WO2015093878A1 - Organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same - Google Patents
Organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same Download PDFInfo
- Publication number
- WO2015093878A1 WO2015093878A1 PCT/KR2014/012547 KR2014012547W WO2015093878A1 WO 2015093878 A1 WO2015093878 A1 WO 2015093878A1 KR 2014012547 W KR2014012547 W KR 2014012547W WO 2015093878 A1 WO2015093878 A1 WO 2015093878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substituted
- unsubstituted
- represent
- independently
- membered
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 225
- 239000000463 material Substances 0.000 title abstract description 81
- 125000003118 aryl group Chemical group 0.000 claims description 80
- 239000010410 layer Substances 0.000 claims description 80
- 125000001072 heteroaryl group Chemical group 0.000 claims description 55
- 229910052739 hydrogen Inorganic materials 0.000 claims description 47
- 239000001257 hydrogen Substances 0.000 claims description 47
- 239000012044 organic layer Substances 0.000 claims description 39
- 150000002431 hydrogen Chemical group 0.000 claims description 35
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 claims description 30
- -1 phenylnaphthyl Chemical group 0.000 claims description 29
- 239000002019 doping agent Substances 0.000 claims description 27
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 21
- 229910052736 halogen Inorganic materials 0.000 claims description 20
- 150000002367 halogens Chemical class 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 125000001424 substituent group Chemical group 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 229910052717 sulfur Inorganic materials 0.000 claims description 18
- 125000005842 heteroatom Chemical group 0.000 claims description 17
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 16
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 14
- 125000002950 monocyclic group Chemical group 0.000 claims description 14
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 13
- 229910052805 deuterium Inorganic materials 0.000 claims description 13
- 125000001769 aryl amino group Chemical group 0.000 claims description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims description 12
- 125000000732 arylene group Chemical group 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- 125000003367 polycyclic group Chemical group 0.000 claims description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 125000005104 aryl silyl group Chemical group 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 125000005549 heteroarylene group Chemical group 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 239000004305 biphenyl Substances 0.000 claims description 8
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 7
- 125000002723 alicyclic group Chemical group 0.000 claims description 7
- 235000010290 biphenyl Nutrition 0.000 claims description 7
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 7
- 125000001624 naphthyl group Chemical group 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 125000001041 indolyl group Chemical group 0.000 claims description 6
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 claims description 5
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 claims description 5
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 claims description 5
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000000304 alkynyl group Chemical group 0.000 claims description 3
- 125000000739 C2-C30 alkenyl group Chemical group 0.000 claims description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 2
- 125000003282 alkyl amino group Chemical group 0.000 claims description 2
- 125000004448 alkyl carbonyl group Chemical group 0.000 claims description 2
- 125000004414 alkyl thio group Chemical group 0.000 claims description 2
- 125000005129 aryl carbonyl group Chemical group 0.000 claims description 2
- 125000005110 aryl thio group Chemical group 0.000 claims description 2
- 125000004104 aryloxy group Chemical group 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 125000004986 diarylamino group Chemical group 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 2
- 125000003107 substituted aryl group Chemical group 0.000 claims description 2
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 2
- 125000006822 tri(C1-C30) alkylsilyl group Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 69
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 54
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 40
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 32
- 238000002360 preparation method Methods 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 26
- 238000004440 column chromatography Methods 0.000 description 25
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 230000002829 reductive effect Effects 0.000 description 23
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 20
- 238000000151 deposition Methods 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 235000019341 magnesium sulphate Nutrition 0.000 description 18
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 238000010992 reflux Methods 0.000 description 17
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 239000012153 distilled water Substances 0.000 description 14
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 13
- 0 C[C@]1C=CC(*N[*@@](C2C=CC#CC2)N=C(C(CC2)=CC=C2NC2C=CC=CC2C2S(C)=C=CC=C2)N)=CC1 Chemical compound C[C@]1C=CC(*N[*@@](C2C=CC#CC2)N=C(C(CC2)=CC=C2NC2C=CC=CC2C2S(C)=C=CC=C2)N)=CC1 0.000 description 12
- 230000005525 hole transport Effects 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 8
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 8
- IMKMFBIYHXBKRX-UHFFFAOYSA-M lithium;quinoline-2-carboxylate Chemical compound [Li+].C1=CC=CC2=NC(C(=O)[O-])=CC=C21 IMKMFBIYHXBKRX-UHFFFAOYSA-M 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- ZEEBGORNQSEQBE-UHFFFAOYSA-N [2-(3-phenylphenoxy)-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound C1(=CC(=CC=C1)OC1=NC(=CC(=C1)CN)C(F)(F)F)C1=CC=CC=C1 ZEEBGORNQSEQBE-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 5
- 229910052741 iridium Inorganic materials 0.000 description 5
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 description 5
- 125000004076 pyridyl group Chemical group 0.000 description 5
- 229910000104 sodium hydride Inorganic materials 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 4
- PVCZRPLJMFEXGE-UHFFFAOYSA-N 10-(9H-carbazol-3-yl)-7-phenylbenzo[c]carbazole Chemical compound C1=CC(=CC=2C3=CC=CC=C3NC12)C1=CC=2C=3C4=C(C=CC3N(C2C=C1)C1=CC=CC=C1)C=CC=C4 PVCZRPLJMFEXGE-UHFFFAOYSA-N 0.000 description 4
- BCEMVHZPTKWHDZ-UHFFFAOYSA-N 10-bromo-7-phenylbenzo[c]carbazole Chemical compound C12=CC=C3C=CC=CC3=C2C2=CC(Br)=CC=C2N1C1=CC=CC=C1 BCEMVHZPTKWHDZ-UHFFFAOYSA-N 0.000 description 4
- GJWBRYKOJMOBHH-UHFFFAOYSA-N 9,9-dimethyl-n-[4-(9-phenylcarbazol-3-yl)phenyl]-n-(4-phenylphenyl)fluoren-2-amine Chemical compound C1=C2C(C)(C)C3=CC=CC=C3C2=CC=C1N(C=1C=CC(=CC=1)C=1C=C2C3=CC=CC=C3N(C=3C=CC=CC=3)C2=CC=1)C(C=C1)=CC=C1C1=CC=CC=C1 GJWBRYKOJMOBHH-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- SAHIZENKTPRYSN-UHFFFAOYSA-N [2-[3-(phenoxymethyl)phenoxy]-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound O(C1=CC=CC=C1)CC=1C=C(OC2=NC(=CC(=C2)CN)C(F)(F)F)C=CC=1 SAHIZENKTPRYSN-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 4
- 125000003373 pyrazinyl group Chemical group 0.000 description 4
- 125000000714 pyrimidinyl group Chemical group 0.000 description 4
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 4
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 125000004306 triazinyl group Chemical group 0.000 description 4
- OMDTUSYJJFBYMG-UHFFFAOYSA-N 2,4-bis(9,9-dimethylfluoren-2-yl)-6-naphthalen-2-yl-1,3,5-triazine Chemical compound C1=CC=C2C(C)(C)C3=CC(C=4N=C(N=C(N=4)C=4C=C5C=CC=CC5=CC=4)C4=CC=C5C6=CC=CC=C6C(C5=C4)(C)C)=CC=C3C2=C1 OMDTUSYJJFBYMG-UHFFFAOYSA-N 0.000 description 3
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 3
- 229940126062 Compound A Drugs 0.000 description 3
- TXCDCPKCNAJMEE-UHFFFAOYSA-N Dibenzofuran Natural products C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 3
- 150000004770 chalcogenides Chemical class 0.000 description 3
- 150000004826 dibenzofurans Chemical class 0.000 description 3
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical class C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 3
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene sulfoxide Natural products C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 3
- 125000005509 dibenzothiophenyl group Chemical group 0.000 description 3
- 150000002220 fluorenes Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- MESMXXUBQDBBSR-UHFFFAOYSA-N n,9-diphenyl-n-[4-[4-(n-(9-phenylcarbazol-3-yl)anilino)phenyl]phenyl]carbazol-3-amine Chemical compound C1=CC=CC=C1N(C=1C=C2C3=CC=CC=C3N(C=3C=CC=CC=3)C2=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C3C4=CC=CC=C4N(C=4C=CC=CC=4)C3=CC=2)C=C1 MESMXXUBQDBBSR-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 3
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 2
- YHAHNQXQOZYZLP-UHFFFAOYSA-N 10-bromo-7h-benzo[c]carbazole Chemical compound C1=CC=CC2=C(C=3C(=CC=C(C=3)Br)N3)C3=CC=C21 YHAHNQXQOZYZLP-UHFFFAOYSA-N 0.000 description 2
- SPSSDDOTEZKOOV-UHFFFAOYSA-N 2,3-dichloroquinoxaline Chemical compound C1=CC=C2N=C(Cl)C(Cl)=NC2=C1 SPSSDDOTEZKOOV-UHFFFAOYSA-N 0.000 description 2
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 2
- GKTLHQFSIDFAJH-UHFFFAOYSA-N 3-(9h-carbazol-3-yl)-9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=C(C=3C=C4C5=CC=CC=C5NC4=CC=3)C=C2C2=CC=CC=C21 GKTLHQFSIDFAJH-UHFFFAOYSA-N 0.000 description 2
- UGFOTZLGPPWNPY-UHFFFAOYSA-N 7h-benzo[c]carbazole Chemical compound C1=CC=CC2=C3C4=CC=CC=C4NC3=CC=C21 UGFOTZLGPPWNPY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- ABRVLXLNVJHDRQ-UHFFFAOYSA-N [2-pyridin-3-yl-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound FC(C1=CC(=CC(=N1)C=1C=NC=CC=1)CN)(F)F ABRVLXLNVJHDRQ-UHFFFAOYSA-N 0.000 description 2
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 229940117389 dichlorobenzene Drugs 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 2
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 2
- LCPYTQFVQRPZCV-UHFFFAOYSA-N n-[4-(4-carbazol-9-ylphenyl)phenyl]-4-phenyl-n-(4-phenylphenyl)aniline Chemical compound C1=CC=CC=C1C1=CC=C(N(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 LCPYTQFVQRPZCV-UHFFFAOYSA-N 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 2
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- SSJXIUAHEKJCMH-PHDIDXHHSA-N (1r,2r)-cyclohexane-1,2-diamine Chemical compound N[C@@H]1CCCC[C@H]1N SSJXIUAHEKJCMH-PHDIDXHHSA-N 0.000 description 1
- 125000006652 (C3-C12) cycloalkyl group Chemical group 0.000 description 1
- 125000006736 (C6-C20) aryl group Chemical group 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 1
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- ORPVVAKYSXQCJI-UHFFFAOYSA-N 1-bromo-2-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1Br ORPVVAKYSXQCJI-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- HIYWOHBEPVGIQN-UHFFFAOYSA-N 1h-benzo[g]indole Chemical group C1=CC=CC2=C(NC=C3)C3=CC=C21 HIYWOHBEPVGIQN-UHFFFAOYSA-N 0.000 description 1
- IIGPSNYFBIEPKR-UHFFFAOYSA-N 2,4,6-tris(9,9-dimethylfluoren-2-yl)-1,3,5-triazine Chemical compound C1=CC=C2C(C)(C)C3=CC(C=4N=C(N=C(N=4)C=4C=C5C(C)(C)C6=CC=CC=C6C5=CC=4)C4=CC=C5C6=CC=CC=C6C(C5=C4)(C)C)=CC=C3C2=C1 IIGPSNYFBIEPKR-UHFFFAOYSA-N 0.000 description 1
- QNBJYUUUYZVIJP-UHFFFAOYSA-N 2,4-dichloroquinoline Chemical compound C1=CC=CC2=NC(Cl)=CC(Cl)=C21 QNBJYUUUYZVIJP-UHFFFAOYSA-N 0.000 description 1
- VOZBMWWMIQGZGM-UHFFFAOYSA-N 2-[4-(9,10-dinaphthalen-2-ylanthracen-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC=C(C=2C=C3C(C=4C=C5C=CC=CC5=CC=4)=C4C=CC=CC4=C(C=4C=C5C=CC=CC5=CC=4)C3=CC=2)C=C1 VOZBMWWMIQGZGM-UHFFFAOYSA-N 0.000 description 1
- PJRGCJBBXGNEGD-UHFFFAOYSA-N 2-bromo-9h-carbazole Chemical compound C1=CC=C2C3=CC=C(Br)C=C3NC2=C1 PJRGCJBBXGNEGD-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- ZGNCKIDXVHSMJL-UHFFFAOYSA-N 2-methylquinoline-8-carboxylic acid Chemical compound C1=CC=C(C(O)=O)C2=NC(C)=CC=C21 ZGNCKIDXVHSMJL-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- YXVFYQXJAXKLAK-UHFFFAOYSA-M 4-phenylphenolate Chemical compound C1=CC([O-])=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-M 0.000 description 1
- NXTRQJAJPCXJPY-UHFFFAOYSA-N 910058-11-6 Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C=1C2=CC=CC=C2C=CC=1)C=1C2=CC=CC=C2C=CC=1)C1=CC=CC=C1 NXTRQJAJPCXJPY-UHFFFAOYSA-N 0.000 description 1
- WGUUKVJNVYAFFI-UHFFFAOYSA-N 9h-carbazol-3-ylboronic acid Chemical compound C1=CC=C2C3=CC(B(O)O)=CC=C3NC2=C1 WGUUKVJNVYAFFI-UHFFFAOYSA-N 0.000 description 1
- PLCBTXDWJMANBN-UHFFFAOYSA-N C1C(C=CCC2)=C2C2C=CC=CC12 Chemical compound C1C(C=CCC2)=C2C2C=CC=CC12 PLCBTXDWJMANBN-UHFFFAOYSA-N 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N Cs2O Inorganic materials [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910003564 SiAlON Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N anhydrous quinoline Natural products N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001555 benzenes Chemical group 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000002047 benzodioxolyl group Chemical group O1OC(C2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000005878 benzonaphthofuranyl group Chemical group 0.000 description 1
- 125000005874 benzothiadiazolyl group Chemical group 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N binaphthyl group Chemical group C1(=CC=CC2=CC=CC=C12)C1=CC=CC2=CC=CC=C12 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 125000005299 dibenzofluorenyl group Chemical group C1(=CC=CC2=C3C(=C4C=5C=CC=CC5CC4=C21)C=CC=C3)* 0.000 description 1
- AKUNKIJLSDQFLS-UHFFFAOYSA-M dicesium;hydroxide Chemical compound [OH-].[Cs+].[Cs+] AKUNKIJLSDQFLS-UHFFFAOYSA-M 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical class [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KPTRDYONBVUWPD-UHFFFAOYSA-N naphthalen-2-ylboronic acid Chemical compound C1=CC=CC2=CC(B(O)O)=CC=C21 KPTRDYONBVUWPD-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical group 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- SIOXPEMLGUPBBT-UHFFFAOYSA-M picolinate Chemical compound [O-]C(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-M 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- VNFWTIYUKDMAOP-UHFFFAOYSA-N sphos Chemical compound COC1=CC=CC(OC)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 VNFWTIYUKDMAOP-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 150000003413 spiro compounds Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 125000005247 tetrazinyl group Chemical group N1=NN=NC(=C1)* 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000002061 vacuum sublimation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/048—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/20—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/90—Multiple hosts in the emissive layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
Definitions
- the present disclosure relates to an organic electroluminescent compound, and a multi-component host material and an organic electroluminescent device comprising the same.
- An electroluminescent (EL) device is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
- An organic EL device was first developed by Eastman Kodak, by using small aromatic diamine molecules and aluminum complexes as materials to form a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
- the most important factor determining luminous efficiency in the organic EL device is light-emitting materials.
- fluorescent materials have been widely used as light-emitting materials.
- phosphorescent materials theoretically enhance luminous efficiency by four (4) times compared to fluorescent materials, phosphorescent light-emitting materials are widely being researched.
- Iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp) 2) , tris(2-phenylpyridine)iridium (Ir(ppy) 3 ) and bis(4,6-difluorophenylpyridinato-N,C2)picolinate iridium (Firpic) as red-, green- and blue-emitting materials, respectively.
- CBP 4,4’-N,N’-dicarbazol-biphenyl
- BCP bathocuproine
- BAlq aluminum(III) bis(2-methyl-8-quinolinate)(4-phenylphenolate)
- Korean Patent Appln. Laying-Open No. 10-2010-0105501 discloses a compound for an organic electroluminescent device, in which one of nitrogen atoms of biscarbazole is substituted, via phenylene, with quinoxaline. However, it does not disclose a compound in which one of the nitrogen atoms of biscarbazole is substituted, directly or via a linker, with naphthyridine or a compound in which one of nitrogen atoms of biscarbazole is substituted, directly or via a heteroarylene, with quinoxaline.
- the objective of the present disclosure is to provide an organic electroluminescent compound, which can provide an organic electroluminescent device showing long lifespan, low driving voltage, and good current and power efficiencies, and a multi-component host material and an organic electroluminescent device comprising the same.
- L 1 represents a single bond, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C6-C30)arylene;
- X 1 represents -NR 1 -, -CR 2 R 3 -, -O-, or -S-;
- X 2 to X 6 each independently, represent -CR 4 - or -N-;
- Ar 1 represents hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl;
- Y 1 to Y 4 and Y 13 to Y 16 each independently, represent -N- or -CR 5 -;
- Y 5 to Y 12 each independently, represent , -N-, or -CR 6 -;
- R 1 to R 3 each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl;
- R 4 to R 6 each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted di(C6-C30)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (3- to 30-membered), mono- or polycyclic, alicyclic or aromatic ring whose carbon atom(
- a and b each independently represent 0 or 1.
- An organic electroluminescent compound and a multi-component host material of the present disclosure can provide an organic electroluminescent device having low driving voltage, good current and power efficiencies, and remarkably improved lifespan.
- the present disclosure provides the organic electroluminescent compound of formula 1 above, an organic electroluminescent material comprising the same, and an organic electroluminescent device comprising the compound.
- alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.
- Alkenyl includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
- Alkynyl includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.
- Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
- aryl(ene) indicates a monocyclic or fused ring derived from an aromatic hydrocarbon; may be a spiro compound in which two rings are connected via one atom; and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, spirobifluorenyl, etc.
- substituted in the expression, “substituted or unsubstituted,” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent.
- L 1 represents a single bond, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C6-C30)arylene.
- L 1 may represent a single bond, a substituted or unsubstituted (5- to 21-membered)heteroarylene, or a substituted or unsubstituted (C6-C21)arylene.
- L 1 may represent a single bond.
- X 1 represents -NR 1 -, -CR 2 R 3 -, -O-, or -S-. Specifically, X 1 may represent -NR 1 -.
- X 2 to X 6 each independently, represent -CR 4 - or -N-.
- all of X 2 to X 6 may represent -CR 4 -; or one of X 2 to X 6 may represent -N-, and the remainders of X 2 to X 6 may represent -CR 4 -.
- L 1 is not a substituted or unsubstituted (C6-C30)arylene, and Ar 1 is not hydrogen.
- X 2 represents -N-
- L 1 may represent a single bond.
- Ar 1 represents hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl.
- Ar 1 may represent, preferably hydrogen, or a substituted or unsubstituted (C6-C21)aryl; and more preferably hydrogen, or a (C6-C18)aryl unsubstituted or substituted with a (C1-C10)alkyl, a cyano, a (C6-C13)aryl or a (5- to 13-membered)heteroaryl.
- Ar 1 may represent hydrogen, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted phenylnaphthyl, or a substituted or unsubstituted naphthylphenyl.
- Ar 1 may represent hydrogen; or a phenyl, biphenyl, naphthyl, terphenyl, anthracenyl, phenanthrenyl, phenylnaphthyl, or naphthylphenyl unsubstituted or substituted with a (C1-C4)alkyl, a cyano, or a pyridyl.
- Ar 1 represents hydrogen
- at least one of X 2 to X 6 may represent -CR 4 - wherein R 4 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl.
- At least one of X 2 to X 6 may represent -CR 4 - wherein R 4 represents a substituted or unsubstituted (C6-C21)aryl, or a substituted or unsubstituted (5- to 21-membered)heteroaryl; and even more preferably, one of X 2 to X 6 may represent -CR 4 - wherein R 4 represents a substituted or unsubstituted (C6-C18)aryl.
- Y 1 to Y 4 and Y 13 to Y 16 each independently, represent -N- or -CR 5 -; and preferably -CR 5 -.
- Y 1 to Y 4 may represent -CH-; or one of Y 1 to Y 4 may represent -CR 5 - (wherein R 5 is not hydrogen), the remainders of Y 1 to Y 4 may represent -CH-; or two of Y 1 to Y 4 may represent -CH-, the remainders of Y 1 to Y 4 may represent -CR 5 - (wherein R 5 is not hydrogen).
- Y 13 to Y 16 may represent -CH-; or one of Y 13 to Y 16 may represent -CR 5 - (wherein R 5 is not hydrogen), the remainders of Y 13 to Y 16 may represent -CH-; or two of Y 13 to Y 16 may represent -CH-, the remainders of Y 13 to Y 16 may represent -CR 5 - (wherein R 5 is not hydrogen).
- Y 5 to Y 12 each independently, represent , -N-, or -CR 6 -.
- Y 5 to Y 12 each independently, represent or -CR 6 -.
- one of Y 5 to Y 8 may represent , the remainders of Y 5 to Y 8 may represent -CH-.
- one of Y 9 to Y 12 may represent , the remainders of Y 9 to Y 12 may represent -CH-; or one of Y 9 to Y 12 may represent , the two of Y 9 to Y 12 may represent -CR 6 - (wherein R 6 is not hydrogen), the remainder may represent -CH-.
- R 1 to R 3 each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl.
- R 1 to R 3 each independently, may represent preferably a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C6-C21)aryl, a substituted or unsubstituted (5- to 21-membered)heteroaryl, a substituted or unsubstituted (C5-C21)cycloalkyl, or a substituted or unsubstituted (5- to 7-membered)heterocycloalkyl; more preferably a substituted or unsubstituted (C1-C10)alkyl, or a substituted or unsubstituted (C6-C18)aryl; and even more preferably, an unsubstituted (C1-C10)alkyl or an unsubstituted (C6-C18)aryl.
- R 2 and R 3 are the same.
- R 1 may represent phenyl, biphenyl, or naphthyl
- R 2 may represent a (C1-C4)alkyl or phenyl
- R 3 may represent a (C1-C4)alkyl or phenyl.
- R 4 to R 6 each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted di(C6-C30)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (3- to 30-membered), mono- or polycyclic, alicyclic or aromatic ring whose carbon atom(
- R 4 to R 6 each independently, represent preferably, hydrogen, a halogen, a cyano, a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C5-C21)cycloalkyl, a substituted or unsubstituted (C6-C21)aryl, a substituted or unsubstituted (5- to 21-membered)heteroaryl, or a substituted or unsubstituted di(C6-C21)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (5- to 21-membered), mono- or polycyclic aromatic ring whose carbon atom(s) may be replaced with one or two hetero atoms selected from nitrogen, oxygen, and sulfur.
- R 4 represents hydrogen, or a substituted or unsubstituted (C6-C18)aryl.
- R 4 may represent hydrogen, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted phenylnaphthyl, or a substituted or unsubstituted naphthylphenyl.
- R 5 and R 6 represent hydrogen, a cyano, a substituted or unsubstituted (C1-C10)alkyl, a substituted or unsubstituted (C5-C18)cycloalkyl, a substituted or unsubstituted (C6-C18)aryl, or a substituted or unsubstituted di(C6-C18)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (5- to 18-membered), mono- or polycyclic aromatic ring whose carbon atom(s) may be replaced with a hetero atom(s) selected from nitrogen, oxygen, and sulfur.
- R 5 and R 6 each independently, may represent hydrogen, a cyano, a (C1-C4)alkyl, phenyl, cyclohexyl, or di(phenyl)amino, or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted benzene ring, a substituted or unsubstituted thiophene ring, a substituted or unsubstituted furan ring, a substituted or unsubstituted indole ring, a substituted or unsubstituted indene ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted benzothiophene ring, a substituted or unsubstituted benzofuran ring, or a substituted or unsubstituted benzindole ring.
- L 1 represents a single bond, a substituted or unsubstituted (5- to 21-membered)heteroarylene, or a substituted or unsubstituted (C6-C21)arylene;
- X 1 represents -NR 1 -, -CR 2 R 3 -, -O-, or -S-; all of X 2 to X 6 represent -CR 4 -, or one of X 2 to X 6 represents -N-, and the remainders of X 2 to X 6 represent -CR 4 -, wherein when X 2 is -N-, L 1 is a single bond;
- Ar 1 represents hydrogen, or a substituted or unsubstituted (C6-C21)aryl, wherein when Ar 1 is hydrogen, at least one of R 4 is a substituted or unsubstituted (C6-C21)aryl or a substituted or unsubstituted (5- to 21-membered)hetero
- the compound of formula 1 may be represented by the following formula 2:
- X 1 , Ar 1 , Y 1 to Y 16 , R 4 , L 1 , a, and b are as defined in formula 1 above; c represents an integer of 1 to 4; and when c is 2 or more, each of R 4 may be the same or different.
- L 1 represents a single bond;
- Ar 1 represents a substituted or unsubstituted (C6-C21)aryl, or a substituted or unsubstituted (5- to 21-membered)heteroaryl, and R 4 represents hydrogen.
- the compound of formula 1 may be represented by any one of the following formulae 3 to 5:
- X 1 , Ar 1 , Y 1 to Y 16 , L 1 , R 4 , a, and b are as defined in formula 1; c represents an integer of 1 to 5; and when c is 2 or more, each of R 4 is the same or different.
- Ar 1 when Ar 1 is hydrogen, at least one of R 4 represents a substituted or unsubstituted (C6-C21)aryl, or a substituted or unsubstituted (5- to 21-membered)heteroaryl. More preferably, Ar 1 represents hydrogen; one of R 4 represents a substituted or unsubstituted (C6-C18)aryl, and the remainders of R 4 represent hydrogen.
- organic electroluminescent compound of the present disclosure includes the following, but is not limited thereto:
- the organic electroluminescent compound of formula 1 of the present disclosure can be prepared by a synthetic method known to one skilled in the art. For example, it can be prepared according to any one of the following reaction schemes 1 to 4.
- the present disclosure provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1, and an organic electroluminescent device comprising the material.
- the material may comprise one or more compounds selected from the organic electroluminescent compound of formula 1.
- the mateiral may further comprise a conventional compound(s) which has been comprised for an organic electroluminescent material.
- the organic electroluminescent device of the present disclosure may comprise a first electrode, a second electrode, and at least one organic layer disposed between the first and second electrodes, wherein the organic layer may comprise at least one compound of formula 1.
- the organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, an electron buffer layer, and an electron blocking layer.
- the organic electroluminescent compound of the present disclosure may be comprised in the light-emitting layer.
- the organic electroluminescent compound of the present disclosure may be comprised as a host material.
- the light-emitting layer may further comprise at least one dopant. If necessary, the light-emitting layer may comprise two or more compounds selected from the organic electroluminescent compound of formula 1 of the present disclosure; or may further comprise a second host material other than the organic electroluminescent compound of formula 1 of the present disclosure.
- a phosphorescent host material known in the art may be used as the second host material.
- the compound selected from the group consisting of the compounds of formulae 6 to 11 below is preferable as the second host material in view of driving voltage, lifespan, and luminous efficiency.
- L 4 and L 5 each independently, represent a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (5- to 30-membered)heteroarylene;
- M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl, provided that when h of formula 6 is 1, or i of formula 7 is 1, M is not
- Z 1 and Z 2 each independently, represent -O-, -S-, -N(R 31 )-, or -C(R 32 )(R 33 )-, provided that Z 1 and Z 2 do not simultaneously exist;
- X’ represents -O- or -S-
- ring A represents ring B represents
- D and E each independently, represent -O-, -S-, -N(R 34 )-, or -C(R 35 )(R 36 )-;
- Ar 2 represents a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C6-C30)aryl, provided that Ar 2 is not (wherein X 2 to X 6 and Ar 1 are as defined in formula 1, and * represents a bonding site.);
- R 21 to R 27 each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, or R 28 R 29 R 30 Si-; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (C3-C30), monocyclic or polycyclic, alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur; provided that when h of formula 6 or i of formula 7 is 1, R 26 or R 27 does not form the ring containing Z 1 , Z 2 , D, or E of formulae 8, 9, and 11,
- R 28 to R 30 each independently, represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl;
- R 31 to R 36 each independently, represent hydrogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl;
- R 32 and R 33 may be the same or different;
- R 35 and R 36 may be the same or different;
- h and i each independently, represent an integer of 1 to 3; j, k, l and p, each independently, represent an integer of 0 to 4; r, s, and t, each independently, represent an integer of 1 to 4; and when h, i, j, k, l, p, r, s, or t is an integer of 2 or more, each of (Cz-L 4 ), each of (Cz), each of R 21 , each of R 22 , each of R 23 , each of R 24 , each of R 25 , each of R 26 , or each of R 27 may be the same or different.
- M may represent a substituted or unsubstituted nitrogen-containing (6- to 20-membered)heteroaryl.
- the substituent of M may be a (C1-C20)alkyl; a (C6-C24)aryl unsubstituted or substituted with a (C1-C10)alkyl, a tri(C6-C13)arylsilyl, or a (6- to 13-membered)heteroaryl; a (6- to 20-membered)heteroaryl unsubstituted or substituted with a (C1-C10)alkyl, a tri(C6-C13)arylsilyl, or a (C6-C24)aryl; or a tri(C6-C20)arylsilyl.
- M may represent a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrazinyl, a substituted or unsubstituted quinazolinyl, or a substituted or unsubstituted phenanthrolinyl.
- At least one of R 26 and R 27 of formulae 6 and 7, or at least one of R 21 and R 22 of formulae 8 to 10 may be a substituted or unsubstituted carbazolyl, a substituted or unsubstituted benzocarbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted naphthobenzothiophenyl, a substituted or unsubstituted dibenzofuranyl, a substituted or unsubstituted naphthobenzofuranyl, a (C6-C18)aryl substituted with a substituted or unsubstituted carbazolyl, a (C6-C18)aryl substituted with a substituted or unsubstituted benzocarbazolyl, a (C6-C18)aryl substituted with a substituted or unsubstituted dibenzothiophenyl, a (C6-C
- At least one of R 26 and R 27 , or at least one of R 21 and R 22 may represent a substituted or unsubstituted nitrogen-containing (6- to 20-membered)heteroaryl; or may have, as a substituent, a substituted or unsubstituted nitrogen-containing (6- to 20-membered)heteroaryl.
- the substituted or unsubstituted nitrogen-containing heteroaryl may represent a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrazinyl, a substituted or unsubstituted quinazolinyl, or a substituted or unsubstituted phenanthrolinyl.
- D and E each independently, may be preferably selected from -O-, -S-, and -N(R 34 )-, provided that both X and Y are not - N(R 34 )-, simultaneously.
- X and Y each independently, may be selected from -O- and -S-.
- X and Y each independently, may be selected from -O- and -S-; and at least one of X and Y may be -S-.
- R 34 may represent preferably, a substituted or unsubstituted (C6-C30)aryl, and specifically, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, or a substituted or unsubstituted biphenyl.
- Ar 2 may represent preferably, a substituted or unsubstituted (6- to 20-membered)heteroaryl, or a substituted or unsubstituted (C6-C20)aryl; and more preferably a substituted or unsubstituted nitrogen-containing (6- to 20-membered)heteroaryl.
- Ar 2 may represent a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrazinyl, a substituted or unsubstituted quinazolinyl, or a substituted or unsubstituted phenanthrolinyl.
- the preferable example of the second host material includes the following, but is not limited thereto:
- TPS represents triphenylsilyl
- the dopant is preferably at least one phosphorescent dopant.
- the phosphorescent dopant material for the organic electroluminescent device of the present disclosure is not limited, but may be preferably selected from metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu) or platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu) or platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
- the dopant to be comprised in the organic electroluminescent device of the present disclosure may be selected from the group consisting of compounds represented by the following formulae 12 to 14.
- L is selected from the following structures:
- R 100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl
- R 101 to R 109 , and R 111 to R 123 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, a cyano, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (C1-C30)alkoxy;
- R 106 to R 109 may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, a substituted or unsubstituted fluorene, a substituted or unsubstitute
- the dopant material includes the following:
- a material for preparing an organic electroluminescent device is provided.
- the material may be a material for preparing a light-emitting layer or an electron transport layer of an organic electroluminescent device.
- the compound of the present disclosure may be comprised as a host material.
- the material may comprise two or more compounds selected from the organic electroluminescent compound of formula 1 of the present disclosure; or may comprise, in addition to an organic electroluminescent compound of formula 1 of the present disclosure (a first host material), a second host material, for example, a material selected from the compound represented by formulae 6 to 11.
- the weight ratio between the first host material and the second host material is in the range of 1:99 to 99:1, and preferably 30:70 to 70:30 in view of driving voltage, lifespan, and luminous efficiency.
- the compound of the present disclosure may be comprised as an electron transport material.
- the material may be a composition or a mixture.
- the mateiral may further comprise a conventional compound(s) which has been comprised for an organic electroluminescent material.
- an organic electroluminescent device comprising a first electrode, a second electrode, and at least one organic layer disposed between the first and second electrodes, wherein the organic layer comprises the material of the present disclosure for preparing an organic electroluminescent device, is provided.
- an organic electroluminescent device comprising an anode, a cathode, and an organic layer disposed between the anode and cathode, wherein the organic layer comprises one or more light-emitting layers; at least one light-emitting layer comprises one or more dopant compounds and two or more host compounds; and at least one of the two or more host compounds is represented by formula 1 is provided.
- a first host compound of the two or more host compounds may be selected from the compound represented by formulae 2 and 5.
- At least two of the two or more host compounds, each independently, may be selected from the compound represented by formula 1.
- a first host compound of the two or more host compounds may be represented by formula 1, and a second host compound may be selected from the compound represented by formulae 6 to 11.
- the one or more dopant compounds may be selected from the compound represented by formulae 12 to 14.
- the organic electroluminescent device of the present disclosure comprises the compound of formula 1 in the organic layer.
- the organic electroluminescent device of the present disclosure may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
- the organic layer may further comprise, in addition to the compound of formula 1, at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides and organic metals of the d-transition elements of the Periodic Table, or at least one complex compound comprising the metal.
- the organic electroluminescent device of the present disclosure may emit white light by further comprising at least one light-emitting layer, which comprises a blue electroluminescent compound, a red electroluminescent compound or a green electroluminescent compound known in the field, besides the compound of the present disclosure. If necessary, it may further comprise an orange light-emitting layer or a yellow light-emitting layer.
- at least one light-emitting layer which comprises a blue electroluminescent compound, a red electroluminescent compound or a green electroluminescent compound known in the field, besides the compound of the present disclosure. If necessary, it may further comprise an orange light-emitting layer or a yellow light-emitting layer.
- a surface layer may be placed on an inner surface(s) of one or both electrode(s), selected from a chalcogenide layer, a metal halide layer and a metal oxide layer.
- a chalcogenide (includes oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
- a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
- the chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.;
- the metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and the metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
- a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes.
- the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium.
- the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium.
- the oxidative dopant includes various Lewis acids and acceptor compounds
- the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
- a reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more light-emitting layers and emitting white light.
- dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as inkjet printing, nozzle printing, slot coating, spin coating, dip coating, and flow coating methods can be used.
- a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
- the solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
- two or more host compounds for a light-emitting layer may be co-evaporated or mixture-evaporated.
- a co-evaporation indicates a process for two or more materials to be deposited as a mixture, by introducing each of the two or more materials into respective crucible cells, and applying electric current to the cells for each of the materials to be evaporated.
- a mixture-evaporation indicates a process for two or more materials to be deposited as a mixture, by mixing the two or more materials in one crucible cell before the deposition, and applying electric current to the cell for the mixture to be evaporated.
- a display system or a lighting system can be produced.
- organic electroluminescent compound of the present disclosure the preparation method of the compound, and the luminescent properties of the device will be explained in detail with reference to the following examples.
- N-bromosuccinimide (NBS) (17g, 99.42 mmol) was added thereto at 0°C. The mixture was stirred for 5 hours, and distilled water was then added thereto. The obtained solid was filtered under reduced pressure, added to methanol, stirred, and then filtered under reduced pressure. After the solid was added to ethyl acetate and methanol, the mixture was stirred, and filtered under reduced pressure to obtain compound 4-3 (23g, yield: 73%).
- OLED was produced using the compound of the present disclosure as follows.
- a transparent electrode indium tin oxide (ITO) thin film (15 ⁇ /sq) on a glass substrate for an organic light-emitting diode (OLED) (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water sequentially, and was then stored in isopropanol.
- the ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus.
- N 1 ,N 1' -([1,1'-biphenyl]-4,4'-diyl)bis(N 1 -(naphthalene-1-yl)-N 4 ,N 4 -diphenylbenzene-1,4-diamine) was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10 -6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a hole injection layer having a thickness of 60 nm on the ITO substrate.
- N,N'-di(4-biphenyl)-N,N'-di(4-biphenyl)-4,4'-diaminobiphenyl was then introduced into another cell of said vacuum vapor depositing apparatus, and evaporated by applying electric current to the cell, thereby forming a hole transport layer having a thickness of 20 nm on the hole injection layer. Thereafter compound H-1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-88 was introduced into another cell as a dopant.
- the two materials were evaporated at different rates so that the dopant was deposited in a doping amount of 4 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 30 nm on the hole transport layer.
- 2-(4-(9,10-di(naphthalene-2-yl)anthracen-2-yl)phenyl)-1-phenyl-1H-benzo[d]imidazole was then introduced into one cell, and lithium quinolate was introduced into another cell.
- the two materials were evaporated at the same rate, so that they were respectively deposited in a doping amount of 50 wt% to form an electron transport layer having a thickness of 30 nm on the light-emitting layer.
- an Al cathode having a thickness of 150 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer. Accordingly, an OLED was produced. All the materials used for producing the OLED were those purified by vacuum sublimation at 10 -6 torr. The produced OLED showed a red emission having a luminance of 1,050 cd/m 2 and a current density of 11.1 mA/cm 2 at a driving voltage of 4.1 V. The minimum time taken to be reduced to 90% of the luminance at 5,000 nit was 90 hours.
- OLED was produced in the same manner as in Device Example 1, except that a host and a dopant shown in Table 2 below were used as a light-emitting material.
- Driving voltage (V), current density (mA/cm 2 ), luminance (cd/m 2 ), color, and minimum time taken to be reduced to 90% of the luminance at 5000 nit (lifespan), of the produced OLEDs are shown in Table 2 below.
- OLED was produced in the same manner as in Device Example 1, except that compound T-1 or T-2 shown in Table 1 below was used as a host, and a dopant shown in Table 2 below was used.
- a driving voltage (V), current density (mA/cm 2 ), luminance (cd/m 2 ), color, and minimum time taken to be reduced to 90% of the luminance at 5000 nit (lifespan), of the produced OLEDs are shown in Table 2 below.
- organic electroluminescent devices using the organic electroluminescent compound of the present disclosure show lifespan remarkably improved up to 600% better than those using conventional compounds, while maintaining good driving voltage, and good current and power efficiencies.
- OLED was produced using the compound of the present disclosure as follows.
- a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an organic light-emitting diode (OLED) (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water sequentially, and was then stored in isopropanol.
- the ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus.
- N 4 ,N 4' -diphenyl-N 4 ,N 4' -bis(9-phenyl-9H-carbazole-3-yl)-[1,1'-biphenyl]-4,4'-diamine (compound HI-1 ) was introduced into a cell of the vacuum vapor depositing apparatus, and then the pressure in the chamber of the apparatus was controlled to 10 -6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate.
- 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (compound HI-2 ) was introduced into another cell of the vacuum vapor depositing apparatus, and then an electric current was applied to the cell to evaporate the above introduced material, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer.
- N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazole-3-yl)phenyl)-9H-fluoren-2-amine (compound HT-1 ) was introduced into a cell of the vacuum vapor depositing apparatus, and then an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer.
- N,N-di([1,1’-biphenyl]-4-yl)-4’-(9H-carbazole-9-yl)-[1,1’-biphenyl]-4-amine (compound HT-3 ) was introduced into another cell of the vacuum vapor depositing apparatus, and then an electric current was applied to the cell to evaporate the above introduced material, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer.
- compound H-1 and compound H2-116 were introduced into two cells of the vacuum vapor depositing apparatus, respectively.
- Compound D-96 was introduced into another cell as a dopant.
- the two host materials were evaporated at the same rate, while the dopant was evaporated at a different rate from the host material so that the dopant was deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the hole transport layer.
- 2,4-bis(9,9-dimethyl-9H-fluoren-2-yl)-6-(naphthalene-2-yl)-1,3,5-triazine (compound ET-1 ) was then introduced into one cell, and lithium quinolate (compound EI-1 ) was introduced into another cell.
- the two materials were evaporated at 1:1 rate to form an electron transport layer having a thickness of 30 nm on the light-emitting layer.
- an Al cathode having a thickness of 80 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer. The minimum time taken to be reduced to 80% of the luminance at 5,000 nit was 195 hours.
- OLED was produced in the same manner as in Device Example 9, except that compounds shown in Table 3 below were used as a first host and a second host for preparing a light-emitting layer.
- the minimum time taken to be reduced to 80% of the luminance at 5000 nit of the produced OLEDs is shown in Table 3 below.
- OLED was produced in the same manner as in Device Example 9, except that only a first host compound shown in Table 3 below was used as a host for a light-emitting layer.
- the minimum time taken to be reduced to 80% of the luminance at 5000 nit of the produced OLEDs is shown in Table 3 below.
- a multi-component host material comprising an organic electroluminescent compound of the present disclosure can provide an organic electroluminescent device having more improvement in lifespan.
- OLED was produced using the compound of the present disclosure as follows.
- a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an organic light-emitting diode (OLED) (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water sequentially, and was then stored in isopropanol.
- the ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus.
- 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (compound HI-1 ) was introduced into a cell of the vacuum vapor depositing apparatus, and then the pressure in the chamber of the apparatus was controlled to 10 -6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 5 nm on the ITO substrate.
- N,N' -bis(naphthalene-1-yl)-N,N' -bis(phenyl)benzidine (compound HI-2 ) was then introduced into another cell of the vacuum vapor depositing apparatus, and evaporated by applying electric current to the cell, thereby forming a second hole injection layer having a thickness of 95 nm on the first hole injection layer.
- N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluorene-2-amine (compound HT-1 ) was introduced into one cell of the vacuum vapor depositing apparatus, and evaporated by applying electric current to the cell, thereby forming a hole transport layer having a thickness of 20 nm on the second hole transport layer.
- two compounds shown in Table 4 below were introduced into two cells of the vacuum vapor depositing apparatus, respectively.
- Compound D-122 was introduced into another cell as a dopant.
- the two host materials were evaporated at the same rate of 1:1, while the dopant was evaporated at a different rate from the host material so that the dopant was deposited in a doping amount of 12 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 30 nm on the hole transport layer.
- 2,4,6-tris(9,9-dimethyl-9H-fluorene-2-yl)-1,3,5-triazine (compound ET-1 ) was then introduced into another cell, and evaporated to be deposited as an electron transport layer having a thickness of 35 nm on the light-emitting layer.
- lithium quinolate compound EI-1
- Al cathode having a thickness of 80 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer.
- OLED was produced in the same manner as in Device Example 17-1, except that the conventional compounds shown in Tables 4 and 5 below were used as a first host compound and a second host compound.
- a driving voltage, luminous efficiency, CIE color coordinate, and the minimum time taken to be reduced from 100% to 95% of the luminance at 10,000 nit and a constant current, of OLEDs produced in Device Examples 17-1 to 17-5, Device Examples 18-1 to 18-6, and Comparative Device Examples 5-1 to 5-3 are shown in Table 4 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The present disclosure relates to an organic electroluminescent compound, and a multi-component host material and an organic electroluminescent device comprising the same. By using the organic electroluminescent compound according to the present disclosure, an organic electroluminescent device can have a remarkably improved lifespan, along with low driving voltage and good current and power efficiencies.
Description
The present disclosure relates to an organic electroluminescent compound, and a multi-component host material and an organic electroluminescent device comprising the same.
An electroluminescent (EL) device is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time. An organic EL device was first developed by Eastman Kodak, by using small aromatic diamine molecules and aluminum complexes as materials to form a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
The most important factor determining luminous efficiency in the organic EL device is light-emitting materials. Until now, fluorescent materials have been widely used as light-emitting materials. However, in view of electroluminescent mechanisms, since phosphorescent materials theoretically enhance luminous efficiency by four (4) times compared to fluorescent materials, phosphorescent light-emitting materials are widely being researched. Iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp)2), tris(2-phenylpyridine)iridium (Ir(ppy)3) and bis(4,6-difluorophenylpyridinato-N,C2)picolinate iridium (Firpic) as red-, green- and blue-emitting materials, respectively.
At present, 4,4’-N,N’-dicarbazol-biphenyl (CBP) is the most widely known host material for phosphorescent materials. Recently, Pioneer (Japan) et al., developed a high performance organic EL device using bathocuproine (BCP) and aluminum(III) bis(2-methyl-8-quinolinate)(4-phenylphenolate) (BAlq) etc., as host materials, which were known as hole blocking materials.
Although conventional materials provide good light-emitting characteristics, they have the following disadvantages: (1) Due to their low glass transition temperature and poor thermal stability, their degradation may occur during a high-temperature deposition process in a vacuum. (2) The power efficiency of the organic EL device is given by [(π/voltage) × current efficiency], and the power efficiency is inversely proportional to the voltage. Although the organic EL device comprising phosphorescent host materials provides higher current efficiency (cd/A) than one comprising fluorescent materials, a significantly high driving voltage is necessary. Thus, there is no merit in terms of power efficiency (lm/W). (3) Furthermore, the operational lifespan of the organic EL device is short, and luminous efficiency is still required to be improved.
Korean Patent Appln. Laying-Open No. 10-2010-0105501 discloses a compound for an organic electroluminescent device, in which one of nitrogen atoms of biscarbazole is substituted, via phenylene, with quinoxaline. However, it does not disclose a compound in which one of the nitrogen atoms of biscarbazole is substituted, directly or via a linker, with naphthyridine or a compound in which one of nitrogen atoms of biscarbazole is substituted, directly or via a heteroarylene, with quinoxaline.
The objective of the present disclosure is to provide an organic electroluminescent compound, which can provide an organic electroluminescent device showing long lifespan, low driving voltage, and good current and power efficiencies, and a multi-component host material and an organic electroluminescent device comprising the same.
The present inventors found that the above objective can be achieved by an organic electroluminescent compound represented by the following formula 1.
wherein L1 represents a single bond, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C6-C30)arylene;
X1 represents -NR1-, -CR2R3-, -O-, or -S-;
X2 to X6, each independently, represent -CR4- or -N-;
Ar1 represents hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl;
with the proviso that when X2 is -N-, L1 is not the substituted or unsubstituted (C6-C30)arylene and Ar1 is not hydrogen;
Y1 to Y4 and Y13 to Y16, each independently, represent -N- or -CR5-;
R1 to R3, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl;
R4 to R6, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted di(C6-C30)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (3- to 30-membered), mono- or polycyclic, alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur;
the heteroaryl(ene) and the heterocycloalkyl, each independently, contain at least one hetero atom selected from B, N, O, S, P(=O), Si and P; and
a and b, each independently represent 0 or 1.
An organic electroluminescent compound and a multi-component host material of the present disclosure can provide an organic electroluminescent device having low driving voltage, good current and power efficiencies, and remarkably improved lifespan.
Hereinafter, the present disclosure will be described in detail. However, the following description is intended to explain the invention, and is not meant in any way to restrict the scope of the invention.
The present disclosure provides the organic electroluminescent compound of formula 1 above, an organic electroluminescent material comprising the same, and an organic electroluminescent device comprising the compound.
The details of the organic electroluminescent compound of formula 1 are as follows.
Herein, “alkyl” includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc. “Alkenyl” includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc. “Alkynyl” includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc. “Cycloalkyl” includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. “(3- to 7-membered)heterocycloalkyl” indicates a cycloalkyl having 3 to 7 ring backbone atoms including at least one hetero atom selected from B, N, O, S, P(=O), Si, and P, preferably O, S, and N, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc. Furthermore, “aryl(ene)” indicates a monocyclic or fused ring derived from an aromatic hydrocarbon; may be a spiro compound in which two rings are connected via one atom; and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, spirobifluorenyl, etc. “(3- to 30-membered)heteroaryl(ene)” indicates an aryl group having 3 to 30 ring backbone atoms including at least one, preferably 1 to 4, hetero atom selected from the group consisting of B, N, O, S, P(=O), Si, and P; may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, naphthofuranyl, naphthothiophenyl, benzonaphthofuranyl, benzonaphthothiophenyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenoxazinyl, phenanthridinyl, benzodioxolyl, dihydroacridinyl, etc. Furthermore, “halogen” includes F, Cl, Br, and I.
Herein, “substituted” in the expression, “substituted or unsubstituted,” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent. The substituents of the substituted alkyl, the substituted cycloalkyl, the substituted cycloalkenyl, the substituted heterocycloalkyl, the substituted aryl(ene), the substituted heteroaryl(ene), the substituted diarylamino, the substituted alkoxy, and the substituted mono- or polycyclic, alicyclic or aromatic ring in L1, Ar1, R1 to R6, R21 to R27, R31 to R33, R100 to R109, R111 to R127, L4, and M, each independently, are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxy, a nitro, a hydroxy, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a (3- to 7-membered)heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a (3- to 30-membered)heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a (3- to 30-membered)heteroaryl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di-(C1-C30)alkylamino, a mono- or di-(C6-C30)arylamino, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl and a (C1-C30)alkyl(C6-C30)aryl; and preferably, each independently, are at least one selected from the group consisting of a cyano, a halogen, a (C1-C10)alkyl, a (C3-C12)cycloalkyl, a (C5-C18)aryl, a (5- to 18-membered)heteroaryl, a di(C6-C12)arylamino, and a (C1-C10)alkyl(C5-C18)aryl.
L1 represents a single bond, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C6-C30)arylene. Preferably, L1 may represent a single bond, a substituted or unsubstituted (5- to 21-membered)heteroarylene, or a substituted or unsubstituted (C6-C21)arylene. Specifically, L1 may represent a single bond.
X1 represents -NR1-, -CR2R3-, -O-, or -S-. Specifically, X1 may represent -NR1-.
X2 to X6, each independently, represent -CR4- or -N-. Preferably, all of X2 to X6 may represent -CR4-; or one of X2 to X6 may represent -N-, and the remainders of X2 to X6 may represent -CR4-. When X2 represents -N-, L1 is not a substituted or unsubstituted (C6-C30)arylene, and Ar1 is not hydrogen. Specifically, when X2 represents -N-, L1 may represent a single bond.
Ar1 represents hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl. Ar1 may represent, preferably hydrogen, or a substituted or unsubstituted (C6-C21)aryl; and more preferably hydrogen, or a (C6-C18)aryl unsubstituted or substituted with a (C1-C10)alkyl, a cyano, a (C6-C13)aryl or a (5- to 13-membered)heteroaryl. Specifically, Ar1 may represent hydrogen, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted phenylnaphthyl, or a substituted or unsubstituted naphthylphenyl. More specifically, Ar1 may represent hydrogen; or a phenyl, biphenyl, naphthyl, terphenyl, anthracenyl, phenanthrenyl, phenylnaphthyl, or naphthylphenyl unsubstituted or substituted with a (C1-C4)alkyl, a cyano, or a pyridyl. Preferably, when Ar1 represents hydrogen, at least one of X2 to X6 may represent -CR4- wherein R4 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl. More preferably, when Ar1 represents hydrogen, at least one of X2 to X6 may represent -CR4- wherein R4 represents a substituted or unsubstituted (C6-C21)aryl, or a substituted or unsubstituted (5- to 21-membered)heteroaryl; and even more preferably, one of X2 to X6 may represent -CR4- wherein R4 represents a substituted or unsubstituted (C6-C18)aryl.
Y1 to Y4 and Y13 to Y16, each independently, represent -N- or -CR5-; and preferably -CR5-. Specifically, Y1 to Y4 may represent -CH-; or one of Y1 to Y4 may represent -CR5- (wherein R5 is not hydrogen), the remainders of Y1 to Y4 may represent -CH-; or two of Y1 to Y4 may represent -CH-, the remainders of Y1 to Y4 may represent -CR5- (wherein R5 is not hydrogen). Specifically, Y13 to Y16 may represent -CH-; or one of Y13 to Y16 may represent -CR5- (wherein R5 is not hydrogen), the remainders of Y13 to Y16 may represent -CH-; or two of Y13 to Y16 may represent -CH-, the remainders of Y13 to Y16 may represent -CR5- (wherein R5 is not hydrogen).
Y5 to Y12, each independently, represent , -N-, or -CR6-. Preferably, Y5 to Y12, each independently, represent or -CR6-. Specifically, one of Y5 to Y8 may represent , the remainders of Y5 to Y8 may represent -CH-. Specifically, one of Y9 to Y12 may represent , the remainders of Y9 to Y12 may represent -CH-; or one of Y9 to Y12 may represent , the two of Y9 to Y12 may represent -CR6- (wherein R6 is not hydrogen), the remainder may represent -CH-.
R1 to R3, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl. R1 to R3, each independently, may represent preferably a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C6-C21)aryl, a substituted or unsubstituted (5- to 21-membered)heteroaryl, a substituted or unsubstituted (C5-C21)cycloalkyl, or a substituted or unsubstituted (5- to 7-membered)heterocycloalkyl; more preferably a substituted or unsubstituted (C1-C10)alkyl, or a substituted or unsubstituted (C6-C18)aryl; and even more preferably, an unsubstituted (C1-C10)alkyl or an unsubstituted (C6-C18)aryl. Preferably, R2 and R3 are the same. Specifically, R1 may represent phenyl, biphenyl, or naphthyl; R2 may represent a (C1-C4)alkyl or phenyl; and R3 may represent a (C1-C4)alkyl or phenyl.
R4 to R6, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted di(C6-C30)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (3- to 30-membered), mono- or polycyclic, alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur. R4 to R6, each independently, represent preferably, hydrogen, a halogen, a cyano, a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C5-C21)cycloalkyl, a substituted or unsubstituted (C6-C21)aryl, a substituted or unsubstituted (5- to 21-membered)heteroaryl, or a substituted or unsubstituted di(C6-C21)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (5- to 21-membered), mono- or polycyclic aromatic ring whose carbon atom(s) may be replaced with one or two hetero atoms selected from nitrogen, oxygen, and sulfur. More preferably, R4 represents hydrogen, or a substituted or unsubstituted (C6-C18)aryl. Specifically, R4 may represent hydrogen, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted phenylnaphthyl, or a substituted or unsubstituted naphthylphenyl. More preferably, R5 and R6 represent hydrogen, a cyano, a substituted or unsubstituted (C1-C10)alkyl, a substituted or unsubstituted (C5-C18)cycloalkyl, a substituted or unsubstituted (C6-C18)aryl, or a substituted or unsubstituted di(C6-C18)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (5- to 18-membered), mono- or polycyclic aromatic ring whose carbon atom(s) may be replaced with a hetero atom(s) selected from nitrogen, oxygen, and sulfur. Specifically, R5 and R6, each independently, may represent hydrogen, a cyano, a (C1-C4)alkyl, phenyl, cyclohexyl, or di(phenyl)amino, or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted benzene ring, a substituted or unsubstituted thiophene ring, a substituted or unsubstituted furan ring, a substituted or unsubstituted indole ring, a substituted or unsubstituted indene ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted benzothiophene ring, a substituted or unsubstituted benzofuran ring, or a substituted or unsubstituted benzindole ring.
According to one embodiment of the present disclosure, L1 represents a single bond, a substituted or unsubstituted (5- to 21-membered)heteroarylene, or a substituted or unsubstituted (C6-C21)arylene; X1 represents -NR1-, -CR2R3-, -O-, or -S-; all of X2 to X6 represent -CR4-, or one of X2 to X6 represents -N-, and the remainders of X2 to X6 represent -CR4-, wherein when X2 is -N-, L1 is a single bond; Ar1 represents hydrogen, or a substituted or unsubstituted (C6-C21)aryl, wherein when Ar1 is hydrogen, at least one of R4 is a substituted or unsubstituted (C6-C21)aryl or a substituted or unsubstituted (5- to 21-membered)heteroaryl; Y1 to Y4 and Y13 to Y16, each independently, represent -CR5-; Y5 to Y12, each independently, represent or -CR6-; R1 to R3, each independently, represent a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C6-C21)aryl, a substituted or unsubstituted (5- to 21-membered)heteroaryl, a substituted or unsubstituted (C5-C21)cycloalkyl, or a substituted or unsubstituted (5- to 7-membered)heterocycloalkyl; R4 to R6, each independently, represent hydrogen, a halogen, a cyano, a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C5-C21)cycloalkyl, a substituted or unsubstituted (C6-C21)aryl, a substituted or unsubstituted (5- to 21-membered)heteroaryl, or a substituted or unsubstituted di(C6-C21)arylamino, or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (5- to 21-membered), mono- or polycyclic, aromatic ring whose carbon atom(s) may be replaced with one or two hetero atom(s) selected from nitrogen, oxygen, and sulfur; the heteroaryl(ene) and the heterocycloalkyl, each independently, contain at least one hetero atom selected from N, O and S; and a and b, each independently represent 0 or 1.
According to another embodiment of the present disclosure, the compound of formula 1 may be represented by the following formula 2:
wherein, X1, Ar1, Y1 to Y16, R4, L1, a, and b are as defined in formula 1 above; c represents an integer of 1 to 4; and when c is 2 or more, each of R4 may be the same or different. Preferably, in formula 2, L1 represents a single bond; Ar1 represents a substituted or unsubstituted (C6-C21)aryl, or a substituted or unsubstituted (5- to 21-membered)heteroaryl, and R4 represents hydrogen.
According to another embodiment of the present disclosure, the compound of formula 1 may be represented by any one of the following formulae 3 to 5:
wherein, X1, Ar1, Y1 to Y16, L1, R4, a, and b are as defined in formula 1; c represents an integer of 1 to 5; and when c is 2 or more, each of R4 is the same or different. In formulae 3 to 5, preferably, when Ar1 is hydrogen, at least one of R4 represents a substituted or unsubstituted (C6-C21)aryl, or a substituted or unsubstituted (5- to 21-membered)heteroaryl. More preferably, Ar1 represents hydrogen; one of R4 represents a substituted or unsubstituted (C6-C18)aryl, and the remainders of R4 represent hydrogen.
More specifically, the organic electroluminescent compound of the present disclosure includes the following, but is not limited thereto:
The organic electroluminescent compound of formula 1 of the present disclosure can be prepared by a synthetic method known to one skilled in the art. For example, it can be prepared according to any one of the following reaction schemes 1 to 4.
In addition, the present disclosure provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1, and an organic electroluminescent device comprising the material.
The material may comprise one or more compounds selected from the organic electroluminescent compound of formula 1. The mateiral may further comprise a conventional compound(s) which has been comprised for an organic electroluminescent material.
The organic electroluminescent device of the present disclosure may comprise a first electrode, a second electrode, and at least one organic layer disposed between the first and second electrodes, wherein the organic layer may comprise at least one compound of formula 1.
One of the first and second electrodes may be an anode, and the other may be a cathode. The organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, an electron buffer layer, and an electron blocking layer.
The organic electroluminescent compound of the present disclosure may be comprised in the light-emitting layer. When used in the light-emitting layer, the organic electroluminescent compound of the present disclosure may be comprised as a host material. The light-emitting layer may further comprise at least one dopant. If necessary, the light-emitting layer may comprise two or more compounds selected from the organic electroluminescent compound of formula 1 of the present disclosure; or may further comprise a second host material other than the organic electroluminescent compound of formula 1 of the present disclosure.
A phosphorescent host material known in the art may be used as the second host material. The compound selected from the group consisting of the compounds of formulae 6 to 11 below is preferable as the second host material in view of driving voltage, lifespan, and luminous efficiency.
wherein, Cz represents the following structure:
L4 and L5, each independently, represent a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (5- to 30-membered)heteroarylene;
M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl, provided that when h of formula 6 is 1, or i of formula 7 is 1, M is not
(wherein X2 to X6, and Ar1 are as defined in formula 1, and * represents a bonding site.);
Z1 and Z2, each independently, represent -O-, -S-, -N(R31)-, or -C(R32)(R33)-, provided that Z1 and Z2 do not simultaneously exist;
X’ represents -O- or -S-;
D and E, each independently, represent -O-, -S-, -N(R34)-, or -C(R35)(R36)-;
Ar2 represents a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C6-C30)aryl, provided that Ar2 is not (wherein X2 to X6 and Ar1 are as defined in formula 1, and * represents a bonding site.);
R21 to R27, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, or R28R29R30Si-; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (C3-C30), monocyclic or polycyclic, alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur; provided that when h of formula 6 or i of formula 7 is 1, R26 or R27 does not form the ring containing Z1, Z2, D, or E of formulae 8, 9, and 11, R22 of formula 10 does not form the indole ring connected to R21 of formulae 8 and 9 and the indole ring connected to R23 of formula 11;
R28 to R30, each independently, represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl;
R31 to R36, each independently, represent hydrogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl; R32 and R33 may be the same or different; R35 and R36 may be the same or different;
the heteroaryl(ene) contains one or more hetero atoms selected from B, N, O, S, P(=O), Si, and P;
h and i, each independently, represent an integer of 1 to 3; j, k, l and p, each independently, represent an integer of 0 to 4; r, s, and t, each independently, represent an integer of 1 to 4; and when h, i, j, k, l, p, r, s, or t is an integer of 2 or more, each of (Cz-L4), each of (Cz), each of R21, each of R22, each of R23, each of R24, each of R25, each of R26, or each of R27 may be the same or different.
Preferably, in formulae 6 to 10, M may represent a substituted or unsubstituted nitrogen-containing (6- to 20-membered)heteroaryl. Preferably, the substituent of M may be a (C1-C20)alkyl; a (C6-C24)aryl unsubstituted or substituted with a (C1-C10)alkyl, a tri(C6-C13)arylsilyl, or a (6- to 13-membered)heteroaryl; a (6- to 20-membered)heteroaryl unsubstituted or substituted with a (C1-C10)alkyl, a tri(C6-C13)arylsilyl, or a (C6-C24)aryl; or a tri(C6-C20)arylsilyl. Specifically, M may represent a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrazinyl, a substituted or unsubstituted quinazolinyl, or a substituted or unsubstituted phenanthrolinyl.
At least one of R26 and R27 of formulae 6 and 7, or at least one of R21 and R22 of formulae 8 to 10 may be a substituted or unsubstituted carbazolyl, a substituted or unsubstituted benzocarbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted naphthobenzothiophenyl, a substituted or unsubstituted dibenzofuranyl, a substituted or unsubstituted naphthobenzofuranyl, a (C6-C18)aryl substituted with a substituted or unsubstituted carbazolyl, a (C6-C18)aryl substituted with a substituted or unsubstituted benzocarbazolyl, a (C6-C18)aryl substituted with a substituted or unsubstituted dibenzothiophenyl, a (C6-C18)aryl substituted with a substituted or unsubstituted naphthobenzothiophenyl, a (C6-C18)aryl substituted with a substituted or unsubstituted dibenzofuranyl, or a (C6-C18)aryl substituted with a substituted or unsubstituted naphthobenzofuranyl. When M is aryl, at least one of R26 and R27, or at least one of R21 and R22 may represent a substituted or unsubstituted nitrogen-containing (6- to 20-membered)heteroaryl; or may have, as a substituent, a substituted or unsubstituted nitrogen-containing (6- to 20-membered)heteroaryl. Specifically, the substituted or unsubstituted nitrogen-containing heteroaryl may represent a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrazinyl, a substituted or unsubstituted quinazolinyl, or a substituted or unsubstituted phenanthrolinyl.
D and E, each independently, may be preferably selected from -O-, -S-, and -N(R34)-, provided that both X and Y are not - N(R34)-, simultaneously. According to one embodiment of the present disclosure, X and Y, each independently, may be selected from -O- and -S-. According to another embodiment of the present disclosure, X and Y, each independently, may be selected from -O- and -S-; and at least one of X and Y may be -S-. R34 may represent preferably, a substituted or unsubstituted (C6-C30)aryl, and specifically, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, or a substituted or unsubstituted biphenyl.
Ar2 may represent preferably, a substituted or unsubstituted (6- to 20-membered)heteroaryl, or a substituted or unsubstituted (C6-C20)aryl; and more preferably a substituted or unsubstituted nitrogen-containing (6- to 20-membered)heteroaryl. Specifically, Ar2 may represent a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrazinyl, a substituted or unsubstituted quinazolinyl, or a substituted or unsubstituted phenanthrolinyl.
Specifically, the preferable example of the second host material includes the following, but is not limited thereto:
[Wherein, TPS represents triphenylsilyl.]
The dopant is preferably at least one phosphorescent dopant. The phosphorescent dopant material for the organic electroluminescent device of the present disclosure is not limited, but may be preferably selected from metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu) or platinum (Pt), more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu) or platinum (Pt), and even more preferably ortho-metallated iridium complex compounds.
The dopant to be comprised in the organic electroluminescent device of the present disclosure may be selected from the group consisting of compounds represented by the following formulae 12 to 14.
wherein L is selected from the following structures:
R100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl; R101 to R109, and R111 to R123, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, a cyano, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (C1-C30)alkoxy; R106 to R109 may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, a substituted or unsubstituted fluorene, a substituted or unsubstituted dibenzothiophene, or a substituted or unsubstituted dibenzofuran; R120 to R123 may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, a substituted or unsubstituted quinoline; R124 to R127, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; when any one of R124 to R127 is aryl, it may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, a substituted or unsubstituted fluorene, a substituted or unsubstituted dibenzothiophene, or a substituted or unsubstituted dibenzofuran; R201 to R211, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-30)aryl, R208 to R211 may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, a substituted or unsubstituted fluorene, a substituted or unsubstituted dibenzothiophene, or a substituted or unsubstituted dibenzofuran; f and g, each independently, represent an integer of 1 to 3; when f or g is an integer of 2 or more, each of R100 may be the same or different; and n represents an integer of 1 to 3.
Specifically, the dopant material includes the following:
According to another aspect of the present disclosure, a material for preparing an organic electroluminescent device is provided. The material may be a material for preparing a light-emitting layer or an electron transport layer of an organic electroluminescent device. When the compound of the present disclosure is comprised in the material for preparing a light-emitting layer of an organic electroluminescent device, the compound of the present disclosure may be comprised as a host material. When the compound of the present disclosure is comprised as a host material, the material may comprise two or more compounds selected from the organic electroluminescent compound of formula 1 of the present disclosure; or may comprise, in addition to an organic electroluminescent compound of formula 1 of the present disclosure (a first host material), a second host material, for example, a material selected from the compound represented by formulae 6 to 11. The weight ratio between the first host material and the second host material is in the range of 1:99 to 99:1, and preferably 30:70 to 70:30 in view of driving voltage, lifespan, and luminous efficiency. When the compound of the present disclosure is comprised in the material for preparing an electron transport layer of an organic electroluminescent device, the compound of the present disclosure may be comprised as an electron transport material. The material may be a composition or a mixture. The mateiral may further comprise a conventional compound(s) which has been comprised for an organic electroluminescent material.
According to another aspect of the present disclosure, an organic electroluminescent device comprising a first electrode, a second electrode, and at least one organic layer disposed between the first and second electrodes, wherein the organic layer comprises the material of the present disclosure for preparing an organic electroluminescent device, is provided.
According to another aspect of the present disclosure, an organic electroluminescent device comprising an anode, a cathode, and an organic layer disposed between the anode and cathode, wherein the organic layer comprises one or more light-emitting layers; at least one light-emitting layer comprises one or more dopant compounds and two or more host compounds; and at least one of the two or more host compounds is represented by formula 1 is provided.
According to one embodiment of the present disclosure, in the organic electroluminescent device, a first host compound of the two or more host compounds may be selected from the compound represented by formulae 2 and 5.
According to another embodiment of the present disclosure, in the organic electroluminescent device, at least two of the two or more host compounds, each independently, may be selected from the compound represented by formula 1.
According to another embodiment of the present disclosure, in the organic electroluminescent device, a first host compound of the two or more host compounds may be represented by formula 1, and a second host compound may be selected from the compound represented by formulae 6 to 11.
According to another embodiment of the present disclosure, in the organic electroluminescent device, the one or more dopant compounds may be selected from the compound represented by formulae 12 to 14.
The organic electroluminescent device of the present disclosure comprises the compound of formula 1 in the organic layer. The organic electroluminescent device of the present disclosure may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
In the organic electroluminescent device of the present disclosure, the organic layer may further comprise, in addition to the compound of formula 1, at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides and organic metals of the d-transition elements of the Periodic Table, or at least one complex compound comprising the metal.
In addition, the organic electroluminescent device of the present disclosure may emit white light by further comprising at least one light-emitting layer, which comprises a blue electroluminescent compound, a red electroluminescent compound or a green electroluminescent compound known in the field, besides the compound of the present disclosure. If necessary, it may further comprise an orange light-emitting layer or a yellow light-emitting layer.
In the organic electroluminescent device of the present disclosure, preferably, at least one layer (hereinafter, "a surface layer”) may be placed on an inner surface(s) of one or both electrode(s), selected from a chalcogenide layer, a metal halide layer and a metal oxide layer. Specifically, a chalcogenide (includes oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer, and a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer. Such a surface layer provides operation stability for the organic electroluminescent device. Preferably, the chalcogenide includes SiOX(1≤X≤2), AlOX(1≤X≤1.5), SiON, SiAlON, etc.; the metal halide includes LiF, MgF2, CaF2, a rare earth metal fluoride, etc.; and the metal oxide includes Cs2O, Li2O, MgO, SrO, BaO, CaO, etc.
In the organic electroluminescent device of the present disclosure, a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes. In this case, the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium. Furthermore, the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium. Preferably, the oxidative dopant includes various Lewis acids and acceptor compounds, and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof. A reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more light-emitting layers and emitting white light.
In order to form each layer of the organic electroluminescent device of the present disclosure, dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as inkjet printing, nozzle printing, slot coating, spin coating, dip coating, and flow coating methods can be used.
When using a wet film-forming method, a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
In the organic electroluminescent device of the present disclosure, two or more host compounds for a light-emitting layer may be co-evaporated or mixture-evaporated. Herein, a co-evaporation indicates a process for two or more materials to be deposited as a mixture, by introducing each of the two or more materials into respective crucible cells, and applying electric current to the cells for each of the materials to be evaporated. Herein, a mixture-evaporation indicates a process for two or more materials to be deposited as a mixture, by mixing the two or more materials in one crucible cell before the deposition, and applying electric current to the cell for the mixture to be evaporated.
By using the organic electroluminescent device of the present disclosure, a display system or a lighting system can be produced.
Hereinafter, the organic electroluminescent compound of the present disclosure, the preparation method of the compound, and the luminescent properties of the device will be explained in detail with reference to the following examples.
[Example 1]
Preparation of compound
1-2
After adding compound 1-1 (20 g, 100.5 mmol), compound 2-1 (19 g, 150 mmol), palladium(0) tetrakis(triphenylphosphine) [Pd(PPh3)4] (5.7 g, 5.0 mmol), and Na2CO3 (31 g, 300 mmol) to toluene (500 mL), ethanol (250 mL), and purified water 250 mL, the mixture was stirred at 120°C for 15 hours. After the completion of the reaction, the mixture was standed to remove the water layer, and the organic layer was then concentrated. The mixture was purified by column chromatography to obtain compound 1-2 (20 g, 83%).
Preparation of compound
H-1
After dissolving compound 1-2 (20 g, 83 mmol), compound 1-3 (50 g, 99 mmol), and NaH (4 g, 166 mmol) into dimethylformamide (DMF), the mixture was stirred for 15 hours. After the completion of the reaction, the solid was filtered, and purified by column chromatography to obtain compound H-1 (50 g, 82%).
[
Example
2]
Preparation of compound
1-4
After dissolving compound 1-3 (30g, 73.44mmol) in dimethylformamide (370mL), sodium hydride (4.4g, 110.16mmol) was slowly added to the mixture, and the mixture was then stirred for 30 minutes. Compound 1-1 (17.5g, 88.13mmol) was added to the mixture, and the mixture was then stirred for 4 hours. After slowly adding the mixture to distilled water (500mL), the mixture was stirred for 30 minutes. The obtained solid was purified by column chromatography and recrystallization to obtain compound 1-4 (30g, 71%).
Preparation of compound
H-5
After introducing compound 1-4 (10g, 17.51 mmol), compound 2-2 (4.2g, 21.01 mmol), palladium(0) tetrakis(triphenylphosphine) [Pd(PPh3)4] (0.6g, 0.53 mmol), sodium carbonate (4.6g, 43.78 mmol), toluene (90mL), and ethanol (22mL) into a reaction vessel, distilled water (22mL) was added to the mixture. The mixture was stirred at 120°C for 4 hours. After the completion of the reaction, the mixture was washed with distilled water, and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, and the solvent was removed therefrom by a rotary evaporator. The products were purified by column chromatography to obtain compound H-5 (5.5g, 46%).
[
Example
3]
Preparation of compound
H-80
After introducing compound 1-4 (10g, 17.51 mmol), compound 2-3 (4.2g, 21.01 mmol), palladium(0) tetrakis(triphenylphosphine) [Pd(PPh3)4] (0.6g, 0.53 mmol), sodium carbonate (4.6g, 43.78 mmol), toluene (90mL), and ethanol (22mL) into a reaction vessel, distilled water (22mL) was added to the mixture, and the mixture was then stirred at 120°C for 4 hours. After the completion of the reaction, the mixture was washed with distilled water, and extracted with ethyl acetate. The obtained organic layer was dried with magnesium sulfate, and the solvent was removed therefrom by a rotary evaporator. The products were purified by column chromatography to obtain compound H-80 (7.7g, 64%).
[
Example
4]
Preparation of compound
3-1
After dissolving compound 10-bromo-7H-benzo[c]carbazole (15.5g, 41.64 mmol), compound A (13.1g, 45.80 mmol), Pd(PPh3)4 (2.4g, 2.08 mmol), and 2M Na2CO3 (110mL) in toluene (220mL) and ethanol (110mL), the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed therefrom with magnesium sulfate, and then the mixture was dried. The products were purified by column chromatography to obtain compound 3-1 (15.4g, yield: 81%).
Preparation of compound
H-55
After dissolving compound 1-2 (6.3g, 26.17 mmol), and compound 3-1 (10g, 21.81 mmol) in DMF (110mL), NaH (0.5g, 14.54 mmol, 60% in mineral oil) was added to the mixture. The mixture was stirred at room temperature for 12 hours, and methanol and distilled water were added thereto. The obtained solid was filtered under reduced pressure, and then purified by column chromatography to obtain compound H-55 (2.5g, yield: 18%).
[
Example
5]
Preparation of compound
4-1
After dissolving naphthalene-2-yl boronic acid (30g, 174.35 mmol), 2-bromonitrobenzene (42g, 209.22 mmol), Pd(PPh3)4 (10g, 8.71 mmol), and 2M Na2CO3 (425mL) in toluene (850mL) and ethanol (425mL) of a flask, the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 4-1 (40g, yield: 93%).
Preparation of compound
4-2
After dissolving compound 4-1 (40g, 160.34 mmol), and PPh3 (105.1g, 400.86 mmol) in dichlorobenzene (DCB) (1000mL), the mixture was under reflux at 150°C for 6 hours. After the completion of the reaction, the mixture was distilled, and was triturated with methanol. As a result, compound 4-2 (24g, yield: 50%) was obtained.
Preparation of compound
4-3
After dissolving compound 1-2 (24g, 110.46 mmol) in DMF (570mL), N-bromosuccinimide (NBS) (17g, 99.42 mmol) was added thereto at 0°C. The mixture was stirred for 5 hours, and distilled water was then added thereto. The obtained solid was filtered under reduced pressure, added to methanol, stirred, and then filtered under reduced pressure. After the solid was added to ethyl acetate and methanol, the mixture was stirred, and filtered under reduced pressure to obtain compound 4-3 (23g, yield: 73%).
Preparation of compound
4-4
After dissolving compound 4-3 (23.4g, 79.01 mmol), iodobenzene (18mL, 158.02 mmol), CuI (7.5g, 39.50 mmol), ethylene diamine (EDA) (2.6mL, 39.50 mmol), and Cs2CO3 (77g, 237.03 mmol) in toluene (400mL), the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 4-4 (21.5g, yield: 74%).
Preparation of compound
4-5
After dissolving compound 4-4 (21.5g, 57.75 mmol), (9H-carbazol-3-yl)boronic acid (15g, 69.31 mmol), Pd(PPh3)4 (3.4g, 2.88 mmol) and 2M Na2CO3 (150mL) in toluene (300mL) and ethanol (150mL), the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 4-5 (4.2g, yield: 17%).
Preparation of compound
H-88
After introducing compound 1-2 (2.6g, 10.99 mmol), compound 4-5 (4.2g, 9.16 mmol), K2CO3 (1.2g, 9.16 mmol), 4-dimethylaminopyridine(DMAP) (0.6g, 4.58 mmol), and dimethylacetamide (DMA) (50mL) in a reaction vessel, the mixture was stirred under reflux for 4 hours. The mixture was cooled to room temperature, and distilled water was then added thereto. The mixture was extracted with methylene chloride (MC), dried with magnesium sulfate, distilled under reduced pressure, and purified by column chromatography to obtain compound H-88 (1.7 g, 28%).
[
Example
6]
Preparation of compound
5-1
After dissolving 2-bromo-carbazole (30g, 121.90 mmol), phenylboronic acid (18g, 146.28 mmol), Pd(PPh3)4 (7g, 6.09 mmol), and 2M Na2CO3 (250mL) in toluene (500mL) and ethanol (250mL) in a flask, the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed therefrom with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 5-1 (15g, yield: 52%).
Preparation of compound
5-2
After dissolving compound 5-1 (14.4g, 59.19 mmol) in DMF (200mL) in a flask, NBS (11 g, 59.19 mmol) was added thereto at 0°C. The mixture was stirred for 12 hours, and distilled water was then added thereto. The obtained solid was filtered under reduced pressure, added to methanol, stirred, and then filtered under reduced pressure. The solid was added to ethyl acetate and methanol. The mixture was stirred and filtered under reduced pressure. As a result, compound 5-2 (15.8g, yield: 83%) was obtained.
Preparation of compound
5-3
After dissolving compound 5-2 (15.8g, 49.04 mmol), compound A (15.5g, 53.94 mmol), Pd(PPh3)4 (3g, 2.452 mmol), and 2M Na2CO3 (150mL) in toluene (300mL) and ethanol (150mL) in a flask, the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 5-3 (4g, yield: 17%).
Preparation of compound
H-7
After dissolving compound 5-3 (4 g, 8.254 mmol), compound B (2.4g, 9.905 mmol), K2CO3 (1.15g, 8.254 mmol), and DMAP (0.5g, 4.127 mmol) in DMF (40mL) in a flask, the mixture was under reflux at 220°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound H-7 (2.8g, yield: 50%).
[
Example
7]
Preparation of compound
6-3
After dissolving compound 6-1 (25.4g, 68.22 mmol), compound 6-2 (20g, 68.22 mmol), Pd(PPh3)4 (4g, 3.41 mmol), and 2M K2CO3 (100mL) in toluene (340mL) and ethanol (100mL) in a flask, the mixture was under reflux at 120°C for 3 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 6-3 (8g, yield: 25%).
Preparation of compound
H-3
After dissolving compound 6-3 (11 g, 23.99 mmol), compound 6-4 (9g, 35.98 mmol), and NaH (60% in mineral oil) (2.8g, 71.97 mmol) in DMF (230mL) in a flask, the mixture was stirred at room temperature for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound H-3 (4g, yield: 25%).
[
Example
8]
Preparation of compound
7-1
After dissolving 7H-benzo[c]carbazole (50g, 230.12 mmol), and N-bromosuccinimide (41g, 230.12 mmol) in DMF (500mL) in a flask, the mixture was stirred at room temperature for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 7-1 (50g, yield: 73%).
Preparation of compound
7-2
After dissolving 10-bromo-7H-benzo[c]carbazole(compound 7-1) (15g, 61.00 mmol), iodobenzene(14ml, 123.00mmol), CuI (6.0g, 30.00 mmol), EDA (4ml, 61.00 mmol), and K3PO4 (40g, 183.00 mmol) in toluene (500mL) in a flask, the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 7-2 (13g, yield: 73%).
Preparation of compound
7-4
After dissolving compound 10-bromo-7-phenyl-7H-benzo[c]carbazole (compound 7-2) (10g, 34.10 mmol), and compound 7-3 (10g, 40.92 mmol) in toluene (100 mL), ethanol (50 mL), and H2O (50 mL), the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 7-4 (9g, yield: 57%).
Preparation of compound
7-7
After dissolving compound 2,3-dichloroquinoxaline (compound 7-5) (28g, 140.67 mmol), and compound 7-6 (24g, 140.67 mmol) in toluene 100 mL, ethanol 50 mL, H2O 50 mL, the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound 7-7 (30g, yield: 73%).
Preparation of compound
H-4
After introducing compound 10-(9H-carbazol-3-yl)-7-phenyl-7H-benzo[c]carbazole (compound 7-4) (9.1 g, 19.80 mmol), compound 7-7 (9g, 29.7 mmol), K2CO3 (5.5 g, 39.6 mmol), DMAP (1.2 g, 9.9 mmol), and DMF (100 mL) in a reaction vessel, the mixture was stirred under reflux for 1 hour, cooled to room temperature, and distilled water was then added thereto. The mixture was extracted with methylene chloride, dried with magnesium sulfate, distilled under reduced pressure, and purified by column chromatography to obtain compound H-4 (5 g, yield: 35 %).
[
Example
9]
Preparation of compound
91-1
After dissolving 9-phenyl-9H,9'H-3,3'-bicarbazole (33.8g, 82.7mmol), 2,4-dichloroquinoline (17.2g, 86.9mmol), CuI (31.5g, 165.4mmol), and trans-1,2-diaminocyclohexane (6mL, 49.63mmol) in o-DCB 550mL in a flask, the mixture was stirred under reflux at 200°C for 6 hours. After the completion of the reaction, the mixture was extracted with methylene chloride, dried with MgSO4, subjected to column chromatography, and methanol was then added to the separated material. The obtained solid was filtered under reduced pressure to obtain compound 91-1 (32.5g, yield: 69%).
Preparation of compound
H-91
After dissolving compound 91-1 [9-(4-chloroquinolin-2-yl)-9'-phenyl-9H,9'H-3,3'-bicarbazole] (32g, 56.13mmol), phenylboronic acid (13.7g, 112.3mmol), Pd(PPh3)4 (6.5g, 5.7mmol), and K2CO3 (19.4g, 140.33mmol) in toluene (560mL), ethanol (35mL), and H2O (70mL), the mixture was under reflux at 120°C for 12 hours. After the completion of the reaction, the mixture was extracted with methylene chloride, dried with MgSO4, subjected to column chromatography, and hexane was then added to the separated material. The obtained solid was filtered under reduced pressure to obtain compound H-91 (23g, yield: 67%).
[
Example
10]
Preparation of compound
97-1
After dissolving compound 9-phenyl-9H,9'H-3,3'-bicarbazole (20.5g, 50.24 mmol), and compound A (12g, 60.29 mmol) in DMF (50mL) in a flask, NaH (2.6g, 62.31 mmol, 60% in mineral oil) was added thereto. The mixture was stirred at room temperature for 12 hours, and methanol and distilled water were added thereto. The produced solid was filtered under reduced pressure, and purified by column chromatography to obtain compound 97-1 (10g, yield: 35%).
Preparation of compound
H-97
After dissolving compound 97-1 (10g, 17.51 mmol), compound 2-2 (4.5g, 22.76 mmol), Pd2dba3 (0.96g, 1.05 mmol), S-phos (0.6g, 1.40 mmol), and K3PO4 (12g, 52.53 mmol) in toluene (200mL) in a flask, the mixture was under reflux at 120°C for 5 hours. After the completion of the reaction, the mixture was extracted with ethyl acetate, the remaining moisture was removed from the obtained organic layer with magnesium sulfate, and then the organic layer was dried. The products were purified by column chromatography to obtain compound H-97 (3g, yield: 25%).
[Device Example 1] OLED using the compound of the present disclosure
OLED was produced using the compound of the present disclosure as follows. A transparent electrode indium tin oxide (ITO) thin film (15 Ω/sq) on a glass substrate for an organic light-emitting diode (OLED) (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water sequentially, and was then stored in isopropanol. The ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus. N1,N1'-([1,1'-biphenyl]-4,4'-diyl)bis(N1-(naphthalene-1-yl)-N4,N4-diphenylbenzene-1,4-diamine) was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a hole injection layer having a thickness of 60 nm on the ITO substrate. N,N'-di(4-biphenyl)-N,N'-di(4-biphenyl)-4,4'-diaminobiphenyl was then introduced into another cell of said vacuum vapor depositing apparatus, and evaporated by applying electric current to the cell, thereby forming a hole transport layer having a thickness of 20 nm on the hole injection layer. Thereafter compound H-1 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-88 was introduced into another cell as a dopant. The two materials were evaporated at different rates so that the dopant was deposited in a doping amount of 4 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 30 nm on the hole transport layer. 2-(4-(9,10-di(naphthalene-2-yl)anthracen-2-yl)phenyl)-1-phenyl-1H-benzo[d]imidazole was then introduced into one cell, and lithium quinolate was introduced into another cell. The two materials were evaporated at the same rate, so that they were respectively deposited in a doping amount of 50 wt% to form an electron transport layer having a thickness of 30 nm on the light-emitting layer. After depositing lithium quinolate as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 150 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer. Accordingly, an OLED was produced. All the materials used for producing the OLED were those purified by vacuum sublimation at 10-6 torr. The produced OLED showed a red emission having a luminance of 1,050 cd/m2 and a current density of 11.1 mA/cm2 at a driving voltage of 4.1 V. The minimum time taken to be reduced to 90% of the luminance at 5,000 nit was 90 hours.
[Device Examples 2 to 8] OLED using the compound of the present disclosure
OLED was produced in the same manner as in Device Example 1, except that a host and a dopant shown in Table 2 below were used as a light-emitting material. Driving voltage (V), current density (mA/cm2), luminance (cd/m2), color, and minimum time taken to be reduced to 90% of the luminance at 5000 nit (lifespan), of the produced OLEDs are shown in Table 2 below.
[
Comparative
Examples
1
and
2]
OLED
using
conventional
light
-
emitting
materials
OLED was produced in the same manner as in Device Example 1, except that compound T-1 or T-2 shown in Table 1 below was used as a host, and a dopant shown in Table 2 below was used. A driving voltage (V), current density (mA/cm2), luminance (cd/m2), color, and minimum time taken to be reduced to 90% of the luminance at 5000 nit (lifespan), of the produced OLEDs are shown in Table 2 below.
[Table 1]
[Table 2]
As shown in Table 2, organic electroluminescent devices using the organic electroluminescent compound of the present disclosure show lifespan remarkably improved up to 600% better than those using conventional compounds, while maintaining good driving voltage, and good current and power efficiencies.
[Device Example 9] OLED in which a first host compound and a second host compound of the present disclosure were co-evaporated
OLED was produced using the compound of the present disclosure as follows. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an organic light-emitting diode (OLED) (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water sequentially, and was then stored in isopropanol. The ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus. N4,N4'-diphenyl-N4,N4'-bis(9-phenyl-9H-carbazole-3-yl)-[1,1'-biphenyl]-4,4'-diamine (compound HI-1) was introduced into a cell of the vacuum vapor depositing apparatus, and then the pressure in the chamber of the apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (compound HI-2) was introduced into another cell of the vacuum vapor depositing apparatus, and then an electric current was applied to the cell to evaporate the above introduced material, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazole-3-yl)phenyl)-9H-fluoren-2-amine (compound HT-1) was introduced into a cell of the vacuum vapor depositing apparatus, and then an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. Thereafter, N,N-di([1,1’-biphenyl]-4-yl)-4’-(9H-carbazole-9-yl)-[1,1’-biphenyl]-4-amine (compound HT-3) was introduced into another cell of the vacuum vapor depositing apparatus, and then an electric current was applied to the cell to evaporate the above introduced material, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. As a host material, compound H-1 and compound H2-116 were introduced into two cells of the vacuum vapor depositing apparatus, respectively. Compound D-96 was introduced into another cell as a dopant. The two host materials were evaporated at the same rate, while the dopant was evaporated at a different rate from the host material so that the dopant was deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the hole transport layer. 2,4-bis(9,9-dimethyl-9H-fluoren-2-yl)-6-(naphthalene-2-yl)-1,3,5-triazine (compound ET-1) was then introduced into one cell, and lithium quinolate (compound EI-1) was introduced into another cell. The two materials were evaporated at 1:1 rate to form an electron transport layer having a thickness of 30 nm on the light-emitting layer. After depositing lithium quinolate (compound EI-1) as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer. The minimum time taken to be reduced to 80% of the luminance at 5,000 nit was 195 hours.
[Device Examples 10 to 16] OLED using a multi-component host material of the present disclosure
OLED was produced in the same manner as in Device Example 9, except that compounds shown in Table 3 below were used as a first host and a second host for preparing a light-emitting layer. The minimum time taken to be reduced to 80% of the luminance at 5000 nit of the produced OLEDs is shown in Table 3 below.
[Comparative Examples 3 to 4] OLED using only a first host compound as a host
OLED was produced in the same manner as in Device Example 9, except that only a first host compound shown in Table 3 below was used as a host for a light-emitting layer. The minimum time taken to be reduced to 80% of the luminance at 5000 nit of the produced OLEDs is shown in Table 3 below.
[Table 3]
As shown above, although organic electroluminescent devices using the organic electroluminescent compound of the present disclosure as a sole host show excellent lifespan, a multi-component host material comprising an organic electroluminescent compound of the present disclosure can provide an organic electroluminescent device having more improvement in lifespan.
[Device Examples 17-1 to 17-5, 18-1 to 18-6] OLED in which a first host
compound and a second host compound according to the present disclosure were co-evaporated
OLED was produced using the compound of the present disclosure as follows. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an organic light-emitting diode (OLED) (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water sequentially, and was then stored in isopropanol. The ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus. 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (compound HI-1) was introduced into a cell of the vacuum vapor depositing apparatus, and then the pressure in the chamber of the apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 5 nm on the ITO substrate. N,N' -bis(naphthalene-1-yl)-N,N' -bis(phenyl)benzidine (compound HI-2) was then introduced into another cell of the vacuum vapor depositing apparatus, and evaporated by applying electric current to the cell, thereby forming a second hole injection layer having a thickness of 95 nm on the first hole injection layer. N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluorene-2-amine (compound HT-1) was introduced into one cell of the vacuum vapor depositing apparatus, and evaporated by applying electric current to the cell, thereby forming a hole transport layer having a thickness of 20 nm on the second hole transport layer. As a host material, two compounds shown in Table 4 below were introduced into two cells of the vacuum vapor depositing apparatus, respectively. Compound D-122 was introduced into another cell as a dopant. The two host materials were evaporated at the same rate of 1:1, while the dopant was evaporated at a different rate from the host material so that the dopant was deposited in a doping amount of 12 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 30 nm on the hole transport layer. 2,4,6-tris(9,9-dimethyl-9H-fluorene-2-yl)-1,3,5-triazine (compound ET-1) was then introduced into another cell, and evaporated to be deposited as an electron transport layer having a thickness of 35 nm on the light-emitting layer. After depositing lithium quinolate (compound EI-1) as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer.
[Comparative Device Examples 5-1 to 5-3] OLED using conventional compounds
OLED was produced in the same manner as in Device Example 17-1, except that the conventional compounds shown in Tables 4 and 5 below were used as a first host compound and a second host compound.
A driving voltage, luminous efficiency, CIE color coordinate, and the minimum time taken to be reduced from 100% to 95% of the luminance at 10,000 nit and a constant current, of OLEDs produced in Device Examples 17-1 to 17-5, Device Examples 18-1 to 18-6, and Comparative Device Examples 5-1 to 5-3 are shown in Table 4 below.
[Table 4]
[Table 5]
Claims (12)
- An organic electroluminescent compound represented by the following formula 1:wherein L1 represents a single bond, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C6-C30)arylene;X1 represents -NR1-, -CR2R3-, -O-, or -S-;X2 to X6, each independently, represent -CR4- or -N-;Ar1 represents hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl;with the proviso that when X2 is -N-, L1 is not the substituted or unsubstituted (C6-C30)arylene and Ar1 is not hydrogen;Y1 to Y4 and Y13 to Y16, each independently, represent -N- or -CR5-;R1 to R3, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl;R4 to R6, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cyclolakyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted di(C6-C30)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (3- to 30-membered), mono- or polycyclic, alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur;the heteroaryl(ene) and the heterocycloalkyl, each independently, contain at least one hetero atom selected from B, N, O, S, P(=O), Si and P; anda and b, each independently represent 0 or 1.
- The organic electroluminescent compound according to claim 1, wherein the substituents of the substituted alkyl, the substituted cycloalkyl, the substituted cycloalkenyl, the substituted heterocycloalkyl, the substituted aryl(ene), the substituted heteroaryl(ene), the substituted diarylamino and the substituted mono- or polycyclic, alicyclic or aromatic ring in L1, Ar1, and R1 to R6, each independently, are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxy, a nitro, a hydroxy, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a (3- to 7-membered)heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a (3- to 30-membered)heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a (3- to 30-membered)heteroaryl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di-(C1-C30)alkylamino, a mono- or di-(C6-C30)arylamino, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl.
- The organic electroluminescent compound according to claim 1, whereinL1 represents a single bond, a substituted or unsubstituted (5- to 21-membered)heteroarylene, or a substituted or unsubstituted (C6-C21)arylene;X1 represents -NR1-, -CR2R3-, -O-, or -S-;all of X2 to X6 represent -CR4-, or one of X2 to X6 represents -N-, and the remainders of X2 to X6 represent -CR4-, wherein when X2 is -N-, L1 is a single bond;Ar1 represents hydrogen, or a substituted or unsubstituted (C6-C21)aryl, wherein when Ar1 is hydrogen, at least one of R4 is a substituted or unsubstituted (C6-C21)aryl or a substituted or unsubstituted (5- to 21-membered)heteroaryl;Y1 to Y4 and Y13 to Y16, each independently, represent -CR5-;R1 to R3, each independently, represent a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C6-C21)aryl, a substituted or unsubstituted (5- to 21-membered)heteroaryl, a substituted or unsubstituted (C5-C21)cycloalkyl, or a substituted or unsubstituted (5- to 7-membered)heterocycloalkyl;R4 to R6, each independently, represent hydrogen, a halogen, a cyano, a substituted or unsubstituted (C1-C20)alkyl, a substituted or unsubstituted (C5-C21)cycloalkyl, a substituted or unsubstituted (C6-C21)aryl, a substituted or unsubstituted (5- to 21-membered)heteroaryl, or a substituted or unsubstituted di(C6-C21)arylamino; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (5- to 21-membered), mono- or polycyclic, aromatic ring whose carbon atom(s) may be replaced with one or two hetero atom(s) selected from nitrogen, oxygen, and sulfur;the heteroaryl(ene) and the heterocycloalkyl, each independently, contain at least one hetero atom selected from N, O and S; anda and b, each independently represent 0 or 1.
- The organic electroluminescent compound according to claim 3, wherein Ar1 represents hydrogen, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted anthracenyl, a substituted or unsubstituted phenanthrenyl, a substituted or unsubstituted phenylnaphthyl, or a substituted or unsubstituted naphthylphenyl.
- The organic electroluminescent compound according to claim 1, wherein the compound is represented by any one of the following formulae 2 to 4:wherein X1, Ar1, Y1 to Y16, R4, L1, a, and b are as defined in claim 1; c represents an integer of 1 to 4; and when c is an integer of 2 or more, each of R4 is the same or different.
- An organic electroluminescent device comprising the compound according to claim 1.
- An organic electroluminescent device comprising an anode, a cathode, and an organic layer disposed between the anode and cathode, wherein the organic layer comprises one or more light-emitting layers; at least one light-emitting layer comprises one or more dopant compounds and two or more host compounds; and at least one of the two or more host compounds is the organic electroluminescent compound represented by formula 1 according to claim 1.
- The organic electroluminescent device according to claim 8, wherein a first host compound of the two or more host compounds is selected from the organic electroluminescent compound represented by the following formulae 2 and 5.wherein, X1, Ar1, Y1 to Y16, R4, L1, a, and b are as defined in claim 1; c represents an integer of 1 to 5; and where c is 2 or more, each of R4 may be the same or different.
- The organic electroluminescent device according to claim 8, wherein at least two of the two or more host compounds, each independently, are selected from the organic electroluminescent compound represented by formula 1.
- The organic electroluminescent device according to claim 8, whereina first host compound of the two or more host compounds is the organic electroluminescent compound represented by formula 1, and a second host compound is selected from the compound represented by the following formulae 6 to 11.wherein Cz represents the following structure:L4 and L5, each independently, represent a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted (5- to 30-membered)heteroarylene;M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl, provided that where h of formula 6 is 1, or i of formulae 7 is 1, M is not(wherein X2 to X6, and Ar1 are as defined in formula 1, and * represents a bonding site.);Z1 and Z2, each independently, represent -O-, -S-, -N(R31)-, or -C(R32)(R33)-, provided that Z1 and Z2 do not simultaneously exist;X’ represents -O- or -S-;D and E, each independently, represent -O-, -S-, -N(R34)-, or -C(R35)(R36)-;Ar2 represents a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C6-C30)aryl, provided that Ar2 is not (wherein X2 to X6 and Ar1 are as defined in formula 1, and * represents a bonding site.);R21 to R27, each independently, represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, or R28R29R30Si-; or may be fused with an adjacent substituent(s) to form a substituted or unsubstituted (C3-C30), monocyclic or polycyclic, alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur; provided that where h of formula 6 or i of formula 7 is 1, R26 or R27 does not form the ring containing Z1, Z2, D, or E of formulae 8, 9, and 11, R22 of formula 10 does not form the indole ring connected to R21 of formulae 8 and 9 and the indole ring connected to R23 of formula 11;R28 to R30, each independently, represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl;R31 to R36, each independently, represent hydrogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (5- to 30-membered)heteroaryl; R32 and R33 may be the same or different; R35 and R36 may be the same or different; the heteroaryl(ene) contains one or more hetero atoms selected from B, N, O, S, P(=O), Si, and P;h and i, each independently, represent an integer of 1 to 3; j, k, l and p, each independently, represent an integer of 0 to 4; r, s, and t, each independently, represent an integer of 1 to 4; and where h, i, j, k, l, p, r, s, or t is an integer of 2 or more, each of (Cz-L4), each of (Cz), each of R21, each of R22, each of R23, each of R24, each of R25, each of R26, or each of R27 may be the same or different.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011041359.5A CN112110928B (en) | 2013-12-18 | 2014-12-18 | Organic electroluminescent compound and multi-component host material and organic electroluminescent device comprising same |
JP2016534253A JP6683609B2 (en) | 2013-12-18 | 2014-12-18 | Organic electroluminescent compound, multi-component host material containing the same, and organic electroluminescent device |
CN201480065903.6A CN105794010B (en) | 2013-12-18 | 2014-12-18 | Organic electroluminescent compounds and multi-component host materials and organic electroluminescent devices comprising the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130158371 | 2013-12-18 | ||
KR10-2013-0158371 | 2013-12-18 | ||
KR1020140073623A KR20150071624A (en) | 2013-12-18 | 2014-06-17 | Organic electroluminescent compound and organic electroluminescent device comprising the same |
KR10-2014-0073623 | 2014-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093878A1 true WO2015093878A1 (en) | 2015-06-25 |
Family
ID=53403132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/012547 WO2015093878A1 (en) | 2013-12-18 | 2014-12-18 | Organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015093878A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2963038A1 (en) * | 2014-04-29 | 2016-01-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2016013875A1 (en) * | 2014-07-22 | 2016-01-28 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent device |
WO2017014546A1 (en) * | 2015-07-20 | 2017-01-26 | Rohm And Haas Electronic Materials Korea Ltd. | Luminescent material for delayed fluorescence and organic electroluminescent device comprising the same |
CN106478614A (en) * | 2015-08-31 | 2017-03-08 | 上海和辉光电有限公司 | A kind of compound for being applied to OLED field |
JP2017533884A (en) * | 2014-10-14 | 2017-11-16 | エルジー・ケム・リミテッド | Nitrogen-containing polycyclic compound and organic light-emitting device using the same |
WO2018105986A1 (en) * | 2016-12-07 | 2018-06-14 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent material and organic electroluminescent device comprising the same |
WO2018131866A1 (en) * | 2017-01-10 | 2018-07-19 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent device |
CN108884102A (en) * | 2016-03-30 | 2018-11-23 | 德山新勒克斯有限公司 | Organic electronic element compound, organic electronic element and its electronic device using the compound |
CN110121542A (en) * | 2017-01-10 | 2019-08-13 | 罗门哈斯电子材料韩国有限公司 | Organnic electroluminescent device |
JP2019530676A (en) * | 2016-09-14 | 2019-10-24 | メルク パテント ゲーエムベーハー | Compound having carbazole structure |
JP2020503672A (en) * | 2016-12-27 | 2020-01-30 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | Organic electroluminescent compound and organic electroluminescent device containing the same |
TWI690523B (en) * | 2018-04-18 | 2020-04-11 | 祥德科技股份有限公司 | Bipolar molecular derivatives for organic light-emitting devices |
CN112279847A (en) * | 2019-07-25 | 2021-01-29 | 南京高光半导体材料有限公司 | Green phosphorescent host material and OLED (organic light emitting diode) light emitting device containing same |
US11800796B2 (en) | 2015-07-20 | 2023-10-24 | Rohm And Haas Electronic Materials Korea Ltd. | Luminescent material for delayed fluorescence and organic electroluminescent device comprising the same |
US11925113B2 (en) | 2018-04-24 | 2024-03-05 | Lg Chem, Ltd. | Heterocyclic compound and organic light emitting device comprising the same |
WO2024121133A1 (en) | 2022-12-08 | 2024-06-13 | Merck Patent Gmbh | Organic electronic device and special materials for organic electronic devices |
WO2024132993A1 (en) | 2022-12-19 | 2024-06-27 | Merck Patent Gmbh | Materials for electronic devices |
WO2024194264A1 (en) | 2023-03-20 | 2024-09-26 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010107244A2 (en) * | 2009-03-20 | 2010-09-23 | Dow Advanced Display Materials, Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2011010840A1 (en) * | 2009-07-21 | 2011-01-27 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2011019156A1 (en) * | 2009-08-10 | 2011-02-17 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
US20110062429A1 (en) * | 2008-05-08 | 2011-03-17 | Takahiro Kai | Compound for organic electroluminescent device and organic electroluminescent device |
WO2012036482A1 (en) * | 2010-09-17 | 2012-03-22 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
US8247575B2 (en) * | 2009-03-20 | 2012-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Carbazole derivative with heteroaromatic ring, and light-emitting element, light-emitting device, and electronic device using carbazole derivative with heteroaromatic ring |
WO2012121561A1 (en) * | 2011-03-08 | 2012-09-13 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2012134124A1 (en) * | 2011-03-25 | 2012-10-04 | Rohm And Haas Electronic Materials Korea Ltd. | Novel compounds for organic electronic material and organic electroluminescent device using the same |
KR20130102673A (en) * | 2012-03-08 | 2013-09-23 | 롬엔드하스전자재료코리아유한회사 | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
US8564190B2 (en) * | 2010-03-02 | 2013-10-22 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element and lighting device |
WO2014088290A1 (en) * | 2012-12-04 | 2014-06-12 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent compounds and organic electroluminescent device comprising the same |
KR20140108778A (en) * | 2013-02-28 | 2014-09-15 | 에스에프씨 주식회사 | An electroluminescent compound and an electroluminescent device comprising the same |
-
2014
- 2014-12-18 WO PCT/KR2014/012547 patent/WO2015093878A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110062429A1 (en) * | 2008-05-08 | 2011-03-17 | Takahiro Kai | Compound for organic electroluminescent device and organic electroluminescent device |
WO2010107244A2 (en) * | 2009-03-20 | 2010-09-23 | Dow Advanced Display Materials, Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
US8247575B2 (en) * | 2009-03-20 | 2012-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Carbazole derivative with heteroaromatic ring, and light-emitting element, light-emitting device, and electronic device using carbazole derivative with heteroaromatic ring |
WO2011010840A1 (en) * | 2009-07-21 | 2011-01-27 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2011019156A1 (en) * | 2009-08-10 | 2011-02-17 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
US8564190B2 (en) * | 2010-03-02 | 2013-10-22 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element and lighting device |
WO2012036482A1 (en) * | 2010-09-17 | 2012-03-22 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2012121561A1 (en) * | 2011-03-08 | 2012-09-13 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2012134124A1 (en) * | 2011-03-25 | 2012-10-04 | Rohm And Haas Electronic Materials Korea Ltd. | Novel compounds for organic electronic material and organic electroluminescent device using the same |
KR20130102673A (en) * | 2012-03-08 | 2013-09-23 | 롬엔드하스전자재료코리아유한회사 | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2014088290A1 (en) * | 2012-12-04 | 2014-06-12 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent compounds and organic electroluminescent device comprising the same |
KR20140108778A (en) * | 2013-02-28 | 2014-09-15 | 에스에프씨 주식회사 | An electroluminescent compound and an electroluminescent device comprising the same |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9741941B2 (en) | 2014-04-29 | 2017-08-22 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3626719A1 (en) * | 2014-04-29 | 2020-03-25 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP2963038A1 (en) * | 2014-04-29 | 2016-01-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2016013875A1 (en) * | 2014-07-22 | 2016-01-28 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent device |
US10035765B2 (en) | 2014-10-14 | 2018-07-31 | Lg Chem, Ltd. | Nitrogen-containing polycyclic compound and organic light emitting device using same |
JP2017533884A (en) * | 2014-10-14 | 2017-11-16 | エルジー・ケム・リミテッド | Nitrogen-containing polycyclic compound and organic light-emitting device using the same |
EP3208271A4 (en) * | 2014-10-14 | 2018-05-30 | LG Chem, Ltd. | Nitrogen-containing polycyclic compound and organic light emitting element using same |
US11800796B2 (en) | 2015-07-20 | 2023-10-24 | Rohm And Haas Electronic Materials Korea Ltd. | Luminescent material for delayed fluorescence and organic electroluminescent device comprising the same |
WO2017014546A1 (en) * | 2015-07-20 | 2017-01-26 | Rohm And Haas Electronic Materials Korea Ltd. | Luminescent material for delayed fluorescence and organic electroluminescent device comprising the same |
CN106478614A (en) * | 2015-08-31 | 2017-03-08 | 上海和辉光电有限公司 | A kind of compound for being applied to OLED field |
CN108884102A (en) * | 2016-03-30 | 2018-11-23 | 德山新勒克斯有限公司 | Organic electronic element compound, organic electronic element and its electronic device using the compound |
CN108884102B (en) * | 2016-03-30 | 2021-10-26 | 德山新勒克斯有限公司 | Compound for organic electronic element, organic electronic element using the same, and electronic device thereof |
US11024810B2 (en) | 2016-03-30 | 2021-06-01 | Duk San Neolux Co., Ltd. | Compound for organic electronic element, organic electronic element using same, and electronic device thereof |
JP2019530676A (en) * | 2016-09-14 | 2019-10-24 | メルク パテント ゲーエムベーハー | Compound having carbazole structure |
WO2018105986A1 (en) * | 2016-12-07 | 2018-06-14 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent material and organic electroluminescent device comprising the same |
JP7075402B2 (en) | 2016-12-07 | 2022-05-25 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | Organic electroluminescent material and organic electroluminescent device containing it |
JP2020513685A (en) * | 2016-12-07 | 2020-05-14 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | Organic electroluminescent material and organic electroluminescent device containing the same |
EP3551721A4 (en) * | 2016-12-07 | 2020-07-01 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent material and organic electroluminescent device comprising the same |
JP2020503672A (en) * | 2016-12-27 | 2020-01-30 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | Organic electroluminescent compound and organic electroluminescent device containing the same |
CN110121542A (en) * | 2017-01-10 | 2019-08-13 | 罗门哈斯电子材料韩国有限公司 | Organnic electroluminescent device |
JP2020505755A (en) * | 2017-01-10 | 2020-02-20 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | Organic electroluminescent devices |
WO2018131866A1 (en) * | 2017-01-10 | 2018-07-19 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent device |
TWI690523B (en) * | 2018-04-18 | 2020-04-11 | 祥德科技股份有限公司 | Bipolar molecular derivatives for organic light-emitting devices |
US11925113B2 (en) | 2018-04-24 | 2024-03-05 | Lg Chem, Ltd. | Heterocyclic compound and organic light emitting device comprising the same |
CN112279847A (en) * | 2019-07-25 | 2021-01-29 | 南京高光半导体材料有限公司 | Green phosphorescent host material and OLED (organic light emitting diode) light emitting device containing same |
CN112279847B (en) * | 2019-07-25 | 2021-12-03 | 南京高光半导体材料有限公司 | Green phosphorescent host material and OLED (organic light emitting diode) light emitting device containing same |
WO2024121133A1 (en) | 2022-12-08 | 2024-06-13 | Merck Patent Gmbh | Organic electronic device and special materials for organic electronic devices |
WO2024132993A1 (en) | 2022-12-19 | 2024-06-27 | Merck Patent Gmbh | Materials for electronic devices |
WO2024194264A1 (en) | 2023-03-20 | 2024-09-26 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015093878A1 (en) | Organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same | |
EP3494117A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
WO2015099507A1 (en) | Novel organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same | |
WO2018105888A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
WO2018021841A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
EP3446345A1 (en) | A plurality of host materials and organic electroluminescent device comprising the same | |
EP3145924A1 (en) | An organic electroluminescent compound and an organic electroluminescent device comprising the same | |
WO2014129846A1 (en) | Organic electroluminescent compounds and an organic electroluminescent device comprising the same | |
EP2817387A1 (en) | Novel organic electroluminescent compounds and organic electroluminescent device comprising the same | |
EP3386987A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
WO2013109045A1 (en) | Novel organic electroluminescent compounds and organic electroluminescent device using the same | |
EP3137467A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
WO2015037965A1 (en) | Novel organic electroluminescent compounds and organic electroluminescent device comprising the same | |
WO2015009076A1 (en) | A combination of a dopant compound and a host compound and an organic electroluminescent device comprising the same | |
WO2015046916A1 (en) | A combination of a host compound and a dopant compound | |
WO2014014310A1 (en) | A novel combination of a host compound and a dopant compound and an organic electroluminescence device comprising the same | |
EP3201200A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
WO2015050391A1 (en) | An organic electroluminescent compound and an organic electroluminescent device comprising the same | |
WO2017183859A1 (en) | A plurality of host materials and organic electroluminescent device comprising the same | |
EP3197869A1 (en) | Organic electroluminescent compound, and organic electroluminescent material and organic electroluminescent device comprising the same | |
EP3458457A1 (en) | Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same | |
WO2014104704A1 (en) | Novel organic electroluminescent compounds and organic electroluminescent device comprising the same | |
WO2016052962A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
EP3452442A1 (en) | Organic electroluminescent compound and organic electroluminescent device comprising the same | |
WO2015178731A1 (en) | An organic electroluminescent compound and an organic electroluminescent device comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14872229 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016534253 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14872229 Country of ref document: EP Kind code of ref document: A1 |