WO2015089465A1 - Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders - Google Patents
Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders Download PDFInfo
- Publication number
- WO2015089465A1 WO2015089465A1 PCT/US2014/070135 US2014070135W WO2015089465A1 WO 2015089465 A1 WO2015089465 A1 WO 2015089465A1 US 2014070135 W US2014070135 W US 2014070135W WO 2015089465 A1 WO2015089465 A1 WO 2015089465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence
- crispr
- target
- cas
- enzyme
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 212
- 230000003612 virological effect Effects 0.000 title claims description 201
- 230000001225 therapeutic effect Effects 0.000 title description 10
- 208000037765 diseases and disorders Diseases 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 255
- 108091033409 CRISPR Proteins 0.000 claims abstract description 230
- 239000013598 vector Substances 0.000 claims abstract description 175
- 230000000694 effects Effects 0.000 claims abstract description 57
- 210000003527 eukaryotic cell Anatomy 0.000 claims abstract description 52
- 238000010354 CRISPR gene editing Methods 0.000 claims abstract 3
- 102000004190 Enzymes Human genes 0.000 claims description 357
- 108090000790 Enzymes Proteins 0.000 claims description 357
- 210000004027 cell Anatomy 0.000 claims description 260
- 102000040430 polynucleotide Human genes 0.000 claims description 222
- 108091033319 polynucleotide Proteins 0.000 claims description 222
- 239000002157 polynucleotide Substances 0.000 claims description 222
- 108020004414 DNA Proteins 0.000 claims description 205
- 238000010453 CRISPR/Cas method Methods 0.000 claims description 202
- 150000007523 nucleic acids Chemical class 0.000 claims description 196
- 102000039446 nucleic acids Human genes 0.000 claims description 191
- 108020004707 nucleic acids Proteins 0.000 claims description 191
- 108090000623 proteins and genes Proteins 0.000 claims description 162
- 241000700721 Hepatitis B virus Species 0.000 claims description 114
- 108091092236 Chimeric RNA Proteins 0.000 claims description 108
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 107
- 230000014509 gene expression Effects 0.000 claims description 102
- 102000004169 proteins and genes Human genes 0.000 claims description 82
- 241000282414 Homo sapiens Species 0.000 claims description 75
- 108020005004 Guide RNA Proteins 0.000 claims description 72
- 230000035772 mutation Effects 0.000 claims description 69
- 210000001808 exosome Anatomy 0.000 claims description 57
- 239000002773 nucleotide Substances 0.000 claims description 56
- 238000003776 cleavage reaction Methods 0.000 claims description 55
- 125000003729 nucleotide group Chemical group 0.000 claims description 55
- 230000007017 scission Effects 0.000 claims description 55
- 239000002105 nanoparticle Substances 0.000 claims description 47
- 239000013603 viral vector Substances 0.000 claims description 44
- 230000009870 specific binding Effects 0.000 claims description 42
- 230000001105 regulatory effect Effects 0.000 claims description 41
- 108020005202 Viral DNA Proteins 0.000 claims description 39
- 239000002502 liposome Substances 0.000 claims description 38
- 241000713666 Lentivirus Species 0.000 claims description 36
- 230000015572 biosynthetic process Effects 0.000 claims description 34
- 108020004999 messenger RNA Proteins 0.000 claims description 34
- 238000010362 genome editing Methods 0.000 claims description 31
- 230000004048 modification Effects 0.000 claims description 29
- 238000012986 modification Methods 0.000 claims description 29
- 208000036142 Viral infection Diseases 0.000 claims description 28
- 230000005783 single-strand break Effects 0.000 claims description 28
- 230000009385 viral infection Effects 0.000 claims description 28
- 239000003814 drug Substances 0.000 claims description 27
- 238000011282 treatment Methods 0.000 claims description 27
- 108091079001 CRISPR RNA Proteins 0.000 claims description 26
- 102000053602 DNA Human genes 0.000 claims description 26
- 101710163270 Nuclease Proteins 0.000 claims description 26
- 239000013612 plasmid Substances 0.000 claims description 26
- 241000193996 Streptococcus pyogenes Species 0.000 claims description 25
- 230000005782 double-strand break Effects 0.000 claims description 25
- 241000700605 Viruses Species 0.000 claims description 23
- 241000124008 Mammalia Species 0.000 claims description 22
- 238000006467 substitution reaction Methods 0.000 claims description 20
- -1 ORF P Proteins 0.000 claims description 19
- 230000035897 transcription Effects 0.000 claims description 19
- 238000013518 transcription Methods 0.000 claims description 19
- 238000003780 insertion Methods 0.000 claims description 18
- 108010008532 Deoxyribonuclease I Proteins 0.000 claims description 17
- 102000007260 Deoxyribonuclease I Human genes 0.000 claims description 17
- 238000000338 in vitro Methods 0.000 claims description 17
- 230000037431 insertion Effects 0.000 claims description 17
- 230000030648 nucleus localization Effects 0.000 claims description 17
- 210000003494 hepatocyte Anatomy 0.000 claims description 16
- 241000701161 unidentified adenovirus Species 0.000 claims description 15
- 241000701085 Human alphaherpesvirus 3 Species 0.000 claims description 14
- 241000701044 Human gammaherpesvirus 4 Species 0.000 claims description 14
- 241000701806 Human papillomavirus Species 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 13
- 241000191967 Staphylococcus aureus Species 0.000 claims description 13
- 230000001603 reducing effect Effects 0.000 claims description 13
- 108020004638 Circular DNA Proteins 0.000 claims description 10
- 241000700584 Simplexvirus Species 0.000 claims description 10
- 239000012634 fragment Substances 0.000 claims description 10
- 210000004962 mammalian cell Anatomy 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 10
- 108091026890 Coding region Proteins 0.000 claims description 9
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 230000002401 inhibitory effect Effects 0.000 claims description 9
- 238000004806 packaging method and process Methods 0.000 claims description 9
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 claims description 8
- 108091006611 SLC10A1 Proteins 0.000 claims description 7
- 102100021988 Sodium/bile acid cotransporter Human genes 0.000 claims description 7
- 238000012217 deletion Methods 0.000 claims description 7
- 230000001939 inductive effect Effects 0.000 claims description 7
- 108010003524 sodium-bile acid cotransporter Proteins 0.000 claims description 7
- 210000002845 virion Anatomy 0.000 claims description 7
- 230000037430 deletion Effects 0.000 claims description 6
- 230000010076 replication Effects 0.000 claims description 6
- 241000238631 Hexapoda Species 0.000 claims description 5
- 102100025169 Max-binding protein MNT Human genes 0.000 claims description 5
- 238000009825 accumulation Methods 0.000 claims description 5
- 238000009396 hybridization Methods 0.000 claims description 5
- 230000002779 inactivation Effects 0.000 claims description 5
- 230000005764 inhibitory process Effects 0.000 claims description 5
- 238000002560 therapeutic procedure Methods 0.000 claims description 5
- 108091006107 transcriptional repressors Proteins 0.000 claims description 5
- 241000701447 unidentified baculovirus Species 0.000 claims description 5
- 101000584877 Clostridium pasteurianum Putative peroxiredoxin in rubredoxin operon Proteins 0.000 claims description 4
- 101000618323 Enterobacteria phage T4 Uncharacterized 7.3 kDa protein in mobB-Gp55 intergenic region Proteins 0.000 claims description 4
- 241000206602 Eukaryota Species 0.000 claims description 4
- 101001056912 Saccharopolyspora erythraea 6-deoxyerythronolide-B synthase EryA1, modules 1 and 2 Proteins 0.000 claims description 4
- 101001056914 Saccharopolyspora erythraea 6-deoxyerythronolide-B synthase EryA3, modules 5 and 6 Proteins 0.000 claims description 4
- 101000819251 Staphylococcus aureus Uncharacterized protein in ileS 3'region Proteins 0.000 claims description 4
- 241000700618 Vaccinia virus Species 0.000 claims description 4
- 210000004899 c-terminal region Anatomy 0.000 claims description 4
- 230000015556 catabolic process Effects 0.000 claims description 4
- 238000006731 degradation reaction Methods 0.000 claims description 4
- 230000001973 epigenetic effect Effects 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 101001006093 Escherichia coli (strain K12) Protein HemX Proteins 0.000 claims description 2
- 101000631253 Escherichia coli Uncharacterized 7.3 kDa protein in Eco57IM 5'region Proteins 0.000 claims description 2
- 101000811817 Galdieria sulphuraria UPF0051 protein in atpA 3'region Proteins 0.000 claims description 2
- 102000029812 HNH nuclease Human genes 0.000 claims description 2
- 108060003760 HNH nuclease Proteins 0.000 claims description 2
- 101000708525 Klebsiella aerogenes Uncharacterized protein in nac 5'region Proteins 0.000 claims description 2
- 101000786192 Klebsiella pneumoniae Uncharacterized protein in pqqA 5'region Proteins 0.000 claims description 2
- 108700026244 Open Reading Frames Proteins 0.000 claims description 2
- 101000746447 Pyrococcus woesei Uncharacterized protein in gap 3'region Proteins 0.000 claims description 2
- 101000819558 Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) Inner membrane protein YjgN Proteins 0.000 claims description 2
- 238000002407 reforming Methods 0.000 claims description 2
- 230000001177 retroviral effect Effects 0.000 claims description 2
- 230000005945 translocation Effects 0.000 claims description 2
- 241001529453 unidentified herpesvirus Species 0.000 claims description 2
- 101000910035 Streptococcus pyogenes serotype M1 CRISPR-associated endonuclease Cas9/Csn1 Proteins 0.000 claims 4
- 230000007547 defect Effects 0.000 claims 4
- 102220605874 Cytosolic arginine sensor for mTORC1 subunit 2_D10A_mutation Human genes 0.000 claims 2
- 241001164825 Adeno-associated virus - 8 Species 0.000 claims 1
- 239000003607 modifier Substances 0.000 claims 1
- 238000011269 treatment regimen Methods 0.000 claims 1
- 201000010099 disease Diseases 0.000 abstract description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 18
- 238000005457 optimization Methods 0.000 abstract description 13
- 231100000419 toxicity Toxicity 0.000 abstract description 10
- 230000001988 toxicity Effects 0.000 abstract description 10
- 238000013461 design Methods 0.000 abstract description 5
- 210000000056 organ Anatomy 0.000 abstract description 5
- 230000009918 complex formation Effects 0.000 abstract description 3
- 229940088598 enzyme Drugs 0.000 description 276
- 235000018102 proteins Nutrition 0.000 description 80
- 239000000047 product Substances 0.000 description 61
- 108020004459 Small interfering RNA Proteins 0.000 description 52
- 239000004055 small Interfering RNA Substances 0.000 description 51
- 239000000306 component Substances 0.000 description 45
- 239000002245 particle Substances 0.000 description 42
- 230000008685 targeting Effects 0.000 description 37
- 150000002632 lipids Chemical class 0.000 description 36
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 32
- 150000001875 compounds Chemical class 0.000 description 29
- 238000009472 formulation Methods 0.000 description 28
- 238000001727 in vivo Methods 0.000 description 28
- 108020004705 Codon Proteins 0.000 description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 27
- 239000002585 base Substances 0.000 description 27
- 238000003556 assay Methods 0.000 description 24
- 210000004556 brain Anatomy 0.000 description 21
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 20
- 241000699666 Mus <mouse, genus> Species 0.000 description 19
- 208000009869 Neu-Laxova syndrome Diseases 0.000 description 18
- 238000011144 upstream manufacturing Methods 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 17
- 230000001404 mediated effect Effects 0.000 description 17
- 235000012000 cholesterol Nutrition 0.000 description 16
- 241000894007 species Species 0.000 description 16
- 230000007018 DNA scission Effects 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 15
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 14
- 241000699670 Mus sp. Species 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 14
- 150000001413 amino acids Chemical class 0.000 description 14
- 230000027455 binding Effects 0.000 description 14
- 230000000295 complement effect Effects 0.000 description 14
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 238000002744 homologous recombination Methods 0.000 description 13
- 230000006801 homologous recombination Effects 0.000 description 13
- 238000001890 transfection Methods 0.000 description 13
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 206010028980 Neoplasm Diseases 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 210000004185 liver Anatomy 0.000 description 11
- 230000006780 non-homologous end joining Effects 0.000 description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 11
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 10
- 241000282412 Homo Species 0.000 description 10
- 239000002202 Polyethylene glycol Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 210000004940 nucleus Anatomy 0.000 description 10
- 230000000692 anti-sense effect Effects 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 238000001415 gene therapy Methods 0.000 description 9
- 239000013600 plasmid vector Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000008439 repair process Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 241000194020 Streptococcus thermophilus Species 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 238000003197 gene knockdown Methods 0.000 description 8
- 230000010354 integration Effects 0.000 description 8
- NFQBIAXADRDUGK-KWXKLSQISA-N n,n-dimethyl-2,3-bis[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/CCCCC NFQBIAXADRDUGK-KWXKLSQISA-N 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 201000011510 cancer Diseases 0.000 description 7
- 125000002091 cationic group Chemical group 0.000 description 7
- 210000004443 dendritic cell Anatomy 0.000 description 7
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 7
- 210000005260 human cell Anatomy 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 238000001802 infusion Methods 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 7
- 230000009437 off-target effect Effects 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 6
- 102100021257 Beta-secretase 1 Human genes 0.000 description 6
- 108700010070 Codon Usage Proteins 0.000 description 6
- 101000894895 Homo sapiens Beta-secretase 1 Proteins 0.000 description 6
- 108700011259 MicroRNAs Proteins 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 238000001994 activation Methods 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 108020001778 catalytic domains Proteins 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000012377 drug delivery Methods 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 239000002679 microRNA Substances 0.000 description 6
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- 238000010361 transduction Methods 0.000 description 6
- 230000026683 transduction Effects 0.000 description 6
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 108010010234 HDL Lipoproteins Proteins 0.000 description 5
- 102000015779 HDL Lipoproteins Human genes 0.000 description 5
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 230000009368 gene silencing by RNA Effects 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 4
- 241001655883 Adeno-associated virus - 1 Species 0.000 description 4
- 102000009027 Albumins Human genes 0.000 description 4
- 108010088751 Albumins Proteins 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102100036279 DNA (cytosine-5)-methyltransferase 1 Human genes 0.000 description 4
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 4
- 101710096438 DNA-binding protein Proteins 0.000 description 4
- 241000702421 Dependoparvovirus Species 0.000 description 4
- 108091092195 Intron Proteins 0.000 description 4
- 241000288906 Primates Species 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- HCAJCMUKLZSPFT-KWXKLSQISA-N [3-(dimethylamino)-2-[(9z,12z)-octadeca-9,12-dienoyl]oxypropyl] (9z,12z)-octadeca-9,12-dienoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC HCAJCMUKLZSPFT-KWXKLSQISA-N 0.000 description 4
- 125000003275 alpha amino acid group Chemical group 0.000 description 4
- 229920006317 cationic polymer Polymers 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000009126 molecular therapy Methods 0.000 description 4
- 150000002924 oxiranes Chemical class 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- 239000012096 transfection reagent Substances 0.000 description 4
- 230000009261 transgenic effect Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 238000005199 ultracentrifugation Methods 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 241000713730 Equine infectious anemia virus Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 206010019695 Hepatic neoplasm Diseases 0.000 description 3
- 101000931098 Homo sapiens DNA (cytosine-5)-methyltransferase 1 Proteins 0.000 description 3
- 101001048956 Homo sapiens Homeobox protein EMX1 Proteins 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 102000001435 Synapsin Human genes 0.000 description 3
- 108050009621 Synapsin Proteins 0.000 description 3
- 108020004566 Transfer RNA Proteins 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000013060 biological fluid Substances 0.000 description 3
- 230000008499 blood brain barrier function Effects 0.000 description 3
- 210000001218 blood-brain barrier Anatomy 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000009850 completed effect Effects 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000011987 methylation Effects 0.000 description 3
- 238000007069 methylation reaction Methods 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 108091027963 non-coding RNA Proteins 0.000 description 3
- 102000042567 non-coding RNA Human genes 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229950010131 puromycin Drugs 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 150000003335 secondary amines Chemical class 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- XSVWFLQICKPQAA-UHFFFAOYSA-N 2-[4,10-bis(carboxymethyl)-7-[2-(2,5-dioxopyrrolidin-1-yl)oxy-2-oxoethyl]-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound C1CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CCN1CC(=O)ON1C(=O)CCC1=O XSVWFLQICKPQAA-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- 241001634120 Adeno-associated virus - 5 Species 0.000 description 2
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- 101000623895 Bos taurus Mucin-15 Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 108010077544 Chromatin Proteins 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 101150106478 GPS1 gene Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 229940123611 Genome editing Drugs 0.000 description 2
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108091027305 Heteroduplex Proteins 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 241000251188 Holocephali Species 0.000 description 2
- 102100023823 Homeobox protein EMX1 Human genes 0.000 description 2
- 101000575639 Homo sapiens Ribonucleoside-diphosphate reductase subunit M2 Proteins 0.000 description 2
- 101000766306 Homo sapiens Serotransferrin Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 239000012097 Lipofectamine 2000 Substances 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 101100219625 Mus musculus Casd1 gene Proteins 0.000 description 2
- 108091092724 Noncoding DNA Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 102000002488 Nucleoplasmin Human genes 0.000 description 2
- 239000012124 Opti-MEM Substances 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 102100026006 Ribonucleoside-diphosphate reductase subunit M2 Human genes 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 108091061980 Spherical nucleic acid Proteins 0.000 description 2
- 241000320123 Streptococcus pyogenes M1 GAS Species 0.000 description 2
- 241001633172 Streptococcus thermophilus LMD-9 Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- ZKSPKDDUPMUGBG-KWXKLSQISA-N [(9z,12z)-octadeca-9,12-dienyl] 3-(dimethylamino)-2-[(9z,12z)-octadeca-9,12-dienoxy]propanoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOC(CN(C)C)C(=O)OCCCCCCCC\C=C/C\C=C/CCCCC ZKSPKDDUPMUGBG-KWXKLSQISA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 2
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 101150055766 cat gene Proteins 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 210000003483 chromatin Anatomy 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 238000012350 deep sequencing Methods 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 238000007877 drug screening Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 108010025678 empty spiracles homeobox proteins Proteins 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 108700014844 flt3 ligand Proteins 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000012226 gene silencing method Methods 0.000 description 2
- 238000010363 gene targeting Methods 0.000 description 2
- 230000007614 genetic variation Effects 0.000 description 2
- 238000012268 genome sequencing Methods 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 108060005597 nucleoplasmin Proteins 0.000 description 2
- 238000001543 one-way ANOVA Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 238000013081 phylogenetic analysis Methods 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 231100000683 possible toxicity Toxicity 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 102000005912 ran GTP Binding Protein Human genes 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- 108091006106 transcriptional activators Proteins 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- MWRBNPKJOOWZPW-NYVOMTAGSA-N 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-NYVOMTAGSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- KCYOZNARADAZIZ-CWBQGUJCSA-N 2-[(2e,4e,6e,8e,10e,12e,14e)-15-(4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-2-yl)-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaen-2-yl]-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-6-ol Chemical compound O1C2(C)CC(O)CC(C)(C)C2=CC1C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)C1C=C2C(C)(C)CCCC2(C)O1 KCYOZNARADAZIZ-CWBQGUJCSA-N 0.000 description 1
- 101150092649 3a gene Proteins 0.000 description 1
- 101150006159 3b gene Proteins 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- 241000580270 Adeno-associated virus - 4 Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 102000018616 Apolipoproteins B Human genes 0.000 description 1
- 108010027006 Apolipoproteins B Proteins 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 241000589941 Azospirillum Species 0.000 description 1
- 229940125759 BACE1 protease inhibitor Drugs 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010061692 Benign muscle neoplasm Diseases 0.000 description 1
- 108010027741 CASP8 and FADD Like Apoptosis Regulating Protein Proteins 0.000 description 1
- 102100025752 CASP8 and FADD-like apoptosis regulator Human genes 0.000 description 1
- 101150018129 CSF2 gene Proteins 0.000 description 1
- 101150069031 CSN2 gene Proteins 0.000 description 1
- 102100033093 Calcium/calmodulin-dependent protein kinase type II subunit alpha Human genes 0.000 description 1
- 241000589986 Campylobacter lari Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- ZKLPARSLTMPFCP-UHFFFAOYSA-N Cetirizine Chemical compound C1CN(CCOCC(=O)O)CCN1C(C=1C=CC(Cl)=CC=1)C1=CC=CC=C1 ZKLPARSLTMPFCP-UHFFFAOYSA-N 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 241000710177 Citrus tristeza virus Species 0.000 description 1
- 102100023804 Coagulation factor VII Human genes 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108091028732 Concatemer Proteins 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- KCYOZNARADAZIZ-PPBBKLJYSA-N Cryptochrome Natural products O[C@@H]1CC(C)(C)C=2[C@@](C)(O[C@H](/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(\C)/[C@H]3O[C@@]4(C)C(C(C)(C)CCC4)=C3)/C)\C)/C)C=2)C1 KCYOZNARADAZIZ-PPBBKLJYSA-N 0.000 description 1
- 108010037139 Cryptochromes Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 101150074775 Csf1 gene Proteins 0.000 description 1
- 241000724252 Cucumber mosaic virus Species 0.000 description 1
- 102100028908 Cullin-3 Human genes 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 125000002038 D-arginyl group Chemical class N[C@@H](C(=O)*)CCCNC(=N)N 0.000 description 1
- 108010009540 DNA (Cytosine-5-)-Methyltransferase 1 Proteins 0.000 description 1
- 102100040263 DNA dC->dU-editing enzyme APOBEC-3A Human genes 0.000 description 1
- 102100040262 DNA dC->dU-editing enzyme APOBEC-3B Human genes 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101150007297 Dnmt1 gene Proteins 0.000 description 1
- 239000001692 EU approved anti-caking agent Substances 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 101710121417 Envelope glycoprotein Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241001531192 Eubacterium ventriosum Species 0.000 description 1
- 101150030532 F7 gene Proteins 0.000 description 1
- 108010023321 Factor VII Proteins 0.000 description 1
- 208000034846 Familial Amyloid Neuropathies Diseases 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 102000003869 Frataxin Human genes 0.000 description 1
- 108090000217 Frataxin Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101150014889 Gad1 gene Proteins 0.000 description 1
- 241001468096 Gluconacetobacter diazotrophicus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100035902 Glutamate decarboxylase 1 Human genes 0.000 description 1
- 102100035857 Glutamate decarboxylase 2 Human genes 0.000 description 1
- 102100036698 Golgi reassembly-stacking protein 1 Human genes 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 108090001102 Hammerhead ribozyme Proteins 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 101000944249 Homo sapiens Calcium/calmodulin-dependent protein kinase type II subunit alpha Proteins 0.000 description 1
- 101000916238 Homo sapiens Cullin-3 Proteins 0.000 description 1
- 101000964378 Homo sapiens DNA dC->dU-editing enzyme APOBEC-3A Proteins 0.000 description 1
- 101000964385 Homo sapiens DNA dC->dU-editing enzyme APOBEC-3B Proteins 0.000 description 1
- 101000873786 Homo sapiens Glutamate decarboxylase 2 Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000614988 Homo sapiens Mediator of RNA polymerase II transcription subunit 12 Proteins 0.000 description 1
- 101000954986 Homo sapiens Merlin Proteins 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 101000706121 Homo sapiens Parvalbumin alpha Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 1
- 101000625338 Homo sapiens Transcriptional adapter 1 Proteins 0.000 description 1
- 101000626636 Homo sapiens Transcriptional adapter 2-beta Proteins 0.000 description 1
- 101000742373 Homo sapiens Vesicular inhibitory amino acid transporter Proteins 0.000 description 1
- 101000804921 Homo sapiens X-ray repair cross-complementing protein 5 Proteins 0.000 description 1
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 206010051792 Infusion related reaction Diseases 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 101150008942 J gene Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 238000008214 LDL Cholesterol Methods 0.000 description 1
- 241000186841 Lactobacillus farciminis Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100021070 Mediator of RNA polymerase II transcription subunit 12 Human genes 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102100037106 Merlin Human genes 0.000 description 1
- 206010027457 Metastases to liver Diseases 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100452019 Mus musculus Icam2 gene Proteins 0.000 description 1
- 101100078999 Mus musculus Mx1 gene Proteins 0.000 description 1
- 101100101250 Mus musculus Th gene Proteins 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 201000004458 Myoma Diseases 0.000 description 1
- 241000588654 Neisseria cinerea Species 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 208000033383 Neuroendocrine tumor of pancreas Diseases 0.000 description 1
- 101100385413 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) csm-3 gene Proteins 0.000 description 1
- 241001276274 Nitratifractor salsuginis DSM 16511 Species 0.000 description 1
- 108020004485 Nonsense Codon Proteins 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241001386755 Parvibaculum lavamentivorans Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 1
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 1
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 101800001494 Protease 2A Proteins 0.000 description 1
- 101800001066 Protein 2A Proteins 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 101100047461 Rattus norvegicus Trpm8 gene Proteins 0.000 description 1
- 102000001218 Rec A Recombinases Human genes 0.000 description 1
- 108010055016 Rec A Recombinases Proteins 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000398180 Roseburia intestinalis Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 241000639167 Sphaerochaeta globosa Species 0.000 description 1
- 241001501869 Streptococcus pasteurianus Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 101100166147 Streptococcus thermophilus cas9 gene Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229940126530 T cell activator Drugs 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 1
- 238000012338 Therapeutic targeting Methods 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- 241000283907 Tragelaphus oryx Species 0.000 description 1
- 102100025043 Transcriptional adapter 1 Human genes 0.000 description 1
- 102100024858 Transcriptional adapter 2-beta Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 108010020764 Transposases Proteins 0.000 description 1
- 102000008579 Transposases Human genes 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 1
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 102100038170 Vesicular inhibitory amino acid transporter Human genes 0.000 description 1
- 206010058874 Viraemia Diseases 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 102100036973 X-ray repair cross-complementing protein 5 Human genes 0.000 description 1
- 102100036976 X-ray repair cross-complementing protein 6 Human genes 0.000 description 1
- 101710124907 X-ray repair cross-complementing protein 6 Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical group N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 102000009899 alpha Karyopherins Human genes 0.000 description 1
- 108010077099 alpha Karyopherins Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- KCYOZNARADAZIZ-XZOHMNSDSA-N beta-cryptochrome Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C3OC4(C)CCCC(C)(C)C4=C3 KCYOZNARADAZIZ-XZOHMNSDSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960001803 cetirizine Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 101150055601 cops2 gene Proteins 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 210000005257 cortical tissue Anatomy 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- SPTYHKZRPFATHJ-HYZXJONISA-N dT6 Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)CO)[C@@H](O)C1 SPTYHKZRPFATHJ-HYZXJONISA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- RNPXCFINMKSQPQ-UHFFFAOYSA-N dicetyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCC RNPXCFINMKSQPQ-UHFFFAOYSA-N 0.000 description 1
- 229940093541 dicetylphosphate Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 229940012413 factor vii Drugs 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 239000012537 formulation buffer Substances 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 210000001222 gaba-ergic neuron Anatomy 0.000 description 1
- ZXQYGBMAQZUVMI-GCMPRSNUSA-N gamma-cyhalothrin Chemical compound CC1(C)[C@@H](\C=C(/Cl)C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-GCMPRSNUSA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000037440 gene silencing effect Effects 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 238000010448 genetic screening Methods 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 102000049240 human PVALB Human genes 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 108700032552 influenza virus INS1 Proteins 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000002743 insertional mutagenesis Methods 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 210000001630 jejunum Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 230000007056 liver toxicity Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000004777 loss-of-function mutation Effects 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 210000005171 mammalian brain Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 231100000243 mutagenic effect Toxicity 0.000 description 1
- 210000004898 n-terminal fragment Anatomy 0.000 description 1
- 229940042880 natural phospholipid Drugs 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 230000009438 off-target cleavage Effects 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229940090668 parachlorophenol Drugs 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 229940067107 phenylethyl alcohol Drugs 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000010149 post-hoc-test Methods 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- HIGSLXSBYYMVKI-UHFFFAOYSA-N pralidoxime chloride Chemical compound [Cl-].C[N+]1=CC=CC=C1\C=N\O HIGSLXSBYYMVKI-UHFFFAOYSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 208000022256 primary systemic amyloidosis Diseases 0.000 description 1
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- ZJFJVRPLNAMIKH-UHFFFAOYSA-N pseudo-u Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)CO)C(O)C1 ZJFJVRPLNAMIKH-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 208000019465 refractory cytopenia of childhood Diseases 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 108010056030 retronectin Proteins 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 108020003113 steroid hormone receptors Proteins 0.000 description 1
- 102000005969 steroid hormone receptors Human genes 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229940044609 sulfur dioxide Drugs 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 238000010809 targeting technique Methods 0.000 description 1
- 210000000211 third ventricle Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 201000007905 transthyretin amyloidosis Diseases 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 description 1
- 229960003862 vemurafenib Drugs 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 208000027121 wild type ATTR amyloidosis Diseases 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/01—Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1082—Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/52—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail for supporting social networking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1069—Session establishment or de-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/53—Network services using third party service providers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/09—Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16041—Use of virus, viral particle or viral elements as a vector
- C12N2740/16043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention generally relates to the delivery, engineering, optimization and therapeutic applications of systems, methods, and compositions used for the control of gene expression involving sequence targeting, such as genome perturbation or gene-editing, that relate to Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and components thereof.
- sequence targeting such as genome perturbation or gene-editing
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- the CRISPR-Cas system does not require the generation of customized proteins to target specific sequences but rather a single Cas enzyme can be programmed by a short RNA molecule to recognize a specific DNA target.
- Adding the CRISPR-Cas system to the repertoire of genome sequencing techniques and analysis methods may significantly simplify the methodology and accelerate the ability to catalog and map genetic factors associated with a diverse range of biological functions and diseases.
- cccDNA a dsDNA structure that arises during the propagation of HBV in the cell nucleus and can remain permanently present in infected subjects.
- An exemplary CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within the target polynucleotide.
- the guide sequence is linked to a tracr mate sequence, which in turn hybridizes to a tracr sequence.
- the invention provides methods for using one or more elements of a CRISPR-Cas system.
- the CRISPR complex of the invention provides an effective means for modifying a target polynucleotide.
- the CRISPR complex of the invention has a wide variety of utilities including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types in various tissues and organs.
- modifying e.g., deleting, inserting, translocating, inactivating, activating
- a target polynucleotide in a multiplicity of cell types in various tissues and organs.
- the CRISPR complex of the invention has a broad spectrum of applications in, e.g., gene or genome editing, gene therapy, drug discovery, drug screening, disease diagnosis, and prognosis.
- aspects of the invention relate to Cas9 enzymes having improved targeting specificity in a CRISPR-Cas9 system having guide RNAs having optimal activity, smaller in length than wild-type Cas9 enzymes and nucleic acid molecules coding therefor, and chimeric Cas9 enzymes, as well as methods of improving the target specificity of a Cas9 enzyme or of designing a CRISPR-Cas9 system comprising designing or preparing guide RNAs having optimal activity and/or selecting or preparing a Cas9 enzyme having a smaller size or length than wild-type Cas9 whereby packaging a nucleic acid coding therefor into a delivery vector is more advanced as there is less coding therefor in the delivery vector than for wild-type Cas9, and/or generating chimeric Cas9 enzymes.
- a Cas9 enzyme may comprise one or more mutations and may be used as a generic DNA binding protein with or without fusion to a functional domain.
- the mutations may be artificially introduced mutations or gain- or loss-of- function mutations.
- the mutations may include but are not limited to mutations in one of the catalytic domains (D10 and H840) in the RuvC and HNH catalytic domains, respectively. Further mutations have been characterized.
- the transcriptional activation domain may be VP64.
- the transcriptional repressor domain may be KRAB or SID4X.
- mutated Cas9 enzyme being fused to domains which include but are not limited to a transcriptional activator, repressor, a recombinase, a transposase, a histone remodeler, a demethylase, a DNA methyltransferase, a cryptochrome, a light inducible/controllable domain or a chemically inducible/controllable domain.
- the invention provides for methods to generate mutant tracrRNA and direct repeat sequences or mutant chimeric guide sequences that allow for enhancing performance of these RNAs in cells. Aspects of the invention also provide for selection of said sequences. [0014] Aspects of the invention also provide for methods of simplifying the cloning and delivery of components of the CRISPR complex.
- a suitable promoter such as the U6 promoter, is amplified with a DNA oligo and added onto the guide RNA. The resulting PCR product can then be transfected into cells to drive expression of the guide RNA.
- aspects of the invention also relate to the guide RNA being transcribed in vitro or ordered from a synthesis company and directly transfected.
- the invention provides for methods to improve activity by using a more active polymerase.
- the expression of guide RNAs under the control of the T7 promoter is driven by the expression of the T7 polymerase in the cell.
- the cell is a eukaryotic cell.
- the eukaryotic cell is a human cell.
- the human cell is a patient specific cell, e.g., a cell removed from a patient that may be modified and/or expanded into a cell population or a modified cell population, for instance, for re-administration to the patient..
- the invention provides for methods of reducing the toxicity of Cas enzymes.
- the Cas enzyme is any Cas9 as described herein, for instance any naturally-occurring bacterial Cas9 as well as any chimaeras, mutants, homologs or orthologs.
- the Cas enzyme is a nickase.
- the Cas9 is delivered into the cell in the form of mRNA. This allows for the transient expression of the enzyme thereby reducing toxicity.
- the Cas9 is delivered into the cell in the nucleotide construct that encodes and expresses the Cas9 enzyme.
- the invention also provides for methods of expressing Cas9 under the control of an inducible promoter, and the constructs used therein.
- the invention provides for methods of improving the in vivo applications of the CRISPR-Cas system.
- the Cas enzyme is wildtype Cas9 or any of the modified versions described herein, including any naturally- occurring bacterial Cas9 as well as any chimaeras, mutants, homologs or orthologs. .
- the CRISPR enzyme comprises one or more mutations in one of the catalytic domains.
- the Cas enzyme is a nickase.
- An advantageous aspect of the invention provides for the selection of Cas9 homologs that are easily packaged into viral vectors for delivery.
- Cas9 orthologs typically share the general organization of 3-4 RuvC domains and a HNH domain.
- the 5' most RuvC domain cleaves the non-complementary strand, and the HNH domain cleaves the complementary strand. All notations are in reference to the guide sequence.
- the catalytic residue in the 5' RuvC domain is identified through homology comparison of the Cas9 of interest with other Cas9 orthologs (from S. pyogenes type II CRISPR locus, S. thermophilus CRISPR locus 1, S. thermophilus CRISPR locus 3, and Franciscilla novicida type II CRISPR locus), and the conserved Asp residue (D10) is mutated to alanine to convert Cas9 into a complementary-strand nicking enzyme.
- the conserved His and Asn residues in the HNH domains are mutated to Alanine to convert Cas9 into a non- complementary-strand nicking enzyme.
- both sets of mutations may be made, to convert Cas9 into a non-cutting enzyme.
- the CRISPR enzyme is a type I or III CRISPR enzyme, preferably a type II CRISPR enzyme.
- This type II CRISPR enzyme may be any Cas enzyme.
- a preferred Cas enzyme may be identified as Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system.
- the Cas9 enzyme is from, or is derived from, spCas9 or saCas9.
- Applicants mean that the derived enzyme is largely based, in the sense of having a high degree of sequence homology with, a wildtype enzyme, but that it has been mutated (modified) in some way as described herein
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes.
- this invention includes many more Cas9s from other species of microbes, such as SpCas9, SaCas9, St1Cas9 and so forth. Further examples are provided herein.
- the skilled person will be able to determine appropriate corresponding residues in Cas9 enzymes other than SpCas9 by comparison of the relevant amino acid sequences.
- a specific amino acid replacement is referred to using the SpCas9 numbering, then, unless the context makes it apparent this is not intended to refer to other Cas9 enzymes, the disclosure is intended to encompass corresponding modifications in other Cas9 enzymes.
- the invention provides for methods of enhancing the function of Cas9 by generating chimeric Cas9 proteins.
- Chimeric Cas9 proteins chimeric Cas9s may be new Cas9 containing fragments from more than one naturally occurring Cas9. These methods may comprise fusing N-terminal fragments of one Cas9 homolog with C-terminal fragments of another Cas9 homolog. These methods also allow for the selection of new properties displayed by the chimeric Cas9 proteins.
- the modification may occur ex vivo or in vitro, for instance in a cell culture and in some instances not in vivo. In other embodiments, it may occur in vivo.
- the invention provides a method of modifying an organism or a non- human organism by manipulation of a target sequence in a genomic locus of interest (e.g. an integrated viral sequence) comprising:
- a CRISPR-Cas system chimeric RNA (chiRNA) polynucleotide sequence wherein the polynucleotide sequence comprises:
- a polynucleotide sequence encoding a CRISPR enzyme comprising at least one or more nuclear localization sequences
- the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence
- the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence and the polynucleotide sequence encoding a CRISPR enzyme is DNA or RNA
- the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence
- the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence, and the polynucleotide sequence encoding a CRISPR enzyme is DNA or RNA.
- any or all of the polynucleotide sequence encoding a CRISPR enzyme, guide sequence, tracr mate sequence or tracr sequence may be RNA.
- the polynucleotides encoding the sequence encoding a CRISPR enzyme, the guide sequence, tracr mate sequence or tracr sequence may be RNA and may be delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- RNA sequence includes the feature.
- the DNA sequence is or can be transcribed into the RNA including the feature at issue.
- the feature is a protein, such as the CRISPR enzyme
- the DNA or RNA sequence referred to is, or can be, translated (and in the case of DNA transcribed first).
- the invention provides a method of modifying an organism, e.g., mammal including human or a non-human mammal or organism by manipulation of a target sequence in a genomic locus of interest comprising delivering a non- naturally occurring or engineered composition comprising a viral or plasmid vector system comprising one or more viral or plasmid vectors operably encoding a composition for expression thereof, wherein the composition comprises: (A) a non-naturally occurring or engineered composition comprising a vector system comprising one or more vectors comprising I.
- a first regulatory element operably linked to a CRISPR-Cas system chimeric RNA (chiRNA) polynucleotide sequence wherein the polynucleotide sequence comprises (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, (b) a tracr mate sequence, and (c) a tracr sequence, and II.
- chiRNA CRISPR-Cas system chimeric RNA
- a first regulatory element operably linked to (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, and (b) at least one or more tracr mate sequences, II. a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, and III.
- a third regulatory element operably linked to a tracr sequence wherein components I, II and III are located on the same or different vectors of the system, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence.
- components I, II and III are located on the same vector. In other embodiments, components I and II are located on the same vector, while component III is located on another vector.
- components I and III are located on the same vector, while component II is located on another vector. In other embodiments, components II and III are located on the same vector, while component I is located on another vector. In other embodiments, each of components I, II and III is located on different vectors.
- the invention also provides a viral or plasmid vector system as described herein.
- the vector is a viral vector, such as a lenti- or baculo- or preferably adeno- viral/adeno-associated viral vectors, but other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided.
- a viral vector such as a lenti- or baculo- or preferably adeno- viral/adeno-associated viral vectors, but other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided.
- one or more of the viral or plasmid vectors may be delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- Applicants By manipulation of a target sequence, Applicants also mean the epigenetic manipulation of a target sequence. This may be of the chromatin state of a target sequence, such as by modification of the methylation state of the target sequence (i.e. addition or removal of methylation or methylation patterns or CpG islands), histone modification, increasing or reducing accessibility to the target sequence, or by promoting 3D folding. In relation to treatment of viral infections, however, excision of integrated viral genome sequences is the manipulation of primary interest.
- the invention provides a method of treating or inhibiting a condition caused by the presence of an integrated viral sequence in a genomic locus of interest in a subject (e.g., mammal or human) or a non-human subject (e.g., mammal) in need thereof comprising modifying the subject or a non-human subject by manipulation of a target sequence in the integrated viral sequence and wherein the condition is susceptible to treatment or inhibition by manipulation of the target sequence comprising providing treatment comprising: delivering a non-naturally occurring or engineered composition comprising an AAV or lentivirus vector system comprising one or more AAV or lentivirus vectors operably encoding a composition for expression thereof, wherein the target sequence is manipulated by the composition when expressed, wherein the composition comprises: (A) a non-naturally occurring or engineered composition comprising a vector system comprising one or more vectors comprising I.
- a first regulatory element operably linked to a CRISPR-Cas system chimeric RNA (chiRNA) polynucleotide sequence wherein the polynucleotide sequence comprises (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, (b) a tracr mate sequence, and (c) a tracr sequence, and II.
- chiRNA CRISPR-Cas system chimeric RNA
- a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme comprising at least one or more nuclear localization sequences (or optionally at least one or more nuclear localization sequences as some embodiments can involve no NLS, i.e., there can be zero NLSs but advantageously there is greater than zero NLSs, such as one or more or advantageously two or more NLSs, and thus the invention comprehends embodiments wherein there is 0, 1, 2, 3, or more NLSs) wherein (a), (b) and (c) are arranged in a 5’ to 3’ orientation, wherein components I and II are located on the same or different vectors of the system, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate
- a first regulatory element operably linked to (a) a guide sequence capable of hybridizing to a target sequence in a eukaryotic cell, and (b) at least one or more tracr mate sequences, II. a second regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, and III.
- a third regulatory element operably linked to a tracr sequence wherein components I, II and III are located on the same or different vectors of the system, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the CRISPR complex comprises the CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence.
- components I, II and III are located on the same vector. In other embodiments, components I and II are located on the same vector, while component III is located on another vector.
- components I and III are located on the same vector, while component II is located on another vector. In other embodiments, components II and III are located on the same vector, while component I is located on another vector. In other embodiments, each of components I, II and III is located on different vectors.
- the invention also provides a viral (e.g. AAV or lentivirus) vector system as described herein.
- Delivery therefore can be via a vector, such as a viral vector, e.g., a recombinant viral vector delivery system; and, this system can be an AAV or lentivirus or derived from an AAV or a lentivirus (e.g., a recombinant AAV or lentivirus that expresses that which is foreign, heterologous or that which is not homologous or native to the virus may make some consider the virus“derived from” is parent virus).
- the viral vector is a lentivirus-derived vector.
- the viral vector is an Agrobacterium Ti or Ri plasmid for use in plants.
- the organism or subject is a eukaryote (including mammal including human) or a non-human eukaryote or a non-human animal or a non-human mammal.
- the organism or subject is a non-human animal, and may be an arthropod, for example, an insect, or may be a nematode.
- the organism or subject is a plant.
- the organism or subject is a mammal or a non-human mammal.
- a non-human mammal may be for example a rodent (preferably a mouse or a rat), an ungulate, or a primate.
- the organism or subject is a plant or algae, including microalgae, or is a fungus.
- the viral vector is an AAV or a lentivirus, and can be part of a vector system as described herein.
- the CRISPR enzyme is a Cas9.
- the expression of the guide sequence is under the control of the T7 promoter and is driven by the expression of T7 polymerase.
- the expression of the guide sequence is under the control of a U6 promoter.
- the CRISPR enzyme comprises one or more mutations in one of the catalytic domains.
- the CRISPR enzyme is a Cas9 nickase.
- the invention in some embodiments comprehends a method of delivering a CRISPR enzyme comprising delivering to a cell a nucleic acid molecule, e.g., DNA, RNA, mRNA encoding the CRISPR enzyme.
- the CRISPR enzyme is a Cas9. This allows for the transient expression of the enzyme thereby reducing toxicity.
- the Cas9 is delivered into the cell in the nucleotide construct that encodes and expresses the Cas9 enzyme.
- the invention also provides methods of preparing the vector systems of the invention, in particular the viral vector systems as described herein.
- the invention in some embodiments comprehends a method of preparing the AAV of the invention comprising transfecting plasmid(s) containing or consisting essentially of nucleic acid molecule(s) coding for the AAV into AAV-infected cells, and supplying AAV rep and/or cap obligatory for replication and packaging of the AAV.
- the AAV rep and/or cap obligatory for replication and packaging of the AAV are supplied by transfecting the cells with helper plasmid(s) or helper virus(es).
- the helper virus is a poxvirus, adenovirus, herpesvirus or baculovirus.
- the poxvirus is a vaccinia virus.
- the cells are mammalian cells. And in some embodiments the cells are insect cells and the helper virus is baculovirus. In other embodiments, the virus is a lentivirus.
- the invention further comprehends a composition of the invention or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme) for use in medicine or in therapy.
- the invention comprehends a composition according to the invention or a CRISPR enzyme thereof (including or alternatively a nucleic acid molecule, e.g., mRNA encoding the CRISPR enzyme) for use in a method according to the invention.
- the invention provides for the use of a composition of the invention or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme) in ex vivo gene or genome editing.
- the invention comprehends use of a composition of the invention or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme) in the manufacture of a medicament for ex vivo gene or genome editing or for use in a method according of the invention.
- the invention thus also envisions a CRISPR-Cas Complex or a component thereof of any of any description herein for use in delivery to and/or a method of treating tissue, or tissue containing cells having a viral infection, such as Hepatitis B Virus; or in preparing or formulating a medicament or pharmaceutical composition for such treatment.
- a CRISPR-Cas Complex or a component thereof of any of any description herein for use in delivery to and/or a method of treating tissue, or tissue containing cells having a viral infection, such as Hepatitis B Virus; or in preparing or formulating a medicament or pharmaceutical composition for such treatment.
- the invention comprehends in some embodiments a composition of the invention or a CRISPR enzyme thereof (including or alternatively mRNA encoding the CRISPR enzyme), wherein the target sequence is flanked at its 3’ end by a 5’ motif termed a proto-spacer adjacent motif or PAM, especially where the Cas9 is (or is derived from) S. pyogenes or S. aureus Cas9.
- a suitable PAM is 5'-NRG or 5'-NNGRR (where N is any Nucleotide) for SpCas9 or SaCas9 enzymes (or derived enzymes), respectively, as mentioned below.
- a suitable PAM is 5'-NRG.
- SpCas9 or SaCas9 are those from or derived from S. pyogenes or S. aureus Cas9.
- Apects of the invention comprehend improving the specificity of a CRISPR enzyme, e.g. Cas9, mediated gene targeting and reducing the likelihood of off-target modification by the CRISPR enzyme, e.g. Cas9.
- the invention in some embodiments comprehends a method of modifying an organism or a non-human organism by minimizing off-target modifications by manipulation of a first and a second target sequence on opposite strands of a DNA duplex in a genomic locus of interest in a cell comprising delivering a non-naturally occurring or engineered composition comprising:
- a first CRISPR-Cas system chimeric RNA (chiRNA) polynucleotide sequence wherein the first polynucleotide sequence comprises: (a) a first guide sequence capable of hybridizing to the first target sequence,
- a second CRISPR-Cas system chiRNA polynucleotide sequence wherein the second polynucleotide sequence comprises:
- a polynucleotide sequence encoding a CRISPR enzyme comprising at least one or more nuclear localization sequences and comprising one or more mutations wherein (a), (b) and (c) are arranged in a 5’ to 3’ orientation, wherein when transcribed, the first and the second tracr mate sequence hybridize to the first and second tracr sequence respectively and the first and the second guide sequence directs sequence-specific binding of a first and a second CRISPR complex to the first and second target sequences respectively, wherein the first CRISPR complex comprises the CRISPR enzyme complexed with (1) the first guide sequence that is hybridized or hybridizable to the first target sequence, and (2) the first tracr mate sequence that is hybridized or hybridizable to the first tracr sequence, wherein the second CRISPR complex comprises the CRISPR enzyme complexed with (1) the second guide sequence that is hybridized or hybridizable to the second target sequence, and (2) the second tracr mate sequence that is hybridized or
- the first nick and the second nick in the DNA is offset relative to each other by at least one base pair of the duplex. In one aspect, the first nick and the second nick are offset relative to each other so that the resulting DNA break has a 3’ overhang. In one aspct, the first nick and the second nick are offset relative to each other so that the resulting DNA break has a 5’ overhang. In one aspect, the first nick and the second nick are positioned relative to each other such that the overhang is at least 1 nucleotide (nt), at least 10 nt, at least 15 nt, at least 26 nt, at least 30 nt, at least 50 nt or more that at least 50 nt. Additional aspects of the invention comprising the resulting offset double nicked DNA strand can be appreciated by one skilled in the art, and exemplary uses of the double nick system are provided herein.
- any or all of the polynucleotide sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA.
- the polynucleotides encoding the sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA and are delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- the first and second tracr mate sequence share 100% identity and/or the first and second tracr sequence share 100% identity.
- the polynucleotides may be comprised within a vector system comprising one or more vectors.
- the CRISPR enzyme is a Cas9 enzyme, e.g. SpCas9.
- the CRISPR enzyme comprises one or more mutations in a catalytic domain, wherein the one or more mutations are selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the CRISPR enzyme has the D10A mutation.
- the first CRISPR enzyme has one or more mutations such that the enzyme is a complementary strand nicking enzyme
- the second CRISPR enzyme has one or more mutations such that the enzyme is a non-complementary strand nicking enzyme.
- the first enzyme may be a non-complementary strand nicking enzyme
- the second enzyme may be a complementary strand nicking enzyme.
- mutations of the CRISPR enzyme when the enzyme is not SpCas9, mutations may be made at any or all residues corresponding to positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 (which may be ascertained for instance by standard sequence comparison tools).
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the invention provides as to any or each or all embodiments herein-discussed wherein the CRISPR enzyme comprises at least one or more, or at least two or more mutations, wherein the at least one or more mutation or the at least two or more mutations is as to D10, E762, H840, N854, N863, or D986 according to SpCas9 protein, e.g., D10A, E762A, H840A, N854A, N863A and/or D986A as to SpCas9, or N580 according to SaCas9, e.g., N580A as to SaCas9, or any corresponding mutation(s) in a Cas9 of an ortholog to Sp or Sa, or the CRISPR enzyme comprises at least one mutation wherein at least H840 or N863A as to Sp Cas9 or N580A as to Sa Cas9 is mutated; e.g., wherein the CRISPR enzyme comprises H840A, or D10A, where
- the first guide sequence directing cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence directing cleavage of the other strand near the second target sequence results in a 5’ overhang.
- the 5’ overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5’ overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs.
- the invention in some embodiments comprehends a method of modifying an organism or a non-human organism by minimizing off-target modifications by manipulation of a first and a second target sequence on opposite strands of a DNA duplex in a genomic locus of interest in a cell comprising delivering a non-naturally occurring or engineered composition comprising a vector system comprising one or more vectors comprising
- components I, II, III and IV are located on the same or different vectors of the system, when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the first and the second guide sequence direct sequence-specific binding of a first and a second CRISPR complex to the first and second target sequences respectively, wherein the first CRISPR complex comprises the CRISPR enzyme complexed with (1) the first guide sequence that is hybridized or hybridizable to the first target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence, wherein the second CRISPR complex comprises the CRISPR enzyme complexed with (1) the second guide sequence that is hybridized or hybridizable to the second target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence, wherein the polynucleotide sequence encoding a CRISPR enzyme is DNA or RNA, and wherein the first guide sequence directs cleavage of one strand of the DNA
- the invention also provides a vector system as described herein.
- the system may comprise one, two, three or four different vectors.
- Components I, II, III and IV may thus be located on one, two, three or four different vectors, and all combinations for possible locations of the components are herein envisaged, for example: components I, II, III and IV can be located on the same vector; components I, II, III and IV can each be located on different vectors; components I, II, II I and IV may be located on a total of two or three different vectors, with all combinations of locations envisaged, etc.
- any or all of the polynucleotide sequence encoding the CRISPR enzyme, the first and the second guide sequence, the first and the second tracr mate sequence or the first and the second tracr sequence is/are RNA.
- the first and second tracr mate sequence share 100% identity and/or the first and second tracr sequence share 100% identity.
- the CRISPR enzyme is a Cas9 enzyme, e.g. SpCas9.
- the CRISPR enzyme comprises one or more mutations in a catalytic domain, wherein the one or more mutations are selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the CRISPR enzyme has the D10A mutation.
- the first CRISPR enzyme has one or more mutations such that the enzyme is a complementary strand nicking enzyme
- the second CRISPR enzyme has one or more mutations such that the enzyme is a non-complementary strand nicking enzyme.
- the first enzyme may be a non-complementary strand nicking enzyme
- the second enzyme may be a complementary strand nicking enzyme.
- one or more of the viral vectors are delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- the first guide sequence directing cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence directing cleavage of other strand near the second target sequence results in a 5’ overhang.
- the 5’ overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5’ overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs.
- the invention in some embodiments comprehends a method of modifying a genomic locus of interest by minimizing off-target modifications by introducing into a cell containing and expressing a double stranded DNA molecule encoding a gene product of interest an engineered, non-naturally occurring CRISPR-Cas system comprising a Cas protein having one or more mutations and two guide RNAs that target a first strand and a second strand of the DNA molecule respectively, whereby the guide RNAs target the DNA molecule encoding the gene product and the Cas protein nicks each of the first strand and the second strand of the DNA molecule encoding the gene product, whereby expression of the gene product is altered; and, wherein the Cas protein and the two guide RNAs do not naturally occur together.
- the Cas protein nicking each of the first strand and the second strand of the DNA molecule encoding the gene product results in a 5’ overhang.
- the 5’ overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5’ overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs.
- Embodiments of the invention also comprehend the guide RNAs comprising a guide sequence fused to a tracr mate sequence and a tracr sequence.
- the Cas protein is codon optimized for expression in a eukaryotic cell, preferably a mammalian cell or a human cell. As explained in more detail below, codon usage can even be optimized for expression in particular cell types e.g. for liver cells.
- the Cas protein is a type II CRISPR-Cas protein, e.g. a Cas9 protein.
- the Cas protein is a Cas9 protein, e.g. SpCas9.
- the Cas protein has one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the Cas protein has the D10A mutation.
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- the invention also comprehends an engineered, non-naturally occurring CRISPR-Cas system comprising a Cas protein having one or more mutations and two guide RNAs that target a first strand and a second strand respectively of a double stranded DNA molecule encoding a gene product in a cell, whereby the guide RNAs target the DNA molecule encoding the gene product and the Cas protein nicks each of the first strand and the second strand of the DNA molecule encoding the gene product, whereby expression of the gene product is altered; and, wherein the Cas protein and the two guide RNAs do not naturally occur together.
- the guide RNAs may comprise a guide sequence fused to a tracr mate sequence and a tracr sequence.
- the Cas protein is a type II CRISPR-Cas protein.
- the Cas protein is codon optimized for expression in a eukaryotic cell, preferably a mammalian cell or a human cell.
- the Cas protein is a type II CRISPR-Cas protein, e.g. a Cas9 protein.
- the Cas protein is a Cas9 protein, e.g. SpCas9.
- the Cas protein has one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the Cas protein has the D10A mutation.
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- the invention also comprehends an engineered, non-naturally occurring vector system comprising one or more vectors comprising:
- the guide RNAs may comprise a guide sequence fused to a tracr mate sequence and a tracr sequence.
- the Cas protein is a type II CRISPR-Cas protein.
- the Cas protein is codon optimized for expression in a eukaryotic cell, preferably a mammalian cell or a human cell.
- the Cas protein is a type II CRISPR-Cas protein, e.g. a Cas9 protein.
- the Cas protein is a Cas9 protein, e.g. SpCas9.
- the Cas protein has one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A and D986A.
- the Cas protein has the D10A mutation.
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein.
- the vectors of the system are viral vectors.
- the vectors of the system are delivered via liposomes, nanoparticles, exosomes, microvesicles, or a gene-gun.
- the invention provides a method of modifying a target polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- said cleavage comprises cleaving one or two strands at the location of the target sequence by said CRISPR enzyme. In some embodiments, said cleavage results in decreased transcription of a target gene. In some embodiments, the method further comprises repairing said cleaved target polynucleotide by homologous recombination with an exogenous template polynucleotide, wherein said repair results in a mutation comprising an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide. In some embodiments, said mutation results in one or more amino acid changes in a protein expressed from a gene comprising the target sequence.
- the method further comprises delivering one or more vectors to said eukaryotic cell, wherein the one or more vectors drive expression of one or more of: the CRISPR enzyme, the guide sequence linked to the tracr mate sequence, and the tracr sequence.
- said vectors are delivered to the eukaryotic cell in a subject.
- said modifying takes place in said eukaryotic cell in a cell culture.
- the method further comprises isolating said eukaryotic cell from a subject prior to said modifying.
- the method further comprises returning said eukaryotic cell and/or cells derived therefrom to said subject.
- the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- the method further comprises delivering one or more vectors to said eukaryotic cells, wherein the one or more vectors drive expression of one or more of: the CRISPR enzyme, the guide sequence linked to the tracr mate sequence, and the tracr sequence.
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- this invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises decreasing expression of a target polynucleotide by using a CRISPR complex that binds to the polynucleotide.
- one or more vectors comprising a tracr sequence, a guide sequence linked to the tracr mate sequence, a sequence encoding a CRISPR enzyme is delivered to a cell.
- the one or more vectors comprises a regulatory element operably linked to an enzyme-coding sequence encoding said CRISPR enzyme comprising a nuclear localization sequence; and a regulatory element operably linked to a tracr mate sequence and one or more insertion sites for inserting a guide sequence upstream of the tracr mate sequence.
- the guide sequence directs sequence-specific binding of a CRISPR complex to a target sequence in a cell.
- the CRISPR complex comprises a CRISPR enzyme complexed with (1) the guide sequence that is hybridized or hybridizable to the target sequence, and (2) the tracr mate sequence that is hybridized or hybridizable to the tracr sequence.
- a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a CRISPR complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein is not produced, or the sequence does not function as the wild-type sequence does. For example, a protein or microRNA coding sequence may be inactivated such that the protein or microRNA is not produced.
- the CRISPR enzyme comprises one or more mutations selected from the group consisting of D10A, E762A, H840A, N854A, N863A or D986A and/or the one or more mutations is in a RuvC1 or HNH domain of the CRISPR enzyme or is a mutation as otherwise as discussed herein.
- the CRISPR enzyme has one or more mutations in a catalytic domain, wherein when transcribed, the tracr mate sequence hybridizes to the tracr sequence and the guide sequence directs sequence-specific binding of a CRISPR complex to the target sequence, and wherein the enzyme further comprises a functional domain.
- the functional domain is a transcriptional activation domain, preferably VP64. In some embodiments, the functional domain is a transcription repression domain, preferably KRAB. In some embodiments, the transcription repression domain is SID, or concatemers of SID (eg SID4X). In some embodiments, the functional domain is an epigenetic modifying domain, such that an epigenetic modifying enzyme is provided. In some embodiments, the functional domain is an activation domain, which may be the P65 activation domain. Thus, in some embodiments a mutated Cas9 enzyme may be fused to a protein domain or functional domain.
- the CRISPR enzyme is a type I or III CRISPR enzyme, but is preferably a type II CRISPR enzyme.
- This type II CRISPR enzyme may be any Cas enzyme.
- a Cas enzyme may be identified as Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system.
- the Cas9 enzyme is from, or is derived from, spCas9 or saCas9.
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes.
- this invention includes many more Cas9s from other species of microbes, such as SpCas9, SaCa9, St1Cas9 and so forth.
- delivery is in the form of a vector which may be a viral vector, such as a lenti- or baculo- or preferably adeno-viral/adeno-associated viral vectors, but other means of delivery are known (such as yeast systems, microvesicles, gene guns/means of attaching vectors to gold nanoparticles) and are provided.
- a vector may mean not only a viral or yeast system (for instance, where the nucleic acids of interest may be operably linked to and under the control of (in terms of expression, such as to ultimately provide a processed RNA) a promoter), but also direct delivery of nucleic acids into a host cell.
- the vector may be a viral vector and this is advantageously an AAV
- viral vectors as herein discussed can be employed, such as lentivirus.
- baculoviruses may be used for expression in insect cells. These insect cells may, in turn be useful for producing large quantities of further vectors, such as AAV or lentivirus vectors adapted for delivery of the present invention.
- a method of delivering the present CRISPR enzyme comprising delivering to a cell mRNA encoding the CRISPR enzyme.
- the CRISPR enzyme is truncated, and/or comprised of less than one thousand amino acids or less than four thousand amino acids, and/or is a nuclease or nickase, and/or is codon-optimized, and/or comprises one or more mutations, and/or comprises a chimeric CRISPR enzyme, and/or the other options as herein discussed.
- AAV and lentiviral vectors are preferred.
- the target sequence is flanked or followed, at its 3’ end, by a PAM suitable for the CRISPR enzyme, typically a Cas and in particular a Cas9.
- a suitable PAM is 5'-NRG or 5'-NNGRR for SpCas9 or SaCas9 enzymes (or derived enzymes), respectively.
- the invention also relates to a method of modifying a cell of a eukaryotic organism by manipulating at least one target viral nucleic acid within the cell, the method comprising introducing into the cell an exogenous composition capable of forming a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR-associated (Cas) (CRISPR-Cas) complex, the composition comprising:
- a tracr sequence wherein when transcribed all or a portion of the tracr sequence is capable of hybridizing to the tracr mate sequence; and (B) a CRISPR/Cas enzyme or a polynucleotide encoding a CRISPR/Cas enzyme, wherein when the CRISPR/Cas system polynucleotide sequences are present as RNA within the cell and the CRISPR/Cas enzyme is present as a protein within the cell:
- the CRISPR/Cas system polynucleotide sequences are associated with the CRISPR/Cas enzyme, so forming a CRISPR/Cas complex; and (iii) the guide sequence hybridizes to a sequence of the at least one target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the at least one sequence of the target viral nucleic acid, whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the invention also relates to an exogenous composition which, when introduced into a cell of a eukaryotic organism, is capable of forming at least one Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR-associated (Cas) (CRISPR-Cas) complex, wherein the complex is capable of modifying the cell by manipulating of at least one target viral nucleic acid within the cell, the composition comprising:
- CRISPR Clustered Regularly Interspersed Short Palindromic Repeats
- Cas CRISPR-Cas
- system polynucleotide sequences comprising:
- a guide sequence which when transcribed is capable of hybridizing to a sequence of the at least one target viral nucleic acid to be manipulated;
- a trans-activating CRISPR RNA (tracr) mate sequence which is linked to the guide sequence;
- a tracr sequence wherein when transcribed all or a portion of the tracr sequence is capable of hybridizing with the tracr mate sequence; and (B) a CRISPR/Cas enzyme or a polynucleotide encoding a CRISPR/Cas enzyme, wherein when the CRISPR/Cas system polynucleotide sequences are present as RNA within the cell and the CRISPR/Cas enzyme is present as a protein within the cell:
- the CRISPR/Cas system polynucleotide sequences are associated with the CRISPR/Cas enzyme, so forming a CRISPR/Cas complex; and (iii) the guide sequence hybridizes to a sequence of the at least one target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the at least one sequence of the target viral nucleic acid, whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the invention also relates to a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR-associated (Cas) (CRISPR-Cas) complex which, when introduced into a cell of a eukaryotic organism, is capable of modifying the cell by manipulating a target viral nucleic acid within the cell, the complex comprising:
- RNA polynucleotide sequences comprising:
- the tracr mate sequence is hybridized to the tracr sequence or portion thereof;
- the CRISPR/Cas system polynucleotide sequences are associated with the CRISPR/Cas enzyme, so forming a CRISPR/Cas complex; and
- the guide sequence hybridizes to a sequence of the target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the sequence of the target viral nucleic acid, whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the invention also relates to a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR-associated (Cas) (CRISPR-Cas) system chimeric RNA polynucleotide molecule (chiRNA) which, when introduced into a cell of a eukaryotic organism, is capable of associating with a CRISPR/Cas enzyme so forming a CRISPR-Cas complex, wherein the CRISPR-Cas complex is capable of modifying the cell by manipulating a target viral nucleic acid within the cell;
- the chiRNA comprising:
- the tracr mate sequence hybridizes to the tracr sequence or portion thereof; b) the chiRNA associates with the CRISPR/Cas enzyme, so forming the CRISPR/Cas complex;
- the guide sequence hybridizes to a sequence of the target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the sequence of the target viral nucleic acid whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the invention also relates to a DNA polynucleotide molecule comprising sequences encoding a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR- associated (Cas) (CRISPR-Cas) system chimeric RNA polynucleotide molecule (chiRNA), wherein upon introduction of said chiRNA into a cell of a eukaryotic organism said chiRNA is capable of associating with a CRISPR/Cas enzyme so forming a CRISPR-Cas complex wherein the CRISPR-Cas complex is capable of modifying the cell by manipulating a target viral nucleic acid within the cell; the chiRNA comprising:
- the tracr mate sequence hybridizes to the tracr sequence or portion thereof; b) the chiRNA associates with the CRISPR/Cas enzyme, so forming the CRISPR/Cas complex;
- the guide sequence hybridizes to a sequence of the target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the sequence of the target viral nucleic acid whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the guide sequence as described herein which is capable of hybridizing to a sequence of a target nucleic acid to be manipulated, and the tracr mate sequence, as described herein, may preferably be linked in a tandem arrangement, wherein the tracr mate sequence comprises a region of sense sequence.
- the tracr sequence, as described herein may comprise a region of antisense sequence which is capable of hybridizing with the region of sense sequence of the tracr mate sequence.
- the region of antisense sequence is hybridized to the region of sense sequence thereby forming a dual RNA molecule; and wherein when said dual RNA molecule binds within the cell to the CRISPR/Cas enzyme so forming a CRISPR-Cas complex, the guide sequence hybridizes to a sequence of the target nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the target nucleic acid, whereupon manipulation of said sequence of said target nucleic acid is effected by the CRISPR/Cas enzyme of the complex.
- certain embodiments may optionally comprise a chimeric single guide RNA molecule (sgRNA).
- sgRNA molecules may preferably comprise, in a tandem arrangement:
- a guide sequence as described herein, which is capable of hybridizing to a sequence of the target nucleic acid to be manipulated
- a tracr mate sequence as described herein, comprising a region of sense sequence
- a tracr sequence as described herein, comprising a region of antisense sequence which is positioned adjacent the linker sequence and which is capable of hybridizing with the region of sense sequence thereby forming a stem-loop.
- the linker may be a polynucleotide linker, optionally comprising GAAA.
- Other linkers such as those described herein, are envisaged.
- the region of antisense sequence is hybridized to the region of sense sequence thereby forming the stem-loop; and wherein when said sgRNA molecule binds within the cell to the CRISPR/Cas enzyme so forming a CRISPR- Cas complex, the guide sequence hybridizes to a sequence of the target nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the target nucleic acid, whereupon manipulation of said sequence of said target nucleic acid is effected by the CRISPR/Cas enzyme of the complex.
- the guide sequence, the trans-activating CRISPR RNA (tracr) mate sequence and the tracr sequence may be non-coding sequences.
- the tracr mate sequence may not be capable of hybridizing to a sequence of the at least one target viral nucleic acid to be manipulated, in contrast to the guide sequence.
- target viral nucleic acids may be performed by the CRISPR/Cas complexes described herein.
- Preferred manipulations of target viral nucleic acids include cleavage of viral DNA, as described in more detail herein.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein manipulation of at least one target viral nucleic acid within the cell is performed.
- multiplexing methods are described and exemplified wherein multiple target viral nucleic acid sequences are manipulated by CRISPR/Cas complexes targeting different sequences of the target viral nucleic acid.
- an“exogenous composition” is an engineered or non-naturally occurring composition.
- the target sequence may be flanked or followed, at its 3’ end, by a protospacer adjacent motif (PAM) suitable for recognition by the CRISPR enzyme of the complex, typically a Cas enzyme and more typically a Cas9 enzyme.
- PAM protospacer adjacent motif
- a suitable PAM is 5'-NRG or 5'-NNGRR for SpCas9 or SaCas9 enzymes (or derived enzymes), respectively.
- Other PAMs, such as are described herein, may be recognized in association with the target sequence depending upon the specific CRISPR enzyme used.
- the CRISPR/Cas enzyme of the exogenous composition may be provided as a polynucleotide sequence which comprises either (a) RNA or (b) DNA wherein the polynucleotide sequence is operably linked to a regulatory element capable of directing expression of RNA encoding the CRISPR/Cas enzyme.
- any of the CRISPR/Cas system polynucleotide sequences of the exogenous composition may comprise either (a) RNA or (b) DNA wherein the polynucleotide sequences are operably linked to one or more regulatory elements capable of directing expression of CRISPR/Cas system RNA polynucleotide sequences.
- Each of the CRISPR/Cas system polynucleotide sequences of the exogenous composition may consist of RNA and wherein the CRISPR/Cas system polynucleotide sequences may comprise a chimeric RNA polynucleotide molecule comprising the guide sequence, the tracr mate sequence and the tracr sequence.
- Each of the CRISPR/Cas system polynucleotide sequences of the exogenous composition may be provided as DNA polynucleotide sequences further comprising at least one regulatory element operably linked to polynucleotide sequences encoding CRISPR/Cas system RNA polynucleotide sequences and capable of directing expression thereof, and wherein the CRISPR/Cas system RNA polynucleotide sequences may comprise a chimeric RNA polynucleotide (chiRNA) molecule comprising the guide sequence, the tracr mate sequence and the tracr sequence.
- chiRNA chimeric RNA polynucleotide
- compositions, complexes, chiRNA or DNA polynucleotide molecules each of the guide sequence, the tracr mate sequences and the tracr sequence may be arranged in a 5’ to 3’ orientation; or each of the guide sequence, the tracr mate sequences and the tracr sequence may be arranged in a 3’ to 5’ orientation.
- the CRISPR/Cas system polynucleotide sequences or polynucleotide sequences encoding the CRISPR/Cas system polynucleotide sequences and/or (b) polynucleotide sequences encoding the CRISPR/Cas enzyme may be comprised in one or more recombinant viral vectors.
- the polynucleotide sequences of (a) may be located on the same or different recombinant viral vector as polynucleotide sequences of (b).
- chiRNAs or the DNA polynucleotide molecules described herein may be comprised in a recombinant viral vector.
- the viral vector may be a retroviral vector, optionally a lentiviral vector, a baculoviral vector, a herpes simplex virus vector, an adenoviral vector, an adenoassociated viral (AAV) vector such as AAV8 vector, or a poxvirus such as a vaccinia virus.
- retroviral vector optionally a lentiviral vector, a baculoviral vector, a herpes simplex virus vector, an adenoviral vector, an adenoassociated viral (AAV) vector such as AAV8 vector, or a poxvirus such as a vaccinia virus.
- the CRISPR/Cas system polynucleotide sequences or polynucleotide sequences encoding the CRISPR/Cas system polynucleotide sequences and/or (b) polynucleotide sequences encoding the CRISPR/Cas enzyme may be delivered to the cell of the organism via liposomes, nanoparticles, exosomes, microvesicles or a gene-gun.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein may be 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein hybridization between the tracr sequence and the tracr mate sequence may produce a transcript having secondary structure, preferably a hairpin.
- the tracr sequence may comprise one or more regions capable of forming secondary structure, preferably a hairpin.
- the tracr sequence may comprise one or more hairpins, two or more hairpins, three or more hairpins, four or more hairpins, five or more hairpins, or at most five hairpins.
- the tracr sequence has one or more hairpins and is 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length; the guide sequence is between 10 to 30 nucleotides in length, the CRISPR/Cas enzyme is a Type II Cas9 enzyme.
- preferred CRISPR/Cas enzymes are Type II CRISPR/Cas enzymes, preferably Type II Cas9 CRISPR/Cas enzymes or biologically active fragments or derivatives thereof.
- the guide sequence may be 10 to 30 nucleotides in length.
- the CRISPR/Cas enzyme may be a Cas9 enzyme of Streptococcus pyogenes or a Cas9 enzyme of Streptococcus aureus, or a biologically active fragment or derivative thereof. Described herein are specific NLS sequences which may be applied to the CRISPR/Cas enzymes.
- the CRISPR/Cas enzyme may further comprise one or more nuclear localization sequences (NLSs) capable of driving the accumulation of the CRISPR/Cas enzyme to a detectible amount in the nucleus of the cell of the organism.
- the CRISPR/Cas enzyme may comprise two or more NLSs, three or more NLSs, four or more NLSs, five or more NLSs, six or more NLSs, seven or more NLSs, eight or more NLSs, nine or more NLSs, or ten or more NLSs.
- the CRISPR/Cas enzyme may comprise at least one NLS at or near the amino-terminus of the CRISPR/Cas enzyme and/or at least one NLS at or near the carboxy-terminus the CRISPR/Cas enzyme.
- the guide sequence when present as RNA within the cell the guide sequence may be capable of hybridizing to a sequence of a target viral nucleic acid which is an episomal nucleic acid molecule which is not integrated into the genome of the organism and wherein said manipulation is a manipulation of the episomal viral nucleic acid molecule, preferably wherein the episomal nucleic acid molecule is a double-stranded DNA polynucleotide molecule.
- the double-stranded DNA polynucleotide may be an episomal viral nucleic acid which is a covalently closed circular DNA (cccDNA).
- the double-stranded DNA polynucleotide may preferably be an episomal viral nucleic acid which is a cccDNA.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein may be capable of reducing the amount of episomal viral nucleic acid molecule in a cell of the organism compared to the amount of episomal viral nucleic acid molecule in a cell of the organism in the absence of providing the complex.
- the CRISPR/Cas complex may be capable of manipulating the episomal nucleic acid molecule to promote degradation of the episomal nucleic acid molecule.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein when present as RNA within in the cell the guide sequence may be capable of hybridizing to a sequence of the target viral nucleic acid which is integrated into the genome of the organism and wherein said manipulation is a manipulation of the integrated target nucleic acid.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein when formed within the cell the CRISPR/Cas complex may be capable of manipulating the integrated nucleic acid to promote excision of all or part of the target viral nucleic acid from the genome of the organism.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein may be used in the manipulation of at least one target viral nucleic acid within the cell of a eukaryotic organism as described herein. Such a use may be in vitro and ex vivo.
- At least one target viral nucleic acid may be comprised in a double-stranded DNA molecule polynucleotide cccDNA and/or viral DNA integrated into the genome of the organism, in which case the manipulation of the at least one target viral nucleic acid by the CRISPR-Cas complex comprises cleavage of viral cccDNA and/or integrated viral DNA.
- the cleavage may comprise one or more double-strand break(s) introduced into the viral cccDNA and/or integrated viral DNA, optionally at least two double-strand break(s).
- the cleavage may comprise one or more single-strand break(s) introduced into the viral cccDNA and/or integrated viral DNA, optionally at least two single-strand break(s).
- one or more double-strand break(s) and/or one or more single-strand break(s) may lead to the formation of one or more insertion and deletion mutations (INDELs) in the target viral cccDNA sequences and/or target integrated viral DNA sequences.
- INDELs insertion and deletion mutations
- cleavage of the viral cccDNA sequences or viral DNA sequences integrated in the genome of the organism may lead to excision of viral polynucleotide sequences from the cccDNA thereby reducing viral infection or excision of viral DNA sequences from the genome of the organism thereby reducing viral infection.
- the composition may comprise components of at least two types of CRISPR/Cas complex, wherein each type of complex comprises a guide sequence capable of hybridizing to different sequences of the target nucleic acid, wherein said cleavage is cleavage of first and second strands of the viral DNA via at least two double-strand breaks introduced into the viral cccDNA and/or into or adjacent viral DNA integrated into the genome of the organism;
- a first double-strand break is introduced at a first position of the DNA by manipulating a first target sequence and a second double-strand break is introduced at a second position of the DNA by manipulating a second target sequence;
- first and second double-strand breaks viral sequences between first and second double-strand breaks are excised from cccDNA and/or from the genomic DNA of the organism.
- the composition may comprise components of at least four types of CRISPR/Cas complex, wherein each type of complex comprises a guide sequence capable of hybridizing to different sequences of the target nucleic acid, wherein said cleavage is via at least two pairs of single-strand breaks introduced into the viral cccDNA and/or introduced into or adjacent viral DNA integrated into the genome of the organism;
- a first single-strand break is introduced into a first strand of DNA by manipulating a first target sequence to create a first nick and a second single-strand break is introduced into the opposite strand of DNA by manipulating a second target sequence to create a second nick;
- a third single-strand break is introduced into said first strand of DNA by manipulating a third target sequence to create a third nick and a fourth single-strand break is introduced into said opposite strand of DNA by manipulating a fourth target sequence to create a fourth nick; wherein upon introduction of first and second pairs of single-strand breaks viral sequences between first and second pairs of single-strand breaks are excised from cccDNA and/or from the genomic DNA of the organism.
- the first and second nicks may be offset relative to each other by at least one base pair of the duplex creating a first overhang, and wherein third and fourth nicks are offset relative to each other by at least one base pair of the duplex creating a second overhang.
- the ends of the cleaved first strand of DNA may be ligated together and the ends of the cleaved second strand of DNA may be ligated together thus reforming unbroken first and second strands.
- the single-strand break(s) may be introduced into DNA by a nickase enzyme which is a modified Cas9 enzyme comprising a substitution leading to catalytic inactivation of the HNH nuclease domain or the RuvC nuclease domain of Cas9; optionally wherein the substitution is at position D10 of SpCas9, preferably a D10A substitution or substitution of a residue corresponding to position D10 in a SpCas9-related enzyme, or wherein the substitution is at position H840 of SpCas9, preferably a H840A substitution or substitution of a residue corresponding to position H840 in a SpCas9-related enzyme.
- a nickase enzyme which is a modified Cas9 enzyme comprising a substitution leading to catalytic inactivation of the HNH nuclease domain or the RuvC nuclease domain of Cas9; optionally wherein the substitution is at position D10 of SpCas9, preferably a D10A substitution or
- target viral nucleic acid may be cccDNA and/or viral DNA integrated into the genome of the organism and wherein said manipulation comprises insertion of one or more nucleotides into or adjacent viral cccDNA sequences or into or adjacent integrated viral DNA sequences, deletion of one or more nucleotides of viral cccDNA or of integrated viral DNA, translocation of viral cccDNA sequences or of integrated viral DNA sequences, repression of transcription of viral cccDNA sequences or of integrated viral DNA sequences, and/or inactivation of viral cccDNA sequences or of integrated viral DNA sequences.
- Repression of transcription of viral cccDNA sequences and/or integrated viral DNA sequences may be effected by the action of a CRISPR-Cas system comprising a CRISPR enzyme fused to one or more transcriptional repressor domains, optionally wherein the one or more transcriptional repressor domains comprises KRAB, SID and/or SID4X, preferably wherein the CRISPR enzyme is a Cas9 enzyme.
- the manipulation may comprise activation of genes carried by viral cccDNA, e.g.
- a CRISPR-Cas system comprising a deactivated CRISPR enzyme fused to one or more transcriptional activation domains such as VP64, preferably the viral cccDNA is HBV and activation results in increased activity of APOBEC3A and/or APOBEC3B, and or other viral interferon-stimulated genes (ISGs), thereby leading to a reduction in HBV cccDNA.
- a CRISPR-Cas system comprising a deactivated CRISPR enzyme fused to one or more transcriptional activation domains such as VP64, preferably the viral cccDNA is HBV and activation results in increased activity of APOBEC3A and/or APOBEC3B, and or other viral interferon-stimulated genes (ISGs), thereby leading to a reduction in HBV cccDNA.
- Manipulation of nucleotide sequences of viral cccDNA or integrated viral DNA may lead to disruption of one or more viral open reading
- manipulation of said viral cccDNA may lead to a reduction in the level of one or more of viral rcDNA, viral cccDNA and viral ssDNA compared to the level in the absence of the CRISPR/Cas complex.
- the effect of said manipulation may comprise inhibiting the production of new virions.
- the effect of said modifying may comprise removing viral sequences from said organism thereby reducing viral infection.
- the described composition may further comprises components of one or more additional CRISPR/Cas complexes, or components required for the assembly of one or more additional CRISPR/Cas complexes, wherein each type of complex comprises a different guide sequence capable hybridizing to a different sequence of the target nucleic acid within the cell.
- any of the methods and compositions described herein may be additionally characterized by one or more additional CRISPR/Cas complexes each of which one or more additional CRISPR/Cas complexes may be characterized as described herein.
- the target viral nucleic acid may be a hepatitis B virus (HBV) nucleic acid.
- HBV hepatitis B virus
- the cell of the organism is a cell capable of being infected by HBV.
- the cell may be a cell which expresses the sodium taurocholate cotransporting polypeptide (NTCP).
- NTCP sodium taurocholate cotransporting polypeptide
- the cell may be a hepatocyte, preferably a primary hepatocyte, more preferably a human hepatocyte or a human primary hepatocyte, a HepG2.2.15 or a HepG2-hNTCP cell.
- the guide sequence may be capable of hybridizing with target viral nucleic acids of HBV ORF S, ORF C, ORF P, or ORF X, preferably ORF C, optionally wherein the sequence of the guide sequence comprises 5'-gggcgcacctctctttacg-3', 5'-cctctgccgatccatactg-3' or 5’-taaagaatttggagctactg-3’.
- the target viral nucleic acid may be a human papillomavirus (HPV) nucleic acid, an Epstein Barr virus (EBV) nucleic acid, a herpes simplex virus (HSV) nucleic acid, or a varicella zoster virus (VZV) nucleic acid.
- HPV human papillomavirus
- EBV Epstein Barr virus
- HSV herpes simplex virus
- VZV varicella zoster virus
- compositions, complexes, chiRNAs, DNA polynucleotide molecules or uses described herein said manipulation may be performed in vitro or ex vivo.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein may be described for use as a medicament.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein may be described for use in the treatment of a viral infection.
- a treatment may be of a viral infection wherein target viral sequences are comprised in an episomal nucleic acid molecule which is not integrated into the genome of the organism, such as a covalently closed circular DNA (cccDNA).
- the viral infection may caused by hepatitis B virus (HBV), human papillomavirus (HPV), Epstein Barr virus (EBV), herpes simplex virus (HSV) or varicella zoster virus (VZV).
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein may be described for use as a medicament or for use in the treatment of a viral infection wherein the organism is a mammal such as a human.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein may be described for use in the manufacture of a medicament.
- compositions, complexes, chiRNAs or DNA polynucleotide molecules described herein may be described for use in the manufacture of a medicament for the treatment of a viral infection.
- a treatment may be of a viral infection wherein target viral sequences are comprised in an episomal nucleic acid molecule which is not integrated into the genome of the organism, such as a covalently closed circular DNA (cccDNA).
- the viral infection may be caused by hepatitis B virus (HBV) or the viral infection may be caused by human papillomavirus (HPV), Epstein Barr virus (EBV), herpes simplex virus (HSV), or varicella zoster virus (VZV).
- HBV hepatitis B virus
- HPV human papillomavirus
- EBV Epstein Barr virus
- HSV herpes simplex virus
- VZV varicella zoster virus
- the organism may be a mammal such as a human.
- the invention also relates to a method of modifying a cell, of a eukaryotic organism by manipulating at least one target viral nucleic acid within the cell, the method comprising introducing into the cell an exogenous composition capable of forming a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR-associated (Cas) (CRISPR-Cas) complex, the composition comprising: (A) CRISPR-Cas system polynucleotide sequences comprising:
- a tracr sequence wherein when transcribed all or a portion of the tracr sequence is capable of hybridizing to the tracr mate sequence; and (B) a CRISPR/Cas enzyme or a polynucleotide encoding a CRISPR/Cas enzyme, wherein when the CRISPR/Cas system polynucleotide sequences are present as RNA within the cell and the CRISPR/Cas enzyme is present as a protein within the cell:
- the CRISPR/Cas system polynucleotide sequences are associated with the CRISPR/Cas enzyme, so forming a CRISPR/Cas complex; and (iii) the guide sequence hybridizes to a sequence of the at least one target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the at least one sequence of the target viral nucleic acid, whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the cell may be a cell which expresses the sodium taurocholate cotransporting polypeptide (NTCP), preferably the cell may be a hepatocyte; the tracr sequence has one or more hairpins and is 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length; the guide sequence is between 10 to 30 nucleotides in length, the CRISPR/Cas enzyme is a Type II Cas9 enzyme; the target viral nucleic acid is comprised in an HBV episomal nucleic acid which is not integrated into the genome of the organism and is an HBV double-stranded covalently closed circular DNA (cccDNA).
- cccDNA HBV double-stranded covalently closed circular DNA
- the invention also relates to an exogenous composition which, when introduced into a cell of a eukaryotic organism, is capable of forming at least one Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR-associated (Cas) (CRISPR-Cas) complex, wherein the complex is capable of modifying the cell by manipulating at least one target viral nucleic acid within the cell, the composition comprising:
- CRISPR Clustered Regularly Interspersed Short Palindromic Repeats
- Cas CRISPR-Cas
- system polynucleotide sequences comprising:
- a tracr sequence wherein when transcribed all or a portion of the tracr sequence is capable of hybridizing with the tracr mate sequence; and (B) a CRISPR/Cas enzyme or a polynucleotide encoding a CRISPR/Cas enzyme, wherein when the CRISPR/Cas system polynucleotide sequences are present as RNA within the cell and the CRISPR/Cas enzyme is present as a protein within the cell:
- the CRISPR/Cas system polynucleotide sequences are associated with the CRISPR/Cas enzyme, so forming a CRISPR/Cas complex; and (iii) the guide sequence hybridizes to a sequence of the at least one target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the at least one sequence of the target viral nucleic acid, whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the cell may be a cell which expresses the sodium taurocholate cotransporting polypeptide (NTCP), preferably the cell may be a hepatocyte; the tracr sequence has one or more hairpins and is 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length; the guide sequence is between 10 to 30 nucleotides in length, the CRISPR/Cas enzyme is a Type II Cas9 enzyme; the target viral nucleic acid is comprised in an HBV episomal nucleic acid which is not integrated into the genome of the organism and is an HBV double-stranded covalently closed circular DNA (cccDNA).
- cccDNA HBV double-stranded covalently closed circular DNA
- the invention also relates to a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR-associated (Cas) (CRISPR-Cas) complex which, when introduced into a cell of a eukaryotic organism, is capable of modifying the cell by manipulating a target viral nucleic acid within the cell, the complex comprising:
- RNA polynucleotide sequences comprising:
- the CRISPR/Cas system polynucleotide sequences are associated with the CRISPR/Cas enzyme, so forming a CRISPR/Cas complex; and (iii) the guide sequence hybridizes to a sequence of the target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the sequence of the target viral nucleic acid, whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the cell may be a cell which expresses the sodium taurocholate cotransporting polypeptide (NTCP), preferably the cell may be a hepatocyte; the tracr sequence has one or more hairpins and is 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length; the guide sequence is between 10 to 30 nucleotides in length, the CRISPR/Cas enzyme is a Type II Cas9 enzyme; the target viral nucleic acid is comprised in an HBV episomal nucleic acid which is not integrated into the genome of the organism and is an HBV double-stranded covalently closed circular DNA (cccDNA).
- cccDNA HBV double-stranded covalently closed circular DNA
- the invention also relates to a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR-associated (Cas) (CRISPR-Cas) system chimeric RNA polynucleotide molecule (chiRNA) which, when introduced into a cell of a eukaryotic organism, is capable of associating with a CRISPR/Cas enzyme so forming a CRISPR-Cas complex, wherein the CRISPR-Cas complex is capable of modifying the cell by manipulating a target viral nucleic acid within the cell;
- the chiRNA comprising:
- the tracr mate sequence hybridizes to the tracr sequence or portion thereof; b) the chiRNA associates with the CRISPR/Cas enzyme, so forming the CRISPR/Cas complex;
- the guide sequence hybridizes to a sequence of the target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the sequence of the target viral nucleic acid whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the cell may be a cell which expresses the sodium taurocholate cotransporting polypeptide (NTCP), preferably the cell may be a hepatocyte; the tracr sequence has one or more hairpins and is 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length; the guide sequence is between 10 to 30 nucleotides in length, the CRISPR/Cas enzyme is a Type II Cas9 enzyme; the target viral nucleic acid is comprised in an HBV episomal nucleic acid which is not integrated into the genome of the organism and is an HBV double-stranded covalently closed circular DNA (cccDNA).
- a chiRNA may be additionally characterized, as appropriate, in accordance with any of the further and particular features as described herein.
- the invention also relates to a DNA polynucleotide molecule comprising sequences encoding a Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)- CRISPR- associated (Cas) (CRISPR-Cas) system chimeric RNA polynucleotide molecule (chiRNA) wherein upon introduction of said chiRNA into a cell of a eukaryotic organism said chiRNA is capable of associating with a CRISPR/Cas enzyme so forming a CRISPR-Cas complex, wherein the CRISPR-Cas complex is capable of modifying the cell by manipulating a target viral nucleic acid within the cell; the chiRNA comprising:
- the tracr mate sequence hybridizes to the tracr sequence or portion thereof; b) the chiRNA associates with the CRISPR/Cas enzyme, so forming the CRISPR/Cas complex;
- the guide sequence hybridizes to a sequence of the target viral nucleic acid thereby directing sequence-specific binding of the CRISPR/Cas complex to the sequence of the target viral nucleic acid whereupon said sequence of said target viral nucleic acid is manipulated by the CRISPR/Cas enzyme of the complex.
- the cell may be a cell which expresses the sodium taurocholate cotransporting polypeptide (NTCP), preferably the cell may be a hepatocyte; the tracr sequence has one or more hairpins and is 30 or more nucleotides in length, 40 or more nucleotides in length, or 50 or more nucleotides in length; the guide sequence is between 10 to 30 nucleotides in length, the CRISPR/Cas enzyme is a Type II Cas9 enzyme; the target viral nucleic acid is comprised in an HBV episomal nucleic acid which is not integrated into the genome of the organism and is an HBV double-stranded covalently closed circular DNA (cccDNA).
- cccDNA HBV double-stranded covalently closed circular DNA
- FIG. 1 shows a schematic model of the CRISPR system.
- the Cas9 nuclease from Streptococcus pyogenes (yellow) is targeted to genomic DNA by a synthetic guide RNA (sgRNA) consisting of a 20-nt guide sequence (blue) and a scaffold (red).
- the guide sequence base-pairs with the DNA target (blue), directly upstream of a requisite 5’-NGG protospacer adjacent motif (PAM; magenta), and Cas9 mediates a double-stranded break (DSB) ⁇ 3 bp upstream of the PAM (red triangle).
- PAM magenta
- Figure 2A-F shows an exemplary CRISPR system, a possible mechanism of action, an example adaptation for expression in eukaryotic cells, and results of tests assessing nuclear localization and CRISPR activity.
- Figure 3A-D shows results of an evaluation of SpCas9 specificity for an example target.
- Figure 4A-G show an exemplary vector system and results for its use in directing homologous recombination in eukaryotic cells.
- Figure 5 provides a table of protospacer sequences and summarizes modification efficiency results for protospacer targets designed based on exemplary S. pyogenes and S. thermophilus CRISPR systems with corresponding PAMs against loci in human and mouse genomes.
- Figure 6A-C shows a comparison of different tracrRNA transcripts for Cas9- mediated gene targeting.
- Figure 7 shows a schematic of a surveyor nuclease assay for detection of double strand break-induced micro-insertions and–deletions.
- Figure 8A-B shows exemplary bicistronic expression vectors for expression of CRISPR system elements in eukaryotic cells.
- Figure 9A-C shows histograms of distances between adjacent S. pyogenes SF370 locus 1 PAM (NGG) ( Figure 9A) and S. thermophilus LMD9 locus 2 PAM (NNAGAAW) ( Figure 9B) in the human genome; and distances for each PAM by chromosome (Chr) ( Figure 9C).
- Figure 10A-D shows an exemplary CRISPR system, an example adaptation for expression in eukaryotic cells, and results of tests assessing CRISPR activity.
- Figure 11A-C shows exemplary manipulations of a CRISPR system for targeting of genomic loci in mammalian cells.
- Figure 12A-B shows the results of a Northern blot analysis of crRNA processing in mammalian cells.
- Figure 13A-B shows an exemplary selection of protospacers in the human PVALB and mouse Th loci.
- Figure 14 shows example protospacer and corresponding PAM sequence targets of the S. thermophilus CRISPR system in the human EMX1 locus.
- Figure 15 provides a table of sequences for primers and probes used for Surveyor, RFLP, genomic sequencing, and Northern blot assays.
- Figure 16A-C shows exemplary manipulation of a CRISPR system with chimeric RNAs and results of SURVEYOR assays for system activity in eukaryotic cells.
- Figure 17A-B shows a graphical representation of the results of SURVEYOR assays for CRISPR system activity in eukaryotic cells.
- Figure 18 shows an exemplary visualization of some S. pyogenes Cas9 target sites in the human genome using the UCSC genome browser.
- Figure 19A-D shows a circular depiction of the phylogenetic analysis revealing five families of Cas9s, including three groups of large Cas9s ( ⁇ 1400 amino acids) and two of small Cas9s ( ⁇ 1100 amino acids).
- Figure 20A-F shows the linear depiction of the phylogenetic analysis revealing five families of Cas9s, including three groups of large Cas9s ( ⁇ 1400 amino acids) and two of small Cas9s ( ⁇ 1100 amino acids).
- Figure 21A-D shows genome editing via homologous recombination.
- Figure 22A-B shows single vector designs for SpCas9.
- Figure 23 shows a graph representing the length distribution of Cas9 orthologs.
- Figure 24A-M shows sequences where the mutation points are located within the SpCas9 gene.
- Figure 25A shows the Conditional Cas9, Rosa26 targeting vector map.
- Figure 25B shows the Constitutive Cas9, Rosa26 targeting vector map.
- Figure 26 shows a schematic of the important elements in the Constitutive and Conditional Cas9 constructs.
- Figure 27 shows delivery and in vivo mouse brain Cas9 expression data.
- Figure 28 shows RNA delivery of Cas9 and chimeric RNA into cells
- A Delivery of a GFP reporter as either DNA or mRNA into Neuro-2A cells.
- B Delivery of Cas9 and chimeric RNA against the Icam2 gene as RNA results in cutting for one of two spacers tested.
- C Delivery of Cas9 and chimeric RNA against the F7 gene as RNA results in cutting for one of two spacers tested.
- Figure 29 shows how DNA double-strand break (DSB) repair promotes gene editing.
- NHEJ error-prone non-homologous end joining
- Indel random insertion/deletion
- a repair template in the form of a plasmid or single-stranded oligodeoxynucleotides (ssODN) can be supplied to leverage the homology-directed repair (HDR) pathway, which allows high fidelity and precise editing.
- FIG. 30A-C shows anticipated results for HDR in HEK and HUES9 cells.
- Either a targeting plasmid or an ssODN (sense or antisense) with homology arms can be used to edit the sequence at a target genomic locus cleaved by Cas9 (red triangle).
- a targeting plasmid or an ssODN (sense or antisense) with homology arms can be used to edit the sequence at a target genomic locus cleaved by Cas9 (red triangle).
- Applicants introduced a HindIII site (red bar) into the target locus, which was PCR- amplified with primers that anneal outside of the region of homology. Digestion of the PCR product with HindIII reveals the occurrence of HDR events.
- ssODNs oriented in either the sense or the antisense (s or a) direction relative to the locus of interest, can be used in combination with Cas9 to achieve efficient HDR-mediated editing at the target locus.
- Example of the effect of ssODNs on HDR in the EMX1 locus is shown using both wild-type Cas9 and Cas9 nickase (D10A). Each ssODN contains homology arms of 90 bp flanking a 12-bp insertion of two restriction sites.
- Figure 31A-C shows the repair strategy for Cystic Fibrosis delta F508 mutation.
- Figure 32A-B (a) shows a schematic of the GAA repeat expansion in FXN intron 1 and (b) shows a schematic of the strategy adopted to excise the GAA expansion region using the CRISPR/Cas system.
- Figure 33 shows a screen for efficient SpCas9 mediated targeting of Tet1 -3 and Dnmt1, 3a and 3b gene loci. Surveyor assay on DNA from transfected N2A cells demonstrates efficient DNA cleavage by using different gRNAs.
- Figure 34 shows a strategy of multiplex genome targeting using a 2-vector system in an AAV1/2 delivery system. Tet1-3 and Dnmt1, 3a and 3b gRNA under the control of the U6 promoter. GFP-KASH under the control of the human synapsin promoter. Restriction sides shows simple gRNA replacement strategy by subcloning. HA-tagged SpCas9 flanked by two nuclear localization signals (NLS) is shown. Both vectors are delivered into the brain by AAV1/2 virus in a 1:1 ratio.
- NLS nuclear localization signals
- Figure 35 shows verification of multiplex DNMT targeting vector #1 functionality using Surveyor assay.
- N2A cells were co-transfected with the DNMT targeting vector #1 (+) and the SpCas9 encoding vector for testing SpCas9 mediated cleavage of DNMTs genes family loci.
- gRNA only (-) is negative control. Cells were harvested for DNA purification and downstream processing 48 h after transfection.
- Figure 36 shows guide RNA design for HBV targeting CRISPR constructs. Cleavage sites were optimized for low homology to human genomic DNA and conservation (guides 13-24)
- Figure 37 shows a scheme for quantifying cccDNA in response to Cas9 treatment, 1st round of experiments.
- Figure 38 shows qPCR results from 1st round of HepG2.2.15 experiments.
- Figure 39 shows a Surveyor assay for nuclease activity. Indels form as the result of imperfect NHEJ events due to repeated DSB formation from nuclease activity. For Cas9 targeted genomic loci indel formation at rates 10-30% are often observed and can approach 50%.
- Figure 40 shows representative surveyor for 1st set of HepG2.2.15 experiments.
- Figure 41 shows HepG2.2.15 HBV quantification scheme, an experimental design motivated by noise of initial data sets.
- Figure 42 shows HepG2.2.15 results using sorting based normalization.
- Figure 43 shows low levels of indels observed with guides targeting conserved HBV sequences in 2nd round of HepG2.2.15 experiments.
- Figure 44 shows HepG2 co-transfection experiments.
- Figure 45 shows HDD data for Cohort 1.
- Figure 46 shows HDD data for Cohort 2.
- Figure 47 shows HDD data for Cohort 2.
- Figure 48 shows HDD data for Cohort 2.
- Figure 49 shows Cohort 2-liver analysis 9d post HDD.
- Figure 50 shows Cohort 2-liver analysis 9d post HDD.
- Figure 51 shows low/no indels formed during HDD experiments. Predicted band sizes for guide 21 formation: 235 + 272 + 507 bp (undigested PCR product).
- Figure 52 shows HDD Cohort 3 Results: HBsAg.
- Figure 53 shows HDD Cohort 3 Results: Viremia.
- Figure 54 shows HDD Cohort 3 Results: HBV in Liver
- Figure 55 shows HDD Cohort 3 Results: Luciferase normalized to GAPDH.
- Figure 56 shows despite low/no indel formation, effects on HBV are dependent on Cas9 nuclease activity.
- Figure 57A-B shows (a) schematic of HBV life cycle and putative anti-HBV effect of CRISPR constructs; Cas9-mediated DSB formation should linearize the small, episomal cccDNA repeatedly, potentially leading to indel formation (generating less-fit viral mutants) or even degradation. (b) (left) HBV genome organization and location of target sequences for several tested guide RNA constructs, (right) Table of all possible CRISPR target sites in each HBV ORF, including number of possible target sites in conserved genomic regions.
- Figure 58A-D shows (a) guide RNAs targeting conserved regions target large majority of patient-derived virus genomes. All whole-genome sequences from HBV isolates were queried from GenBank to determine the conservation of 23 nt target sequence (20 nt spacer + 3 nt PAM) for 3 guides (6, 17, and 21).
- x-axis denotes number of allowed mismatches
- y- axis denotes the percentage of sequenced isolates that fall within this number of mismatches to native sgRNA target site
- Figure 59A-C shows (a) Experimental schematic for hydrodynamic injection experiments of (b-c): 1.3x WT HBV and sgRNA/Cas9-2A-mCherry are delivered to the livers of immunodeficient NRG mice via hydrodynamic injection, and (b) HBsAg and (c) secreted HBV titer are quantified in mouse blood at 2 and 4 days post injection.
- 21M guide RNA with 5 bp mismatch from g21. Data shown are from one representative experiment, and consistent across multiple experiments.
- UT ‘untargeted’ guide RNA (no target sequence in HBV genome).
- FIG. 60A-B shows (a) the HBV life cycle within HepG2.2.15 cells.
- HepG2.2.15 cells contain genomically integrated linear 1.3x WT HBV sequences, from which viral proteins and cccDNA are constitutively produced via transcription followed by translation (proteins) or reverse transcription and nuclear re-import (cccDNA).
- the persistent HBV production in this system enables assay of the long-term anti-HBV effects of CRISPR/Cas systems targeting viral DNA; and (b) schematic of lentiviral vector and experimental strategy for sustained CRISPR expression within HepG2.2.15 cells.
- Figure 61A-B shows that HBV-targeting CRISPR reduces HBV DNA and cccDNA dependent upon HBV-specific guide RNA and Cas9 activity.
- Figure 62A-C shows HBV products are reduced upon long-term CRISPR/Cas expression.
- Stable lines of HepG2.2.15 cells expressing 3 different on-target guides with nuclease-active or nuclease-dead Cas9, along with 3 non-HBV targeting guides, were seeded at consistent cell densities (20,000 cells/cm2) and allowed to secrete virions and viral proteins into the supernatant. 72h later, supernatant was collected and (a) viral titer and (b) HBeAg (a secreted protein produced from the C ORF, used clinically as a marker of active viral replication) were quantified (c).
- HBeAg a secreted protein produced from the C ORF, used clinically as a marker of active viral replication
- FIG. 63A-B shows that CRISPR constructs targeting HBV cause large and progressive reduction in (a) cccDNA and (b) total HBV DNA levels that is dependent on successful targeting of viral DNA.
- Figure 64A-B shows HBV DNA and cccDNA reductions upon long-term CRISPR/Cas expression are produced with multiple guides.
- Figure 65 shows Southern blot of HBV DNA.
- Figure 66 shows Southern blot of HBV DNA.
- Figure 67 shows Surveyor assay to detect indel formation in total HBV DNA (top) and episomal HBV DNA, enriched by treatment with plasmid-safe DNase (bottom); lentiviral transduction enables high levels of cutting of HBV.
- Expected PCR product sizes for g6, g17 and g21 are respectively 599, 946 and 507 bp.
- Approximate sizes of surveyor digestion products for g6, g17 and g21 are respectively: 429 + 170, 570 + 376, 275 + 232.
- Figure 68 shows Immunofluorescent imaging of HBV Core protein demonstrates large reduction in Core staining upon targeting by g17 specifically against the Core ORF.
- FIG. 69 shows schematics for de novo infection experiments.
- Hep-NTCP cells were transduced with Cas9/gRNA constructs containing either g17 or g17M (mutant of g17, resulting in 5bp DNA bulge upon complexation to HBV DNA target), and either WT or dead Cas9, and then selected with puromycin to generate stable lines.
- (Left) These cells were seeded in coculture with HepG2.2.15 cells, which produce infectious HBV virions that then infect the transduced Hep-NTCP cells. After transient coculture, HepG2.2.15 cells were killed by puromycin selection, and Hep-NTCP cells were cultured for several days and then harvested to assay viral parameters.
- Light These cells were infected with HBV virions derived from HBV+ patient plasma, then cultured and harvested to assay viral parameters.
- Figure 70A-D shows HBsAg secretion (a), cccDNA copies (b), levels of HBV 3.5kb RNA relative to 5 bp mismatch control (c), and titer of HBV DNA in culture medium (d).
- the data show that Cas9/g17 reduce HBV infection in de novo infection context.
- 17M 5 bp mismatch control.
- 17D dead Cas9 with g17. Data shown are from one representative experiment, and consistent across experiments.
- FIG 71A-C shows CRISPR/Cas-mediated disruption of HBV in patient-derived virus model system.
- Hep-NTCP cells were infected with HBV from infected patient serum upon transduction of guide 17 and active or nuclease-dead Cas9. 9 days after infection, the cells were harvested and viral products were quantified. Nuclease-active Cas9 caused decreases in HBV 3.5kb RNA (a), cccDNA (b), and total DNA levels (c).
- Figure 72 shows Surveyor assay performed on DNA untreated (left) or treated (right) with plasmid-Safe DNase to remove non-episomal viral forms. Arrowheads indicate shorter amplicons resulting from indel formation. The low levels of indel formation in 17M likely result from inefficient cutting enabled by the 5 bp bulge between target DNA and gRNA, recently appreciated in Lin, Y et al., (2014). (b-c) *p ⁇ 0.05 for selected comparison; **p ⁇ 0.01 for selected comparison, as assessed by one-way ANOVA with Tukey post-hoc test.
- Figure 73 depicts a plot where the columns labeled‘D’ signify where Applicants used a nuclease-deficient Cas9 as an internal control.
- the 29 dpt corresponds to 29 days post transduction, where a single lentiviral vector encoding U6-sgRNA and EFS-hSpCas9-2A-Puro was transduced into HepG2.2.15 cells followed by selection with puromycin.
- Jiang et al. used the clustered, regularly interspaced, short palindromic repeats (CRISPR)–associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coli.
- CRISPR clustered, regularly interspaced, short palindromic repeats
- the approach relied on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems.
- the study reported reprogramming dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates.
- Konermann et al. addressed the need in the art for versatile and robust technologies that enable optical and chemical modulation of DNA-binding domains based CRISPR Cas9 enzyme and also Transcriptional Activator Like Effectors
- Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis.
- Ran et al. described an approach that combined a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage.
- Hsu et al. characterized SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects.
- the authors further showed that SpCas9- mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification.
- the authors reported providing a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.
- Nishimasu et al. reported the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 A° resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and non-complementary strands of the target DNA, respectively.
- the nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM).
- PAM protospacer adjacent motif
- Hsu 2014 is a review article that discusses generally CRISPR-Cas9 history from yogurt to genome editing, including genetic screening of cells, that is in the information, data and findings of the applications in the lineage of this specification filed prior to June 5, 2014.
- the general teachings of Hsu 2014 do not involve the specific models, animals of the instant specification.
- CRISPR-Cas or CRISPR system is as used in the foregoing documents, such as WO 2014/093622 (PCT/US2013/074667) and refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR- associated (“Cas”) genes, including sequences encoding a Cas gene, a tracr (trans-activating CRISPR) sequence (e.g.
- RNA(s) as that term is herein used (e.g., RNA(s) to guide Cas9, e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)) or other sequences and transcripts from a CRISPR locus.
- RNA(s) to guide Cas9 e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)
- sgRNA single guide RNA
- a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system).
- target sequence refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex.
- a target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides.
- a target sequence is located in the nucleus or cytoplasm of a cell.
- direct repeats may be identified in silico by searching for repetitive motifs that fulfill any or all of the following criteria: 1. found in a 2Kb window of genomic sequence flanking the type II CRISPR locus; 2. span from 20 to 50 bp; and 3. interspaced by 20 to 50 bp. In some embodiments, 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3. In some embodiments, all 3 criteria may be used.
- a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence.
- the degree of complementarity between a guide sequence and its corresponding target sequence when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more.
- Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g. the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net).
- Burrows-Wheeler Transform e.g. the Burrows Wheeler Aligner
- ClustalW Clustal X
- BLAT Novoalign
- ELAND Illumina, San Diego, CA
- SOAP available at soap.genomics.org.cn
- Maq available at maq.sourceforge.net.
- a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length. Preferably the guide sequence is 10 - 30 nucleotides long. The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay.
- the components of a CRISPR system sufficient to form a CRISPR complex may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein.
- cleavage of a target polynucleotide sequence may be evaluated in a test tube by providing the target sequence, components of a CRISPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions.
- a guide sequence may be selected to target any target sequence.
- the target sequence is a sequence within a genome of a cell.
- Exemplary target sequences include those that are unique in the target genome.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNXGG where NNNNNNNNNNXGG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNXAGAAW where NNNNNNNNNNXXAGAAW (N is A, G, T, or C; X can be anything; and W is A or T) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNNNNNNNNNNNXGGXG where NNNNNNNNNNXGGXG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- pyogenes Cas9 target site of the form MMMMMMMMMNNNNNNNNNNNNNXGGXG where NNNNNNNNNXGGXG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- N is A, G, T, or C; and X can be anything
- a guide sequence is selected to reduce the degree secondary structure within the guide sequence. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the guide sequence participate in self-complementary base pairing when optimally folded.
- Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g. A.R. Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).
- a tracr mate sequence includes any sequence that has sufficient complementarity with a tracr sequence to promote one or more of: (1) excision of a guide sequence flanked by tracr mate sequences in a cell containing the corresponding tracr sequence; and (2) formation of a CRISPR complex at a target sequence, wherein the CRISPR complex comprises the tracr mate sequence hybridized to the tracr sequence.
- degree of complementarity is with reference to the optimal alignment of the tracr mate sequence and tracr sequence, along the length of the shorter of the two sequences.
- Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self-complementarity within either the tracr sequence or tracr mate sequence.
- the degree of complementarity between the tracr sequence and tracr mate sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher.
- the tracr sequence is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length.
- the tracr sequence and tracr mate sequence are contained within a single transcript, such that hybridization between the two produces a transcript having a secondary structure, such as a hairpin.
- the transcript or transcribed polynucleotide sequence has at least two or more hairpins.
- the transcript has two, three, four or five hairpins.
- the transcript has at most five hairpins.
- the portion of the sequence 5’ of the final“N” and upstream of the loop corresponds to the tracr mate sequence
- the portion of the sequence 3’ of the loop corresponds to the tracr sequence
- “N” represents a base of a guide sequence
- the first block of lower case letters represent the tracr mate sequence
- the second block of lower case letters represent the tracr sequence
- the final poly-T sequence represents the transcription terminator: (1) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNgttttgtactctcaagatttaGAAAtaaatcttgcagaagctacaaagataa ggcttcatgccgaaatcaacaccctgtcattttatggcagggtgtttcgtatttttttt
- sequences (1) to (3) are used in combination with Cas9 from S. thermophilus CRISPR1.
- sequences (4) to (6) are used in combination with Cas9 from S. pyogenes.
- the tracr sequence is a separate transcript from a transcript comprising the tracr mate sequence.
- candidate tracrRNA may be subsequently predicted by sequences that fulfill any or all of the following criteria: 1. sequence homology to direct repeats (motif search in Geneious with up to 18-bp mismatches); 2. presence of a predicted Rho- independent transcriptional terminator in direction of transcription; and 3. stable hairpin secondary structure between tracrRNA and direct repeat.
- 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3.
- all 3 criteria may be used.
- chimeric synthetic guide RNAs may incorporate at least 12 bp of duplex structure between the direct repeat and tracrRNA.
- CRISPR enzyme mRNA and guide RNA For minimization of toxicity and off-target effect, it will be important to control the concentration of CRISPR enzyme mRNA and guide RNA delivered. Optimal concentrations of CRISPR enzyme mRNA and guide RNA can be determined by testing different concentrations in a cellular or non-human eukaryote animal model and using deep sequencing the analyze the extent of modification at potential off-target genomic loci.
- deep sequencing can be used to assess the level of modification at the following two off-target loci, 1: 5’-GAGTCCTAGCAGGAGAAGAA-3’ and 2: 5’-GAGTCTAAGCAGAAGAAGAA- 3’.
- concentration that gives the highest level of on-target modification while minimizing the level of off-target modification should be chosen for in vivo delivery.
- CRISPR enzyme nickase mRNA for example S.
- pyogenes Cas9 with the D10A mutation can be delivered with a pair of guide RNAs targeting a site of interest.
- the two guide RNAs need to be spaced as follows.
- Guide sequences and strategies to mimize toxicity and off-target effects can be as in WO 2014/093622 (PCT/US2013/074667).
- the CRISPR system is derived advantageously from a type II CRISPR system.
- one or more elements of a CRISPR system is derived from a particular organism comprising an endogenous CRISPR system, such as Streptococcus pyogenes.
- the CRISPR system is a type II CRISPR system and the Cas enzyme is Cas9, which catalyzes DNA cleavage.
- Cas proteins include Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csn1 and Csx12), Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, homologues thereof, or modified versions thereof.
- the unmodified CRISPR enzyme has DNA cleavage activity, such as Cas9.
- the CRISPR enzyme directs cleavage of one or both strands at the location of a target sequence, such as within the target sequence and/or within the complement of the target sequence.
- the CRISPR enzyme directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence.
- a vector encodes a CRISPR enzyme that is mutated to with respect to a corresponding wild-type enzyme such that the mutated CRISPR enzyme lacks the ability to cleave one or both strands of a target polynucleotide containing a target sequence.
- an aspartate-to-alanine substitution (D10A) in the RuvC I catalytic domain of Cas9 from S. pyogenes converts Cas9 from a nuclease that cleaves both strands to a nickase (cleaves a single strand).
- mutations that render Cas9 a nickase include, without limitation, H840A, N854A, and N863A.
- two or more catalytic domains of Cas9 may be mutated to produce a mutated Cas9 substantially lacking all DNA cleavage activity.
- a D10A mutation is combined with one or more of H840A, N854A, or N863A mutations to produce a Cas9 enzyme substantially lacking all DNA cleavage activity.
- a CRISPR enzyme is considered to substantially lack all DNA cleavage activity when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the DNA cleavage activity of the non- mutated form of the enzyme; an example can be when the DNA cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form.
- the enzyme is not SpCas9
- mutations may be made at any or all residues corresponding to positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 (which may be ascertained for instance by standard sequence comparison tools).
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the same (or conservative substitutions of these mutations) at corresponding positions in other Cas9s are also preferred.
- Particularly preferred are D10 and H840 in SpCas9.
- residues corresponding to SpCas9 D10 and H840 are also preferred.
- Orthologs of SpCas9 can be used in the practice of the invention.
- a Cas enzyme may be identified Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system.
- the Cas9 enzyme is from, or is derived from, spCas9 (S. pyogenes Cas9) or saCas9 (S. aureus Cas9).
- StCas9 refers to wild type Cas9 from S. thermophilus, the protein sequence of which is given in the SwissProt database under accession number G3ECR1.
- S pyogenes Cas9 or spCas9 is included in SwissProt under accession number Q99ZW2.
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes.
- this invention includes many more Cas9s from other species of microbes, such as SpCas9, SaCa9, St1Cas9 and so forth.
- Enzymatic action by Cas9 derived from Streptococcus pyogenes or any closely related Cas9 generates double stranded breaks at target site sequences which hybridize to 20 nucleotides of the guide sequence and that have a protospacer-adjacent motif (PAM) sequence (examples include NGG/NRG or a PAM that can be determined as described herein) following the 20 nucleotides of the target sequence.
- PAM protospacer-adjacent motif
- the CRISPR system small RNA- guided defence in bacteria and archaea, Mole Cell 2010, January 15; 37(1): 7.
- the type II CRISPR locus from Streptococcus pyogenes SF370 which contains a cluster of four genes Cas9, Cas1, Cas2, and Csn1, as well as two non-coding RNA elements, tracrRNA and a characteristic array of repetitive sequences (direct repeats) interspaced by short stretches of non-repetitive sequences (spacers, about 30bp each).
- DSB DNA double-strand break
- RNAs two non-coding RNAs, the pre-crRNA array and tracrRNA, are transcribed from the CRISPR locus.
- tracrRNA hybridizes to the direct repeats of pre-crRNA, which is then processed into mature crRNAs containing individual spacer sequences.
- the mature crRNA:tracrRNA complex directs Cas9 to the DNA target consisting of the protospacer and the corresponding PAM via heteroduplex formation between the spacer region of the crRNA and the protospacer DNA.
- Cas9 mediates cleavage of target DNA upstream of PAM to create a DSB within the protospacer.
- Cas9 may be constitutively present or inducibly present or conditionally present or administered or delivered. Cas9 optimization may be used to enhance function or to develop new functions, one can generate chimeric Cas9 proteins. And Cas9 may be used as a generic DNA binding protein.
- a CRISPR complex comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins
- formation of a CRISPR complex results in cleavage of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence.
- the tracr sequence which may comprise or consist of all or a portion of a wild- type tracr sequence (e.g.
- a wild-type tracr sequence may also form part of a CRISPR complex, such as by hybridization along at least a portion of the tracr sequence to all or a portion of a tracr mate sequence that is operably linked to the guide sequence.
- a codon optimized sequence is in this instance a sequence optimized for expression in a eukaryote, e.g., humans (i.e. being optimized for expression in humans), or for another eukaryote, animal or mammal as herein discussed; see, e.g., SaCas9 human codon optimized sequence in WO 2014/093622 (PCT/US2013/074667). Whilst this is preferred, it will be appreciated that other examples are possible and codon optimization for a host species other than human, or for codon optimization for specific organs is known.
- an enzyme coding sequence encoding a CRISPR enzyme is codon optimized for expression in particular cells, such as eukaryotic cells.
- the eukaryotic cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, or non-human eukaryote or animal or mammal as herein discussed, e.g., mouse, rat, rabbit, dog, livestock, or non-human mammal or primate.
- processes for modifying the germ line genetic identity of human beings and/or processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes may be excluded.
- codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g.
- Codon bias differences in codon usage between organisms
- mRNA messenger RNA
- tRNA transfer RNA
- genes can be tailored for optimal gene expression in a given organism based on codon optimization.
- Codon usage tables are readily available, for example, at the“Codon Usage Database” available at www.kazusa.orjp/codon/ and these tables can be adapted in a number of ways. See Nakamura, Y., et al.“Codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000).
- Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, PA), are also available.
- one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons
- one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons
- one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50,
- a vector encodes a CRISPR enzyme comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs.
- the CRISPR enzyme comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. zero or at least one or more NLS at the amino-terminus and zero or at one or more NLS at the carboxy terminus).
- the CRISPR enzyme comprises at most 6 NLSs.
- an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus.
- Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV; the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK); the c-myc NLS having the amino acid sequence PAAKRVKLD or RQRRNELKRSP; the hRNPA1 M9 NLS having the sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY; the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV of the IBB domain from importin-alpha; the sequences VSRKRPRP and PPKKARED of the myoma T protein; the sequence POPKKKPL of human p53; the sequence SALIKKKKKMAP of mouse c-abl IV; the sequences DRLRR and PKQKKRK of the influenza
- the one or more NLSs are of sufficient strength to drive accumulation of the CRISPR enzyme in a detectable amount in the nucleus of a eukaryotic cell.
- strength of nuclear localization activity may derive from the number of NLSs in the CRISPR enzyme, the particular NLS(s) used, or a combination of these factors.
- Detection of accumulation in the nucleus may be performed by any suitable technique.
- a detectable marker may be fused to the CRISPR enzyme, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI).
- Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of CRISPR complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity), as compared to a control no exposed to the CRISPR enzyme or complex, or exposed to a CRISPR enzyme lacking the one or more NLSs.
- an assay for the effect of CRISPR complex formation e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein. Only sgRNA pairs creating 5’ overhangs with less than 8bp overlap between the guide sequences (offset greater than -8 bp) were able to mediate detectable indel formation.
- each guide used in these assays is able to efficiently induce indels when paired with wildtype Cas9, indicating that the relative positions of the guide pairs are the most important parameters in predicting double nicking activity.
- Cas9n and Cas9H840A nick opposite strands of DNA
- substitution of Cas9n with Cas9H840A with a given sgRNA pair should have resulted in the inversion of the overhang type; but no indel formation is observed as with Cas9H840A indicating that Cas9H840A is a CRISPR enzyme substantially lacking all DNA cleavage activity (which is when the DNA cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the DNA cleavage activity of the non- mutated form of the enzyme; whereby an example can be when the DNA cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form, e
- a recombination template is also provided.
- a recombination template may be a component of another vector as described herein, contained in a separate vector, or provided as a separate polynucleotide.
- a recombination template is designed to serve as a template in homologous recombination, such as within or near a target sequence nicked or cleaved by a CRISPR enzyme as a part of a CRISPR complex.
- a template polynucleotide may be of any suitable length, such as about or more than about 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000, or more nucleotides in length.
- the template polynucleotide is complementary to a portion of a polynucleotide comprising the target sequence.
- a template polynucleotide When optimally aligned, a template polynucleotide might overlap with one or more nucleotides of a target sequences (e.g. about or more than about 1, 5, 10, 15, 20, or more nucleotides). In some embodiments, when a template sequence and a polynucleotide comprising a target sequence are optimally aligned, the nearest nucleotide of the template polynucleotide is within about 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000, or more nucleotides from the target sequence.
- one or more vectors driving expression of one or more elements of a CRISPR system are introduced into a host cell such that expression of the elements of the CRISPR system direct formation of a CRISPR complex at one or more target sites.
- a Cas enzyme, a guide sequence linked to a tracr-mate sequence, and a tracr sequence could each be operably linked to separate regulatory elements on separate vectors.
- RNA(s) of the CRISPR System can be delivered to a transgenic Cas9 animal or mammal, e.g., an animal or mammal that constitutively or inducibly or conditionally expresses Cas9; or an animal or mammal that is otherwise expressing Cas9 or has cells containing Cas9, such as by way of prior administration thereto of a vector or vectors that code for and express in vivo Cas9.
- a transgenic Cas9 animal or mammal e.g., an animal or mammal that constitutively or inducibly or conditionally expresses Cas9; or an animal or mammal that is otherwise expressing Cas9 or has cells containing Cas9, such as by way of prior administration thereto of a vector or vectors that code for and express in vivo Cas9.
- two or more of the elements expressed from the same or different regulatory elements may be combined in a single vector, with one or more additional vectors providing any components of the CRISPR system not included in the first vector.
- CRISPR system elements that are combined in a single vector may be arranged in any suitable orientation, such as one element located 5’ with respect to (“upstream” of) or 3’ with respect to (“downstream” of) a second element.
- the coding sequence of one element may be located on the same or opposite strand of the coding sequence of a second element, and oriented in the same or opposite direction.
- a single promoter drives expression of a transcript encoding a CRISPR enzyme and one or more of the guide sequence, tracr mate sequence (optionally operably linked to the guide sequence), and a tracr sequence embedded within one or more intron sequences (e.g. each in a different intron, two or more in at least one intron, or all in a single intron).
- the CRISPR enzyme, guide sequence, tracr mate sequence, and tracr sequence are operably linked to and expressed from the same promoter.
- Delivery vehicles, vectors, particles, nanoparticles, formulations and components thereof for expression of one or more elements of a CRISPR system are as used in the foregoing documents, such as WO 2014/093622 (PCT/US2013/074667).
- a vector comprises one or more insertion sites, such as a restriction endonuclease recognition sequence (also referred to as a“cloning site”).
- one or more insertion sites e.g.
- a vector comprises an insertion site upstream of a tracr mate sequence, and optionally downstream of a regulatory element operably linked to the tracr mate sequence, such that following insertion of a guide sequence into the insertion site and upon expression the guide sequence directs sequence- specific binding of a CRISPR complex to a target sequence in a eukaryotic cell.
- a vector comprises two or more insertion sites, each insertion site being located between two tracr mate sequences so as to allow insertion of a guide sequence at each site.
- the two or more guide sequences may comprise two or more copies of a single guide sequence, two or more different guide sequences, or combinations of these.
- a single expression construct may be used to target CRISPR activity to multiple different, corresponding target sequences within a cell.
- a single vector may comprise about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more guide sequences. In some embodiments, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such guide-sequence-containing vectors may be provided, and optionally delivered to a cell.
- a vector comprises a regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, such as a Cas protein.
- CRISPR enzyme or CRISPR enzyme mRNA or CRISPR guide RNA or RNA(s) can be delivered separately; and advantageously at least one of these is delivered via a nanoparticle complex.
- CRISPR enzyme mRNA can be delivered prior to the guide RNA to give time for CRISPR enzyme to be expressed.
- CRISPR enzyme mRNA might be administered 1 -12 hours (preferably around 2-6 hours) prior to the administration of guide RNA.
- CRISPR enzyme mRNA and guide RNA can be administered together.
- a second booster dose of guide RNA can be administered 1 -12 hours (preferably around 2-6 hours) after the initial administration of CRISPR enzyme mRNA + guide RNA. Additional administrations of CRISPR enzyme mRNA and/or guide RNA might be useful to achieve the most efficient levels of genome modification.
- the invention provides methods for using one or more elements of a CRISPR system.
- the CRISPR complex of the invention provides an effective means for modifying a target polynucleotide.
- the CRISPR complex of the invention has a wide variety of utility including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target polynucleotide in a multiplicity of cell types.
- the CRISPR complex of the invention has a broad spectrum of applications in, e.g., gene therapy, drug screening, disease diagnosis, and prognosis.
- An exemplary CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within the target polynucleotide.
- the guide sequence is linked to a tracr mate sequence, which in turn hybridizes to a tracr sequence.
- this invention provides a method of cleaving a target polynucleotide.
- the method comprises modifying a target polynucleotide using a CRISPR complex that binds to the target polynucleotide and effect cleavage of said target polynucleotide.
- the CRISPR complex of the invention when introduced into a cell, creates a break (e.g., a single or a double strand break) in the genome sequence.
- the method can be used to cleave a disease gene in a cell.
- the break created by the CRISPR complex can be repaired by a repair processes such as the error prone non-homologous end joining (NHEJ) pathway or the high fidelity homology-directed repair (HDR).
- NHEJ error prone non-homologous end joining
- HDR high fidelity homology-directed repair
- an exogenous polynucleotide template can be introduced into the genome sequence.
- the HDR process is used modify genome sequence.
- an exogenous polynucleotide template comprising a sequence to be integrated flanked by an upstream sequence and a downstream sequence is introduced into a cell.
- the upstream and downstream sequences share sequence similarity with either side of the site of integration in the chromosome.
- a donor polynucleotide can be DNA, e.g., a DNA plasmid, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), a viral vector, a linear piece of DNA, a PCR fragment, a naked nucleic acid, or a nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer.
- the exogenous polynucleotide template comprises a sequence to be integrated (e.g., a mutated gene).
- the sequence for integration may be a sequence endogenous or exogenous to the cell.
- sequences to be integrated include polynucleotides encoding a protein or a non-coding RNA (e.g., a microRNA).
- the sequence for integration may be operably linked to an appropriate control sequence or sequences.
- the sequence to be integrated may provide a regulatory function.
- the upstream and downstream sequences in the exogenous polynucleotide template are selected to promote recombination between the chromosomal sequence of interest and the donor polynucleotide.
- the upstream sequence is a nucleic acid sequence that shares sequence similarity with the genome sequence upstream of the targeted site for integration.
- the downstream sequence is a nucleic acid sequence that shares sequence similarity with the chromosomal sequence downstream of the targeted site of integration.
- the upstream and downstream sequences in the exogenous polynucleotide template can have 75%, 80%, 85%, 90%, 95%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 99% or 100% sequence identity with the targeted genome sequence.
- An upstream or downstream sequence may comprise from about 20 bp to about 2500 bp, for example, about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 bp.
- the exemplary upstream or downstream sequence have about 200 bp to about 2000 bp, about 600 bp to about 1000 bp, or more particularly about 700 bp to about 1000 bp.
- the exogenous polynucleotide template may further comprise a marker. Such a marker may make it easy to screen for targeted integrations.
- exogenous polynucleotide template of the invention can be constructed using recombinant techniques (see, for example, Sambrook et al., 2001 and Ausubel et al., 1996).
- a double stranded break is introduced into the genome sequence by the CRISPR complex, the break is repaired via homologous recombination an exogenous polynucleotide template such that the template is integrated into the genome.
- the presence of a double-stranded break facilitates integration of the template.
- this invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises increasing or decreasing expression of a target polynucleotide by using a CRISPR complex that binds to the polynucleotide.
- a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a CRISPR complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein is not produced, or the sequence does not function as the wild-type sequence does.
- a protein or microRNA coding sequence may be inactivated such that the protein or microRNA or pre-microRNA transcript is not produced.
- a control sequence can be inactivated such that it no longer functions as a control sequence.
- control sequence refers to any nucleic acid sequence that effects the transcription, translation, or accessibility of a nucleic acid sequence. Examples of a control sequence include, a promoter, a transcription terminator, and an enhancer are control sequences.
- the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell.
- the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell.
- the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
- Examples of target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway- associated gene or polynucleotide.
- target polynucleotides include a disease associated gene or polynucleotide.
- A“disease-associated” gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease.
- a disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease.
- the transcribed or translated products may be known or unknown, and may be at a normal or abnormal level.
- the target polynucleotide of a CRISPR complex can be any polynucleotide endogenous or exogenous to the eukaryotic cell.
- the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell.
- the target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
- the target sequence should be associated with a PAM (protospacer adjacent motif); that is, a short sequence recognized by the CRISPR complex.
- PAM protospacer adjacent motif
- the precise sequence and length requirements for the PAM differ depending on the CRISPR enzyme used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence) Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given CRISPR enzyme.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- Similar considerations and conditions apply as above for methods of modifying a target polynucleotide. In fact, these sampling, culturing and re-introduction options apply across the aspects of the present invention.
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell, which may be in vivo, ex vivo or in vitro.
- the method comprises sampling a cell or population of cells from a human or non- human animal, and modifying the cell or cells. Culturing may occur at any stage ex vivo.
- the cell or cells may even be re-introduced into the non-human animal or plant. For re-introduced cells it is particularly preferred that the cells are stem cells.
- the CRISPR complex may comprise a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence, wherein said guide sequence may be linked to a tracr mate sequence which in turn may hybridize to a tracr sequence.
- the invention relates to the engineering and optimization of systems, methods and compositions used for the control of gene expression involving sequence targeting, such as genome perturbation or gene-editing, that relate to the CRISPR-Cas system and components thereof.
- the Cas enzyme is Cas9.
- Cas9 optimization may be used to enhance function or to develop new functions, one can generate chimeric Cas9 proteins, as demonstrated in the Examples.
- Chimeric Cas9 proteins can be made by combining fragments from different Cas9 homologs.
- two example chimeric Cas9 proteins from the Cas9s described herein. For example, Applicants fused the N- term of St1Cas9 (fragment from this protein is in bold) with C-term of SpCas9.
- chimeric Cas9s include any or all of: reduced toxicity; improved expression in eukaryotic cells; enhanced specificity; reduced molecular weight of protein, for example, making the protein smaller by combining the smallest domains from different Cas9 homologs; and/or altering the PAM sequence requirement.
- the Cas9 may be used as a generic DNA binding protein as demonstrated in the Examples. Applicants used Cas9 as a generic DNA binding protein by mutating the two catalytic domains (D10 and H840) responsible for cleaving both strands of the DNA target. In order to upregulate gene transcription at a target locus Applicants fused a transcriptional activation domain (VP64) to Cas9. Other transcriptional activation domains are known. As shown in the Examples transcriptional activation is possible as well as gene repression using a Cas9 repressor (DNA-binding domain) that binds to the target gene sequence, thus repressing its activity.
- Cas9 repressor DNA-binding domain
- Cas9 and one or more guide RNA can be delivered using adeno associated virus (AAV), lentivirus, adenovirus or other plasmid or viral vector types, in particular, using formulations and doses from, for example, US Patents Nos. 8,454,972 (formulations, doses for adenovirus), 8,404,658 (formulations, doses for AAV) and 5,846,946 (formulations, doses for DNA plasmids) and from clinical trials and publications regarding the clinical trials involving lentivirus, AAV and adenovirus.
- AAV the route of administration, formulation and dose can be as in US Patent No. 8,454,972 and as in clinical trials involving AAV.
- the route of administration, formulation and dose can be as in US Patent No. 8,404,658 and as in clinical trials involving adenovirus.
- the route of administration, formulation and dose can be as in US Patent No 5,846,946 and as in clinical studies involving plasmids.
- Doses may be based on or extrapolated to an average 70 kg individual (e.g. a male adult human), and can be adjusted for patients, subjects, mammals of different weight and species. Frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), depending on usual factors including the age, sex, general health, other conditions of the patient or subject and the particular condition or symptoms being addressed.
- the viral vectors can be injected into the tissue of interest.
- the expression of Cas9 can be driven by a cell-type specific promoter.
- liver-specific expression might use the Albumin promoter
- neuron-specific expression for viruses which may be latent in the brain
- Synapsin I promoter for viruses which may be latent in the brain
- Transgenic animals are also provided.
- Preferred examples include animals comprising Cas9, in terms of polynucleotides encoding Cas9 or the protein itself. Mice, rats and rabbits are preferred.
- To generate transgenic mice with the constructs as exemplified herein one may inject pure, linear DNA into the pronucleus of a zygote from a pseudo pregnant female, e.g. a CB56 female. Founders may then be identified, genotyped, and backcrossed to CB57 mice. The constructs may then be cloned and optionally verified, for instance by Sanger sequencing. Knock outs are envisaged where for instance one or more genes are knocked out in a model.
- knockins are also envisaged (alone or in combination).
- An example knockin Cas9 mouse was generated and this is exemplified, but Cas9 knockins are preferred.
- To generate a Cas9 knock in mice one may target the same constitutive and conditional constructs to the Rosa26 locus, as described herein (Figs. 25A-B and 26).
- Methods of US Patent Publication Nos. 20120017290 and 20110265198 assigned to Sangamo BioSciences, Inc. directed to targeting the Rosa locus may be modified to utilize the CRISPR Cas system of the present invention.
- the methods of US Patent Publication No. 20130236946 assigned to Cellectis directed to targeting the Rosa locus may also be modified to utilize the CRISPR Cas system of the present invention.
- Vector delivery e.g., plasmid, viral delivery:
- the CRISPR enzyme for instance a Cas9, and/or any of the present RNAs, for instance a guide RNA, can be delivered using any suitable vector, e.g., plasmid or viral vectors, such as adeno associated virus (AAV), lentivirus, adenovirus or other viral vector types, or combinations thereof.
- Cas9 and one or more guide RNAs can be packaged into one or more vectors, e.g., plasmid or viral vectors.
- the vector e.g., plasmid or viral vector is delivered to the tissue of interest by, for example, an intramuscular injection, while other times the delivery is via intravenous, transdermal, intranasal, oral, mucosal, or other delivery methods. Such delivery may be either via a single dose, or multiple doses.
- the actual dosage to be delivered herein may vary greatly depending upon a variety of factors, such as the vector choice, the target cell, organism, or tissue, the general condition of the subject to be treated, the degree of transformation/modification sought, the administration route, the administration mode, the type of transformation/modification sought, etc.
- Such a dosage may further contain, for example, a carrier (water, saline, ethanol, glycerol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, etc.), a diluent, a pharmaceutically-acceptable carrier (e.g., phosphate-buffered saline), a pharmaceutically-acceptable excipient, and/or other compounds known in the art.
- a carrier water, saline, ethanol, glycerol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, etc.
- a pharmaceutically-acceptable carrier e.g., phosphate-buffered saline
- a pharmaceutically-acceptable excipient e.g., phosphate-buffered saline
- the dosage may further contain one or more pharmaceutically acceptable salts such as, for example, a mineral acid salt such as a hydrochloride, a hydrobromide, a phosphate, a sulfate, etc.; and the salts of organic acids such as acetates, propionates, malonates, benzoates, etc.
- auxiliary substances such as wetting or emulsifying agents, pH buffering substances, gels or gelling materials, flavorings, colorants, microspheres, polymers, suspension agents, etc. may also be present herein.
- Suitable exemplary ingredients include microcrystalline cellulose, carboxymethylcellulose sodium, polysorbate 80, phenylethyl alcohol, chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, parachlorophenol, gelatin, albumin and a combination thereof.
- the delivery is via an adenovirus, which may be at a single booster dose containing at least 1 x 10 5 particles (also referred to as particle units, pu) of adenoviral vector.
- the dose preferably is at least about 1 x 10 6 particles (for example, about 1 x 10 6 -1 x 10 12 particles), more preferably at least about 1 x 10 7 particles, more preferably at least about 1 x 10 8 particles (e.g., about 1 x 10 8 -1 x 10 11 particles or about 1 x 10 8 -1 x 10 12 particles), and most preferably at least about 1 x 10 0 particles (e.g., about 1 x 10 9 -1 x 10 10 particles or about 1 x 10 9 -1 x 10 12 particles), or even at least about 1 x 10 10 particles (e.g., about 1 x 10 10 -1 x 10 12 particles) of the adenoviral vector.
- the dose comprises no more than about 1 x 10 14 particles, preferably no more than about 1 x 10 13 particles, even more preferably no more than about 1 x 10 12 particles, even more preferably no more than about 1 x 10 11 particles, and most preferably no more than about 1 x 10 10 particles (e.g., no more than about 1 x 10 9 articles).
- the dose may contain a single dose of adenoviral vector with, for example, about 1 x 10 6 particle units (pu), about 2 x 10 6 pu, about 4 x 10 6 pu, about 1 x 10 7 pu, about 2 x 10 7 pu, about 4 x 10 7 pu, about 1 x 10 8 pu, about 2 x 10 8 pu, about 4 x 10 8 pu, about 1 x 10 9 pu, about 2 x 10 9 pu, about 4 x 10 9 pu, about 1 x 10 10 pu, about 2 x 10 10 pu, about 4 x 10 10 pu, about 1 x 10 11 pu, about 2 x 10 11 pu, about 4 x 10 11 pu, about 1 x 10 12 pu, about 2 x 10 12 pu, or about 4 x 10 12 pu of adenoviral vector.
- adenoviral vector with, for example, about 1 x 10 6 particle units (pu), about 2 x 10 6 pu, about 4 x 10 6 pu, about 1 x 10 7 pu, about 2 x 10 7 pu
- the adenoviral vectors in U.S. Patent No. 8,454,972 B2 to Nabel, et. al., granted on June 4, 2013; incorporated by reference herein, and the dosages at col 29, lines 36-58 thereof.
- the adenovirus is delivered via multiple doses.
- the delivery is via an AAV.
- a therapeutically effective dosage for in vivo delivery of the AAV to a human is believed to be in the range of from about 20 to about 50 ml of saline solution containing from about 1 x 10 10 to about 1 x 10 10 functional AAV/ml solution. The dosage may be adjusted to balance the therapeutic benefit against any side effects.
- the AAV dose is generally in the range of concentrations of from about 1 x 10 5 to 1 x 10 50 genomes AAV, from about 1 x 10 8 to 1 x 10 20 genomes AAV, from about 1 x 10 10 to about 1 x 10 16 genomes, or about 1 x 10 11 to about 1 x 10 16 genomes AAV.
- a human dosage may be about 1 x 10 13 genomes AAV. Such concentrations may be delivered in from about 0.001 ml to about 100 ml, about 0.05 to about 50 ml, or about 10 to about 25 ml of a carrier solution. Other effective dosages can be readily established by one of ordinary skill in the art through routine trials establishing dose response curves. See, for example, U.S. Patent No. 8,404,658 B2 to Hajjar, et al., granted on March 26, 2013, at col. 27, lines 45-60.
- the delivery is via a plasmid.
- the dosage should be a sufficient amount of plasmid to elicit a response.
- suitable quantities of plasmid DNA in plasmid compositions can be from about 0.1 to about 2 mg, or from about 1 g to about 10 g per 70 kg individual.
- Plasmids of the invention will generally comprise (i) a promoter; (ii) a sequence encoding a CRISPR enzyme, operably linked to said promoter; (iii) a selectable marker; (iv) an origin of replication; and (v) a transcription terminator downstream of and operably linked to (ii).
- the plasmid can also encode the RNA components of a CRISPR complex, but one or more of these may instead be encoded on a different vector.
- the doses herein are based on an average 70 kg individual.
- the frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), or scientist skilled in the art. It is also noted that mice used in experiments are typically about 20g and from mice experiments one can scale up to a 70 kg individual.
- RNA molecules of the invention are delivered in liposome or lipofectin formulations and the like and can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Pat. Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference. Delivery systems aimed specifically at the enhanced and improved delivery of siRNA into mammalian cells have been developed, (see, for example, Shen et al FEBS Let. 2003, 539:111 -114; Xia et al., Nat. Biotech. 2002, 20:1006-1010; Reich et al., Mol. Vision.
- siRNA has recently been successfully used for inhibition of gene expression in primates (see for example. Tolentino et al., Retina 24(4):660 which may also be applied to the present invention.
- RNA delivery is a useful method of in vivo delivery. It is possible to deliver Cas9 and gRNA (and, for instance, HR repair template) into cells using liposomes or nanoparticles.
- delivery of the CRISPR enzyme, such as a Cas9 and/or delivery of the RNAs of the invention may be in RNA form and via microvesicles, liposomes or nanoparticles.
- Cas9 mRNA and gRNA can be packaged into liposomal particles for delivery in vivo.
- Liposomal transfection reagents such as lipofectamine from Life Technologies and other reagents on the market can effectively deliver RNA molecules into the liver.
- Means of delivery of RNA also preferred include delivery of RNA via nanoparticles (Cho, S., Goldberg, M., Son, S., Xu, Q., Yang, F., Mei, Y., Bogatyrev, S., Langer, R. and Anderson, D., Lipid-like nanoparticles for small interfering RNA delivery to endothelial cells, Advanced Functional Materials, 19: 3112-3118, 2010) or exosomes (Schroeder, A., Levins, C., Cortez, C., Langer, R., and Anderson, D., Lipid-based nanotherapeutics for siRNA delivery, Journal of Internal Medicine, 267: 9-21, 2010, PMID: 20059641).
- exosomes have been shown to be particularly useful in delivery siRNA, a system with some parallels to the CRISPR system.
- El-Andaloussi S, et al. (“Exosome-mediated delivery of siRNA in vitro and in vivo.” Nat Protoc. 2012 Dec;7(12):2112-26. doi: 10.1038/nprot.2012.131. Epub 2012 Nov 15.) describe how exosomes are promising tools for drug delivery across different biological barriers and can be harnessed for delivery of siRNA in vitro and in vivo.
- Their approach is to generate targeted exosomes through transfection of an expression vector, comprising an exosomal protein fused with a peptide ligand.
- RNA is loaded into the exosomes.
- Delivery or administration according to the invention can be performed with exosomes, in particular but not limited to the brain.
- Vitamin E ⁇ -tocopherol
- CRISPR Cas may be conjugated with CRISPR Cas and delivered to the brain along with high density lipoprotein (HDL), for example in a similar manner as was done by Uno et al. (HUMAN GENE THERAPY 22:711–719 (June 2011)) for delivering short-interfering RNA (siRNA) to the brain.
- HDL high density lipoprotein
- Mice were infused via Osmotic minipumps (model 1007D; Alzet, Cupertino, CA) filled with phosphate-buffered saline (PBS) or free TocsiBACE or Toc-siBACE/HDL and connected with Brain Infusion Kit 3 (Alzet).
- PBS phosphate-buffered saline
- a brain- infusion cannula was placed about 0.5mm posterior to the bregma at midline for infusion into the dorsal third ventricle.
- Uno et al. found that as little as 3 nmol of Toc-siRNA with HDL could induce a target reduction in comparable degree by the same ICV infusion method.
- a similar dosage of CRISPR Cas conjugated to ⁇ -tocopherol and co-administered with HDL targeted to the brain may be contemplated for humans in the present invention, for example, about 3 nmol to about 3 mol of CRISPR Cas targeted to the brain may be contemplated.
- Zou et al. (HUMAN GENE THERAPY 22:465-475 (April 2011)) describes a method of lentiviral-mediated delivery of short-hairpin RNAs targeting PKC ⁇ for in vivo gene silencing in the spinal cord of rats. Zou et al.
- a similar dosage of CRISPR Cas expressed in a lentiviral vector targeted to the brain may be contemplated for humans in the present invention, for example, about 10-50 ml of CRISPR Cas targeted to the brain in a lentivirus having a titer of 1 x 10 9 transducing units (TU)/ml may be contemplated.
- material can be delivered intrastriatally e.g. by injection. Injection can be performed stereotactically via a craniotomy.
- Enhancing NHEJ or HR efficiency is also helpful for delivery. It is preferred that NHEJ efficiency is enhanced by co-expressing end-processing enzymes such as Trex2 (Dumitrache et al. Genetics. 2011 August; 188(4): 787–797). It is preferred that HR efficiency is increased by transiently inhibiting NHEJ machineries such as Ku70 and Ku86. HR efficiency can also be increased by co-expressing prokaryotic or eukaryotic homologous recombination enzymes such as RecBCD, RecA. Packaging and Promoters generally
- Ways to package Cas9 coding nucleic acid molecules, e.g., DNA, into vectors, e.g., viral vectors, to mediate genome modification in vivo include:
- Vector 1 containing one expression cassette for driving the expression of Cas9 Promoter-Cas9 coding nucleic acid molecule-terminator
- Vector 2 containing one more expression cassettes for driving the expression of one or more guideRNAs
- Promoter-gRNA(N)-terminator up to size limit of vector
- an additional vector is used to deliver a homology-direct repair template.
- the promoter used to drive Cas9 coding nucleic acid molecule expression can include:
- AAV ITR can serve as a promoter: this is advantageous for eliminating the need for an additional promoter element (which can take up space in the vector). The additional space freed up can be used to drive the expression of additional elements (gRNA, etc.). Also, ITR activity is relatively weaker, so can be used to reduce potential toxicity due to over expression of Cas9.
- promoters CMV, CAG, CBh, PGK, SV40, Ferritin heavy or light chains, etc.
- promoters For brain or other CNS expression, can use promoters: SynapsinI for all neurons, CaMKIIalpha for excitatory neurons, GAD67 or GAD65 or VGAT for GABAergic neurons, etc.
- For liver expression can use Albumin promoter
- For lung expression can use SP-B.
- ICAM ICAM
- hematopoietic cells can use IFNbeta or CD45.
- the promoter used to drive guide RNA can include:
- Pol III promoters such as U6 or H1
- AAV Adeno associated virus
- Cas9 and one or more guide RNA can be delivered using adeno associated virus (AAV), lentivirus, adenovirus or other plasmid or viral vector types, in particular, using formulations and doses from, for example, US Patents Nos. 8,454,972 (formulations, doses for adenovirus), 8,404,658 (formulations, doses for AAV) and 5,846,946 (formulations, doses for DNA plasmids) and from clinical trials and publications regarding the clinical trials involving lentivirus, AAV and adenovirus.
- AAV the route of administration, formulation and dose can be as in US Patent No. 8,454,972 and as in clinical trials involving AAV.
- the route of administration, formulation and dose can be as in US Patent No. 8,404,658 and as in clinical trials involving adenovirus.
- the route of administration, formulation and dose can be as in US Patent No 5,846,946 and as in clinical studies involving plasmids.
- Doses may be based on or extrapolated to an average 70 kg individual (e.g. a male adult human), and can be adjusted for patients, subjects, mammals of different weight and species. Frequency of administration is within the ambit of the medical or veterinary practitioner (e.g., physician, veterinarian), depending on usual factors including the age, sex, general health, other conditions of the patient or subject and the particular condition or symptoms being addressed.
- the viral vectors can be injected into the tissue of interest.
- the expression of Cas9 can be driven by a cell-type specific promoter.
- liver-specific expression might use the Albumin promoter and neuron- specific expression (e.g. for targeting CNS disorders) might use the Synapsin I promoter.
- AAV is advantageous over other viral vectors for a couple of reasons:
- AAV has a packaging limit of 4.5 or 4.75 Kb. This means that Cas9 as well as a promoter and transcription terminator have to be all fit into the same viral vector. Constructs larger than 4.5 or 4.75 Kb will lead to significantly reduced virus production. SpCas9 is quite large, the gene itself is over 4.1 Kb, which makes it difficult for packing into AAV. Therefore embodiments of the invention include utilizing homologs of Cas9 that are shorter. For example:
- the AAV can be AAV1, AAV2, AAV5 or any combination thereof.
- AAV8 is useful for delivery to the liver. The herein promoters and vectors are preferred individually.
- a tabulation of certain AAV serotypes as to these cells is as follows:
- Lentiviruses are complex retroviruses that have the ability to infect and express their genes in both mitotic and post-mitotic cells.
- the most commonly known lentivirus is the human immunodeficiency virus (HIV), which uses the envelope glycoproteins of other viruses to target a broad range of cell types.
- HIV human immunodeficiency virus
- lentiviral transfer plasmid pCasES10
- pMD2.G VSV-g pseudotype
- psPAX2 gag/pol/rev/tat
- Transfection was done in 4mL OptiMEM with a cationic lipid delivery agent (50uL Lipofectamine 2000 and 100ul Plus reagent). After 6 hours, the media was changed to antibiotic-free DMEM with 10% fetal bovine serum. These methods use serum during cell culture, but serum-free methods are preferred.
- Lentivirus may be purified as follows. Viral supernatants were harvested after 48 hours. Supernatants were first cleared of debris and filtered through a 0.45um low protein binding (PVDF) filter. They were then spun in a ultracentrifuge for 2 hours at 24,000 rpm. Viral pellets were resuspended in 50ul of DMEM overnight at 4C. They were then aliquotted and immediately frozen at -80°C.
- PVDF 0.45um low protein binding
- minimal non-primate lentiviral vectors based on the equine infectious anemia virus are also contemplated, especially for ocular gene therapy (see, e.g., Balagaan, J Gene Med 2006; 8: 275– 285).
- RetinoStat® an equine infectious anemia virus-based lentiviral gene therapy vector that expresses angiostatic proteins endostatin and angiostatin that is delivered via a subretinal injection for the treatment of the web form of age related macular degeneration is also contemplated (see e g Binley et al HUMAN GENE THERAPY 23:980–991 (September 2012)) and this vector may be modified for the CRISPR-Cas system of the present invention.
- self-inactivating lentiviral vectors with an siRNA targeting a common exon shared by HIV tat/rev, a nucleolar-localizing TAR decoy, and an anti–CCR5- specific hammerhead ribozyme may be used/and or adapted to the CRISPR-Cas system of the present invention.
- a minimum of 2.5 ⁇ 10 6 CD34+ cells per kilogram patient weight may be collected and prestimulated for 16 to 20 hours in X-VIVO 15 medium (Lonza) containing 2 mol/L-glutamine, stem cell factor (100 ng/ml), Flt-3 ligand (Flt-3L) (100 ng/ml), and thrombopoietin (10 ng/ml) (CellGenix) at a density of 2 ⁇ 10 6 cells/ml.
- Prestimulated cells may be transduced with lentiviral at a multiplicity of infection of 5 for 16 to 24 hours in 75-cm 2 tissue culture flasks coated with fibronectin (25 mg/cm 2 ) (RetroNectin,Takara Bio Inc.).
- Lentiviral vectors have been disclosed as in the treatment for Parkinson’s Disease, see, e.g., US Patent Publication No. 20120295960 and US Patent Nos. 7303910 and 7351585. Lentiviral vectors have also been disclosed for the treatment of ocular diseases, see e.g., US Patent Publication Nos. 20060281180, 20090007284, US20110117189; US20090017543; US20070054961, US20100317109. Lentiviral vectors have also been disclosed for delivery to the brain, see, e.g., US Patent Publication Nos. US20110293571; US20110293571, US20040013648, US20070025970, US20090111106 and US Patent No. US7259015.
- RNA delivery The CRISPR enzyme, for instance a Cas9, and/or any of the present RNAs, for instance a guide RNA, can also be delivered in the form of RNA.
- Cas9 mRNA can be generated using in vitro transcription.
- Cas9 mRNA can be synthesized using a PCR cassette containing the following elements: T7_promoter-kozak sequence (GCCACC)-Cas9-3’ UTR from beta globin-polyA tail (a string of 120 or more adenines).
- the cassette can be used for transcription by T7 polymerase.
- Guide RNAs can also be transcribed using in vitro transcription from a cassette containing T7_promoter-GG-guide RNA sequence.
- the CRISPR enzyme-coding sequence and/or the guide RNA can be modified to include one or more modified nucleoside e.g. using pseudo-U or 5-Methyl-C.
- RNA delivery methods are especially promising for liver delivery currently.
- Much clinical work on RNA delivery has focused on RNAi or antisense, but these systems can be adapted for delivery of RNA for implementing the present invention. References below to RNAi etc. should be read accordingly.
- CRISPR enzyme mRNA and guide RNA may be delivered simultaneously using nanoparticles or lipid envelopes.
- Su X, Fricke J, Kavanagh DG, Irvine DJ (“In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles” Mol Pharm. 2011 Jun 6;8(3):774-87. doi: 10.1021/mp100390w. Epub 2011 Apr 1) describes biodegradable core-shell structured nanoparticles with a poly( ⁇ -amino ester) (PBAE) core enveloped by a phospholipid bilayer shell. These were developed for in vivo mRNA delivery.
- the pH-responsive PBAE component was chosen to promote endosome disruption, while the lipid surface layer was selected to minimize toxicity of the polycation core. Such are, therefore, preferred for delivering RNA of the present invention.
- nanoparticles based on self assembling bioadhesive polymers are contemplated, which may be applied to oral delivery of peptides, intravenous delivery of peptides and nasal delivery of peptides, all to the brain.
- Other embodiments, such as oral absorption and ocular delivery of hydrophobic drugs are also contemplated.
- the molecular envelope technology involves an engineered polymer envelope which is protected and delivered to the site of the disease (see, e.g., Mazza, M. et al. ACSNano, 2013. 7(2): 1016-1026; Siew, A., et al. Mol Pharm, 2012. 9(1):14-28; Lalatsa, A., et al.
- nanoparticles that can deliver RNA to a cancer cell to stop tumor growth developed by Dan Anderson’s lab at MIT may be used/and or adapted to the CRISPR Cas system of the present invention.
- the Anderson lab developed fully automated, combinatorial systems for the synthesis, purification, characterization, and formulation of new biomaterials and nanoformulations. See, e.g., Alabi et al., Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12881-6; Zhang et al., Adv Mater. 2013 Sep 6;25(33):4641-5; Jiang et al., Nano Lett.
- US patent application 20110293703 relates to lipidoid compounds are also particularly useful in the administration of polynucleotides, which may be applied to deliver the CRISPR Cas system of the present invention.
- the aminoalcohol lipidoid compounds are combined with an agent to be delivered to a cell or a subject to form microparticles, nanoparticles, liposomes, or micelles.
- the agent to be delivered by the particles, liposomes, or micelles may be in the form of a gas, liquid, or solid, and the agent may be a polynucleotide, protein, peptide, or small molecule.
- the minoalcohol lipidoid compounds may be combined with other aminoalcohol lipidoid compounds, polymers (synthetic or natural), surfactants, cholesterol, carbohydrates, proteins, lipids, etc. to form the particles. These particles may then optionally be combined with a pharmaceutical excipient to form a pharmaceutical composition.
- US Patent Publication No. 20110293703 also provides methods of preparing the aminoalcohol lipidoid compounds.
- One or more equivalents of an amine are allowed to react with one or more equivalents of an epoxide-terminated compound under suitable conditions to form an aminoalcohol lipidoid compound of the present invention.
- all the amino groups of the amine are fully reacted with the epoxide-terminated compound to form tertiary amines.
- all the amino groups of the amine are not fully reacted with the epoxide-terminated compound to form tertiary amines thereby resulting in primary or secondary amines in the aminoalcohol lipidoid compound.
- These primary or secondary amines are left as is or may be reacted with another electrophile such as a different epoxide-terminated compound.
- amines may be fully functionalized with two epoxide-derived compound tails while other molecules will not be completely functionalized with epoxide-derived compound tails.
- a diamine or polyamine may include one, two, three, or four epoxide-derived compound tails off the various amino moieties of the molecule resulting in primary, secondary, and tertiary amines. In certain embodiments, all the amino groups are not fully functionalized.
- two of the same types of epoxide-terminated compounds are used.
- two or more different epoxide- terminated compounds are used.
- the synthesis of the aminoalcohol lipidoid compounds is performed with or without solvent, and the synthesis may be performed at higher temperatures ranging from 30.-100 C., preferably at approximately 50.-90 C.
- the prepared aminoalcohol lipidoid compounds may be optionally purified.
- the mixture of aminoalcohol lipidoid compounds may be purified to yield an aminoalcohol lipidoid compound with a particular number of epoxide-derived compound tails.
- the mixture may be purified to yield a particular stereo- or regioisomer.
- the aminoalcohol lipidoid compounds may also be alkylated using an alkyl halide (e.g., methyl iodide) or other alkylating agent, and/or they may be acylated.
- US Patent Publication No. 20110293703 also provides libraries of aminoalcohol lipidoid compounds prepared by the inventive methods. These aminoalcohol lipidoid compounds may be prepared and/or screened using high-throughput techniques involving liquid handlers, robots, microtiter plates, computers, etc. In certain embodiments, the aminoalcohol lipidoid compounds are screened for their ability to transfect polynucleotides or other agents (e.g., proteins, peptides, small molecules) into the cell.
- agents e.g., proteins, peptides, small molecules
- US Patent Publication No. 20130302401 relates to a class of poly(beta-amino alcohols) (PBAAs) has been prepared using combinatorial polymerization.
- PBAAs poly(beta-amino alcohols)
- the inventive PBAAs may be used in biotechnology and biomedical applications as coatings (such as coatings of films or multilayer films for medical devices or implants), additives, materials, excipients, non-biofouling agents, micropatterning agents, and cellular encapsulation agents.
- coatings such as coatings of films or multilayer films for medical devices or implants
- additives such as coatings of films or multilayer films for medical devices or implants
- materials such as coatings of films or multilayer films for medical devices or implants
- additives such as coatings of films or multilayer films for medical devices or implants
- materials such as coatings of films or multilayer films for medical devices or implants
- excipients such as coatings of films or multilayer films for medical devices or implants
- these coatings reduce the recruitment of inflammatory cells, and reduce fibrosis, following the subcutaneous implantation of carboxylated polystyrene microparticles.
- These polymers may be used to form polyelectrolyte complex capsules for cell encapsulation.
- the invention may also have many other biological applications such as antimicrobial coatings, DNA or siRNA delivery, and stem cell tissue engineering.
- US Patent Publication No. 20130302401 may be applied to the CRISPR Cas system of the present invention.
- lipid nanoparticles are contemplated.
- an antitransthyretin small interfering RNA encapsulated in lipid nanoparticles may be applied to the CRISPR Cas system of the present invention.
- Doses of about 0.01 to about 1 mg per kg of body weight administered intravenously are contemplated.
- Medications to reduce the risk of infusion-related reactions are contemplated, such as dexamethasone, acetampinophen, diphenhydramine or cetirizine, and ranitidine are contemplated.
- LNPs have been shown to be highly effective in delivering siRNAs to the liver (see, e.g., Tabernero et al., Cancer Discovery, April 2013, Vol. 3, No. 4, pages 363-470) and are therefore contemplated for delivering RNA encoding CRISPR Cas to the liver.
- a dosage of about four doses of 6 mg/kg of the LNP every two weeks may be contemplated.
- ionizable cationic lipids with pKa values below 7 were developed (see, e.g., Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011).
- Negatively charged polymers such asiRNA may be loaded into LNPs at low pH values (e.g., pH 4) where the ionizable lipids display a positive charge.
- pH 4 e.g., pH 4
- the LNPs exhibit a low surface charge compatible with longer circulation times.
- ionizable cationic lipids Four species of ionizable cationic lipids have been focused upon, namely 1,2-dilineoyl-3-dimethylammonium-propane (DLinDAP), 1,2-dilinoleyloxy-3-N,N- dimethylaminopropane (DLinDMA), 1,2-dilinoleyloxy-keto-N,N-dimethyl-3-aminopropane (DLinKDMA), and 1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLinKC2-DMA).
- DLinDAP 1,2-dilineoyl-3-dimethylammonium-propane
- DLinDMA 1,2-dilinoleyloxy-3-N,N- dimethylaminopropane
- DLinKDMA 1,2-dilinoleyloxy-keto-N,N-dimethyl-3-a
- LNP siRNA systems containing these lipids exhibit remarkably different gene silencing properties in hepatocytes in vivo, with potencies varying according to the series DLinKC2-DMA>DLinKDMA>DLinDMA>>DLinDAP employing a Factor VII gene silencing model (see, e.g., Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011).
- a dosage of 1 g/ml levels may be contemplated, especially for a formulation containing DLinKC2-DMA.
- Preparation of LNPs and CRISPR Cas encapsulation may be used/and or adapted from Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011).
- the cationic lipids 1,2-dilineoyl-3-dimethylammonium-propane (DLinDAP), 1,2-dilinoleyloxy-3-N,N- dimethylaminopropane (DLinDMA), 1,2-dilinoleyloxyketo-N,N-dimethyl-3-aminopropane (DLinK-DMA), 1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLinKC2-DMA), (3- o-[2 ⁇ -(methoxypolyethyleneglycol 2000) succinoyl]-1,2-dimyristoyl-sn-glycol (PEG-S-DMG), and R-3-[((
- Cholesterol may be purchased from Sigma (St Louis, MO).
- the specific CRISPR Cas RNA may be encapsulated in LNPs containing DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA (cationic lipid:DSPC:CHOL: PEGS-DMG or PEG-C-DOMG at 40:10:40:10 molar ratios).
- 0.2% SP-DiOC18 Invitrogen, Burlington, Canada
- Encapsulation may be performed by dissolving lipid mixtures comprised of cationic lipid:DSPC:cholesterol:PEG-c-DOMG (40:10:40:10 molar ratio) in ethanol to a final lipid concentration of 10 mmol/l.
- This ethanol solution of lipid may be added drop-wise to 50 mmol/l citrate, pH 4.0 to form multilamellar vesicles to produce a final concentration of 30% ethanol vol/vol.
- Large unilamellar vesicles may be formed following extrusion of multilamellar vesicles through two stacked 80 nm Nuclepore polycarbonate filters using the Extruder (Northern Lipids, Vancouver, Canada).
- Encapsulation may be achieved by adding RNA dissolved at 2 mg/ml in 50 mmol/l citrate, pH 4.0 containing 30% ethanol vol/vol drop-wise to extruded preformed large unilamellar vesicles and incubation at 31 °C for 30 minutes with constant mixing to a final RNA/lipid weight ratio of 0.06/1 wt/wt. Removal of ethanol and neutralization of formulation buffer were performed by dialysis against phosphate-buffered saline (PBS), pH 7.4 for 16 hours using Spectra/Por 2 regenerated cellulose dialysis membranes.
- PBS phosphate-buffered saline
- Nanoparticle size distribution may be determined by dynamic light scattering using a NICOMP 370 particle sizer, the vesicle/intensity modes, and Gaussian fitting (Nicomp Particle Sizing, Santa Barbara, CA). The particle size for all three LNP systems may be ⁇ 70 nm in diameter.
- siRNA encapsulation efficiency may be determined by removal of free siRNA using VivaPureD MiniH columns (Sartorius Stedim Biotech) from samples collected before and after dialysis. The encapsulated RNA may be extracted from the eluted nanoparticles and quantified at 260 nm.
- siRNA to lipid ratio was determined by measurement of cholesterol content in vesicles using the Cholesterol E enzymatic assay from Wako Chemicals USA (Richmond, VA). Preparation of large LNPs may be used/and or adapted from Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, Dec. 2011.
- a lipid premix solution (20.4 mg/ml total lipid concentration) may be prepared in ethanol containing DLinKC2-DMA, DSPC, and cholesterol at 50:10:38.5 molar ratios. Sodium acetate may be added to the lipid premix at a molar ratio of 0.75:1 (sodium acetate:DLinKC2- DMA).
- the lipids may be subsequently hydrated by combining the mixture with 1.85 volumes of citrate buffer (10 mmol/l, pH 3.0) with vigorous stirring, resulting in spontaneous liposome formation in aqueous buffer containing 35% ethanol.
- the liposome solution may be incubated at 37 °C to allow for time-dependent increase in particle size. Aliquots may be removed at various times during incubation to investigate changes in liposome size by dynamic light scattering (Zetasizer Nano ZS, Malvern Instruments, Worcestershire, UK).
- the liposomes should their size, effectively quenching further growth.
- RNA may then be added to the empty liposomes at an siRNA to total lipid ratio of approximately 1:10 (wt:wt), followed by incubation for 30 minutes at 37 °C to form loaded LNPs. The mixture may be subsequently dialyzed overnight in PBS and filtered with a 0.45- m syringe filter.
- Spherical Nucleic Acid (SNATM) constructs and other nanoparticles (particularly gold nanoparticles) are also contemplate as a means to delivery CRISPR/Cas system to intended targets.
- Significant data show that AuraSense Therapeutics' Spherical Nucleic Acid (SNATM) constructs, based upon nucleic acid-functionalized gold nanoparticles, are superior to alternative platforms based on multiple key success factors, such as: High in vivo stability: Due to their dense loading, a majority of cargo (DNA or siRNA) remains bound to the constructs inside cells, conferring nucleic acid stability and resistance to enzymatic degradation.
- Deliverability For all cell types studied (e.g., neurons, tumor cell lines, etc.) the constructs demonstrate a transfection efficiency of 99% with no need for carriers or transfection agents.
- Therapeutic targeting The unique target binding affinity and specificity of the constructs allowaki specificity for matched target sequences (i.e., limited off-target effects). Superior efficacy: The constructs significantly outperform leading conventional transfection reagents (Lipofectamine 2000 and Cytofectin). Low toxicity: The constructs can enter a variety of cultured cells, primary cells, and tissues with no apparent toxicity. No significant immune response: The constructs elicit minimal changes in global gene expression as measured by whole-genome microarray studies and cytokine-specific protein assays.
- Any number of single or combinatorial agents can be used to tailor the surface of the constructs.
- This platform for nucleic acid-based therapeutics may be applicable to numerous disease states, including inflammation and infectious disease, cancer, skin disorders and cardiovascular disease.
- Citable literature includes: Cutler et al.,. J. Am. Chem. Soc. 2011 133:9254-9257, Hao et al., Small. 2011 7:3158-3162, Zhang et al., ACS Nano. 2011 5:6962- 6970, Cutler et al., J. Am. Chem. Soc. 2012 134:1376-1391, Young et al.,. Nano Lett.
- Self-assembling nanoparticles with siRNA may be constructed with polyethyleneimine (PEI) that is PEGylated with an Arg-Gly-Asp (RGD) peptide ligand attached at the distal end of the polyethylene glycol (PEG), for example, as a means to target tumor neovasculature expressing integrins and used to deliver siRNA inhibiting vascular endothelial growth factor receptor-2 (VEGF R2) expression and thereby tumor angiogenesis (see, e.g., Schiffelers et al., Nucleic Acids Research, 2004, Vol. 32, No. 19).
- PEI polyethyleneimine
- RGD Arg-Gly-Asp
- VEGF R2 vascular endothelial growth factor receptor-2
- Nanoplexes may be prepared by mixing equal volumes of aqueous solutions of cationic polymer and nucleic acid to give a net molar excess of ionizable nitrogen (polymer) to phosphate (nucleic acid) over the range of 2 to 6.
- the electrostatic interactions between cationic polymers and nucleic acid resulted in the formation of polyplexes with average particle size distribution of about 100 nm, hence referred to here as nanoplexes.
- a dosage of about 100 to 200 mg of CRISPR Cas is envisioned for delivery in the self-assembling nanoparticles of Schiffelers et al.
- the nanoplexes of Bartlett et al. may also be applied to the present invention.
- the nanoplexes of Bartlett et al. are prepared by mixing equal volumes of aqueous solutions of cationic polymer and nucleic acid to give a net molar excess of ionizable nitrogen (polymer) to phosphate (nucleic acid) over the range of 2 to 6.
- the electrostatic interactions between cationic polymers and nucleic acid resulted in the formation of polyplexes with average particle size distribution of about 100 nm, hence referred to here as nanoplexes.
- DOTA- NHSester 1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(N-hydroxysuccinimide ester)
- DOTA- NHSester 1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(N-hydroxysuccinimide ester)
- the amine modified RNA sense strand with a 100-fold molar excess of DOTA-NHS-ester in carbonate buffer (pH 9) was added to a microcentrifuge tube. The contents were reacted by stirring for 4 h at room temperature.
- the DOTA-RNAsense conjugate was ethanol-precipitated, resuspended in water, and annealed to the unmodified antisense strand to yield DOTA-siRNA.
- Tf-targeted and nontargeted siRNA nanoparticles may be formed by using cyclodextrin-containing polycations. Typically, nanoparticles were formed in water at a charge ratio of 3 (+/-) and an siRNA concentration of 0.5 g/liter. One percent of the adamantane-PEG molecules on the surface of the targeted nanoparticles were modified with Tf (adamantane-PEG-Tf). The nanoparticles were suspended in a 5% (wt/vol) glucose carrier solution for injection.
- the nanoparticles consist of a synthetic delivery system containing: (1) a linear, cyclodextrin- based polymer (CDP), (2) a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells, (3) a hydrophilic polymer (polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids), and (4) siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B+5).
- CDP linear, cyclodextrin- based polymer
- TF human transferrin protein
- TFR TF receptors
- siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B+5).
- the TFR has long been known to be upregulated in malignant cells, and RRM2 is an established anti-cancer target.
- nanoparticles (clinical version denoted as CALAA-01) have been shown to be well tolerated in multi-dosing studies in non-human primates.
- Davis et al. s clinical trial is the initial human trial to systemically deliver siRNA with a targeted delivery system and to treat patients with solid cancer.
- Davis et al. investigated biopsies from three patients from three different dosing cohorts; patients A, B and C, all of whom had metastatic melanoma and received CALAA-01 doses of 18, 24 and 30 mg m -2 siRNA, respectively.
- CRISPR Cas system of the present invention Similar doses may also be contemplated for the CRISPR Cas system of the present invention.
- the delivery of the invention may be achieved with nanoparticles containing a linear, cyclodextrin-based polymer (CDP), a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells and/or a hydrophilic polymer (for example, polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids).
- CDP linear, cyclodextrin-based polymer
- TF human transferrin protein
- TFR TF receptors
- hydrophilic polymer for example, polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids.
- Exosomes for example, polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids.
- Exosomes are endogenous nano-vesicles that transport RNAs and proteins which can deliver short interfering (si)RNA to the brain and other target organs.
- siRNAs and proteins which can deliver short interfering (si)RNA to the brain and other target organs.
- Alvarez-Erviti et al. 2011, Nat Biotechnol 29: 341
- Lamp2b an exosomal membrane protein, fused to the neuron-specific RVG peptide3.
- Purified exosomes were loaded with exogenous siRNA by electroporation.
- RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not observed. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer's disease. To obtain a pool of immunologically inert exosomes, Alvarez-Erviti et al.
- MHC major histocompatibility complex
- T-cell activators such as MHC-II and CD86
- GM-CSF granulocyte/macrophage-colony stimulating factor
- Exosomes were purified from the culture supernatant the following day using well-established ultracentrifugation protocols. The exosomes produced were physically homogenous, with a size distribution peaking at 80 nm in diameter as determined by nanoparticle tracking analysis (NTA) and electron microscopy.
- NTA nanoparticle tracking analysis
- Alvarez-Erviti et al. obtained 6-12 g of exosomes (measured based on protein concentration) per 10 6 cells.
- Alvarez-Erviti et al. investigated the possibility of loading modified exosomes with exogenous cargoes using electroporation protocols adapted for nanoscale applications.
- electroporation for membrane particles at the nanometer scale is not well-characterized, nonspecific Cy5-labeled siRNA was used for the empirical optimization of the electroporation protocol.
- the amount of encapsulated siRNA was assayed after ultracentrifugation and lysis of exosomes. Electroporation at 400 V and 125 F resulted in the greatest retention of siRNA and was used for all subsequent experiments.
- Alvarez-Erviti et al. carried out 5'-rapid amplification of cDNA ends (RACE) on BACE1 cleavage product, which provided evidence of RNAi-mediated knockdown by the siRNA.
- RACE 5'-rapid amplification of cDNA ends
- siRNA-RVG exosomes induced immune responses in vivo by assessing IL-6, IP-10, TNF ⁇ and IFN- ⁇ serum concentrations.
- siRNA-RVG exosome treatment nonsignificant changes in all cytokines were registered similar to siRNA-transfection reagent treatment in contrast to siRNA-RVG-9R, which potently stimulated IL-6 secretion, confirming the immunologically inert profile of the exosome treatment.
- delivery with RVG-exosome appears to be more efficient than RVG-9R delivery as comparable mRNA knockdown and greater protein knockdown was achieved with fivefold less siRNA without the corresponding level of immune stimulation.
- the exosome delivery system of Alvarez-Erviti et al. may be applied to deliver the CRISPR-Cas system of the present invention to therapeutic targets, especially neurodegenerative diseases.
- a dosage of about 100 to 1000 mg of CRISPR Cas encapsulated in about 100 to 1000 mg of RVG exosomes may be contemplated for the present invention.
- El-Andaloussi et al. discloses how exosomes derived from cultured cells can be harnessed for delivery of siRNA in vitro and in vivo. This protocol first describes the generation of targeted exosomes through transfection of an expression vector, comprising an exosomal protein fused with a peptide ligand. Next, El- Andaloussi et al. explain how to purify and characterize exosomes from transfected cell supernatant. Next, El-Andaloussi et al. detail crucial steps for loading siRNA into exosomes. Finally, El-Andaloussi et al.
- exosome-mediated siRNA delivery is evaluated by functional assays and imaging.
- the entire protocol takes 3 weeks. Delivery or administration according to the invention may be performed using exosomes produced from self-derived dendritic cells.
- Exosomes are nano-sized vesicles (30– 90nm in size) produced by many cell types, including dendritic cells (DC), B cells, T cells, mast cells, epithelial cells and tumor cells. These vesicles are formed by inward budding of late endosomes and are then released to the extracellular environment upon fusion with the plasma membrane. Because exosomes naturally carry RNA between cells, this property might be useful in gene therapy.
- DC dendritic cells
- B cells B cells
- T cells T cells
- mast cells epithelial cells
- tumor cells tumor cells.
- Exosomes from plasma are prepared by centrifugation of buffy coat at 900g for 20 min to isolate the plasma followed by harvesting cell supernatants, centrifuging at 300g for 10 min to eliminate cells and at 16 500g for 30 min followed by filtration through a 0.22 mm filter. Exosomes are pelleted by ultracentrifugation at 120 000g for70 min. Chemical transfection of siRNA into exosomes is carried out according to the manufacturer’s instructions in RNAi Human/Mouse Starter Kit (Quiagen, Hilden, Germany). siRNA is added to 100 ml PBS at a final concentration of 2 mmol/ml.
- exosomes are re- isolated using aldehyde/sulfate latex beads.
- the chemical transfection of CRISPR Cas into exosomes may be conducted similarly to siRNA.
- the exosomes may be co-cultured with monocytes and lymphocytes isolated from the peripheral blood of healthy donors. Therefore, it may be contemplated that exosomes containing CRISPR Cas may be introduced to monocytes and lymphocytes of and autologously reintroduced into a human. Accordingly, delivery or administration according to the invention may beperformed using plasma exosomes.
- Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. Liposomes have gained considerable attention as drug delivery carriers because they are biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB) (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).
- BBB blood brain barrier
- Liposomes can be made from several different types of lipids; however, phospholipids are most commonly used to generate liposomes as drug carriers. Although liposome formation is spontaneous when a lipid film is mixed with an aqueous solution, it can also be expedited by applying force in the form of shaking by using a homogenizer, sonicator, or an extrusion apparatus (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review). Several other additives may be added to liposomes in order to modify their structure and properties.
- liposomes are prepared from hydrogenated egg phosphatidylcholine or egg phosphatidylcholine, cholesterol, and dicetyl phosphate, and their mean vesicle sizes were adjusted to about 50 and 100 ⁇ nm. (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review).
- a liposome formulation may be mainly comprised of natural phospholipids and lipids such as 1,2-distearoryl-sn-glycero-3-phosphatidyl choline (DSPC), sphingomyelin, egg phosphatidylcholines and monosialoganglioside. Since this formulation is made up of phospholipids only, liposomal formulations have encountered many challenges, one of the ones being the instability in plasma. Several attempts to overcome these challenges have been made, specifically in the manipulation of the lipid membrane. One of these attempts focused on the manipulation of cholesterol.
- DSPC 1,2-distearoryl-sn-glycero-3-phosphatidyl choline
- the CRISPR Cas system may be administered in liposomes, such as a stable nucleic-acid-lipid particle (SNALP) (see, e.g., Morrissey et al., Nature Biotechnology, Vol. 23, No. 8, August 2005).
- SNALP stable nucleic-acid-lipid particle
- a specific CRISPR Cas targeted in a SNALP daily intravenous injections of about 1, 3 or 5 mg/kg/day of a specific CRISPR Cas targeted in a SNALP are contemplated.
- the daily treatment may be over about three days and then weekly for about five weeks.
- a specific CRISPR Cas encapsulated SNALP) administered by intravenous injection to at doses of about 1 or 2.5 mg/kg are also contemplated (see, e.g., Zimmerman et al., Nature Letters, Vol. 441, 4 May 2006).
- the SNALP formulation may contain the lipids 3-N- [(wmethoxypoly(ethylene glycol) 2000) carbamoyl] -1 ,2-dimyristyloxy-propylamine (PEG-C- DMA), 1,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane (DLinDMA), 1,2-distearoyl-sn- glycero-3-phosphocholine (DSPC) and cholesterol, in a 2:40:10:48 molar per cent ratio (see, e.g., Zimmerman et al., Nature Letters, Vol. 441, 4 May 2006).
- SNALPs stable nucleic-acid-lipid particles
- the SNALP liposomes may be prepared by formulating D-Lin-DMA and PEG-C-DMA with distearoylphosphatidylcholine (DSPC), Cholesterol and siRNA using a 25:1 lipid/siRNA ratio and a 48/40/10/2 molar ratio of Cholesterol/D-Lin-DMA/DSPC/PEG-C-DMA.
- DSPC distearoylphosphatidylcholine
- Cholesterol and siRNA using a 25:1 lipid/siRNA ratio and a 48/40/10/2 molar ratio of Cholesterol/D-Lin-DMA/DSPC/PEG-C-DMA.
- the resulted SNALP liposomes are about 80–100 nm in size.
- a SNALP may comprise synthetic cholesterol (Sigma- Aldrich, St Louis, MO, USA), dipalmitoylphosphatidylcholine (Avanti Polar Lipids, Alabaster, AL, USA), 3-N-[(w-methoxy poly(ethylene glycol)2000)carbamoyl]-1,2- dimyrestyloxypropylamine, and cationic 1,2-dilinoleyloxy-3-N,Ndimethylaminopropane (see, e.g., Geisbert et al., Lancet 2010; 375: 1896-905).
- a dosage of about 2 mg/kg total CRISPR Cas per dose administered as, for example, a bolus intravenous infusion may be contemplated.
- a SNALP may comprise synthetic cholesterol (Sigma- Aldrich), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC; Avanti Polar Lipids Inc.), PEG- cDMA, and 1,2-dilinoleyloxy-3-(N;N-dimethyl)aminopropane (DLinDMA) (see, e.g., Judge, J. Clin. Invest. 119:661-673 (2009)).
- Formulations used for in vivo studies may comprise a final lipid/RNA mass ratio of about 9:1.
- the stability profile of RNAi nanomedicines has been reviewed by Barros and Gollob of Alnylam Pharmaceuticals (see, e.g., Advanced Drug Delivery Reviews 64 (2012) 1730– 1737).
- the stable nucleic acid lipid particle is comprised of four different lipids— an ionizable lipid (DLinDMA) that is cationic at low pH, a neutral helper lipid, cholesterol, and a diffusible polyethylene glycol (PEG)-lipid.
- the particle is approximately 80 nm in diameter and is charge-neutral at physiologic pH.
- the ionizable lipid serves to condense lipid with the anionic siRNA during particle formation.
- the ionizable lipid When positively charged under increasingly acidic endosomal conditions, the ionizable lipid also mediates the fusion of SNALP with the endosomal membrane enabling release of siRNA into the cytoplasm.
- the PEG-lipid stabilizes the particle and reduces aggregation during formulation, and subsequently provides a neutral hydrophilic exterior that improves pharmacokinetic properties.
- ALN-TTR01 which employs the SNALP technology described above and targets hepatocyte production of both mutant and wild-type TTR to treat TTR amyloidosis (ATTR).
- TTR amyloidosis TTR amyloidosis
- FAP familial amyloidotic polyneuropathy
- FAC familial amyloidotic cardiomyopathy
- SSA senile systemic amyloidosis
- ALN-TTR01 was administered as a 15-minute IV infusion to 31 patients (23 with study drug and 8 with placebo) within a dose range of 0.01 to 1.0 mg/kg (based on siRNA). Treatmentwaswell tolerated with no significant increases in liver function tests. Infusion-related reactions were noted in 3 of 23 patients at 0.4 mg/kg; all responded to slowing of the infusion rate and all continued on study. Minimal and transient elevations of serum cytokines IL-6, IP-10 and IL-1ra were noted in two patients at the highest dose of 1 mg/kg (as anticipated from preclinical and NHP studies). Lowering of serum TTR, the expected pharmacodynamics effect of ALN-TTR01, was observed at 1 mg/kg.
- a SNALP may be made by solubilizing a cationic lipid, DSPC, cholesterol and PEG-lipid were solubilized in ethanol at a molar ratio of 40:10:40:10, respectively (see, Semple et al., Nature Niotechnology, Volume 28 Number 2 February 2010, pp. 172-177).
- the lipid mixture was added to an aqueous buffer (50 mM citrate, pH 4) with mixing to a final ethanol and lipid concentration of 30% (vol/vol) and 6.1 mg/ml, respectively, and allowed to equilibrate at 22 °C for 2 min before extrusion.
- the hydrated lipids were extruded through two stacked 80 nm pore-sized filters (Nuclepore) at 22 °C using a Lipex Extruder (Northern Lipids) until a vesicle diameter of 70–90 nm, as determined by dynamic light scattering analysis, was obtained. This generally required 1–3 passes.
- the siRNA (solubilized in a 50 mM citrate, pH 4 aqueous solution containing 30% ethanol) was added to the pre- equilibrated (35 °C) vesicles at a rate of ⁇ 5 ml/min with mixing.
- siRNA/lipid ratio 0.06 (wt/wt) was reached, the mixture was incubated for a further 30 min at 35 °C to allow vesicle reorganization and encapsulation of the siRNA.
- the ethanol was then removed and the external buffer replaced with PBS (155 mM NaCl, 3 mM Na2HPO4, 1 mM KH2PO4, pH 7.5) by either dialysis or tangential flow diafiltration.
- siRNA were encapsulated in SNALP using a controlled step-wise dilution method process.
- the lipid constituents of KC2-SNALP were DLin-KC2-DMA (cationic lipid), dipalmitoylphosphatidylcholine (DPPC; Avanti Polar Lipids), synthetic cholesterol (Sigma) and PEG-C-DMA used at a molar ratio of 57.1:7.1:34.3:1.4.
- SNALP were dialyzed against PBS and filter sterilized through a 0.2 m filter before use.
- Mean particle sizes were 75–85 nm and 90–95% of the siRNA was encapsulated within the lipid particles.
- the final siRNA/lipid ratio in formulations used for in vivo testing was ⁇ 0.15 (wt/wt).
- LNP-siRNA systems containing Factor VII siRNA were diluted to the appropriate concentrations in sterile PBS immediately before use and the formulations were administered intravenously through the lateral tail vein in a total volume of 10 ml/kg. This method may be extrapolated to the CRISPR Cas system of the present invention.
- DLin-KC2-DMA amino lipid 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]- dioxolane
- DLin-KC2-DMA amino lipid 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]- dioxolane
- a preformed vesicle with the following lipid composition may be contemplated: amino lipid, distearoylphosphatidylcholine (DSPC), cholesterol and (R)-2,3-bis(octadecyloxy) propyl-1- (methoxy poly(ethylene glycol)2000)propylcarbamate (PEG-lipid) in the molar ratio 40/10/40/10, respectively, and a FVII siRNA/total lipid ratio of approximately 0.05 (w/w).
- the particles may be extruded up to three times through 80 nm membranes prior to adding the CRISPR Cas RNA.
- Particles containing the highly potent amino lipid 16 may be used, in which the molar ratio of the four lipid components 16, DSPC, cholesterol and PEG-lipid (50/10/38.5/1.5) which may be further optimized to enhance in vivo activity.
- Michael S D Kormann et al. (“Expression of therapeutic proteins after delivery of chemically modified mRNA in mice: Nature Biotechnology, Volume:29, Pages: 154–157 (2011)) describes the use of lipid envelopes to deliver RNA. Use of lipid envelopes is also preferred in the present invention.
- lipids may be formulated with the CRISPR Cas system of the present invention to form lipid nanoparticles (LNPs).
- Lipids include, but are not limited to, DLin-KC2-DMA4, C12-200 and colipids disteroylphosphatidyl choline, cholesterol, and PEG- DMG may be formulated with CRISPR Cas instead of siRNA (see, e.g., Novobrantseva, Molecular Therapy–Nucleic Acids (2012) 1, e4; doi:10.1038/mtna.2011.3) using a spontaneous vesicle formation procedure.
- the component molar ratio may be about 50/10/38.5/1.5 (DLin- KC2-DMA or C12-200/disteroylphosphatidyl choline/cholesterol/PEG-DMG).
- the final lipid:siRNA weight ratio may be ⁇ 12:1 and 9:1 in the case of DLin-KC2-DMA and C12-200 lipid nanoparticles (LNPs), respectively.
- the formulations may have mean particle diameters of ⁇ 80 nm with >90% entrapment efficiency. A 3 mg/kg dose may be contemplated.
- Tekmira has a portfolio of approximately 95 patent families, in the U.S. and abroad, that are directed to various aspects of LNPs and LNP formulations (see, e.g., U.S. Pat. Nos. 7,982,027; 7,799,565; 8,058,069; 8,283,333; 7,901,708; 7,745,651; 7,803,397; 8,101,741; 8,188,263; 7,915,399; 8,236,943 and 7,838,658 and European Pat. Nos .1766035; 1519714; 1781593 and 1664316), all of which may be used and/or adapted to the present invention.
- the CRISPR Cas system may be delivered encapsulated in PLGA Microspheres such as that further described in US published applications 20130252281 and 20130245107 and 20130244279 (assigned to Moderna Therapeutics) which relate to aspects of formulation of compositions comprising modified nucleic acid molecules which may encode a protein, a protein precursor, or a partially or fully processed form of the protein or a protein precursor.
- the formulation may have a molar ratio 50:10:38.5:1.5-3.0 (cationic lipid:fusogenic lipid:cholesterol:PEG lipid).
- the PEG lipid may be selected from, but is not limited to PEG-c- DOMG, PEG-DMG.
- the fusogenic lipid may be DSPC. See also, Schrum et al., Delivery and Formulation of Engineered Nucleic Acids, US published application 20120251618.
- Nanomerics’ technology addresses bioavailability challenges for a broad range of therapeutics, including low molecular weight hydrophobic drugs, peptides, and nucleic acid based therapeutics (plasmid, siRNA, miRNA).
- Specific administration routes for which the technology has demonstrated clear advantages include the oral route, transport across the blood- brain-barrier, delivery to solid tumours, as well as to the eye. See, e.g., Mazza et al., 2013, ACS Nano. 2013 Feb 26;7(2):1016-26; Uchegbu and Siew, 2013, J Pharm Sci. 102(2):305-10 and Lalatsa et al., 2012, J Control Release. 2012 Jul 20;161(2):523-36. US Patent Publication No.
- cationic dendrimers for delivering bioactive molecules, such as polynucleotide molecules, peptides and polypeptides and/or pharmaceutical agents, to a mammalian body.
- the dendrimers are suitable for targeting the delivery of the bioactive molecules to, for example, the liver, spleen, lung, kidney or heart.
- Dendrimers are synthetic 3- dimensional macromolecules that are prepared in a step-wise fashion from simple branched monomer units, the nature and functionality of which can be easily controlled and varied.
- Dendrimers are synthesised from the repeated addition of building blocks to a multifunctional core (divergent approach to synthesis), or towards a multifunctional core (convergent approach to synthesis) and each addition of a 3-dimensional shell of building blocks leads to the formation of a higher generation of the dendrimers.
- Polypropylenimine dendrimers start from a diaminobutane core to which is added twice the number of amino groups by a double Michael addition of acrylonitrile to the primary amines followed by the hydrogenation of the nitriles. This results in a doubling of the amino groups.
- Polypropylenimine dendrimers contain 100% protonable nitrogens and up to 64 terminal amino groups (generation 5, DAB 64).
- Protonable groups are usually amine groups which are able to accept protons at neutral pH.
- the use of dendrimers as gene delivery agents has largely focused on the use of the polyamidoamine. and phosphorous containing compounds with a mixture of amine/amide or N--P(O 2 )S as the conjugating units respectively with no work being reported on the use of the lower generation polypropylenimine dendrimers for gene delivery.
- Polypropylenimine dendrimers have also been studied as pH sensitive controlled release systems for drug delivery and for their encapsulation of guest molecules when chemically modified by peripheral amino acid groups. The cytotoxicity and interaction of polypropylenimine dendrimers with DNA as well as the transfection efficacy of DAB 64 has also been studied.
- cationic dendrimers such as polypropylenimine dendrimers
- display suitable properties such as specific targeting and low toxicity, for use in the targeted delivery of bioactive molecules, such as genetic material.
- derivatives of the cationic dendrimer also display suitable properties for the targeted delivery of bioactive molecules.
- Supercharged proteins are a class of engineered or naturally occurring proteins with unusually high positive or negative net theoretical charge. Both supernegatively and superpositively charged proteins exhibit a remarkable ability to withstand thermally or chemically induced aggregation. Superpositively charged proteins are also able to penetrate mammalian cells. Associating cargo with these proteins, such as plasmid DNA, siRNA, or other proteins, can enable the functional delivery of these macromolecules into mammalian cells both in vitro and in vivo. David Liu’s lab reported the creation and characterization of supercharged proteins in 2007 (Lawrence et al., 2007, Journal of the American Chemical Society 129, 10110– 10112).
- +36 GFP is an effective plasmid delivery reagent in a range of cells.
- plasmid DNA is a larger cargo than siRNA, proportionately more +36 GFP protein is required to effectively complex plasmids.
- Applicants have developed a variant of +36 GFP bearing a C-terminal HA2 peptide tag, a known endosome-disrupting peptide derived from the influenza virus hemagglutinin protein. The following protocol has been effective in a variety of cells, but as above it is advised that plasmid DNA and supercharged protein doses be optimized for specific cell lines and delivery applications.
- implantable devices are also contemplated for delivery of the CRISPR Cas system.
- US Patent Publication 20110195123 discloses an implantable medical device which elutes a drug locally and in prolonged period is provided, including several types of such a device, the treatment modes of implementation and methods of implantation.
- the device comprising of polymeric substrate, such as a matrix for example, that is used as the device body, and drugs, and in some cases additional scaffolding materials, such as metals or additional polymers, and materials to enhance visibility and imaging.
- RNA interference RNA interference
- si RNA si RNA
- sh RNA sh RNA
- antisense RNA/DNA ribozyme and nucleoside analogs. Therefore, this system may be used/and or adapted to the CRISPR Cas system of the present invention.
- the modes of implantation in some embodiments are existing implantation procedures that are developed and used today for other treatments, including brachytherapy and needle biopsy.
- a drug delivery implantable or insertable system including systems applicable to a cavity such as the abdominal cavity and/or any other type of administration in which the drug delivery system is not anchored or attached, comprising a biostable and/or degradable and/or bioabsorbable polymeric substrate, which may for example optionally be a matrix.
- insertion also includes implantation.
- the drug delivery system is preferably implemented as a "Loder” as described in US Patent Publication 20110195123.
- the polymer or plurality of polymers are biocompatible, incorporating an agent and/or plurality of agents, enabling the release of agent at a controlled rate, wherein the total volume of the polymeric substrate, such as a matrix for example, in some embodiments is optionally and preferably no greater than a maximum volume that permits a therapeutic level of the agent to be reached. As a non-limiting example, such a volume is preferably within the range of 0.1 m 3 to 1000 mm 3 , as required by the volume for the agent load.
- the Loder may optionally be larger, for example when incorporated with a device whose size is determined by functionality, for example and without limitation, a knee joint, an intra-uterine or cervical ring and the like.
- the drug delivery system (for delivering the composition) is designed in some embodiments to preferably employ degradable polymers, wherein the main release mechanism is bulk erosion; or in some embodiments, non degradable, or slowly degraded polymers are used, wherein the main release mechanism is diffusion rather than bulk erosion, so that the outer part functions as membrane, and its internal part functions as a drug reservoir, which practically is not affected by the surroundings for an extended period (for example from about a week to about a few months). Combinations of different polymers with different release mechanisms may also optionally be used.
- the concentration gradient at the surface is preferably maintained effectively constant during a significant period of the total drug releasing period, and therefore the diffusion rate is effectively constant (termed "zero mode" diffusion).
- the term “constant” it is meant a diffusion rate that is preferably maintained above the lower threshold of therapeutic effectiveness, but which may still optionally feature an initial burst and/or fluctuate, for example increasing and decreasing to a certain degree.
- the diffusion rate is preferably so maintained for a prolonged period, and it can be considered constant to a certain level to optimize the therapeutically effective period, for example the effective silencing period.
- the drug delivery system optionally and preferably is designed to shield the nucleotide based therapeutic agent from degradation, whether chemical in nature or due to attack from enzymes and other factors in the body of the subject.
- the drug delivery system as described in US Patent Publication 20110195123 is optionally associated with sensing and/or activation appliances that are operated at and/or after implantation of the device, by non and/or minimally invasive methods of activation and/or acceleration/deceleration, for example optionally including but not limited to thermal heating and cooling, laser beams, and ultrasonic, including focused ultrasound and/or RF (radiofrequency) methods or devices.
- sensing and/or activation appliances that are operated at and/or after implantation of the device, by non and/or minimally invasive methods of activation and/or acceleration/deceleration, for example optionally including but not limited to thermal heating and cooling, laser beams, and ultrasonic, including focused ultrasound and/or RF (radiofrequency) methods or devices.
- RF radiofrequency
- the site for local delivery may optionally include target sites characterized by high abnormal proliferation of cells, and suppressed apoptosis, including tumors, active and or chronic inflammation and infection including autoimmune diseases states, degenerating tissue including muscle and nervous tissue, chronic pain, degenerative sites, and location of bone fractures and other wound locations for enhancement of regeneration of tissue, and injured cardiac, smooth and striated muscle.
- the site for implantation of the composition, or target site preferably features a radius, area and/or volume that is sufficiently small for targeted local delivery.
- the target site optionally has a diameter in a range of from about 0.1 mm to about 5 cm.
- the location of the target site is preferably selected for maximum therapeutic efficacy.
- the composition of the drug delivery system (optionally with a device for implantation as described above) is optionally and preferably implanted within or in the proximity of a tumor environment, or the blood supply associated thereof.
- the composition (optionally with the device) is optionally implanted within or in the proximity to pancreas, prostate, breast, liver, via the nipple, within the vascular system and so forth.
- the target location is optionally selected from the group consisting of (as non-limiting examples only, as optionally any site within the body may be suitable for implanting a Loder): 1. brain at degenerative sites like in Parkinson or Alzheimer disease at the basal ganglia, white and gray matter; 2. spine as in the case of amyotrophic lateral sclerosis (ALS); 3.
- Intra vaginal 10. Inner ear--auditory system, labyrinth of the inner ear, vestibular system; 11. Intra tracheal; 12. Intra-cardiac; coronary, epicardiac; 13. urinary bladder; 14. biliary system; 15. parenchymal tissue including and not limited to the kidney, liver, spleen; 16. lymph nodes; 17. salivary glands; 18. dental gums; 19. Intra-articular (into joints); 20.
- insertion of the system is associated with injection of material to the ECM at the target site and the vicinity of that site to affect local pH and/or temperature and/or other biological factors affecting the diffusion of the drug and/or drug kinetics in the ECM, of the target site and the vicinity of such a site.
- the release of said agent could be associated with sensing and/or activation appliances that are operated prior and/or at and/or after insertion, by non and/or minimally invasive and/or else methods of activation and/or acceleration/deceleration, including laser beam, radiation, thermal heating and cooling, and ultrasonic, including focused ultrasound and/or RF (radiofrequency) methods or devices, and chemical activators.
- the drug preferably comprises a gene silencing biological RNAi drug, for example for localized cancer cases in breast, pancreas, brain, kidney, bladder, lung, and prostate as described below.
- RNAi RNA binds to drugs other than siRNA
- the Loder substrate such as a matrix for example
- this system may be used and/or adapted to deliver the CRISPR Cas system of the present invention.
- the method of insertion may optionally already be used for other types of tissue implantation and/or for insertions and/or for sampling tissues, optionally without modifications, or alternatively optionally only with non-major modifications in such methods.
- Such methods optionally include but are not limited to brachytherapy methods, biopsy, endoscopy with and/or without ultrasound, such as ERCP, stereotactic methods into the brain tissue, Laparoscopy, including implantation with a laparoscope into joints, abdominal organs, the bladder wall and body cavities.
- CRISPR enzyme mRNA and guide RNA might also be delivered separately.
- CRISPR enzyme mRNA can be delivered prior to the guide RNA to give time for CRISPR enzyme to be expressed.
- CRISPR enzyme mRNA might be administered 1-12 hours (preferably around 2-6 hours) prior to the administration of guide RNA.
- CRISPR enzyme mRNA and guide RNA can be administered together.
- a second booster dose of guide RNA can be administered 1-12 hours (preferably around 2-6 hours) after the initial administration of CRISPR enzyme mRNA + guide RNA. Additional administrations of CRISPR enzyme mRNA and/or guide RNA might be useful to achieve the most efficient levels of genome modification.
- CRISPR enzyme mRNA and guide RNA delivered For minimization of toxicity and off-target effect, it will be important to control the concentration of CRISPR enzyme mRNA and guide RNA delivered.
- Optimal concentrations of CRISPR enzyme mRNA and guide RNA can be determined by testing different concentrations in a cellular or animal model and using deep sequencing the analyze the extent of modification at potential off-target genomic loci. For example, for the guide sequence targeting 5’- GAGTCCGAGCAGAAGAAGAA-3’ in the EMX1 gene of the human genome, deep sequencing can be used to assess the level of modification at the following two off-target loci, 1: 5’-GAGTCCTAGCAGGAGAAGAA-3’ and 2: 5’-GAGTCTAAGCAGAAGAAGAA-3’.
- CRISPR enzyme nickase mRNA for example S. pyogenes Cas9 with the D10A mutation
- CRISPR enzyme nickase mRNA can be delivered with a pair of guide RNAs targeting a site of interest.
- the two guide RNAs need to be spaced as follows. Guide sequences in red (single underline) and blue (double underline) respectively (these examples are based on the PAM requirement for Streptococcus pyogenes Cas9).
- the 5’ overhang is at most 200 base pairs, preferably at most 100 base pairs, or more preferably at most 50 base pairs.
- the 5’ overhang is at least 26 base pairs, preferably at least 30 base pairs or more preferably 34-50 base pairs or 1-34 base pairs.
- the first guide sequence directing cleavage of one strand of the DNA duplex near the first target sequence and the second guide sequence directing cleavage of other strand near the second target sequence results in a blunt cut or a 3’ overhang.
- the 3’ overhang is at most 150, 100 or 25 base pairs or at least 15, 10 or 1 base pairs. In preferred embodiments the 3’ overhang is 1- 100 basepairs.
- aspects of the invention relate to the expression of the gene product being decreased or a template polynucleotide being further introduced into the DNA molecule encoding the gene product or an intervening sequence being excised precisely by allowing the two 5’ overhangs to reanneal and ligate or the activity or function of the gene product being altered or the expression of the gene product being increased.
- the gene product is a protein. sgRNA pairs creating 5’ overhangs with less than 8bp overlap between the guide sequences (offset greater than -8 bp) were able to mediate detectable indel formation.
- each guide used in these assays is able to efficiently induce indels when paired with wildtype Cas9, indicating that the relative positions of the guide pairs are the most important parameters in predicting double nicking activity.
- Cas9n and Cas9H840A nick opposite strands of DNA
- substitution of Cas9n with Cas9H840A with a given sgRNA pair should result in the inversion of the overhang type.
- a pair of sgRNAs that will generate a 5’ overhang with Cas9n should in principle generate the corresponding 3’ overhang instead. Therefore, sgRNA pairs that lead to the generation of a 3’ overhang with Cas9n might be used with Cas9H840A to generate a 5’ overhang.
- PCSK9 liver, proprotein convertase subtilisin kexin 9
- Bailey et al. J Mol Med (Berl). 1999 Jan;77(1):244-9) discloses insulin delivery by ex-vivo somatic cell gene therapy involves the removal of non-B-cell somatic cells (e.g. fibroblasts) from a diabetic patient, and genetically altering them in vitro to produce and secrete insulin.
- the cells can be grown in culture and returned to the donor as a source of insulin replacement. Cells modified in this way could be evaluated before implantation, and reserve stocks could be cryopreserved.
- the procedure should obviate the need for immunosuppression and overcome the problem of tissue supply, while avoiding a recurrence of cell destruction.
- Ex-vivo somatic cell gene therapy requires an accessible and robust cell type that is amenable to multiple transfections and subject to controlled proliferation.
- Special problems associated with the use of non-B-cell somatic cells include the processing of proinsulin to insulin, and the conferment of sensitivity to glucose-stimulated proinsulin biosynthesis and regulated insulin release.
- Preliminary studies using fibroblasts, pituitary cells, kidney (COS) cells and ovarian (CHO) cells suggest that these challenges could be met, and that ex-vivo somatic cell gene therapy offers a feasible approach to insulin replacement therapy.
- the system of Bailey et al. may be used/and or adapted to the CRISPR Cas system of the present invention for delivery to the liver.
- Cationic liposomes (Lipotrust) containing O,O’-ditetradecanoyl-N-(a- trimethylammonioacetyl) diethanolamine chloride (DC-6-14) as a cationic lipid, cholesterol and dioleoylphosphatidylethanolamine at a molar ratio of 4:3:3 (which has shown high transfection efficiency under serumcontaining conditions for in vitro and in vivo gene delivery) were purchased from Hokkaido System Science. The liposomes were manufactured using a freeze- dried empty liposomes method and prepared at a concentration of 1 mM (DC-16-4) by addition of double-distilled water (DDW) to the lyophilized lipid mixture under vortexing before use.
- DC-6-14 O,O’-ditetradecanoyl-N-(a- trimethylammonioacetyl) diethanolamine chloride
- VA-coupled liposomes 200 nmol of vitamin A (retinol, Sigma) dissolved in DMSO was mixed with the liposome suspensions (100 nmol as DC-16-4) by vortexing in a 1.5 ml tube at 25 1C.
- VA-lip-siRNAgp46 a solution of siRNAgp46 (580 pmol/ml in DDW) was added to the retinol-coupled liposome solution with stirring at 25 C.
- the ratio of siRNA to DC-16-4 was 1:11.5 (mol/mol) and the siRNA to liposome ratio (wt/wt) was 1:1.
- any free vitamin A or siRNA that was not taken up by liposomes were separated from liposomal preparations using a micropartition system (VIVASPIN 2 concentrator 30,000 MWCO PES, VIVASCIENCE).
- the liposomal suspension was added to the filters and centrifuged at 1,500g for 5 min 3 times at 25 1C. Fractions were collected and the material trapped in the filter was reconstituted with PBS to achieve the desired dose for in vitro or in vivo use.
- Three injections of 0.75 mg/kg siRNA were given every other day to rats.
- the system of Sato et al. may be used/and or adapted to the CRISPR Cas system of the present invention for delivery to the liver by delivering about 0.5 to 1 mg/kg of CRISPR Cas RNA in the liposomes as described by Sato et al. to humans.
- SATA-modified siRNAs are synthesized by reaction of 5’ aminemodified siRNA with 1 weight equivalents (wt eq) of Nsuccinimidyl-S-acetylthioacetate (SATA) reagent (Pierce) and 0.36 wt eq of NaHCO 3 in water at 4°C for 16 h.
- SATA Nsuccinimidyl-S-acetylthioacetate
- NaHCO 3 NaHCO 3
- PBAVE (30 mg/ml in 5mMTAPS, pH 9) is modified by addition of 1.5 wt % SMPT (Pierce). After a 1-h incubation, 0.8 mg of SMPT-PBAVE was added to 400 l of isotonic glucose solution containing 5 mM TAPS (pH 9). To this solution was added 50 g of SATA-modified siRNA. For the dose– response experiments where [PBAVE] was constant, different amounts of siRNA are added. The mixture is then incubated for 16 h. To the solution is then added 5.6 mg of Hepes free base followed by a mixture of 3.7 mg ofCDM-NAGand 1.9mg of CDM-PEG.
- CDM-PEG and CDM-NAG are synthesized from the acid chloride generated by using oxalyl chloride.
- To the acid chloride is added 1.1 molar equivalents polyethylene glycol monomethyl ether (molecular weight average of 450) to generate CDM-PEG or (aminoethoxy)ethoxy-2-(acetylamino)-2-deoxy- ⁇ -D- glucopyranoside to generate CDM-NAG.
- the final product is purified by using reverse-phase HPLC with a 0.1% TFA water/acetonitrile gradient. About 25 to 50 g of siRNA was delivered to mice.
- the system of Rozema et al. may be applied to the CRISPR Cas system of the present invention for delivery to the liver, for example by envisioning a dosage of about 50 to about 200 mg of CRISPR Cas for delivery to a human.
- Delivery options for the brain include encapsulation of CRISPR enzyme and guide RNA in the form of either DNA or RNA into liposomes and conjugating to molecular Trojan horses for trans-blood brain barrier (BBB) delivery.
- BBB trans-blood brain barrier
- Molecular Trojan horses have been shown to be effective for delivery of B-gal expression vectors into the brain of non-human primates.
- the same approach can be used to delivery vectors containing CRISPR enzyme and guide RNA.
- Xia CF and Boado RJ, Pardridge WM Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology. Mol Pharm. 2009 May- Jun;6(3):747-51.
- siRNA short interfering RNA
- mAb monoclonal antibody
- avidin-biotin a receptor-specific monoclonal antibody
- the authors also report that because the bond between the targeting mAb and the siRNA is stable with avidin-biotin technology, and RNAi effects at distant sites such as brain are observed in vivo following an intravenous administration of the targeted siRNA.
- Zhang et al. (Mol Ther. 2003 Jan;7(1):11-8.) describe how expression plasmids encoding reporters such as luciferase were encapsulated in the interior of an "artificial virus" comprised of an 85 nm pegylated immunoliposome, which was targeted to the rhesus monkey brain in vivo with a monoclonal antibody (MAb) to the human insulin receptor (HIR).
- MAb monoclonal antibody
- HIR human insulin receptor
- the HIRMAb enables the liposome carrying the exogenous gene to undergo transcytosis across the blood-brain barrier and endocytosis across the neuronal plasma membrane following intravenous injection.
- the level of luciferase gene expression in the brain was 50-fold higher in the rhesus monkey as compared to the rat.
- Widespread neuronal expression of the beta-galactosidase gene in primate brain was demonstrated by both histochemistry and confocal microscopy. The authors indicate that this approach makes feasible reversible adult transgenics in 24 hours. Accordingly, the use of immunoliposome is preferred. These may be used in conjunction with antibodies to target specific tissues or cell surface proteins.
- RNA Ribonucleic acid
- nanoparticles Cho, S., Goldberg, M., Son, S., Xu, Q., Yang, F., Mei, Y., Bogatyrev, S., Langer, R. and Anderson, D., Lipid-like nanoparticles for small interfering RNA delivery to endothelial cells, Advanced Functional Materials, 19: 3112-3118, 2010
- exosomes Schroeder, A., Levins, C., Cortez, C., Langer, R., and Anderson, D., Lipid-based nanotherapeutics for siRNA delivery, Journal of Internal Medicine, 267: 9-21, 2010, PMID: 20059641).
- exosomes have been shown to be particularly useful in delivery siRNA, a system with some parallels to the CRISPR system.
- El-Andaloussi S, et al. (“Exosome-mediated delivery of siRNA in vitro and in vivo.” Nat Protoc. 2012 Dec;7(12):2112- 26. doi: 10.1038/nprot.2012.131. Epub 2012 Nov 15.) describe how exosomes are promising tools for drug delivery across different biological barriers and can be harnessed for delivery of siRNA in vitro and in vivo.
- Their approach is to generate targeted exosomes through transfection of an expression vector, comprising an exosomal protein fused with a peptide ligand.
- exosomes are then purify and characterized from transfected cell supernatant, then siRNA is loaded into the exosomes.
- Delivery or administration according to the invention can be performed with exosomes, in particular but not limited to the brain.
- Vitamin E ⁇ -tocopherol
- CRISPR Cas may be conjugated with CRISPR Cas and delivered to the brain along with high density lipoprotein (HDL), for example in a similar manner as was done by Uno et al. (HUMAN GENE THERAPY 22:711–719 (June 2011)) for delivering short-interfering RNA (siRNA) to the brain.
- HDL high density lipoprotein
- Mice were infused via Osmotic minipumps (model 1007D; Alzet, Cupertino, CA) filled with phosphate-buffered saline (PBS) or free TocsiBACE or Toc-siBACE/HDL and connected with Brain Infusion Kit 3 (Alzet).
- PBS phosphate-buffered saline
- a brain-infusion cannula was placed about 0.5mm posterior to the bregma at midline for infusion into the dorsal third ventricle.
- Uno et al. found that as little as 3 nmol of Toc-siRNA with HDL could induce a target reduction in comparable degree by the same ICV infusion method.
- a similar dosage of CRISPR Cas conjugated to ⁇ -tocopherol and co- administered with HDL targeted to the brain may be contemplated for humans in the present invention, for example, about 3 nmol to about 3 mol of CRISPR Cas targeted to the brain may becontemplated.
- Zou et al. (HUMAN GENE THERAPY 22:465-475 (April 2011)) describes a method of lentiviral-mediated delivery of short-hairpin RNAs targeting PKC ⁇ for in vivo gene silencing in the spinal cord of rats.
- Zou et al. administered about 10 l of a recombinant lentivirus having a titer of 1 x 10 9 transducing units (TU)/ml by an intrathecal catheter.
- a similar dosage of CRISPR Cas expressed in a lentiviral vector targeted to the brain may be contemplated for humans in the present invention, for example, about 10-50 ml of CRISPR Cas targeted to the brain in a lentivirus having a titer of 1 x 10 9 transducing units (TU)/ml may be contemplated.
- TU transducing units
- material can be delivered intrastriatally e.g. by injection. Injection can be performed stereotactically via a craniotomy.
- Targeted deletion of viral genes or other viral elements is preferred. Examples are exemplified in Example 18. Preferred are, therefore, latent viral genes. As exemplified here, Applicants prefer gene delivery of a CRISPR-Cas system to the liver, brain, ocular, epithelial, hematopoetic, or another tissue of a subject or a patient in need thereof, suffering from latent viral infections, using either viral or nonviral (e.g. nanoparticle) delivery system.
- a CRISPR-Cas system to the liver, brain, ocular, epithelial, hematopoetic, or another tissue of a subject or a patient in need thereof, suffering from latent viral infections, using either viral or nonviral (e.g. nanoparticle) delivery system.
- Therapeutic applications of the CRISPR-Cas system include treatment of viral infections, such as HBV infection.
- the immunogenicity of protein drugs can be ascribed to a few immunodominant helper T lymphocyte (HTL) epitopes. Reducing the MHC binding affinity of these HTL epitopes contained within these proteins can generate drugs with lower immunogenicity (Tangri S, et al. (“Rationally engineered therapeutic proteins with reduced immunogenicity” J Immunol. 2005 Mar 15;174(6):3187-96.)
- the immunogenicity of the CRISPR enzyme in particular may be reduced following the approach first set out in Tangri et al with respect to erythropoietin and subsequently developed.
- directed evolution or rational design may be used to reduce the immunogenicity of the CRISPR enzyme (for instance a Cas9) in the host species (human or other species).
- CRISPR enzyme for instance a Cas9
- Applicants used 3 guideRNAs of interest and able to visualize efficient DNA cleavage in vivo occurring only in a small subset of cells. Essentially, what Applicants have shown here is targeted in vivo cleavage. In particular, this provides proof of concept that specific targeting in higher organisms such as mammals can also be achieved. It also highlights multiplex aspect in that multiple guide sequences (i.e. separate targets) can be used simultaneously (in the sense of co-delivery). In other words, Applicants used a multiple approach, with several different sequences targeted at the same time, but independently.
- a suitable example of a protocol for producing AAV, a preferred vector of the invention is provided in the Examples.
- the present invention also contemplates delivering the CRISPR-Cas system to the blood.
- the plasma exosomes of Wahlgren et al. (Nucleic Acids Research, 2012, Vol. 40, No. 17 e130) were previously described and may be utilized to deliver the CRISPR Cas system to the blood.
- the present invention also contemplates delivering the CRISPR-Cas system to the heart.
- a myocardium tropic adena-associated virus AAVM
- AAVM41 which showed preferential gene transfer in the heart (see, e.g., Lin-Yanga et al., PNAS, March 10, 2009, vol. 106, no. 10).
- Administration may be systemic or local.
- a dosage of about 1-10 x 10 14 vector genomes are contemplated for systemic administration. See also, e.g., Eulalio et al. (2012) Nature 492: 376 and Somasuntharam et al. (2013) Biomaterials 34: 7790.
- the present invention also contemplates delivering the CRISPR-Cas system to the kidney.
- Delivery strategies to induce cellular uptake of the therapeutic nucleic acid include physical force or vector systems such as viral-, lipid- or complex- based delivery, or nanocarriers. From the initial applications with less possible clinical relevance, when nucleic acids were addressed to renal cells with hydrodynamic high pressure injection systemically, a wide range of gene therapeutic viral and non-viral carriers have been applied already to target posttranscriptional events in different animal kidney disease models in vivo (Csaba Révész and Péter Hamar (2011). Delivery Methods to Target RNAs in the Kidney, Gene Therapy Applications, Prof.
- the present invention also contemplates delivering the CRISPR-Cas system to oneor both lungs.
- AAV-2-based vectors were originally proposed for CFTR delivery to CF airways, other serotypes such as AAV-1, AAV-5, AAV-6, and AAV-9 exhibit improved gene transfer efficiency in a variety of models of the lung epithelium (see, e.g., Li et al., Molecular Therapy, vol. 17 no. 12, 2067-2077 Dec 2009).
- AAV-1 was demonstrated to be ⁇ 100-fold more efficient than AAV-2 and AAV-5 at transducing human airway epithelial cells in vitro,5 although AAV-1 transduced murine tracheal airway epithelia in vivo with an efficiency equal to that of AAV-5.
- Other studies have shown that AAV-5 is 50-fold more efficient than AAV-2 at gene delivery to human airway epithelium (HAE) in vitro and significantly more efficient in the mouse lung airway epithelium in vivo.
- AAV-6 has also been shown to be more efficient than AAV-2 in human airway epithelial cells in vitro and murine airways in vivo.8
- AAV-9 The more recent isolate, AAV-9, was shown to display greater gene transfer efficiency than AAV-5 in murine nasal and alveolar epithelia in vivo with gene expression detected for over 9 months suggesting AAV may enable long-term gene expression in vivo, a desirable property for a CFTR gene delivery vector.
- AAV-9 could be readministered to the murine lung with no loss of CFTR expression and minimal immune consequences.
- CF and non- CF HAE cultures may be inoculated on the apical surface with 100 l of AAV vectors for hours (see, e.g., Li et al., Molecular Therapy, vol. 17 no. 12, 2067-2077 Dec 2009).
- the MOI may vary from 1 ⁇ 10 3 to 4 ⁇ 10 5 vector genomes/cell, depending on virus concentration and purposes of the experiments.
- the above cited vectors are contemplated for the delivery and/or administration of the invention.
- Zamora et al. (Am J Respir Crit Care Med Vol 183. pp 531–538, 2011) reported an example of the application of an RNA interference therapeutic to the treatment of human infectious disease and also a randomized trial of an antiviral drug in respiratory syncytial virus (RSV)-infected lung transplant recipients.
- RSV respiratory syncytial virus
- Zamora et al. performed a randomized, double-blind, placebocontrolled trial in LTX recipients with RSV respiratory tract infection. Patients were permitted to receive standard of care for RSV. Aerosolized ALN-RSV01 (0.6 mg/kg) or placebo was administered daily for 3 days. This study demonstrates that an RNAi therapeutic targeting RSV can be safely administered to LTX recipients with RSV infection.
- Three daily doses of ALN-RSV01 did not result in any exacerbation of respiratory tract symptoms or impairment of lung function and did not exhibit any systemic proinflammatory effects, such as induction of cytokines or CRP.
- Pharmacokinetics showed only low, transient systemic exposure after inhalation, consistent with preclinical animal data showing that ALN-RSV01, administered intravenously or by inhalation, is rapidly cleared from the circulation through exonucleasemediated digestion and renal excretion.
- the method of Zamora et al. may be applied to the CRISPR Cas system of the present invention and an aerosolized CRISPR Cas, for example with a dosage of 0.6 mg/kg, may be contemplated for the present invention.
- the present invention also contemplates delivering the CRISPR-Cas system to muscle(s).
- the present invention also contemplates delivering the CRISPR-Cas system to the skin.
- Hickerson et al. Molecular Therapy—Nucleic Acids (2013) 2, e129
- a motorized microneedle array skin delivery device for delivering self-delivery (sd)-siRNA to human and murine skin.
- the primary challenge to translating siRNA-based skin therapeutics to the clinic is the development of effective delivery systems.
- Substantial effort has been invested in a variety of skin delivery technologies with limited success.
- the naked pain associated with the hypodermic needle injection precluded enrollment of additional patients in the trial, highlighting the need for improved, more“patient-friendly” (i.e., little or no pain) delivery approaches.
- Microneedles represent an efficient way to deliver large charged cargos including siRNAs across the primary barrier, the stratum corneum, and are generally regarded as less painful than conventional hypodermic needles.
- Motorized“stamp type” microneedle devices including the motorized microneedle array (MMNA) device used by Hickerson et al., have been shown to be safe in hairless mice studies and cause little or no pain as evidenced by (i) widespread use in the cosmetic industry and (ii) limited testing in which nearly all volunteers found use of the device to be much less painful than a flushot, suggesting siRNA delivery using this device will result in much less pain than was experienced in the previous clinical trial using hypodermic needle injections.
- MMNA motorized microneedle array
- the MMNA device (marketed as Triple-M or Tri-M by Bomtech Electronic Co, Seoul, South Korea) was adapted for delivery of siRNA to mouse and human skin.
- sd-siRNA solution up to 300 l of 0.1 mg/ml RNA
- the disposable Tri-M needle cartridge (Bomtech), which was set to a depth of 0.1 mm.
- deidentified skin obtained immediately following surgical procedures
- All intradermal injections were performed using an insulin syringe with a 28-gauge 0.5-inch needle.
- the MMNA device and method of Hickerson et al. could be used and/or adapted to deliver the CRISPR Cas of the present invention, for example, at a dosage of up to 300 l of 0.1 mg/ml CRISPR Cas to the skin.
- the present invention may also be applied to treat latent or chronic viral infections.
- Viral latency is the abiity of a pathogenic virus to remain latent or dormant within a cell during the lysogenic part of its life cycle.
- Latent infection is distinct from chronic infection in which a virus continues to replicate and proliferate. Instead, proliferation of the virus ceases but the viral genome is not eradicated, and so it can reactivate and again result in production of viral progeny (lytic part of the life cycle) without requiring reinfection of the host.
- the invention provides the use of a CRISPR-Cas system to inactivate a virus within a eukaryotic cell, and in particular a latent form of the virus.
- the CRISPR-Cas system can be used to excise an integrated provirus from a cell’s genome and/or to inactivate a latent virus which is present in episomal form (e.g. to cleave a cccDNA form).
- the invention provides a CRISPR-Cas system comprising one or more vectors for delivery to a eukaryotic cell, wherein the vector(s) encode(s): (i) a CRISPR enzyme; (ii) a guide RNA capable of hybridizing to a target sequence in a viral genome within the cell; and (iii); a tracr mate sequence; and (iv) a tracr sequence, wherein, when expressed within the cell, the guide RNA directs sequence-specific binding of a CRISPR complex to the target sequence, and the CRISPR complex comprises (a) the tracr mate sequence hybridised to the tracr sequence and (b) a CRISPR enzyme bound to the guide RNA, such that the guide RNA can hybridise to its target sequence in the viral genome.
- the vector(s) encode(s): (i) a CRISPR enzyme; (ii) a guide RNA capable of hybridizing to a target sequence in a viral genome within the cell; and (iii
- the guide sequences can be part of a chiRNA sequence which provides the guide, tracr mate and tracr sequences within a single RNA, such that the system can encode (i) a CRISPR enzyme; (ii) a chiRNA comprising a sequence capable of hybridizing to a target sequence in a viral genome, a tracr mate sequence, and a tracr sequence.
- the enzyme can include one or more NLS, etc.
- Latent viruses can exist in episomal form or integrated proviral form, and the invention can be used to treat both types.
- the invention is particularly useful with DNA viruses, and especially viruses with a double-stranded DNA genome.
- Examples of pathogenic DNA viruses which have an episomal latent form herpes simplex virus (HSV) 1 and 2, human papillomavirus (HPV) of any type, Epstein Barr virus (EBV), and varicella zoster virus (VZV).
- HSV herpes simplex virus
- HPV human papillomavirus
- EBV Epstein Barr virus
- VZV varicella zoster virus
- the invention can be used to treat infections with any of these viruses.
- Some plant viruses also exhibit a latent form and the invention can be used to eliminate these as well.
- CRISPR systems of the invention can be targeted to cell types which maintain a latent virus e.g.
- Genomic sequences for viruses are widely available, and guide sequences for targeting the viral genome can thus be designed without difficulty. Where a virus has various sequence variants (e.g. different subtypes of HBV) it is useful to design guide sequences to target regions of the genome which are conserved, thereby providing broad activity. It is preferred to use guide RNAs against more than one site in the viral genome.
- a key advantage of CRISPR technology when compared to ZFNs or TALENs is the relative ease by which multiple sequences can be targeted. Targeting multiple sites in a viral genome offers two main advantages.
- a CRISPR system can target multiple genes or ORFs within a viral genome.
- CRISPR systems can be used to target chronic viral infections by viruses whose life cycles include a dsDNA form which can be bound by CRISPR complexes.
- the CRISPR system can be used in conjunction with an antiviral compound, such as tenofovir (HBV), entecavir (HBV), aciclovir (HSV, VZV), etc.
- the present invention may also be applied to treat hepatitis B virus (HBV).
- HBV hepatitis B virus
- the invention provides the use of a CRISPR-Cas system to inactivate HBV within a mammalian cell, and in particular a latent form of HBV.
- the CRISPR-Cas system can be used to excise integrated HBV provirus from a cell’s genome (a rare occurrence) and/or to inactivate latent HBV which is present in covalently closed circular DNA (cccDNA) form.
- HBV genomic sequences are widely available, and guide sequences for targeting the HBV genome can thus be designed without difficulty.
- HBV exists in several serological subtypes (e.g.
- adw, ayw, ady, adr which differ by >8% in primary sequence, and it is useful to design guide sequences to target regions of the genome which are conserved between multiple subtypes.
- Applicants have designed 24 guide RNAs to target the HBV genome. These include targets which are highly conserved within the HBV genome; and the location of 9 of these guide sequences is mapped against the HBV genome (See Figures 36, 57). It is preferred to use guide RNAs against more than one site in the HBV genome.
- CRISPR systems for treating HBV are ideally delivered to liver cells, and in particular to hepatocytes.
- ORF P which encodes the polymerase
- ORF X which encodes HBX protein
- the EnhI enhancer regulatory element and/or the EnhII enhancer regulatory element.
- CRISPR systems for treating HBV are ideally delivered to liver cells, and in particular to hepatocytes.
- an AAV8 vector may be useful.
- expression of the components of the CRISPR system are ideally under the transcriptional control of a liver-specific or hepatocyte-specific promoter.
- the CRISPR system can be used in conjunction with an anti-HBV compound such as tenofovir or entecavir.
- an anti-HBV compound such as tenofovir or entecavir.
- co-treatment with epigenetic modifiers for example Class I and Class III HDAC inhibitors trichostatin A (TSA), valproate, and nicotinamide (NAM), and Type I interferons
- TSA trichostatin A
- NAM nicotinamide
- Type I interferons Type I interferons
- the CRISPR Cas system For treating HBV in practice, the CRISPR Cas system must avoid the shortcomings of RNAi, such as the risk of oversaturating endogenous small RNA pathways, by for example, optimizing dose and sequence (see, e.g., Grimm et al., Nature vol. 441, 26 May 2006). For example, low doses, such as about 1-10 x 10 14 particles per human are contemplated.
- the CRISPR Cas system directed against HBV may be administered in liposomes, such as a stable nucleic-acid- lipid particle (SNALP) (see, e.g., Morrissey et al., Nature Biotechnology, Vol. 23, No. 8, August 2005).
- SNALP stable nucleic-acid- lipid particle
- dsAAV2/8 Daily intravenous injections of about 1, 3 or 5 mg/kg/day of CRISPR Cas targeted to HBV RNA in a SNALP are contemplated.
- the daily treatment may be over about three days and then weekly for about five weeks.
- the system of Chen et al. (Gene Therapy (2007) 14, 11–19) may be used/and or adapted for the CRISPR Cas system of the present invention.
- Chen et al. use a double-stranded adenoassociated virus 8-pseudotyped vector (dsAAV2/8) to deliver shRNA.
- dsAAV2/8 double-stranded adenoassociated virus 8-pseudotyped vector
- a CRISPR Cas system directed to HBV may be cloned into an AAV vector, such as a dsAAV2/8 vector and administered to a human, for example, at a dosage of about 1 x 10 15 vector genomes to about 1 x 10 16 vector genomes per human.
- Wooddell et al. (Molecular Therapy vol. 21 no. 5, 973–985 May 2013) may be used/and or adapted to the CRISPR Cas system of the present invention.
- Woodell et al. show that simple coinjection of a hepatocyte-targeted, N-acetylgalactosamine-conjugated melittin-like peptide (NAG-MLP) with a liver-tropic cholesterol-conjugated siRNA (chol-siRNA) targeting coagulation factor VII (F7) results in efficient F7 knockdown in mice and nonhuman primates without changes in clinical chemistry or induction of cytokines.
- chol-siRNA liver-tropic cholesterol-conjugated siRNA
- F7 coagulation factor VII
- Intraveinous coinjections for example, of about 6 mg/kg of NAG-MLP and 6 mg/kg of HBV specific CRISPR Cas may be envisioned for the present invention.
- about 3 mg/kg of NAG-MLP and 3 mg/kg of HBV specific CRISPR Cas may be delivered on day one, followed by administration of about about 2-3 mg/kg of NAG- MLP and 2-3 mg/kg of HBV specific CRISPR Cas two weeks later.
- the present invention may also be applied to treat hepatitis C virus (HCV).
- HCV hepatitis C virus
- the methods of Roelvinki et al. may be applied to the CRISPR Cas system.
- an AAV vector such as AAV8 may be a contemplated vector and for example a dosage of about 1.25 ⁇ 10 11 to 1.25 ⁇ 10 13 vector genomes per kilogram body weight (vg/kg) may be contemplated.
- the invention uses nucleic acids to bind target DNA sequences. This is advantageous as nucleic acids are much easier and cheaper to produce than proteins, and the specificity can be varied according to the length of the stretch where homology is sought. Complex 3-D positioning of multiple fingers, for example is not required.
- polynucleotide refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown.
- polynucleotides coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.
- loci locus defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched poly
- a polynucleotide may comprise one or more modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer.
- the sequence of nucleotides may be interrupted by non-nucleotide components.
- a polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
- wild type is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from mutant or variant forms.
- nucleic acid molecules or polypeptides mean that the nucleic acid molecule or the polypeptide is at least substantially free from at least one other component with which they are naturally associated in nature and as found in nature.
- “Complementarity” refers to the ability of a nucleic acid to form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick base pairing or other non- traditional types.
- a percent complementarity indicates the percentage of residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary).“Perfectly complementary” means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence.
- “Substantially complementary” as used herein refers to a degree of complementarity that is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, or more nucleotides, or refers to two nucleic acids that hybridize under stringent conditions.
- stringent conditions for hybridization refer to conditions under which a nucleic acid having complementarity to a target sequence predominantly hybridizes with the target sequence, and substantially does not hybridize to non-target sequences.
- Stringent conditions are generally sequence-dependent, and vary depending on a number of factors. In general, the longer the sequence, the higher the temperature at which the sequence specifically hybridizes to its target sequence.
- Non-limiting examples of stringent conditions are described in detail in Tijssen (1993), Laboratory Techniques In Biochemistry And Molecular Biology- Hybridization With Nucleic Acid Probes Part I, Second Chapter“Overview of principles of hybridization and the strategy of nucleic acid probe assay”, Elsevier, N.Y.
- complementary or partially complementary sequences are also envisaged. These are preferably capable of hybridising to the reference sequence under highly stringent conditions.
- relatively low-stringency hybridization conditions are selected: about 20 to 25° C lower than the thermal melting point (T m ).
- T m is the temperature at which 50% of specific target sequence hybridizes to a perfectly complementary probe in solution at a defined ionic strength and pH.
- highly stringent washing conditions are selected to be about 5 to 15° C lower than the T m .
- moderately-stringent washing conditions are selected to be about 15 to 30° C lower than the T m .
- Highly permissive (very low stringency) washing conditions may be as low as 50° C below the T m , allowing a high level of mis-matching between hybridized or hybridizable sequences.
- Other physical and chemical parameters in the hybridization and wash stages can also be altered to affect the outcome of a detectable hybridization signal from a specific level of homology between target and probe sequences.
- Preferred highly stringent conditions comprise incubation in 50% formamide, 5 ⁇ SSC, and 1% SDS at 42° C, or incubation in 5 ⁇ SSC and 1% SDS at 65° C, with wash in 0.2 ⁇ SSC and 0.1% SDS at 65° C.
- Hybridization refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues.
- the hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner.
- the complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self- hybridizing strand, or any combination of these.
- a hybridization reaction may constitute a step in a more extensive process, such as the initiation of PCR, or the cleavage of a polynucleotide by an enzyme.
- a sequence capable of hybridizing with a given sequence is referred to as the “complement” of the given sequence.
- the term“genomic locus” or“locus” is the specific location of a gene or DNA sequence on a chromosome.
- A“gene” refers to stretches of DNA or RNA that encode a polypeptide or an RNA chain that has functional role to play in an organism and hence is the molecular unit of heredity in living organisms.
- genes include regions which regulate the production of the gene product, whether or not such regulatory sequences are adjacent to coding and/or transcribed sequences.
- a gene includes, but is not necessarily limited to, promoter sequences, terminators, translational regulatory sequences such as ribosome binding sites and internal ribosome entry sites, enhancers, silencers, insulators, boundary elements, replication origins, matrix attachment sites and locus control regions.
- “expression of a genomic locus” or“gene expression” is the process by which information from a gene is used in the synthesis of a functional gene product.
- the products of gene expression are often proteins, but in non-protein coding genes such as rRNA genes or tRNA genes, the product is functional RNA.
- the process of gene expression is used by all known life - eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea) and viruses to generate functional products to survive.
- "expression" of a gene or nucleic acid encompasses not only cellular gene expression, but also the transcription and translation of nucleic acid(s) in cloning systems and in any other context.
- expression also refers to the process by which a polynucleotide is transcribed from a DNA template (such as into and mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins.
- Transcripts and encoded polypeptides may be collectively referred to as“gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
- polypeptide “peptide” and“protein” are used interchangeably herein to refer to polymers of amino acids of any length.
- the polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non amino acids.
- the terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.
- amino acid includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics.
- domain or“protein domain” refers to a part of a protein sequence that may exist and function independently of the rest of the protein chain.
- sequence identity is related to sequence homology. Homology comparisons may be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs may calculate percent (%) homology between two or more sequences and may also calculate the sequence identity shared by two or more amino acid or nucleic acid sequences.
- the capping region of the dTALEs described herein have sequences that are at least 95% identical or share identity to the capping region amino acid sequences provided herein.
- Sequence homologies may be generated by any of a number of computer programs known in the art, for example BLAST or FASTA, etc.
- a suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A; Devereux et al., 1984, Nucleic Acids Research 12:387).
- Examples of other software than may perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid– Chapter 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 ibid, pages 7-58 to 7-60). However it is preferred to use the GCG Bestfit program.
- Percentage (%) sequence homology may be calculated over contiguous sequences, i.e., one sequence is aligned with the other sequence and each amino acid or nucleotide in one sequence is directly compared with the corresponding amino acid or nucleotide in the other sequence, one residue at a time. This is called an“ungapped” alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.
- BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999, Short Protocols in Molecular Biology, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program.
- a new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequences (see FEMS Microbiol Lett. 1999 174(2): 247-50; FEMS Microbiol Lett. 1999177(1): 187-8 and the website of the National Center for Biotechnology information at the website of the National Institutes for Health).
- the final % homology may be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pair-wise comparison based on chemical similarity or evolutionary distance.
- An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs.
- GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table, if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.
- percentage homologies may be calculated using the multiple alignment feature in DNASIS TM (Hitachi Software), based on an algorithm, analogous to CLUSTAL (Higgins DG & Sharp PM (1988), Gene 73(1), 237-244).
- % homology preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.
- sequences may also have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent substance.
- Deliberate amino acid substitutions may be made on the basis of similarity in amino acid properties (such as polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues) and it is therefore useful to group amino acids together in functional groups.
- Amino acids may be grouped together based on the properties of their side chains alone. However, it is more useful to include mutation data as well.
- the sets of amino acids thus derived are likely to be conserved for structural reasons. These sets may be described in the form of a Venn diagram (Livingstone C.D.
- Embodiments of the invention include sequences (both polynucleotide or polypeptide) which may comprise homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue or nucleotide, with an alternative residue or nucleotide) that may occur i.e., like-for-like substitution in the case of amino acids such as basic for basic, acidic for acidic, polar for polar, etc.
- Non-homologous substitution may also occur i.e., from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine.
- Z ornithine
- B diaminobutyric acid ornithine
- O norleucine ornithine
- pyriylalanine pyriylalanine
- thienylalanine thienylalanine
- naphthylalanine phenylglycine
- Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or E-alanine residues.
- alkyl groups such as methyl, ethyl or propyl groups
- amino acid spacers such as glycine or E-alanine residues.
- a further form of variation which involves the presence of one or more amino acid residues in peptoid form, may be well understood by those skilled in the art.
- the peptoid form is used to refer to variant amino acid residues wherein the D-carbon substituent group is on the residue’s nitrogen atom rather than the D-carbon.
- the invention provides for vectors that are used in the engineering and optimization of CRISPR-Cas systems.
- a“vector” is a tool that allows or facilitates the transfer of an entity from one environment to another. It is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
- a vector is capable of replication when associated with the proper control elements.
- the term“vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- Vectors include, but are not limited to, nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g. circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art.
- a“plasmid” refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques.
- viral vector wherein virally- derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g.
- Viral vectors also include polynucleotides carried by a virus for transfection into a host cell.
- Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g. bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
- Other vectors e.g., non-episomal mammalian vectors are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
- vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as“expression vectors.”
- expression vectors Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
- Recombinant expression vectors can comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory elements, which may be selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed.
- “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory element(s) in a manner that allows for expression of the nucleotide sequence (e.g. in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
- aspects of the invention relate to bicistronic vectors for chimeric RNA and Cas9.
- Bicistronic expression vectors for chimeric RNA and Cas9 are preferred.
- Cas9 is preferably driven by the CBh promoter.
- the chimeric RNA may preferably be driven by a U6 promoter. Ideally the two are combined.
- the chimeric guide RNA typically consists of a 20bp guide sequence (Ns) and this may be joined to the tracr sequence (running from the first“U” of the lower strand to the end of the transcript). The tracr sequence may be truncated at various positions as indicated.
- the guide and tracr sequences are separated by the tracr-mate sequence, which may be GUUUUAGAGCUA. This may be followed by the loop sequence GAAA as shown. Both of these are preferred examples.
- Applicants have demonstrated Cas9-mediated indels at the human EMX1 and PVALB loci by SURVEYOR assays.
- ChiRNAs are indicated by their“+n” designation, and crRNA refers to a hybrid RNA where guide and tracr sequences are expressed as separate transcripts.
- chimeric RNA may also be called single guide, or synthetic guide RNA (sgRNA).
- the loop is preferably GAAA, but it is not limited to this sequence or indeed to being only 4bp in length.
- preferred loop forming sequences for use in hairpin structures are four nucleotides in length, and most preferably have the sequence GAAA. However, longer or shorter loop sequences may be used, as may alternative sequences.
- the sequences preferably include a nucleotide triplet (for example, AAA), and an additional nucleotide (for example C or G). Examples of loop forming sequences include CAAA and AAAG.
- the term“regulatory element” is intended to include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences).
- Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences).
- tissue-specific regulatory sequences may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g. liver, pancreas), or particular cell types (e.g. lymphocytes).
- a vector comprises one or more pol III promoter (e.g. 1, 2, 3, 4, 5, or more pol III promoters), one or more pol II promoters (e.g. 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g. 1, 2, 3, 4, 5, or more pol I promoters), or combinations thereof.
- pol III promoters include, but are not limited to, U6 and H1 promoters.
- pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., Boshart et al, Cell, 41:521 -530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the ⁇ -actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1 ⁇ promoter.
- RSV Rous sarcoma virus
- CMV cytomegalovirus
- PGK phosphoglycerol kinase
- enhancer elements such as WPRE; CMV enhancers; the R-U5’ segment in LTR of HTLV-I (Mol. Cell. Biol., Vol. 8(1), p. 466-472, 1988); SV40 enhancer; and the intron sequence between exons 2 and 3 of rabbit ⁇ -globin (Proc. Natl. Acad. Sci. USA., Vol. 78(3), p. 1527-31, 1981).
- WPRE WPRE
- CMV enhancers the R-U5’ segment in LTR of HTLV-I
- SV40 enhancer SV40 enhancer
- the intron sequence between exons 2 and 3 of rabbit ⁇ -globin Proc. Natl. Acad. Sci. USA., Vol. 78(3), p. 1527-31, 1981.
- a vector can be introduced into host cells to thereby produce transcripts, proteins, or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., clustered regularly interspersed short palindromic repeats (CRISPR) transcripts, proteins, enzymes, mutant forms thereof, fusion proteins thereof, etc.).
- CRISPR clustered regularly interspersed short palindromic repeats
- Vectors can be designed for expression of CRISPR transcripts (e.g. nucleic acid transcripts, proteins, or enzymes) in prokaryotic or eukaryotic cells.
- CRISPR transcripts e.g. nucleic acid transcripts, proteins, or enzymes
- CRISPR transcripts can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors), yeast cells, or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase (although any suitable DNA-dependent RNA polymerase can be used, such as SP6, T3 or T7).
- T7 RNA polymerase any suitable DNA-dependent RNA polymerase can be used, such as SP6, T3 or T7.
- Amplification by T7 RNA polymerase requires the presence of suitable promoters in the RNA-coding DNA. Sequence requirements for polymerase binding sites are well known in the art.
- Various T7 RNA polymerase promoter sequences are known, including natural sequences and artificial ones. Different T7 RNA polymerases can have different promoter sequence preferences, and mutant T7 RNA polymerases have been produced to match specific promoters (e.g.
- T7 RNA polymerases and promoter sequences can easily match any particular T7 RNA polymerase to its preferred promoter sequence.
- the consensus 23 base-pair T7 DNA promoter is classically divided into two domains, an upstream binding domain (-17 to -5, numbered relative to the start of transcription), and a downstream initiation domain (-4 to +6).
- One strand of this 23mer is 5'-TAATACGACTCACTATAGGGAGA-3'.
- the minimum sequence required for efficient transcription is the first 19mer of this 23mer.
- Vectors may be introduced and propagated in a prokaryote or prokaryotic cell.
- a prokaryote is used to amplify copies of a vector to be introduced into a eukaryotic cell or as an intermediate vector in the production of a vector to be introduced into a eukaryotic cell (e.g. amplifying a plasmid as part of a viral vector packaging system).
- a prokaryote is used to amplify copies of a vector and express one or more nucleic acids, such as to provide a source of one or more proteins for delivery to a host cell or host organism.
- Fusion vectors add a number of amino acids to a protein encoded therein, such as to the amino terminus of the recombinant protein.
- Such fusion vectors may serve one or more purposes, such as: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
- a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
- Such enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
- Example fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988.
- GST glutathione S-transferase
- Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
- a vector is a yeast expression vector.
- yeast Saccharomyces cerivisae examples include pYepSec1 (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kuijan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).
- a vector drives protein expression in insect cells using baculovirus expression vectors.
- Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).
- a vector is capable of driving expression of one or more sequences in mammalian cells using a mammalian expression vector.
- mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195).
- the expression vector’s control functions are typically provided by one or more regulatory elements.
- commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, simian virus 40, and others disclosed herein and known in the art.
- the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
- tissue-specific regulatory elements are known in the art.
- suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J.
- a regulatory element is operably linked to one or more elements of a CRISPR system so as to drive expression of the one or more elements of the CRISPR system.
- CRISPRs Clustered Regularly Interspaced Short Palindromic Repeats
- SPIDRs Sacer Interspersed Direct Repeats
- the CRISPR locus comprises a distinct class of interspersed short sequence repeats (SSRs) that were recognized in E. coli (Ishino et al., J. Bacteriol., 169:5429-5433 [1987]; and Nakata et al., J.
- the CRISPR loci typically differ from other SSRs by the structure of the repeats, which have been termed short regularly spaced repeats (SRSRs) (Janssen et al., OMICS J. Integ. Biol., 6:23-33 [2002]; and Mojica et al., Mol. Microbiol., 36:244-246 [2000]).
- SRSRs short regularly spaced repeats
- the repeats are short elements that occur in clusters that are regularly spaced by unique intervening sequences with a substantially constant length (Mojica et al., [2000], supra).
- the repeat sequences are highly conserved between strains, the number of interspersed repeats and the sequences of the spacer regions typically differ from strain to strain (van Embden et al., J.
- CRISPR loci have been identified in more than 40 prokaryotes (See e.g., Jansen et al., Mol. Microbiol., 43:1565-1575 [2002]; and Mojica et al., [2005]) including, but not limited to Aeropyrum, Pyrobaculum, Sulfolobus, Archaeoglobus, Halocarcula, Methanobacterium, Methanococcus, Methanosarcina, Methanopyrus, Pyrococcus, Picrophilus, Thermoplasma, Corynebacterium, Mycobacterium, Streptomyces, Aquifex, Porphyromonas, Chlorobium, Thermus, Bacillus, Listeria, Staphylococcus, Clostridium, Thermoanaerobacter, Mycoplasma, Fusobacterium, Azarcus, Chromobacterium, Neisseria, Nitrosomon
- CRISPR system refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR-associated (“Cas”) genes, including sequences encoding a Cas gene, a tracr (trans-activating CRISPR) sequence (e.g. tracrRNA or an active partial tracrRNA), a tracr-mate sequence (encompassing a“direct repeat” and a tracrRNA-processed partial direct repeat in the context of an endogenous CRISPR system), a guide sequence (also referred to as a“spacer” in the context of an endogenous CRISPR system), or other sequences and transcripts from a CRISPR locus.
- a tracr trans-activating CRISPR
- tracr-mate sequence encompassing a“direct repeat” and a tracrRNA-processed partial direct repeat in the context of an endogenous CRISPR system
- guide sequence also referred to as a“spacer” in the context of an endogenous CRISPR system
- one or more elements of a CRISPR system is derived from a type I, type II, or type III CRISPR system.
- one or more elements of a CRISPR system is derived from a particular organism comprising an endogenous CRISPR system, such as Streptococcus pyogenes.
- a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system).
- target sequence refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex.
- a target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides.
- a target sequence is located in the nucleus or cytoplasm of a cell.
- direct repeats may be identified in silico by searching for repetitive motifs that fulfill any or all of the following criteria: 1. found in a 2Kb window of genomic sequence flanking the type II CRISPR locus; 2. span from 20 to 50 bp; and 3. interspaced by 20 to 50 bp. In some embodiments, 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3. In some embodiments, all 3 criteria may be used.
- candidate tracrRNA may be subsequently predicted by sequences that fulfill any or all of the following criteria: 1. sequence homology to direct repeats (motif search in Geneious with up to 18-bp mismatches); 2.
- chimeric synthetic guide RNAs designs may incorporate at least 12 bp of duplex structure between the direct repeat and tracrRNA.
- the CRISPR system is a type II CRISPR system and the Cas enzyme is Cas9, which catalyzes DNA cleavage.
- Enzymatic action by Cas9 derived from Streptococcus pyogenes or any closely related Cas9 generates double stranded breaks at target site sequences which hybridize to 20 nucleotides of the guide sequence and that have a protospacer-adjacent motif (PAM) sequence (examples include NGG/NRG or a PAM that can be determined as described herein) following the 20 nucleotides of the target sequence.
- PAM protospacer-adjacent motif
- CRISPR activity through Cas9 for site- specific DNA recognition and cleavage is defined by the guide sequence, the tracr sequence that hybridizes in part to the guide sequence and the PAM sequence. More aspects of the CRISPR system are described in Karginov and Hannon, The CRISPR system: small RNA-guided defence in bacteria and archaea, Mole Cell 2010, January 15; 37(1): 7.
- the type II CRISPR locus from Streptococcus pyogenes SF370 which contains a cluster of four genes Cas9, Cas1, Cas2, and Csn1, as well as two non-coding RNA elements, tracrRNA and a characteristic array of repetitive sequences (direct repeats) interspaced by short stretches of non-repetitive sequences (spacers, about 30bp each).
- DSB targeted DNA double-strand break
- tracrRNA hybridizes to the direct repeats of pre-crRNA, which is then processed into mature crRNAs containing individual spacer sequences.
- the mature crRNA:tracrRNA complex directs Cas9 to the DNA target consisting of the protospacer and the corresponding PAM via heteroduplex formation between the spacer region of the crRNA and the protospacer DNA.
- Cas9 mediates cleavage of target DNA upstream of PAM to create a DSB within the protospacer (Fig. 2A).
- Fig. 2B demonstrates the nuclear localization of the codon optimized Cas9.
- the RNA polymerase III-based U6 promoter was selected to drive the expression of tracrRNA (Fig. 2C).
- a U6 promoter-based construct was developed to express a pre-crRNA array consisting of a single spacer flanked by two direct repeats (DRs, also encompassed by the term“tracr-mate sequences”; Fig. 2C).
- the initial spacer was designed to target a 33-base-pair (bp) target site (30-bp protospacer plus a 3-bp CRISPR motif (PAM) sequence satisfying the NGG recognition motif of Cas9) in the human EMX1 locus (Fig. 2C), a key gene in the development of the cerebral cortex.
- bp 33-base-pair
- PAM 3-bp CRISPR motif
- a CRISPR complex comprising a guide sequence hybridized or hybridizable to a target sequence and complexed with one or more Cas proteins
- formation of a CRISPR complex results in cleavage of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence.
- the tracr sequence which may comprise or consist of all or a portion of a wild-type tracr sequence (e.g.
- one or more vectors driving expression of one or more elements of a CRISPR system are introduced into a host cell such that expression of the elements of the CRISPR system direct formation of a CRISPR complex at one or more target sites.
- a Cas enzyme, a guide sequence linked to a tracr-mate sequence, and a tracr sequence could each be operably linked to separate regulatory elements on separate vectors.
- two or more of the elements expressed from the same or different regulatory elements may be combined in a single vector, with one or more additional vectors providing any components of the CRISPR system not included in the first vector.
- CRISPR system elements that are combined in a single vector may be arranged in any suitable orientation, such as one element located 5’ with respect to (“upstream” of) or 3’ with respect to (“downstream” of) a second element.
- the coding sequence of one element may be located on the same or opposite strand of the coding sequence of a second element, and oriented in the same or opposite direction.
- a single promoter drives expression of a transcript encoding a CRISPR enzyme and one or more of the guide sequence, tracr mate sequence (optionally operably linked to the guide sequence), and a tracr sequence embedded within one or more intron sequences (e.g. each in a different intron, two or more in at least one intron, or all in a single intron).
- the CRISPR enzyme, guide sequence, tracr mate sequence, and tracr sequence are operably linked to and expressed from the same promoter.
- a vector comprises one or more insertion sites, such as a restriction endonuclease recognition sequence (also referred to as a“cloning site”).
- one or more insertion sites e.g. about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more insertion sites are located upstream and/or downstream of one or more sequence elements of one or more vectors.
- a vector comprises an insertion site upstream of a tracr mate sequence, and optionally downstream of a regulatory element operably linked to the tracr mate sequence, such that following insertion of a guide sequence into the insertion site and upon expression the guide sequence directs sequence-specific binding of a CRISPR complex to a target sequence in a eukaryotic cell.
- a vector comprises two or more insertion sites, each insertion site being located between two tracr mate sequences so as to allow insertion of a guide sequence at each site.
- the two or more guide sequences may comprise two or more copies of a single guide sequence, two or more different guide sequences, or combinations of these.
- a single expression construct may be used to target CRISPR activity to multiple different, corresponding target sequences within a cell.
- a single vector may comprise about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more guide sequences. In some embodiments, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such guide-sequence-containing vectors may be provided, and optionally delivered to a cell.
- a vector comprises a regulatory element operably linked to an enzyme-coding sequence encoding a CRISPR enzyme, such as a Cas protein.
- Cas proteins include Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csn1 and Csx12), Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, homologues thereof, or modified versions thereof, or modified versions thereof, or modified versions thereof,
- the unmodified CRISPR enzyme has DNA cleavage activity, such as Cas9.
- the CRISPR enzyme directs cleavage of one or both strands at the location of a target sequence, such as within the target sequence and/or within the complement of the target sequence. In some embodiments, the CRISPR enzyme directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence.
- a vector encodes a CRISPR enzyme that is mutated to with respect to a corresponding wild-type enzyme such that the mutated CRISPR enzyme lacks the ability to cleave one or both strands of a target polynucleotide containing a target sequence.
- an aspartate-to-alanine substitution (D10A) in the RuvC I catalytic domain of Cas9 from S. pyogenes converts Cas9 from a nuclease that cleaves both strands to a nickase (cleaves a single strand).
- mutations that render Cas9 a nickase include, without limitation, H840A, N854A, and N863A.
- two or more catalytic domains of Cas9 may be mutated to produce a mutated Cas9 substantially lacking all DNA cleavage activity.
- a D10A mutation is combined with one or more of H840A, N854A, or N863A mutations to produce a Cas9 enzyme substantially lacking all DNA cleavage activity.
- a CRISPR enzyme is considered to substantially lack all DNA cleavage activity when the DNA cleavage activity of the mutated enzyme is less than about 25%, 10%, 5%, 1%, 0.1%, 0.01%, or lower with respect to its non-mutated form.
- the enzyme is not SpCas9
- mutations may be made at any or all residues corresponding to positions 10, 762, 840, 854, 863 and/or 986 of SpCas9 (which may be ascertained for instance by standard sequence comparison tools .
- any or all of the following mutations are preferred in SpCas9: D10A, E762A, H840A, N854A, N863A and/or D986A; as well as conservative substitution for any of the replacement amino acids is also envisaged.
- the same (or conservative substitutions of these mutations) at corresponding positions in other Cas9s are also preferred.
- Particularly preferred are D10 and H840 in SpCas9 .
- residues corresponding to SpCas9 D10 and H840 are also preferred.
- a Cas enzyme may be identified Cas9 as this can refer to the general class of enzymes that share homology to the biggest nuclease with multiple nuclease domains from the type II CRISPR system. Most preferably, the Cas9 enzyme is from, or is derived from, spCas9 or saCas9. By derived, Applicants mean that the derived enzyme is largely based, in the sense of having a high degree of sequence homology with, a wildtype enzyme, but that it has been mutated (modified) in some way as described herein.
- Cas and CRISPR enzyme are generally used herein interchangeably, unless otherwise apparent.
- residue numberings used herein refer to the Cas9 enzyme from the type II CRISPR locus in Streptococcus pyogenes.
- this invention includes many more Cas9s from other species of microbes, such as SpCas9, SaCa9, St1Cas9 and so forth.
- an enzyme coding sequence encoding a CRISPR enzyme is codon optimized for expression in particular cells, such as eukaryotic cells.
- the eukaryotic cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, mouse, rat, rabbit, dog, or non- human mammal or primate.
- processes for modifying the germ line genetic identity of human beings and/or processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes may be excluded.
- codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g. about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codons that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence.
- codon bias differs in codon usage between organisms
- mRNA messenger RNA
- tRNA transfer RNA
- Codon usage tables are readily available, for example, at the “Codon Usage Database” available at www.kazusa.orjp/codon/ (visited Jul. 9, 2002), and these tables can be adapted in a number of ways. See Nakamura, Y., et al.“Codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000).
- codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, PA), are also available.
- one or more codons e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons
- one or more codons in a sequence encoding a CRISPR enzyme correspond to the most frequently used codon for a particular amino acid.
- Codon usage can even be optimized for expression in particular cell types e.g. for brain cells.
- Plotkin et al. (2004) PNAS USA 101:12588-91 reports on tissue-specific codon usage and notes, for instance, that brain-specific genes show a characteristically different codon usage than liver-specific genes.
- a protein-coding sequence can be codon-optimised for expression in a target cell type of interest e.g. for expression in the liver.
- NLSs Nuclear localization sequences
- a vector encodes a CRISPR enzyme comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs.
- the CRISPR enzyme comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. one or more NLS at the amino-terminus and one or more NLS at the carboxy terminus).
- the CRISPR enzyme comprises at most 6 NLSs.
- an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus.
- Non-limiting examples of NLSs include an NLS sequence derived from: the NLS of the SV40 virus large T-antigen, having the amino acid sequence PKKKRKV; the NLS from nucleoplasmin (e.g. the nucleoplasmin bipartite NLS with the sequence KRPAATKKAGQAKKKK); the c-myc NLS having the amino acid sequence PAAKRVKLD or RQRRNELKRSP; the hRNPA1 M9 NLS having the sequence NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY; the sequence RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV of the IBB domain from importin-alpha; the sequences VSRKRPRP and PPKKARED of the myoma T protein; the sequence POPKKKPL of human p53; the sequence SALIKKKKKMAP of mouse c-abl IV; the sequences DRLRR and PKQKKRK of the influenza
- the one or more NLSs are of sufficient strength to drive accumulation of the CRISPR enzyme in a detectable amount in the nucleus of a eukaryotic cell.
- strength of nuclear localization activity may derive from the number of NLSs in the CRISPR enzyme, the particular NLS(s) used, or a combination of these factors.
- Detection of accumulation in the nucleus may be performed by any suitable technique.
- a detectable marker may be fused to the CRISPR enzyme, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI).
- Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of CRISPR complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity), as compared to a control no exposed to the CRISPR enzyme or complex, or exposed to a CRISPR enzyme lacking the one or more NLSs.
- an assay for the effect of CRISPR complex formation e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by CRISPR complex formation and/or CRISPR enzyme activity
- a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence.
- the degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more.
- Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g. the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net).
- Burrows-Wheeler Transform e.g. the Burrows Wheeler Aligner
- ClustalW Clustal X
- BLAT Novoalign
- ELAND Illumina, San Diego, CA
- SOAP available at soap.genomics.org.cn
- Maq available at maq.sourceforge.net.
- a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length. The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay.
- the components of a CRISPR system sufficient to form a CRISPR complex may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein.
- cleavage of a target polynucleotide sequence may be evaluated in a test tube by providing the target sequence, components of a CRISPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions.
- Other assays are possible, and will occur to those skilled in the art.
- a guide sequence may be selected to target any target sequence.
- the target sequence is a sequence within a genome of a cell.
- Exemplary target sequences include those that are unique in the target genome.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNXGG where NNNNNNNNNNXGG (N is A G T or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNXAGAAW where NNNNNNNNNNXXAGAAW (N is A, G, T, or C; X can be anything; and W is A or T) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- a unique target sequence in a genome may include a Cas9 target site of the form MMMMMMMMNNNNNNNNNNNNNNNNNNNNNNXGGXG where NNNNNNNNNNXGGXG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- a unique target sequence in a genome may include an S.
- pyogenes Cas9 target site of the form MMMMMMMMMNNNNNNNNNNNNNXGGXG where NNNNNNNNNXGGXG (N is A, G, T, or C; and X can be anything) has a single occurrence in the genome.
- N is A, G, T, or C; and X can be anything
- a guide sequence is selected to reduce the degree secondary structure within the guide sequence. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the guide sequence participate in self-complementary base pairing when optimally folded.
- Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g. A.R. Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).
- a tracr mate sequence includes any sequence that has sufficient complementarity with a tracr sequence to promote one or more of: (1) excision of a guide sequence flanked by tracr mate sequences in a cell containing the corresponding tracr sequence; and (2) formation of a CRISPR complex at a target sequence, wherein the CRISPR complex comprises the tracr mate sequence hybridized or hybridizable to the tracr sequence.
- degree of complementarity is with reference to the optimal alignment of the tracr mate sequence and tracr sequence, along the length of the shorter of the two sequences.
- Optimal alignment may be determined by any suitable alignment algorithm, and may further account for secondary structures, such as self-complementarity within either the tracr sequence or tracr mate sequence.
- the degree of complementarity between the tracr sequence and tracr mate sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher.
- the tracr sequence is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length.
- the tracr sequence and tracr mate sequence are contained within a single transcript, such that hybridization between the two produces a transcript having a secondary structure, such as a hairpin.
- the transcript or transcribed polynucleotide sequence has at least two or more hairpins.
- the transcript has two, three, four or five hairpins.
- the transcript has at most five hairpins.
- the portion of the sequence 5’ of the final“N” and upstream of the loop corresponds to the tracr mate sequence
- the portion of the sequence 3’ of the loop corresponds to the tracr sequence
- “N” represents a base of a guide sequence
- the first block of lower case letters represent the tracr mate sequence
- the second block of lower case letters represent the tracr sequence
- the final poly-T sequence represents the transcription terminator: (1) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNgttttgtactctcaagatttaGAAAtaaatcttgcagaagctacaaagataa ggcttcatgccgaaatcaacaccctgtcattttatggcagggtgtttcgtatttttttt
- sequences (1) to (3) are used in combination with Cas9 from S. thermophilus CRISPR1.
- sequences (4) to (6) are used in combination with Cas9 from S. pyogenes.
- the tracr sequence is a separate transcript from a transcript comprising the tracr mate sequence.
- a recombination template is also provided.
- a recombination template may be a component of another vector as described herein, contained in a separate vector, or provided as a separate polynucleotide.
- a recombination template is designed to serve as a template in homologous recombination, such as within or near a target sequence nicked or cleaved by a CRISPR enzyme as a part of a CRISPR complex.
- a template polynucleotide may be of any suitable length, such as about or more than about 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000, or more nucleotides in length.
- the template polynucleotide is complementary to a portion of a polynucleotide comprising the target sequence.
- a template polynucleotide might overlap with one or more nucleotides of a target sequences (e.g. about or more than about 1, 5, 10, 15, 20, or more nucleotides).
- the nearest nucleotide of the template polynucleotide is within about 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000, or more nucleotides from the target sequence.
- the CRISPR enzyme is part of a fusion protein comprising one or more heterologous protein domains (e.g. about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more domains in addition to the CRISPR enzyme).
- a CRISPR enzyme fusion protein may comprise any additional protein sequence, and optionally a linker sequence between any two domains.
- protein domains that may be fused to a CRISPR enzyme include, without limitation, epitope tags, reporter gene sequences, and protein domains having one or more of the following activities: methylase activity, demethylase activity, transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, RNA cleavage activity and nucleic acid binding activity.
- epitope tags include histidine (His) tags, V5 tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags.
- reporter genes include, but are not limited to, glutathione-S-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (CAT) beta-galactosidase, beta-glucuronidase, luciferase, green fluorescent protein (GFP), HcRed, DsRed, cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and autofluorescent proteins including blue fluorescent protein (BFP).
- GST glutathione-S-transferase
- HRP horseradish peroxidase
- CAT chloramphenicol acetyltransferase
- beta-galactosidase beta-galactosidase
- beta-glucuronidase beta-galactosidase
- luciferase green fluorescent protein
- GFP green fluorescent protein
- HcRed HcRed
- DsRed cyan fluorescent protein
- a CRISPR enzyme may be fused to a gene sequence encoding a protein or a fragment of a protein that bind DNA molecules or bind other cellular molecules, including but not limited to maltose binding protein (MBP), S-tag, Lex A DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions. Additional domains that may form part of a fusion protein comprising a CRISPR enzyme are described in US20110059502, incorporated herein by reference. In some embodiments, a tagged CRISPR enzyme is used to identify the location of a target sequence.
- MBP maltose binding protein
- DBD Lex A DNA binding domain
- HSV herpes simplex virus
- a CRISPR enzyme may form a component of an inducible system.
- the inducible nature of the system would allow for spatiotemporal control of gene editing or gene expression using a form of energy.
- the form of energy may include but is not limited to electromagnetic radiation, sound energy, chemical energy and thermal energy.
- inducible system examples include tetracycline inducible promoters (Tet-On or Tet-Off), small molecule two-hybrid transcription activations systems (FKBP, ABA, etc), or light inducible systems (Phytochrome, LOV domains, or cryptochrome).
- the CRISPR enzyme may be a part of a Light Inducible Transcriptional Effector (LITE) to direct changes in transcriptional activity in a sequence-specific manner.
- the components of a light may include a CRISPR enzyme, a light-responsive cytochrome heterodimer (e.g. from Arabidopsis thaliana), and a transcriptional activation/repression domain.
- inducible DNA binding proteins and methods for their use are provided in US 61/736465 and US 61/721,283, which is hereby incorporated by reference in its entirety (see also Konerman et al. (2013) Nature doi:10.1038/nature12466).
- the invention provides methods comprising delivering one or more polynucleotides, such as or one or more vectors as described herein, one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell.
- the invention further provides cells produced by such methods, and animals comprising or produced from such cells.
- a CRISPR enzyme in combination with (and optionally complexed with) a guide sequence is delivered to a cell.
- Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in mammalian cells or target tissues. Such methods can be used to administer nucleic acids encoding components of a CRISPR system to cells in culture, or in a host organism.
- Non-viral vector delivery systems include DNA plasmids, RNA (e.g. a transcript of a vector described herein), naked nucleic acid, and nucleic acid complexed with a delivery vehicle, such as a liposome.
- Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell.
- Methods of non-viral delivery of nucleic acids include lipofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA.
- Lipofection is described in e.g., U.S. Pat. Nos. 5,049,386, 4,946,787; and 4,897,355) and lipofection reagents are sold commercially (e.g., TransfectamTM and LipofectinTM).
- Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424; WO 91/16024. Delivery can be to cells (e.g. in vitro or ex vivo administration) or target tissues (e.g. in vivo administration).
- lipid:nucleic acid complexes including targeted liposomes such as immunolipid complexes
- Boese et al. Cancer Gene Ther. 2:291-297 (1995); Behr et al., Bioconjugate Chem. 5:382-389 (1994); Remy et al., Bioconjugate Chem. 5:647-654 (1994); Gao et al., Gene Therapy 2:710-722 (1995); Ahmad et al., Cancer Res. 52:4817-4820 (1992); U.S. Pat. Nos. 4,186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).
- RNA or DNA viral based systems for the delivery of nucleic acids take advantage of highly evolved processes for targeting a virus to specific cells in the body and trafficking the viral payload to the nucleus.
- Viral vectors can be administered directly to patients (in vivo) or they can be used to treat cells in vitro, and the modified cells may optionally be administered to patients (ex vivo).
- Conventional viral based systems could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome is possible with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.
- Lentiviral vectors are retroviral vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system would therefore depend on the target tissue. Retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic gene into the target cell to provide permanent transgene expression.
- Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof (see, e.g., Buchscher et al., J. Virol. 66:2731-2739 (1992); Johann et al., J. Virol. 66:1635-1640 (1992); Sommnerfelt et al., Virol. 176:58-59 (1990); Wilson et al., J. Virol. 63:2374-2378 (1989); Miller et al., J. Virol. 65:2220-2224 (1991); WO94/26877).
- MiLV murine leukemia virus
- GaLV gibbon ape leukemia virus
- SIV Simian Immuno deficiency virus
- HAV human immuno deficiency virus
- Cocal vesiculovirus envelope pseudotyped retroviral vector particles are contemplated (see, e.g., US Patent Publication No. 20120164118 assigned to the Fred Hutchinson Cancer Research Center).
- Cocal virus is in the Vesiculovirus genus, and is a causative agent of vesicular stomatitis in mammals.
- Cocal virus was originally isolated from mites in Trinidad (Jonkers et al., Am. J. Vet. Res. 25:236-242 (1964)), and infections have been identified in Trinidad, Brazil, and Argentina from insects, cattle, and horses.
- the Cocal vesiculovirus envelope pseudotyped retroviral vector particles may include for example, lentiviral, alpharetroviral, betaretroviral, gammaretroviral, deltaretroviral, and epsilonretroviral vector particles that may comprise retroviral Gag, Pol, and/or one or more accessory protein(s) and a Cocal vesiculovirus envelope protein.
- the Gag, Pol, and accessory proteins are lentiviral and/or gammaretroviral.
- adenoviral based systems may be used.
- Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system.
- Adeno-associated virus (“AAV”) vectors may also be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures (see, e.g., West et al., Virology 160:38-47 (1987); U.S. Pat. No. 4,797,368; WO 93/24641; Kotin, Human Gene Therapy 5:793-801 (1994); Muzyczka, J. Clin. Invest. 94:1351 (1994). Construction of recombinant AAV vectors are described in a number of publications, including U.S. Pat. No.
- Packaging cells are typically used to form virus particles that are capable of infecting a host cell. Such cells include 293 or PER.C6 cells, which package adenovirus, and 2 cells or PA317 cells, which package retrovirus.
- Viral vectors used in gene therapy are usually generated by producer a cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host, other viral sequences being replaced by an expression cassette for the polynucleotide(s) to be expressed. The missing viral functions are typically supplied in trans by the packaging cell line. For example, AAV vectors used in gene therapy typically only possess ITR sequences from the AAV genome which are required for packaging and integration into the host genome.
- Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences.
- the cell line may also infected with adenovirus as a helper.
- the helper virus promotes replication of the AAV vector and expression of AAV genes from the helper plasmid.
- the helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV. Accordingly, AAV is considered an ideal candidate for use as a transducing vector.
- Such AAV transducing vectors can comprise sufficient cis-acting functions to replicate in the presence of adenovirus or herpesvirus or poxvirus (e.g., vaccinia virus) helper functions provided in trans.
- Recombinant AAV rAAV
- rAAV Recombinant AAV
- the AAV cap and/or rep genes are deleted from the viral genome and replaced with a DNA segment of choice.
- Current AAV vectors may accommodate up to 4300 bases of inserted DNA.
- plasmid(s) containing or consisting essentially of the desired viral construct are transfected into AAV-infected cells or into a packaging cell.
- a second or additional helper plasmid is cotransfected into these cells to provide the AAV rep and/or cap genes which are obligatory for replication and packaging of the recombinant viral construct.
- the rep and/or cap proteins of AAV act in trans to stimulate replication and packaging of the rAAV construct. Two to Three days after transfection, rAAV is harvested.
- rAAV is harvested from the cells along with adenovirus. The contaminating adenovirus is then inactivated by heat treatment. In the instant invention, rAAV is advantageously harvested not from the cells themselves, but from cell supernatant.
- rAAV can be prepared by a method that comprises or consists essentially of: infecting susceptible cells with a rAAV containing exogenous DNA including DNA for expression, and helper virus (e.g., adenovirus, herpesvirus, poxvirus such as vaccinia virus) wherein the rAAV lacks functioning cap and/or rep (and the helper virus (e.g., adenovirus, herpesvirus, poxvirus such as vaccinia virus) provides the cap and/or rev function that the rAAV lacks); or infecting susceptible cells with a rAAV containing exogenous DNA including DNA for expression, wherein the recombinant lacks functioning cap and/or rep, and transfecting said cells with a plasmid supplying cap and/or rep function that the rAAV lacks; or infecting susceptible cells with a rAAV containing ex
- the rAAV can be from an AAV as herein described, and advantageously can be an rAAV1, rAAV2, AAV5 or rAAV having hybrid or capsid which may comprise AAV1, AAV2, AAV5 or any combination thereof.
- the invention provides rAAV that contains or consists essentially of an exogenous nucleic acid molecule encoding a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system, e.g., a plurality of cassettes comprising or consisting a first cassette comprising or consisting essentially of a promoter, a nucleic acid molecule encoding a CRISPR-associated (Cas) protein (putative nuclease or helicase proteins), e.g., Cas9 and a terminator, and a two, or more, advantageously up to the packaging size limit of the vector, e.g., in total (including the first cassette) five, cassettes comprising or consisting essentially of a promoter, nucleic acid molecule encoding guide RNA (gRNA) and a terminator (e.g., each cassette schematically represented as Promoter-gRNA1-terminator, Promoter-gRNA2-terminator ...
- CRISPR Clustered Regularly
- Promoter- gRNA(N)-terminator (where N is a number that can be inserted that is at an upper limit of the packaging size limit of the vector), or two or more individual rAAVs, each containing one or more than one cassette of a CRISPR system, e.g., a first rAAV containing the first cassette comprising or consisting essentially of a promoter, a nucleic acid molecule encoding Cas, e.g., Cas9 and a terminator, and a second rAAV containing a plurality, four, cassettes comprising or consisting essentially of a promoter, nucleic acid molecule encoding guide RNA (gRNA) and a terminator (e.g., each cassette schematically represented as Promoter-gRNA1-terminator, Promoter-gRNA2-terminator ...
- gRNA nucleic acid molecule encoding guide RNA
- Promoter-gRNA(N)-terminator (where N is a number that can be inserted that is at an upper limit of the packaging size limit of the vector).
- N is a number that can be inserted that is at an upper limit of the packaging size limit of the vector.
- the promoter is in some embodiments advantageously human Synapsin I promoter (hSyn).
- a host cell is transiently or non-transiently transfected with one or more vectors described herein.
- a cell is transfected as it naturally occurs in a subject.
- a cell that is transfected is taken from a subject.
- the cell is derived from cells taken from a subject, such as a cell line. A wide variety of cell lines for tissue culture are known in the art.
- cell lines include, but are not limited to, C8161, CCRF-CEM, MOLT, mIMCD-3, NHDF, HeLa-S3, Huh1, Huh4, Huh7, HUVEC, HASMC, HEKn, HEKa, MiaPaCell, Panc1, PC-3, TF1, CTLL-2, C1R, Rat6, CV1, RPTE, A10, T24, J82, A375, ARH-77, Calu1, SW480, SW620, SKOV3, SK-UT, CaCo2, P388D1, SEM-K2, WEHI-231, HB56, TIB55, Jurkat, J45.01, LRMB, Bcl-1, BC-3, IC21, DLD2, Raw264.7, NRK, NRK-52E, MRC5, MEF, Hep G2, HeLa B, HeLa T4, COS, COS-1, COS-6, COS-M6A, BS-C-1 monkey kidney epithelial, BALB
- a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences.
- a cell transiently transfected with the components of a CRISPR system as described herein (such as by transient transfection of one or more vectors, or transfection with RNA), and modified through the activity of a CRISPR complex, is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence.
- cells transiently or non-transiently transfected with one or more vectors described herein, or cell lines derived from such cells are used in assessing one or more test compounds.
- a fluid delivery device with an array of needles may be contemplated for delivery of CRISPR Cas to solid tissue.
- a device of US Patent Publication No. 20110230839 for delivery of a fluid to a solid tissue may comprise a plurality of needles arranged in an array; a plurality of reservoirs, each in fluid communication with a respective one of the plurality of needles; and a plurality of actuators operatively coupled to respective ones of the plurality of reservoirs and configured to control a fluid pressure within the reservoir.
- each of the plurality of actuators may comprise one of a plurality of plungers, a first end of each of the plurality of plungers being received in a respective one of the plurality of reservoirs, and in certain further embodiments the plungers of the plurality of plungers are operatively coupled together at respective second ends so as to be simultaneously depressable. Certain still further embodiments may comprise a plunger driver configured to depress all of the plurality of plungers at a selectively variable rate. In other embodiments each of the plurality of actuators may comprise one of a plurality of fluid transmission lines having first and second ends, a first end of each of the plurality of fluid transmission lines being coupled to a respective one of the plurality of reservoirs.
- the device may comprise a fluid pressure source, and each of the plurality of actuators comprises a fluid coupling between the fluid pressure source and a respective one of the plurality of reservoirs.
- the fluid pressure source may comprise at least one of a compressor, a vacuum accumulator, a peristaltic pump, a master cylinder, a microfluidic pump, and a valve.
- each of the plurality of needles may comprise a plurality of ports distributed along its length.
- the invention provides for methods of modifying a target polynucleotide in a eukaryotic cell, which may be in vivo, ex vivo or in vitro.
- the method comprises sampling a cell or population of cells from a human or non- human animal, or a plant, and modifying the cell or cells. Culturing may occur at any stage ex vivo. The cell or cells may even be re-introduced into the non-human animal or plant. For re- introduced cells it is particularly preferred that the cells are stem cells.
- the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence.
- the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises allowing a CRISPR complex to bind to the polynucleotide such that said binding results in increased or decreased expression of said polynucleotide; wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within said polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence. Similar considerations and conditions apply as above for methods of modifying a target polynucleotide.
- the CRISPR complex may comprise a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence, wherein said guide sequence may be linked to a tracr mate sequence which in turn may hybridize to a tracr sequence. Similar considerations and conditions apply as above for methods of modifying a target polynucleotide.
- kits containing any one or more of the elements disclosed in the above methods and compositions. Elements may be provided individually or in combinations, and may be provided in any suitable container, such as a vial, a bottle, or a tube. In some embodiments, the kit includes instructions in one or more languages, for example in more than one language. In some embodiments, a kit comprises one or more reagents for use in a process utilizing one or more of the elements described herein. Reagents may be provided in any suitable container. For example, a kit may provide one or more reaction or storage buffers.
- Reagents may be provided in a form that is usable in a particular assay, or in a form that requires addition of one or more other components before use (e.g. in concentrate or lyophilized form).
- a buffer can be any buffer, including but not limited to a sodium carbonate buffer, a sodium bicarbonate buffer, a borate buffer, a Tris buffer, a MOPS buffer, a HEPES buffer, and combinations thereof.
- the buffer is alkaline.
- the buffer has a pH from about 7 to about 10.
- the kit comprises one or more oligonucleotides corresponding to a guide sequence for insertion into a vector so as to operably link the guide sequence and a regulatory element.
- the kit comprises a homologous recombination template polynucleotide. In some embodiments, the kit comprises one or more of the vectors and/or one or more of the polynucleotides described herein. The kit may advantageously allows to provide all elements of the systems of the invention.
- the invention provides methods for using one or more elements of a CRISPR system.
- the CRISPR complex of the invention provides an effective means for modifying a target polynucleotide.
- the CRISPR complex of the invention has a wide variety of utility including modifying (e.g., deleting, inserting, translocating, inactivating) a target polynucleotide in a multiplicity of cell types.
- An exemplary CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized or hybridizable to a target sequence within the target polynucleotide.
- the guide sequence is linked to a tracr mate sequence, which in turn hybridizes to a tracr sequence.
- this invention provides a method of cleaving a target polynucleotide.
- the method comprises modifying a target polynucleotide using a CRISPR complex that binds to the target polynucleotide and effect cleavage of said target polynucleotide.
- the CRISPR complex of the invention when introduced into a cell, creates a break (e.g., a single or a double strand break) in the genome sequence.
- the method can be used to cleave an integrated viral gene in a cell.
- the break created by the CRISPR complex can be repaired by a repair processes such as the error prone non-homologous end joining (NHEJ) pathway or the high fidelity homology-directed repair (HDR) (Fig. 29).
- NHEJ error prone non-homologous end joining
- HDR high fidelity homology-directed repair
- an exogenous polynucleotide template can be introduced into the genome sequence.
- the HDR process is used modify genome sequence.
- an exogenous polynucleotide template comprising a sequence to be integrated flanked by an upstream sequence and a downstream sequence is introduced into a cell.
- the upstream and downstream sequences share sequence similarity with either side of the site of integration in the chromosome.
- a donor polynucleotide can be DNA, e.g., a DNA plasmid, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), a viral vector, a linear piece of DNA, a PCR fragment, a naked nucleic acid, or a nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer.
- the exogenous polynucleotide template comprises a sequence to be integrated (e.g., a mutated gene).
- the sequence for integration may be a sequence endogenous or exogenous to the cell.
- sequences to be integrated include polynucleotides encoding a protein or a non-coding RNA (e.g., a microRNA).
- the sequence for integration may be operably linked to an appropriate control sequence or sequences.
- the sequence to be integrated may provide a regulatory function.
- the upstream and downstream sequences in the exogenous polynucleotide template are selected to promote recombination between the chromosomal sequence of interest and the donor polynucleotide.
- the upstream sequence is a nucleic acid sequence that shares sequence similarity with the genome sequence upstream of the targeted site for integration.
- the downstream sequence is a nucleic acid sequence that shares sequence similarity with the chromosomal sequence downstream of the targeted site of integration.
- the upstream and downstream sequences in the exogenous polynucleotide template can have 75%, 80%, 85%, 90%, 95%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with the targeted genome sequence.
- the upstream and downstream sequences in the exogenous polynucleotide template have about 99% or 100% sequence identity with the targeted genome sequence.
- An upstream or downstream sequence may comprise from about 20 bp to about 2500 bp, for example, about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 bp.
- the exemplary upstream or downstream sequence have about 200 bp to about 2000 bp, about 600 bp to about 1000 bp, or more particularly about 700 bp to about 1000 bp.
- the exogenous polynucleotide template may further comprise a marker. Such a marker may make it easy to screen for targeted integrations.
- exogenous polynucleotide template of the invention can be constructed using recombinant techniques (see, for example, Sambrook et al., 2001 and Ausubel et al., 1996).
- a double stranded break is introduced into the genome sequence by the CRISPR complex, the break is repaired via homologous recombination an exogenous polynucleotide template such that the template is integrated into the genome.
- the presence of a double-stranded break facilitates integration of the template.
- this invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
- the method comprises decreasing expression of a target polynucleotide by using a CRISPR complex that binds to the polynucleotide.
- a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a CRISPR complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein or RNA is not produced, or the sequence does not function as the wild-type sequence does.
- control sequence refers to any nucleic acid sequence that effects the transcription, translation, or accessibility of a nucleic acid sequence. Examples of a control sequence include, a promoter, a transcription terminator, and an enhancer are control sequences.
- the inactivated target sequence may include a deletion mutation (i.e., deletion of one or more nucleotides), an insertion mutation (i.e., insertion of one or more nucleotides), or a nonsense mutation (i.e., substitution of a single nucleotide for another nucleotide such that a stop codon is introduced).
- a deletion mutation i.e., deletion of one or more nucleotides
- an insertion mutation i.e., insertion of one or more nucleotides
- a nonsense mutation i.e., substitution of a single nucleotide for another nucleotide such that a stop codon is introduced.
- wild type StCas9 refers to wild type Cas9 from S thermophilus, the protein sequence of which is given in the SwissProt database under accession number G3ECR1. Similarly, S pyogenes Cas9 is included in SwissProt under accession number Q99ZW2.
- a first step is to redesign and produce sgRNA sequences compatible with the SaCas9 PAM. Then, the sgRNAs are cloned into a viral vector (likely lentiviral for initial in vitro cell line studies) and these new guides are screened for their ability to cleave cccDNA in de novo infections. These experiments use the HepG2-hNTCP knockin cell lines and HBV virions purified from HepG2.2.15 cells.
- the screen is performed either with guides in individual wells side-by-side, or using a pooled format in which lentivirus is produced with a pool of all possible sgRNA sequences against HBV, and then deep sequencing identifes regions of the HBV genome most susceptible to cleavage by SaCas9.
- Rationale for choosing appropriate sgRNAs for anti-HBV CRISPR/Cas9 systems The process is a multistep one in which several parameters should be optimized: efficacy of the sgRNA sequence, targeting to an accessible part of cccDNA, conservation of the target sequence across viral genotypes, and minimization of target sequence homology to the human genome. These criteria should be general criteria across all episomal viruses, although the specifics may differ (for example, HBV cccDNA seems to be most accessible to cleavage in the ORF for Core, and it is possible that latent HSV may be most accessible in the region encoding latency- associated transcript LAT).
- the general workflow is as follows:
- the columns labeled‘D’ signify where Applicants used a nuclease-deficient Cas9 as an internal control.
- the 29 dpt corresponds to 29 days post transduction, where a single lentiviral vector encoding U6-sgRNA and EFS-hSpCas9-2A-Puro was transduced into HepG2.2.15 cells followed by selection with puromycin.
- the CRISPR-based activation system can specifically upregulate targeted genes, it is possible to target APOBEC3A, APOBEC3B, and/or other antiviral interferon-stimulated genes (ISGs) using this system in order to target HBV cccDNA for degradation. While this is an indirect approach, the advantage here may be that the use of a nuclease-competent Cas9 is not required, potentially reducing the chance of deleterious off- target effects.
- ISGs antiviral interferon-stimulated genes
- An example type II CRISPR system is the type II CRISPR locus from Streptococcus pyogenes SF370, which contains a cluster of four genes Cas9, Cas1, Cas2, and Csn1, as well as two non-coding RNA elements, tracrRNA and a characteristic array of repetitive sequences (direct repeats) interspaced by short stretches of non-repetitive sequences (spacers, about 30bp each).
- DSB targeted DNA double-strand break
- tracrRNA hybridizes to the direct repeats of pre- crRNA, which is then processed into mature crRNAs containing individual spacer sequences.
- the mature crRNA:tracrRNA complex directs Cas9 to the DNA target consisting of the protospacer and the corresponding PAM via heteroduplex formation between the spacer region of the crRNA and the protospacer DNA.
- Cas9 mediates cleavage of target DNA upstream of PAM to create a DSB within the protospacer (Fig. 2A).
- This example describes an example process for adapting this RNA-programmable nuclease system to direct CRISPR complex activity in the nuclei of eukaryotic cells.
- HEK cell line HEK 293FT Human embryonic kidney (HEK) cell line HEK 293FT (Life Technologies) was maintained in Dulbecco’s modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (HyClone), 2mM GlutaMAX (Life Technologies), 100U/mL penicillin, and 100 g/mL streptomycin at 37oC with 5% CO 2 incubation.
- DMEM Dulbecco’s modified Eagle’s Medium
- HEK 293FT or N2A cells were seeded into 24-well plates (Corning) one day prior to transfection at a density of 200,000 cells per well. Cells were transfected using Lipofectamine 2000 (Life Technologies) following the manufacturer’s recommended protocol. For each well of a 24-well plate a total of 800ng of plasmids were used.
- HEK 293FT or N2A cells were transfected with plasmid DNA as described above. After transfection, the cells were incubated at 37oC for 72 hours before genomic DNA extraction. Genomic DNA was extracted using the QuickExtract DNA extraction kit (Epicentre) following the manufacturer’s protocol. Briefly, cells were resuspended in QuickExtract solution and incubated at 65oC for 15 minutes and 98oC for 10 minutes. Extracted genomic DNA was immediately processed or stored at–20oC.
- the genomic region surrounding a CRISPR target site for each gene was PCR amplified, and products were purified using QiaQuick Spin Column (Qiagen) following manufacturer’s protocol.
- a total of 400ng of the purified PCR products were mixed with 2 l 10X Taq polymerase PCR buffer (Enzymatics) and ultrapure water to a final volume of 20 l, and subjected to a re-annealing process to enable heteroduplex formation: 95oC for 10min, 95oC to 85oC ramping at– 2oC/s, 85oC to 25oC at– 0.25oC/s, and 25oC hold for 1 minute.
- HEK 293FT and N2A cells were transfected with plasmid DNA, and incubated at 37°C for 72 hours before genomic DNA extraction as described above.
- the target genomic region was PCR amplified using primers outside the homology arms of the homologous recombination (HR) template.
- PCR products were separated on a 1% agarose gel and extracted with MinElute GelExtraction Kit (Qiagen). Purified products were digested with HindIII (Fermentas) and analyzed on a 6% Novex TBE poly-acrylamide gel (Life Technologies).
- RNA secondary structure prediction was performed using the online webserver RNAfold developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g. A.R. Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).
- HEK 293FT cells were maintained and transfected as stated above. Cells were harvested by trypsinization followed by washing in phosphate buffered saline (PBS). Total cell RNA was extracted with TRI reagent (Sigma) following manufacturer’s protocol. Extracted total RNA was quantified using Naonodrop (Thermo Scientific) and normalized to same concentration.
- RNAs were mixed with equal volumes of 2X loading buffer (Ambion), heated to 95qC for 5 min, chilled on ice for 1 min, and then loaded onto 8% denaturing polyacrylamide gels (SequaGel, National Diagnostics) after pre-running the gel for at least 30 minutes. The samples were electrophoresed for 1.5 hours at 40W limit. Afterwards, the RNA was transferred to Hybond N+ membrane (GE Healthcare) at 300 mA in a semi-dry transfer apparatus (Bio-rad) at room temperature for 1.5 hours. The RNA was crosslinked to the membrane using autocrosslink button on Stratagene UV Crosslinker the Stratalinker (Stratagene).
- the membrane was pre-hybridized in ULTRAhyb-Oligo Hybridization Buffer (Ambion) for 30 min with rotation at 42qC, and probes were then added and hybridized overnight. Probes were ordered from IDT and labeled with [gamma- 32 P] ATP (Perkin Elmer) with T4 polynucleotide kinase (New England Biolabs). The membrane was washed once with pre-warmed (42qC) 2xSSC, 0.5% SDS for 1 min followed by two 30 minute washes at 42qC. The membrane was exposed to a phosphor screen for one hour or overnight at room temperature and then scanned with a phosphorimager (Typhoon).
- CRISPR locus elements including tracrRNA, Cas9, and leader were PCR amplified from Streptococcus pyogenes SF370 genomic DNA with flanking homology arms for Gibson Assembly. Two BsaI type IIS sites were introduced in between two direct repeats to facilitate easy insertion of spacers (Fig. 8). PCR products were cloned into EcoRV-digested pACYC184 downstream of the tet promoter using Gibson Assembly Master Mix (NEB). Other endogenous CRISPR system elements were omitted, with the exception of the last 50bp of Csn2.
- Oligos Integrated DNA Technology
- pDC000 BsaI-digested vector pDC000
- T7 ligase Enzymatics
- 6C shows results of a Northern blot analysis of total RNA extracted from 293FT cells transfected with U6 expression constructs carrying long or short tracrRNA, as well as SpCas9 and DR-EMX1(1)-DR.
- Left and right panels are from 293FT cells transfected without or with SpRNase III, respectively.
- U6 indicate loading control blotted with a probe targeting human U6 snRNA Transfection of the short tracrRNA expression construct led to abundant levels of the processed form of tracrRNA ( ⁇ 75bp). Very low amounts of long tracrRNA are detected on the Northern blot.
- RNA polymerase III-based U6 promoter was selected to drive the expression of tracrRNA (Fig. 2C).
- a U6 promoter- based construct was developed to express a pre-crRNA array consisting of a single spacer flanked by two direct repeats (DRs, also encompassed by the term“tracr-mate sequences”; Fig. 2C).
- the initial spacer was designed to target a 33-base-pair (bp) target site (30-bp protospacer plus a 3-bp CRISPR motif (PAM) sequence satisfying the NGG recognition motif of Cas9) in the human EMX1 locus (Fig. 2C), a key gene in the development of the cerebral cortex.
- bp 33-base-pair
- PAM 3-bp CRISPR motif
- HEK 293FT cells were transfected with combinations of CRISPR components. Since DSBs in mammalian nuclei are partially repaired by the non-homologous end joining (NHEJ) pathway, which leads to the formation of indels, the Surveyor assay was used to detect potential cleavage activity at the target EMX1 locus (Fig. 7) (see e.g. Guschin et al., 2010, Methods Mol Biol 649: 247).
- NHEJ non-homologous end joining
- Fig. 12 provides an additional Northern blot analysis of crRNA processing in mammalian cells.
- Fig. 12A illustrates a schematic showing the expression vector for a single spacer flanked by two direct repeats (DR-EMX1(1)-DR). The 30bp spacer targeting the human EMX1 locus protospacer 1 (see Fig. 6) and the direct repeat sequences are shown in the sequence beneath Fig. 12A. The line indicates the region whose reverse-complement sequence was used to generate Northern blot probes for EMX1(1) crRNA detection.
- Fig. 12B shows a Northern blot analysis of total RNA extracted from 293FT cells transfected with U6 expression constructs carrying DR-EMX1(1)-DR.
- DR-EMX1(1)-DR was processed into mature crRNAs only in the presence of SpCas9 and short tracrRNA and was not dependent on the presence of SpRNase III.
- the mature crRNA detected from transfected 293FT total RNA is ⁇ 33bp and is shorter than the 39-42bp mature crRNA from S. pyogenes.
- Fig. 2 illustrates the bacterial CRISPR system described in this example.
- Fig. 2A illustrates a schematic showing the CRISPR locus 1 from Streptococcus pyogenes SF370 and a proposed mechanism of CRISPR-mediated DNA cleavage by this system.
- Mature crRNA processed from the direct repeat-spacer array directs Cas9 to genomic targets consisting of complimentary protospacers and a protospacer-adjacent motif (PAM).
- PAM protospacer-adjacent motif
- Cas9 mediates a double-strand break in the target DNA.
- Fig. 2B illustrates engineering of S.
- Fig. 2C illustrates mammalian expression of SpCas9 and SpRNase III driven by the constitutive EF1a promoter and tracrRNA and pre- crRNA array (DR-Spacer-DR) driven by the RNA Pol3 promoter U6 to promote precise transcription initiation and termination.
- DR-Spacer-DR pre- crRNA array
- a protospacer from the human EMX1 locus with a satisfactory PAM sequence is used as the spacer in the pre-crRNA array.
- Fig. 2D illustrates surveyor nuclease assay for SpCas9-mediated minor insertions and deletions.
- SpCas9 was expressed with and without SpRNase III, tracrRNA, and a pre-crRNA array carrying the EMX1- target spacer.
- Fig. 2E illustrates a schematic representation of base pairing between target locus and EMX1-targeting crRNA, as well as an example chromatogram showing a micro deletion adjacent to the SpCas9 cleavage site.
- a chimeric crRNA-tracrRNA hybrid design was adapted, where a mature crRNA (comprising a guide sequence) may be fused to a partial tracrRNA via a stem-loop to mimic the natural crRNA:tracrRNA duplex.
- a bicistronic expression vector was created to drive co-expression of a chimeric RNA and SpCas9 in transfected cells.
- the bicistronic vectors were used to express a pre-crRNA (DR-guide sequence-DR) with SpCas9, to induce processing into crRNA with a separately expressed tracrRNA (compare Fig. 11B top and bottom).
- FIG. 8 provides schematic illustrations of bicistronic expression vectors for pre-crRNA array ( Figure 8A) or chimeric crRNA (represented by the short line downstream of the guide sequence insertion site and upstream of the EF1 ⁇ promoter in Fig. 8B) with hSpCas9, showing location of various elements and the point of guide sequence insertion.
- the expanded sequence around the location of the guide sequence insertion site in Fig. 8B also shows a partial DR sequence (GTTTAGAGCTA) and a partial tracrRNA sequence (TAGCAAGTTAAAATAAGGCTAGTCCGTTTTT).
- Guide sequences can be inserted between BbsI sites using annealed oligonucleotides.
- RNA design for the oligonucleotides are shown below the schematic illustrations in Fig. 8, with appropriate ligation adapters indicated.
- WPRE represents the Woodchuck hepatitis virus post-transcriptional regulatory element.
- the efficiency of chimeric RNA-mediated cleavage was tested by targeting the same EMX1 locus described above. Using both Surveyor assay and Sanger sequencing of amplicons, Applicants confirmed that the chimeric RNA design facilitates cleavage of human EMX1 locus with approximately a 4.7% modification rate (Fig. 3).
- Fig. 13 illustrates the selection of some additional targeted protospacers in human PVALB (Fig. 13A) and mouse Th (Fig. 13B) loci. Schematics of the gene loci and the location of three protospacers within the last exon of each are provided.
- the underlined sequences include 30bp of protospacer sequence and 3bp at the 3’ end corresponding to the PAM sequences.
- FIG. 11A provides a schematic of the human EMX1 locus showing the location of five protospacers, indicated by the underlined sequences.
- Fig. 11B provides a schematic of the pre-crRNA/trcrRNA complex showing hybridization between the direct repeat region of the pre-crRNA and tracrRNA (top), and a schematic of a chimeric RNA design comprising a 20bp guide sequence, and tracr mate and tracr sequences consisting of partial direct repeat and tracrRNA sequences hybridized in a hairpin structure (bottom). Results of a Surveyor assay comparing the efficacy of Cas9-mediated cleavage at five protospacers in the human EMX1 locus is illustrated in Fig. 11C. Each protospacer is targeted using either processed pre-crRNA/tracrRNA complex (crRNA) or chimeric RNA (chiRNA).
- crRNA processed pre-crRNA/tracrRNA complex
- chiRNA chimeric RNA
- RNA Since the secondary structure of RNA can be crucial for intermolecular interactions, a structure prediction algorithm based on minimum free energy and Boltzmann-weighted structure ensemble was used to compare the putative secondary structure of all guide sequences used in the genome targeting experiment (see e.g. Gruber et al., 2008, Nucleic Acids Research, 36: W70). Analysis revealed that in most cases, the effective guide sequences in the chimeric crRNA context were substantially free of secondary structure motifs, whereas the ineffective guide sequences were more likely to form internal secondary structures that could prevent base pairing with the target protospacer DNA. It is thus possible that variability in the spacer secondary structure might impact the efficiency of CRISPR-mediated interference when using a chimeric crRNA.
- FIG. 22 illustrates single expression vectors incorporating a U6 promoter linked to an insertion site for a guide oligo, and a Cbh promoter linked to SpCas9 coding sequence.
- the vector shown in Fig. 22b includes a tracrRNA coding sequence linked to an H1 promoter.
- Fig. 3A illustrates results of a Surveyor nuclease assay comparing the cleavage efficiency of Cas9 when paired with different mutant chimeric RNAs.
- Single-base mismatch up to 12-bp 5’ of the PAM substantially abrogated genomic cleavage by SpCas9, whereas spacers with mutations at farther upstream positions retained activity against the original protospacer target (Fig. 3B).
- SpCas9 has single-base specificity within the last 12- bp of the spacer. Furthermore, CRISPR is able to mediate genomic cleavage as efficiently as a pair of TALE nucleases (TALEN) targeting the same EMX1 protospacer.
- TALEN TALE nucleases
- Fig. 3C provides a schematic showing the design of TALENs targeting EMX1
- Fig. 4C provides a schematic illustration of the HR strategy, with relative locations of recombination points and primer annealing sequences (arrows). SpCas9 and SpCas9n indeed catalyzed integration of the HR template into the EMX1 locus.
- RNA to program sequence-specific DNA cleavage defines a new class of genome engineering tools for a variety of research and industrial applications.
- CRISPR system can be further improved to increase the efficiency and versatility of CRISPR targeting.
- Optimal Cas9 activity may depend on the availability of free Mg 2+ at levels higher than that present in the mammalian nucleus (see e.g. Jinek et al., 2012, Science, 337:816), and the preference for an NGG motif immediately downstream of the protospacer restricts the ability to target on average every 12-bp in the human genome (Fig. 9, evaluating both plus and minus strands of human chromosomal sequences).
- FIG. 10 illustrates adaptation of the Type II CRISPR system from CRISPR 1 of Streptococcus thermophilus LMD-9 for heterologous expression in mammalian cells to achieve CRISPR-mediated genome editing.
- Fig. 10A provides a Schematic illustration of CRISPR 1 from S. thermophilus LMD-9.
- Figure 10B illustrates the design of an expression system for the S. thermophilus CRISPR system.
- Human codon-optimized hStCas9 is expressed using a constitutive EF1 ⁇ promoter. Mature versions of tracrRNA and crRNA are expressed using the U6 promoter to promote precise transcription initiation. Sequences from the mature crRNA and tracrRNA are illustrated. A single base indicated by the lower case“a” in the crRNA sequence is used to remove the polyU sequence, which serves as a RNA polIII transcriptional terminator.
- Fig. 10C provides a schematic showing guide sequences targeting the human EMX1 locus.
- Fig. 10D shows the results of hStCas9-mediated cleavage in the target locus using the Surveyor assay. RNA guide spacers 1 and 2 induced 14% and 6.4%, respectively.
- Fig. 14 provides a schematic of additional protospacer and corresponding PAM sequence targets of the S. thermophilus CRISPR system in the human EMX1 locus. Two protospacer sequences are highlighted and their corresponding PAM sequences satisfying NNAGAAW motif are indicated by underlining 3’ with respect to the corresponding highlighted sequence. Both protospacers target the anti-sense strand.
- Example 3 Sample target sequence selection algorithm
- a software program is designed to identify candidate CRISPR target sequences on both strands of an input DNA sequence based on desired guide sequence length and a CRISPR motif sequence (PAM) for a specified CRISPR enzyme.
- PAM CRISPR motif sequence
- target sites for Cas9 from S. pyogenes, with PAM sequences NGG may be identified by searching for 5’-N x -NGG-3’ both on the input sequence and on the reverse-complement of the input.
- target sites for Cas9 of S. thermophilus CRISPR1, with PAM sequence NNAGAAW may be identified by searching for 5’-N x -NNAGAAW-3’ both on the input sequence and on the reverse-complement of the input.
- target sites for Cas9 of S. thermophilus CRISPR3, with PAM sequence NGGNG may be identified by searching for 5’-N x -NGGNG-3’ both on the input sequence and on the reverse-complement of the input.
- the value“x” in N x may be fixed by the program or specified by the user, such as 20.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Crystallography & Structural Chemistry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Business, Economics & Management (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Business, Economics & Management (AREA)
- Computing Systems (AREA)
Abstract
Description
Claims
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19168543.7A EP3540051B1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hsv and viral diseases and disorders. |
EP14830911.5A EP3080261B1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
CA2932479A CA2932479A1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
RU2016128077A RU2016128077A (en) | 2013-12-12 | 2014-12-12 | DELIVERY, APPLICATION AND APPLICATIONS IN THE THERAPY OF CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR TREATMENT OF CONDITIONED HBV AND VIRAL DISEASES AND DISORDERS |
EP22182408.9A EP4183876A1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
KR1020167018647A KR20160089530A (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
CN201480072878.4A CN105899658B (en) | 2013-12-12 | 2014-12-12 | Delivery, Use and Therapeutic Applications of CRISPR-CAS Systems and Compositions for HBV and Viral Diseases and Disorders |
MX2016007324A MX2016007324A (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders. |
BR112016013207A BR112016013207A2 (en) | 2013-12-12 | 2014-12-12 | administration, use and therapeutic applications of crisp systems and compositions for hbv and viral disorders and diseases |
AU2014361784A AU2014361784A1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders |
JP2016539225A JP2017527256A (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of CRISPR-Cas systems and compositions for HBV and viral diseases and disorders |
IL246117A IL246117B (en) | 2013-12-12 | 2016-06-08 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
US15/179,938 US20160317677A1 (en) | 2013-12-12 | 2016-06-10 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
US17/002,262 US20200389425A1 (en) | 2013-12-12 | 2020-08-25 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361915301P | 2013-12-12 | 2013-12-12 | |
US61/915,301 | 2013-12-12 | ||
US201462010329P | 2014-06-10 | 2014-06-10 | |
US62/010,329 | 2014-06-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/179,935 Continuation-In-Part US9935913B2 (en) | 2016-06-10 | 2016-06-10 | Establishing connections between third party accounts maintained by various third party systems and between third party accounts and accounts maintained by an online system |
US15/179,938 Continuation-In-Part US20160317677A1 (en) | 2013-12-12 | 2016-06-10 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015089465A1 true WO2015089465A1 (en) | 2015-06-18 |
Family
ID=53371891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/070135 WO2015089465A1 (en) | 2013-12-12 | 2014-12-12 | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
Country Status (13)
Country | Link |
---|---|
US (2) | US20160317677A1 (en) |
EP (3) | EP4183876A1 (en) |
JP (1) | JP2017527256A (en) |
KR (1) | KR20160089530A (en) |
CN (2) | CN105899658B (en) |
AU (1) | AU2014361784A1 (en) |
BR (1) | BR112016013207A2 (en) |
CA (1) | CA2932479A1 (en) |
IL (1) | IL246117B (en) |
MX (1) | MX2016007324A (en) |
RU (1) | RU2016128077A (en) |
SG (1) | SG10201804975PA (en) |
WO (1) | WO2015089465A1 (en) |
Cited By (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015153789A1 (en) * | 2014-04-01 | 2015-10-08 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 1 (hsv-1) |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
WO2016086197A1 (en) | 2014-11-25 | 2016-06-02 | The Brigham And Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
WO2016094872A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
WO2016094867A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Protected guide rnas (pgrnas) |
WO2016100974A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
WO2016106244A1 (en) | 2014-12-24 | 2016-06-30 | The Broad Institute Inc. | Crispr having or associated with destabilization domains |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US20160346362A1 (en) * | 2015-05-29 | 2016-12-01 | Agenovir Corporation | Methods and compositions for treating cytomegalovirus infections |
US20160346361A1 (en) * | 2015-05-29 | 2016-12-01 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
WO2016197132A1 (en) * | 2015-06-04 | 2016-12-08 | Protiva Biotherapeutics Inc. | Treating hepatitis b virus infection using crispr |
WO2016205764A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
WO2017004191A1 (en) * | 2015-06-30 | 2017-01-05 | Regents Of The University Of Minnesota | Transgenic mouse for expressing apobec3b |
US9546384B2 (en) | 2013-12-11 | 2017-01-17 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse genome |
JP2017018026A (en) * | 2015-07-09 | 2017-01-26 | 国立研究開発法人医薬基盤・健康・栄養研究所 | Method for gene-targeting of pluripotent stem cells |
US20170087224A1 (en) * | 2015-09-29 | 2017-03-30 | Agenovir Corporation | Delivery methods and compositions |
WO2017058795A1 (en) * | 2015-09-29 | 2017-04-06 | Agenovir Corporation | Compositions and methods for latent viral transcription regulation |
WO2017062723A1 (en) * | 2015-10-08 | 2017-04-13 | President And Fellows Of Harvard College | Multiplexed genome editing |
WO2017070284A1 (en) * | 2015-10-21 | 2017-04-27 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating hepatitis b virus |
WO2017075475A1 (en) | 2015-10-30 | 2017-05-04 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
JP2017518075A (en) * | 2014-05-30 | 2017-07-06 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Compositions and methods for treating latent viral infections |
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
WO2017192172A1 (en) * | 2016-05-05 | 2017-11-09 | Temple University - Of The Commonwealth System Of Higher Education | Rna guided eradication of varicella zoster virus |
WO2017180915A3 (en) * | 2016-04-13 | 2017-11-23 | Duke University | Crispr/cas9-based repressors for silencing gene targets in vivo and methods of use |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
WO2017210380A1 (en) * | 2016-06-01 | 2017-12-07 | Excision Biotherapeutics, Inc. | Compositions and methods of treatment for lytic and lysogenic viruses |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US20180000970A1 (en) * | 2015-01-14 | 2018-01-04 | Temple University - of Commonwealth System of Higher Eduction | Rna guided eradication of herpes simplex type i and other related herpesviruses |
WO2018091971A1 (en) | 2016-11-15 | 2018-05-24 | Genomic Vision | Method for the monitoring of modified nucleases induced-gene editing events by molecular combing |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
WO2018191520A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Respiratory and sweat gland ionocytes |
WO2018191553A1 (en) | 2017-04-12 | 2018-10-18 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
WO2018195486A1 (en) | 2017-04-21 | 2018-10-25 | The Broad Institute, Inc. | Targeted delivery to beta cells |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
WO2018234239A1 (en) * | 2017-06-19 | 2018-12-27 | Cellectis | Anti-hbv combination therapies involving specific endonucleases |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
WO2019005884A1 (en) | 2017-06-26 | 2019-01-03 | The Broad Institute, Inc. | Crispr/cas-adenine deaminase based compositions, systems, and methods for targeted nucleic acid editing |
WO2019018440A1 (en) | 2017-07-17 | 2019-01-24 | The Broad Institute, Inc. | Cell atlas of the healthy and ulcerative colitis human colon |
CN109321596A (en) * | 2018-09-05 | 2019-02-12 | 暨南大学 | A kind of preparation method and application of protein-encapsulated exosomes |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
WO2019071054A1 (en) | 2017-10-04 | 2019-04-11 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
US10286084B2 (en) * | 2014-02-18 | 2019-05-14 | Duke University | Compositions for the inactivation of virus replication and methods of making and using the same |
EP3373938A4 (en) * | 2015-11-09 | 2019-05-15 | Seattle Children's Hospital (DBA Seattle Children's Research Institute) | NEW RNA-BASED VECTOR SYSTEM FOR TRANSIENT AND STABLE GENE EXPRESSION |
WO2019099943A1 (en) * | 2017-11-16 | 2019-05-23 | Astrazeneca Ab | Compositions and methods for improving the efficacy of cas9-based knock-in strategies |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
JP2019517262A (en) * | 2016-06-03 | 2019-06-24 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Dietary control expression of nucleic acid encoding Cas9 nuclease and use thereof |
US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10385359B2 (en) | 2013-04-16 | 2019-08-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
RU2703532C1 (en) * | 2018-06-15 | 2019-10-21 | ФБУН Центральный НИИ эпидемиологии Роспотребнадзора | System for activating human apobec/aid cytidine deaminases and/or human uracil-dna-glycosylase ung and its use for eliminating ccc dna of hepatitis b virus from human cells, particularly hepatocytes |
WO2019204585A1 (en) | 2018-04-19 | 2019-10-24 | Massachusetts Institute Of Technology | Single-stranded break detection in double-stranded dna |
US10457960B2 (en) | 2014-11-21 | 2019-10-29 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
EP3560330A1 (en) | 2018-04-24 | 2019-10-30 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
WO2019210268A2 (en) | 2018-04-27 | 2019-10-31 | The Broad Institute, Inc. | Sequencing-based proteomics |
WO2019213660A2 (en) | 2018-05-04 | 2019-11-07 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses |
WO2019232542A2 (en) | 2018-06-01 | 2019-12-05 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
WO2020006036A1 (en) | 2018-06-26 | 2020-01-02 | Massachusetts Institute Of Technology | Crispr effector system based amplification methods, systems, and diagnostics |
WO2020006049A1 (en) | 2018-06-26 | 2020-01-02 | The Broad Institute, Inc. | Crispr/cas and transposase based amplification compositions, systems and methods |
US10544405B2 (en) | 2013-01-16 | 2020-01-28 | Emory University | Cas9-nucleic acid complexes and uses related thereto |
WO2020033601A1 (en) | 2018-08-07 | 2020-02-13 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
WO2020051507A1 (en) | 2018-09-06 | 2020-03-12 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
WO2020077236A1 (en) | 2018-10-12 | 2020-04-16 | The Broad Institute, Inc. | Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues |
WO2020077178A1 (en) * | 2018-10-12 | 2020-04-16 | Ann & Robert H. Lurie Children's Hospital of Chicago | Plga-peg/pei nanoparticles and methods of use |
US10626393B2 (en) | 2015-06-04 | 2020-04-21 | Arbutus Biopharma Corporation | Delivering CRISPR therapeutics with lipid nanoparticles |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
WO2020106772A1 (en) * | 2018-11-19 | 2020-05-28 | Exosome Therapeutics, Inc. | Exosome loaded therapeutics for the treatment of non-alcoholic steatohepatitis, diabetes mellitus type 1 and type 2, atherosclerotic cardiovascular disease, and alpha 1 antitrypsin deficiency |
US10676726B2 (en) | 2015-02-09 | 2020-06-09 | Duke University | Compositions and methods for epigenome editing |
US10676735B2 (en) | 2015-07-22 | 2020-06-09 | Duke University | High-throughput screening of regulatory element function with epigenome editing technologies |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
EP3708155A1 (en) * | 2014-10-31 | 2020-09-16 | Massachusetts Institute Of Technology | Massively parallel combinatorial genetics for crispr |
WO2020191102A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
WO2020229533A1 (en) | 2019-05-13 | 2020-11-19 | KWS SAAT SE & Co. KGaA | Drought tolerance in corn |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
WO2020243661A1 (en) | 2019-05-31 | 2020-12-03 | The Broad Institute, Inc. | Methods for treating metabolic disorders by targeting adcy5 |
WO2020239680A2 (en) | 2019-05-25 | 2020-12-03 | KWS SAAT SE & Co. KGaA | Haploid induction enhancer |
WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
EP3772542A1 (en) | 2019-08-07 | 2021-02-10 | KWS SAAT SE & Co. KGaA | Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2 |
WO2021030642A1 (en) | 2019-08-14 | 2021-02-18 | Memorial Sloan Kettering Cancer Center | Methods of treating p53 mutant cancers using ogdh inhibitors cross-reference to related applications |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
WO2021074367A1 (en) | 2019-10-17 | 2021-04-22 | KWS SAAT SE & Co. KGaA | Enhanced disease resistance of crops by downregulation of repressor genes |
EP3872190A1 (en) | 2020-02-26 | 2021-09-01 | Antibodies-Online GmbH | A method of using cut&run or cut&tag to validate crispr-cas targeting |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
WO2021239986A1 (en) | 2020-05-29 | 2021-12-02 | KWS SAAT SE & Co. KGaA | Plant haploid induction |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11332736B2 (en) | 2017-12-07 | 2022-05-17 | The Broad Institute, Inc. | Methods and compositions for multiplexing single cell and single nuclei sequencing |
EP4001429A1 (en) | 2020-11-16 | 2022-05-25 | Antibodies-Online GmbH | Analysis of crispr-cas binding and cleavage sites followed by high-throughput sequencing (abc-seq) |
US11352647B2 (en) | 2016-08-17 | 2022-06-07 | The Broad Institute, Inc. | Crispr enzymes and systems |
US11371081B2 (en) * | 2016-05-25 | 2022-06-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Portable, low-cost pathogen detection and strain identification platform |
US11414657B2 (en) | 2015-06-29 | 2022-08-16 | Ionis Pharmaceuticals, Inc. | Modified CRISPR RNA and modified single CRISPR RNA and uses thereof |
US11421251B2 (en) | 2015-10-13 | 2022-08-23 | Duke University | Genome engineering with type I CRISPR systems in eukaryotic cells |
US11427861B2 (en) | 2016-03-17 | 2022-08-30 | Massachusetts Institute Of Technology | Methods for identifying and modulating co-occurant cellular phenotypes |
US11427817B2 (en) | 2015-08-25 | 2022-08-30 | Duke University | Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases |
US11447527B2 (en) | 2018-09-18 | 2022-09-20 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
WO2023006933A1 (en) | 2021-07-30 | 2023-02-02 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11578118B2 (en) | 2017-10-20 | 2023-02-14 | Fred Hutchinson Cancer Center | Systems and methods to produce B cells genetically modified to express selected antibodies |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
US11603544B2 (en) | 2017-06-05 | 2023-03-14 | Fred Hutchinson Cancer Center | Genomic safe harbors for genetic therapies in human stem cells and engineered nanoparticles to provide targeted genetic therapies |
WO2023004375A3 (en) * | 2021-07-22 | 2023-04-13 | Emendobio Inc. | Hepatitis b virus (hbv) knockouts |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11680296B2 (en) | 2017-10-16 | 2023-06-20 | Massachusetts Institute Of Technology | Mycobacterium tuberculosis host-pathogen interaction |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
WO2023169410A1 (en) | 2022-03-08 | 2023-09-14 | 中国科学院遗传与发育生物学研究所 | Cytosine deaminase and use thereof in base editing |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
EP4268831A2 (en) | 2018-09-12 | 2023-11-01 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
EP4273782A2 (en) | 2015-07-25 | 2023-11-08 | Frost, Habib | A system, device and a method for providing a therapy or a cure for cancer and other pathological states |
WO2023232109A1 (en) | 2022-06-01 | 2023-12-07 | 中国科学院遗传与发育生物学研究所 | Novel crispr gene editing system |
US11866697B2 (en) | 2017-05-18 | 2024-01-09 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11897953B2 (en) | 2017-06-14 | 2024-02-13 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2024039236A1 (en) * | 2022-08-19 | 2024-02-22 | 서울대학교산학협력단 | System for substance delivery and gene editing within germ cells using exosomes |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
WO2024042199A1 (en) | 2022-08-26 | 2024-02-29 | KWS SAAT SE & Co. KGaA | Use of paired genes in hybrid breeding |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
WO2024040254A3 (en) * | 2022-08-19 | 2024-05-30 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
US12058986B2 (en) | 2017-04-20 | 2024-08-13 | Egenesis, Inc. | Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements |
WO2024186890A1 (en) * | 2023-03-06 | 2024-09-12 | Intellia Therapeutics, Inc. | Compositions and methods for hepatitis b virus (hbv) genome editing |
US12098399B2 (en) | 2022-06-24 | 2024-09-24 | Tune Therapeutics, Inc. | Compositions, systems, and methods for epigenetic regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) gene expression |
WO2024236547A1 (en) | 2023-05-18 | 2024-11-21 | Inceptor Bio, Llc | Modified phagocytic cells expressing chimeric antigen receptors comprising a herpes virus entry mediator (hvem) co-stimulatory domain and uses thereof |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US12165743B2 (en) | 2018-11-09 | 2024-12-10 | The Broad Institute, Inc. | Compressed sensing for screening and tissue imaging |
US12161694B2 (en) | 2017-03-24 | 2024-12-10 | The Broad Institute, Inc. | Methods and compositions for regulating innate lymphoid cell inflammatory responses |
US12171783B2 (en) | 2017-11-13 | 2024-12-24 | The Broad Institute, Inc. | Methods and compositions for targeting developmental and oncogenic programs in H3K27M gliomas |
US12214056B2 (en) | 2016-07-19 | 2025-02-04 | Duke University | Therapeutic applications of CPF1-based genome editing |
US12215318B2 (en) | 2015-10-22 | 2025-02-04 | The Broad Institute, Inc. | Crispr enzymes and systems |
US12221720B2 (en) | 2017-11-13 | 2025-02-11 | The Broad Institute, Inc. | Methods for determining spatial and temporal gene expression dynamics during adult neurogenesis in single cells |
US12227578B2 (en) | 2017-11-07 | 2025-02-18 | The Broad Institute, Inc. | Modulation of intestinal epithelial cell differentiation, maintenance and/or function through T cell action |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016064917A1 (en) * | 2014-10-21 | 2016-04-28 | The Trustees Of Princeton University | Systems and methods for personalized sample analysis |
GB2536650A (en) | 2015-03-24 | 2016-09-28 | Augmedics Ltd | Method and system for combining video-based and optic-based augmented reality in a near eye display |
WO2017189959A1 (en) | 2016-04-29 | 2017-11-02 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
WO2017189964A2 (en) | 2016-04-29 | 2017-11-02 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11359234B2 (en) * | 2016-07-01 | 2022-06-14 | Microsoft Technology Licensing, Llc | Barcoding sequences for identification of gene expression |
US20180004537A1 (en) | 2016-07-01 | 2018-01-04 | Microsoft Technology Licensing, Llc | Molecular State Machines |
ES2817973T3 (en) | 2016-07-01 | 2021-04-08 | Microsoft Technology Licensing Llc | Storage through iterative DNA editing |
KR101856345B1 (en) * | 2016-08-24 | 2018-06-20 | 경상대학교산학협력단 | Method for generation of APOBEC3H and APOBEC3CH double-knocked out cat using CRISPR/Cas9 system |
JP6811857B2 (en) * | 2016-10-14 | 2021-01-13 | プレシジョン バイオサイエンシズ,インク. | Genetically engineered meganuclease specific for the recognition sequence of the hepatitis B virus genome |
CN106729753A (en) * | 2016-12-16 | 2017-05-31 | 谭旭 | The delivery system and biological agent of anti-hepatitis B virus |
KR101796036B1 (en) * | 2016-12-29 | 2017-11-10 | 주식회사 무진메디 | Delivery carrier composition comprising nanoliposome encapsulating complex of Cas9 protein, guide RNA for repressing gene expression or KRAS gene and cationic polymer, or therapeutics comprising thereof for treating KRAS mutation colon cancer with anticancer drug resistance |
CN108342387B (en) * | 2017-01-24 | 2021-09-24 | 谭旭 | Delivery system and biological agent of PCSK9 inhibitor hypolipidemic drug |
CN111108207A (en) * | 2017-06-02 | 2020-05-05 | 国家健康与医学研究院 | Genome editing means for gene therapy of genetic disorders and gene therapy combined with viral vectors |
WO2018237369A2 (en) * | 2017-06-23 | 2018-12-27 | Vical Incorporated | Lipid nanoparticle (lnp)-mediated delivery of a crispr-expressing plasmid dna for treating chronic hepatitis b virus infection |
US20210010014A1 (en) * | 2017-07-31 | 2021-01-14 | Ingateygen Llc | Peanut with reduced allergen levels |
CA3074948A1 (en) * | 2017-09-19 | 2019-03-28 | Tropic Biosciences UK Limited | Modifying the specificity of plant non-coding rna molecules for silencing gene expression |
CN107760714A (en) * | 2017-09-20 | 2018-03-06 | 青岛海洋生物医药研究院股份有限公司 | Transgenosis construct and its application |
US11572574B2 (en) | 2017-09-28 | 2023-02-07 | Toolgen Incorporated | Artificial genome manipulation for gene expression regulation |
RU2767201C2 (en) * | 2017-09-28 | 2022-03-16 | Тулджен Инкорпорейтед | Artificial genome modification for gene expression regulation |
US11905513B2 (en) * | 2017-10-13 | 2024-02-20 | Mbp Titan, Llc | Advanced genome editing |
CN111492059A (en) * | 2017-12-20 | 2020-08-04 | 帝斯曼知识产权资产管理有限公司 | Methods for genome editing in host cells |
WO2019204210A1 (en) * | 2018-04-16 | 2019-10-24 | Georgia Tech Research Corporation | Mrna driven expression of rna editors for treatment of pathologies |
EP3787543A4 (en) | 2018-05-02 | 2022-01-19 | Augmedics Ltd. | Registration of a fiducial marker for an augmented reality system |
EP3578658A1 (en) * | 2018-06-08 | 2019-12-11 | Johann Wolfgang Goethe-Universität Frankfurt | Method for generating a gene editing vector with fixed guide rna pairs |
CN110616233B (en) * | 2018-06-20 | 2022-02-22 | 西安桑尼赛尔生物医药有限公司 | Method for efficiently knocking out primary T cell gene by CRISPR-Cas9 and application thereof |
JP2020055774A (en) * | 2018-10-02 | 2020-04-09 | 国立大学法人 鹿児島大学 | Antiviral drug |
US11766296B2 (en) | 2018-11-26 | 2023-09-26 | Augmedics Ltd. | Tracking system for image-guided surgery |
CN113710799B (en) * | 2018-11-28 | 2024-11-12 | 克里斯珀医疗股份公司 | Optimized mRNA encoding Cas9 for use in LNPs |
WO2020123816A2 (en) * | 2018-12-12 | 2020-06-18 | Flagship Pioneering Innovations V, Inc. | Anellosomes and methods of use |
WO2020176747A1 (en) * | 2019-02-28 | 2020-09-03 | Regeneron Pharmaceuticals, Inc. | Adeno-associated virus vectors for the delivery of therapeutics |
US20230293645A1 (en) * | 2019-04-18 | 2023-09-21 | Toolgen Incorporated | Composition and method for inhibiting proliferation hepatitis b virus |
US11980506B2 (en) | 2019-07-29 | 2024-05-14 | Augmedics Ltd. | Fiducial marker |
US12178666B2 (en) | 2019-07-29 | 2024-12-31 | Augmedics Ltd. | Fiducial marker |
WO2021030735A1 (en) * | 2019-08-15 | 2021-02-18 | The Rockefeller University | Crispr genome editing with cell surface display to produce homozygously edited eukaryotic cells |
CN115244176A (en) * | 2019-08-19 | 2022-10-25 | 钟明宏 | Conjugates of guide RNA-CAS protein complexes |
WO2021034373A1 (en) * | 2019-08-19 | 2021-02-25 | Minghong Zhong | Conjugates of guide rna-cas protein complex |
US11382712B2 (en) | 2019-12-22 | 2022-07-12 | Augmedics Ltd. | Mirroring in image guided surgery |
US11389252B2 (en) | 2020-06-15 | 2022-07-19 | Augmedics Ltd. | Rotating marker for image guided surgery |
NL2027654B1 (en) * | 2021-02-08 | 2022-09-09 | Nutcracker Therapeutics Inc | Methods for manufacturing a syntetic template |
CN113249384A (en) * | 2021-04-27 | 2021-08-13 | 重庆医科大学 | Specific sgRNA sequence capable of targeted editing of HBV cccDNA and application thereof |
CN115494031B (en) * | 2021-06-18 | 2024-06-18 | 北京大学 | A method for amplifying DNA labeling signals in living cells based on CRISPR/dCas9 system and oligonucleotide probes |
US11896445B2 (en) | 2021-07-07 | 2024-02-13 | Augmedics Ltd. | Iliac pin and adapter |
JP2024524773A (en) | 2021-07-08 | 2024-07-05 | モンタナ ステート ユニバーシティ | Programmable RNA editing using CRISPR |
WO2023004391A2 (en) | 2021-07-21 | 2023-01-26 | Montana State University | Nucleic acid detection using type iii crispr complex |
US12150821B2 (en) | 2021-07-29 | 2024-11-26 | Augmedics Ltd. | Rotating marker and adapter for image-guided surgery |
WO2024057210A1 (en) | 2022-09-13 | 2024-03-21 | Augmedics Ltd. | Augmented reality eyewear for image-guided medical intervention |
WO2024255823A1 (en) * | 2023-06-16 | 2024-12-19 | 益杰立科(上海)生物科技有限公司 | Epigenetic editing tool for targeting hepatitis b virus gene |
CN116970609B (en) * | 2023-09-05 | 2024-08-27 | 深圳市艾迪贝克生物医药有限公司 | Gene fragment for clearing HBV virus, tool system and application thereof |
Citations (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186183A (en) | 1978-03-29 | 1980-01-29 | The United States Of America As Represented By The Secretary Of The Army | Liposome carriers in chemotherapy of leishmaniasis |
US4217344A (en) | 1976-06-23 | 1980-08-12 | L'oreal | Compositions containing aqueous dispersions of lipid spheres |
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4261975A (en) | 1979-09-19 | 1981-04-14 | Merck & Co., Inc. | Viral liposome particle |
US4485054A (en) | 1982-10-04 | 1984-11-27 | Lipoderm Pharmaceuticals Limited | Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV) |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
EP0264166A1 (en) | 1986-04-09 | 1988-04-20 | Genzyme Corporation | Transgenic animals secreting desired proteins into milk |
US4774085A (en) | 1985-07-09 | 1988-09-27 | 501 Board of Regents, Univ. of Texas | Pharmaceutical administration systems containing a mixture of immunomodulators |
US4797368A (en) | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4946787A (en) | 1985-01-07 | 1990-08-07 | Syntex (U.S.A.) Inc. | N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US5049386A (en) | 1985-01-07 | 1991-09-17 | Syntex (U.S.A.) Inc. | N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
WO1991016024A1 (en) | 1990-04-19 | 1991-10-31 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
WO1991017424A1 (en) | 1990-05-03 | 1991-11-14 | Vical, Inc. | Intracellular delivery of biologically active substances by means of self-assembling lipid complexes |
US5122457A (en) | 1989-10-19 | 1992-06-16 | Schering Corporation | Expression systems utilizing bacteriophage t7 promoters, gene sequences, and t7 rna polymerase |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
WO1993024641A2 (en) | 1992-06-02 | 1993-12-09 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Adeno-associated virus with inverted terminal repeat sequences as promoter |
WO1994026877A1 (en) | 1993-05-17 | 1994-11-24 | The Regents Of The University Of California | Ribozyme gene therapy for hiv infection and aids |
US5385834A (en) | 1993-08-13 | 1995-01-31 | Georgia Tech Research Corporation | Mutant T7 RNA polymerase GP1(lys222) exhibiting altered promoter recognition |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
WO1996039154A1 (en) | 1995-06-06 | 1996-12-12 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
WO1997003211A1 (en) | 1995-07-13 | 1997-01-30 | Isis Pharmaceuticals, Inc. | Antisense inhibition of hepatitis b virus replication |
US5846946A (en) | 1996-06-14 | 1998-12-08 | Pasteur Merieux Serums Et Vaccins | Compositions and methods for administering Borrelia DNA |
US6479808B1 (en) | 1999-07-07 | 2002-11-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and systems for collecting data from multiple fields of view |
US20030087817A1 (en) | 1999-01-12 | 2003-05-08 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
US20040013648A1 (en) | 2000-10-06 | 2004-01-22 | Kingsman Alan John | Vector system |
US6750059B1 (en) | 1998-07-16 | 2004-06-15 | Whatman, Inc. | Archiving of vectors |
US20040171156A1 (en) | 1995-06-07 | 2004-09-02 | Invitrogen Corporation | Recombinational cloning using nucleic acids having recombination sites |
US20050019923A1 (en) | 2001-10-19 | 2005-01-27 | Ijeoma Uchegbu | Dendrimers for use in targeted delivery |
EP1519714A1 (en) | 2002-06-28 | 2005-04-06 | Protiva Biotherapeutics Inc. | Method and apparatus for producing liposomes |
EP1664316A1 (en) | 2003-09-15 | 2006-06-07 | Protiva Biotherapeutics Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US20060281180A1 (en) | 2003-10-30 | 2006-12-14 | Philippa Radcliffe | Vectors |
US20070054961A1 (en) | 1999-03-31 | 2007-03-08 | Malcolm Maden | Factor |
EP1766035A1 (en) | 2004-06-07 | 2007-03-28 | Protiva Biotherapeutics Inc. | Lipid encapsulated interfering rna |
EP1781593A2 (en) | 2004-06-07 | 2007-05-09 | Protiva Biotherapeutics Inc. | Cationic lipids and methods of use |
US7303910B2 (en) | 1997-09-25 | 2007-12-04 | Oxford Biomedica (Uk) Limited | Retroviral vectors comprising a functional splice donor site and a functional splice acceptor site |
US7351585B2 (en) | 2002-09-03 | 2008-04-01 | Oxford Biomedica (Uk) Ltd. | Retroviral vector |
US20080267903A1 (en) | 2004-10-14 | 2008-10-30 | Ijeoma Uchegbu | Bioactive Polymers |
US20090007284A1 (en) | 2001-12-21 | 2009-01-01 | Philippa Radcliffe | Transgenic organism |
US20090017543A1 (en) | 2005-12-22 | 2009-01-15 | Fraser Wilkes | Viral Vectors |
US7776321B2 (en) | 2001-09-26 | 2010-08-17 | Mayo Foundation For Medical Education And Research | Mutable vaccines |
US7838658B2 (en) | 2005-10-20 | 2010-11-23 | Ian Maclachlan | siRNA silencing of filovirus gene expression |
WO2011028929A2 (en) | 2009-09-03 | 2011-03-10 | The Regents Of The University Of California | Nitrate-responsive promoter |
US20110059502A1 (en) | 2009-09-07 | 2011-03-10 | Chalasani Sreekanth H | Multiple domain proteins |
US7915399B2 (en) | 2006-06-09 | 2011-03-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20110117189A1 (en) | 2008-07-08 | 2011-05-19 | S.I.F.I. Societa' Industria Farmaceutica Italiana S.P.A. | Ophthalmic compositions for treating pathologies of the posterior segment of the eye |
US7982027B2 (en) | 2003-07-16 | 2011-07-19 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
US20110195123A1 (en) | 2008-06-30 | 2011-08-11 | Silenseed Ltd. | Methods, compositions and systems for local delivery of drugs |
US20110230839A1 (en) | 2007-08-14 | 2011-09-22 | Fred Hutchinson Cancer Research Center | Needle Array Assembly and Method for Delivering Therapeutic Agents |
US20110265198A1 (en) | 2010-04-26 | 2011-10-27 | Sangamo Biosciences, Inc. | Genome editing of a Rosa locus using nucleases |
US8058069B2 (en) | 2008-04-15 | 2011-11-15 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20110293571A1 (en) | 2010-05-28 | 2011-12-01 | Oxford Biomedica (Uk) Ltd. | Method for vector delivery |
US20110293703A1 (en) | 2008-11-07 | 2011-12-01 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US8101741B2 (en) | 2005-11-02 | 2012-01-24 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20120164118A1 (en) | 2009-05-04 | 2012-06-28 | Fred Hutchinson Cancer Research Center | Cocal vesiculovirus envelope pseudotyped retroviral vectors |
US8236943B2 (en) | 2009-07-01 | 2012-08-07 | Protiva Biotherapeutics, Inc. | Compositions and methods for silencing apolipoprotein B |
US20120251618A1 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
US8283333B2 (en) | 2009-07-01 | 2012-10-09 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20120295960A1 (en) | 2011-05-20 | 2012-11-22 | Oxford Biomedica (Uk) Ltd. | Treatment regimen for parkinson's disease |
US8350021B2 (en) | 2003-06-12 | 2013-01-08 | Alnylam Pharmaceuticals, Inc. | Conserved HBV and HCV sequences useful for gene silencing |
US8404658B2 (en) | 2007-12-31 | 2013-03-26 | Nanocor Therapeutics, Inc. | RNA interference for the treatment of heart failure |
US8454972B2 (en) | 2004-07-16 | 2013-06-04 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Method for inducing a multiclade immune response against HIV utilizing a multigene and multiclade immunogen |
US20130236946A1 (en) | 2007-06-06 | 2013-09-12 | Cellectis | Meganuclease variants cleaving a dna target sequence from the mouse rosa26 locus and uses thereof |
US20130245107A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
US20130302401A1 (en) | 2010-08-26 | 2013-11-14 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
WO2014018423A2 (en) | 2012-07-25 | 2014-01-30 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
US20140041808A1 (en) | 2012-08-07 | 2014-02-13 | Miyakoshi Printing Machinery Co., Ltd. | Label paper waste removing method and apparatus |
US20140041806A1 (en) | 2012-08-10 | 2014-02-13 | Marel Limited | Labeling device for labeling objects, in particular moving objects |
US20140062558A1 (en) | 2012-08-31 | 2014-03-06 | Denso Corporation | Current mode controlled power converter |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
WO2014093595A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
WO2014093712A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
WO2014093701A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
WO2014093718A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
WO2014093622A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
WO2014093635A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
WO2014093709A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
WO2014093655A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US20140287938A1 (en) | 2013-03-15 | 2014-09-25 | The Broad Institute, Inc. | Recombinant virus and preparations thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US101A (en) | 1836-12-06 | Method of jcakibtg and furling iw sails fob ships | ||
US7745416B2 (en) * | 1995-04-11 | 2010-06-29 | The Regents Of The University Of California | Method for in vivo regulation of cardiac muscle contractility |
JP2005509409A (en) * | 2001-08-08 | 2005-04-14 | ジェンザイム・コーポレーション | Methods for treating diabetes and other glycemic disorders |
EP3578656B1 (en) * | 2006-05-11 | 2021-01-06 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the pcsk9 gene |
PE20090064A1 (en) * | 2007-03-26 | 2009-03-02 | Novartis Ag | DOUBLE-CHAIN RIBONUCLEIC ACID TO INHIBIT THE EXPRESSION OF THE HUMAN E6AP GENE AND THE PHARMACEUTICAL COMPOSITION THAT INCLUDES IT |
JP5855462B2 (en) * | 2008-12-10 | 2016-02-09 | アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. | DsRNA compositions targeting GNAQ and methods for inhibiting expression |
WO2011036510A1 (en) * | 2009-09-24 | 2011-03-31 | Cellectis | Meganuclease variants cleaving the genome of the herpes simplex virus and uses thereof |
AU2010281705B2 (en) * | 2009-07-28 | 2015-02-05 | Sangamo Therapeutics, Inc. | Methods and compositions for treating trinucleotide repeat disorders |
SI3401400T1 (en) * | 2012-05-25 | 2019-10-30 | Univ California | Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription |
ES2747833T3 (en) * | 2013-04-04 | 2020-03-11 | Dartmouth College | Compositions and procedures for in vivo cleavage of HIV-1 proviral DNA |
EA037850B1 (en) * | 2013-08-29 | 2021-05-27 | Тэмпл Юниверсити Оф Зе Коммонвэлс Систем Оф Хайе Эдьюкейшн | Methods and compositions for rna-guided treatment of hiv infection |
JP2016536021A (en) * | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR-related methods and compositions with governing gRNA |
WO2016205759A1 (en) * | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation |
CN108290933A (en) * | 2015-06-18 | 2018-07-17 | 布罗德研究所有限公司 | Reduce the CRISPR enzyme mutants of undershooting-effect |
CN107939288B (en) | 2017-11-14 | 2019-04-02 | 中国科学院地质与地球物理研究所 | A kind of anti-rotation device and rotary guiding device of non-rotating set |
-
2014
- 2014-12-12 KR KR1020167018647A patent/KR20160089530A/en not_active Application Discontinuation
- 2014-12-12 JP JP2016539225A patent/JP2017527256A/en active Pending
- 2014-12-12 CA CA2932479A patent/CA2932479A1/en not_active Abandoned
- 2014-12-12 CN CN201480072878.4A patent/CN105899658B/en active Active
- 2014-12-12 BR BR112016013207A patent/BR112016013207A2/en not_active Application Discontinuation
- 2014-12-12 AU AU2014361784A patent/AU2014361784A1/en not_active Abandoned
- 2014-12-12 RU RU2016128077A patent/RU2016128077A/en not_active Application Discontinuation
- 2014-12-12 CN CN202010077743.4A patent/CN111269902A/en active Pending
- 2014-12-12 EP EP22182408.9A patent/EP4183876A1/en active Pending
- 2014-12-12 MX MX2016007324A patent/MX2016007324A/en active IP Right Grant
- 2014-12-12 EP EP19168543.7A patent/EP3540051B1/en active Active
- 2014-12-12 SG SG10201804975PA patent/SG10201804975PA/en unknown
- 2014-12-12 WO PCT/US2014/070135 patent/WO2015089465A1/en active Application Filing
- 2014-12-12 EP EP14830911.5A patent/EP3080261B1/en active Active
-
2016
- 2016-06-08 IL IL246117A patent/IL246117B/en active IP Right Grant
- 2016-06-10 US US15/179,938 patent/US20160317677A1/en not_active Abandoned
-
2020
- 2020-08-25 US US17/002,262 patent/US20200389425A1/en active Pending
Patent Citations (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4217344A (en) | 1976-06-23 | 1980-08-12 | L'oreal | Compositions containing aqueous dispersions of lipid spheres |
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4186183A (en) | 1978-03-29 | 1980-01-29 | The United States Of America As Represented By The Secretary Of The Army | Liposome carriers in chemotherapy of leishmaniasis |
US4261975A (en) | 1979-09-19 | 1981-04-14 | Merck & Co., Inc. | Viral liposome particle |
US4485054A (en) | 1982-10-04 | 1984-11-27 | Lipoderm Pharmaceuticals Limited | Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV) |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4946787A (en) | 1985-01-07 | 1990-08-07 | Syntex (U.S.A.) Inc. | N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US5049386A (en) | 1985-01-07 | 1991-09-17 | Syntex (U.S.A.) Inc. | N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4797368A (en) | 1985-03-15 | 1989-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | Adeno-associated virus as eukaryotic expression vector |
US4774085A (en) | 1985-07-09 | 1988-09-27 | 501 Board of Regents, Univ. of Texas | Pharmaceutical administration systems containing a mixture of immunomodulators |
EP0264166A1 (en) | 1986-04-09 | 1988-04-20 | Genzyme Corporation | Transgenic animals secreting desired proteins into milk |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US4873316A (en) | 1987-06-23 | 1989-10-10 | Biogen, Inc. | Isolation of exogenous recombinant proteins from the milk of transgenic mammals |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US5589466A (en) | 1989-03-21 | 1996-12-31 | Vical Incorporated | Induction of a protective immune response in a mammal by injecting a DNA sequence |
US5122457A (en) | 1989-10-19 | 1992-06-16 | Schering Corporation | Expression systems utilizing bacteriophage t7 promoters, gene sequences, and t7 rna polymerase |
WO1991016024A1 (en) | 1990-04-19 | 1991-10-31 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
WO1991017424A1 (en) | 1990-05-03 | 1991-11-14 | Vical, Inc. | Intracellular delivery of biologically active substances by means of self-assembling lipid complexes |
US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
WO1993024641A2 (en) | 1992-06-02 | 1993-12-09 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Adeno-associated virus with inverted terminal repeat sequences as promoter |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
WO1994026877A1 (en) | 1993-05-17 | 1994-11-24 | The Regents Of The University Of California | Ribozyme gene therapy for hiv infection and aids |
US5385834A (en) | 1993-08-13 | 1995-01-31 | Georgia Tech Research Corporation | Mutant T7 RNA polymerase GP1(lys222) exhibiting altered promoter recognition |
WO1996039154A1 (en) | 1995-06-06 | 1996-12-12 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US20040171156A1 (en) | 1995-06-07 | 2004-09-02 | Invitrogen Corporation | Recombinational cloning using nucleic acids having recombination sites |
WO1997003211A1 (en) | 1995-07-13 | 1997-01-30 | Isis Pharmaceuticals, Inc. | Antisense inhibition of hepatitis b virus replication |
US5846946A (en) | 1996-06-14 | 1998-12-08 | Pasteur Merieux Serums Et Vaccins | Compositions and methods for administering Borrelia DNA |
US7303910B2 (en) | 1997-09-25 | 2007-12-04 | Oxford Biomedica (Uk) Limited | Retroviral vectors comprising a functional splice donor site and a functional splice acceptor site |
US6750059B1 (en) | 1998-07-16 | 2004-06-15 | Whatman, Inc. | Archiving of vectors |
US20030087817A1 (en) | 1999-01-12 | 2003-05-08 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
US20070054961A1 (en) | 1999-03-31 | 2007-03-08 | Malcolm Maden | Factor |
US20100317109A1 (en) | 1999-03-31 | 2010-12-16 | Malcolm Maden | Factor |
US6479808B1 (en) | 1999-07-07 | 2002-11-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and systems for collecting data from multiple fields of view |
US20070025970A1 (en) | 2000-10-06 | 2007-02-01 | Oxford Biomedica (Uk) Limited | Vector system |
US20040013648A1 (en) | 2000-10-06 | 2004-01-22 | Kingsman Alan John | Vector system |
US20090111106A1 (en) | 2000-10-06 | 2009-04-30 | Kyri Mitrophanous | Vector System |
US7259015B2 (en) | 2000-10-06 | 2007-08-21 | Oxford Biomedia (Uk) Limited | Vector system |
US7776321B2 (en) | 2001-09-26 | 2010-08-17 | Mayo Foundation For Medical Education And Research | Mutable vaccines |
US20050019923A1 (en) | 2001-10-19 | 2005-01-27 | Ijeoma Uchegbu | Dendrimers for use in targeted delivery |
US20090007284A1 (en) | 2001-12-21 | 2009-01-01 | Philippa Radcliffe | Transgenic organism |
US7901708B2 (en) | 2002-06-28 | 2011-03-08 | Protiva Biotherapeutics, Inc. | Liposomal apparatus and manufacturing methods |
EP1519714A1 (en) | 2002-06-28 | 2005-04-06 | Protiva Biotherapeutics Inc. | Method and apparatus for producing liposomes |
US7351585B2 (en) | 2002-09-03 | 2008-04-01 | Oxford Biomedica (Uk) Ltd. | Retroviral vector |
US8350021B2 (en) | 2003-06-12 | 2013-01-08 | Alnylam Pharmaceuticals, Inc. | Conserved HBV and HCV sequences useful for gene silencing |
US7982027B2 (en) | 2003-07-16 | 2011-07-19 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
US7803397B2 (en) | 2003-09-15 | 2010-09-28 | Protiva Biotherapeutics, Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
EP1664316A1 (en) | 2003-09-15 | 2006-06-07 | Protiva Biotherapeutics Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US20060281180A1 (en) | 2003-10-30 | 2006-12-14 | Philippa Radcliffe | Vectors |
EP1781593A2 (en) | 2004-06-07 | 2007-05-09 | Protiva Biotherapeutics Inc. | Cationic lipids and methods of use |
US7799565B2 (en) | 2004-06-07 | 2010-09-21 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
EP1766035A1 (en) | 2004-06-07 | 2007-03-28 | Protiva Biotherapeutics Inc. | Lipid encapsulated interfering rna |
US7745651B2 (en) | 2004-06-07 | 2010-06-29 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use |
US8454972B2 (en) | 2004-07-16 | 2013-06-04 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Method for inducing a multiclade immune response against HIV utilizing a multigene and multiclade immunogen |
US20080267903A1 (en) | 2004-10-14 | 2008-10-30 | Ijeoma Uchegbu | Bioactive Polymers |
US7838658B2 (en) | 2005-10-20 | 2010-11-23 | Ian Maclachlan | siRNA silencing of filovirus gene expression |
US8188263B2 (en) | 2005-11-02 | 2012-05-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US8101741B2 (en) | 2005-11-02 | 2012-01-24 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20090017543A1 (en) | 2005-12-22 | 2009-01-15 | Fraser Wilkes | Viral Vectors |
US7915399B2 (en) | 2006-06-09 | 2011-03-29 | Protiva Biotherapeutics, Inc. | Modified siRNA molecules and uses thereof |
US20130236946A1 (en) | 2007-06-06 | 2013-09-12 | Cellectis | Meganuclease variants cleaving a dna target sequence from the mouse rosa26 locus and uses thereof |
US20110230839A1 (en) | 2007-08-14 | 2011-09-22 | Fred Hutchinson Cancer Research Center | Needle Array Assembly and Method for Delivering Therapeutic Agents |
US8404658B2 (en) | 2007-12-31 | 2013-03-26 | Nanocor Therapeutics, Inc. | RNA interference for the treatment of heart failure |
US8058069B2 (en) | 2008-04-15 | 2011-11-15 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
US20110195123A1 (en) | 2008-06-30 | 2011-08-11 | Silenseed Ltd. | Methods, compositions and systems for local delivery of drugs |
US20110117189A1 (en) | 2008-07-08 | 2011-05-19 | S.I.F.I. Societa' Industria Farmaceutica Italiana S.P.A. | Ophthalmic compositions for treating pathologies of the posterior segment of the eye |
US20110293703A1 (en) | 2008-11-07 | 2011-12-01 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US20120164118A1 (en) | 2009-05-04 | 2012-06-28 | Fred Hutchinson Cancer Research Center | Cocal vesiculovirus envelope pseudotyped retroviral vectors |
US8236943B2 (en) | 2009-07-01 | 2012-08-07 | Protiva Biotherapeutics, Inc. | Compositions and methods for silencing apolipoprotein B |
US8283333B2 (en) | 2009-07-01 | 2012-10-09 | Protiva Biotherapeutics, Inc. | Lipid formulations for nucleic acid delivery |
WO2011028929A2 (en) | 2009-09-03 | 2011-03-10 | The Regents Of The University Of California | Nitrate-responsive promoter |
US20110059502A1 (en) | 2009-09-07 | 2011-03-10 | Chalasani Sreekanth H | Multiple domain proteins |
US20110265198A1 (en) | 2010-04-26 | 2011-10-27 | Sangamo Biosciences, Inc. | Genome editing of a Rosa locus using nucleases |
US20120017290A1 (en) | 2010-04-26 | 2012-01-19 | Sigma Aldrich Company | Genome editing of a Rosa locus using zinc-finger nucleases |
US20110293571A1 (en) | 2010-05-28 | 2011-12-01 | Oxford Biomedica (Uk) Ltd. | Method for vector delivery |
US20130302401A1 (en) | 2010-08-26 | 2013-11-14 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
US20120251618A1 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
US20120295960A1 (en) | 2011-05-20 | 2012-11-22 | Oxford Biomedica (Uk) Ltd. | Treatment regimen for parkinson's disease |
US20130245107A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
US20130244279A1 (en) | 2011-12-16 | 2013-09-19 | modeRNA Therapeutics | Formulation and delivery of plga microspheres |
US20130252281A1 (en) | 2011-12-16 | 2013-09-26 | modeRNA Therapeutics | Formulation and delivery of plga microspheres |
WO2014018423A2 (en) | 2012-07-25 | 2014-01-30 | The Broad Institute, Inc. | Inducible dna binding proteins and genome perturbation tools and applications thereof |
US20140041808A1 (en) | 2012-08-07 | 2014-02-13 | Miyakoshi Printing Machinery Co., Ltd. | Label paper waste removing method and apparatus |
US20140041806A1 (en) | 2012-08-10 | 2014-02-13 | Marel Limited | Labeling device for labeling objects, in particular moving objects |
US20140062558A1 (en) | 2012-08-31 | 2014-03-06 | Denso Corporation | Current mode controlled power converter |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
WO2014093595A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140170753A1 (en) | 2012-12-12 | 2014-06-19 | Massachusetts Institute Of Technology | Crispr-cas systems and methods for altering expression of gene products |
WO2014093712A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
WO2014093661A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
WO2014093701A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
WO2014093718A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
WO2014093622A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
WO2014093635A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
WO2014093709A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
WO2014093655A2 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US20140179770A1 (en) | 2012-12-12 | 2014-06-26 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
US20140179006A1 (en) | 2012-12-12 | 2014-06-26 | Massachusetts Institute Of Technology | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140186919A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US20140186843A1 (en) | 2012-12-12 | 2014-07-03 | Massachusetts Institute Of Technology | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
US20140189896A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140186958A1 (en) | 2012-12-12 | 2014-07-03 | Feng Zhang | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US8771945B1 (en) | 2012-12-12 | 2014-07-08 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
US8795965B2 (en) | 2012-12-12 | 2014-08-05 | The Broad Institute, Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
EP2764103A2 (en) | 2012-12-12 | 2014-08-13 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
US20140227787A1 (en) | 2012-12-12 | 2014-08-14 | The Broad Institute, Inc. | Crispr-cas systems and methods for altering expression of gene products |
US20140234972A1 (en) | 2012-12-12 | 2014-08-21 | Massachusetts Institute Of Technology | CRISPR-CAS Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US20140242700A1 (en) | 2012-12-12 | 2014-08-28 | Massachusetts Institute Of Technology | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US20140242664A1 (en) | 2012-12-12 | 2014-08-28 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140242699A1 (en) | 2012-12-12 | 2014-08-28 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
EP2771468A1 (en) | 2012-12-12 | 2014-09-03 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140248702A1 (en) | 2012-12-12 | 2014-09-04 | The Broad Institute, Inc. | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US20140256046A1 (en) | 2012-12-12 | 2014-09-11 | Massachusetts Institute Of Technology | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
US20140273234A1 (en) | 2012-12-12 | 2014-09-18 | The Board Institute, Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US20140273231A1 (en) | 2012-12-12 | 2014-09-18 | The Broad Institute, Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
US20140273232A1 (en) | 2012-12-12 | 2014-09-18 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
EP2784162A1 (en) | 2012-12-12 | 2014-10-01 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions for sequence manipulation |
US20140310830A1 (en) | 2012-12-12 | 2014-10-16 | Feng Zhang | CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes |
US8865406B2 (en) | 2012-12-12 | 2014-10-21 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US8871445B2 (en) | 2012-12-12 | 2014-10-28 | The Broad Institute Inc. | CRISPR-Cas component systems, methods and compositions for sequence manipulation |
US8889356B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
US8889418B2 (en) | 2012-12-12 | 2014-11-18 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US8895308B1 (en) | 2012-12-12 | 2014-11-25 | The Broad Institute Inc. | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
US20140287938A1 (en) | 2013-03-15 | 2014-09-25 | The Broad Institute, Inc. | Recombinant virus and preparations thereof |
Non-Patent Citations (306)
Title |
---|
"ANIMAL CELL CULTURE", 1987 |
"ANTIBODIES, A LABORATORY MANUAL", 1988 |
"CURRENT PROTOCOLS IN MOLECULAR BIOLOGY", 1987 |
"METHODS IN ENZYMOLOGY", ACADEMIC PRESS, INC. |
"PCR 2: A PRACTICAL APPROACH", 1995 |
"REMINGTON'S PHARMACEUTICAL SCIENCES", 1991, MACK PUB. CO. |
A.R GRUBER ET AL., CELL, vol. 106, no. 1, 2008, pages 23 - 24 |
A.R. GRUBER ET AL., CELL, vol. 106, no. 1, 2008, pages 23 - 24 |
ADVANCED DRUG DELIVERY REVIEWS, vol. 64, 2012, pages 1730 - 1737 |
AHMAD ET AL., CANCER RES., vol. 52, 1992, pages 4817 - 4820 |
AHMAD, S. ET AL., J ROYAL SOC INTERFACE, vol. 7, 2010, pages 5423 - 33 |
AIUTI A ET AL.: "Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome", SCIENCE, vol. 341, no. 6148, 2013 |
AKINC ET AL., NAT. BIOTECH., vol. 26, 2010, pages 561 - 569 |
ALABI ET AL., PROC NATL ACAD SCI U S A., vol. 110, no. 32, 6 August 2013 (2013-08-06), pages 12881 - 6 |
ALTSCHUL ET AL., J. MOL. BIOL., 1990, pages 403 - 410 |
ALVAREZ-ERVITI ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 341 |
AMRANN ET AL., GENE, vol. 69, 1988, pages 301 - 315 |
ANDERSON, SCIENCE, vol. 256, 1992, pages 808 - 813 |
ATSCHUL ET AL., J. MOL. BIOL., 1990, pages 403 - 410 |
AUSUBEL ET AL., SHORT PROTOCOLS IN MOLECULAR BIOLOGY, 1999, pages 7 - 58,7-60 |
AUSUBEL ET AL.: "Short Protocols in Molecular Biology", 1999 |
BAILEY ET AL., J MOL MED (BERL)., vol. 77, no. 1, January 1999 (1999-01-01), pages 244 - 9 |
BALAGAAN, J GENE MED, vol. 8, 2006, pages 275 - 285 |
BALDARI ET AL., EMBO J., vol. 6, 1987, pages 229 - 234 |
BANEIJI ET AL., CELL, vol. 33, 1983, pages 729 - 740 |
BANKER G; GOSLIN K: "Developments in neuronal cell culture", NATURE, vol. 336, no. 6195, 10 November 1988 (1988-11-10), pages 185 - 6 |
BARTLETT ET AL., PNAS, vol. 104, no. 39, 25 September 2007 (2007-09-25) |
BEDELL, V.M. ET AL.: "In vivo genome editing using a high-efficiency TALEN system", NATURE, vol. 491, 2012, pages 114 - U133 |
BEHR ET AL., BIOCONJUGATE CHEM., vol. 5, 1994, pages 382 - 389 |
BHAYA, D.; DAVISON, M.; BARRANGOU, R: "CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation", ANNU REV GENET, vol. 45, 2011, pages 273 - 297, XP055118832, DOI: doi:10.1146/annurev-genet-110410-132430 |
BIFFI A ET AL.: "Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Mctachromatic Leukodystrophy", SCIENCE, vol. 341, no. 6148, 2013 |
BINLEY ET AL., HUMAN GENE THERAPY, vol. 23, September 2012 (2012-09-01), pages 980 - 991 |
BISSIG ET AL., JOURNAL OF CLINICAL INVESTIGATION, vol. 120, no. 3, 2014, pages 924 - 930 |
BLAESE ET AL., CANCER GENE THER., vol. 2, 1995, pages 291 - 297 |
BOBIS-WOZOWICZ, S.; OSIAK, A.; RAHMAN, S.H.; CATHOMEN, T.: "Targeted genome editing in pluripotent stem cells using zinc-finger nucleases", METHODS, vol. 53, 2011, pages 339 - 346, XP028165728, DOI: doi:10.1016/j.ymeth.2010.12.019 |
BOCH, J. ET AL.: "Breaking the code of DNA binding specificity of TAL-type III effectors", SCIENCE, vol. 326, 2009, pages 1509 - 1512, XP055250971, DOI: doi:10.1126/science.1178811 |
BOGENHAGEN, D.F.; BROWN, D.D.: "Nucleotide sequences in Xenopus 5S DNA required for transcription termination", CELL, vol. 24, 1981, pages 261 - 270, XP023912594, DOI: doi:10.1016/0092-8674(81)90522-5 |
BOSHART ET AL., CELL, vol. 41, pages 521 - 530 |
BUCHSCHER ET AL., J. VIROL., vol. 66, 1992, pages 2731 - 2739 |
BULTMANN, S. ET AL.: "Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers", NUCLEIC ACIDS RES, vol. 40, 2012, pages 5368 - 5377, XP055514381, DOI: doi:10.1093/nar/gks199 |
BYRNE; RUDDLE, PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 5473 - 5477 |
CALAME; EATON, ADV. IMMUNOL., vol. 43, 1988, pages 235 - 275 |
CAMPES; TILGHMAN, GENES DEV., vol. 3, 1989, pages 537 - 546 |
CARLSON, D.F. ET AL.: "Efficient TALEN-mediated gene knockout in livestock", PROC NATL ACAD SCI USA, vol. 109, 2012, pages 17382 - 17387, XP055089730, DOI: doi:10.1073/pnas.1211446109 |
CHEN ET AL., GENE THERAPY, vol. 14, 2007, pages 11 - 19 |
CHEN, F.Q. ET AL.: "High-frequency genome editing using ssDNA oligonucleotides with zinc-fmger nucleases", NAT METHODS, vol. 8, 2011, pages 753 - U796 |
CHO, S.; GOLDBERG, M.; SON, S.; XU, Q.; YANG, F.; MEI, Y.; BOGATYREV, S.; LANGER, R.; ANDERSON, D.: "Lipid-like nanoparticles for small interfering RNA delivery to endothelial cells", ADVANCED FUNCTIONAL MATERIALS, vol. 19, 2010, pages 3112 - 3118, XP001548633, DOI: doi:10.1002/adfm.200900519 |
CHO, S.; GOLDBERG, M.; SON, S.; XU, Q.; YANG, F.; MEI, Y.; BOGATYREV, S.; LANGER, R; ANDERSON, D.: "Lipid-like nanoparticles for small interfering RNA delivery to endothelial cells", ADVANCED FUNCTIONAL MATERIALS, vol. 19, 2010, pages 3112 - 3118, XP001548633, DOI: doi:10.1002/adfm.200900519 |
CHO, S.W.; KIM, S.; KIM, J.M.; KIM, J.S.: "Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease", NAT BIOTECHNOL, vol. 31, 2013, pages 230 - 232 |
CHOI ET AL., PROC. NATL. ACAD. SCI. USA., vol. 110, no. 19, 2013, pages 7625 - 7630 |
CHRISTIAN, M. ET AL.: "Targeting DNA double-strand breaks with TAL effector nucleases", GENETICS, vol. 186, 2010, pages 757 - 761 |
COELHO ET AL., N ENGL J MED, vol. 369, 2013, pages 819 - 29 |
COHEN, D ET AL.: "Hepatitis B virus activates deoxynucleotide synthesis in nondividing hepatocytes by targeting the R2 gene", HEPATOLOGY, vol. 51, 2010, pages 1538 - 1546 |
CONG, L. ET AL.: "Multiplex genome engineering using CRISPR-Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055400719, DOI: doi:10.1126/science.1231143 |
CONG, L.; RAN, F.A.; COX, D.; LIN, S.; BARRETTO, R.; HABIB, N.; HSU, P.D.; WU, X.; JIANG, W.; MARRAFFINI, L.A.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 819 - 23, XP055400719, DOI: doi:10.1126/science.1231143 |
CONG: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, pages 819 - 823, XP055400719, DOI: doi:10.1126/science.1231143 |
CRONICAN ET AL., ACS CHEMICAL BIOLOGY, vol. 5, 2010, pages 747 - 752 |
CRONICAN ET AL., CHEMISTRY & BIOLOGY, vol. 18, 2011, pages 833 - 838 |
CRYSTAL, SCIENCE, vol. 270, 1995, pages 404 - 410 |
CSABA REVESZ; PÉTER HAMAR: "Gene Therapy Applications", 2011, INTECH, article "Delivery Methods to Target RNAs in the Kidney" |
CUTLER ET AL., J. AM. CHEM. SOC., vol. 133, 2011, pages 9254 - 9257 |
CUTLER ET AL., J. AM. CHEM. SOC., vol. 134, 2012, pages 1376 - 1391 |
DAVIS ET AL., NATURE, vol. 464, 15 April 2010 (2010-04-15) |
DELTCHEVA, E. ET AL.: "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III", NATURE, vol. 471, 2011, pages 602 - 607, XP055308803, DOI: doi:10.1038/nature09886 |
DEVEAU, H.; GARNEAU, J.E.; MOINEAU, S.: "CRISPR-Cas system and its role in phage-bacteria interactions", ANNU REV MICROBIOL, vol. 64, 2010, pages 475 - 493, XP055067789, DOI: doi:10.1146/annurev.micro.112408.134123 |
DIGIUSTO ET AL., SCI TRANSL MED, vol. 2, 2010, pages 36RA43 |
DILLON, TIBTECH, vol. 11, 1993, pages 167 - 175 |
DING, Q. ET AL.: "A TALEN genome-editing system for generating human stem cell-based disease models", CELL STEM CELL, vol. 12, 2013, pages 238 - 251, XP055400863, DOI: doi:10.1016/j.stem.2012.11.011 |
DOENCH ET AL., NAT BIOTECH FOR SPCAS, vol. 9, 2014 |
DOENCH ET AL.: "Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation", NATURE BIOTECHNOLOGY, 3 September 2014 (2014-09-03) |
DUMITRACHE ET AL., GENETICS, vol. 188, no. 4, August 2011 (2011-08-01), pages 787 - 797 |
EDLUND ET AL., SCIENCE, vol. 230, 1985, pages 912 - 916 |
EL-ANDALOUSSI ET AL., NATURE PROTOCOLS, vol. 7, 2012, pages 2112 - 2126 |
EL-ANDALOUSSI S ET AL.: "Exosome-mediated delivery of siRNA in vitro and in vivo.", NAT PROTOC., vol. 7, no. 12, 15 November 2012 (2012-11-15), pages 2112 - 26, XP055129954, DOI: doi:10.1038/nprot.2012.131 |
EULALIO ET AL., NATURE, vol. 492, 2012, pages 376 |
FE.,IIS MICROBIOL LETT., vol. 174, no. 2, 1999, pages 247 - 50 |
FEMS MICROBIOL LETT., vol. 177, no. 1, 1999, pages 187 - 8 |
GAO ET AL., GENE THERAPY, vol. 2, 1995, pages 710 - 722 |
GARNEAU, J.E. ET AL.: "The CRISPR-Cas bacterial immune system cleaves bacteriophage and plasmid DNA", NATURE, vol. 468, 2010, pages 67 - 71, XP055181397, DOI: doi:10.1038/nature09523 |
GARRETT, N.L. ET AL., J BIOPHOTONICS, vol. 5, no. 5-6, 2012, pages 458 - 68 |
GARRETT, N.L. ET AL., J RAMAN SPECT, vol. 43, no. 5, 2012, pages 681 - 688 |
GASIUNAS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 109, 2012, pages E2579 |
GASIUNAS, G.; BARRANGOU, R.; HORVATH, P.; SIKSNYS, V.: "Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria", PROC NATL ACAD SCI USA, vol. 109, 2012, pages E2579 - 2586, XP055068588, DOI: doi:10.1073/pnas.1208507109 |
GASIUNAS, PROC. NATL. ACAD. SCI. USA, vol. 109, 2012, pages E2579 |
GEISBERT ET AL., LANCET, vol. 375, 2010, pages 1896 - 905 |
GEURTS, A.M. ET AL.: "Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases", SCIENCE, vol. 325, 2009, pages 433 - 433, XP002580718, DOI: doi:10.1126/SCIENCE.1172447 |
GLEBE D. ET AL.: "Pre-Sl Antigen-Dependent Infection of Tupaia Hepatocyte Cultures with Human Hepatitis B Virus", JOURNAL OF VIROLOGY, vol. 77, 2003, pages 9511 - 9521, XP055109924, DOI: doi:10.1128/JVI.77.17.9511-9521.2003 |
GOEDDEL: "GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY", vol. 185, 1990, ACADEMIC PRESS |
GRAY SJ; FOTI SB; SCHWARTZ JW; BACHABOINA L; TAYLOR-BLAKE B; COLEMAN J; EHLERS MD; ZYLKA MJ; MCCOWN TJ; SAMULSKI RJ: "Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors", HUM GENE THER., vol. 22, no. 9, September 2011 (2011-09-01), pages 1143 - 53, XP055198141, DOI: doi:10.1089/hum.2010.245 |
GRIMM ET AL., NATURE, vol. 441, 26 May 2006 (2006-05-26) |
GRIMM, D. ET AL., J. VIROL., vol. 82, 2008, pages 5887 - 5911 |
GROENEN ET AL., MOL. MICROBIOL., vol. 10, 1993, pages 1057 - 1065 |
GRUBER, NUCLEIC ACIDS RESEARCH, vol. 36, 2008, pages W70 |
GUSCHIN ET AL., METHODS MOL BIOL, vol. 649, 2010, pages 247 |
GUSCHIN, D.Y. ET AL.: "A rapid and general assay for monitoring endogenous gene modification", METHODS MOL BIOL, vol. 649, 2010, pages 247 - 256, XP055485617, DOI: doi:10.1007/978-1-60761-753-2_15 |
HADDADA ET AL.: "Current Topics in Microbiology and Immunology", 1995 |
HAO ET AL., SMALL, vol. 7, 2011, pages 3158 - 3162 |
HASTY, P.; RIVERA-PEREZ, J.; BRADLEY, A.: "The length of homology required for gene targeting in embryonic stem cells", MOL CELL BIOL, vol. 11, 1991, pages 5586 - 5591, XP002052222 |
HERMONAT; MUZYCZKA, PNAS, vol. 81, 1984, pages 6466 - 6470 |
HICKERSON ET AL., MOLECULAR THERAPY NUCLEIC ACIDS, vol. 2, 2013, pages E129 |
HIGGINS DG; SHARP PM, GENE, vol. 73, no. 1, 1988, pages 237 - 244 |
HIROTAKA EBINA ET AL: "Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus", SCIENTIFIC REPORTS, vol. 3, 26 August 2013 (2013-08-26), XP055110157, DOI: 10.1038/srep02510 * |
HOE ET AL., EMERG. INFECT. DIS., vol. 5, 1999, pages 254 - 263 |
HORVATH, P.; BARRANGOU, R.: "CRISPR-Cas, the immune system of bacteria and archaea", SCIENCE, vol. 327, 2010, pages 167 - 170, XP055016971, DOI: doi:10.1126/science.1179555 |
HORWELL DC, TRENDS BIOTECHNOL., vol. 13, no. 4, 1995, pages 132 - 134 |
HSU ET AL., NAT BIOTECHNOL, 2013 |
HSU ET AL.: "Development and Applications of CRISPR-Cas.9 for Genome Engineering", CELL, vol. 157, 5 June 2014 (2014-06-05), pages 1262 - 1278 |
HSU, NAT BIOTECHNOL, 2013 |
HSU, P.; SCOTT, D.; WEINSTEIN, J.; RAN, FA.; KONERMANN, S.; AGARWALA, V.; LI, Y.; FINE, E.; WU, X.; SHALEM, O.: "DNA targeting specificity of RNA-guided Cas9 nucleases", NAT BIOTECHNOL, 2013 |
HSU, P.D.; ZHANG, F.: "Dissecting neural function using targeted genome engineering technologies", ACS CHEM NEUROSCI, vol. 3, 2012, pages 603 - 610 |
HSU: "DNA targeting specificity of RNA-guided Cas9 nucleases", NATURE BIOTECHNOLOGY, vol. 31, 2013, pages 827 - 832, XP055219426, DOI: doi:10.1038/nbt.2647 |
HWANG, W.Y. ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NAT BIOTECHNOL, vol. 31, 2013, pages 227 - 229, XP055086625, DOI: doi:10.1038/nbt.2501 |
ISHINO ET AL., J. BACTERIOL., vol. 169, 1987, pages 5429 - 5433 |
JANSEN ET AL., MOL. MICROBIOL., vol. 43, 2002, pages 1565 - 1575 |
JANSSEN ET AL., OMICS J. INTEG. BIOL., vol. 6, 2002, pages 23 - 33 |
JAYARAMAN, ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 8529 - 8533 |
JENSEN ET AL., SCI. TRANSL. MED., vol. 5, 2013, pages 209RAL52 |
JIANG ET AL., NANO LETT., vol. 13, no. 3, 13 March 2013 (2013-03-13), pages 1059 - 64 |
JIANG W.; BIKARD D.; COX D.; ZHANG F; MARRAFFINI LA: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, no. 3, March 2013 (2013-03-01), pages 233 - 9, XP055249123, DOI: doi:10.1038/nbt.2508 |
JIANG, W.; BIKARD, D.; COX, D.; ZHANG, F.; MARRAFFINI, L.A.: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, 2013, pages 233 - 239, XP055249123, DOI: doi:10.1038/nbt.2508 |
JIELIANG CHEN ET AL: "An Efficient Antiviral Strategy for Targeting Hepatitis B Virus Genome Using Transcription Activator-Like Effector Nucleases", MOLECULAR THERAPY, vol. 22, no. 2, 12 September 2013 (2013-09-12), pages 303 - 311, XP055155716, ISSN: 1525-0016, DOI: 10.1038/mt.2013.212 * |
JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 |
JINEK, M. ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055299674, DOI: doi:10.1126/science.1225829 |
JINEK, M. ET AL.: "RNA-programmed genome editing in human cells", ELIFE, vol. 2, 2013, pages E00471, XP055167481, DOI: doi:10.7554/eLife.00471 |
JOHANN ET AL., J. VIROL., vol. 66, 1992, pages 1635 - 1640 |
JONKERS ET AL., AM. J. VET. RES., vol. 25, 1964, pages 236 - 242 |
JOSHUA T. SCHIFFER ET AL: "Predictors of Hepatitis B Cure Using Gene Therapy to Deliver DNA Cleavage Enzymes: A Mathematical Modeling Approach", PLOS COMPUTATIONAL BIOLOGY, vol. 9, no. 7, 4 July 2013 (2013-07-04), pages e1003131, XP055155732, DOI: 10.1371/journal.pcbi.1003131 * |
JUDGE, J. CLIN. INVEST., vol. 119, 2009, pages 661 - 673 |
KAPLITT, M.G. ET AL.: "Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial", LANCET, vol. 369, no. 9579, 23 June 2007 (2007-06-23), pages 2097 - 105, XP022126085, DOI: doi:10.1016/S0140-6736(07)60982-9 |
KARAGIANNIS ET AL., ACS NANO., vol. 6, no. 10, 23 October 2012 (2012-10-23), pages 8484 - 7 |
KARGINOV; HANNON: "The CRISPR system: small RNA-guided defence in bacteria and archaea", MOLE CELL, vol. 37, no. 1, 15 January 2010 (2010-01-15), pages 7, XP055016972, DOI: doi:10.1016/j.molcel.2009.12.033 |
KAUFMAN ET AL., EMBO J., vol. 6, 1987, pages 187 - 195 |
KESSEL; GRUSS, SCIENCE, vol. 249, 1990, pages 374 - 379 |
KONERMAN ET AL., NATURE, 2013 |
KONERMANN S; BRIGHAM MD; TREVINO AE; HSU PD; HEIDENREICH M; CONG L; PLATT RJ; SCOTT DA; CHURCH GM; ZHANG F: "Optical control of mammalian endogenous transcription and epigenetic states", NATURE, vol. 500, no. 7463, 23 August 2013 (2013-08-23), pages 472 - 6 |
KOTIN, HUMAN GENE THERAPY, vol. 5, 1994, pages 793 - 801 |
KREMER; PERRICAUDET, BRITISH MEDICAL BULLETIN, vol. 51, no. 1, 1995, pages 31 - 44 |
KUIJAN; HERSKOWITZ, CELL, vol. 30, 1982, pages 933 - 943 |
LALATSA ET AL., J CONTROL RELEASE, vol. 161, no. 2, 20 July 2012 (2012-07-20), pages 523 - 36 |
LALATSA, A. ET AL., J CONTR REL, vol. 161, no. 2, 2012, pages 523 - 36 |
LALATSA, A. ET AL., MOL PHARM, vol. 9, no. 6, 2012, pages 1665 - 80 |
LALATSA, A. ET AL., MOL PHARM, vol. 9, no. 6, 2012, pages 1764 - 74 |
LAWRENCE ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, 2007, pages 10110 - 10112 |
LEE ET AL., NAT NANOTECHNOL., vol. 7, no. 6, 3 June 2012 (2012-06-03), pages 389 - 93 |
LEGRAND N ET AL., CELL HOST & MICROBE, vol. 6, no. 1, 2009, pages 5 - 9 |
LEI S. QI ET AL: "Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression", CELL, vol. 152, no. 5, 1 February 2013 (2013-02-01), pages 1173 - 1183, XP055068548, ISSN: 0092-8674, DOI: 10.1016/j.cell.2013.02.022 * |
LEVITT N.; BRIGGS D.; GIL A.; PROUDFOOT N.J.: "Definition of an efficient synthetic poly(A) site", GENES DEV., vol. 3, 1989, pages 1019 - 1025, XP008053152 |
LEWIS ET AL., NAT. GEN., vol. 32, 2002, pages 107 - 108 |
LEWIS, D. L. ET AL.: "Delivery of siRNA and siRNA expression constructs to adult mammals by hydrodynamic intravascular injection", METHODS ENZYMOL., vol. 392, 2005, pages 336 - 350, XP009107534, DOI: doi:10.1016/S0076-6879(04)92020-4 |
LI ET AL., MOLECULAR THERAPY, vol. 17, no. 12, December 2009 (2009-12-01), pages 2067 - 2077 |
LI, GENE THERAPY, vol. 19, 2012, pages 775 - 780 |
LIN Y. ET AL.: "CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences", NUCLEIC ACIDS RESEARCH, vol. 42, 2014, pages 7473 - 7485, XP055186074, DOI: doi:10.1093/nar/gku402 |
LIN-YANGA ET AL., PNAS, vol. 106, no. 10, 10 March 2009 (2009-03-10) |
LIU D; FISCHER I: "Two alternative promoters direct neuron-specific expression of the rat microtubule-associated protein 1B gene", J NEUROSCI., vol. 16, no. 16, 15 August 1996 (1996-08-15), pages 5026 - 36 |
LIVINGSTONE C.D.; BARTON G.J.: "Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation", COMPUT. APPL. BIOSCI., vol. 9, 1993, pages 745 - 756 |
LOPES, V.S.: "Retinal gene therapy with a large MY07A cDNA using adeno-assocaited virus", GENE THER, 24 January 2013 (2013-01-24) |
LUCIFORA ET AL., SCIENCE, vol. 343, no. 6176, 14 March 2014 (2014-03-14), pages 1221 - 1228 |
LUCKLOW; SUMMERS, VIROLOGY, vol. 170, 1989, pages 31 - 39 |
LUKE A. GILBERT ET AL: "CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes", CELL, vol. 154, no. 2, 1 July 2013 (2013-07-01), pages 442 - 451, XP055115843, ISSN: 0092-8674, DOI: 10.1016/j.cell.2013.06.044 * |
MAHFOUZ, M.M. ET AL.: "De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks", PROC NATL ACAD SCI U S A, vol. 108, 2011, pages 2623 - 2628, XP055007615, DOI: doi:10.1073/pnas.1019533108 |
MAKAROVA ET AL., NAT REV MICROBIOL, vol. 9, 2011, pages 467 |
MAKAROVA, K.S. ET AL.: "Evolution and classification of the CRISPR-Cas systems", NAT REV MICROBIOL, vol. 9, 2011, pages 467 - 477, XP009155547, DOI: doi:10.1038/nrmicro2577 |
MALI, P. ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826 |
MASEPOHL ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 1307, 1996, pages 26 - 30 |
MAZZA ET AL., ACS NANO., vol. 7, no. 2, 26 February 2013 (2013-02-26), pages 1016 - 26 |
MAZZA, M. ET AL., ACSNANO, vol. 7, no. 2, 2013, pages 1016 - 1026 |
MCCLURE C; COLE KL; WULFF P; KLUGMANN M; MURRAY AJ: "Production and titering of recombinant adeno-associated viral vectors", J VIS EXP., 27 November 2011 (2011-11-27), pages E3348 |
MCNAUGHTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 106, 2009, pages 6111 - 6116 |
MIAO CH ET AL.: "Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro", MOL THER, vol. 1, no. 6, June 2000 (2000-06-01), pages 522 - 32, XP002550493 |
MICHAEL S D KORMANN ET AL.: "Expression of therapeutic proteins after delivery of chemically modified mRNA in mice", NATURE BIOTECHNOLOGY, vol. 29, 2011, pages 154 - 157, XP002696192, DOI: doi:10.1038/nbt.1733 |
MICHAELIS, L.M.; MAUD: "Die kinetik der invertinwirkung.", BIOCHEM. Z, 1913 |
MILLER ET AL., J. VIROL., vol. 65, 1991, pages 2220 - 2224 |
MILLER, J.C. ET AL.: "A TALE nuclease architecture for efficient genome editing", NAT BIOTECHNOL, vol. 29, 2011, pages 143 - 148 |
MILLER, J.C. ET AL.: "An improved zinc-finger nuclease architecture for highly specific genome editing", NAT BIOTECHNOL, vol. 25, 2007, pages 778 - 785, XP002465119, DOI: doi:10.1038/nbt1319 |
MILLER, NATURE, vol. 357, 1992, pages 455 - 460 |
MIRKIN ET AL., SMALL, vol. 10, pages 186 - 192 |
MIRLDN, NANOMEDICINE, vol. 7, 2012, pages 635 - 638 |
MITANI; CASKEY, TIBTECH, vol. 11, 1993, pages 162 - 166 |
MOJICA ET AL., MOL. MICROBIOL., vol. 17, 1995, pages 85 - 93 |
MOJICA ET AL., MOL. MICROBIOL., vol. 36, 2000, pages 244 - 246 |
MOL. CELL. BIOL., vol. 8, no. 1, 1988, pages 466 - 472 |
MORRISSEY ET AL., NATURE BIOTECHNOLOGY, vol. 23, no. 8, August 2005 (2005-08-01) |
MOSCOU, M.J.; BOGDANOVE, A.J.: "A simple cipher governs DNA recognition by TAL effectors", SCIENCE, vol. 326, 2009, pages 1501, XP002599998 |
MUSSOLINO, C. ET AL.: "A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity", NUCLEIC ACIDS RESEARCH, vol. 39, 2011, pages 9283 - 9293, XP055021128, DOI: doi:10.1093/nar/gkr597 |
MUZYCZKA, J. CLIN. INVEST., vol. 94, 1994, pages 1351 |
NABEL; FELGNER, TIBTECH, vol. 11, 1993, pages 211 - 217 |
NAKAMURA, Y. ET AL.: "Codon usage tabulated from the international DNA sequence databases: status for the year 2000", NUCL. ACIDS RES., vol. 28, 2000, pages 292, XP002941557, DOI: doi:10.1093/nar/28.1.292 |
NAKATA ET AL., J. BACTERIOL., vol. 171, 1989, pages 3553 - 3556 |
NATHWANI, A.C. ET AL.: "Adenovirus-associated virus vector-mediated gene transfer in hemophilia B", N ENGL J MED., vol. 365, no. 25, 10 December 2011 (2011-12-10), pages 2357 - 65, XP055079598, DOI: doi:10.1056/NEJMoa1108046 |
NISHIMASU, H.; RAN, FA.; HSU, PD.; KONERMANN, S.; SHEHATA, SI.; DOHMAE, N.; ISHITANI, R.; ZHANG, F.; NUREKI, O.: "Crystal structure of cas9 in complex with guide RNA and target DNA", CELL, vol. 156, no. 5, 27 February 2014 (2014-02-27), pages 935 - 49, XP028667665, DOI: doi:10.1016/j.cell.2014.02.001 |
NOVOBRANTSEVA, MOLECULAR THERAPY-NUCLEIC ACIDS, vol. 1, 2012, pages E4 |
OLIVEIRA, T.Y. ET AL.: "Translocation capture sequencing: a method for high throughput mapping of chromosomal rearrangements", J IMMUNOL METHODS, vol. 375, 2012, pages 176 - 181, XP028434307, DOI: doi:10.1016/j.jim.2011.10.007 |
PA CARR; GM CHURCH, NATURE BIOTECHNOLOGY, vol. 27, no. 12, 2009, pages 1151 - 62 |
PARDRIDGE ET AL., COLD SPRING HARB PROTOC, 2010 |
PEREZ, E.E. ET AL.: "Establishment of HIV-1 resistance in CD4(+) T cells by genome editing using zinc-finger nucleases", NAT BIOTECHNOL, vol. 26, 2008, pages 808 - 816, XP055024363, DOI: doi:10.1038/nbt1410 |
PEREZ-PINERA PABLO ET AL: "RNA-guided gene activation by CRISPR-Cas9-based transcription factors.", NATURE METHODS OCT 2013, vol. 10, no. 10, October 2013 (2013-10-01), pages 973 - 976, XP002738748, ISSN: 1548-7105 * |
PINKERT ET AL., GENES DEV., vol. 1, 1987, pages 268 - 277 |
PLATT ET AL.: "CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling", CELL, vol. 159, no. 2, 2014, pages 440 - 455, XP029073412, DOI: doi:10.1016/j.cell.2014.09.014 |
PLOTKIN ET AL., PNAS USA, vol. 101, 2004, pages 12588 - 91 |
PORTEUS, M.H.; BALTIMORE, D.: "Chimeric nucleases stimulate gene targeting in human cells", SCIENCE, vol. 300, 2003, pages 763, XP002974231, DOI: doi:10.1126/science.1078395 |
PROC. NATL. ACAD. SCI. USA., vol. 78, no. 3, 1981, pages 1527 - 31 |
QI, L.S. ET AL.: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression", CELL, vol. 152, 2013, pages 1173 - 1183, XP055346792, DOI: doi:10.1016/j.cell.2013.02.022 |
QU, X., BIOMACROMOLECULES, vol. 7, no. 12, 2006, pages 3452 - 9 |
QUEEN; BALTIMORE, CELL, vol. 33, 1983, pages 741 - 748 |
RAN ET AL., CELL, vol. 154, no. 6, 12 September 2013 (2013-09-12), pages 1380 - 9 |
RAN F ANN ET AL: "Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity", CELL, vol. 154, no. 6, 12 September 2013 (2013-09-12), pages 1380 - 1389, XP028716272, ISSN: 0092-8674, DOI: 10.1016/J.CELL.2013.08.021 * |
RAN, FA.; HSU, PD.; LIN, CY.; GOOTENBERG, JS.; KONERMANN, S.; TREVINO, AE.; SCOTT, DA.; INOUE, A.; MATOBA, S.; ZHANG, Y.: "Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity", CELL, 28 August 2013 (2013-08-28) |
RAN, FA.; HSU, PD.; WRIGHT, J.; AGARWALA, V.; SCOTT, DA.; ZHANG, F.: "Genome engineering using the CRISPR-Cas9 system", NATURE PROTOCOLS, vol. 8, no. 11, November 2013 (2013-11-01), pages 2281 - 308, XP009174668, DOI: doi:10.1038/nprot.2013.143 |
REICH ET AL., MOL. VISION., vol. 9, 2003, pages 210 - 216 |
REMY ET AL., BIOCONJUGATE CHEM., vol. 5, 1994, pages 647 - 654 |
REYON, D. ET AL.: "FLASH assembly of TALENs for high-throughput genome editing", NAT BIOTECHNOL, vol. 30, 2012, pages 460 - 465, XP055171172, DOI: doi:10.1038/nbt.2170 |
ROELVINKI ET AL., MOLECULAR THERAPY, vol. 20, no. 9, September 2012 (2012-09-01), pages 1737 - 1749 |
ROSIN ET AL., MOLECULAR THERAPY, vol. 19, no. 12, December 2011 (2011-12-01), pages 1286 - 2200 |
ROZEMA ET AL., PNAS, vol. 104, no. 32, 7 August 2007 (2007-08-07) |
SALEH-GOHARI, N.; HELLEDAY, T.: "Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells", NUCLEIC ACIDS RES, vol. 32, 2004, pages 3683 - 3688 |
SAMBROOK ET AL.: "MOLECULAR CLONING: A LABORATORY MANUAL", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SAMBROOK; FRITSCH; MANIATIS: "MOLECULAR CLONING: A LABORATORY MANUAL", 1989 |
SAMULSKI ET AL., J. VIROL., vol. 63, 1989, pages 03822 - 3828 |
SANDER, J.D. ET AL.: "Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA", NAT METHODS, vol. 8, 2011, pages 67 - 69 |
SANDS MS: "AA V -mediated liver-directed gene therapy", METHODS MOL BIOL., vol. 807, 2011, pages 141 - 57, XP009167845, DOI: doi:10.1007/978-1-61779-370-7_6 |
SANJANA, N.E. ET AL.: "A transcription activator-like effector toolbox for genome engineering", NAT PROTOC, vol. 7, 2012, pages 171 - 192, XP009170390, DOI: doi:10.1038/nprot.2011.431 |
SAPRANAUSAKS ET AL., NUCLEIC ACIDS RESCH, vol. 39, 2011, pages 9275 |
SAPRANAUSKAS ET AL., NUCLEIC ACIS RESEARCH, vol. 39, 2011, pages 9275 |
SAPRANAUSKAS, R ET AL.: "The Streptococcus thermophilus CRISPR-Cas system provides immunity in Escherichia coli", NUCLEIC ACIDS RES, vol. 39, 2011, pages 9275 - 9282, XP055265024, DOI: doi:10.1093/nar/gkr606 |
SAPRANAUSKAS: "The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli,", NUCLEIC ACIDS RES, vol. 39, no. 21, November 2011 (2011-11-01), pages 9275 - 9282, XP055265024, DOI: doi:10.1093/nar/gkr606 |
SATO ET AL., NATURE BIOTECHNOLOGY, vol. 26, no. 4, April 2008 (2008-04-01), pages 431 - 442 |
SCHIFFELERS ET AL., NUCLEIC ACIDS RESEARCH, vol. 32, no. 19, 2004 |
SCHLOMAI ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 111, no. 33, 2014, pages 12193 - 12198 |
SCHROEDER, A.; LEVINS, C.; CORTEZ, C.; LANGER, R.; ANDERSON, D.: "Lipid-based nanotherapeutics for siRNA delivery", JOURNAL OF INTERNAL MEDICINE, vol. 267, 2010, pages 9 - 21 |
SCHULTZ ET AL., GENE, vol. 54, 1987, pages 113 - 123 |
SEED; 1987, NATURE, vol. 329, pages 840 |
SELLS, PNAS, 1987 |
SEMPLE ET AL., NATURE NIOTECHNOLOGY, vol. 28, no. 2, February 2010 (2010-02-01), pages 172 - 177 |
SHALEK ET AL., NANO LETTERS, 2012 |
SHALEM, O.; SANJANA, NE.; HARTENIAN, E.; SHI, X.; SCOTT, DA.; MIKKELSON, T.; HECKL, D.; EBERT, BL.; ROOT, DE.; DOENCH, JG.: "Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells", SCIENCE, 12 December 2013 (2013-12-12) |
SHEN ET AL., FEBS LET., vol. 539, 2003, pages 111 - 114 |
SHEN, B. ET AL.: "Generation of gene-modified mice via Cas9/RNA-mediated gene targeting", CELL RES, vol. 23, 2013, pages 720 - 723, XP055141533, DOI: doi:10.1038/cr.2013.46 |
SIEW, A. ET AL., MOL PHARM, vol. 9, no. 1, 2012, pages 14 - 28 |
SIMEONI ET AL., NAR, vol. 31, no. 11, 2003, pages 2717 - 2724 |
SIMON RJ ET AL., PNAS, vol. 89, no. 20, 1992, pages 9367 - 9371 |
SMITH ET AL., MOL. CELL. BIOL., vol. 3, 1983, pages 2156 - 2165 |
SMITH; JOHNSON, GENE, vol. 67, 1988, pages 31 - 40 |
SMITHIES, 0.; GREGG, R.G.; BOGGS, S.S.; KORALEWSKI, M.A.; KUCHERLAPATI, R.S.: "Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination", NATURE, vol. 317, 1985, pages 230 - 234, XP002052217, DOI: doi:10.1038/317230a0 |
SOLDNER, F. ET AL.: "Generation ofisogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations", CELL, vol. 146, 2011, pages 318 - 331 |
SOMASUNTHARAM ET AL., BIOMATERIALS, vol. 34, 2013, pages 7790 |
SOMMNERFELT ET AL., VIROL., vol. 176, 1990, pages 58 - 59 |
SORENSEN ET AL., J. MOL. BIOL., vol. 327, 2003, pages 761 - 766 |
SPUCH; NAVARRO, JOURNAL OF DRUG DELIVERY, vol. 2011, 2011, pages 12 |
STUDIER ET AL.: "GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY", vol. 185, 1990, ACADEMIC PRESS, pages: 60 - 89 |
SU X; FRICKE J; KAVANAGH DG; IRVINE DJ: "1n vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles", MOL PHARM., vol. 8, no. 3, 1 April 2011 (2011-04-01), pages 774 - 87, XP055127583, DOI: doi:10.1021/mp100390w |
SWIECH ET AL.: "In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9", NATURE BIOTECHNOLOGY, 19 October 2014 (2014-10-19) |
TABEMERO ET AL., CANCER DISCOVERY, vol. 3, no. 4, April 2013 (2013-04-01), pages 363 - 470 |
TAKASU, Y. ET AL.: "Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection", INSECT BIOCHEM MOLEC, vol. 40, 2010, pages 759 - 765, XP027320284 |
TANGRI S ET AL.: "Rationally engineered therapeutic proteins with reduced immunogenicity", J IMMUNOL., vol. 174, no. 6, 15 March 2005 (2005-03-15), pages 3187 - 96 |
TAYLOR W.R: "The classification of amino acid conservation", J. THEOR. BIOL., vol. 119, 1986, pages 205 - 218, XP055050432, DOI: doi:10.1016/S0022-5193(86)80075-3 |
THOMAS, K.R.; FOLGER, K.R.; CAPECCHI, M.R.: "High frequency targeting of genes to specific sites in the mammalian genome", CELL, vol. 44, 1986, pages 419 - 428, XP023883170, DOI: doi:10.1016/0092-8674(86)90463-0 |
THOMPSON ET AL., METHODS IN ENZYMOLOGY, vol. 503, 2012, pages 293 - 319 |
THOMPSON, D.B. ET AL., CHEMISTRY & BIOLOGY, vol. 19, no. 7, 2012, pages 831 - 843 |
TIJSSEN: "Laboratory Techniques In Biochemistry And Molecular Biology-Hybridization With Nucleic Acid Probes Part I", 1993, ELSEVIER, article "Overview of principles of hybridization and the strategy of nucleic acid probe assay" |
TRATSCHIN ET AL., MOL. CELL. BIOL., vol. 4, 1984, pages 2072 - 2081 |
TRATSCHIN ET AL., MOL. CELL. BIOL., vol. 5, 1985, pages 3251 - 3260 |
TRAVASSOS DA ROSA ET AL., AM. J. TROPICAL MED. & HYGIENE, vol. 33, 1984, pages 999 - 1006 |
TSAI ET AL.: "Dimeric CRISPR RNA-guided Fold nucleases for highly specific genome editing", NATURE BIOTECHNOLOGY, vol. 32, no. 6, 2014, pages 569 - 77 |
TUSCHL, T.: "Expanding small RNA interference", NAT BIOTECHNOL, vol. 20, 2002, pages 446 - 448, XP002232258, DOI: doi:10.1038/nbt0502-446 |
UCHEGBU, I.F. ET AL., INT J PHARM, vol. 224, 2001, pages 185 - 199 |
UCHEGBU, I.F., EXPERT OPIN DRUG DELIV, vol. 3, no. 5, 2006, pages 629 - 40 |
UCHEGBU; SIEW, J PHARM SCI., vol. 102, no. 2, 2013, pages 305 - 10 |
UMOV, F.D.; REBAR, E.J.; HOLMES, M.C.; ZHANG, H.S.; GREGORY, P.D.: "Genome editing with engineered zinc finger nucleases", NAT REV GENET, vol. 11, 2010, pages 636 - 646 |
UNO ET AL., HUMAN GENE THERAPY, vol. 22, June 2011 (2011-06-01), pages 711 - 719 |
VALTON, J. ET AL.: "Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation", J BIOL CHEM, vol. 287, 2012, pages 38427 - 38432 |
VAN BRUNT, BIOTECHNOLOGY, vol. 6, no. 10, 1988, pages 1149 - 1154 |
VAN EMBDEN ET AL., J. BACTERIOL., vol. 182, 2000, pages 2393 - 2401 |
VIGNE, RESTORATIVE NEUROLOGY AND NEUROSCIENCE, vol. 8, 1995, pages 35 - 36 |
WAHLGREN ET AL., NUCLEIC ACIDS RESEARCH, vol. 40, no. 17, 2012, pages E130 |
WAHLGREN ET AL., NUCLEIC ACIDS RESEARCH, vol. 40, no. 17, pages E130 |
WANG ET AL.: "Genetic screens in human cells using the CRISPR/Cas9 system", SCIENCE, vol. 343, no. 6166, 3 January 2014 (2014-01-03), pages 80 - 84, XP055294787, DOI: doi:10.1126/science.1246981 |
WANG H.; YANG H.; SHIVALILA CS.; DAWLATY MM.; CHENG AW.; ZHANG F.; JAENISCH R.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPRlCas-Mediated Genome Engineering", CELL, vol. 153, no. 4, 9 May 2013 (2013-05-09), pages 910 - 8 |
WANG HAOYI ET AL: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering", CELL, CELL PRESS, US, vol. 153, no. 4, 2 May 2013 (2013-05-02), pages 910 - 918, XP028538358, ISSN: 0092-8674, DOI: 10.1016/J.CELL.2013.04.025 * |
WANG, H. ET AL.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR-Cas-Mediated Genome Engineering", CELL, vol. 153, 2013, pages 910 - 918, XP028538358, DOI: doi:10.1016/j.cell.2013.04.025 |
WATANABE, T. ET AL.: "Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases", NAT COMMUN, 2012, pages 3 |
WEINTRAUB, NATURE, vol. 495, 2013, pages S14 - S16 |
WEST ET AL., VIROLOGY, vol. 160, 1987, pages 38 - 47 |
WHITEHEAD ET AL., ACS NANO, vol. 6, no. 8, 28 August 2012 (2012-08-28), pages 6922 - 9 |
WILSON ET AL., J. VIROL., vol. 63, 1989, pages 2374 - 2378 |
WILSON, E.B.: "Probable inference, the law of succession, and statistical inference", J AM STAT ASSOC, vol. 22, 1927, pages 209 - 212 |
WINOTO; BALTIMORE, EMBO J., vol. 8, 1989, pages 729 - 733 |
WOOD, A.J. ET AL.: "Targeted genome editing across species using ZFNs and TALENs", SCIENCE, vol. 333, 2011, pages 307, XP055102329, DOI: doi:10.1126/science.1207773 |
WOODDELL ET AL., MOLECULAR THERAPY, vol. 21, no. 5, May 2013 (2013-05-01), pages 973 - 985 |
WU X.; SCOTT DA.; KRIZ AJ.; CHIU AC.; HSU PD.; DADON DB.; CHENG AW.; TREVINO AE.; KONERMANN S.; CHEN S.: "Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells", NAT BIOTECHNOL., 20 April 2014 (2014-04-20) |
WU, S.; YING, G.X.; WU, Q.; CAPECCHI, M.R.: "A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond", NAT PROTOC, vol. 3, 2008, pages 1056 - 1076, XP055208620, DOI: doi:10.1038/nprot.2008.70 |
XIA CF; BOADO RJ; PARDRIDGE WM: "Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology.", MOL PHARM., vol. 6, no. 3, May 2009 (2009-05-01), pages 747 - 51, XP055088899, DOI: doi:10.1021/mp800194y |
XIA ET AL., NAT. BIOTECH., vol. 20, 2002, pages 1006 - 1010 |
YAN H. ET AL.: "Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus", ELIFE, 2012, pages 1 |
YOUNG ET AL., NANO LETT., vol. 12, 2012, pages 3867 - 71 |
YU ET AL., GENE THERAPY, vol. 1, 1994, pages 13 - 26 |
ZAMORA ET AL., AM J RESPIR CRIT CARE MED, vol. 183, 2011, pages 531 - 538 |
ZHANG ET AL., ACS NANO., vol. 5, 2011, pages 6962 - 6970 |
ZHANG ET AL., ADV MATER., vol. 25, no. 33, 6 September 2013 (2013-09-06), pages 4641 - 5 |
ZHANG ET AL., J. AM. CHEM. SOC., vol. 134, 2012, pages 16488 - 1691 |
ZHANG ET AL., MOL THER., vol. 7, no. 1, January 2003 (2003-01-01), pages 11 - 8 |
ZHANG, F. ET AL.: "Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription", NAT BIOTECHNOL, vol. 29, 2011, pages 149 - 153, XP055005146, DOI: doi:10.1038/nbt.1775 |
ZHENG ET AL., PROC. NATL. ACAD. SCI. USA., vol. 109, 2012, pages 11975 - 80 |
ZIMMERMAN ET AL., NATURE LETTERS, vol. 441, 4 May 2006 (2006-05-04) |
ZIMMERMAN ET AL., NATURE LETTERS, vol. 441, no. 4, May 2006 (2006-05-01) |
ZOU ET AL., HUMAN GENE THERAPY, vol. 22, April 2011 (2011-04-01), pages 465 - 475 |
ZUKER; STIEGLER, NUCLEIC ACIDS RES., vol. 9, 1981, pages 133 - 148 |
Cited By (234)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10544405B2 (en) | 2013-01-16 | 2020-01-28 | Emory University | Cas9-nucleic acid complexes and uses related thereto |
US11312945B2 (en) | 2013-01-16 | 2022-04-26 | Emory University | CAS9-nucleic acid complexes and uses related thereto |
US10385359B2 (en) | 2013-04-16 | 2019-08-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US12037596B2 (en) | 2013-04-16 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US10975390B2 (en) | 2013-04-16 | 2021-04-13 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11390887B2 (en) | 2013-11-07 | 2022-07-19 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10640788B2 (en) | 2013-11-07 | 2020-05-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAs |
US10190137B2 (en) | 2013-11-07 | 2019-01-29 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10711280B2 (en) | 2013-12-11 | 2020-07-14 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse ES cell genome |
US10208317B2 (en) | 2013-12-11 | 2019-02-19 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse embryonic stem cell genome |
US11820997B2 (en) | 2013-12-11 | 2023-11-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
US9546384B2 (en) | 2013-12-11 | 2017-01-17 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse genome |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10286084B2 (en) * | 2014-02-18 | 2019-05-14 | Duke University | Compositions for the inactivation of virus replication and methods of making and using the same |
WO2015153789A1 (en) * | 2014-04-01 | 2015-10-08 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus type 1 (hsv-1) |
JP2017518075A (en) * | 2014-05-30 | 2017-07-06 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | Compositions and methods for treating latent viral infections |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
EP3708155A1 (en) * | 2014-10-31 | 2020-09-16 | Massachusetts Institute Of Technology | Massively parallel combinatorial genetics for crispr |
US10457960B2 (en) | 2014-11-21 | 2019-10-29 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
US11697828B2 (en) | 2014-11-21 | 2023-07-11 | Regeneran Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
EP3626832A2 (en) | 2014-11-25 | 2020-03-25 | The Brigham and Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
WO2016086197A1 (en) | 2014-11-25 | 2016-06-02 | The Brigham And Women's Hospital, Inc. | Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease |
US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10900034B2 (en) | 2014-12-03 | 2021-01-26 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
WO2016094872A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
EP3985115A1 (en) | 2014-12-12 | 2022-04-20 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
WO2016094867A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Protected guide rnas (pgrnas) |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
EP3889260A1 (en) | 2014-12-12 | 2021-10-06 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
WO2016100974A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
US12215326B2 (en) | 2014-12-23 | 2025-02-04 | The Broad Institute, Inc. | RNA-targeting system |
WO2016106244A1 (en) | 2014-12-24 | 2016-06-30 | The Broad Institute Inc. | Crispr having or associated with destabilization domains |
EP3702456A1 (en) | 2014-12-24 | 2020-09-02 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
US12116619B2 (en) | 2014-12-30 | 2024-10-15 | The Broad Institute, Inc. | CRISPR mediated in vivo modeling and genetic screening of tumor growth and metastasis |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
US20180000970A1 (en) * | 2015-01-14 | 2018-01-04 | Temple University - of Commonwealth System of Higher Eduction | Rna guided eradication of herpes simplex type i and other related herpesviruses |
US10676726B2 (en) | 2015-02-09 | 2020-06-09 | Duke University | Compositions and methods for epigenome editing |
US12215366B2 (en) | 2015-02-09 | 2025-02-04 | Duke University | Compositions and methods for epigenome editing |
US11155796B2 (en) | 2015-02-09 | 2021-10-26 | Duke University | Compositions and methods for epigenome editing |
US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
US11535846B2 (en) | 2015-04-06 | 2022-12-27 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation |
US11851652B2 (en) | 2015-04-06 | 2023-12-26 | The Board Of Trustees Of The Leland Stanford Junior | Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB |
US20160346362A1 (en) * | 2015-05-29 | 2016-12-01 | Agenovir Corporation | Methods and compositions for treating cytomegalovirus infections |
US20160346361A1 (en) * | 2015-05-29 | 2016-12-01 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
US10117911B2 (en) | 2015-05-29 | 2018-11-06 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
WO2016197132A1 (en) * | 2015-06-04 | 2016-12-08 | Protiva Biotherapeutics Inc. | Treating hepatitis b virus infection using crispr |
US10626393B2 (en) | 2015-06-04 | 2020-04-21 | Arbutus Biopharma Corporation | Delivering CRISPR therapeutics with lipid nanoparticles |
EP3666895A1 (en) | 2015-06-18 | 2020-06-17 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US11773412B2 (en) | 2015-06-18 | 2023-10-03 | The Broad Institute, Inc. | Crispr enzymes and systems |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
EP4159856A1 (en) | 2015-06-18 | 2023-04-05 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2016205764A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
US11060115B2 (en) | 2015-06-18 | 2021-07-13 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11421250B2 (en) | 2015-06-18 | 2022-08-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11414657B2 (en) | 2015-06-29 | 2022-08-16 | Ionis Pharmaceuticals, Inc. | Modified CRISPR RNA and modified single CRISPR RNA and uses thereof |
WO2017004191A1 (en) * | 2015-06-30 | 2017-01-05 | Regents Of The University Of Minnesota | Transgenic mouse for expressing apobec3b |
JP2017018026A (en) * | 2015-07-09 | 2017-01-26 | 国立研究開発法人医薬基盤・健康・栄養研究所 | Method for gene-targeting of pluripotent stem cells |
US10676735B2 (en) | 2015-07-22 | 2020-06-09 | Duke University | High-throughput screening of regulatory element function with epigenome editing technologies |
EP4273782A2 (en) | 2015-07-25 | 2023-11-08 | Frost, Habib | A system, device and a method for providing a therapy or a cure for cancer and other pathological states |
US11427817B2 (en) | 2015-08-25 | 2022-08-30 | Duke University | Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases |
CN108601883A (en) * | 2015-09-29 | 2018-09-28 | 埃吉诺维亚公司 | Delivering method and composition |
JP2018532403A (en) * | 2015-09-29 | 2018-11-08 | アジェノビア コーポレーション | Delivery methods and compositions |
WO2017058793A1 (en) * | 2015-09-29 | 2017-04-06 | Agenovir Corporation | Delivery methods and compositions |
WO2017058795A1 (en) * | 2015-09-29 | 2017-04-06 | Agenovir Corporation | Compositions and methods for latent viral transcription regulation |
US20170087224A1 (en) * | 2015-09-29 | 2017-03-30 | Agenovir Corporation | Delivery methods and compositions |
EP3355954A4 (en) * | 2015-09-29 | 2020-01-08 | Agenovir Corporation | Delivery methods and compositions |
US10925263B2 (en) | 2015-10-08 | 2021-02-23 | President And Fellows Of Harvard College | Multiplexed genome editing |
WO2017062723A1 (en) * | 2015-10-08 | 2017-04-13 | President And Fellows Of Harvard College | Multiplexed genome editing |
US11064684B2 (en) | 2015-10-08 | 2021-07-20 | President And Fellows Of Harvard College | Multiplexed genome editing |
US10959413B2 (en) | 2015-10-08 | 2021-03-30 | President And Fellows Of Harvard College | Multiplexed genome editing |
US12133515B2 (en) | 2015-10-08 | 2024-11-05 | President And Fellows Of Harvard College | Multiplexed genome editing |
EP3359661A4 (en) * | 2015-10-08 | 2019-05-15 | President and Fellows of Harvard College | MULTIPLEXED EDITION OF GENOME |
US10375938B2 (en) | 2015-10-08 | 2019-08-13 | President And Fellows Of Harvard College | Multiplexed genome editing |
US11421251B2 (en) | 2015-10-13 | 2022-08-23 | Duke University | Genome engineering with type I CRISPR systems in eukaryotic cells |
WO2017070284A1 (en) * | 2015-10-21 | 2017-04-27 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating hepatitis b virus |
US12215318B2 (en) | 2015-10-22 | 2025-02-04 | The Broad Institute, Inc. | Crispr enzymes and systems |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
WO2017075475A1 (en) | 2015-10-30 | 2017-05-04 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating herpes simplex virus |
EP3373938A4 (en) * | 2015-11-09 | 2019-05-15 | Seattle Children's Hospital (DBA Seattle Children's Research Institute) | NEW RNA-BASED VECTOR SYSTEM FOR TRANSIENT AND STABLE GENE EXPRESSION |
US11884717B2 (en) | 2015-11-19 | 2024-01-30 | The Brigham And Women's Hospital, Inc. | Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
US11001622B2 (en) | 2015-11-19 | 2021-05-11 | The Brigham And Women's Hospital, Inc. | Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein |
US11884917B2 (en) | 2016-03-17 | 2024-01-30 | Imba—Institut Für Molekulare Biotechnologie Gmbh | Conditional CRISPR sgRNA expression |
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
WO2017158153A1 (en) | 2016-03-17 | 2017-09-21 | Imba - Institut Für Molekulare Biotechnologie Gmbh | Conditional crispr sgrna expression |
US11427861B2 (en) | 2016-03-17 | 2022-08-30 | Massachusetts Institute Of Technology | Methods for identifying and modulating co-occurant cellular phenotypes |
WO2017180915A3 (en) * | 2016-04-13 | 2017-11-23 | Duke University | Crispr/cas9-based repressors for silencing gene targets in vivo and methods of use |
WO2017192172A1 (en) * | 2016-05-05 | 2017-11-09 | Temple University - Of The Commonwealth System Of Higher Education | Rna guided eradication of varicella zoster virus |
US12116623B2 (en) | 2016-05-25 | 2024-10-15 | Arizona Board Of Regents On Behalf Of Arizona State University | Portable, low-cost pathogen detection and strain identification platform |
US11371081B2 (en) * | 2016-05-25 | 2022-06-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Portable, low-cost pathogen detection and strain identification platform |
WO2017210380A1 (en) * | 2016-06-01 | 2017-12-07 | Excision Biotherapeutics, Inc. | Compositions and methods of treatment for lytic and lysogenic viruses |
JP2022133441A (en) * | 2016-06-03 | 2022-09-13 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Diet-controlled expression of nucleic acids encoding Cas9 nuclease and uses thereof |
JP7436145B2 (en) | 2016-06-03 | 2024-02-21 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Dietary control expression of nucleic acids encoding Cas9 nuclease and uses thereof |
JP2019517262A (en) * | 2016-06-03 | 2019-06-24 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Dietary control expression of nucleic acid encoding Cas9 nuclease and use thereof |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
US12214056B2 (en) | 2016-07-19 | 2025-02-04 | Duke University | Therapeutic applications of CPF1-based genome editing |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11352647B2 (en) | 2016-08-17 | 2022-06-07 | The Broad Institute, Inc. | Crispr enzymes and systems |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
WO2018091971A1 (en) | 2016-11-15 | 2018-05-24 | Genomic Vision | Method for the monitoring of modified nucleases induced-gene editing events by molecular combing |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11466271B2 (en) | 2017-02-06 | 2022-10-11 | Novartis Ag | Compositions and methods for the treatment of hemoglobinopathies |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US12161694B2 (en) | 2017-03-24 | 2024-12-10 | The Broad Institute, Inc. | Methods and compositions for regulating innate lymphoid cell inflammatory responses |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
WO2018191553A1 (en) | 2017-04-12 | 2018-10-18 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
WO2018191520A1 (en) | 2017-04-12 | 2018-10-18 | The Broad Institute, Inc. | Respiratory and sweat gland ionocytes |
US12058986B2 (en) | 2017-04-20 | 2024-08-13 | Egenesis, Inc. | Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements |
WO2018195486A1 (en) | 2017-04-21 | 2018-10-25 | The Broad Institute, Inc. | Targeted delivery to beta cells |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11866697B2 (en) | 2017-05-18 | 2024-01-09 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US11603544B2 (en) | 2017-06-05 | 2023-03-14 | Fred Hutchinson Cancer Center | Genomic safe harbors for genetic therapies in human stem cells and engineered nanoparticles to provide targeted genetic therapies |
US11897953B2 (en) | 2017-06-14 | 2024-02-13 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2018234239A1 (en) * | 2017-06-19 | 2018-12-27 | Cellectis | Anti-hbv combination therapies involving specific endonucleases |
WO2019005884A1 (en) | 2017-06-26 | 2019-01-03 | The Broad Institute, Inc. | Crispr/cas-adenine deaminase based compositions, systems, and methods for targeted nucleic acid editing |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
WO2019018440A1 (en) | 2017-07-17 | 2019-01-24 | The Broad Institute, Inc. | Cell atlas of the healthy and ulcerative colitis human colon |
US12105089B2 (en) | 2017-07-17 | 2024-10-01 | The Broad Institute, Inc. | Cell atlas of the healthy and ulcerative colitis human colon |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
WO2019071054A1 (en) | 2017-10-04 | 2019-04-11 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
US11680296B2 (en) | 2017-10-16 | 2023-06-20 | Massachusetts Institute Of Technology | Mycobacterium tuberculosis host-pathogen interaction |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11578118B2 (en) | 2017-10-20 | 2023-02-14 | Fred Hutchinson Cancer Center | Systems and methods to produce B cells genetically modified to express selected antibodies |
US12227578B2 (en) | 2017-11-07 | 2025-02-18 | The Broad Institute, Inc. | Modulation of intestinal epithelial cell differentiation, maintenance and/or function through T cell action |
US12171783B2 (en) | 2017-11-13 | 2024-12-24 | The Broad Institute, Inc. | Methods and compositions for targeting developmental and oncogenic programs in H3K27M gliomas |
US12221720B2 (en) | 2017-11-13 | 2025-02-11 | The Broad Institute, Inc. | Methods for determining spatial and temporal gene expression dynamics during adult neurogenesis in single cells |
WO2019099943A1 (en) * | 2017-11-16 | 2019-05-23 | Astrazeneca Ab | Compositions and methods for improving the efficacy of cas9-based knock-in strategies |
US11332736B2 (en) | 2017-12-07 | 2022-05-17 | The Broad Institute, Inc. | Methods and compositions for multiplexing single cell and single nuclei sequencing |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
WO2019204585A1 (en) | 2018-04-19 | 2019-10-24 | Massachusetts Institute Of Technology | Single-stranded break detection in double-stranded dna |
WO2019206927A1 (en) | 2018-04-24 | 2019-10-31 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US12180490B2 (en) | 2018-04-24 | 2024-12-31 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
EP3560330A1 (en) | 2018-04-24 | 2019-10-30 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
WO2019210268A2 (en) | 2018-04-27 | 2019-10-31 | The Broad Institute, Inc. | Sequencing-based proteomics |
WO2019213660A2 (en) | 2018-05-04 | 2019-11-07 | The Broad Institute, Inc. | Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses |
US12226479B2 (en) | 2018-05-11 | 2025-02-18 | The General Hospital Corporation | Methods and compositions of use of CD8+ tumor infiltrating lymphocyte subtypes and gene signatures thereof |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
WO2019232542A2 (en) | 2018-06-01 | 2019-12-05 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
RU2703532C1 (en) * | 2018-06-15 | 2019-10-21 | ФБУН Центральный НИИ эпидемиологии Роспотребнадзора | System for activating human apobec/aid cytidine deaminases and/or human uracil-dna-glycosylase ung and its use for eliminating ccc dna of hepatitis b virus from human cells, particularly hepatocytes |
WO2020006036A1 (en) | 2018-06-26 | 2020-01-02 | Massachusetts Institute Of Technology | Crispr effector system based amplification methods, systems, and diagnostics |
WO2020006049A1 (en) | 2018-06-26 | 2020-01-02 | The Broad Institute, Inc. | Crispr/cas and transposase based amplification compositions, systems and methods |
WO2020033601A1 (en) | 2018-08-07 | 2020-02-13 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
WO2020041380A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | Methods and compositions for optochemical control of crispr-cas9 |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
CN109321596B (en) * | 2018-09-05 | 2021-12-17 | 暨南大学 | Preparation method and application of protein-entrapped exosome |
CN109321596A (en) * | 2018-09-05 | 2019-02-12 | 暨南大学 | A kind of preparation method and application of protein-encapsulated exosomes |
WO2020051507A1 (en) | 2018-09-06 | 2020-03-12 | The Broad Institute, Inc. | Nucleic acid assemblies for use in targeted delivery |
EP4268831A2 (en) | 2018-09-12 | 2023-11-01 | Fred Hutchinson Cancer Center | Reducing cd33 expression to selectively protect therapeutic cells |
US11447527B2 (en) | 2018-09-18 | 2022-09-20 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
US11505578B2 (en) | 2018-09-18 | 2022-11-22 | Vnv Newco Inc. | Endogenous Gag-based capsids and uses thereof |
WO2020077178A1 (en) * | 2018-10-12 | 2020-04-16 | Ann & Robert H. Lurie Children's Hospital of Chicago | Plga-peg/pei nanoparticles and methods of use |
US20210388393A1 (en) * | 2018-10-12 | 2021-12-16 | Ann & Robert H. Lurie Children's Hospital of Chicago | Plga-peg/pei nanoparticles and methods of use |
WO2020077236A1 (en) | 2018-10-12 | 2020-04-16 | The Broad Institute, Inc. | Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
US12165743B2 (en) | 2018-11-09 | 2024-12-10 | The Broad Institute, Inc. | Compressed sensing for screening and tissue imaging |
WO2020106772A1 (en) * | 2018-11-19 | 2020-05-28 | Exosome Therapeutics, Inc. | Exosome loaded therapeutics for the treatment of non-alcoholic steatohepatitis, diabetes mellitus type 1 and type 2, atherosclerotic cardiovascular disease, and alpha 1 antitrypsin deficiency |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
US11384344B2 (en) | 2018-12-17 | 2022-07-12 | The Broad Institute, Inc. | CRISPR-associated transposase systems and methods of use thereof |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
WO2020191102A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
WO2020229533A1 (en) | 2019-05-13 | 2020-11-19 | KWS SAAT SE & Co. KGaA | Drought tolerance in corn |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
WO2020239680A2 (en) | 2019-05-25 | 2020-12-03 | KWS SAAT SE & Co. KGaA | Haploid induction enhancer |
WO2020243661A1 (en) | 2019-05-31 | 2020-12-03 | The Broad Institute, Inc. | Methods for treating metabolic disorders by targeting adcy5 |
WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
EP3772542A1 (en) | 2019-08-07 | 2021-02-10 | KWS SAAT SE & Co. KGaA | Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2 |
WO2021030642A1 (en) | 2019-08-14 | 2021-02-18 | Memorial Sloan Kettering Cancer Center | Methods of treating p53 mutant cancers using ogdh inhibitors cross-reference to related applications |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
WO2021074367A1 (en) | 2019-10-17 | 2021-04-22 | KWS SAAT SE & Co. KGaA | Enhanced disease resistance of crops by downregulation of repressor genes |
EP3872190A1 (en) | 2020-02-26 | 2021-09-01 | Antibodies-Online GmbH | A method of using cut&run or cut&tag to validate crispr-cas targeting |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
WO2021239986A1 (en) | 2020-05-29 | 2021-12-02 | KWS SAAT SE & Co. KGaA | Plant haploid induction |
EP4001429A1 (en) | 2020-11-16 | 2022-05-25 | Antibodies-Online GmbH | Analysis of crispr-cas binding and cleavage sites followed by high-throughput sequencing (abc-seq) |
WO2023004375A3 (en) * | 2021-07-22 | 2023-04-13 | Emendobio Inc. | Hepatitis b virus (hbv) knockouts |
WO2023006933A1 (en) | 2021-07-30 | 2023-02-02 | KWS SAAT SE & Co. KGaA | Plants with improved digestibility and marker haplotypes |
US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
WO2023169410A1 (en) | 2022-03-08 | 2023-09-14 | 中国科学院遗传与发育生物学研究所 | Cytosine deaminase and use thereof in base editing |
WO2023232109A1 (en) | 2022-06-01 | 2023-12-07 | 中国科学院遗传与发育生物学研究所 | Novel crispr gene editing system |
US12098399B2 (en) | 2022-06-24 | 2024-09-24 | Tune Therapeutics, Inc. | Compositions, systems, and methods for epigenetic regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) gene expression |
WO2024040254A3 (en) * | 2022-08-19 | 2024-05-30 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression |
WO2024039236A1 (en) * | 2022-08-19 | 2024-02-22 | 서울대학교산학협력단 | System for substance delivery and gene editing within germ cells using exosomes |
US12221608B2 (en) | 2022-08-19 | 2025-02-11 | Tune Therapeutics, Inc. | Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression |
WO2024042199A1 (en) | 2022-08-26 | 2024-02-29 | KWS SAAT SE & Co. KGaA | Use of paired genes in hybrid breeding |
WO2024186890A1 (en) * | 2023-03-06 | 2024-09-12 | Intellia Therapeutics, Inc. | Compositions and methods for hepatitis b virus (hbv) genome editing |
WO2024236547A1 (en) | 2023-05-18 | 2024-11-21 | Inceptor Bio, Llc | Modified phagocytic cells expressing chimeric antigen receptors comprising a herpes virus entry mediator (hvem) co-stimulatory domain and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105899658B (en) | 2020-02-18 |
US20200389425A1 (en) | 2020-12-10 |
IL246117B (en) | 2020-03-31 |
US20160317677A1 (en) | 2016-11-03 |
BR112016013207A2 (en) | 2017-09-26 |
EP3540051A1 (en) | 2019-09-18 |
EP3540051B1 (en) | 2022-08-17 |
SG10201804975PA (en) | 2018-07-30 |
RU2016128077A (en) | 2018-12-06 |
KR20160089530A (en) | 2016-07-27 |
AU2014361784A1 (en) | 2016-06-23 |
MX2016007324A (en) | 2017-03-06 |
EP3080261A1 (en) | 2016-10-19 |
RU2016128077A3 (en) | 2018-12-06 |
CN111269902A (en) | 2020-06-12 |
CN105899658A (en) | 2016-08-24 |
JP2017527256A (en) | 2017-09-21 |
EP4183876A1 (en) | 2023-05-24 |
EP3080261B1 (en) | 2019-05-22 |
CA2932479A1 (en) | 2015-06-18 |
IL246117A0 (en) | 2016-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200389425A1 (en) | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders | |
CN107995927B (en) | Delivery and use of CRISPR-CAS systems, vectors and compositions for liver targeting and therapy | |
CN105793425B (en) | Delivery, use and therapeutic applications of CRISPR-CAS systems and compositions for targeting disorders and diseases using viral components | |
DK2931897T3 (en) | CONSTRUCTION, MODIFICATION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION AND THERAPEUTICAL APPLICATIONS | |
US20170349894A1 (en) | Escorted and functionalized guides for crispr-cas systems | |
EP3180426A1 (en) | Genome editing using cas9 nickases | |
EP3230452A1 (en) | Dead guides for crispr transcription factors | |
EP3237615A1 (en) | Crispr having or associated with destabilization domains | |
CA2932436A1 (en) | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders | |
CN105683379A (en) | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells | |
WO2015089486A2 (en) | Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14830911 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2932479 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/007324 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 246117 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2016539225 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016013207 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2014361784 Country of ref document: AU Date of ref document: 20141212 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014830911 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014830911 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167018647 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016128077 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016013207 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160608 |