同時に、有力な研究手法でもある。また、研究者が頻繁に使用する実験手法であるため、常温常圧で反応を行える酵素を使用し、且つ安全に実験を行える簡便な手法が求められている。
Conventionally, in the field of molecular biology and genetic engineering, modifying or labeling a nucleic acid strand such as RNA is one of the experimental methods essential for research and development, and at the same time, it is a powerful research method. But there is. Further, since this is an experimental technique frequently used by researchers, there is a need for a simple technique that uses an enzyme capable of performing a reaction at room temperature and normal pressure and that can perform an experiment safely.
このような手法として、非特許文献1では、非放射性アイソトープを用いてRNA鎖の3’末端を修飾している。この手法では、非放射性アイソトープを用いているため安全に実験を行うことができるが、RNA生合成は5’末端から3’末端に伸長するため、修飾後のRNA鎖では伸長反応を行うことができなくなってしまう。
As such a technique, in Non-Patent Document 1, the 3 'end of the RNA strand is modified using a non-radioactive isotope. In this method, since a non-radioactive isotope is used, an experiment can be performed safely. However, since RNA biosynthesis extends from the 5 ′ end to the 3 ′ end, an extension reaction can be performed on the modified RNA strand. It becomes impossible.
また、非特許文献2では、T4ポリヌクレオチドキナーゼ(T4 polynucleotide kinase)を用いて5’末端を修飾しているが、同時に、放射性アイソトープである[γ-32P]ATPを使用しなければならないため、専用の施設を必要とし、放射性廃棄物の処理に大きな負担がかかってしまい、また、安全性の面からも取り扱いに習熟した技術が必要となってしまう。
In Non-Patent Document 2, the 5 ′ end is modified with T4 polynucleotide kinase, but at the same time, the radioactive isotope [γ- 32 P] ATP must be used. Therefore, a dedicated facility is required, and a large burden is imposed on the disposal of radioactive waste. Also, a technique that is familiar with handling is necessary from the viewpoint of safety.
このような問題点を解決するために、近年では、非特許文献3や4または特許文献1のような技術を用いて、目的の核酸鎖に、予め用意した修飾鎖を結合させることで、目的の核酸鎖を修飾・標識する手法が提唱されている。この特許文献1では、第一の核酸鎖と第二の核酸鎖とを、第三の核酸鎖を介して並べることで、当該第一の核酸鎖と第二の核酸鎖とを結合させている。
In order to solve such a problem, in recent years, by using a technique such as Non-Patent Documents 3 and 4 or Patent Document 1, a modified strand prepared in advance is bound to a target nucleic acid strand. Techniques for modifying and labeling the nucleic acid strands have been proposed. In Patent Document 1, a first nucleic acid chain and a second nucleic acid chain are arranged via a third nucleic acid chain, thereby binding the first nucleic acid chain and the second nucleic acid chain. .
ところで、非特許文献3や4または特許文献1の手法では、第一の核酸鎖と第二の核酸鎖とを結合させるために、第一の核酸鎖の3’末端および第二の核酸鎖の5’末端の2塩基を含むそれぞれ3’末端側配列および5’末端側配列の数塩基がbroken interior loop(非特許文献3参照)と称されるループ構造を生じるように、第一の核酸鎖と第二の核酸鎖とを第三の核酸鎖上で並べる必要があることに加え、当該生じたループ構造内で塩基同士の塩基対形成が起こらないように配列を構成しておく必要もある。そのため、第一の核酸鎖の3’末端側配列と第二の核酸鎖の5’末端側配列との両方、若しくは少なくとも一方の配列に、構造的な制限が課されてしまう。
By the way, in the methods of Non-Patent Documents 3 and 4 or Patent Document 1, in order to bind the first nucleic acid strand and the second nucleic acid strand, the 3 ′ end of the first nucleic acid strand and the second nucleic acid strand The first nucleic acid strand so that several bases of the 3′-end sequence and the 5′-end sequence, each containing 2 bases at the 5 ′ end, form a loop structure called “broken interior loop” (see Non-Patent Document 3). And the second nucleic acid strand must be arranged on the third nucleic acid strand, and the sequence must be configured so that base pairing between bases does not occur in the generated loop structure. . Therefore, structural restrictions are imposed on both the 3 'terminal sequence of the first nucleic acid strand and the 5' terminal sequence of the second nucleic acid strand, or at least one of the sequences.
従って、目的の核酸鎖に予め用意した修飾鎖を結合させようとしたとしても、目的の核酸鎖及び/若しくは修飾鎖の塩基配列の構造的な問題によって、結合できない核酸鎖と修飾鎖の組合せが出てきてしまう。なお、このような塩基配列における構造的な制限は、その使用される酵素がT4 RNAリガーゼ1であることに起因する。
Therefore, even if an attempt is made to bind a modified strand prepared in advance to the target nucleic acid strand, there may be a combination of the nucleic acid strand and the modified strand that cannot be bound due to structural problems of the target nucleic acid strand and / or the base sequence of the modified strand It will come out. Such a structural restriction in the base sequence is caused by the fact that the enzyme used is T4 RNA ligase 1.
本発明は、このような状況を鑑みてなされたものであり、第一の核酸鎖と第二の核酸鎖と第三の核酸鎖とを用いて、短時間で反応が終了できる前記第一の核酸鎖と第二の核酸鎖との結合方法、およびそれを利用して、放射性アイソトープを使用せず安全に実験を遂行できる核酸鎖の標識方法を提供することを目的とする。
The present invention has been made in view of such a situation, and the first nucleic acid strand that can be completed in a short time using the first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand. It is an object of the present invention to provide a method for binding a nucleic acid strand to a second nucleic acid strand, and a method for labeling a nucleic acid strand that can be used to safely perform experiments without using a radioisotope. *
本発明の第一の主要な観点によれば、第一の核酸鎖の3’ヒドロシル基と、第二の核酸鎖の5’リン酸基とを結合する方法であって、
前記第一の核酸鎖の少なくとも一部と前記第二の核酸鎖の少なくとも一部とに相補的に結合する第三の核酸鎖の存在下において、少なくとも1以上のリボヌクレオチドを3’末端に有する前記第一の核酸鎖と前記第三の核酸鎖との塩基対形成、および前記第二の核酸鎖と前記第三の核酸鎖との塩基対形成を、同時にまたは別々に行う工程と、その工程で得られた前記第一の核酸鎖、前記第二の核酸鎖、前記第三の核酸鎖の三者の核酸鎖の混合物に、EC6.5.1.3に分類され且つ二本鎖核酸ニック修復活性を有するRNAリガーゼを添加する工程を有し、前記第三の核酸鎖は、前記第一の核酸鎖の3’末端の塩基を含む少なくとも1以上の連続する塩基配列と相補的な塩基配列を有し、また前記第三の核酸鎖は、前記第二の核酸鎖の5’末端の塩基を含む少なくとも1以上の連続する塩基配列と相補的な塩基配列を有し、且つ前記第二の核酸鎖に対して相補的となる前記第三の核酸鎖における塩基配列が、前記第二の核酸鎖の鎖長の1/2未満となるものであることを特徴とする方法、が提供される。 According to a first main aspect of the present invention, there is provided a method for binding a 3 ′ hydrosyl group of a first nucleic acid strand and a 5 ′ phosphate group of a second nucleic acid strand comprising:
In the presence of a third nucleic acid strand that complementarily binds to at least a part of the first nucleic acid strand and at least a portion of the second nucleic acid strand, it has at least one or more ribonucleotides at the 3 ′ end. A step of performing base pairing of the first nucleic acid strand and the third nucleic acid strand and base pairing of the second nucleic acid strand and the third nucleic acid strand simultaneously or separately; A mixture of the three nucleic acid strands of the first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand obtained instep 6 above and classified into EC 6.5.1.3 and a double-stranded nucleic acid nick A step of adding an RNA ligase having repair activity, wherein the third nucleic acid strand is complementary to at least one or more consecutive base sequences including a base at the 3 ′ end of the first nucleic acid strand And the third nucleic acid strand is at the 5 ′ end of the second nucleic acid strand. The base sequence in the third nucleic acid strand having a base sequence complementary to at least one continuous base sequence containing a base and complementary to the second nucleic acid strand is the second base sequence. There is provided a method characterized in that it is less than half the length of the nucleic acid strand.
前記第一の核酸鎖の少なくとも一部と前記第二の核酸鎖の少なくとも一部とに相補的に結合する第三の核酸鎖の存在下において、少なくとも1以上のリボヌクレオチドを3’末端に有する前記第一の核酸鎖と前記第三の核酸鎖との塩基対形成、および前記第二の核酸鎖と前記第三の核酸鎖との塩基対形成を、同時にまたは別々に行う工程と、その工程で得られた前記第一の核酸鎖、前記第二の核酸鎖、前記第三の核酸鎖の三者の核酸鎖の混合物に、EC6.5.1.3に分類され且つ二本鎖核酸ニック修復活性を有するRNAリガーゼを添加する工程を有し、前記第三の核酸鎖は、前記第一の核酸鎖の3’末端の塩基を含む少なくとも1以上の連続する塩基配列と相補的な塩基配列を有し、また前記第三の核酸鎖は、前記第二の核酸鎖の5’末端の塩基を含む少なくとも1以上の連続する塩基配列と相補的な塩基配列を有し、且つ前記第二の核酸鎖に対して相補的となる前記第三の核酸鎖における塩基配列が、前記第二の核酸鎖の鎖長の1/2未満となるものであることを特徴とする方法、が提供される。 According to a first main aspect of the present invention, there is provided a method for binding a 3 ′ hydrosyl group of a first nucleic acid strand and a 5 ′ phosphate group of a second nucleic acid strand comprising:
In the presence of a third nucleic acid strand that complementarily binds to at least a part of the first nucleic acid strand and at least a portion of the second nucleic acid strand, it has at least one or more ribonucleotides at the 3 ′ end. A step of performing base pairing of the first nucleic acid strand and the third nucleic acid strand and base pairing of the second nucleic acid strand and the third nucleic acid strand simultaneously or separately; A mixture of the three nucleic acid strands of the first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand obtained in
このような構成によれば、第一の核酸鎖と第二の核酸鎖との結合について簡便な方法を提供することができる。また、本発明によれば、RNA同士の結合において、従来のT4 RNAリガーゼ1を用いて行う方法のような、一方のRNA鎖の3’末端を保護することによって当該RNA鎖の自己環状化を防ぐような処理をする必要がなくなる。さらに、本発明によれば、T4 DNAリガーゼを用いてRNA同士の結合を行う場合の欠点、すなわち、多量の酵素を使用しなければならず、また、長い反応時間を要し、さらには、収率が低い、という欠点を解消することができる。
Such a configuration can provide a simple method for binding the first nucleic acid strand and the second nucleic acid strand. Further, according to the present invention, in the binding between RNAs, self-circulation of the RNA strand can be performed by protecting the 3 ′ end of one RNA strand as in the conventional method using T4 RNA ligase 1. There is no need to perform such processing. Furthermore, according to the present invention, there are disadvantages in binding RNAs using T4 DNA ligase, that is, a large amount of enzyme must be used, a long reaction time is required, and further, The disadvantage that the rate is low can be solved.
また、このような構成によれば、核酸鎖自身での環状化を防ぎ、核酸鎖同士の結合を行うことができる。また、これを利用して、核酸鎖の5’末端修飾を可能にすることができる。
In addition, according to such a configuration, the nucleic acid strands can be prevented from being circularized and the nucleic acid strands can be bonded to each other. This can also be used to enable 5 'end modification of nucleic acid strands.
また、本発明の一実施形態によれば、このような方法において、前記RNAリガーゼは、T4バクテリオファージ由来のT4 RNAリガーゼ2である。
Moreover, according to one embodiment of the present invention, in such a method, the RNA ligase is T4 RNA ligase 2 derived from T4 bacteriophage.
また、本発明の別の実施形態によれば、このような方法において、前記第三の核酸鎖は、前記第二の核酸鎖に対して相補的となる前記第三の核酸鎖における塩基配列が10塩基以下となるものである。
According to another embodiment of the present invention, in such a method, the third nucleic acid strand has a base sequence in the third nucleic acid strand that is complementary to the second nucleic acid strand. It will be 10 bases or less.
また、本発明のさらに別の実施形態によれば、このような方法において、前記第二の核酸鎖は、RNA鎖である。
According to still another embodiment of the present invention, in such a method, the second nucleic acid strand is an RNA strand.
また、本発明のさらに別の実施形態によれば、このような方法において、前記第一の核酸鎖は、単一塩基が6塩基以上連続する塩基配列を有するものである。
Further, according to still another embodiment of the present invention, in such a method, the first nucleic acid strand has a base sequence in which a single base is continuous for 6 bases or more.
また、本発明のさらに別の実施形態によれば、このような方法において、前記第一の核酸鎖は、色素、蛍光色素またはビオチンによって標識された5’末端を有するものである。
According to still another embodiment of the present invention, in such a method, the first nucleic acid strand has a 5 'end labeled with a dye, a fluorescent dye or biotin.
本発明の第二の主要な観点によれば、上記のような方法に用いるキットであって、少なくとも1以上のリボヌクレオチドを3’末端に有する前記第一の核酸鎖と、EC6.5.1.3に分類され且つ二本鎖核酸ニック修復活性を有するRNAリガーゼと、前記結合反応のための反応緩衝液と、を有するものであることを特徴とする、キットが提供される。
According to a second main aspect of the present invention, there is provided a kit for use in the above-described method, wherein the first nucleic acid strand having at least one or more ribonucleotides at the 3 ′ end, and EC 6.5.1. A kit is provided, comprising: an RNA ligase classified as .3 and having a double-stranded nucleic acid nick repair activity; and a reaction buffer for the binding reaction.
また、本発明の一実施形態によれば、このようなキットにおいて、前記RNAリガーゼは、T4バクテリオファージ由来のT4 RNAリガーゼ2である。
Also, according to one embodiment of the present invention, in such a kit, the RNA ligase is T4 RNA ligase 2 derived from T4 bacteriophage.
また、本発明の別の実施形態によれば、このようなキットにおいて、前記第一の核酸鎖は、単一塩基が6塩基以上連続する塩基配列を有するものである。
Also, according to another embodiment of the present invention, in such a kit, the first nucleic acid strand has a base sequence in which a single base is continuous for 6 bases or more.
本発明のさらに別の実施形態によれば、このようなキットにおいて、前記第一の核酸鎖は、色素、蛍光色素またはビオチンによって標識された5’末端を有するものである。
According to yet another embodiment of the present invention, in such a kit, the first nucleic acid strand has a 5 'end labeled with a dye, a fluorescent dye or biotin.
なお、上記した以外の本発明の特徴及び顕著な作用・効果は、次の発明の実施形態の項及び図面を参照することで、当業者にとって明確となる。
It should be noted that features and remarkable actions / effects of the present invention other than those described above will be apparent to those skilled in the art by referring to the following embodiments and drawings of the present invention.
上述したように、本発明によれば、第一の核酸鎖と第二の核酸鎖とを、第三の核酸鎖と所定のRNAリガーゼとを用いて結合する方法、およびその方法に用いるためのキットが提供される。
As described above, according to the present invention, a method for binding a first nucleic acid strand and a second nucleic acid strand using a third nucleic acid strand and a predetermined RNA ligase, and a method for use in the method A kit is provided.
また、前記第一の核酸鎖を標識または修飾しておくことで、上記のような方法を用いて、任意の前記第二の核酸鎖を前記第一の核酸鎖を介して標識または修飾することができる。
In addition, by labeling or modifying the first nucleic acid strand, any second nucleic acid strand can be labeled or modified via the first nucleic acid strand using the method as described above. Can do.
本発明に用いる第一の核酸鎖は、少なくともその3’末端の塩基がRNAであれば、どのような塩基配列の核酸鎖であっても良い。また、前記第一の核酸鎖は、DNAとRNAとが混在する配列であっても良い。また、本発明に係る第一の核酸鎖は、単一の塩基が6塩基以上連続する塩基配列を有するものであっても良い。
The first nucleic acid strand used in the present invention may be a nucleic acid strand having any base sequence as long as at least the 3'-end base is RNA. Further, the first nucleic acid chain may be a sequence in which DNA and RNA are mixed. Moreover, the first nucleic acid chain according to the present invention may have a base sequence in which a single base is continuous for 6 bases or more.
本発明に用いる第二の核酸鎖は、一本鎖の核酸配列であればどのような塩基配列であっても良い。つまり、前記第二の核酸鎖は、DNA配列、RNA配列、又はDNAとRNAとが混在する配列であっても良い。また、前記第二の核酸鎖は、その鎖長は特に制限されるものではなく、70mer以上の鎖長であっても良い。
The second nucleic acid strand used in the present invention may be any base sequence as long as it is a single-stranded nucleic acid sequence. That is, the second nucleic acid chain may be a DNA sequence, an RNA sequence, or a sequence in which DNA and RNA are mixed. Further, the length of the second nucleic acid chain is not particularly limited, and may be 70 mer or longer.
本発明に用いる第三の核酸鎖は、その5’末端側配列が前記第二の核酸鎖の5’末端側配列と、その3’末端側配列が前記第一の核酸鎖の3’末端側配列と相補的に塩基対を形成するものであり、前記第一の核酸鎖と前記第二の核酸鎖との結合を補助するように働く。また、本発明に係る第三の核酸鎖は、RNA鎖、DNA鎖、またはDNAとRNAとが混在する配列であっても良いが、本発明に係る方法を実施する当業者にとっては、経済的な面において、DNA鎖の使用が好ましい。
In the third nucleic acid strand used in the present invention, the 5 ′ terminal sequence is the 5 ′ terminal sequence of the second nucleic acid strand, and the 3 ′ terminal sequence is the 3 ′ terminal side of the first nucleic acid strand. It forms a base pair in a complementary manner with the sequence and functions to assist the binding between the first nucleic acid strand and the second nucleic acid strand. In addition, the third nucleic acid strand according to the present invention may be an RNA strand, a DNA strand, or a sequence in which DNA and RNA are mixed, but it is economical for those skilled in the art who carry out the method according to the present invention. In this respect, the use of a DNA strand is preferable.
また、本発明に係る第三の核酸鎖は、前記第一の核酸鎖と前記第二の核酸鎖とが結合する際に、前記第二の核酸鎖が環状化することを防いでいる。さらに、本発明に係る方法を実施することにより、前記第一の核酸鎖と前記第二の核酸鎖との結合反応が速くなることも前記第二の核酸鎖の自己環状化を防ぐ一因となっている。
In addition, the third nucleic acid chain according to the present invention prevents the second nucleic acid chain from being circularized when the first nucleic acid chain and the second nucleic acid chain are combined. Furthermore, by carrying out the method according to the present invention, the binding reaction between the first nucleic acid strand and the second nucleic acid strand is accelerated, which is another factor for preventing the self-circularization of the second nucleic acid strand. It has become.
さらに、本発明に係る方法において、前記第三の核酸鎖は、前記第一の核酸鎖の3’末端の塩基を有する少なくとも1以上の連続する塩基配列と相補的な塩基配列と、前記第二の核酸鎖の5’末端の塩基を有する少なくとも1以上の連続する塩基配列と相補的な塩基配列とを有するものであることが好ましい。また、前記第一の核酸鎖と前記第三の核酸鎖との相補的な結合、並びに、前記第二の核酸鎖と前記第三の核酸鎖との相補的な結合は、厳密に塩基対の形成を成していることが好ましい。
Furthermore, in the method according to the present invention, the third nucleic acid strand includes at least one or more consecutive base sequences having a base at the 3 ′ end of the first nucleic acid strand, and the second nucleic acid strand, It is preferable to have at least one continuous base sequence having a base at the 5 ′ end of the nucleic acid strand and a complementary base sequence. In addition, the complementary binding between the first nucleic acid strand and the third nucleic acid strand, and the complementary binding between the second nucleic acid strand and the third nucleic acid strand are strictly base paired. Preferably, it is formed.
また、本発明者らは、前記第二の核酸鎖と前記第三の核酸鎖との相補的な結合が、その対合鎖長が短くなると結合反応の速度が増加することを見いだしている(下記、実施例10参照)。例えば、Bullardらは、片鎖にニックのある二本鎖核酸を用いてリガーゼの基質特異性を研究しているが、この酵素活性測定実験で、ニックの無い側の核酸鎖の塩基はニックのある相補核酸鎖の塩基とすべて塩基対形成をしているため、ニック修復活性は遅くなる(Bullard, D.R. and Bowater, R.P. 2006. Direct comparison of nickjoining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J. 398: 135-144.)。
In addition, the present inventors have found that the complementary reaction between the second nucleic acid strand and the third nucleic acid strand increases the speed of the binding reaction when the paired strand length is shortened ( See Example 10 below). For example, Bullard et al. Studied the substrate specificity of ligase using a double-stranded nucleic acid with a nick in one strand, but in this enzyme activity measurement experiment, the base of the nucleic acid strand on the non-nicked side was nicked. Nick repair activity is delayed because all base pairs are formed with a base of a complementary nucleic acid strand (Bullard, DR and Bowater, RP 2006. Direct comparison of nickjoining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J . 398: 135-144.).
本発明に用いるEC6.5.1.3に分類され且つ二本鎖核酸ニック修復活性を有するRNAリガーゼとは、国際生化学分子生物学連合が制定するEC番号でEC6.5.1.3に分類される酵素であり、ATP+(ribonucleotide)n+(ribonucleotide)m=AMP+diphosphate+(ribonucleotide)n+mの反応を触媒する酵素であって、二本鎖核酸におけるニックを修復する活性を有するものである。また、本発明に係るRNAリガーゼは、好ましくは、T4 バクテリオファージ由来のT4 RNAリガーゼ2である。さらに、本発明に係るRNAリガーゼは、T4バクテリオファージ由来のT4 RNAリガーゼ2、ビブリオファージ(vibriophage)KVP40由来のリガーゼ2、Trypanosoma brucei RNAリガーゼ、Deinococcus radiodurans RNAリガーゼ、若しくはLeishmania tarentolae RNAリガーゼであっても良く、EC6.5.1.3に分類されるRNAリガーゼであって二本鎖核酸ニック修復活性を有するものであればこれらのリガーゼに制限されることはない。
The RNA ligase classified in EC 6.5.1.3 and having double-stranded nucleic acid nick repair activity used in the present invention is an EC number established by the International Union of Biochemical and Molecular Biology and is designated as EC 6.5.1.3. These enzymes are classified and are enzymes that catalyze the reaction of ATP + (ribonucleotide) n + (ribonucleotide) m = AMP + diphosphate + (ribonucleotide) n + m, and have an activity of repairing a nick in a double-stranded nucleic acid. The RNA ligase according to the present invention is preferably T4 RNA ligase 2 derived from T4 bacteriophage. Furthermore, the RNA ligase according to the present invention is T4 bacteriophage-derived T4 RNA ligase 2, vibriophage KVP40-derived ligase 2, Trypanosoma brucei RNA ligase, Deinococcus radiodurans RNA ligase RNAiol or ligase RNAi ligase RNAi ligase RNAiol or ligase RNAi ligase RNAiol ligase RNAiolase or LeiRNA Any RNA ligase classified as EC 6.5.1.3 and having a double-stranded nucleic acid repair activity is not limited to these ligases.
また、本発明に係る方法において、第一の核酸鎖と第二の核酸鎖との結合は、本発明に係るRNAリガーゼが機能する条件であれば、分子生物学分野で常用されるリガーゼ反応の条件の範囲内のどのような条件下で反応が行われても良い。例えば、後述する実施例に記載するように、第一の核酸鎖と第二の核酸鎖と第三の核酸鎖と緩衝液と純水とを混合させ、その混合液に本発明に係るRNAリガーゼを加え、その後当該リガーゼが機能する温度(例えば37℃)で所定時間(例えば1時間)反応させることによって行われる。また、本発明に係る方法の結合反応に用いられる第一の核酸鎖などの各成分の用量は、当業者によって適宜変更可能である。
In the method according to the present invention, the binding between the first nucleic acid strand and the second nucleic acid strand is a condition of ligase reaction commonly used in the field of molecular biology as long as the RNA ligase according to the present invention functions. The reaction may be carried out under any conditions within the range of conditions. For example, as described in Examples described later, a first nucleic acid strand, a second nucleic acid strand, a third nucleic acid strand, a buffer solution, and pure water are mixed, and the RNA ligase according to the present invention is added to the mixture. And then reacting at a temperature at which the ligase functions (eg, 37 ° C.) for a predetermined time (eg, 1 hour). Moreover, the dose of each component such as the first nucleic acid chain used in the binding reaction of the method according to the present invention can be appropriately changed by those skilled in the art.
また、本発明に係る方法を用いることによって、本発明に用いられる第二の核酸鎖は、標識または修飾されることができる。この場合、これらの標識または修飾は、核酸を標識または修飾することができる物質または化合物等によってされるものであれば、特に制限されるものではない。例えば、本発明に係る第二の核酸鎖は、ビオチンや色素又は蛍光色素によって標識されることができ、蛍光色素としては、Cy(商標)3、Cy(商標)5、FITC等でも良く、ビオチン標識、DIG標識等でも良い。なお、反応後の標識または修飾された核酸鎖は、そのまま、または精製後、ハイブリダイゼーション等の目的に使用することができる。精製をする場合には、カラム分離や電気泳動の手法が使用できる。電気泳動、カラム分離の条件は分子生物学分野で通常用いられる条件を使用できる。
Moreover, by using the method according to the present invention, the second nucleic acid strand used in the present invention can be labeled or modified. In this case, these labels or modifications are not particularly limited as long as they are performed by a substance or compound that can label or modify a nucleic acid. For example, the second nucleic acid strand according to the present invention can be labeled with biotin, a dye or a fluorescent dye, and the fluorescent dye may be Cy (trademark) 3, Cy (trademark) 5, FITC, etc. It may be a sign, a DIG sign, or the like. The labeled or modified nucleic acid strand after the reaction can be used for the purpose of hybridization or the like as it is or after purification. For purification, column separation or electrophoresis can be used. Conditions generally used in the field of molecular biology can be used for electrophoresis and column separation.
本発明に係る第二の核酸鎖が標識または修飾される場合には、上述したような、第一の核酸鎖と第二の核酸鎖との結合を介して行われる。すなわち、第一の核酸鎖と第二の核酸鎖との結合反応を行う前に、前処理として、前記第一の核酸鎖を上記所定の標識物で標識しておき、その標識された第一の核酸鎖を用いて、結合反応を行うことで、前記第二の核酸鎖の修飾または標識を行うことができる。この場合、前記第一の核酸鎖における前記標識物の位置は特に制限されるものではなく、前記第一の核酸鎖の任意の位置に前記標識物を配置することができる。例えば、前記第一の核酸鎖の5’末端であっても良いし、前記第二の核酸鎖と結合する3’末端付近であっても良い。もちろん、このような修飾は、前記第二の核酸鎖の鎖内における標識であっても良い。
When the second nucleic acid strand according to the present invention is labeled or modified, it is performed through the binding between the first nucleic acid strand and the second nucleic acid strand as described above. That is, before performing the binding reaction between the first nucleic acid strand and the second nucleic acid strand, as a pretreatment, the first nucleic acid strand is labeled with the predetermined label, and the labeled first The second nucleic acid strand can be modified or labeled by performing a binding reaction using the above nucleic acid strand. In this case, the position of the label in the first nucleic acid chain is not particularly limited, and the label can be arranged at an arbitrary position in the first nucleic acid chain. For example, it may be at the 5 'end of the first nucleic acid strand or near the 3' end that binds to the second nucleic acid strand. Of course, such a modification may be a label in the strand of the second nucleic acid strand.
なお、従来、RNA鎖の結合には、DNAリガーゼを用いるDNAスプリント(DNA splint)法が用いられていたが、反応時間が数時間に及んでしまい、また、反応収量も低く、DNAリガーゼを大量に使用しなければならないという問題点があった。この解決策として、T4 RNAリガーゼ1と3’末端を保護したRNAとを用いるRNAリガーゼ介在結合(RNA ligase-mediated ligation)法が報告されているが、この方法は5’-silyl-2’-acetoxy ethyl orthoester保護基を持ったRNAが必要となってしまい、実用的ではない(非特許文献4)。また、このRNAリガーゼ介在結合法では、上述のように、結合させる2本の核酸鎖によってbroken interior loopを形成させる必要があり、当該2本の核酸鎖における配列に構造的な制限が課されてしまう。さらに、核酸鎖同士を結合させることによって一方の核酸鎖を標識させようとする場合には、RNAリガーゼ介在結合法では、他方の核酸鎖における蛍光色素など標識の位置を、核酸結合部位の近傍に配置し得るかどうか確認がとれていないのが現状である。
Conventionally, a DNA splint method using DNA ligase has been used for binding RNA strands. However, the reaction time takes several hours, the reaction yield is low, and a large amount of DNA ligase is used. There was a problem that had to be used. As a solution to this problem, an RNA ligase-mediated ligation method using T4 RNA ligase 1 and RNA protected at the 3 ′ end has been reported. This method is 5′-silyl-2′-. RNA having an acetylethyl orthoester protecting group is required and is not practical (Non-patent Document 4). Further, in this RNA ligase-mediated binding method, as described above, it is necessary to form a broken interior loop with the two nucleic acid strands to be bound, and structural restrictions are imposed on the sequences in the two nucleic acid strands. End up. Furthermore, when one nucleic acid strand is to be labeled by binding the nucleic acid strands, in the RNA ligase-mediated binding method, the position of the label such as a fluorescent dye in the other nucleic acid strand is positioned near the nucleic acid binding site. At present, it has not been confirmed whether it can be arranged.
ここで、後述する本発明の一実施形態に係るT4バクテリオファージ由来のT4 RNAリガーゼ2は2002年に発見、クローニングされ(Ho、Shuman 2002)、その性状が研究されてきた。Yinら(2003)は、2つのRNAからなるステムループRNAを基質としてT4 RNAリガーゼ2の活性を調べた。Nandakumarら(2004)は、12bpの対合をつくる24塩基の2つの核酸鎖を用い、その核酸鎖の重合をT4 RNAリガーゼ2の活性の指標としている。Bullardら(2006)は、片鎖にニックのある20bpの二本鎖核酸を用いてリガーゼの基質特異性を研究した。この20bpの二本鎖核酸基質の作製は終夜実験でおこなわれている。この研究では二本鎖核酸のニックの修復を対象としており、ニックの無い側のある核酸鎖の長さおよび結合する5’リン酸化RNAの任意性までは知られておらず、任意のRNAをその5’末端の一部の配列を用いて、5’末端修飾をする方法とは大きな隔たりがあった( Ho, C.K. and Shuman, S. 2002. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc Natl Acad Sci USA.99:12709-12714.、Yin, S., Ho, C.K., and Shuman, S. 2003. Structure-function analysis of T4 RNA ligase 2. J. Biol. Chem. 278: 17601-17608.、Nandakumar, J., Ho, C.K., Lima, C.D., and Shuman, S. 2004. RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. J. Biol. Chem. 279: 31337-31347.、Bullard, D.R. and Bowater, R.P. 2006. Direct comparison of nickjoining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J. 398: 135-144.)。
Here, T4 RNA ligase 2 derived from T4 bacteriophage according to an embodiment of the present invention described later was discovered and cloned in 2002 (Ho, Shuman 2002), and its properties have been studied. Yin et al. (2003) examined the activity of T4 RNA ligase 2 using stem loop RNA consisting of two RNAs as a substrate. Nandakumar et al. (2004) use two nucleic acid strands of 24 bases that form a 12 bp pair, and the polymerization of the nucleic acid strands is used as an indicator of the activity of T4 RNA ligase 2. Bullard et al. (2006) studied the substrate specificity of ligase using a 20 bp double stranded nucleic acid nicked in one strand. This 20-bp double-stranded nucleic acid substrate is produced overnight. This study is aimed at repairing nicks in double-stranded nucleic acids, and the length of the non-nicked nucleic acid strand and the arbitrary nature of the 5 'phosphorylated RNA to be bound are not known. Using the partial sequence of the 5 'end, there was a big difference from the method of modifying the 5' end (Ho, CK and Shuman, S. 2002. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc Natl Acad Sci USA.99: 12709-12714., Yin, S., Ho, CK, and Shuman, S. 2003. Structure-function analysis of T4 RNA ligase 2. J Biol. Chem. 278: 17601-17608. Biol. Chem. 279: 31337-31347., Bullard, DR and Bowater, RP 2006. Direct comparis on of nickjoining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J. 398: 135-144.).
本発明に係る方法を用いることで、放射性アイソトープを使用せず、簡便に核酸鎖の5’末端を修飾することができる。上述のように、修飾には、様々な蛍光色素、ビオチン、その他の標識を用いることができる。現在、オリゴRNA鎖自体は、以前に比べ、安価に、且つ容易に入手できる状況にあるが、標識RNA等の標識核酸は価格が高いという現状がある。本発明に係る方法は、任意のRNA等の核酸鎖を容易に標識できるため、経済的負担が軽減されるなど、有用な方法である。
By using the method according to the present invention, the 5 'end of the nucleic acid chain can be modified easily without using a radioactive isotope. As described above, various fluorescent dyes, biotin, and other labels can be used for the modification. Currently, oligo RNA strands themselves are cheaper and easier to obtain than before, but labeled nucleic acids such as labeled RNA are currently expensive. The method according to the present invention is a useful method because it can easily label a nucleic acid chain such as an arbitrary RNA, thereby reducing the economic burden.
本発明に係る方法により、非放射性アイソトープによって標識された核酸鎖を容易に生成することが可能となり、核酸鎖の5’末端に新たな塩基配列を付加する修飾もできることになる。
The method according to the present invention makes it possible to easily generate a nucleic acid chain labeled with a non-radioactive isotope, and to add a new base sequence to the 5 'end of the nucleic acid chain.
また、本発明に係る方法と従来の核酸鎖の結合方法とを比較すると以下の表1のようにまとめることができる。
Further, when the method according to the present invention is compared with the conventional nucleic acid chain binding method, they can be summarized as shown in Table 1 below.
すなわち、#1および#2に示すように、DNA同士またはRNA同士を結合させる場合、当該結合に係る2本の核酸鎖ではいずれの酵素を用いたとしても反応は遅く、また核酸鎖の自己環状化の問題も生じる。また、#3に示すように、DNA同士の結合は、従来から、第三の核酸鎖である補助核酸鎖とT4 DNAリガーゼとを用いることで良好な反応が行われることが知られていたが、RNA同士の結合に関しては、良好な反応様式は知られていなかった。#4に示すように第三の核酸鎖である補助核酸鎖とT4 DNAリガーゼを用いてRNA同士の結合がおこなえるが、反応時間が長い、大量の酵素を必要とする、収率が低い等の問題があった。また、#5に示すように、第三の核酸鎖である補助核酸鎖とT4 RNAリガーゼ1を用いる方法も報告されているが、上述したBroken interior loop構造を設けねばならず、結合し得るRNAの配列に制限があった。一方、本発明に係る方法では、Broken interior loop構造を設けることなく、またT4 DNAリガーゼを利用する場合の問題点をも解決している。なお、#6に示されるようなRNA-RNA/DNAの結合では、第三の核酸鎖を用意する必要はないが、結合させる核酸鎖同士の一部について相補的な塩基対を形成させる必要があり、#5と同様、配列における制限がある。
That is, as shown in # 1 and # 2, when DNAs or RNAs are bound to each other, the reaction is slow regardless of which enzyme is used for the two nucleic acid strands involved in the binding, and the nucleic acid strands are self-circular There is also a problem of conversion. In addition, as shown in # 3, it has been conventionally known that a good reaction can be performed between DNAs by using an auxiliary nucleic acid strand as a third nucleic acid strand and T4 DNA ligase. Regarding the binding between RNAs, a good reaction mode has not been known. As shown in # 4, RNA can be bound to each other using the third nucleic acid strand, the auxiliary nucleic acid strand, and T4 DNA ligase, but the reaction time is long, a large amount of enzyme is required, the yield is low, etc. There was a problem. In addition, as shown in # 5, a method using an auxiliary nucleic acid strand, which is a third nucleic acid strand, and T4 RNA ligase 1 has also been reported. However, the above-described Broken interior loop structure must be provided, and RNA that can bind to it. There was a restriction on the sequence. On the other hand, the method according to the present invention solves the problem of using a T4 DNA ligase without providing a Broken interior loop structure. For RNA-RNA / DNA binding as shown in # 6, it is not necessary to prepare a third nucleic acid strand, but it is necessary to form a complementary base pair for a part of the nucleic acid strands to be joined. Yes, as in # 5, there are limitations on the arrangement.
また、以下に、本発明に係る方法の代表的な反応を説明するが、本発明はこれらの反応例に限定されるものではないことは言うまでもない。
In addition, representative reactions of the method according to the present invention will be described below, but it goes without saying that the present invention is not limited to these reaction examples.
まず、本発明に係る核酸鎖の結合方法について、代表的な例を説明する。
1)第一の核酸鎖と第三の核酸鎖とを緩衝液中で塩基対形成させ、その塩基対合した前記第一の核酸鎖と第三の核酸鎖との複合体を得る(核酸鎖複合体A)。その後、核酸鎖複合体Aと第二の核酸鎖とを緩衝液中で塩基対形成させ、第三の核酸鎖に第一の核酸鎖および第二の核酸鎖が塩基対合した複合体を得る(核酸鎖複合体B)。そして、緩衝液中の核酸鎖複合体Bに二本鎖核酸鎖ニック修復活性を有するRNAリガーゼを加え、この触媒作用により前記第一の核酸鎖の3’ヒドロシル基と、前記第二の核酸鎖の5’リン酸基とを共有結合させる。
2)第一の核酸鎖、第二の核酸鎖、及び第三の核酸鎖を緩衝液中で混合する。この核酸鎖混合物を緩衝液中で塩基対形成させ、第三の核酸鎖に第一の核酸鎖および第二の核酸鎖が塩基対合した複合体を得る(核酸鎖複合体B)。そして、緩衝液中の核酸鎖複合体Bに二本鎖核酸鎖ニック修復活性を有するRNAリガーゼを加え、この触媒作用により前記第一の核酸鎖の3’ヒドロシル基と、前記第二の核酸鎖の5’リン酸基とを共有結合させる。 First, typical examples of the nucleic acid chain binding method according to the present invention will be described.
1) The first nucleic acid strand and the third nucleic acid strand are base-paired in a buffer solution, and a complex of the base-paired first nucleic acid strand and third nucleic acid strand is obtained (nucleic acid strand). Complex A). Thereafter, the nucleic acid strand complex A and the second nucleic acid strand are base-paired in a buffer solution to obtain a complex in which the first nucleic acid strand and the second nucleic acid strand are base-paired to the third nucleic acid strand. (Nucleic acid chain complex B). Then, an RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group.
2) The first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand are mixed in a buffer. This nucleic acid chain mixture is subjected to base pairing in a buffer solution to obtain a complex in which the first nucleic acid chain and the second nucleic acid chain are base paired with the third nucleic acid chain (nucleic acid chain complex B). Then, an RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group.
1)第一の核酸鎖と第三の核酸鎖とを緩衝液中で塩基対形成させ、その塩基対合した前記第一の核酸鎖と第三の核酸鎖との複合体を得る(核酸鎖複合体A)。その後、核酸鎖複合体Aと第二の核酸鎖とを緩衝液中で塩基対形成させ、第三の核酸鎖に第一の核酸鎖および第二の核酸鎖が塩基対合した複合体を得る(核酸鎖複合体B)。そして、緩衝液中の核酸鎖複合体Bに二本鎖核酸鎖ニック修復活性を有するRNAリガーゼを加え、この触媒作用により前記第一の核酸鎖の3’ヒドロシル基と、前記第二の核酸鎖の5’リン酸基とを共有結合させる。
2)第一の核酸鎖、第二の核酸鎖、及び第三の核酸鎖を緩衝液中で混合する。この核酸鎖混合物を緩衝液中で塩基対形成させ、第三の核酸鎖に第一の核酸鎖および第二の核酸鎖が塩基対合した複合体を得る(核酸鎖複合体B)。そして、緩衝液中の核酸鎖複合体Bに二本鎖核酸鎖ニック修復活性を有するRNAリガーゼを加え、この触媒作用により前記第一の核酸鎖の3’ヒドロシル基と、前記第二の核酸鎖の5’リン酸基とを共有結合させる。 First, typical examples of the nucleic acid chain binding method according to the present invention will be described.
1) The first nucleic acid strand and the third nucleic acid strand are base-paired in a buffer solution, and a complex of the base-paired first nucleic acid strand and third nucleic acid strand is obtained (nucleic acid strand). Complex A). Thereafter, the nucleic acid strand complex A and the second nucleic acid strand are base-paired in a buffer solution to obtain a complex in which the first nucleic acid strand and the second nucleic acid strand are base-paired to the third nucleic acid strand. (Nucleic acid chain complex B). Then, an RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group.
2) The first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand are mixed in a buffer. This nucleic acid chain mixture is subjected to base pairing in a buffer solution to obtain a complex in which the first nucleic acid chain and the second nucleic acid chain are base paired with the third nucleic acid chain (nucleic acid chain complex B). Then, an RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group.
続いて、本発明に係る核酸鎖の修飾方法について、代表的な例を説明する。
1)5’末端をビオチン、蛍光色素等で標識した第一の核酸鎖を用意する。この第一の核酸鎖と第三の核酸鎖とを緩衝液中で塩基対形成させ、塩基対合した第一の核酸鎖と第三の核酸鎖との複合体を得る(核酸鎖複合体A)。その後、核酸鎖複合体Aと第二の核酸鎖とを緩衝液中で塩基対形成させ、第三の核酸鎖に第一の核酸鎖および第二の核酸鎖が塩基対合した複合体を得る(核酸鎖複合体B)。そして、緩衝液中の核酸鎖複合体Bに二本鎖核酸鎖ニック修復活性を有するRNAリガーゼを加え、この触媒作用によって標識した第一の核酸鎖の3’ヒドロシル基と、第二の核酸鎖の5’リン酸基とを共有結合させる。これにより前記第二の核酸鎖の5’末端が標識される。
2)5’末端をビオチン、蛍光色素等で標識した第一の核酸鎖を用意する。この第一の核酸鎖、第二の核酸鎖、及び第三の核酸鎖を緩衝液中で混合する。その後、この核酸鎖混合物を緩衝液中で塩基対形成させ、前記第三の核酸鎖に前記第一の核酸鎖および第二の核酸鎖が塩基対合した複合体を得る(核酸鎖複合体B)。そして、緩衝液中の核酸鎖複合体Bに二本鎖核酸鎖ニック修復活性を有するRNAリガーゼを加え、この触媒作用によって前記第一の核酸鎖の3’ヒドロシル基と、前記第二の核酸鎖の5’リン酸基とを共有結合させる。これにより前記第二の核酸鎖の5’末端が標識される。 Subsequently, representative examples of the method for modifying a nucleic acid chain according to the present invention will be described.
1) Prepare a first nucleic acid strand whose 5 ′ end is labeled with biotin, a fluorescent dye or the like. The first nucleic acid strand and the third nucleic acid strand are base-paired in a buffer solution to obtain a complex of the base-paired first nucleic acid strand and the third nucleic acid strand (nucleic acid strand complex A). ). Thereafter, the nucleic acid strand complex A and the second nucleic acid strand are base-paired in a buffer solution to obtain a complex in which the first nucleic acid strand and the second nucleic acid strand are base-paired to the third nucleic acid strand. (Nucleic acid chain complex B). Then, an RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the 3 ′ hydrosyl group of the first nucleic acid strand labeled by this catalytic action and the second nucleic acid strand To the 5 'phosphate group. This labels the 5 ′ end of the second nucleic acid strand.
2) Prepare a first nucleic acid strand whose 5 ′ end is labeled with biotin, fluorescent dye or the like. The first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand are mixed in a buffer solution. Thereafter, this nucleic acid chain mixture is subjected to base pairing in a buffer solution to obtain a complex in which the first nucleic acid chain and the second nucleic acid chain are base-paired to the third nucleic acid chain (nucleic acid chain complex B). ). Then, RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group. This labels the 5 ′ end of the second nucleic acid strand.
1)5’末端をビオチン、蛍光色素等で標識した第一の核酸鎖を用意する。この第一の核酸鎖と第三の核酸鎖とを緩衝液中で塩基対形成させ、塩基対合した第一の核酸鎖と第三の核酸鎖との複合体を得る(核酸鎖複合体A)。その後、核酸鎖複合体Aと第二の核酸鎖とを緩衝液中で塩基対形成させ、第三の核酸鎖に第一の核酸鎖および第二の核酸鎖が塩基対合した複合体を得る(核酸鎖複合体B)。そして、緩衝液中の核酸鎖複合体Bに二本鎖核酸鎖ニック修復活性を有するRNAリガーゼを加え、この触媒作用によって標識した第一の核酸鎖の3’ヒドロシル基と、第二の核酸鎖の5’リン酸基とを共有結合させる。これにより前記第二の核酸鎖の5’末端が標識される。
2)5’末端をビオチン、蛍光色素等で標識した第一の核酸鎖を用意する。この第一の核酸鎖、第二の核酸鎖、及び第三の核酸鎖を緩衝液中で混合する。その後、この核酸鎖混合物を緩衝液中で塩基対形成させ、前記第三の核酸鎖に前記第一の核酸鎖および第二の核酸鎖が塩基対合した複合体を得る(核酸鎖複合体B)。そして、緩衝液中の核酸鎖複合体Bに二本鎖核酸鎖ニック修復活性を有するRNAリガーゼを加え、この触媒作用によって前記第一の核酸鎖の3’ヒドロシル基と、前記第二の核酸鎖の5’リン酸基とを共有結合させる。これにより前記第二の核酸鎖の5’末端が標識される。 Subsequently, representative examples of the method for modifying a nucleic acid chain according to the present invention will be described.
1) Prepare a first nucleic acid strand whose 5 ′ end is labeled with biotin, a fluorescent dye or the like. The first nucleic acid strand and the third nucleic acid strand are base-paired in a buffer solution to obtain a complex of the base-paired first nucleic acid strand and the third nucleic acid strand (nucleic acid strand complex A). ). Thereafter, the nucleic acid strand complex A and the second nucleic acid strand are base-paired in a buffer solution to obtain a complex in which the first nucleic acid strand and the second nucleic acid strand are base-paired to the third nucleic acid strand. (Nucleic acid chain complex B). Then, an RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the 3 ′ hydrosyl group of the first nucleic acid strand labeled by this catalytic action and the second nucleic acid strand To the 5 'phosphate group. This labels the 5 ′ end of the second nucleic acid strand.
2) Prepare a first nucleic acid strand whose 5 ′ end is labeled with biotin, fluorescent dye or the like. The first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand are mixed in a buffer solution. Thereafter, this nucleic acid chain mixture is subjected to base pairing in a buffer solution to obtain a complex in which the first nucleic acid chain and the second nucleic acid chain are base-paired to the third nucleic acid chain (nucleic acid chain complex B). ). Then, RNA ligase having double-stranded nucleic acid strand nick repair activity is added to the nucleic acid strand complex B in the buffer solution, and the catalytic action causes the 3 ′ hydrosyl group of the first nucleic acid strand and the second nucleic acid strand to To the 5 'phosphate group. This labels the 5 ′ end of the second nucleic acid strand.
次に、本発明の効果に関して実施例を示して説明する。しかし、本発明は以下に記載された実施例に限定されるものではなく、様々な変更及び修飾は当業者によって容易になされることが理解されるであろう。
Next, the effects of the present invention will be described with reference to examples. However, it will be understood that the invention is not limited to the examples described below, and that various changes and modifications can be readily made by those skilled in the art.
以下に、本実施形態による実施例を、図面を参照して詳細に説明する。なお、各実施例において、「アクセプターRNA」、「修飾対象RNA」、「補助核酸鎖」という用語が使用されているが、それぞれ、本発明における「第一の核酸鎖」、「第二の核酸鎖」、「第三の核酸鎖」を示すものである。
Hereinafter, examples according to the present embodiment will be described in detail with reference to the drawings. In each example, the terms “acceptor RNA”, “RNA to be modified”, and “auxiliary nucleic acid strand” are used, and “first nucleic acid strand” and “second nucleic acid” in the present invention, respectively. “Strand”, “third nucleic acid strand”. *
後述する実施例1~10は、以下の表2に記載されるDNA鎖若しくはRNA鎖を用いて実験を行った。
In Examples 1 to 10, which will be described later, experiments were performed using DNA strands or RNA strands described in Table 2 below.
[オリゴRNA鎖のライゲーションによる修飾]
(実験方法)
実験aは、修飾対象RNA鎖(pR21)0.1nmolと、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)とを2μl加え、純水を加えて19μlにした。 [Modification by ligation of oligo RNA strand]
(experimental method)
In Experiment a, 0.1 nmol of RNA strand to be modified (pR21) and 2 μl of Buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) were added, and pure water was added. 19 μl.
(実験方法)
実験aは、修飾対象RNA鎖(pR21)0.1nmolと、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)とを2μl加え、純水を加えて19μlにした。 [Modification by ligation of oligo RNA strand]
(experimental method)
In Experiment a, 0.1 nmol of RNA strand to be modified (pR21) and 2 μl of Buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) were added, and pure water was added. 19 μl.
実験b、dは、修飾対象RNA鎖(pR21)0.1nmol、緩衝液1を2μl、アクセプターRNA(AcF-1)0.5nmolを加え、純水を加えて19μlにした。
In Experiments b and d, 0.1 nmol of RNA to be modified (pR21), 2 μl of buffer 1 and 0.5 nmol of acceptor RNA (AcF-1) were added, and pure water was added to make 19 μl.
実験cは、修飾対象RNA鎖(pR21)、0.1nmol、緩衝液1を2μl、アクセプターRNA(AcF-1)0.5nmol、ポリエチレングリコール2.7μlを加え、純水を加えて19μlにした。
Experiment c was performed by adding RNA to be modified (pR21), 0.1 nmol, 2 μl of buffer 1, 0.5 nmol of acceptor RNA (AcF-1), 2.7 μl of polyethylene glycol, and adding pure water to 19 μl.
アクセプターRNA(AcF-1)2nmol、補助核酸鎖(DNA鎖:BrR21-6)2nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液とした。
2 nmol of acceptor RNA (AcF-1) and 2 nmol of auxiliary nucleic acid strand (DNA strand: BrR21-6) are dissolved in 20 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer, and annealed at 65 ° C. for 5 minutes. This was used as an annealing solution.
実験e、f、gは、修飾対象RNA鎖(pR21)0.1nmol、緩衝液1を2μl、アニーリング溶液5μlを加え、実験fはさらにポリエチレングリコール2.7μlを加えた後、純水を加えて19μlにし、65℃で5分間、アニーリング処理をした。
Experiments e, f, and g were 0.1 nmol of RNA to be modified (pR21), 2 μl of buffer 1 and 5 μl of annealing solution were added, and experiment f was further added with 2.7 μl of polyethylene glycol and then with pure water. 19 μl and annealed at 65 ° C. for 5 minutes.
実験aは1μlの純水を加え、実験b、c、e、fは1.67μgのT4 RNAリガーゼ1(1μl)、実験d、gは0.29μgのT4 RNAリガーゼ2(1μl)を加えて、37℃で反応を開始し、1時間後、a、b、c、d、e、f、gの反応液から2.5μl取り、これに反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、12.5%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。電気泳動後は装置からゲルを取り出し、紫外線を当て撮影した。その後、ゲルを臭化エチジュウムで染色した後、紫外線を当て、再度撮影した。
Experiment a added 1 μl of pure water, experiments b, c, e, f added 1.67 μg T4 RNA ligase 1 (1 μl), experiment d, g added 0.29 μg T4 RNA ligase 2 (1 μl). The reaction was started at 37 ° C., and after 1 hour, 2.5 μl was taken from the reaction solutions a, b, c, d, e, f, and g, and a reaction stop solution (80% formamide, 10 mM EDTA (pH 8. 0), 0.025% bromophenol blue), immediately heat-treated at 80 ° C. for 5 minutes, then placed on ice and rapidly cooled, 12.5% denaturing acrylamide gel (1 × TBE buffer, 7 (Containing 5M urea) and electrophoresis was performed using 1 × TBE buffer as an electrophoretic solution. After the electrophoresis, the gel was taken out from the apparatus and photographed by applying ultraviolet rays. Thereafter, the gel was stained with ethidium bromide, then exposed to ultraviolet light, and photographed again.
(実験結果)
実験a、b、c、d、e、f、gでは、実験gのみにおいて修飾対象RNA鎖(pR21)にアクセプターRNA(AcF-1)がライゲーションし、修飾対象RNA 鎖(pR21)をFITC標識することができた(図1、レーン7)。T4 RNAリガーゼ1を用いた反応(実験b、c、e、f)では、修飾対象RNA鎖(pR21)の5’リン酸基と3’ヒドロキシル基がライゲーションし、環状化するが、アクセプターRNA(AcF-1)とのライゲーションは見られなかった(図1、レーン2、3、5、6)。T4 RNA リガーゼ2を用いた反応でも補助核酸鎖が無い場合は、アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)ライゲーションしなかった(実験d、図1、レーン4)。アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)ライゲーションには、T4 RNAリガーゼ2と補助核酸鎖が必須であり、この反応では修飾対象RNA鎖(pR21)の自己環状化を防ぎ、アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)を首尾よくライゲーションできる。 (Experimental result)
In experiments a, b, c, d, e, f, and g, acceptor RNA (AcF-1) is ligated to the RNA strand to be modified (pR21) only in experiment g, and the RNA strand to be modified (pR21) is labeled with FITC. (FIG. 1, lane 7). In the reaction using T4 RNA ligase 1 (experiments b, c, e, f), the 5 ′ phosphate group and 3 ′ hydroxyl group of the RNA strand to be modified (pR21) are ligated and circularized, but the acceptor RNA ( Ligation with AcF-1) was not observed (FIG. 1, lanes 2, 3, 5, 6). In the reaction using T4 RNA ligase 2, when there was no auxiliary nucleic acid strand, the acceptor RNA (AcF-1) was not ligated with the RNA to be modified (pR21) (Experiment d, FIG. 1, lane 4). T4 RNA ligase 2 and an auxiliary nucleic acid strand are essential for ligation of the acceptor RNA (AcF-1) and the RNA to be modified (pR21). In this reaction, the RNA to be modified (pR21) is prevented from self-circulation, and the acceptor The RNA (AcF-1) and the RNA strand to be modified (pR21) can be successfully ligated.
実験a、b、c、d、e、f、gでは、実験gのみにおいて修飾対象RNA鎖(pR21)にアクセプターRNA(AcF-1)がライゲーションし、修飾対象RNA 鎖(pR21)をFITC標識することができた(図1、レーン7)。T4 RNAリガーゼ1を用いた反応(実験b、c、e、f)では、修飾対象RNA鎖(pR21)の5’リン酸基と3’ヒドロキシル基がライゲーションし、環状化するが、アクセプターRNA(AcF-1)とのライゲーションは見られなかった(図1、レーン2、3、5、6)。T4 RNA リガーゼ2を用いた反応でも補助核酸鎖が無い場合は、アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)ライゲーションしなかった(実験d、図1、レーン4)。アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)ライゲーションには、T4 RNAリガーゼ2と補助核酸鎖が必須であり、この反応では修飾対象RNA鎖(pR21)の自己環状化を防ぎ、アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)を首尾よくライゲーションできる。 (Experimental result)
In experiments a, b, c, d, e, f, and g, acceptor RNA (AcF-1) is ligated to the RNA strand to be modified (pR21) only in experiment g, and the RNA strand to be modified (pR21) is labeled with FITC. (FIG. 1, lane 7). In the reaction using T4 RNA ligase 1 (experiments b, c, e, f), the 5 ′ phosphate group and 3 ′ hydroxyl group of the RNA strand to be modified (pR21) are ligated and circularized, but the acceptor RNA ( Ligation with AcF-1) was not observed (FIG. 1,
[ライゲーションにおける補助核酸鎖の修飾対象RNA鎖の塩基配列対合]
(実験方法)
アクセプターRNA(AcF-1)1nmol、補助核酸鎖1nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液10μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液とした。本実験では、ライゲーションにおける修飾対象RNA鎖(pR21)の5’側配列と補助核酸鎖の5’側配列の塩基対合を調べるために、それぞれの実験c、d、e、f、g、kに対しそれぞれ補助核酸鎖(DNA鎖)、BrR21-1(c)、BrR21-2(d)、BrR21-3(e)、BrR21-4(f)、BrR21-5(g)、BrR21-6(h)、BrR21-7(i)、BrR21-8(j)、BrR21-F(k)を使用した。BrR21-1、BrR21-2、BrR21-3、BrR21-4、BrR21-5、BrR21-6、BrR21-7、BrR21-8、BrR21-Fはそれぞれ、図2のように修飾対象RNA鎖(pR21)の5’側配列に対し、1、2、3、4、5、6、7、8、21塩基対合となる。 [Base sequence pairing of RNA strand to be modified in auxiliary nucleic acid strand in ligation]
(experimental method)
Acceptor RNA (AcF-1) 1 nmol and auxiliarynucleic acid chain 1 nmol were dissolved in 10 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, and annealed at 65 ° C. for 5 minutes to obtain an annealing solution. . In this experiment, in order to examine the base pairing of the 5 ′ side sequence of the RNA strand to be modified (pR21) in the ligation and the 5 ′ side sequence of the auxiliary nucleic acid strand, each experiment c, d, e, f, g, k The auxiliary nucleic acid strand (DNA strand), BrR21-1 (c), BrR21-2 (d), BrR21-3 (e), BrR21-4 (f), BrR21-5 (g), BrR21-6 ( h), BrR21-7 (i), BrR21-8 (j), BrR21-F (k) were used. BrR21-1, BrR21-2, BrR21-3, BrR21-4, BrR21-5, BrR21-6, BrR21-7, BrR21-8, BrR21-F are RNA strands to be modified (pR21) as shown in FIG. 1, 2, 3, 4, 5, 6, 7, 8, 21 base pairs with respect to the 5′-side sequence.
(実験方法)
アクセプターRNA(AcF-1)1nmol、補助核酸鎖1nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液10μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液とした。本実験では、ライゲーションにおける修飾対象RNA鎖(pR21)の5’側配列と補助核酸鎖の5’側配列の塩基対合を調べるために、それぞれの実験c、d、e、f、g、kに対しそれぞれ補助核酸鎖(DNA鎖)、BrR21-1(c)、BrR21-2(d)、BrR21-3(e)、BrR21-4(f)、BrR21-5(g)、BrR21-6(h)、BrR21-7(i)、BrR21-8(j)、BrR21-F(k)を使用した。BrR21-1、BrR21-2、BrR21-3、BrR21-4、BrR21-5、BrR21-6、BrR21-7、BrR21-8、BrR21-Fはそれぞれ、図2のように修飾対象RNA鎖(pR21)の5’側配列に対し、1、2、3、4、5、6、7、8、21塩基対合となる。 [Base sequence pairing of RNA strand to be modified in auxiliary nucleic acid strand in ligation]
(experimental method)
Acceptor RNA (AcF-1) 1 nmol and auxiliary
実験aは、修飾対象RNA鎖(pR21)0.1nmolと、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)を2μl加え、純水を加えて19μlにした。
Experiment a was performed by adding 0.1 μmol of RNA strand to be modified (pR21) and 2 μl of buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP), and adding pure water to 19 μl. I made it.
実験bは、修飾対象RNA鎖(pR21)0.1nmol、緩衝液1を2μl加え、純水を加えて19μlにした。
In experiment b, 0.1 nmol of the RNA strand to be modified (pR21), 2 μl of buffer 1 were added, and pure water was added to make 19 μl.
実験c、d、e、f、g、h、i、j、kは、修飾対象RNA鎖(pR21)0.1nmol、緩衝液1を2μl、それぞれのアニーリング溶液5μlを加え、純水を加えて19μlにし、65℃で5分間、アニーリング処理をした。実験aには純水、1μl、実験b、c、d、e、f、g、h、i、jは0.29μgのT4 RNAリガーゼ2(1μl)を加えて、37℃で反応を開始し、1時間後、a、b、c、d、e、f、g、h、i、j、kの反応液から2.5μl取り、これに反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、12.5%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。電気泳動後は装置からゲルを取り出し、紫外線を当て撮影した。その後、ゲルを臭化エチジュウムで染色した後、紫外線を当て、再度撮影した。
In experiments c, d, e, f, g, h, i, j, k, 0.1 nmol of RNA to be modified (pR21), 2 μl of buffer 1, 5 μl of each annealing solution, and pure water were added. 19 μl and annealed at 65 ° C. for 5 minutes. In experiment a, pure water, 1 μl, and in experiments b, c, d, e, f, g, h, i, j, 0.29 μg of T4 RNA ligase 2 (1 μl) was added, and the reaction was started at 37 ° C. After 1 hour, 2.5 μl was taken from the reaction solution of a, b, c, d, e, f, g, h, i, j, k, and the reaction stop solution (80% formamide, 10 mM EDTA (pH 8. 0), 0.025% bromophenol blue), immediately heat-treated at 80 ° C. for 5 minutes, then placed on ice and rapidly cooled, 12.5% denaturing acrylamide gel (1 × TBE buffer, 7 (Containing 5M urea) and electrophoresis was performed using 1 × TBE buffer as an electrophoretic solution. After the electrophoresis, the gel was taken out from the apparatus and photographed by applying ultraviolet rays. Thereafter, the gel was stained with ethidium bromide, then exposed to ultraviolet light, and photographed again.
(実験結果)
塩基対合が4ヌクレオチド以下の実験c、d、e、fでは、アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)のライゲーションは見られなかった(図3、レーン3、4、5、6)。塩基対合が5塩基の実験gでは弱いライゲーションが見られた(図3、レーン7)。また実験c、d、e、f、gでは修飾対象RNA鎖(pR21)の自己環状化が見られる(図3、レーン3から7)。塩基対合が6ヌクレオチド以上の実験h、i、j、kでは修飾対象RNA鎖(pR21)の自己環状化は抑えられ、首尾よくライゲーションがおこなわれ、修飾対象RNA鎖(pR21)をFITC標識することができた(図3、レーン8、9、10、11)。この結果は、修飾対象RNA鎖(pR21)の5’側配列と補助核酸鎖の5’側配列において6ヌクレオチド対以上の対合がアクセプターRNAと修飾対象RNA鎖のライゲーションを促進することを示す。 (Experimental result)
In experiments c, d, e, and f in which base pairing was 4 nucleotides or less, ligation of acceptor RNA (AcF-1) and RNA strand to be modified (pR21) was not observed (FIG. 3, lanes 3, 4, 5). 6). Weak ligation was seen in experiment g with 5 base pairs (FIG. 3, lane 7). In experiments c, d, e, f, and g, self-circulation of the RNA strand to be modified (pR21) is observed (FIG. 3, lanes 3 to 7). In experiments h, i, j, and k in which base pairing is 6 nucleotides or more, self-cyclization of the RNA strand to be modified (pR21) is suppressed, ligation is successfully performed, and the RNA strand to be modified (pR21) is labeled with FITC (Fig. 3, lanes 8, 9, 10, 11). This result indicates that a pair of 6 nucleotide pairs or more in the 5 ′ sequence of the RNA strand to be modified (pR21) and the 5 ′ sequence of the auxiliary nucleic acid strand promote the ligation of the acceptor RNA and the RNA strand to be modified.
塩基対合が4ヌクレオチド以下の実験c、d、e、fでは、アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)のライゲーションは見られなかった(図3、レーン3、4、5、6)。塩基対合が5塩基の実験gでは弱いライゲーションが見られた(図3、レーン7)。また実験c、d、e、f、gでは修飾対象RNA鎖(pR21)の自己環状化が見られる(図3、レーン3から7)。塩基対合が6ヌクレオチド以上の実験h、i、j、kでは修飾対象RNA鎖(pR21)の自己環状化は抑えられ、首尾よくライゲーションがおこなわれ、修飾対象RNA鎖(pR21)をFITC標識することができた(図3、レーン8、9、10、11)。この結果は、修飾対象RNA鎖(pR21)の5’側配列と補助核酸鎖の5’側配列において6ヌクレオチド対以上の対合がアクセプターRNAと修飾対象RNA鎖のライゲーションを促進することを示す。 (Experimental result)
In experiments c, d, e, and f in which base pairing was 4 nucleotides or less, ligation of acceptor RNA (AcF-1) and RNA strand to be modified (pR21) was not observed (FIG. 3,
[補助核酸鎖の修飾対象RNA鎖の塩基配列対合の厳密性]
(実験方法)
アクセプターRNA(AcF-1)1.5nmol、補助核酸鎖1.5nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液15μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液とした。本実験で用いる補助核酸鎖はその5’側配列8ヌクレオチドが、修飾対象RNA鎖(pR21)の5’側配列8ヌクレオチドと対合するBrR21-8を基準に、その対合配列部分の8ヌクレオチドを一箇所ずつ、修飾対象RNA鎖(pR21)のヌクレオチドと同じヌクレオチドのものに置換した。ただし、修飾対象RNA鎖(pR21)のUに対してはTを用いた(図4)。具体的には、それぞれの実験a、b、c、d、e、f、g、h、iに対しそれぞれ補助核酸鎖(DNA鎖)、BrR21-8(a)、BrR21-8-1T(b)、BrR21-8-2G (c)、BrR21-8-3A(d)、BrR21-8-4G(e)、BrR21-8-5G(f)、BrR21-8-6T(g)、BrR21-8-7A(h)、BrR21-8-8G(i)である。 [Strictness of base sequence pairing of the target RNA strand of the auxiliary nucleic acid strand]
(experimental method)
Acceptor RNA (AcF-1) 1.5 nmol and auxiliary nucleic acid strand 1.5 nmol were dissolved in 15 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, and annealed at 65 ° C. for 5 minutes. An annealing solution was used. The auxiliary nucleic acid strand used in this experiment has 8 nucleotides in the paired sequence portion based on BrR21-8 whose 8 ′ sequence in the 5 ′ side is matched with 8 nucleotides in the 5 ′ side sequence of the RNA strand to be modified (pR21). Were replaced one by one with the same nucleotide as the nucleotide of the RNA strand to be modified (pR21). However, T was used for U of the RNA strand (pR21) to be modified (FIG. 4). Specifically, for each experiment a, b, c, d, e, f, g, h, i, the auxiliary nucleic acid strand (DNA strand), BrR21-8 (a), BrR21-8-1T (b ), BrR21-8-2G (c), BrR21-8-3A (d), BrR21-8-4G (e), BrR21-8-5G (f), BrR21-8-6T (g), BrR21-8 -7A (h), BrR21-8-8G (i).
(実験方法)
アクセプターRNA(AcF-1)1.5nmol、補助核酸鎖1.5nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液15μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液とした。本実験で用いる補助核酸鎖はその5’側配列8ヌクレオチドが、修飾対象RNA鎖(pR21)の5’側配列8ヌクレオチドと対合するBrR21-8を基準に、その対合配列部分の8ヌクレオチドを一箇所ずつ、修飾対象RNA鎖(pR21)のヌクレオチドと同じヌクレオチドのものに置換した。ただし、修飾対象RNA鎖(pR21)のUに対してはTを用いた(図4)。具体的には、それぞれの実験a、b、c、d、e、f、g、h、iに対しそれぞれ補助核酸鎖(DNA鎖)、BrR21-8(a)、BrR21-8-1T(b)、BrR21-8-2G (c)、BrR21-8-3A(d)、BrR21-8-4G(e)、BrR21-8-5G(f)、BrR21-8-6T(g)、BrR21-8-7A(h)、BrR21-8-8G(i)である。 [Strictness of base sequence pairing of the target RNA strand of the auxiliary nucleic acid strand]
(experimental method)
Acceptor RNA (AcF-1) 1.5 nmol and auxiliary nucleic acid strand 1.5 nmol were dissolved in 15 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, and annealed at 65 ° C. for 5 minutes. An annealing solution was used. The auxiliary nucleic acid strand used in this experiment has 8 nucleotides in the paired sequence portion based on BrR21-8 whose 8 ′ sequence in the 5 ′ side is matched with 8 nucleotides in the 5 ′ side sequence of the RNA strand to be modified (pR21). Were replaced one by one with the same nucleotide as the nucleotide of the RNA strand to be modified (pR21). However, T was used for U of the RNA strand (pR21) to be modified (FIG. 4). Specifically, for each experiment a, b, c, d, e, f, g, h, i, the auxiliary nucleic acid strand (DNA strand), BrR21-8 (a), BrR21-8-1T (b ), BrR21-8-2G (c), BrR21-8-3A (d), BrR21-8-4G (e), BrR21-8-5G (f), BrR21-8-6T (g), BrR21-8 -7A (h), BrR21-8-8G (i).
それぞれの実験a、b、c、d、e、f、g、h、iは、修飾対象RNA鎖(pR21)0.1nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μl、それぞれのアニーリング溶液5μlを加え、純水を加えて19μlにし、65℃で5分間、アニーリング処理をした後、実験a、b、c、d、e、f、g、h、iに0.29μgのT4 RNAリガーゼ2(1μl)を加えて、37℃で反応を開始し、1時間後、a、b、c、d、e、f、g、h、i、j、kの反応液から2.5μl取り、これに反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、12.5%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。電気泳動後は装置からゲルを取り出し、紫外線を当て撮影した。
In each experiment a, b, c, d, e, f, g, h, i, the RNA strand to be modified (pR21) 0.1 nmol, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl, each annealing solution 5 μl, pure water is added to 19 μl, and annealing is performed at 65 ° C. for 5 minutes, and then experiments a, b, c, d, e, f, 0.29 μg of T4 RNA ligase 2 (1 μl) was added to g, h, i, and the reaction was started at 37 ° C. After 1 hour, a, b, c, d, e, f, g, h, i , J, k, and 2.5 μl were taken from the reaction solution, and an equal amount of a reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue) was immediately added to the reaction solution at 80 ° C. Then, it was placed on ice for rapid cooling and electrophoresed on a 12.5% denaturing acrylamide gel (1 × TBE buffer, containing 7.5 M urea) using 1 × TBE buffer as an electrophoresis solution. . After the electrophoresis, the gel was taken out from the apparatus and photographed by applying ultraviolet rays.
(実験結果)
修飾対象RNA鎖(pR21)の5’側配列8ヌクレオチドとの塩基対合において、修飾対象RNA鎖(pR21)の5’端から6番目までの対合を1塩基置換により無くすと(実験b、c、d、e、f、g)、アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)のライゲーションは阻害された(図5、レーン2から7)。実験h、iのライゲーション反応は実験aとほぼ同等に進み、修飾対象RNA鎖(pR21)の5’端から7および8番目の不対合のライゲーションに対する影響は小さい。結果として、補助核酸鎖の5’側配列と、修飾対象RNA鎖(pR21)の5’側配列の塩基対合は、修飾対象RNA鎖(pR21)の5’末端から数えて1番目から6番目までの1塩基の不対合で、大きく阻害されることを示している。 (Experimental result)
In the base pairing with the 8 ′ nucleotide at the 5 ′ side of the RNA strand to be modified (pR21), if the pairing from the 5 ′ end to the sixth position of the RNA strand to be modified (pR21) is eliminated by 1 base substitution (Experiment b, c, d, e, f, g), ligation of acceptor RNA (AcF-1) and RNA strand to be modified (pR21) was inhibited (FIG. 5,lanes 2 to 7). The ligation reaction in Experiments h and i proceeds almost the same as in Experiment a, and the influence on the ligation of the 7th and 8th unpairs from the 5 ′ end of the RNA strand to be modified (pR21) is small. As a result, base pairing of the 5 ′ side sequence of the auxiliary nucleic acid strand and the 5 ′ side sequence of the RNA strand to be modified (pR21) is from the 1st to the 6th from the 5 ′ end of the RNA strand to be modified (pR21). It shows that it is greatly inhibited by the unpairing of 1 base up to.
修飾対象RNA鎖(pR21)の5’側配列8ヌクレオチドとの塩基対合において、修飾対象RNA鎖(pR21)の5’端から6番目までの対合を1塩基置換により無くすと(実験b、c、d、e、f、g)、アクセプターRNA(AcF-1)と修飾対象RNA鎖(pR21)のライゲーションは阻害された(図5、レーン2から7)。実験h、iのライゲーション反応は実験aとほぼ同等に進み、修飾対象RNA鎖(pR21)の5’端から7および8番目の不対合のライゲーションに対する影響は小さい。結果として、補助核酸鎖の5’側配列と、修飾対象RNA鎖(pR21)の5’側配列の塩基対合は、修飾対象RNA鎖(pR21)の5’末端から数えて1番目から6番目までの1塩基の不対合で、大きく阻害されることを示している。 (Experimental result)
In the base pairing with the 8 ′ nucleotide at the 5 ′ side of the RNA strand to be modified (pR21), if the pairing from the 5 ′ end to the sixth position of the RNA strand to be modified (pR21) is eliminated by 1 base substitution (Experiment b, c, d, e, f, g), ligation of acceptor RNA (AcF-1) and RNA strand to be modified (pR21) was inhibited (FIG. 5,
[miRNAの修飾]
(実験方法)
本実験では5’末端のヌクレオチドがU、A、C、Gと異なる、線虫Caenorhabditis elegansの4種のmiRNA、cel-lin-4(pUCCCUGAGACCUCAAGUGUGA、miRBase Accession # MIMAT0000002)、cel-miR-34(pAGGCAGUGUGGUUAGCUGGUUG、miRBase Accession #MIMAT0000005)、cel-miR-52(pCACCCGUACAUAUGUUUCCGUGCU miRBase Accession # MIMAT0000023)、cel-miR-87(pGUGAGCAAAGUUUCAGGUGUGC、miRBase Accession # MIMAT0000060)を修飾対象RNA鎖とし、アクセプターRNA(AcF-1)とのライゲーションによるFITC標識を試みた。 [Modification of miRNA]
(experimental method)
In this experiment, four miRNAs of the nematode Caenorhabditis elegans, cel-lin-4 (pUCCCUGAGACCUCAAGUGUGA, miRBase Accession #MIMATGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU)) , MiRBase Access # MIMAT0000005), cel-miR-52 (pCACCCCGUACAUAUGUUCUCGUGUCU miRBase Access # MIMAT000cc) And NA chain tried FITC-labeled by ligation with the acceptor RNA (AcF-1).
(実験方法)
本実験では5’末端のヌクレオチドがU、A、C、Gと異なる、線虫Caenorhabditis elegansの4種のmiRNA、cel-lin-4(pUCCCUGAGACCUCAAGUGUGA、miRBase Accession # MIMAT0000002)、cel-miR-34(pAGGCAGUGUGGUUAGCUGGUUG、miRBase Accession #MIMAT0000005)、cel-miR-52(pCACCCGUACAUAUGUUUCCGUGCU miRBase Accession # MIMAT0000023)、cel-miR-87(pGUGAGCAAAGUUUCAGGUGUGC、miRBase Accession # MIMAT0000060)を修飾対象RNA鎖とし、アクセプターRNA(AcF-1)とのライゲーションによるFITC標識を試みた。 [Modification of miRNA]
(experimental method)
In this experiment, four miRNAs of the nematode Caenorhabditis elegans, cel-lin-4 (pUCCCUGAGACCUCAAGUGUGA, miRBase Accession #MIMATGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU)) , MiRBase Access # MIMAT0000005), cel-miR-52 (pCACCCCGUACAUAUGUUCUCGUGUCU miRBase Access # MIMAT000cc) And NA chain tried FITC-labeled by ligation with the acceptor RNA (AcF-1).
実験aは、修飾対象cel-lin-4を0.1nmolと、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)を2μl加え、純水を加えて19μlにした。
In experiment a, 0.1 nmol of cel-lin-4 to be modified and 2 μl of buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) were added, and pure water was added. 19 μl.
実験bは、修飾対象cel-lin-4を0.1nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100 mM DTT、10mM ATP)2μlを加え、純水を加えて19μlにした。
In experiment b, 0.1 nmol of cel-lin-4 to be modified, 2 μl of buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) were added, and pure water was added. 19 μl.
実験c、d、e、fのために、アクセプターRNA(AcF-1)1.5nmol、補助核酸鎖(DNA鎖)、BrLin-4(実験c)、BrMir-34(実験d)、BrMir-52(実験e)、BrMir-87(実験f)1.5nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液15μlに溶かし、65℃で5分間、アニーリング処理をし、これをそれぞれアニーリング溶液c、d、e、fとした。
For experiments c, d, e, f, acceptor RNA (AcF-1) 1.5 nmol, auxiliary nucleic acid strand (DNA strand), BrLin-4 (experiment c), BrMir-34 (experiment d), BrMir-52 (Experiment e), BrMir-87 (Experiment f) 1.5 nmol was dissolved in 15 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, annealed at 65 ° C. for 5 minutes, and each annealed. Solutions c, d, e, and f were used.
実験c、d、e、fは、それぞれ2チューブずつ(それぞれc1とc2、d1とd2、e1とe2、f1とf2)、修飾対象RNA鎖、cel-lin-4(実験c)、cel-miR-34(実験d)、cel-miR-52(実験e)、cel-miR-87(実験f)を0.1nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μl、対応するアニーリング溶液c、d、e、f、5μlを加え、純水を加えて19μlにし、65℃で5分間、アニーリング処理をした。
Experiments c, d, e, and f are respectively two tubes (c1 and c2, d1 and d2, e1 and e2, f1 and f2, respectively), RNA to be modified, cel-lin-4 (experiment c), cel- miR-34 (experiment d), cel-miR-52 (experiment e), cel-miR-87 (experiment f) 0.1 nmol, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 2 μl of 100 mM DTT, 10 mM ATP) and the corresponding annealing solution c, d, e, f, 5 μl were added, and pure water was added to make 19 μl, followed by annealing at 65 ° C. for 5 minutes.
実験a、c1、d1、e1、f1には純水1μlを加えて、実験b、c2、d2、e2、f2は0.29μgのT4 RNAリガーゼ2(1μl)を加えて、37℃で反応を開始し、1時間後、a、b、c1、c2、d1、d2、e1、e2、f1、f2の反応液から2.5μl取り、これに反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、12.5%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。電気泳動後は装置からゲルを取り出し、紫外線を当て撮影した。その後、ゲルを臭化エチジュウムで染色した後、紫外線を当て、再度撮影した。
(実験結果)
補助核酸鎖とT4 RNAリガーゼ2を用いる方法で、5’末端のヌクレオチドがU、A、C、Gと異なる4種のmiRNA、cel-lin-4、cel-miR-34、cel-miR-52、cel-miR-87について、これらのmiRNAの自己環状化を防ぎ、アクセプターRNA(AcF-1)とのライゲーションによるFITC標識をおこなうことができた。臭化エチジュウム染色像からはすべての反応においてもとのmiRNA、cel-lin-4、cel-miR-34、cel-miR-52、cel-miR-87はほとんどアクセプターRNA(AcF-1)との反応に消費されたことがわかる。修飾対象RNAについてT4 RNAリガーゼ2の基質特異性により、修飾されにくいRNAがあることも考えられたが、本実験では、5’末端のヌクレオチドがU、A、C、Gと異なるmiRNAでもすべて修飾できた(図6)。 In experiments a, c1, d1, e1, and f1, 1 μl of pure water was added. In experiments b, c2, d2, e2, and f2, 0.29 μg of T4 RNA ligase 2 (1 μl) was added, and the reaction was performed at 37 ° C. 1 hour later, 2.5 μl was taken from the reaction solution of a, b, c1, c2, d1, d2, e1, e2, f1, and f2, and the reaction stop solution (80% formamide, 10 mM EDTA (pH 8. 0), 0.025% bromophenol blue), and immediately heat-treated at 80 ° C. for 5 minutes, then placed on ice and rapidly cooled, 12.5% denaturing acrylamide gel (1 × TBE buffer, 7 (Containing 5M urea) and electrophoresis was performed using 1 × TBE buffer as an electrophoretic solution. After the electrophoresis, the gel was taken out from the apparatus and photographed by applying ultraviolet rays. Thereafter, the gel was stained with ethidium bromide, then exposed to ultraviolet light, and photographed again.
(Experimental result)
In the method using an auxiliary nucleic acid strand and T4 RNA ligase 2, 4 kinds of miRNAs having different 5 ′ terminal nucleotides from U, A, C and G, cel-lin-4, cel-miR-34, cel-miR-52 As for cel-miR-87, self-circulation of these miRNAs was prevented, and FITC labeling by ligation with acceptor RNA (AcF-1) could be performed. From the ethidium bromide-stained images, the original miRNA, cel-lin-4, cel-miR-34, cel-miR-52, and cel-miR-87 are almost identical to the acceptor RNA (AcF-1) in all reactions. It can be seen that the reaction was consumed. Regarding the RNA to be modified, due to the substrate specificity of T4 RNA ligase 2, it was thought that some RNA was difficult to modify, but in this experiment, all miRNAs whose 5 ′ terminal nucleotides are different from U, A, C, and G are all modified. (Fig. 6).
(実験結果)
補助核酸鎖とT4 RNAリガーゼ2を用いる方法で、5’末端のヌクレオチドがU、A、C、Gと異なる4種のmiRNA、cel-lin-4、cel-miR-34、cel-miR-52、cel-miR-87について、これらのmiRNAの自己環状化を防ぎ、アクセプターRNA(AcF-1)とのライゲーションによるFITC標識をおこなうことができた。臭化エチジュウム染色像からはすべての反応においてもとのmiRNA、cel-lin-4、cel-miR-34、cel-miR-52、cel-miR-87はほとんどアクセプターRNA(AcF-1)との反応に消費されたことがわかる。修飾対象RNAについてT4 RNAリガーゼ2の基質特異性により、修飾されにくいRNAがあることも考えられたが、本実験では、5’末端のヌクレオチドがU、A、C、Gと異なるmiRNAでもすべて修飾できた(図6)。 In experiments a, c1, d1, e1, and f1, 1 μl of pure water was added. In experiments b, c2, d2, e2, and f2, 0.29 μg of T4 RNA ligase 2 (1 μl) was added, and the reaction was performed at 37 ° C. 1 hour later, 2.5 μl was taken from the reaction solution of a, b, c1, c2, d1, d2, e1, e2, f1, and f2, and the reaction stop solution (80% formamide, 10 mM EDTA (
(Experimental result)
In the method using an auxiliary nucleic acid strand and
[アクセプターRNAの配列に対する酵素特異性]
(実験方法)
実験aは、修飾対象RNA鎖(pR21)0.1nmolに緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)を2μl加え、純水を加えて19μlにした。 [Enzyme specificity for acceptor RNA sequence]
(experimental method)
In Experiment a, 2 μl of Buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) was added to 0.1 nmol of the RNA strand to be modified (pR21), and pure water was added to 19 μl. did.
(実験方法)
実験aは、修飾対象RNA鎖(pR21)0.1nmolに緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)を2μl加え、純水を加えて19μlにした。 [Enzyme specificity for acceptor RNA sequence]
(experimental method)
In Experiment a, 2 μl of Buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) was added to 0.1 nmol of the RNA strand to be modified (pR21), and pure water was added to 19 μl. did.
実験bは、修飾対象RNA鎖(pR21)0.1nmolに緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μlを加えた後、純水を加えて19μlにした。
In experiment b, 2 μl of buffer solution 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) was added to 0.1 nmol of the RNA strand to be modified (pR21), and then pure water was added. 19 μl.
実験cのために、2nmolのアクセプターRNA(AcF-1)、2nmolの補助核酸鎖(DNA鎖:BrR21-6)を10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液cとした。
For experiment c, 2 nmol of the acceptor RNA (AcF-1), 2 nmol of the auxiliary nucleic acid strand (DNA strand: BrR21-6) were dissolved in 20 μl of a buffer of 10 mM Tris-HCl and 20 mM NaCl (pH 7.5). Annealing treatment was carried out at 5 ° C. for 5 minutes to obtain an annealing solution c.
実験dのために、2nmolのアクセプターRNA(AcF-2)、2nmolの補助核酸鎖(DNA鎖:BrR21-12)を10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液dとした。
For experiment d, 2 nmol acceptor RNA (AcF-2), 2 nmol auxiliary nucleic acid strand (DNA strand: BrR21-12) were dissolved in 20 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, and 65 Annealing treatment was performed at 5 ° C. for 5 minutes, and this was used as an annealing solution d.
実験eのために、2nmolのアクセプターRNA(AcF-3)、2nmolの補助核酸鎖(DNA鎖:BrR21-13)を10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液eとした。
For experiment e, 2 nmol acceptor RNA (AcF-3), 2 nmol auxiliary nucleic acid strand (DNA strand: BrR21-13) were dissolved in 20 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer, and 65 Annealing treatment was carried out at 5 ° C. for 5 minutes, and this was used as an annealing solution e.
実験fのために、2nmolのアクセプターRNA(AcF-4)、2nmolの補助核酸鎖(DNA鎖:BrR21-14)を10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液fとした。
For experiment f, 2 nmol acceptor RNA (AcF-4), 2 nmol auxiliary nucleic acid strand (DNA strand: BrR21-14) were dissolved in 20 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, and 65 Annealing treatment was performed at 5 ° C. for 5 minutes, and this was used as an annealing solution f.
実験c、d、e、fは、修飾対象RNA鎖(pR21)0.1nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μl、それぞれアニーリング溶液c、d、e、fを5μlを加え、純水を加えて19μlにし、65℃で5分間、アニーリング処理をした。その後、実験aは純水1μlを加えて、実験c、d、e、fは0.29μgのT4 RNAリガーゼ2(1μl)を加えて、37℃で反応を開始し、1時間後、a、b、c、d、e、fの反応液から12.5μl取り、これに反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、12.5%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。電気泳動後、ライゲーション産物で蛍光のあるバンドをゲルから切り出し、このゲル切片からRNAを抽出し、RNA量を計算した。
Experiments c, d, e, and f are: 0.1 nmol of RNA to be modified (pR21), buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl, respectively, annealing solution 5 μl of c, d, e, and f was added, and pure water was added to make 19 μl, followed by annealing at 65 ° C. for 5 minutes. After that, in Experiment a, 1 μl of pure water was added, and in Experiments c, d, e, and f, 0.29 μg of T4 RNA ligase 2 (1 μl) was added, and the reaction was started at 37 ° C. After 1 hour, a, Take 12.5 μl from the reaction mixture of b, c, d, e, and f, add an equal amount of a reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue) and immediately add 80 Heat treatment at 5 ° C. for 5 minutes, then place on ice, cool rapidly, and use 12.5% denaturing acrylamide gel (1 × TBE buffer, containing 7.5M urea) as 1 × TBE buffer as electrophoresis solution Electrophoresis was performed. After electrophoresis, a fluorescent band from the ligation product was cut out from the gel, RNA was extracted from the gel slice, and the RNA amount was calculated.
(実験結果)
アデニンリボヌクレオチド(実験c)、ウリジンリボヌクレオチド(実験d)、グアニンリボヌクレオチド(実験e)、シトシンリボヌクレオチド(実験e)のホモオリゴマーとRNA鎖pR21のライゲーション率は以下の表3に示すとおりで、アデニンリボヌクレオチド、グアニンリボヌクレオチド、シトシンリボヌクレオチドホモオリゴマーでは反応が進むが、ウリジンリボヌクレオチドホモオリゴマーではほとんど反応が進まない。
(Experimental result)
The ligation rates of adenosine ribonucleotide (experiment c), uridine ribonucleotide (experiment d), guanine ribonucleotide (experiment e), cytosine ribonucleotide (experiment e) and RNA chain pR21 are as shown in Table 3 below. The reaction proceeds with adenine ribonucleotide, guanine ribonucleotide, and cytosine ribonucleotide homo-oligomer, but the reaction hardly proceeds with uridine ribonucleotide homo-oligomer.
アデニンリボヌクレオチド(実験c)、ウリジンリボヌクレオチド(実験d)、グアニンリボヌクレオチド(実験e)、シトシンリボヌクレオチド(実験e)のホモオリゴマーとRNA鎖pR21のライゲーション率は以下の表3に示すとおりで、アデニンリボヌクレオチド、グアニンリボヌクレオチド、シトシンリボヌクレオチドホモオリゴマーでは反応が進むが、ウリジンリボヌクレオチドホモオリゴマーではほとんど反応が進まない。
The ligation rates of adenosine ribonucleotide (experiment c), uridine ribonucleotide (experiment d), guanine ribonucleotide (experiment e), cytosine ribonucleotide (experiment e) and RNA chain pR21 are as shown in Table 3 below. The reaction proceeds with adenine ribonucleotide, guanine ribonucleotide, and cytosine ribonucleotide homo-oligomer, but the reaction hardly proceeds with uridine ribonucleotide homo-oligomer.
図7では臭化エチジウムの染色像を示すが、ウリジンリボヌクレオチドホモオリゴマーではライゲーション産物に相当するバンドは検出されない。4種のリボヌクレオチドホモオリゴマーではシトシンリボヌクレオチドホモオリゴマーの反応でライゲーション産物が最大であるが、副生成物が多い。図7ではグアニンリボヌクレオチドホモオリゴマーでのライゲーション産物が多く見えるが、これはグアニンリボヌクレオチド鎖が臭化エチジウムに染まりやすいためと思われる。
FIG. 7 shows a stained image of ethidium bromide, but no band corresponding to the ligation product is detected in the uridine ribonucleotide homo-oligomer. In the four ribonucleotide homo-oligomers, the ligation product is the largest in the reaction of cytosine ribonucleotide homo-oligomer, but there are many by-products. In FIG. 7, many ligation products with guanine ribonucleotide homo-oligomer appear, and this seems to be because the guanine ribonucleotide chain is easily stained with ethidium bromide.
[オリゴリボヌクレオチドタグの付加反応]
(実験方法)
本実験の概略図を図8に示す。
実験aは、RNA鎖(pR21)0.1nmolと、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)を2μl加え、純水を加えて19μlにした。 [Addition reaction of oligoribonucleotide tag]
(experimental method)
A schematic diagram of this experiment is shown in FIG.
In experiment a, RNA chain (pR21) 0.1 nmol and buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl were added, and pure water was added to make 19 μl. .
(実験方法)
本実験の概略図を図8に示す。
実験aは、RNA鎖(pR21)0.1nmolと、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)を2μl加え、純水を加えて19μlにした。 [Addition reaction of oligoribonucleotide tag]
(experimental method)
A schematic diagram of this experiment is shown in FIG.
In experiment a, RNA chain (pR21) 0.1 nmol and buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl were added, and pure water was added to make 19 μl. .
実験bは、RNA鎖(pR21)0.1nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μlを加えた後、純水を加えて19μlにした。
In Experiment b, RNA chain (pR21) 0.1 nmol, Buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl were added, and then pure water was added to 19 μl. did.
実験c、d、eのために、それぞれのアクセプターRNA、Ac-1、AcEx09、AcEx14、を2nmol、それぞれの補助核酸鎖、BrR21-6、Br21Ex、BrR21-6を2nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをそれぞれアニーリング溶液c、d、eとした。
For experiments c, d, and e, 2 nmol of each acceptor RNA, Ac-1, AcEx09, AcEx14, 2 nmol of each auxiliary nucleic acid strand, BrR21-6, Br21Ex, BrR21-6, 10 mM Tris-HCl, 20 mM It was dissolved in 20 μl of NaCl (pH 7.5) buffer solution and annealed at 65 ° C. for 5 minutes, which were used as annealing solutions c, d and e, respectively.
実験c1、d1、e1は、対応するアニーリング溶液c、d、e、5μlを加え、純水を加えて19μlにした。実験c2、d2、e2、は、RNA鎖(pR21)0.1nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μl、対応するアニーリング溶液c、d、e、5μlを加え、純水を加えて19μlにし、65℃で5分間、アニーリング処理をした。
In experiments c1, d1, and e1, 5 μl of the corresponding annealing solutions c, d, and e were added, and pure water was added to make 19 μl. Experiments c2, d2, and e2 were RNA strand (pR21) 0.1 nmol, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl, corresponding annealing solution c, d, e, 5 μl was added, pure water was added to make 19 μl, and annealing treatment was performed at 65 ° C. for 5 minutes.
実験a、c1、d1、e1には純水1μlを加えて、実験b、c2、d2、e2は0.29μgのT4 RNAリガーゼ2(1μl)を加えて、37℃で反応を開始し、1時間後、a、b、c1、c2、d1、d2、e1、e2の反応液から2.5μl取り、これに反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、12.5%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。電気泳動後は装置からゲルを取り出し、ゲルを臭化エチジュウムで染色した後、紫外線を当て、撮影した。
In experiments a, c1, d1, and e1, 1 μl of pure water was added. In experiments b, c2, d2, and e2, 0.29 μg of T4 RNA ligase 2 (1 μl) was added, and the reaction was started at 37 ° C. After time, 2.5 μl was taken from the reaction solution of a, b, c1, c2, d1, d2, e1, e2, and the reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol). blue) and immediately heat-treated at 80 ° C. for 5 minutes, then placed on ice for rapid cooling and 1% with 12.5% denaturing acrylamide gel (1 × TBE buffer, containing 7.5 M urea). X Electrophoresis was performed using TBE buffer as a running solution. After the electrophoresis, the gel was taken out from the apparatus, and the gel was stained with ethidium bromide, and then irradiated with ultraviolet rays and photographed.
(実験結果)
補助核酸鎖とT4 RNAリガーゼ2を用いる方法で、RNA鎖(pR21)について、単鎖オリゴリボヌクレオチドをその5’末端する結合することができた。図9はその臭化エチジウム染色像を示すが、RNA鎖(pR21)にアクセプターRNA、Ac-1、をライゲーションしたのと同様に効率よくAcEx09、AcEx14を付加できた。レーン4でRNA鎖(pR21)に8merのAc-1が結合し29merのバンドが見られると同様に、レーン6ではRNA鎖(pR21)に16merのAcEx09が結合し29merのバンド見られ、レーン9ではRNA鎖(pR21)に22merのAcEx14が結合し45merのバンド見られる。このことによってRNA鎖(pR21)について5’側に突き出す、9または14merの単鎖オリゴリボヌクレオチドタグを付加できたことになる。 (Experimental result)
With the method using the auxiliary nucleic acid strand andT4 RNA ligase 2, it was possible to bind the single-stranded oligoribonucleotide at its 5 ′ end with respect to the RNA strand (pR21). FIG. 9 shows the ethidium bromide stained image, and AcEx09 and AcEx14 could be added efficiently as in the case where the acceptor RNA, Ac-1, was ligated to the RNA strand (pR21). In Lane 4, 8mer Ac-1 binds to the RNA strand (pR21) and a 29mer band is seen. Similarly, in Lane 6, 16mer AcEx09 binds to the RNA strand (pR21) and a 29mer band appears. Then, 22-mer AcEx14 binds to the RNA strand (pR21) and a 45-mer band is seen. As a result, a 9- or 14-mer single-stranded oligoribonucleotide tag protruding 5 ′ from the RNA strand (pR21) could be added.
補助核酸鎖とT4 RNAリガーゼ2を用いる方法で、RNA鎖(pR21)について、単鎖オリゴリボヌクレオチドをその5’末端する結合することができた。図9はその臭化エチジウム染色像を示すが、RNA鎖(pR21)にアクセプターRNA、Ac-1、をライゲーションしたのと同様に効率よくAcEx09、AcEx14を付加できた。レーン4でRNA鎖(pR21)に8merのAc-1が結合し29merのバンドが見られると同様に、レーン6ではRNA鎖(pR21)に16merのAcEx09が結合し29merのバンド見られ、レーン9ではRNA鎖(pR21)に22merのAcEx14が結合し45merのバンド見られる。このことによってRNA鎖(pR21)について5’側に突き出す、9または14merの単鎖オリゴリボヌクレオチドタグを付加できたことになる。 (Experimental result)
With the method using the auxiliary nucleic acid strand and
[73 mer RNAの修飾]
(実験方法)
プラスミド、pBlueScript KS II(+)(Stratagene、CA)、をEcoRVで切断し、T7プロモター配列、TAATACGACTCACTATAGGGの、3’側から3番目のGから73塩基が続く、RNAインビトロ転写の鋳型(鋳型73)を作製した。RNAインビトロ転写は40mM Tris-HCl(pH7.9)、6mM MgCl2、2mM spermidine、10mM DTT、1mMのATP、UTP、CTP、GTPを含む緩衝液に0.1μg/μlの鋳型73、2u/μl of T7 RNAポリメラーゼを加え、37℃で3時間反応させ、フェノール/クロロホルム抽出、エタノール沈殿をして73mer RNAを精製した。精製73mer RNAはアルカリホスファターゼで脱リン酸化され、T4ポリヌクレオチドキナーゼで再リン酸化された(pR73)。 [Modification of 73-mer RNA]
(experimental method)
A plasmid, pBlueScript KS II (+) (Stratagene, CA), cut with EcoRV, followed by a T7 promoter sequence, the 3rd G to 73 bases of TATACGACTACTACTAGGG, a template for RNA in vitro transcription (Template 73) Was made. RNA in vitro transcription was performed using 0.1 μg / μl of template 73, 2 u / μl in a buffer containing 40 mM Tris-HCl (pH 7.9), 6 mM MgCl 2 , 2 mM permidine, 10 mM DTT, 1 mM ATP, UTP, CTP, GTP. of T7 RNA polymerase was added and reacted at 37 ° C. for 3 hours, followed by phenol / chloroform extraction and ethanol precipitation to purify 73-mer RNA. Purified 73mer RNA was dephosphorylated with alkaline phosphatase and rephosphorylated with T4 polynucleotide kinase (pR73).
(実験方法)
プラスミド、pBlueScript KS II(+)(Stratagene、CA)、をEcoRVで切断し、T7プロモター配列、TAATACGACTCACTATAGGGの、3’側から3番目のGから73塩基が続く、RNAインビトロ転写の鋳型(鋳型73)を作製した。RNAインビトロ転写は40mM Tris-HCl(pH7.9)、6mM MgCl2、2mM spermidine、10mM DTT、1mMのATP、UTP、CTP、GTPを含む緩衝液に0.1μg/μlの鋳型73、2u/μl of T7 RNAポリメラーゼを加え、37℃で3時間反応させ、フェノール/クロロホルム抽出、エタノール沈殿をして73mer RNAを精製した。精製73mer RNAはアルカリホスファターゼで脱リン酸化され、T4ポリヌクレオチドキナーゼで再リン酸化された(pR73)。 [Modification of 73-mer RNA]
(experimental method)
A plasmid, pBlueScript KS II (+) (Stratagene, CA), cut with EcoRV, followed by a T7 promoter sequence, the 3rd G to 73 bases of TATACGACTACTACTAGGG, a template for RNA in vitro transcription (Template 73) Was made. RNA in vitro transcription was performed using 0.1 μg / μl of template 73, 2 u / μl in a buffer containing 40 mM Tris-HCl (pH 7.9), 6 mM MgCl 2 , 2 mM permidine, 10 mM DTT, 1 mM ATP, UTP, CTP, GTP. of T7 RNA polymerase was added and reacted at 37 ° C. for 3 hours, followed by phenol / chloroform extraction and ethanol precipitation to purify 73-mer RNA. Purified 73mer RNA was dephosphorylated with alkaline phosphatase and rephosphorylated with T4 polynucleotide kinase (pR73).
アクセプターRNA(AcF-1)2nmol、補助核酸鎖(DNA鎖:BrR73)2nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをアニーリング溶液とした。
2 nmol of acceptor RNA (AcF-1) and 2 nmol of auxiliary nucleic acid strand (DNA strand: BrR73) were dissolved in 20 μl of a buffer solution of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5), and annealed at 65 ° C. for 5 minutes. This was used as an annealing solution.
実験a、bは、修飾対象RNA鎖(pR73)0.05nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μl、アニーリング溶液5μlを加え、純水を加えて19μlにし、65℃で5分間、アニーリング処理をした。
In experiments a and b, 0.05 nmol of RNA strand to be modified (pR73), buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl, annealing solution 5 μl were added, and pure Water was added to 19 μl, and annealing was performed at 65 ° C. for 5 minutes.
実験a、には純水1μlを加えて、実験bは0.29μgのT4 RNAリガーゼ2(1μl))を加えて、37℃で反応を開始し、1時間後、a、bの反応液から1μl取り、これに反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、10%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。
In experiment a, 1 μl of pure water was added, and in experiment b, 0.29 μg of T4 RNA ligase 2 (1 μl) was added, and the reaction was started at 37 ° C. After 1 hour, from the reaction solutions of a and b Take 1 μl, add an equal volume of reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue), immediately heat-treat at 80 ° C. for 5 minutes, then place on ice and quench rapidly Electrophoresis was performed using a 10% concentration denaturing acrylamide gel (1 × TBE buffer, containing 7.5 M urea) and 1 × TBE buffer as an electrophoresis solution.
(実験結果)
補助核酸鎖とT4 RNAリガーゼ2を用いる方法で、73ヌクレオチドからなるRNA鎖(pR73)について、アクセプターRNA(AcF-1)とのライゲーションによるFITC標識がおこなうことができた。臭化エチジュウム染色からは未反応pR73は概算で30%以下であり、70%以上のpR73がFITC標識された(図10)。 (Experimental result)
By the method using the auxiliary nucleic acid chain andT4 RNA ligase 2, FITC labeling by ligation with the acceptor RNA (AcF-1) could be performed on the 73-nucleotide RNA chain (pR73). From the ethidium bromide staining, unreacted pR73 was estimated to be 30% or less, and 70% or more of pR73 was labeled with FITC (FIG. 10).
補助核酸鎖とT4 RNAリガーゼ2を用いる方法で、73ヌクレオチドからなるRNA鎖(pR73)について、アクセプターRNA(AcF-1)とのライゲーションによるFITC標識がおこなうことができた。臭化エチジュウム染色からは未反応pR73は概算で30%以下であり、70%以上のpR73がFITC標識された(図10)。 (Experimental result)
By the method using the auxiliary nucleic acid chain and
[RNA選別のためのビオチン化]
(実験方法)
アクセプターRNA、Ac-1または5’末端をビオチン化したAcB-1を2nmol、補助核酸鎖(DNA鎖:BrLin-4)2nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをそれぞれアニーリング溶液F、Bとした。 [Biotinylation for RNA selection]
(experimental method)
Acceptor RNA, Ac-1 or 2 nmol of AcB-1 biotinylated at the 5 ′ end and 2 nmol of auxiliary nucleic acid strand (DNA strand: BrLin-4) in 20 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution It was melted and annealed at 65 ° C. for 5 minutes, which were designated as annealing solutions F and B, respectively.
(実験方法)
アクセプターRNA、Ac-1または5’末端をビオチン化したAcB-1を2nmol、補助核酸鎖(DNA鎖:BrLin-4)2nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをそれぞれアニーリング溶液F、Bとした。 [Biotinylation for RNA selection]
(experimental method)
Acceptor RNA, Ac-1 or 2 nmol of AcB-1 biotinylated at the 5 ′ end and 2 nmol of auxiliary nucleic acid strand (DNA strand: BrLin-4) in 20 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution It was melted and annealed at 65 ° C. for 5 minutes, which were designated as annealing solutions F and B, respectively.
実験a、bは、plin4の3’末をFITC標識したRNA鎖(plin4-FITC)0.2nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μl、アニーリング溶液Fを5μlを加え、純水を加えて18μlにし、65℃で5分間、アニーリング処理をした。
Experiments a and b are 0.2 nmol of an RNA strand (plin4-FITC) with a FITC label at the 3 ′ end of plin4, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl and 5 μl of annealing solution F were added, and pure water was added to make 18 μl, followed by annealing at 65 ° C. for 5 minutes.
実験c、dは、RNA鎖(plin4-FITC)0.2nmol、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)2μl、アニーリング溶液Bを5μl加え、純水を加えて18μlにし、65℃で5分間、アニーリング処理をした。
In experiments c and d, RNA chain (plin4-FITC) 0.2 nmol, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 2 μl, annealing solution B 5 μl were added, Pure water was added to make 18 μl, and annealed at 65 ° C. for 5 minutes.
実験a、cには純水2μlを加えて、実験b、dは0.29μgのT4 RNAリガーゼ2(2μl)を加えて、37℃で反応を1時間おこなった。一方、ストレプトアビジン磁気ビーズ懸濁液(Dynabeads MyOne Streptavidine C1、Invitrogen社より購入)を磁石によってストレプトアビジン磁気ビーズを集め、これを緩衝液2(10mM Tris-HCl(pH7.5)、2M MgCl2、1mM EDTA)で洗浄した。1時間ライゲーション反応した実験b、dからの反応液10μlを、もともと20μl懸濁液からの洗浄済みストレプトアビジン磁気ビーズ沈殿と混ぜ、懸濁し、ときどき揺らしながら15分間放置した。その後を磁石によってストレプトアビジン磁気ビーズを除き、液体部分を回収した(10μl)。ストレプトアビジン磁気ビーズ処理前の実験a、b、c、dおよび磁気ビーズ処理後の実験b、dおよび2.5μlに対し、反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、10%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。電気泳動後は装置からゲルを取り出し、紫外線を当て撮影した。その後、ゲルを臭化エチジュウムで染色した後、紫外線を当て、再度撮影した。
In experiments a and c, 2 μl of pure water was added, and in experiments b and d, 0.29 μg of T4 RNA ligase 2 (2 μl) was added, and the reaction was performed at 37 ° C. for 1 hour. On the other hand, streptavidin magnetic beads suspension (Dynabeads MyOne Streptavidin C1, purchased from Invitrogen) was collected by a magnet with streptavidin magnetic beads, and this was collected in buffer 2 (10 mM Tris-HCl (pH 7.5), 2M MgCl 2 , Washed with 1 mM EDTA). 10 μl of the reaction solution from experiments b and d that had been ligated for 1 hour was originally mixed with the washed streptavidin magnetic bead pellet from the 20 μl suspension, suspended, and left for 15 minutes with occasional shaking. Thereafter, the streptavidin magnetic beads were removed with a magnet, and the liquid portion was recovered (10 μl). For the experiments a, b, c, d before treatment with streptavidin magnetic beads and the experiments b, d and 2.5 μl after treatment with magnetic beads, the reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0. 025% bromophenol blue) was immediately added, heat-treated at 80 ° C. for 5 minutes, then placed on ice and rapidly cooled, and 10% denaturing acrylamide gel (containing 1 × TBE buffer, 7.5 M urea) Electrophoresis was performed using 1 × TBE buffer as an electrophoresis solution. After the electrophoresis, the gel was taken out from the apparatus and photographed by applying ultraviolet rays. Thereafter, the gel was stained with ethidium bromide, then exposed to ultraviolet light, and photographed again.
(実験結果)
図11ではレーン3、5が磁気ビース処理前の実験b、d、レーン5、6が磁気ビーズ処理後の実験b、dを示している。実験bは磁気ビーズ処理前も処理後もアクセプターRNA、Ac-1とplin4-FITCがライゲーションしたバンドが同じように見られる(レーン3と5の比較)。一方、実験dは磁気ビーズ処理後ではアクセプターRNA、AcB-1とplin4-FITCがライゲーションしたバンドが消失し(レーン4と6の比較)、ビオチン化されたAcB-1結合plin4-FITCがストレプトアビジン磁気ビーズに捕捉されたことがわかる。これは、実験bのplin4-FITCが効率的にAcB-1とライゲーションしたことを示している。 (Experimental result)
In FIG. 11, lanes 3 and 5 show experiments b and d before the magnetic bead treatment, and lanes 5 and 6 show experiments b and d after the magnetic bead treatment. In experiment b, the bands ligated with the acceptor RNA, Ac-1 and plin4-FITC were seen in the same way before and after the magnetic bead treatment (compare lanes 3 and 5). On the other hand, in the experiment d, the band ligated with acceptor RNA, AcB-1 and plin4-FITC disappears after magnetic bead treatment (comparison between lanes 4 and 6), and biotinylated AcB-1-binding plin4-FITC is streptavidin. It can be seen that it was captured by the magnetic beads. This indicates that plin4-FITC from experiment b efficiently ligated with AcB-1.
図11ではレーン3、5が磁気ビース処理前の実験b、d、レーン5、6が磁気ビーズ処理後の実験b、dを示している。実験bは磁気ビーズ処理前も処理後もアクセプターRNA、Ac-1とplin4-FITCがライゲーションしたバンドが同じように見られる(レーン3と5の比較)。一方、実験dは磁気ビーズ処理後ではアクセプターRNA、AcB-1とplin4-FITCがライゲーションしたバンドが消失し(レーン4と6の比較)、ビオチン化されたAcB-1結合plin4-FITCがストレプトアビジン磁気ビーズに捕捉されたことがわかる。これは、実験bのplin4-FITCが効率的にAcB-1とライゲーションしたことを示している。 (Experimental result)
In FIG. 11,
[T4 RNAリガーゼ2の調製]
T4ファージゲノムDNAから T4 gene24.1を得て、これを大腸菌発現ベクターpETBA(株式会社バイオダイナミクス研究所)のBamHIとNotIの制限酵素部位にクローニングした(このプラスミドをpETBT4L2とする)。大腸菌株BL21(DE3)をpETBT4L2にて形質転換し、pETBT4L2を保持した大腸菌BL21(DE3)/pETBT4L2を得た。 [Preparation of T4 RNA ligase 2]
T4 gene 24.1 was obtained from T4 phage genomic DNA and cloned into the restriction enzyme sites of BamHI and NotI of the E. coli expression vector pETBA (Biodynamics Laboratory Inc.) (this plasmid is designated as pETBT4L2). Escherichia coli strain BL21 (DE3) was transformed with pETBT4L2 to obtain Escherichia coli BL21 (DE3) / pETBT4L2 retaining pETBT4L2.
T4ファージゲノムDNAから T4 gene24.1を得て、これを大腸菌発現ベクターpETBA(株式会社バイオダイナミクス研究所)のBamHIとNotIの制限酵素部位にクローニングした(このプラスミドをpETBT4L2とする)。大腸菌株BL21(DE3)をpETBT4L2にて形質転換し、pETBT4L2を保持した大腸菌BL21(DE3)/pETBT4L2を得た。 [Preparation of T4 RNA ligase 2]
T4 gene 24.1 was obtained from T4 phage genomic DNA and cloned into the restriction enzyme sites of BamHI and NotI of the E. coli expression vector pETBA (Biodynamics Laboratory Inc.) (this plasmid is designated as pETBT4L2). Escherichia coli strain BL21 (DE3) was transformed with pETBT4L2 to obtain Escherichia coli BL21 (DE3) / pETBT4L2 retaining pETBT4L2.
このBL21(DE3)/pETBT4L2を0.1mg/mlのアンピシリンを含むLB培地に接種し、OD600が0.5に達した時点で1mM IPTG(Isopropyl β-D-1-thiogalactopyranoside)を加え、さらに3時間培養し、遠心機にて集菌した。50mlの培養溶液から得られた菌体ペレットに9mlの50mM NaH2PO4、300mM NaCl、10mMイミダゾールpH8.0緩衝液を加え菌体ペレットを再懸濁後、10mg/mlのリゾチーム溶液を1ml加え攪拌し、氷上で30分間静置した。これを遠心分離し、上清を得た後、0.2μm孔径のシリンジフィルターでろ過をおこない、粗酵素ろ液を得た。
This BL21 (DE3) / pETBT4L2 was inoculated into LB medium containing 0.1 mg / ml ampicillin, and when OD600 reached 0.5, 1 mM IPTG (Isopropyl β-D-1-thiogalactopyroside) was added, and further 3 The cells were cultured for a period of time and collected with a centrifuge. 9 ml of 50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole pH 8.0 buffer was added to the cell pellet obtained from the 50 ml culture solution, and the cell pellet was resuspended, and then 1 ml of 10 mg / ml lysozyme solution was added. Stir and let stand on ice for 30 minutes. This was centrifuged to obtain a supernatant, followed by filtration with a 0.2 μm pore syringe filter to obtain a crude enzyme filtrate.
樹脂量1mlのProband column(Invitrogen社)を50mM NaH2PO4 300mM NaCl、10mMイミダゾール、pH8.0緩衝液で平衡化をおこない、これに前述の粗酵素ろ液を供与し、続いて10mlの50mMNaH2PO4、300mM NaCl、10mM イミダゾール、pH8.0緩衝液および10mlの50mM NaH2PO4、300mM NaCl、20mMイミダゾール、pH8.0緩衝液で洗浄後、50mM NaH2PO4、300mM NaCl、250mMイミダゾール、pH8.0緩衝液で溶出を行った。得られたT4 RNA Ligase2溶出画分を20mM Tris-HCl、100mM KCl、70mM(NH4)2SO4、0.2mM DTT、0.2mM EDTAに対して4℃で透析を行った。得られた透析内液910μl(タンパク量:0.53mg)に等量のグリセロールを加え酵素溶液とした。タンパク質量の測定には、Thermo Scientific社製BCA Protein Assay Kitを使用し、BSAを標準として用いた。
A resin volume of 1 ml of Proband column (Invitrogen) was equilibrated with 50 mM NaH 2 PO 4 300 mM NaCl, 10 mM imidazole, pH 8.0 buffer solution, and the above-mentioned crude enzyme filtrate was provided thereto, followed by 10 ml of 50 mM NaH. After washing with 2 PO 4 , 300 mM NaCl, 10 mM imidazole, pH 8.0 buffer and 10 ml of 50 mM NaH 2 PO 4 , 300 mM NaCl, 20 mM imidazole, pH 8.0 buffer, 50 mM NaH 2 PO 4 , 300 mM NaCl, 250 mM imidazole Elution was performed with pH 8.0 buffer. The obtained fraction eluted with T4 RNA Ligase 2 was dialyzed against 20 mM Tris-HCl, 100 mM KCl, 70 mM (NH 4 ) 2 SO 4 , 0.2 mM DTT, 0.2 mM EDTA at 4 ° C. An equal amount of glycerol was added to 910 μl of the obtained dialysis internal solution (protein amount: 0.53 mg) to prepare an enzyme solution. For the measurement of protein amount, BCA Protein Assay Kit manufactured by Thermo Scientific was used, and BSA was used as a standard.
[ライゲーション速度と補助核酸鎖の鎖長]
(実験方法)
本実験では、アクセプターRNA(Ac-1)とRNA鎖pR21のライゲーションについて、RNA鎖pR21と対合する配列の鎖長が異なる補助核酸鎖(DNA鎖)、BrR21-6、BrR21-12、BrR21-Fを用いて反応速度を比較した(図12参照)。 [Ligation speed and auxiliary nucleic acid chain length]
(experimental method)
In this experiment, for the ligation of acceptor RNA (Ac-1) and RNA strand pR21, auxiliary nucleic acid strands (DNA strands) having different strand lengths in the sequence paired with RNA strand pR21, BrR21-6, BrR21-12, BrR21- The reaction rate was compared using F (see FIG. 12).
(実験方法)
本実験では、アクセプターRNA(Ac-1)とRNA鎖pR21のライゲーションについて、RNA鎖pR21と対合する配列の鎖長が異なる補助核酸鎖(DNA鎖)、BrR21-6、BrR21-12、BrR21-Fを用いて反応速度を比較した(図12参照)。 [Ligation speed and auxiliary nucleic acid chain length]
(experimental method)
In this experiment, for the ligation of acceptor RNA (Ac-1) and RNA strand pR21, auxiliary nucleic acid strands (DNA strands) having different strand lengths in the sequence paired with RNA strand pR21, BrR21-6, BrR21-12, BrR21- The reaction rate was compared using F (see FIG. 12).
実験aは、修飾対象RNA鎖pR21を2μg(0.27nmol)と緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)を2μl加え、純水を加えて19μlにした。
In experiment a, 2 μg (0.27 nmol) of RNA strand pR21 to be modified and 2 μl of buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) were added, and pure water was added. 19 μl.
実験b、c、dのために、アクセプターRNA(Ac-1)2nmol、補助核酸鎖(DNA鎖)、BrR21-6(実験b)、BrR21-12(実験c)、BrR21-F(実験d)2 nmolを10mM Tris-HCl、20mM NaCl(pH7.5)の緩衝液20μlに溶かし、65℃で5分間、アニーリング処理をし、これをそれぞれアニーリング溶液b、c、dとした。
For experiments b, c and d, acceptor RNA (Ac-1) 2 nmol, auxiliary nucleic acid strand (DNA strand), BrR21-6 (experiment b), BrR21-12 (experiment c), BrR21-F (experiment d) 2 nmol was dissolved in 20 μl of 10 mM Tris-HCl, 20 mM NaCl (pH 7.5) buffer solution, and annealed at 65 ° C. for 5 minutes, which were designated as annealing solutions b, c, and d, respectively.
実験b、c、dは、修飾対象RNA鎖pR21を2μg(0.27nmol)、緩衝液1(500mM Tris-HCl(pH7.8)、100mM MgCl2、100mM DTT、10mM ATP)5μl、対応するアニーリング溶液b、c、dを12.5μlを加え、純水を加えて19μlにし、65℃で5分間、アニーリング処理をした。
Experiments b, c and d are 2 μg (0.27 nmol) of RNA strand pR21 to be modified, buffer 1 (500 mM Tris-HCl (pH 7.8), 100 mM MgCl 2 , 100 mM DTT, 10 mM ATP) 5 μl, corresponding annealing 12.5 μl of solutions b, c and d were added, and pure water was added to make 19 μl, followed by annealing at 65 ° C. for 5 minutes.
実験aには純水1μlを加えて、実験b、c、dは0.29μgのT4 RNAリガーゼ2(1μl)を加えて、室温(25℃)で反応を開始し、10分後、30分後、そして1時間後、反応液から2.5μl取り、これに反応停止液(80% formamide、10mM EDTA(pH8.0)、0.025% bromphenol blue)を等量加え、直ちに80℃で5分間の熱処理をし、その後氷上に置き急冷し、12.5%濃度の変性アクリルアミドゲル(1×TBE緩衝液、7.5M尿素を含む)で1×TBE緩衝液を泳動液として電気泳動をした。電気泳動後、装置からゲルを取り出し、ゲルを臭化エチジュウムで染色した後、紫外線を当て、再度撮影した。
In Experiment a, 1 μl of pure water was added, and in Experiments b, c and d, 0.29 μg of T4 RNA ligase 2 (1 μl) was added, and the reaction was started at room temperature (25 ° C.). After 10 minutes, 30 minutes Then, 1 hour later, 2.5 μl was taken from the reaction solution, and an equal amount of a reaction stop solution (80% formamide, 10 mM EDTA (pH 8.0), 0.025% bromphenol blue) was added thereto, and immediately at 80 ° C. Heat treatment was performed for 1 minute, then placed on ice, rapidly cooled, and electrophoresed on a 12.5% denaturing acrylamide gel (1 × TBE buffer solution containing 7.5 M urea) using 1 × TBE buffer solution as an electrophoresis solution. . After the electrophoresis, the gel was taken out from the apparatus, and the gel was stained with ethidium bromide, then irradiated with ultraviolet rays, and photographed again.
(実験結果)
図13ではレーン2、3、4が、補助核酸鎖BrR21-6(RNA鎖pR21と6塩基対合)を、レーン5、6、7が、BrR21-12(RNA鎖pR21と12塩基対合)を、レーン8、9、10が、BrR21-F(RNA鎖pR21と21塩基対合)を、用いたアクセプターRNA鎖Ac-1とRNA鎖pR21のライゲーション実験の結果を示している。 (Experimental result)
In FIG. 13, lanes 2, 3, and 4 are auxiliary nucleic acid strand BrR21-6 (RNA strand pR21 and 6 base pairs), and lanes 5, 6, and 7 are BrR21-12 (RNA strand pR21 and 12 base pairs). Lanes 8, 9, and 10 show the results of the ligation experiment of acceptor RNA strand Ac-1 and RNA strand pR21 using BrR21-F (RNA base pR21 and 21 base pairing).
図13ではレーン2、3、4が、補助核酸鎖BrR21-6(RNA鎖pR21と6塩基対合)を、レーン5、6、7が、BrR21-12(RNA鎖pR21と12塩基対合)を、レーン8、9、10が、BrR21-F(RNA鎖pR21と21塩基対合)を、用いたアクセプターRNA鎖Ac-1とRNA鎖pR21のライゲーション実験の結果を示している。 (Experimental result)
In FIG. 13,
補助核酸鎖BrR21-6を用いた場合、2μgのRNA鎖pR21の大部分が10分間でRNA鎖Ac-1とライゲーションした29merのRNA鎖に変換され、30分後にはRNA鎖pR21がすべて29merのRNA鎖に変換され、反応が終了している。補助核酸鎖BrR21-12を用いた場合、2μgのRNA鎖pR21は30分間で約50%がRNA鎖Ac-1とライゲーションした29merのRNA鎖に変換され、1時間後は60%以上が29merのRNA鎖に変換されているが、反応が終了していない。助核酸鎖BrR21-Fを用いた場合、2μgのRNA鎖pR21は30分間で少量がRNA鎖Ac-1とライゲーションした29merのRNA鎖に変換され、1時間後でも約50%のRNA鎖pR21が未反応のまま残っていた。
When the auxiliary nucleic acid strand BrR21-6 was used, most of 2 μg of the RNA strand pR21 was converted into a 29-mer RNA strand ligated with the RNA strand Ac-1 in 10 minutes, and after 30 minutes, the RNA strand pR21 was all 29 mer. It has been converted to an RNA strand and the reaction is complete. When the auxiliary nucleic acid strand BrR21-12 was used, about 50% of 2 μg of RNA strand pR21 was converted into a 29-mer RNA strand ligated with RNA strand Ac-1 in 30 minutes, and after 1 hour, 60% or more was 29-mer. Although converted to an RNA strand, the reaction is not complete. When the auxiliary nucleic acid strand BrR21-F was used, 2 μg of the RNA strand pR21 was converted into a 29-mer RNA strand ligated with RNA strand Ac-1 in 30 minutes, and about 50% of the RNA strand pR21 was converted even after 1 hour. It remained unreacted.
以上の結果はアクセプターRNA鎖Ac-1と修飾対象RNA鎖pR21のライゲーションに関して、用いる補助核酸鎖のRNA鎖pR21と塩基対合する鎖長によって反応速度が変化し、塩基対合する鎖長が長いほど反応が遅いことを示している。一方、別の実験結果から、塩基対合する鎖長が短いBrR21-6を用いた場合、酵素量0.5μg、室温(25℃)反応で、少なくとも10μgのRNA鎖pR21がアクセプターRNA鎖Ac-1とライゲーションしている。
The above results indicate that the ligation of the acceptor RNA strand Ac-1 and the RNA strand pR21 to be modified varies depending on the chain length of base pairing with the RNA strand pR21 of the auxiliary nucleic acid strand to be used, and the length of base pairing is long. It shows that the reaction is slow. On the other hand, according to another experimental result, when BrR21-6 having a short base-pairing chain length was used, at least 10 μg of RNA strand pR21 was accepted as acceptor RNA strand Ac− in a reaction at room temperature (25 ° C.) of 0.5 μg of enzyme. Ligated with 1.
その他、本発明は、さまざまに変形可能であることは言うまでもなく、上述した一実施形態に限定されず、発明の要旨を変更しない範囲で種々変形可能である。
In addition, it goes without saying that the present invention can be variously modified, and is not limited to the above-described embodiment, and can be variously modified without changing the gist of the invention.
Claims (10)
- 第一の核酸鎖の3’ヒドロシル基と、第二の核酸鎖の5’リン酸基とを結合する方法であって、
前記第一の核酸鎖の少なくとも一部と前記第二の核酸鎖の少なくとも一部とに相補的に結合する第三の核酸鎖の存在下において、少なくとも1以上のリボヌクレオチドを3’末端に有する前記第一の核酸鎖と前記第三の核酸鎖との塩基対形成、および前記第二の核酸鎖と前記第三の核酸鎖との塩基対形成を、同時にまたは別々に行う工程と、その工程で得られた前記第一の核酸鎖、前記第二の核酸鎖、前記第三の核酸鎖の三者の核酸鎖の混合物に、EC6.5.1.3に分類され且つ二本鎖核酸ニック修復活性を有するRNAリガーゼを添加する工程を有し、
前記第三の核酸鎖は、前記第一の核酸鎖の3’末端の塩基を含む少なくとも1以上の連続する塩基配列と相補的な塩基配列を有し、また前記第三の核酸鎖は、前記第二の核酸鎖の5’末端の塩基を含む少なくとも1以上の連続する塩基配列と相補的な塩基配列を有し、且つ前記第二の核酸鎖に対して相補的となる前記第三の核酸鎖における塩基配列が、前記第二の核酸鎖の鎖長の1/2未満となるものであることを特徴とする方法。 A method of binding a 3 ′ hydrosyl group of a first nucleic acid strand and a 5 ′ phosphate group of a second nucleic acid strand,
In the presence of a third nucleic acid strand that complementarily binds to at least a part of the first nucleic acid strand and at least a portion of the second nucleic acid strand, it has at least one or more ribonucleotides at the 3 ′ end. A step of performing base pairing of the first nucleic acid strand and the third nucleic acid strand and base pairing of the second nucleic acid strand and the third nucleic acid strand simultaneously or separately; A mixture of the three nucleic acid strands of the first nucleic acid strand, the second nucleic acid strand, and the third nucleic acid strand obtained in step 6 above and classified into EC 6.5.1.3 and a double-stranded nucleic acid nick Adding an RNA ligase having repair activity,
The third nucleic acid strand has a base sequence complementary to at least one or more continuous base sequences including the base at the 3 ′ end of the first nucleic acid strand, and the third nucleic acid strand is The third nucleic acid having a base sequence complementary to at least one or more consecutive base sequences including the base at the 5 ′ end of the second nucleic acid strand and complementary to the second nucleic acid strand A method characterized in that the base sequence in the chain is less than half the chain length of the second nucleic acid chain. - 請求項1記載の方法において、前記RNAリガーゼは、T4バクテリオファージ由来のT4 RNAリガーゼ2であることを特徴とする、方法。 The method according to claim 1, wherein the RNA ligase is T4 RNA ligase 2 derived from T4 bacteriophage.
- 請求項1記載の方法において、前記第三の核酸鎖は、前記第二の核酸鎖に対して相補的となる前記第三の核酸鎖における塩基配列が10塩基以下となるものであることを特徴とする、方法。 The method according to claim 1, wherein the third nucleic acid strand has a base sequence of 10 bases or less in the third nucleic acid strand that is complementary to the second nucleic acid strand. And the method.
- 請求項1記載の方法において、前記第二の核酸鎖は、RNA鎖であることを特徴とする、方法。 2. The method according to claim 1, wherein the second nucleic acid strand is an RNA strand.
- 請求項1記載の方法において、前記第一の核酸鎖は、単一塩基が6塩基以上連続する塩基配列を有するものであることを特徴とする、方法。 2. The method according to claim 1, wherein the first nucleic acid strand has a base sequence in which a single base is continuous for 6 bases or more.
- 請求項1記載の方法において、前記第一の核酸鎖は、色素、蛍光色素またはビオチンによって標識された5’末端を有するものであることを特徴とする、方法。 The method according to claim 1, wherein the first nucleic acid strand has a 5 'end labeled with a dye, a fluorescent dye or biotin.
- 請求項1記載の方法に用いるキットであって、
少なくとも1以上のリボヌクレオチドを3’末端に有する前記第一の核酸鎖と、
EC6.5.1.3に分類され且つ二本鎖核酸ニック修復活性を有するRNAリガーゼと、
前記結合反応のための反応緩衝液と、
を有するものであることを特徴とする、キット。 A kit for use in the method according to claim 1,
Said first nucleic acid strand having at least one or more ribonucleotides at the 3 'end;
An RNA ligase classified in EC 6.5.1.3 and having double-stranded nucleic acid nick repair activity;
A reaction buffer for the binding reaction;
A kit comprising: - 請求項7記載のキットにおいて、前記RNAリガーゼは、T4バクテリオファージ由来のT4 RNAリガーゼ2であることを特徴とする、キット。 The kit according to claim 7, wherein the RNA ligase is T4 RNA ligase 2 derived from T4 bacteriophage.
- 請求項7記載のキットにおいて、前記第一の核酸鎖は、単一塩基が6塩基以上連続する塩基配列を有するものであることを特徴とする、キット。 8. The kit according to claim 7, wherein the first nucleic acid chain has a base sequence in which a single base is continuous for 6 bases or more.
- 請求項7記載のキットにおいて、前記第一の核酸鎖は、色素、蛍光色素またはビオチンによって標識された5’末端を有するものであることを特徴とする、キット。 8. The kit according to claim 7, wherein the first nucleic acid strand has a 5 'end labeled with a dye, a fluorescent dye or biotin.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011538118A JPWO2011052013A1 (en) | 2009-10-29 | 2009-10-29 | Nucleic acid chain binding and modification methods |
PCT/JP2009/005755 WO2011052013A1 (en) | 2009-10-29 | 2009-10-29 | Nucleic acid strand binding method and nucleic acid strand modification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/005755 WO2011052013A1 (en) | 2009-10-29 | 2009-10-29 | Nucleic acid strand binding method and nucleic acid strand modification method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052013A1 true WO2011052013A1 (en) | 2011-05-05 |
Family
ID=43921458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005755 WO2011052013A1 (en) | 2009-10-29 | 2009-10-29 | Nucleic acid strand binding method and nucleic acid strand modification method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2011052013A1 (en) |
WO (1) | WO2011052013A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3521868A1 (en) | 2018-01-31 | 2019-08-07 | Essilor International | Phase change optical device |
WO2019189591A1 (en) * | 2018-03-30 | 2019-10-03 | 住友化学株式会社 | Method for producing single-strand rna |
WO2019189722A1 (en) | 2018-03-30 | 2019-10-03 | 東レ株式会社 | Method for producing hairpin single-stranded rna molecule |
JP2020182461A (en) * | 2018-02-09 | 2020-11-12 | 住友化学株式会社 | Nucleic acid molecule manufacturing method |
JP7613130B2 (en) | 2020-03-25 | 2025-01-15 | 味の素株式会社 | Ligase mutants |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002171983A (en) * | 2000-12-05 | 2002-06-18 | Gencom Co | Method for nucleic acid ligation |
-
2009
- 2009-10-29 JP JP2011538118A patent/JPWO2011052013A1/en active Pending
- 2009-10-29 WO PCT/JP2009/005755 patent/WO2011052013A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002171983A (en) * | 2000-12-05 | 2002-06-18 | Gencom Co | Method for nucleic acid ligation |
Non-Patent Citations (4)
Title |
---|
BAIN J. D. ET AL.: "Regioselective ligation of oligoribonucleotides using DNA splints", NUCLEIC ACIDS RESEARCH, vol. 20, 1992, pages 4372 * |
NANDAKUMAR JAYAKRISHNAN ET AL.: "Dual Mechanisms whereby a Broken RNA End Assists the Catalysis of Its Repair by T4 RNA Ligase 2", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, 2005, pages 23484 - 23489 * |
STARK MARTHA R. ET AL.: "An RNA ligase-mediated method for the efficient creation of large, synthetic RNAs", RNA, vol. 12, 2006, pages 2014 - 2019, XP055047162, DOI: doi:10.1261/rna.93506 * |
TOMOKO MATSUNAGA ET AL.: "T4 RNA Ligase 2 o Mochiita mRNA eno Shushoku Enki no Donyu, 1PA-252", DAI 27 KAI THE MOLECULAR BIOLOGY SOCIETY OF JAPAN NENKAI PROGRAM KOEN YOSHISHU, 25 November 2004 (2004-11-25), pages 458 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019149694A1 (en) | 2018-01-31 | 2019-08-08 | Essilor International | Phase change optical device |
EP3521868A1 (en) | 2018-01-31 | 2019-08-07 | Essilor International | Phase change optical device |
JP2020182461A (en) * | 2018-02-09 | 2020-11-12 | 住友化学株式会社 | Nucleic acid molecule manufacturing method |
CN111971396A (en) * | 2018-03-30 | 2020-11-20 | 住友化学株式会社 | Method for producing single-stranded RNA |
JPWO2019189591A1 (en) * | 2018-03-30 | 2020-10-01 | 住友化学株式会社 | Method for producing single-stranded RNA |
WO2019189722A1 (en) | 2018-03-30 | 2019-10-03 | 東レ株式会社 | Method for producing hairpin single-stranded rna molecule |
WO2019189591A1 (en) * | 2018-03-30 | 2019-10-03 | 住友化学株式会社 | Method for producing single-strand rna |
KR20200136363A (en) | 2018-03-30 | 2020-12-07 | 도레이 카부시키가이샤 | Hairpin type single-stranded RNA molecule production method |
EP3778914A4 (en) * | 2018-03-30 | 2022-01-19 | Sumitomo Chemical Company, Ltd. | SINGLE-STRANDED RNA PRODUCTION METHOD |
TWI772632B (en) * | 2018-03-30 | 2022-08-01 | 日商東麗股份有限公司 | Production method of hairpin type single-stranded RNA molecule, single-stranded oligoRNA molecule and kit comprising the same |
US11920131B2 (en) | 2018-03-30 | 2024-03-05 | Toray Industries, Inc. | Method of producing hairpin single-stranded RNA molecule |
TWI837122B (en) * | 2018-03-30 | 2024-04-01 | 日商住友化學股份有限公司 | Method of producing single-strand rna |
JP7613130B2 (en) | 2020-03-25 | 2025-01-15 | 味の素株式会社 | Ligase mutants |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011052013A1 (en) | 2013-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2023201140B2 (en) | Isothermal amplification components and processes | |
AU2005322131B2 (en) | Ligation-based RNA amplification | |
Citartan1 et al. | Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production | |
US20060211000A1 (en) | Methods, compositions, and kits for detection of microRNA | |
EP3837381A1 (en) | Compositions and methods for improving library enrichment | |
WO2011052013A1 (en) | Nucleic acid strand binding method and nucleic acid strand modification method | |
JP2018078910A (en) | Nucleic acid enzyme substrates | |
US20200332340A1 (en) | Isothermal amplification components and processes | |
EP3202901A1 (en) | Method for nucleic acid amplification | |
JP6181293B2 (en) | Detection of nucleotide variations on the target nucleic acid sequence | |
WO2024051143A1 (en) | Method for preparing oligonucleotide by using rna ligase | |
EP1854882A1 (en) | Method for obtaining subtraction polynucleotide | |
Nguyen et al. | Target-enrichment sequencing for detailed characterization of small RNAs | |
Hamedani et al. | Capture and Release (CaR): a simplified procedure for one-tube isolation and concentration of single-stranded DNA during SELEX | |
Gamper et al. | Synthesis of long RNA with a site-specific modification by enzymatic splint ligation | |
CN117106879A (en) | A DNA ligase detection probe based on DNA hairpin structure and its application | |
CA2926295A1 (en) | Dna templates for rolling circle amplification | |
US8846350B2 (en) | MicroRNA affinity assay and uses thereof | |
EP4269612A1 (en) | Nucleic acid amplification method, primer set, probe, and kit for nucleic acid amplification method | |
JP7333171B2 (en) | RNA detection method, RNA detection nucleic acid and RNA detection kit | |
WO2022061172A2 (en) | Nucleic acid detection using a nuclease actuator | |
Liu et al. | A rapid and simple nonradioactive method for in vitro testing of ribozyme activity | |
JP7127023B2 (en) | Nucleic Acid Detection Method, Nucleic Acid Detection Primer, and Nucleic Acid Detection Kit | |
WO2024229044A1 (en) | Methods for ligation-free chromatin conformation capture with high throughput sequencing | |
Hegge | The journey of prokaryotic argonaute proteins: From fundamentals to application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09850793 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011538118 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09850793 Country of ref document: EP Kind code of ref document: A1 |