WO2015158723A1 - Metalloprotease from chryseobacterium - Google Patents
Metalloprotease from chryseobacterium Download PDFInfo
- Publication number
- WO2015158723A1 WO2015158723A1 PCT/EP2015/058087 EP2015058087W WO2015158723A1 WO 2015158723 A1 WO2015158723 A1 WO 2015158723A1 EP 2015058087 W EP2015058087 W EP 2015058087W WO 2015158723 A1 WO2015158723 A1 WO 2015158723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence identity
- polypeptide
- seq
- metalloprotease
- detergent
- Prior art date
Links
- 108010006035 Metalloproteases Proteins 0.000 title abstract description 160
- 102000005741 Metalloproteases Human genes 0.000 title abstract description 160
- 241000611330 Chryseobacterium Species 0.000 title description 13
- 239000000203 mixture Substances 0.000 claims abstract description 248
- 239000003599 detergent Substances 0.000 claims abstract description 198
- 238000000034 method Methods 0.000 claims abstract description 127
- 238000004140 cleaning Methods 0.000 claims abstract description 68
- 230000008569 process Effects 0.000 claims abstract description 36
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 330
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 324
- 229920001184 polypeptide Polymers 0.000 claims description 320
- 108091005804 Peptidases Proteins 0.000 claims description 170
- 239000004365 Protease Substances 0.000 claims description 148
- 102000004190 Enzymes Human genes 0.000 claims description 134
- 108090000790 Enzymes Proteins 0.000 claims description 134
- 229940088598 enzyme Drugs 0.000 claims description 123
- 230000000694 effects Effects 0.000 claims description 114
- 108091033319 polynucleotide Proteins 0.000 claims description 83
- 102000040430 polynucleotide Human genes 0.000 claims description 83
- 239000002157 polynucleotide Substances 0.000 claims description 83
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 82
- 150000001413 amino acids Chemical class 0.000 claims description 61
- 239000004744 fabric Substances 0.000 claims description 61
- 102000013142 Amylases Human genes 0.000 claims description 52
- 108010065511 Amylases Proteins 0.000 claims description 52
- 235000019418 amylase Nutrition 0.000 claims description 52
- 108091026890 Coding region Proteins 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 39
- 238000006467 substitution reaction Methods 0.000 claims description 39
- -1 arabinase Proteins 0.000 claims description 38
- 108090001060 Lipase Proteins 0.000 claims description 36
- 102000004882 Lipase Human genes 0.000 claims description 36
- 239000004367 Lipase Substances 0.000 claims description 35
- 235000019421 lipase Nutrition 0.000 claims description 35
- 239000004382 Amylase Substances 0.000 claims description 30
- 238000012217 deletion Methods 0.000 claims description 27
- 230000037430 deletion Effects 0.000 claims description 27
- 238000003780 insertion Methods 0.000 claims description 22
- 230000037431 insertion Effects 0.000 claims description 22
- 239000012634 fragment Substances 0.000 claims description 20
- 108010059892 Cellulase Proteins 0.000 claims description 18
- 229940106157 cellulase Drugs 0.000 claims description 15
- 244000025254 Cannabis sativa Species 0.000 claims description 14
- 108010059820 Polygalacturonase Proteins 0.000 claims description 13
- 108010005400 cutinase Proteins 0.000 claims description 13
- 108010093305 exopolygalacturonase Proteins 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 102000039446 nucleic acids Human genes 0.000 claims description 12
- 108020004707 nucleic acids Proteins 0.000 claims description 12
- 150000007523 nucleic acids Chemical class 0.000 claims description 12
- 239000013604 expression vector Substances 0.000 claims description 10
- 239000008187 granular material Substances 0.000 claims description 9
- 102000003992 Peroxidases Human genes 0.000 claims description 8
- 230000000295 complement effect Effects 0.000 claims description 8
- 102000004316 Oxidoreductases Human genes 0.000 claims description 7
- 108090000854 Oxidoreductases Proteins 0.000 claims description 7
- 108010089934 carbohydrase Proteins 0.000 claims description 7
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 5
- 108010029541 Laccase Proteins 0.000 claims description 4
- 108040007629 peroxidase activity proteins Proteins 0.000 claims description 3
- 101710152845 Arabinogalactan endo-beta-1,4-galactanase Proteins 0.000 claims description 2
- 102100032487 Beta-mannosidase Human genes 0.000 claims description 2
- 108700010070 Codon Usage Proteins 0.000 claims description 2
- 101710147028 Endo-beta-1,4-galactanase Proteins 0.000 claims description 2
- 108010055059 beta-Mannosidase Proteins 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 6
- 102000035195 Peptidases Human genes 0.000 description 164
- 235000019419 proteases Nutrition 0.000 description 123
- 210000004027 cell Anatomy 0.000 description 114
- 108090000623 proteins and genes Proteins 0.000 description 81
- 235000001014 amino acid Nutrition 0.000 description 64
- 229940024606 amino acid Drugs 0.000 description 59
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 40
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- 239000007844 bleaching agent Substances 0.000 description 36
- 102000004169 proteins and genes Human genes 0.000 description 36
- 238000005406 washing Methods 0.000 description 36
- 239000002773 nucleotide Substances 0.000 description 35
- 125000003729 nucleotide group Chemical group 0.000 description 35
- 235000018102 proteins Nutrition 0.000 description 35
- 238000003556 assay Methods 0.000 description 34
- 239000004753 textile Substances 0.000 description 34
- 239000003795 chemical substances by application Substances 0.000 description 32
- 239000013598 vector Substances 0.000 description 32
- 239000004094 surface-active agent Substances 0.000 description 30
- 108010076504 Protein Sorting Signals Proteins 0.000 description 29
- 239000000523 sample Substances 0.000 description 29
- 241000056141 Chryseobacterium sp. Species 0.000 description 27
- 108020004414 DNA Proteins 0.000 description 27
- 108010009355 microbial metalloproteinases Proteins 0.000 description 26
- 229920000742 Cotton Polymers 0.000 description 25
- 235000013601 eggs Nutrition 0.000 description 25
- 239000000463 material Substances 0.000 description 23
- 239000002689 soil Substances 0.000 description 23
- 241000196324 Embryophyta Species 0.000 description 22
- 229940025131 amylases Drugs 0.000 description 22
- 239000000758 substrate Substances 0.000 description 22
- 230000002538 fungal effect Effects 0.000 description 21
- 229920000642 polymer Polymers 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 230000001580 bacterial effect Effects 0.000 description 19
- 108010020132 microbial serine proteinases Proteins 0.000 description 19
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 235000019833 protease Nutrition 0.000 description 17
- 150000003839 salts Chemical class 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- 108090000637 alpha-Amylases Proteins 0.000 description 16
- 239000000975 dye Substances 0.000 description 16
- 230000010076 replication Effects 0.000 description 16
- 239000000654 additive Substances 0.000 description 15
- 229920002678 cellulose Polymers 0.000 description 15
- 239000001913 cellulose Substances 0.000 description 15
- 235000010980 cellulose Nutrition 0.000 description 15
- 239000002738 chelating agent Substances 0.000 description 15
- 238000004851 dishwashing Methods 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 125000003275 alpha amino acid group Chemical group 0.000 description 14
- 239000000835 fiber Substances 0.000 description 14
- 241000193830 Bacillus <bacterium> Species 0.000 description 13
- 102000005575 Cellulases Human genes 0.000 description 13
- 108010084185 Cellulases Proteins 0.000 description 13
- 230000000996 additive effect Effects 0.000 description 13
- 102000004139 alpha-Amylases Human genes 0.000 description 13
- 239000008280 blood Substances 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 13
- 239000012876 carrier material Substances 0.000 description 13
- 235000013336 milk Nutrition 0.000 description 13
- 210000004080 milk Anatomy 0.000 description 13
- 239000008267 milk Substances 0.000 description 13
- 229920000728 polyester Polymers 0.000 description 13
- 235000014469 Bacillus subtilis Nutrition 0.000 description 12
- 241000499912 Trichoderma reesei Species 0.000 description 12
- 229940024171 alpha-amylase Drugs 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 150000004965 peroxy acids Chemical class 0.000 description 12
- 102000012479 Serine Proteases Human genes 0.000 description 11
- 108010022999 Serine Proteases Proteins 0.000 description 11
- 240000006439 Aspergillus oryzae Species 0.000 description 10
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- 238000002105 Southern blotting Methods 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 108010002430 hemicellulase Proteins 0.000 description 10
- 238000009396 hybridization Methods 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 9
- 244000063299 Bacillus subtilis Species 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000012190 activator Substances 0.000 description 9
- 238000011534 incubation Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 8
- 108090000787 Subtilisin Proteins 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000006081 fluorescent whitening agent Substances 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 229940059442 hemicellulase Drugs 0.000 description 8
- 239000002853 nucleic acid probe Substances 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 241000351920 Aspergillus nidulans Species 0.000 description 7
- 241000972773 Aulopiformes Species 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 7
- 241000233866 Fungi Species 0.000 description 7
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 7
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 7
- 102000005158 Subtilisins Human genes 0.000 description 7
- 108010056079 Subtilisins Proteins 0.000 description 7
- 239000003945 anionic surfactant Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000004900 laundering Methods 0.000 description 7
- 239000002736 nonionic surfactant Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 235000019515 salmon Nutrition 0.000 description 7
- 241000228245 Aspergillus niger Species 0.000 description 6
- 241000194108 Bacillus licheniformis Species 0.000 description 6
- 241000223218 Fusarium Species 0.000 description 6
- 125000003412 L-alanyl group Chemical group [H]N([H])[C@@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 6
- 241000579835 Merops Species 0.000 description 6
- 229920000297 Rayon Polymers 0.000 description 6
- 244000299461 Theobroma cacao Species 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000012131 assay buffer Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 210000001938 protoplast Anatomy 0.000 description 6
- 239000000344 soap Substances 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 5
- 241000228212 Aspergillus Species 0.000 description 5
- 101000757144 Aspergillus niger Glucoamylase Proteins 0.000 description 5
- 241001328122 Bacillus clausii Species 0.000 description 5
- 241000223221 Fusarium oxysporum Species 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 108700020962 Peroxidase Proteins 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 241000589516 Pseudomonas Species 0.000 description 5
- 239000013504 Triton X-100 Substances 0.000 description 5
- 229920004890 Triton X-100 Polymers 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000003093 cationic surfactant Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 238000002744 homologous recombination Methods 0.000 description 5
- 230000006801 homologous recombination Effects 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000012085 test solution Substances 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- NSMMFSKPGXCMOE-UHFFFAOYSA-N 2-[2-(2-sulfophenyl)ethenyl]benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=CC=C1S(O)(=O)=O NSMMFSKPGXCMOE-UHFFFAOYSA-N 0.000 description 4
- 241000193388 Bacillus thuringiensis Species 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108091005658 Basic proteases Proteins 0.000 description 4
- 241000567178 Fusarium venenatum Species 0.000 description 4
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 4
- 241001480714 Humicola insolens Species 0.000 description 4
- 102100027612 Kallikrein-11 Human genes 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 241000235403 Rhizomucor miehei Species 0.000 description 4
- 241000194017 Streptococcus Species 0.000 description 4
- 241000187747 Streptomyces Species 0.000 description 4
- 108090001109 Thermolysin Proteins 0.000 description 4
- 241000223258 Thermomyces lanuginosus Species 0.000 description 4
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 4
- 101710152431 Trypsin-like protease Proteins 0.000 description 4
- 108010048241 acetamidase Proteins 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 4
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 4
- 229940097012 bacillus thuringiensis Drugs 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000002759 chromosomal effect Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 239000002979 fabric softener Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 229920005646 polycarboxylate Polymers 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 3
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 3
- 108010037870 Anthranilate Synthase Proteins 0.000 description 3
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 3
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 3
- 241000193422 Bacillus lentus Species 0.000 description 3
- 108010029675 Bacillus licheniformis alpha-amylase Proteins 0.000 description 3
- 241000194103 Bacillus pumilus Species 0.000 description 3
- 240000008564 Boehmeria nivea Species 0.000 description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical class [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 108010008885 Cellulose 1,4-beta-Cellobiosidase Proteins 0.000 description 3
- 241000146399 Ceriporiopsis Species 0.000 description 3
- 102000005593 Endopeptidases Human genes 0.000 description 3
- 108010059378 Endopeptidases Proteins 0.000 description 3
- 241000221779 Fusarium sambucinum Species 0.000 description 3
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000223198 Humicola Species 0.000 description 3
- 125000000570 L-alpha-aspartyl group Chemical group [H]OC(=O)C([H])([H])[C@]([H])(N([H])[H])C(*)=O 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 3
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 101710135785 Subtilisin-like protease Proteins 0.000 description 3
- 235000009470 Theobroma cacao Nutrition 0.000 description 3
- 241001313536 Thermothelomyces thermophila Species 0.000 description 3
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 3
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 235000019219 chocolate Nutrition 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010410 dusting Methods 0.000 description 3
- 229940066758 endopeptidases Drugs 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 3
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 3
- 229920000578 graft copolymer Polymers 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910001425 magnesium ion Inorganic materials 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000002351 pectolytic effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002964 rayon Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002453 shampoo Substances 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 235000016804 zinc Nutrition 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- LIPJWTMIUOLEJU-UHFFFAOYSA-N 2-(1,2-diamino-2-phenylethenyl)benzenesulfonic acid Chemical class NC(=C(C=1C(=CC=CC1)S(=O)(=O)O)N)C1=CC=CC=C1 LIPJWTMIUOLEJU-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 101100163849 Arabidopsis thaliana ARS1 gene Proteins 0.000 description 2
- 101000690713 Aspergillus niger Alpha-glucosidase Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108090000145 Bacillolysin Proteins 0.000 description 2
- 101000775727 Bacillus amyloliquefaciens Alpha-amylase Proteins 0.000 description 2
- 101000695691 Bacillus licheniformis Beta-lactamase Proteins 0.000 description 2
- 241001508395 Burkholderia sp. Species 0.000 description 2
- 241000589876 Campylobacter Species 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 241000123346 Chrysosporium Species 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 241000193403 Clostridium Species 0.000 description 2
- 241000222511 Coprinus Species 0.000 description 2
- 244000251987 Coprinus macrorhizus Species 0.000 description 2
- 240000000491 Corchorus aestuans Species 0.000 description 2
- 235000011777 Corchorus aestuans Nutrition 0.000 description 2
- 235000010862 Corchorus capsularis Nutrition 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 101150015836 ENO1 gene Proteins 0.000 description 2
- 241000194033 Enterococcus Species 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 241000589565 Flavobacterium Species 0.000 description 2
- 241000589564 Flavobacterium sp. Species 0.000 description 2
- 241000567163 Fusarium cerealis Species 0.000 description 2
- 241000146406 Fusarium heterosporum Species 0.000 description 2
- 241000605909 Fusobacterium Species 0.000 description 2
- 101150094690 GAL1 gene Proteins 0.000 description 2
- 102100028501 Galanin peptides Human genes 0.000 description 2
- 241000626621 Geobacillus Species 0.000 description 2
- 101100369308 Geobacillus stearothermophilus nprS gene Proteins 0.000 description 2
- 101100080316 Geobacillus stearothermophilus nprT gene Proteins 0.000 description 2
- 102100022624 Glucoamylase Human genes 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 241000589989 Helicobacter Species 0.000 description 2
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 241000186660 Lactobacillus Species 0.000 description 2
- 241000194036 Lactococcus Species 0.000 description 2
- 241000209510 Liliopsida Species 0.000 description 2
- 240000006240 Linum usitatissimum Species 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- 229920000433 Lyocell Polymers 0.000 description 2
- MJVAVZPDRWSRRC-UHFFFAOYSA-N Menadione Chemical compound C1=CC=C2C(=O)C(C)=CC(=O)C2=C1 MJVAVZPDRWSRRC-UHFFFAOYSA-N 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- 241000588653 Neisseria Species 0.000 description 2
- 241001072230 Oceanobacillus Species 0.000 description 2
- 241000233654 Oomycetes Species 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- 101100097319 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ala1 gene Proteins 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 229920002334 Spandex Polymers 0.000 description 2
- 241000191940 Staphylococcus Species 0.000 description 2
- 241000187432 Streptomyces coelicolor Species 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 241001494489 Thielavia Species 0.000 description 2
- 102000004357 Transferases Human genes 0.000 description 2
- 108090000992 Transferases Proteins 0.000 description 2
- 241000223259 Trichoderma Species 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 241000202898 Ureaplasma Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 101150078331 ama-1 gene Proteins 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000003625 amylolytic effect Effects 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 2
- 108010047754 beta-Glucosidase Proteins 0.000 description 2
- 102000006995 beta-Glucosidase Human genes 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000004927 clay Chemical class 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000249 desinfective effect Effects 0.000 description 2
- 235000021186 dishes Nutrition 0.000 description 2
- PMPJQLCPEQFEJW-GNTLFSRWSA-L disodium;2-[(z)-2-[4-[4-[(z)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C/C1=CC=C(C=2C=CC(\C=C/C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-GNTLFSRWSA-L 0.000 description 2
- VUJGKADZTYCLIL-YHPRVSEPSA-L disodium;5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S([O-])(=O)=O)C(S(=O)(=O)[O-])=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 VUJGKADZTYCLIL-YHPRVSEPSA-L 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 239000006167 equilibration buffer Substances 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 241001233957 eudicotyledons Species 0.000 description 2
- 108010038658 exo-1,4-beta-D-xylosidase Proteins 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 239000007897 gelcap Substances 0.000 description 2
- 108010061330 glucan 1,4-alpha-maltohydrolase Proteins 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000001573 invertase Substances 0.000 description 2
- 235000011073 invertase Nutrition 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229940039696 lactobacillus Drugs 0.000 description 2
- 238000010412 laundry washing Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000002366 lipolytic effect Effects 0.000 description 2
- 239000004337 magnesium citrate Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 239000002324 mouth wash Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 229940072417 peroxidase Drugs 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 2
- 101150054232 pyrG gene Proteins 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 230000009105 vegetative growth Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000002888 zwitterionic surfactant Substances 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 1
- JQFLYFRHDIHZFZ-RXMQYKEDSA-N (2s)-3,3-dimethylpyrrolidine-2-carboxylic acid Chemical compound CC1(C)CCN[C@@H]1C(O)=O JQFLYFRHDIHZFZ-RXMQYKEDSA-N 0.000 description 1
- CNPSFBUUYIVHAP-AKGZTFGVSA-N (2s)-3-methylpyrrolidine-2-carboxylic acid Chemical compound CC1CCN[C@@H]1C(O)=O CNPSFBUUYIVHAP-AKGZTFGVSA-N 0.000 description 1
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- OMGHIGVFLOPEHJ-UHFFFAOYSA-N 2,5-dihydro-1h-pyrrol-1-ium-2-carboxylate Chemical compound OC(=O)C1NCC=C1 OMGHIGVFLOPEHJ-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 1
- MHOFGBJTSNWTDT-UHFFFAOYSA-M 2-[n-ethyl-4-[(6-methoxy-3-methyl-1,3-benzothiazol-3-ium-2-yl)diazenyl]anilino]ethanol;methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC(N(CCO)CC)=CC=C1N=NC1=[N+](C)C2=CC=C(OC)C=C2S1 MHOFGBJTSNWTDT-UHFFFAOYSA-M 0.000 description 1
- CDUUKBXTEOFITR-BYPYZUCNSA-N 2-methyl-L-serine Chemical compound OC[C@@]([NH3+])(C)C([O-])=O CDUUKBXTEOFITR-BYPYZUCNSA-N 0.000 description 1
- XNPKNHHFCKSMRV-UHFFFAOYSA-N 4-(cyclohexylamino)butane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCCNC1CCCCC1 XNPKNHHFCKSMRV-UHFFFAOYSA-N 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- UXEKKQRJIGKQNP-UHFFFAOYSA-N 5-(4-phenyltriazol-2-yl)-2-[2-[4-(4-phenyltriazol-2-yl)-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC(N2N=C(C=N2)C=2C=CC=CC=2)=CC=C1C=CC(C(=C1)S(O)(=O)=O)=CC=C1N(N=1)N=CC=1C1=CC=CC=C1 UXEKKQRJIGKQNP-UHFFFAOYSA-N 0.000 description 1
- CNGYZEMWVAWWOB-VAWYXSNFSA-N 5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S(O)(=O)=O)=CC=2)S(O)(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 CNGYZEMWVAWWOB-VAWYXSNFSA-N 0.000 description 1
- 108010011619 6-Phytase Proteins 0.000 description 1
- 101710102786 ATP-dependent leucine adenylase Proteins 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 241000743339 Agrostis Species 0.000 description 1
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 1
- 101710184263 Alkaline serine protease Proteins 0.000 description 1
- 241000589563 Alteromonas sp. Species 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 241000534414 Anotopterus nikparini Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241001513093 Aspergillus awamori Species 0.000 description 1
- 101000961203 Aspergillus awamori Glucoamylase Proteins 0.000 description 1
- 241000892910 Aspergillus foetidus Species 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241001480052 Aspergillus japonicus Species 0.000 description 1
- 101000756530 Aspergillus niger Endo-1,4-beta-xylanase B Proteins 0.000 description 1
- 101900127796 Aspergillus oryzae Glucoamylase Proteins 0.000 description 1
- 101900318521 Aspergillus oryzae Triosephosphate isomerase Proteins 0.000 description 1
- 241000223651 Aureobasidium Species 0.000 description 1
- 108090000254 Aureolysin Proteins 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000193752 Bacillus circulans Species 0.000 description 1
- 241000193749 Bacillus coagulans Species 0.000 description 1
- 241000193747 Bacillus firmus Species 0.000 description 1
- 241001328119 Bacillus gibsonii Species 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- 108010045681 Bacillus stearothermophilus neutral protease Proteins 0.000 description 1
- 101000740449 Bacillus subtilis (strain 168) Biotin/lipoyl attachment protein Proteins 0.000 description 1
- 101900040182 Bacillus subtilis Levansucrase Proteins 0.000 description 1
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 108010062877 Bacteriocins Proteins 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 102100030981 Beta-alanine-activating enzyme Human genes 0.000 description 1
- 241000222490 Bjerkandera Species 0.000 description 1
- 241000222478 Bjerkandera adusta Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 1
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 241000193764 Brevibacillus brevis Species 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 239000008000 CHES buffer Substances 0.000 description 1
- 101100327917 Caenorhabditis elegans chup-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 108010006303 Carboxypeptidases Proteins 0.000 description 1
- 102000005367 Carboxypeptidases Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 102000030523 Catechol oxidase Human genes 0.000 description 1
- 108010031396 Catechol oxidase Proteins 0.000 description 1
- 241000186321 Cellulomonas Species 0.000 description 1
- 102100037633 Centrin-3 Human genes 0.000 description 1
- 241001466517 Ceriporiopsis aneirina Species 0.000 description 1
- 241001646018 Ceriporiopsis gilvescens Species 0.000 description 1
- 241001277875 Ceriporiopsis rivulosa Species 0.000 description 1
- 241000524302 Ceriporiopsis subrufa Species 0.000 description 1
- 108010022172 Chitinases Proteins 0.000 description 1
- 102000012286 Chitinases Human genes 0.000 description 1
- 241000511343 Chondrostoma nasus Species 0.000 description 1
- 241000589593 Chryseobacterium gleum Species 0.000 description 1
- 241000985909 Chrysosporium keratinophilum Species 0.000 description 1
- 241001674013 Chrysosporium lucknowense Species 0.000 description 1
- 241001556045 Chrysosporium merdarium Species 0.000 description 1
- 241000080524 Chrysosporium queenslandicum Species 0.000 description 1
- 241001674001 Chrysosporium tropicum Species 0.000 description 1
- 241000355696 Chrysosporium zonatum Species 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 241000233652 Chytridiomycota Species 0.000 description 1
- 235000001673 Coprinus macrorhizus Nutrition 0.000 description 1
- 241000222356 Coriolus Species 0.000 description 1
- 241001137251 Corvidae Species 0.000 description 1
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 241001559589 Cullen Species 0.000 description 1
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 102000016559 DNA Primase Human genes 0.000 description 1
- 108010092681 DNA Primase Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 101100342470 Dictyostelium discoideum pkbA gene Proteins 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 101710132690 Endo-1,4-beta-xylanase A Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 101001023854 Enterococcus faecalis (strain ATCC 700802 / V583) Gelatinase Proteins 0.000 description 1
- 101100385973 Escherichia coli (strain K12) cycA gene Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000234642 Festuca Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000145614 Fusarium bactridioides Species 0.000 description 1
- 241000223194 Fusarium culmorum Species 0.000 description 1
- 241000223195 Fusarium graminearum Species 0.000 description 1
- 241001112697 Fusarium reticulatum Species 0.000 description 1
- 241001014439 Fusarium sarcochroum Species 0.000 description 1
- 241000223192 Fusarium sporotrichioides Species 0.000 description 1
- 241001465753 Fusarium torulosum Species 0.000 description 1
- 101150108358 GLAA gene Proteins 0.000 description 1
- 241000146398 Gelatoporia subvermispora Species 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 101001124321 Geobacillus stearothermophilus Thermostable neutral protease NprT Proteins 0.000 description 1
- 101100001650 Geobacillus stearothermophilus amyM gene Proteins 0.000 description 1
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 101100295959 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) arcB gene Proteins 0.000 description 1
- 101100246753 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) pyrF gene Proteins 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 1
- 101000773364 Homo sapiens Beta-alanine-activating enzyme Proteins 0.000 description 1
- 101000880522 Homo sapiens Centrin-3 Proteins 0.000 description 1
- 101000882901 Homo sapiens Claudin-2 Proteins 0.000 description 1
- 101001091385 Homo sapiens Kallikrein-6 Proteins 0.000 description 1
- 101001005155 Homo sapiens Leishmanolysin-like peptidase Proteins 0.000 description 1
- 101001126084 Homo sapiens Piwi-like protein 2 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 101001035458 Humicola insolens Endoglucanase-5 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 241001397173 Kali <angiosperm> Species 0.000 description 1
- 102100034866 Kallikrein-6 Human genes 0.000 description 1
- 101710172072 Kexin Proteins 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 125000003440 L-leucyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 125000001176 L-lysyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C([H])([H])C([H])([H])C(N([H])[H])([H])[H] 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- DZLNHFMRPBPULJ-VKHMYHEASA-N L-thioproline Chemical compound OC(=O)[C@@H]1CSCN1 DZLNHFMRPBPULJ-VKHMYHEASA-N 0.000 description 1
- 125000000769 L-threonyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](O[H])(C([H])([H])[H])[H] 0.000 description 1
- KKJQZEWNZXRJFG-UHFFFAOYSA-N L-trans-4-Methyl-2-pyrrolidinecarboxylic acid Chemical compound CC1CNC(C(O)=O)C1 KKJQZEWNZXRJFG-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 125000003798 L-tyrosyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- 241000235087 Lachancea kluyveri Species 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 241000209082 Lolium Species 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101150068888 MET3 gene Proteins 0.000 description 1
- 241001344133 Magnaporthe Species 0.000 description 1
- 102100024295 Maltase-glucoamylase Human genes 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- 108010054377 Mannosidases Proteins 0.000 description 1
- 102000001696 Mannosidases Human genes 0.000 description 1
- 108090000131 Metalloendopeptidases Proteins 0.000 description 1
- 102000003843 Metalloendopeptidases Human genes 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- 241000226677 Myceliophthora Species 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- MKWKNSIESPFAQN-UHFFFAOYSA-N N-cyclohexyl-2-aminoethanesulfonic acid Chemical compound OS(=O)(=O)CCNC1CCCCC1 MKWKNSIESPFAQN-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229920002274 Nalgene Polymers 0.000 description 1
- 241000233892 Neocallimastix Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 101100022915 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cys-11 gene Proteins 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 108090000913 Nitrate Reductases Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 102100028200 Ornithine transcarbamylase, mitochondrial Human genes 0.000 description 1
- 101710113020 Ornithine transcarbamylase, mitochondrial Proteins 0.000 description 1
- 102100037214 Orotidine 5'-phosphate decarboxylase Human genes 0.000 description 1
- 108010055012 Orotidine-5'-phosphate decarboxylase Proteins 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical class [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241001236817 Paecilomyces <Clavicipitaceae> Species 0.000 description 1
- 241000194109 Paenibacillus lautus Species 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 241000222385 Phanerochaete Species 0.000 description 1
- 241000222393 Phanerochaete chrysosporium Species 0.000 description 1
- 244000100170 Phaseolus lunatus Species 0.000 description 1
- 235000010617 Phaseolus lunatus Nutrition 0.000 description 1
- 241000222395 Phlebia Species 0.000 description 1
- 241000222397 Phlebia radiata Species 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241001148064 Photorhabdus luminescens Species 0.000 description 1
- 241000425347 Phyla <beetle> Species 0.000 description 1
- 241000235379 Piromyces Species 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000015622 Pisum sativum var macrocarpon Nutrition 0.000 description 1
- 102100029365 Piwi-like protein 2 Human genes 0.000 description 1
- 241000222350 Pleurotus Species 0.000 description 1
- 244000252132 Pleurotus eryngii Species 0.000 description 1
- 235000001681 Pleurotus eryngii Nutrition 0.000 description 1
- 241000209048 Poa Species 0.000 description 1
- 241000209049 Poa pratensis Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 101710194948 Protein phosphatase PhpP Proteins 0.000 description 1
- 101000925883 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Elastase Proteins 0.000 description 1
- 241000168225 Pseudomonas alcaligenes Species 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589630 Pseudomonas pseudoalcaligenes Species 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 241000577556 Pseudomonas wisconsinensis Species 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 101710081551 Pyrolysin Proteins 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 101000968489 Rhizomucor miehei Lipase Proteins 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 235000003534 Saccharomyces carlsbergensis Nutrition 0.000 description 1
- 101900354623 Saccharomyces cerevisiae Galactokinase Proteins 0.000 description 1
- 101900084120 Saccharomyces cerevisiae Triosephosphate isomerase Proteins 0.000 description 1
- 235000001006 Saccharomyces cerevisiae var diastaticus Nutrition 0.000 description 1
- 244000206963 Saccharomyces cerevisiae var. diastaticus Species 0.000 description 1
- 241000204893 Saccharomyces douglasii Species 0.000 description 1
- 241001407717 Saccharomyces norbensis Species 0.000 description 1
- 241001123227 Saccharomyces pastorianus Species 0.000 description 1
- 241000235343 Saccharomycetales Species 0.000 description 1
- 241000222480 Schizophyllum Species 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 101100022918 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sua1 gene Proteins 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 241000264435 Streptococcus dysgalactiae subsp. equisimilis Species 0.000 description 1
- 241000194048 Streptococcus equi Species 0.000 description 1
- 101100309436 Streptococcus mutans serotype c (strain ATCC 700610 / UA159) ftf gene Proteins 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241000194054 Streptococcus uberis Species 0.000 description 1
- 241000958303 Streptomyces achromogenes Species 0.000 description 1
- 241001468227 Streptomyces avermitilis Species 0.000 description 1
- 101100370749 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) trpC1 gene Proteins 0.000 description 1
- 241000187392 Streptomyces griseus Species 0.000 description 1
- 101100242848 Streptomyces hygroscopicus bar gene Proteins 0.000 description 1
- 241000187398 Streptomyces lividans Species 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 241000228341 Talaromyces Species 0.000 description 1
- 241001540751 Talaromyces ruber Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 244000152045 Themeda triandra Species 0.000 description 1
- 101100157012 Thermoanaerobacterium saccharolyticum (strain DSM 8691 / JW/SL-YS485) xynB gene Proteins 0.000 description 1
- 241000228178 Thermoascus Species 0.000 description 1
- 241000223257 Thermomyces Species 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241001149964 Tolypocladium Species 0.000 description 1
- 241000222354 Trametes Species 0.000 description 1
- 241000222357 Trametes hirsuta Species 0.000 description 1
- 241000222355 Trametes versicolor Species 0.000 description 1
- 241000217816 Trametes villosa Species 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- 241000223260 Trichoderma harzianum Species 0.000 description 1
- 241000378866 Trichoderma koningii Species 0.000 description 1
- 241000223262 Trichoderma longibrachiatum Species 0.000 description 1
- 241000223261 Trichoderma viride Species 0.000 description 1
- 108010070926 Tripeptide aminopeptidase Proteins 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 102220470553 Tryptase delta_Q87E_mutation Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 101150050575 URA3 gene Proteins 0.000 description 1
- 101001011775 Vibrio anguillarum Virulence metalloprotease Proteins 0.000 description 1
- 101000871876 Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961) Hemagglutinin/proteinase Proteins 0.000 description 1
- 101001124322 Vibrio proteolyticus Neutral protease Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000409279 Xerochrysium dermatitidis Species 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 241000758405 Zoopagomycotina Species 0.000 description 1
- GYMWQLRSSDFGEQ-ADRAWKNSSA-N [(3e,8r,9s,10r,13s,14s,17r)-13-ethyl-17-ethynyl-3-hydroxyimino-1,2,6,7,8,9,10,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-yl] acetate;(8r,9s,13s,14s,17r)-17-ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.O/N=C/1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(OC(C)=O)C#C)[C@@H]4[C@@H]3CCC2=C\1 GYMWQLRSSDFGEQ-ADRAWKNSSA-N 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 108010045649 agarase Proteins 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 108010050181 aleurone Proteins 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- CDUUKBXTEOFITR-UHFFFAOYSA-N alpha-methylserine Natural products OCC([NH3+])(C)C([O-])=O CDUUKBXTEOFITR-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000433 anti-nutritional effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940045713 antineoplastic alkylating drug ethylene imines Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 101150009206 aprE gene Proteins 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 101150008194 argB gene Proteins 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 235000008452 baby food Nutrition 0.000 description 1
- 229940054340 bacillus coagulans Drugs 0.000 description 1
- 229940005348 bacillus firmus Drugs 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000009141 biological interaction Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 102220350531 c.80A>G Human genes 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 210000000085 cashmere Anatomy 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229940106135 cellulose Drugs 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920003174 cellulose-based polymer Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 235000020140 chocolate milk drink Nutrition 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 101150005799 dagA gene Proteins 0.000 description 1
- 125000003074 decanoyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 125000005066 dodecenyl group Chemical group C(=CCCCCCCCCCC)* 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 108010091371 endoglucanase 1 Proteins 0.000 description 1
- 108010091384 endoglucanase 2 Proteins 0.000 description 1
- 108010092413 endoglucanase V Proteins 0.000 description 1
- 239000003248 enzyme activator Substances 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 108010000165 exo-1,3-alpha-glucanase Proteins 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000004459 forage Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 108010002685 hygromycin-B kinase Proteins 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000017730 intein-mediated protein splicing Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- GCHPUFAZSONQIV-UHFFFAOYSA-N isovaline Chemical compound CCC(C)(N)C(O)=O GCHPUFAZSONQIV-UHFFFAOYSA-N 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 101150039489 lysZ gene Proteins 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000000050 mohair Anatomy 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000013365 molecular weight analysis method Methods 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 101150095344 niaD gene Proteins 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 101150105920 npr gene Proteins 0.000 description 1
- 101150017837 nprM gene Proteins 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 108090000021 oryzin Proteins 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MHHDXUNFNAZUGB-UHFFFAOYSA-N oxidovanadium(2+) Chemical compound [V+2]=O MHHDXUNFNAZUGB-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 229940066734 peptide hydrolases Drugs 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 125000005342 perphosphate group Chemical group 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- KROGEBGRISJYMV-UHFFFAOYSA-N phenyl 3,5,5-trimethylhexanoate Chemical compound CC(C)(C)CC(C)CC(=O)OC1=CC=CC=C1 KROGEBGRISJYMV-UHFFFAOYSA-N 0.000 description 1
- SIENSFABYFDZCL-UHFFFAOYSA-N phenyl decanoate Chemical compound CCCCCCCCCC(=O)OC1=CC=CC=C1 SIENSFABYFDZCL-UHFFFAOYSA-N 0.000 description 1
- ZPORCTAUIXXZAI-UHFFFAOYSA-N phenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC1=CC=CC=C1 ZPORCTAUIXXZAI-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 108010082527 phosphinothricin N-acetyltransferase Proteins 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000005222 photoaffinity labeling Methods 0.000 description 1
- 229940085127 phytase Drugs 0.000 description 1
- 235000015108 pies Nutrition 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920006306 polyurethane fiber Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000004300 potassium benzoate Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 101150108007 prs gene Proteins 0.000 description 1
- 101150086435 prs1 gene Proteins 0.000 description 1
- 101150070305 prsA gene Proteins 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 210000004708 ribosome subunit Anatomy 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 102200131574 rs11556620 Human genes 0.000 description 1
- 102220036452 rs137882485 Human genes 0.000 description 1
- 102200065573 rs140660066 Human genes 0.000 description 1
- 102200118280 rs33918343 Human genes 0.000 description 1
- 102220243297 rs374524755 Human genes 0.000 description 1
- 102200128586 rs397508464 Human genes 0.000 description 1
- 102200034374 rs6092 Human genes 0.000 description 1
- 102220005204 rs63750783 Human genes 0.000 description 1
- 102220289974 rs757282628 Human genes 0.000 description 1
- 102220123717 rs759057581 Human genes 0.000 description 1
- 102200025035 rs786203989 Human genes 0.000 description 1
- 102220099575 rs878853725 Human genes 0.000 description 1
- 101150025220 sacB gene Proteins 0.000 description 1
- 108010038196 saccharide-binding proteins Proteins 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 101150091813 shfl gene Proteins 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000011172 small scale experimental method Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical group [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- AXMCIYLNKNGNOT-UHFFFAOYSA-N sodium;3-[[4-[(4-dimethylazaniumylidenecyclohexa-2,5-dien-1-ylidene)-[4-[ethyl-[(3-sulfophenyl)methyl]amino]phenyl]methyl]-n-ethylanilino]methyl]benzenesulfonate Chemical compound [Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 AXMCIYLNKNGNOT-UHFFFAOYSA-N 0.000 description 1
- 238000010563 solid-state fermentation Methods 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940115922 streptococcus uberis Drugs 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Chemical class 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- LKHDXIBHVSGUHN-UHFFFAOYSA-N thiadiazole 1,1-dioxide Chemical class O=S1(=O)C=CN=N1 LKHDXIBHVSGUHN-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 210000000515 tooth Anatomy 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- VRVDFJOCCWSFLI-UHFFFAOYSA-K trisodium 3-[[4-[(6-anilino-1-hydroxy-3-sulfonatonaphthalen-2-yl)diazenyl]-5-methoxy-2-methylphenyl]diazenyl]naphthalene-1,5-disulfonate Chemical compound [Na+].[Na+].[Na+].COc1cc(N=Nc2cc(c3cccc(c3c2)S([O-])(=O)=O)S([O-])(=O)=O)c(C)cc1N=Nc1c(O)c2ccc(Nc3ccccc3)cc2cc1S([O-])(=O)=O VRVDFJOCCWSFLI-UHFFFAOYSA-K 0.000 description 1
- 101150016309 trpC gene Proteins 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 108010014498 vimelysin Proteins 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000012711 vitamin K3 Nutrition 0.000 description 1
- 239000011652 vitamin K3 Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 101150110790 xylB gene Proteins 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/52—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
Definitions
- the present invention relates to cleaning and/or detergent compositions comprising metalloproteases (E.C 3.4.24).
- the invention further concerns new metalloproteases from Chryseobacterium sp. and the use of thereof in cleaning processes, such as dish wash and laundry. Further the invention concerns methods of doing cleaning, such as dish wash and laundry.
- detergent industry has for more than 30 years implemented different enzymes in de- tergent formulations, most commonly used enzymes includes proteases, amylases and lipases each adapted for removing various types of stains.
- detergent compositions typically include a complex combination of ingredients.
- most cleaning products include surfactant system, bleaching agents or builders.
- proteases are one of the standard ingredients of all kinds of detergents ranging from those used for household laundering to reagents used for cleaning contact lenses or dentures. In textile laundry the proteases remove protein stains such as grass, blood, egg and human sweat. These organic stains have a tendency to adhere strongly to textile fibres. Proteases hy- drolyse the proteins in the stains and break them down into more soluble polypeptides or free amino acids.
- Alkaline serine proteases are the most important group of protease exploited commercially in the detergent industry.
- Subtilisins are a prototypical group of bacterial serine proteases used extensively in detergents due to their stability and activity at high temperature and alkaline pH.
- a commercially important subtilisin used extensively in the detergent industry is Savinase®.
- Metalloproteases are a group of proteases which have not yet been commercially applied in detergent industry, mainly due to low stability in detergent compositions as well as under the conditions during the wash process. Metalloproteases are proteolytic enzymes having an absolute requirement for metal ion for their activity. Most metalloproteases are zinc- dependent, although some use other transition metals. Metalloproteases have been widely used in different industries like food and brewing industry.
- M4 metalloproteases One group of metalloproteases is the M4 family metalloproteases which have been used in various applications.
- M4 metalloprotease from Bacillus amyloliquefaciens also known as Neutrase®
- This metalloprotease has also been described for use in detergent and cleaning compositions and processes e.g., in WO 2007/044993, use of storage-stable metalloproteases in detergent or WO 2009/058518, and EP 1 288 282, which describes a blend of a metalloprotease and a serine protease for use in dish washing.
- WO 2000/60042 also describes detergent compositions containing a metalloprotease.
- WO 2007/044993 describes the use of the metalloproteases Neutrase® and/or "NprE" for use in detergent applications.
- metalloproteases are very unstable under conventional wash conditions and in conventional detergent compositions. Thus, the use of metalloproteases in detergents and in wash and cleaning processes has not yet been commercialized.
- the present invention is directed to providing such enzymes.
- a nucleotide sequence encoding a putative metalloendopeptidase has been identified in Chryseobacterium gleum.
- the encoded protein UNIPROT:D7VZJ2 is 91.6% identical to the metalloprotease of the present invention.
- the present invention relates to an isolated polypeptide having protease activity selected from the group consisting of:
- a variant comprising a substitution, deletion, and/or insertion of one or more (e.g. several) amino acids of the mature polypeptide of SEQ ID NO: 2; and e. a fragment of a polypeptide of (a), (b), (c), or (d) that has protease activity.
- the invention further relates to an isolated polypeptide wherein the polypeptide is a metalloprotease belonging to the M4 metalloprotease group.
- the isolated polypeptide is derived from Chryseobacterium sp. Even more preferably from Chryseobacterium sp. 10696.
- compositions comprising an isolated polypeptide having protease activity selected from the group consisting of:
- b a polypeptide encoded by a polynucleotide that hybridizes under high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or
- a polypeptide encoded by a polynucleotide having at least 60% sequence identity, at least 65% sequence identity, at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 92% sequence identity, at least
- sequence identity 93% sequence identity, at least 94% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 ;
- a variant comprising a substitution, deletion, and/or insertion of one or more (e.g. several) amino acids of the mature polypeptide of SEQ ID NO: 2; and e. a fragment of a polypeptide of (a), (b), (c), or (d) that has protease activity.
- the invention further relates to such compositions which are in particular detergent compositions, and to the use of such composition in a cleaning process such as laundry and hard surface cleaning e.g. automated dish wash.
- the invention relates to polynucleotides encoding the polypeptides of the invention, constructs, expression vectors and host cells comprising such polynucleotides and the use thereof for the production of the polypeptide of the invention.
- SEQ ID NO 1 DNA sequence of metalloprotease from Chryseobacterium sp. 10696.
- SEQ ID NO 2 Is the amino acid sequence as deduced from SEQ ID NO: 1.
- SEQ ID NO 3 Bacillus clausii secretion signal
- SEQ ID NO 4 Bacillus amyloliquefaciens metalloprotease Uniprot: P06832 (Neutrase®)
- SEQ ID NO 5 Bacillus clausii serine protease Uniprot: P29600 (Savinase®)
- Polypeptides having protease activity polypeptides having protease activity, or proteases, are sometimes also designated peptidases, proteinases, peptide hydrolases, or proteolytic enzymes.
- Proteases may be of the exo-type that hydrolyses peptides starting at either end thereof, or of the endo-type that act internally in polypeptide chains (endopeptidases). Endopeptidases show activity on N- and C-terminally blocked peptide substrates that are relevant for the specificity of the protease in question.
- protease is defined herein as an enzyme that hydrolyses peptide bonds.
- the present invention provides for the use of polypeptides having protease activity in detergent compositions. It also provides polynucleotides encoding the polypeptides.
- the proteases of the invention are metalloproteases of the MEOPS family M4.
- the polypeptides of the present invention have at least 20%, e.g., at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, and at least 100% of the protease activity of the mature polypeptide of SEQ ID NO: 2.
- protease activity can be measured using any assay, in which a substrate is employed, that includes peptide bonds relevant for the specificity of the protease in question.
- Assay-pH and assay-temperature are likewise to be adapted to the protease in question.
- assay-pH-values are pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , or 12.
- assay-temperatures are 15, 20, 25, 30, 35, 37, 40, 45, 50, 55, 60, 65, 70, 80, 90, or 95°C.
- general protease substrates are casein, bovine serum albumin and haemoglobin.
- protease activity was determined using assays which are described in "Materials and Methods", such as the Protazyme OL assay.
- metaloprotease refers to a protease having one or more metal ions in the binding/active site.
- M4 Metalloprotease Family or "M4 Metalloprotease” or “M4" as used herein means a polypeptide falling into the M4 metalloprotease family according to Rawlings et al., Bi- ochem. J., 290, 205-218 (1993) and as further described in MEROPS - (Rawlings et al., MEROPS: the peptidase database, Nucl Acids Res, 34 Database issue, D270-272, 2006).
- the M4 metalloproteases are neutral metalloproteases containing mainly endopeptidases. All pepti- dases in the family bind a single, catalytic zinc ion.
- M4 metalloprotease family members include the common HEXXH motif, where the histidine residues serve as zinc ligands and glutamate is an active site residue. M4 metalloproteases have a pH optimum mainly at neutral pH.
- the M4 metalloprotease family includes, e.g., Neutrase® (classified as MEROPS subclass M04.014), Thermolysin, Bacillolysin, vibriolysin, pseudolysin, Msp peptidase, coccolysin, aureolysin, vimelysin, lambda toxin neutral peptidase B, PA peptidase (Aeromonas-type), griselysin, stea- rolysin, Mprlll (Alteromonas sp.
- strain 0-7 pap6 peptidase, neutral peptidase (Thermoactino- myces-type), ZmpA peptidase (Burkholderia sp.), zpx peptidase, PrtS peptidase (Photorhabdus luminescens), protealysin, ZmpB peptidase (Burkholderia sp.).
- the M4 metalloprotease family of polypeptides has been further characterized and presently includes, according to MEROPS, at least twenty-two subclasses for which a distinct MEROPS ID (i.e., an identifier of the formula M04.xxx) has been assigned, as well as non-peptidase homologues and unassigned peptidases.
- MEROPS a distinct MEROPS ID (i.e., an identifier of the formula M04.xxx) has been assigned, as well as non-peptidase homologues and unassigned peptidases.
- isolated means a substance in a form or environment which does not occur in nature.
- isolated substances include (1 ) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the natu- rally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., multiple copies of a gene encoding the substance; use of a stronger promoter than the promoter naturally associated with the gene encoding the substance).
- An isolated substance may be present in a fermentation broth sample.
- a fermentation broth resulting from the fermentation of a recombinant host cell expressing the polypeptide of the invention will comprise the polypeptide in an isolated form.
- substantially pure polypeptide denotes herein a polypeptide preparation that contains at most 10%, preferably at most 8%, more preferably at most 6%, more preferably at most 5%, more preferably at most 4%, more preferably at most 3%, even more preferably at most 2%, most preferably at most 1 %, and even most preferably at most 0.5% by weight of other polypeptide material with which it is natively or recombinantly associated.
- the substantially pure polypeptide is at least 92% pure, preferably at least 94% pure, more preferably at least 95% pure, more preferably at least 96% pure, more preferably at least 97% pure, more preferably at least 98% pure, even more preferably at least 99%, most preferably at least 99.5% pure, and even most preferably 100% pure by weight of the total polypeptide material present in the preparation.
- the polypeptides of the present invention are preferably in a substantially pure form. This can be accomplished, for example, by preparing the variant or pol- ypeptide by well-known recombinant methods or by classical purification methods.
- mature polypeptide means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc.
- the mature polypeptide is amino acids 1 to 339 of SEQ ID NO: 2 based on the determination of the N-terminal sequence VNTPGTA.
- amino acids -224 to -206 of SEQ ID NO: 2 are a signal peptide.
- Amino acids -205 to -1 of SEQ ID NO 2 are a propeptide, based on the determination of the N-terminal and the signal sequence.
- the C-terminal part consisting of amino acids 340 to 426 of SEQ ID NO: 2 of the full length protein is processed during expression and absent from the mature protein. It is known in the art that a host cell may produce a mixture of two of more different mature polypeptides (i.e., with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide.
- mature polypeptide coding sequence means a polynucleotide that encodes a mature polypeptide having protease activity.
- the mature polypeptide coding sequence is nucleotides 1 173 to 2189 of SEQ ID NO: 1 based on the experimental determination of the N-terminal sequence.
- Nucleotides 501 to 557 of SEQ ID NO: 1 encodes a signal peptide.
- very low stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours.
- the carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 45°C.
- the carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 60°C.
- low stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours.
- the carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 50°C.
- medium stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours.
- the carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 55°C.
- medium-high stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and either 35% formamide, following standard Southern blotting procedures for 12 to 24 hours.
- high stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 65°C.
- very high stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 70°C.
- sequence identity The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter "sequence identity”.
- degree of identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Mo- lecular Biology Open Software Suite, Rice et al., 2000, Trends in Genetics 16: 276-277; http://emboss.org), preferably version 3.0.0 or later.
- the optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
- the output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
- the degree of identity between two deoxyribonu- cleotide sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, supra) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, supra; http://emboss.org), preferably version 3.0.0 or later.
- the optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix.
- the output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
- fragment means a polypeptide having one or more (several) amino acids de- leted from the amino and/or carboxyl terminus of a mature polypeptide; wherein the fragment has protease activity.
- the term "functional fragment of a polypeptide" or “functional fragment thereof” is used to describe a polypeptide which is derived from a longer polypeptide, e.g., a mature polypeptide, and which has been truncated either in the N-terminal region or the C-terminal region or in both regions to generate a fragment of the parent polypeptide.
- the fragment must maintain at least 20%, preferably at least 40%, more preferably at least 50%, more preferably at least 60%, more preferably at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95%, and even most preferably at least 100% of the protease activity of the full-length/mature polypeptide.
- An M4 metalloprotease may be truncated such that certain domain is removed to generate a functional fragment, which may be polypeptides where less than 200 amino acids have been removed from the mature M4 Metalloprotease, preferably less than 150 amino acids, more preferably less than 120, 100, 80, 60, 40, 30 amino acids, even more preferably less than 20 amino acids and most preferably less than 10 amino acids have been removed from the mature polypeptide.
- sequence means a polynucleotide having one or more (several) nucleotides deleted from the 5' and/or 3' end of a mature polypeptide coding sequence; wherein the subsequence encodes a fragment having protease activity.
- allelic variant means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the en- coded polypeptide) or may encode polypeptides having altered amino acid sequences.
- An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
- variant means a polypeptide having protease activity comprising an alteration, i.e., a substitution, insertion, and/or deletion of one or more (several) amino acid residues at one or more (several) positions.
- a substitution means a replacement of an amino acid occupying a position with a different amino acid;
- a deletion means removal of an amino acid occupying a position; and
- an insertion means adding 1 , 2 or even 3 amino acids adjacent to an amino acid occupying a position.
- cleaning compositions and “cleaning formulations,” refer to compositions that find use in the removal of undesired compounds from items to be cleaned, such as fabric, carpets, dishware including glassware, contact lenses, hard surfaces such as tiles, zincs, floors, and table surfaces, hair (shampoos), skin (soaps and creams), teeth (mouthwashes, toothpastes), etc.
- the terms encompasses any materials/compounds selected for the particular type of cleaning composition desired and the form of the product (e.g., liquid, gel, granule, or spray compositions), as long as the composition is compatible with the metalloprotease and other en- zyme(s) used in the composition.
- cleaning composition materials are readily made by considering the surface, item or fabric to be cleaned, and the desired form of the composition for the cleaning conditions during use. These terms further refer to any composition that is suited for cleaning, bleaching, disinfecting, and/or sterilizing any object and/or sur- face. It is intended that the terms include, but are not limited to detergent composition (e.g., liquid and/or solid laundry detergents and fine fabric detergents; hard surface cleaning formulations, such as for glass, wood, ceramic and metal counter tops and windows; carpet cleaners; oven cleaners; fabric fresheners; fabric softeners; and textile and laundry pre-spotters, as well as dishwash detergents).
- detergent composition e.g., liquid and/or solid laundry detergents and fine fabric detergents
- hard surface cleaning formulations such as for glass, wood, ceramic and metal counter tops and windows
- carpet cleaners oven cleaners
- fabric fresheners fabric softeners
- textile and laundry pre-spotters as well as dishwash detergents
- detergent composition includes unless otherwise indicated, granular or powder-form all-purpose or heavy-duty washing agents, especially cleaning detergents; liquid, gel or paste-form all-purpose washing agents, especially the so- called heavy-duty liquid (HDL) types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high-foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, including antibacterial hand-wash types, cleaning bars, mouthwashes, denture cleaners, car or carpet shampoos, bathroom cleaners; hair shampoos and hair-rinses; shower gels, foam baths; metal cleaners; as well as cleaning auxiliaries such as bleach additives and "stain-stick" or pre-treat types.
- HDL heavy-duty liquid
- washing agents including the various tablet, granular, liquid and rinse-aid types for household and institutional use
- liquid cleaning and disinfecting agents including antibacterial hand-wash types, cleaning bars
- detergent composition and "detergent formulation” are used in reference to mixtures which are intended for use in a wash medium for the cleaning of soiled objects.
- the term is used in reference to laundering fabrics and/or garments (e.g., “laundry detergents”).
- laundry detergents e.g., "laundry detergents”
- the term refers to other detergents, such as those used to clean dishes, cutlery, etc. (e.g., "dishwashing detergents”). It is not intended that the present invention be limited to any particular detergent formulation or composition.
- the term encompasses detergents that contains, e.g., surfactants, builders, chelators or chelating agents, bleach system or bleach components, polymers, fabric conditioners, foam boosters, suds suppressors, dyes, perfume, tannish inhibitors, optical brighteners, bactericides, fungicides, soil suspending agents, anti corrosion agents, enzyme inhibitors or stabilizers, enzyme activators, transfer- ase(s), hydrolytic enzymes, oxido reductases, bluing agents and fluorescent dyes, antioxidants, and solubilizers.
- detergents that contains, e.g., surfactants, builders, chelators or chelating agents, bleach system or bleach components, polymers, fabric conditioners, foam boosters, suds suppressors, dyes, perfume, tannish inhibitors, optical brighteners, bactericides, fungicides, soil suspending agents, anti corrosion agents, enzyme inhibitors or stabilizers, enzyme activators, transfer- ase(s), hydrolytic enzymes,
- fabric encompasses any textile material. Thus, it is intended that the term encompass garments, as well as fabrics, yarns, fibers, non-woven materials, natural materials, synthetic materials, and any other textile material.
- textile refers to woven fabrics, as well as staple fibers and filaments suitable for conversion to or use as yarns, woven, knit, and non-woven fabrics.
- the term encompasses yarns made from natural, as well as synthetic (e.g., manufactured) fibers.
- textile materials is a general term for fibers, yarn intermediates, yarn, fabrics, and products made from fabrics (e.g., garments and other articles).
- non-fabric detergent compositions include non-textile surface detergent compositions, including but not limited to dishwashing detergent compositions, oral detergent compositions, denture detergent compositions, and personal cleansing compositions.
- the term "effective amount of enzyme” refers to the quantity of enzyme necessary to achieve the enzymatic activity required in the specific application, e.g., in a defined detergent composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and are based on many factors, such as the particular enzyme used, the cleaning application, the specific composition of the detergent composition, and whether a liquid or dry (e.g., granular, bar) composition is required, and the like.
- the term "effective amount" of a metalloprotease refers to the quantity of metalloprotease described hereinbefore that achieves a desired level of enzymatic activity, e.g., in a defined detergent composition.
- wash performance of an enzyme refers to the contribution of an enzyme to washing that provides additional cleaning performance to the detergent without the addition of the enzyme to the composition. Wash performance is compared under relevant washing conditions. Wash performance of enzymes is conveniently measured by their ability to remove certain representative stains under appropriate test conditions. In these test systems, other relevant factors, such as detergent composition, detergent concentration, water hardness, washing mechanics, time, pH, and/or temperature, can be controlled in such a way that conditions typical for household application in a certain market segment are imitated.
- water hardness or “degree of hardness” or “dH” or “°dH” as used herein re- fers to German degrees of hardness.
- degree is defined as 10 milligrams of calcium oxide per litre of water.
- relevant washing conditions is used herein to indicate the conditions, particularly washing temperature, time, washing mechanics, detergent concentration, type of detergent and water hardness, actually used in households in a detergent market segment.
- improved property is used to indicate that a better end result is obtained in a property compared to the same process performed without the enzyme.
- Exemplary properties which are preferably improved in the processes of the present invention include wash performance, enzyme stability, enzyme activity and substrate specificity.
- improved wash performance is used to indicate that a better end result is ob- tained in stain removal from items washed (e.g., fabrics or dishware and/or cutlery) under relevant washing conditions as compared to no enzyme or to a reference enzyme, or that less enzyme, on weight basis, is needed to obtain the same end result relative to no enzyme or to a reference enzyme.
- Improved wash performance could in this context also be that the same effect, e.g., stain removal effect is obtained in shorter wash time, e.g., the enzymes provide their effect more quickly under the tested conditions.
- enzyme detergency or “detergency” or “detergency effect” is defined herein as the advantageous effect an enzyme may add to a detergent compared to the same detergent without the enzyme.
- Important detergency benefits which can be provided by enzymes are stain removal with no or very little visible soils after washing and/or cleaning, prevention or reduction of redeposition of soils released in the washing process an effect that also is termed anti- redeposition, restoring fully or partly the whiteness of textiles, which originally were white but after repeated use and wash have obtained a greyish or yellowish appearance an effect that also is termed whitening.
- Textile care benefits which are not directly related to catalytic stain removal or prevention of redeposition of soils, are also important for enzyme detergency bene- fits.
- textile care benefits are prevention or reduction of dye transfer from one fabric to another fabric or another part of the same fabric an effect that is also termed dye transfer inhibition or anti-back staining, removal of protruding or broken fibers from a fabric surface to decrease pilling tendencies or remove already existing pills or fuzz an effect that also is termed anti-pilling, improvement of the fabric-softness, colour clarification of the fabric and removal of particulate soils which are trapped in the fibers of the fabric or garment.
- Enzymatic bleaching is a further enzyme detergency benefit where the catalytic activity generally is used to catalyze the formation of bleaching component such as hydrogen peroxide or other peroxides.
- anti-redeposition describes the reduction or prevention of re- deposition of soils dissolved or suspended in the wash liquor onto the cleaned objects. Redepo- sition may be seen after one or multiple washing cycles (e.g., as a greying, yellowing or other discolorations).
- adjunct materials means any liquid, solid or gaseous material selected for the particular type of detergent composition desired and the form of the product (e.g., liquid, granule, powder, bar, paste, spray, tablet, gel, or foam composition), which materials are also pref- erably compatible with the metalloprotease enzyme used in the composition.
- granular compositions are in “compact” form, while in other embodiments, the liquid compositions are in a "concentrated” form.
- stain removing enzyme describes an enzyme that aids the removal of a stain or soil from a fabric or a hard surface. Stain removing enzymes act on specif- ic substrates, e.g., protease on protein, amylase on starch, lipase and cutinase on lipids (fats and oils), pectinase on pectin and hemicellulases on hemicellulose. Stains are often depositions of complex mixtures of different components which either results in a local discolouration of the material by itself or which leaves a sticky surface on the object which may attract soils dissolved in the washing liquor thereby resulting in discolouration of the stained area.
- an enzyme acts on its specific substrate present in a stain the enzyme degrades or partially degrades its substrate thereby aiding the removal of soils and stain components associated with the substrate during the washing process.
- a protease acts on a grass stain it degrades the protein components in the grass and allows the green/brown colour to be released during washing.
- reduced amount means in this context that the amount of the component is smaller than the amount which would be used in a reference process under otherwise the same conditions. In a preferred embodiment the amount is reduced by, e.g., at least 5%, such as at least 10%, at least 15%, at least 20% or as otherwise herein described.
- low detergent concentration system includes detergents were less than about 800 ppm of detergent components is present in the wash water.
- Asian, e.g., Japanese detergents are typically considered low detergent concentration systems.
- medium detergent concentration system includes detergents wherein between about 800 ppm and about 2000 ppm of detergent components is present in the wash water. North American detergents are generally considered to be medium detergent concentration systems.
- high detergent concentration system includes detergents wherein greater than about 2000 ppm of detergent components is present in the wash water. European detergents are generally considered to be high detergent concentration systems.
- the present invention relates to isolated polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92% sequence identity, at least 93% sequence identity, at least 94% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, at least 99% sequence identity or at least 100% sequence identity, which have protease activity.
- the polypeptides differ by no more than 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, or 9, from the mature polypeptide of SEQ ID NO: 2.
- the invention relates to polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, and wherein the polypeptide has at least at least 70% of the protease activity of the mature polypeptide of SEQ ID NO: 2.
- the invention relates to polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, and wherein the polypeptide has at least at least 75% of the protease activity of the mature polypeptide of SEQ ID NO: 2.
- the invention relates to polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, and wherein the polypeptide has at least at least 80% of the protease activity of the mature polypeptide of SEQ ID NO: 2.
- the invention relates to polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, and wherein the polypeptide has at least at least 85% of the protease activity of the mature polypeptide of SEQ ID NO: 2.
- the invention relates to polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, and wherein the polypeptide has at least at least 90% of the protease activity of the mature polypeptide of SEQ ID NO: 2.
- the invention relates to polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, and wherein the polypeptide has at least at least 95% of the protease activity of the mature polypeptide of SEQ ID NO: 2.
- the invention relates to polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, and wherein the polypeptide has at least at least 100% of the protease activity of the mature polypeptide of SEQ ID NO: 2.
- the present invention relates to isolated polypeptides having protease activity selected from the group consisting of:
- polypeptide encoded by a polynucleotide that hybridizes under medium stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or (ii) the full-length complementary strand of (i);
- polypeptide encoded by a polynucleotide having 92% sequence identity, at least 93% sequence identity, at least 94% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, at least 99% sequence identity or at least 100% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 ;
- the present invention relates to isolated polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have protease activity.
- the polypeptides differ by no more than ten amino acids, e.g., by five amino acids, by four amino acids, by three amino acids, by two amino acids, and by one amino acid from the mature polypeptide of SEQ ID NO: 2.
- a polypeptide of the present invention preferably comprises or consists of the amino acid sequence of SEQ ID NO: 2 or an allelic variant thereof; or is a fragment thereof having protease activity.
- polypeptide comprises or consists of the mature polypeptide of SEQ ID NO: 2 or an allelic variant thereof; or is a fragment thereof having protease activity.
- polypeptide comprises or consists of amino acids 1 to 339 of SEQ ID NO: 2.
- the present invention also relates to isolated polypeptides having protease activity that are encoded by polynucleotides that hybridize under very low stringency conditions, low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 , (ii) the genomic DNA sequence encoding the mature polypeptide coding sequence of SEQ ID NO: 1 , or (iii) the full-length complementary strand of (i) or (ii) (J. Sambrook, E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning, A Laboratory Manual, 2d edition, Cold Spring Harbor, New York).
- the polynucleotide of SEQ ID NO: 1 or a subsequence thereof, as well as the amino acid sequence of SEQ ID NO: 2 or a fragment thereof, may be used to design nucleic acid probes to identify and clone DNA encoding polypeptides having protease activity from strains of different genera or species according to methods well known in the art.
- probes can be used for hybridization with the genomic or cDNA of the genus or species of interest, following standard Southern blotting procedures, in order to identify and isolate the corresponding gene therein.
- Such probes can be considerably shorter than the entire sequence, but should be at least 14, e.g., at least 25, at least 35, or at least 70 nucleotides in length.
- the nucleic acid probe is at least 100 nucleotides in length, e.g., at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, or at least 900 nucleotides in length.
- Both DNA and RNA probes can be used.
- the probes are typically labeled for detecting the corresponding gene (for example, with 32 P, 3 H, 35 S, biotin, or avidin). Such probes are encompassed by the present invention.
- a genomic DNA or cDNA library prepared from such other strains may be screened for DNA that hybridizes with the probes described above and encodes a polypeptide having protease activity.
- Genomic or other DNA from such other strains may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques.
- DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material.
- the carrier material is preferably used in a Southern blot.
- hybridization indicates that the polynucleotide hybridizes to a labeled nucleic acid probe corresponding to the mature polypeptide coding sequence of SEQ ID NO: 1 ; the genomic DNA sequence comprising the mature polypeptide coding sequence of SEQ ID NO: 1 ; its full-length complementary strand; or a subsequence thereof; under very low to very high stringency conditions.
- Molecules to which the nucleic acid probe hybridizes under these conditions can be detected using, for example, X-ray film.
- the nucleic acid probe is the mature polypeptide coding sequence of SEQ ID NO: 1 .
- the nucleic acid probe is nucleotides 1 173 to 2189 of SEQ ID NO: 1.
- the nucleic acid probe is a polynucleotide that encodes the polypeptide of SEQ ID NO: 2 or a fragment thereof.
- the nucleic acid probe is SEQ ID NO: 1.
- very low to very high stringency conditions are defined as prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and either 25% formamide for very low and low stringencies, 35% formamide for medium and medium-high stringencies, or 50% formamide for high and very high stringencies, following standard Southern blotting procedures for 12 to 24 hours optimally.
- the carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 45°C (very low stringency), at 50°C (low stringency), at 55°C (medium stringency), at 60°C (medium-high stringency), at 65°C (high stringency), and at 70°C (very high stringency).
- stringency conditions are defined as prehybridization and hybridization at about 5°C to about 10°C below the calculated T m using the calculation according to Bolton and McCarthy (1962, Proc. Natl. Acad. Sci. USA 48:1390) in 0.9 M NaCI, 0.09 M Tris-HCI pH 7.6, 6 mM EDTA, 0.5% NP-40, 1 X Denhardt's solution, 1 mM sodium pyrophosphate, 1 mM sodium monobasic phosphate, 0.1 mM ATP, and 0.2 mg of yeast RNA per ml following standard Southern blotting procedures for 12 to 24 hours optimally.
- the carrier material is finally washed once in 6X SCC plus 0.1 % SDS for 15 minutes and twice each for 15 minutes using 6X SSC at 5°C to 10°C below the calculated T m .
- the present invention relates to isolated polypeptides having protease activity encoded by polynucleotides having a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 of at least at least 92% sequence identity, at least 93% sequence identity, at least 94% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, at least 99% sequence identity or at least 100%.
- the present invention further relates to an isolated polynucleotide encoding a signal peptide comprising or consisting of amino acids -224 to -206 of SEQ ID NO: 2.
- the invention further relates to a polynucleotide comprising a polynucleotide encoding a propeptide comprising or consisting of amino acids -205 to -1 of SEQ ID NO: 2.
- the present invention also relates to variants comprising a substitution, deletion, and/or insertion of one or more (or several) amino acids of the mature polypeptide of SEQ ID NO: 2, or a homologous sequence thereof.
- the variant has at least 92% sequence identity to the mature polypeptide of SEQ ID NO: 2; e.g., at least 92% sequence identity, at least 93% sequence identity, at least 94% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, at least 99% sequence identity %, but less than 100% identity to the mature polypeptide of SEQ ID NO: 2.
- Substantially homologous polypeptides of the sequences described above are characterized as having one or more (several) amino acid substitutions, deletions, and/or insertions in the mature polypeptide.
- amino acid changes are of a minor nature, that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of one to about nine amino acids, such as one, two, three, four, five, six, seven, eight or nine amino acids; preferably from one to about 15 amino acids, such as 10, 1 1 , 12, 13, 14 or 15 amino acids; and most preferably from one to about 30 amino acids, such as 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to about five to ten residues, preferably from 10 to 15 residues and most preferably from 20 to 25 residues, or a small extension
- amino acids amino acids that do not generally alter specific activity are known in the art and are described, for example, by H. Neurath and R.L. Hill, 1979, In, The Proteins, Academic Press, New York.
- the most commonly occurring exchanges are Ala/Ser, Val/lle, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/lle, LeuA al, Ala/Glu, and Asp/Gly.
- amino acid changes are of such a nature that the physico-chemical properties of the polypeptides are altered.
- amino acid changes may improve the thermal stability of the polypeptide, alter the substrate specificity, change the pH optimum, and the like.
- Essential amino acids in a parent polypeptide can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, Science 244: 1081 -1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant variant molecules are tested for protease activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., 1996, J. Biol. Chem. 271 : 4699-4708.
- the active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., 1992, Science 255: 306-312; Smith et al., 1992, J. Mol. Biol. 224: 899-904; Wlodaver et ai, 1992, FEBS Lett. 309: 59-64.
- the identities of essential amino acids can also be inferred from analysis of identities with polypeptides that are related to the parent polypeptide, such as e.g. the well-known metalloproteinase Thermolysin.
- the catalytic residues may thus be determined by alignment with known M4 metalloprotease where it has been found that the catalytic residues are conserved in all such proteases. All M4 metalloproteases bind a single, catalytic zinc ion. As in many other families of metalloproteases, the present metalloprotease comprises a HEXXH motif, in which H147 and H 151 of the HEXXH motif together with E171 are zinc ligands. Residue E148 of the HEXXH motif and H243 are the active site residues (numbering according to SEQ ID NO 2).
- Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241 : 53-57; Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152-2156; WO 95/17413; or WO 95/22625.
- Other methods that can be used include error-prone PCR, phage display (e.g., Lowman et ai, 1991 , Biochemistry 30: 10832-10837; U.S. Patent No. 5,223,409; WO 92/06204), and region-directed mutagenesis (Derbyshire et ai, 1986, Gene 46: 145; Ner ei a/., 1988, DNA 7: 127).
- Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness et ai, 1999, Nature Biotechnology 17: 893-896).
- Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.
- the total number of amino acid substitutions, deletions and/or insertions of the mature polypeptide of SEQ ID NO: 2 are not more than 10, e.g., 1 , 2, 3, 4, 5, 6, 7, 8 or 9.
- non-standard amino acids such as 4- hydroxyproline, 6-/V-methyl lysine, 2-aminoisobutyric acid, isovaline, and alpha-methyl serine
- a limited number of non- conservative amino acids, amino acids that are not encoded by the genetic code, and unnatural amino acids may be substituted for amino acid residues.
- "Unnatural amino acids” have been modified after protein synthesis, and/or have a chemical structure in their side chain(s) different from that of the standard amino acids.
- Unnatural amino acids can be chemically synthesized, and preferably, are commercially available, and include pipecolic acid, thiazolidine carboxylic acid, dehydroproline, 3- and 4-methylproline, and 3,3-dimethylproline.
- the polypeptide may be hybrid polypeptide in which a portion of one polypeptide is fused at the N-terminus or the C-terminus of a portion of another polypeptide.
- the polypeptide may be a fused polypeptide or cleavable fusion polypeptide in which another polypeptide is fused at the N-terminus or the C-terminus of the polypeptide of the present invention.
- a fused polypeptide is produced by fusing a polynucleotide encoding another polypeptide to a polynucleotide of the present invention.
- Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fused polypeptide is under control of the same promoter(s) and terminator.
- Fusion proteins may also be constructed using intein technology in which fusions are created post-translationally (Cooper et al., 1993, EMBO J. 12: 2575-2583; Dawson et al., 1994, Science 266: 776-779).
- a fusion polypeptide can further comprise a cleavage site between the two polypeptides. Upon secretion of the fusion protein, the site is cleaved releasing the two polypeptides.
- Exam- pies of cleavage sites include, but are not limited to, the sites disclosed in Martin et al., 2003, J. Ind. Microbiol. Biotechnol. 3: 568-576; Svetina et al., 2000, J. Biotechnol. 76: 245-251 ; Ras- mussen-Wilson et al., 1997, Appl. Environ. Microbiol.
- a M4 Metalloprotease useful in the present invention may be obtained from microorganisms of any genus.
- the term "obtained from” as used herein in connection with a given source shall mean that the polypeptide encoded by a nucleo- tide sequence is produced by the source in which it is naturally present or by a strain in which the nucleotide sequence from the source has been inserted.
- the polypeptide obtained from a given source is secreted extracellularly.
- a polypeptide of the present invention may be a bacterial polypeptide.
- the polypeptide may be a gram-positive bacterial polypeptide such as a Chryseobacterium, Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, or Streptomyces polypeptide having metalloprotease activity, or a gram- negative bacterial polypeptide such as a Campylobacter, E. coli, Flavobacterium, Fusobacte- rium, Helicobacter, llyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma polypep- tide.
- the polypeptide is a Chryseobacterium sp. polypeptide, such as the polypeptide in SEQ ID NO: 2.
- the polypeptide may be obtained from the bacterial strain NCIMB1314; originally identified as a Flavobacterium sp. but in this study classified as a Chryseobacterium sp. based on 16S.
- ATCC American Type Culture Collection
- DSM Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
- CBS Centraalbureau Voor Schimmelcultures
- NRRL Northern Regional Research Center
- polypeptides may be identified and obtained from other sources including microorganisms isolated from nature (e.g., soil, composts, water, etc.) using the above- mentioned probes. Techniques for isolating microorganisms from natural habitats are well known in the art.
- the polynucleotide may then be obtained by similarly screening a genomic or cDNA library of such a microorganism. Once a polynucleotide sequence encoding a polypeptide has been detected e.g. with the probe(s), the polynucleotide can be isolated or cloned by utilizing techniques which are well known to those of ordinary skill in the art (see, e.g., Sambrook et al, 1989, supra).
- Polypeptides of the present invention also include fused polypeptides or cleavable fusion polypeptides in which another polypeptide is fused at the N-terminus or the C-terminus of the polypeptide or fragment thereof.
- a fused polypeptide is produced by fusing a nucleotide sequence (or a portion thereof) encoding another polypeptide to a nucleotide sequence (or a portion thereof) of the present invention.
- Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fused polypeptide is under control of the same promoter(s) and terminator.
- the present invention also relates to isolated polynucleotides encoding a polypeptide of the present invention, as described herein.
- the techniques used to isolate or clone a polynucleotide include isolation from genomic DNA or cDNA, or a combination thereof.
- the cloning of the polynucleotides from genomic DNA can be effected, e.g., by using the well-known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features. See, e.g., Innis et al., 1990, PCR: A Guide to Methods and Application, Academic Press, New York.
- LCR ligase chain reaction
- LAT ligation activated transcription
- NASBA polynucleotide-based amplification
- the polynucleotides may be cloned from a strain of Chryseobacterium, or a related organism and thus, for example, may be an allelic or species variant of the polypeptide encoding region of the polynucleotide.
- Modification of a polynucleotide encoding a polypeptide of the present invention may be necessary for synthesizing polypeptides substantially similar to the polypeptide.
- the term "substantially similar" to the polypeptide refers to non-naturally occurring forms of the polypeptide.
- These polypeptides may differ in some engineered way from the polypeptide isolated from its native source, e.g., variants that differ in specific activity, thermostability, pH optimum, or the like.
- the variants may be constructed on the basis of the polynucleotide presented as the mature polypeptide coding sequence of SEQ ID NO: 1 , e.g., a subsequence thereof, and/or by introduction of nucleotide substitutions that do not result in a change in the amino acid sequence of the polypeptide, but which correspond to the codon usage of the host organism intended for production of the enzyme, or by introduction of nucleotide substitutions that may give rise to a different amino acid sequence.
- nucleotide substitution see, e.g., Ford et al., 1991 , Protein Expression and Purification 2: 95-107.
- the present invention also relates to nucleic acid constructs comprising a polynucleotide of the present invention operably linked to one or more control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.
- a polynucleotide may be manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.
- the control sequence may be a promoter, a polynucleotide that is recognized by a host cell for expression of a polynucleotide encoding a polypeptide of the present invention.
- the promoter contains transcriptional control sequences that mediate the expression of the polypeptide.
- the promoter may be any polynucleotide that shows transcriptional activity in the host cell including variant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
- suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a bacterial host cell are the promoters obtained from the Bacillus amyloliquefaciens alpha-amylase gene (amyQ), Bacillus licheniformis alpha-amylase gene (amyL), Bacillus licheniformis penicillinase gene ipenP), Bacillus stearothermophilus maltogenic amylase gene (amyM), Bacillus subtilis levansucrase gene (sacB), Bacillus subtilis xylA and xylB genes, Bacillus thuringiensis crylllA gene (Agaisse and Lereclus, 1994, Molecular Microbiology 13: 97-107), E.
- E. coli lac operon E. coli trc promoter (Egon et al., 1988, Gene 69: 301 -315), Streptomyces coelicolor agarase gene ⁇ dagA), and prokaryotic beta-lactamase gene (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731 ), as well as the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. USA 80: 21 -25).
- promoters for directing transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase ⁇ glaA), Aspergillus oryzae TAKA amylase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Fusarium oxysporum trypsin-like protease (WO 96/00787), Fusarium venenatum amyloglucosidase (WO 00/56900), Fusarium venenatum Daria (WO 00/56900), Fusarium venenatum Quinn
- useful promoters are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1 ), Saccharomyces cerevisiae galactokinase (GAL1 ), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH1 , ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase (TPI), Saccharomyces cerevisiae metallothionein (CUP1 ), and Saccharomyces cerevisiae 3-phosphoglycerate kinase.
- ENO-1 Saccharomyces cerevisiae enolase
- GAL1 Saccharomyces cerevisiae galactokinase
- ADH1 alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase
- TPI Saccharomyces cerevisia
- the control sequence may also be a transcription terminator, which is recognized by a host cell to terminate transcription.
- the terminator is operably linked to the 3'-terminus of the polynucleotide encoding the polypeptide. Any terminator that is functional in the host cell may be used in the present invention.
- Preferred terminators for bacterial host cells are obtained from the genes for Bacillus clausii alkaline protease ⁇ aprH), Bacillus licheniformis alpha-amylase (amyL), and Escherichia coli ribosomal RNA (rrnB).
- Preferred terminators for filamentous fungal host cells are obtained from the genes for
- Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.
- Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1 ), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase.
- Other useful terminators for yeast host cells are described by Romanos et al. , 1992, supra.
- control sequence may also be an mRNA stabilizer region downstream of a promoter and upstream of the coding sequence of a gene which increases expression of the gene.
- mRNA stabilizer regions are obtained from a Bacillus thuringiensis crylllA gene (WO 94/25612) and a Bacillus subtilis SP82 gene (Hue et al., 1995, Journal of Bacteriology 177: 3465-3471 ).
- the control sequence may also be a leader, a nontranslated region of an mRNA that is important for translation by the host cell.
- the leader is operably linked to the 5'-terminus of the polynucleotide encoding the polypeptide. Any leader that is functional in the host cell may be used.
- Preferred leaders for filamentous fungal host cells are obtained from the genes for Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase.
- Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1 ), Saccharomyces cerevisiae 3-phosphoglycerate kinase, Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).
- the control sequence may also be a polyadenylation sequence; a sequence operably linked to the 3'-terminus of the polynucleotide and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.
- Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.
- the control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a polypeptide and directs the polypeptide into the cell's secretory pathway.
- the 5'-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the polypeptide.
- the 5'-end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence.
- a foreign signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence.
- a foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the polypeptide.
- any signal peptide coding sequence that directs the expressed polypeptide into the secretory pathway of a host cell may be used.
- Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for Bacillus NCIB 1 1837 maltogenic amylase, Bacillus licheniformis subtilisin, Bacillus licheniformis beta-lactamase, Bacillus stearothermophilus alpha-amylase, Bacillus stearothermophilus neutral proteases ⁇ nprT, nprS, nprM), and Bacillus subtilis prsA. Further signal peptides are described by Simonen and Palva, 1993, Microbiological Reviews 57: 109-137.
- Effective signal peptide coding sequences for filamentous fungal host cells are the signal peptide coding sequences obtained from the genes for Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, Humicola insolens cellulase, Humicola insolens endoglucanase V, Humicola lanuginosa lipase, and Rhizomucor miehei aspartic proteinase.
- Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.
- the control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a polypeptide.
- the resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases).
- a propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide.
- the propeptide coding sequence may be obtained from the genes for Bacillus subtilis alkaline protease ⁇ aprE), Bacillus subtilis neutral protease (nprT), Myceliophthora thermophila laccase (WO 95/33836), Rhizomucor miehei aspartic proteinase, and Saccharomyces cerevisiae alpha-factor.
- the propeptide sequence is positioned next to the N-terminus of a polypeptide and the signal peptide sequence is positioned next to the N-terminus of the propeptide sequence.
- regulatory sequences that regulate expression of the polypeptide relative to the growth of the host cell.
- regulatory systems are those that cause expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound.
- Regulatory systems in prokaryotic systems include the lac, tac, and trp operator systems.
- yeast the ADH2 system or GAL1 system may be used.
- filamentous fungi the Aspergillus niger glucoamylase promoter, Aspergillus oryzae TAKA alpha-amylase promoter, and Aspergillus oryzae glucoamylase promoter may be used.
- Other examples of regulatory sequences are those that allow for gene amplification.
- these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals.
- the polynucleotide encoding the polypeptide would be operably linked with the regulatory sequence.
- the present invention also relates to recombinant expression vectors comprising a polynucleotide of the present invention, a promoter, and transcriptional and translational stop signals.
- the various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the polypeptide at such sites.
- the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression.
- the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
- the recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide.
- the choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced.
- the vector may be a linear or closed circular plasmid.
- the vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome.
- the vector may contain any means for assuring self-replication.
- the vector may be one that, when introduced into the host cell is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated.
- a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used.
- the vector preferably contains one or more selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells.
- a selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.
- bacterial selectable markers are Bacillus licheniformis or Bacillus subtilis dal genes, or markers that confer antibiotic resistance such as ampicillin, chloramphenicol, kanamycin, neomycin, spectinomycin, or tetracycline resistance.
- Suitable markers for yeast host cells include, but are not limited to, ADE2, HIS3, LEU2, LYS2, MET3, TRP1 , and URA3.
- Selectable markers for use in a filamentous fungal host cell include, but are not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof.
- Preferred for use in an Aspergillus cell are Aspergillus nidulans or Aspergillus oryzae amdS and pyrG genes and a Streptomyces hygroscopicus bar gene.
- the vector preferably contains an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.
- the vector may rely on the polynucleotide's sequence encoding the polypeptide or any other element of the vector for integration into the genome by homologous or non-homologous recombination.
- the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s).
- the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination.
- the integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.
- the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question.
- the origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell.
- the term "origin of replication" or "plasmid replicator” means a polynucleotide that enables a plasmid or vector to replicate in vivo.
- bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in E. coli, and pUB1 10, pE194, pTA1060, and ⁇ permitting replication in Bacillus.
- origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1 , ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.
- AMA1 and ANSI examples of origins of replication useful in a filamentous fungal cell are AMA1 and ANSI (Gems et al., 1991 , Gene 98: 61 -67; Cullen et ai, 1987, Nucleic Acids Res. 15: 9163-9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883.
- More than one copy of a polynucleotide of the present invention may be inserted into a host cell to increase production of a polypeptide.
- An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.
- the present invention also relates to recombinant host cells, comprising a polynucleotide of the present invention operably linked to one or more control sequences that direct the production of a polypeptide of the present invention.
- a construct or vector comprising a polynucleotide is introduced into a host cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier.
- the term "host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the polypeptide and its source.
- the host cell may be any cell useful in the recombinant production of a polypeptide of the present invention, e.g., a prokaryote or a eukaryote.
- the prokaryotic host cell may be any Gram-positive or Gram-negative bacterium.
- Gram- positive bacteria include, but are not limited to, Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, and Streptomyces.
- Gram-negative bacteria include, but are not limited to, Campylobacter, E. coli, Flavobacterium, Fusobacterium, Helicobacter, llyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma.
- the bacterial host cell may be any Bacillus cell including, but not limited to, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis cells.
- the bacterial host cell may also be any Streptococcus cell including, but not limited to, Streptococcus equisimilis, Streptococcus pyogenes, Streptococcus uberis, and Streptococcus equi subsp. Zooepidemicus cells.
- the bacterial host cell may also be any Streptomyces cell including, but not limited to, Streptomyces achromogenes, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces griseus, and Streptomyces lividans cells.
- coli cell may be effected by protoplast transformation (see, e.g., Hanahan, 1983, J. Mol. Biol. 166: 557-580) or electroporation (see, e.g., Dower et al, 1988, Nucleic Acids Res. 16: 6127-6145).
- the introduction of DNA into a Streptomyces cell may be effected by protoplast transformation, electroporation (see, e.g., Gong et al., 2004, Folia Microbiol. (Praha) 49: 399-405), conjugation (see, e.g., Mazodier et al., 1989, J. Bacteriol.
- DNA into a Pseudomonas cell may be effected by electroporation (see, e.g., Choi et al., 2006, J. Microbiol. Methods 64: 391 -397) or conjugation (see, e.g., Pinedo and Smets, 2005, Appl. Environ. Microbiol. 71 : 51 -57).
- the introduction of DNA into a Streptococcus cell may be effected by natural competence (see, e.g., Perry and Kuramitsu, 1981 , Infect. Immun. 32: 1295-1297), protoplast transformation (see, e.g., Catt and Jollick, 1991 , Microbios 68: 189-207), electroporation (see, e.g., Buckley et al., 1999, Appl. Environ. Microbiol. 65: 3800-3804), or conjugation (see, e.g., Clewell, 1981 , Microbiol. Rev. 45: 409-436).
- any method known in the art for introducing DNA into a host cell can be used.
- the host cell may also be a eukaryote, such as a mammalian, insect, plant, or fungal cell.
- the host cell may be a fungal cell.
- "Fungi” as used herein includes the phyla
- the fungal host cell may be a yeast cell.
- yeast as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, Passmore, and Davenport, editors, Soc. App. Bacteriol. Symposium Series No. 9, 1980).
- the yeast host cell may be a Candida, Hansenula, Kluyveromyces, Pichia,
- Saccharomyces, Schizosaccharomyces, or Yarrowia cell such as a Kluyveromyces lactis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, Saccharomyces oviformis, or Yarrowia lipolytica cell.
- the fungal host cell may be a filamentous fungal cell.
- "Filamentous fungi” include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra).
- the filamentous fungi are generally characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.
- the filamentous fungal host cell may be an Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma cell.
- the filamentous fungal host cell may be an Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Chrysosporium inops, Chrysosporium keratinophilum, Chrysosporium lucknowense, Chrysosporium merdarium, Chrysosporium pannicola, Chrysosporium queenslandicum, Chrysosporium tropicum, Chrysosporium zona
- Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus and Trichoderma host cells are described in EP 238023, Yelton et ai, 1984, Proc. Natl. Acad. Sci. USA 81 : 1470-1474, and Christensen et al., 1988, Bio/Technology 6: 1419-1422. Suitable methods for transforming Fusarium species are described by Malardier et ai, 1989, Gene 78: 147-156, and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N.
- the host cell may be a plant cell, comprising a polynucleotide of the present invention so as to express and produce a polypeptide or domain in recoverable quantities.
- the polypeptide or domain may be recovered from the plant or plant part.
- the plant or plant part containing the polypeptide or domain may be used as such for improving the quality of a food or feed, e.g., improving nutritional value, palatability, and rheological properties, or to destroy an antinutritive factor.
- the transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot).
- monocot plants are grasses, such as meadow grass (blue grass, Poa), forage grass such as Festuca, Lolium, temperate grass, such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, and maize (corn).
- dicot plants are tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana.
- plant parts are stem, callus, leaves, root, fruits, seeds, and tubers as well as the individual tissues comprising these parts, e.g., epidermis, mesophyll, parenchyme, vas- cular tissues, meristems.
- Specific plant cell compartments such as chloroplasts, apoplasts, mitochondria, vacuoles, peroxisomes and cytoplasm are also considered to be a plant part.
- any plant cell, whatever the tissue origin, is considered to be a plant part.
- plant parts such as specific tissues and cells isolated to facilitate the utilization of the invention are also considered plant parts, e.g., embryos, endosperms, aleurone and seed coats.
- transgenic plant or plant cell expressing the polypeptide or domain may be constructed in accordance with methods known in the art.
- the present invention also relates to methods of producing a polypeptide of the present invention, comprising (a) cultivating a cell, which in its wild-type form produces the polypeptide, under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.
- the cell is a Chryseobacterium cell.
- the cell is a Chryseobacterium sp. 10696 cell.
- the present invention also relates to methods of producing a polypeptide of the present invention, comprising (a) cultivating a recombinant host cell of the present invention under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.
- the host cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods known in the art.
- the cell may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation (including continuous, batch, fed- batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated.
- the cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium. If the polypeptide is not secreted, it can be recovered from cell lysates.
- the polypeptide may be detected using methods known in the art that are specific for the polypeptides with protease activity. These detection methods include, but are not limited to, use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the polypeptide.
- the polypeptide may be recovered using methods known in the art. For example, the polypeptide may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.
- the polypeptide may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, Janson and Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure polypeptides.
- chromatography e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion
- electrophoretic procedures e.g., preparative isoelectric focusing
- differential solubility e.g., ammonium sulfate precipitation
- SDS-PAGE or extraction (see, e.g., Protein Purification, Janson and Ryden, editors, VCH Publishers, New York, 1989)
- polypeptide is not recovered, but rather a host cell of the present invention expressing the polypeptide is used as a source of the polypeptide.
- the present invention also relates to an isolated polynucleotide encoding a signal peptide comprising or consisting of amino acids -224 to -206 of SEQ ID NO: 2.
- the present invention also relates to an isolated polynucleotide encoding a propeptide comprising or consisting of amino acids -205 to -1 of SEQ ID NO: 2.
- the present invention also relates to an isolated polynucleotide encoding a signal peptide and a propeptide comprising or consisting of amino acids -224 to -1 of SEQ ID NO: 2.
- the polynucleotides may further comprise a gene encoding a protein, which is operably linked to the signal peptide and/or propeptide.
- the protein is preferably foreign to the signal peptide and/or propeptide.
- the polynucleotide encoding the signal peptide is nucleotides 501 to 557 of SEQ ID NO: 1.
- the polynucleotide encoding the propeptide is nucleotides 558 to 1 172 of SEQ ID NO: 1 .
- the polynucleotide encoding the signal peptide and the propeptide is nucleotides 501 to 1 172 of SEQ ID NO: 1 .
- the present invention also relates to nucleic acid constructs, expression vectors and recombinant host cells comprising such polynucleotides.
- the present invention also relates to methods of producing a protein, comprising (a) cultivating a recombinant host cell comprising such polynucleotide; and (b) recovering the protein.
- the protein may be native or heterologous to a host cell.
- the term “protein” is not meant herein to refer to a specific length of the encoded product and, therefore, encompasses peptides, oligopeptides, and polypeptides.
- the term “protein” also encompasses two or more polypeptides combined to form the encoded product.
- the proteins also include hybrid polypeptides and fused polypeptides.
- the protein is a hormone, enzyme, receptor or portion thereof, antibody or portion thereof, or reporter.
- the protein may be a hydrolase, isomerase, ligase, lyase, oxidoreductase, or transferase, e.g., an aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, endoglucanase, esterase, alpha-galactosidase, beta- galactosidase, glucoamylase, alpha-glucosidase, beta-glucosidase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme,
- the gene may be obtained from any prokaryotic, eukaryotic, or other source.
- the present invention also relates to compositions comprising a metalloprotease of the invention.
- the compositions are enriched in a metalloprotease of the invention.
- the term "enriched" indicates that the protease activity of the composition has been increased.
- the present invention relates to compositions in particular to cleaning compositions and/or detergent compositions comprising a metalloprotease of the invention and a suitable carrier and/or excipient.
- compositions comprising an isolated polypeptide having protease activity selected from the group consisting of: a) a polypeptide having at least 60% sequence identity, at least 65% sequence identity, at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 92% sequence identity, at least 93% sequence identity, at least 94% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 2; b) a polypeptide encoded by a polynucleotide that hybridizes under medium stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or (ii) the full-length complementary strand of (i); c) a polypeptide encoded by a polynucleotide having at least 60% sequence identity, at least 65% sequence identity, at least 70%
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 60% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 65% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 70% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 75% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 80% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 85% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 90% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 91 % sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 92% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 93% sequence identity to the mature polypeptide of SEQ ID NO: 2. In one embodiment, the compositions of the invention comprise an isolated polypeptide having protease activity and having at least 94% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 95% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 96% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 97% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 98% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- compositions of the invention comprise an isolated polypeptide having protease activity and having 100% sequence identity to the mature polypeptide of SEQ ID NO: 2.
- the present invention relates to compositions in particular to cleaning compositions and/or detergent compositions comprising a metalloprotease of the invention and a suitable carrier and/or excipient.
- the detergent composition may be adapted for specific uses such as laundry, in particular household laundry, dish washing or hard surface cleaning.
- the detergent compositions of the invention may be formulated, for example, as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations.
- the detergent compositions of the invention may find use in hard surface cleaning, automatic dishwashing applications, as well as cosmetic applications such as dentures, teeth, hair and skin.
- the detergent compositions comprise one or more conventional carrier(s) and/or excipient(s) such as those exemplified below.
- the detergent composition of the invention may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste or a liquid.
- a liquid detergent may be aqueous, typically containing up to 70% water and 0-30% organic solvent, or non-aqueous.
- the metalloprotease of the invention is normally incorporated in the detergent composition at a level of from 0.000001 % to 2% of enzyme protein by weight of the composition, preferably at a level of from 0.00001 % to 1 % of enzyme protein by weight of the composition, more preferably at a level of from 0.0001 % to 0.75% of enzyme protein by weight of the composition, even more preferably at a level of from 0.001 % to 0.5% of enzyme protein by weight of the composition.
- the metalloprotease of the invention is normally incorporated in the detergent composition in such amounts that their concentration in the wash water is at a level of from 0.0000001 % to 1 % enzyme protein, preferably at a level of from 0.000005% to 0.01 % of enzyme protein, more preferably at a level of from 0.000001 % to 0.005% of enzyme protein, even more preferably at a level of from 0.00001 % to 0.001 % of enzyme protein in wash water.
- the amount of enzyme will also vary according to the particular application and/or as a result of the other components included in the compositions.
- a composition for use in automatic dishwash (ADW), for example, may include 0.001 %- 50%, such as 0.01 %-25%, such as 0.02%-20%, such as 0.1 -15% of enzyme protein by weight of the composition.
- a composition for use in laundry granulation may include 0.0001 %-50%, such as 0.001 %-20%, such as 0.01 %-15%, such as 0.05%-10% of enzyme protein by weight of the composition.
- a composition for use in laundry liquid may include 0.0001 %-10%, such as 0.001 -7%, such as 0.1 %-5% of enzyme protein by weight of the composition.
- the detergent compositions provided herein are typically formulated such that, during use in aqueous cleaning operations, the wash water has a pH of from about 5.0 to about 1 1 .5, or in alternative embodiments, even from about 6.0 to about 10.5, such as from about 5 to about 1 1 , from about 5 to about 10, from about 5 to about 9, from about 5 to about 8, from about 5 to about 7, from about 6 to about 1 1 , from about 6 to about 10, from about 6 to about 9, from about 6 to about 8, from about 6 to about 7, from about 7 to about 1 1 , from about 7 to about 10, from about 7 to about 9, or from about 7 to about 8.
- granular or liquid laundry products are formulated such that the wash water has a pH from about 5.5 to about 8. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
- Enzyme components weights are based on total protein. All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated. In the exemplified detergent compo- sition, the enzymes levels are expressed by pure enzyme by weight of the total composition and unless otherwise specified, the detergent ingredients are expressed by weight of the total composition.
- a detergent additive product comprising a metalloprotease of the invention is ideally suited for inclu- sion in a wash process when, e.g., temperature is low, such as at temperatures about 40°C or below, the pH is between 6 and 8 and the washing time short, e.g., below 30 min.
- the detergent additive product may be a metalloprotease of the invention and preferably an additional enzyme.
- the additive is packaged in dosage form for addition to a cleaning process.
- the single dosage may comprise a pill, tablet, gelcap or other single dosage unit including powders and/or liquids.
- filler and/or carrier materials are included, suitable filler or carrier materials include, but are not limited to, various salts of sulfate, carbonate and silicate as well as talc, clay and the like.
- filler and/or carrier materials for liquid compositions include water and/or low molecular weight primary and secondary alcohols including polyols and diols. Examples of such alcohols include, but are not limited to, methanol, ethanol, propanol and isopropanol.
- the metalloprotease according to the invention is employed in a granular composition or liquid, the metalloprotease may be in form of an encapsulated particle.
- the encapsulating material is selected from the group consisting of carbohydrates, natural or synthetic gums, chitin and chitosan, cellulose and cellu- lose derivatives, silicates, phosphates, borates, polyvinyl alcohol, polyethylene glycol, paraffin waxes and combinations thereof.
- compositions according to the invention typically comprise one or more detergent ingredients.
- detergent compositions include articles and cleaning and treatment compositions.
- cleaning composition includes, unless otherwise indicated, tablet, granular or powder- form all-purpose or "heavy-duty" washing agents, especially laundry detergents; liq- uid, gel or paste-form all-purpose washing agents, especially the so-called heavy-duty liquid types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high-foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use.
- the composition can also be in unit dose packages, including those known in the art and those that are water soluble, water insoluble and/or water permeable.
- suitable methods may be used for keeping the cleaning and/or detergent components and the metalloprotease separated (i.e., not in con- tact with each other) until combination of the two components is appropriate.
- separation methods include any suitable method known in the art (e.g., gelcaps, encapsulation, tablets, and physical separation e.g., by use of a water dissolvable pouch having one or more compartments).
- the metalloprotease of the invention when employed as a component of a detergent composition (e.g., a laundry washing detergent composition, or a dishwashing detergent composition), it may, for example, be included in the detergent composition in the form of a non-dusting granulate, a stabilized liquid, or a protected enzyme.
- Non-dusting granulates may be produced, e.g., as disclosed in US 4,106,991 and 4,661 ,452 (both to Novo Industri A S) and may optionally be coated by methods known in the art.
- waxy coating materials are polyethyleneglycol (PEG) products with mean molecular weights of 1000 to 20000; ethox- ylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids.
- PEG polyethyleneglycol
- the enzymes employed herein are stabilized by the presence of water-soluble sources of zinc (II), calcium (II) and/or magnesium (II) ions in the finished compositions that provide such ions to the enzymes, as well as other metal ions (e.g., barium (II), scandium (II), iron (II), manganese (II), aluminum (III), tin (II), cobalt (II), copper (II), nickel (II), and oxovanadium (IV)).
- water-soluble sources of zinc (II), calcium (II) and/or magnesium (II) ions in the finished compositions that provide such ions to the enzymes, as well as other metal ions (e.g., barium (II), scandium (II), iron (II), manganese (II), aluminum (III), tin (II), cobalt (II), copper (II), nickel (II), and oxovanadium (IV)).
- the enzymes of the detergent compositions of the invention may also be stabilized using conventional stabilizing agents such as polyol, e.g., propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, and the composition may be formulated as described in, e.g., WO 92/19709 and WO 92/19708.
- the enzymes of the invention may also be stabilized by adding reversible enzyme inhibitors, e.g., of the protein type (as described in EP 544 777) or the boronic acid type.
- Other enzyme stabilizers are well known in the art, such as peptide aldehydes and protein hydrolysate, e.g. the metalloproteases according to the invention may be stabilized using peptide aldehydes or ketones such as described in WO2005/105826 and WO2009/1 18375.
- Protected enzymes for inclusion in a detergent composition of the invention may be prepared, as mentioned above, according to the method disclosed in EP 238 216.
- composition may be augmented with one or more agents for preventing or removing the formation of the biofilm.
- agents may include, but are not limited to, dispersants, surfactants, detergents, other enzymes, anti-microbials, and biocides.
- compositions of the invention may be applied in dosing elements to be used in an auto-dosing device.
- the dosing elements comprising the composition of the present invention can be placed into a delivery cartridge as that described in WO 2007/052004 and WO 2007/0833141.
- the dosing elements can have an elongated shape and set into an array forming a delivery cartridge which is the refill for an auto-dosing dispensing device as described in case WO 2007/051989.
- the delivery cartridge is to be placed in an auto-dosing delivery device, such as that described in WO 2008/053191.
- a metalloprotease of the invention is combined with one or more enzymes, such as at least two enzymes, more preferred at least three, four or five enzymes.
- the enzymes have different substrate specificity, e.g., proteolytic activity, amylolytic activity, lipolytic activity, hemicellulytic activity or pectolytic activity.
- the detergent additive as well as the detergent composition may comprise one or more enzymes such as a protease, lipase, cutinase, an amylase, carbohydrase, cellulase, pectinase, mannanase, arabinase, galactanase, xylanase, oxidase, e.g., a laccase and/or peroxidase.
- enzymes such as a protease, lipase, cutinase, an amylase, carbohydrase, cellulase, pectinase, mannanase, arabinase, galactanase, xylanase, oxidase, e.g., a laccase and/or peroxidase.
- the properties of the selected enzyme(s) should be compatible with the selected detergent, (i.e., pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.
- Suitable cellulases include those of animal, vegetable or microbial origin. Particularly suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered varianst are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757 and WO 89/09259.
- cellulases are the alkaline or neutral cellulases having color care benefits.
- Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/1 1262, WO 96/29397, WO 98/08940.
- Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471 , WO 98/12307 and WO 1999/001544.
- cellulases include CelluzymeTM, and CarezymeTM (Novozymes A/S), ClazinaseTM, and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation).
- Suitable proteases include those of bacterial, fungal, plant, viral or animal origin e.g. microbial or vegetable origin. Microbial origin is preferred. Chemically modified or protein engineered variants are included. It may be an alkaline protease, such as a serine protease or another metalloprotease. A serine protease may for example be of the S1 family, such as trypsin, or the S8 family such as subtilisin. A metalloproteases protease may for example be a thermolysin from e.g. family M4 or other metalloprotease such as those from M5, M7 or M8 families.
- subtilases refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991 ) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523.
- Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
- the subtilases may be divided into 6 sub-divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
- subtilases are those derived from Bacillus such as Bacillus lentus, B. al- kalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacil- lus lichen iformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140).
- trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO89/06270, W094/25583 and WO05/040372, and the chymotrypsin proteases derived from Cellulomonas described in WO05/052161 and WO05/052146.
- a further preferred protease is the alkaline protease from Bacillus lentus DSM 5483, as described for example in W095/23221 , and variants thereof which are described in WO92/21760, W095/23221 , EP1921 147 and EP1921 148.
- metalloproteases are the neutral metalloprotease as described in WO07/044993 (Genencor Int.) such as those derived from Bacillus amyloliquefaciens.
- useful proteases are the variants described in: W092/19729, WO96/034946, WO98/201 15, WO98/201 16, WO99/01 1768, WO01/44452, WO03/006602, WO04/03186, WO04/041979, WO07/006305, W01 1/036263, W01 1/036264, especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104, 106, 1 18, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218,
- protease variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, * 36D, V68A, N76D, N87S,R, * 97E, A98S, S99G,D,A, S99AD, S101 G,M,R S103A, V104I,Y,N, S106A, G1 18V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering).
- Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, DuralaseTM, DurazymTM, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coro- nase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® (Novozymes A/S), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Purafect®, Purafect Prime®, Prefer- enzTM, Purafect MA®, Purafect Ox®, Purafect OxP®, Puramax®, Properase®, EffectenzTM, FN2®, FN3® , FN4®, Excellase®, Eraser®, Ultimase®, Opticlean® and Optimase® (
- Suitable lipases include those of animal, vegetable or microbial origin. Particularly suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered variants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g., from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P.
- lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.
- Preferred commercially available lipase enzymes include LipolaseTM, Lipolase UltraTM, and LipexTM (Novozymes A/S).
- Amylases Suitable amylases which can be used together with metalloprotease of the invention may be an alpha-amylase or a glucoamylase and may be of bacterial or fungal origin. Chemically modified or protein engineered variants are included.
- Amylases include, for example, alpha-amylases obtained from Bacillus, e.g., a special strain of Bacillus licheniformis, described in more detail in GB 1 ,296,839.
- Suitable amylases include amylases having SEQ ID NO: 3 in WO 95/10603 or variants having 90% sequence identity to SEQ ID NO: 3 thereof. Preferred variants are described in WO 94/02597, WO 94/18314, WO 97/43424 and SEQ ID NO: 4 of WO 99/019467, such as variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 178, 179, 181 , 188, 190, 197, 201 , 202, 207, 208, 209, 21 1 , 243, 264, 304, 305, 391 , 408, and 444.
- amylases having SEQ ID NO: 6 in WO 02/010355 or variants thereof having 90% sequence identity to SEQ ID NO: 6.
- Preferred variants of SEQ ID NO: 6 are those having a deletion in positions 181 and 182 and a substitution in position 193.
- Other amylases which are suitable are hybrid alpha-amylase comprising residues 1 -33 of the alpha-amylase derived from B. amyloliquefaciens shown in SEQ ID NO: 6 of WO 2006/066594 and residues 36-483 of the B. licheniformis alpha-amylase shown in SEQ ID NO: 4 of WO 2006/066594 or variants having 90% sequence identity thereof.
- Preferred variants of this hybrid alpha-amylase are those having a substitution, a deletion or an insertion in one of more of the following positions: G48, T49, G107, H156, A181 , N190, M197, 1201 , A209 and Q264.
- Most preferred variants of the hybrid alpha-amylase comprising residues 1 -33 of the alpha-amylase derived from B. amyloliquefaciens shown in SEQ ID NO: 6 of WO 2006/066594 and residues 36-483 of SEQ ID NO: 4 are those having the substitutions:
- amylases which are suitable are amylases having SEQ ID NO: 6 in WO 99/019467 or variants thereof having 90% sequence identity to SEQ ID NO: 6.
- Preferred variants of SEQ ID NO: 6 are those having a substitution, a deletion or an insertion in one or more of the following positions: R181 , G182, H183, G184, N195, I206, E212, E216 and K269.
- Particularly preferred amylases are those having deletion in positions R181 and G182, or positions H183 and G184.
- Additional amylases which can be used are those having SEQ ID NO: 1 , SEQ ID NO: 3, SEQ ID NO: 2 or SEQ ID NO: 7 of WO 96/023873 or variants thereof having 90% sequence identity to SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 7.
- Preferred variants of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 7 are those having a substitution, a deletion or an insertion in one or more of the following positions: 140, 181 , 182, 183, 184, 195, 206, 212, 243, 260, 269, 304 and 476.
- More preferred variants are those having a deletion in positions 181 and 182 or positions 183 and 184.
- Most preferred amylase variants of SEQ ID NO: 1 , SEQ ID NO: 2 or SEQ ID NO: 7 are those having a deletion in positions 183 and 184 and a substitution in one or more of positions 140, 195, 206, 243, 260, 304 and 476.
- Other amylases which can be used are amylases having SEQ ID NO: 2 of WO 08/153815, SEQ ID NO: 10 in WO 01/66712 or variants thereof having 90% sequence identity to SEQ ID NO: 2 of WO 08/153815 or 90% sequence identity to SEQ ID NO: 10 in WO 01/66712.
- Preferred variants of SEQ ID NO: 10 in WO 01/66712 are those having a substitution, a deletion or an insertion in one of more of the following positions: 176, 177, 178, 179, 190, 201 , 207, 21 1 and 264.
- Further suitable amylases are amylases having SEQ ID NO: 2 of WO 09/061380 or variants having 90% sequence identity to SEQ ID NO: 2 thereof.
- Preferred variants of SEQ ID NO: 2 are those having a truncation of the C-terminus and/or a substitution, a deletion or an insertion in one of more of the following positions: Q87, Q98, S125, N128, T131 , T165, K178, R180, S181 , T182, G183, M201 , F202, N225, S243, N272, N282, Y305, R309, D319, Q320, Q359, K444 and G475.
- More preferred variants of SEQ ID NO: 2 are those having the substitution in one of more of the following positions: Q87E,R, Q98R, S125A, N128C, T131 I, T165I, K178L, T182G, M201 L, F202Y, N225E,R, N272E,R, S243Q,A,E,D, Y305R, R309A, Q320R, Q359E, K444E and G475K and/or deletion in position R180 and/or S181 or of T182 and/or G183.
- Most preferred amylase variants of SEQ ID NO: 2 are those having the substitutions:
- variants are C-terminally truncated and optionally further comprises a substitution at position 243 and/or a deletion at position 180 and/or position 181.
- suitable amylases are the alpha-amylase having SEQ ID NO: 12 in WO01/66712 or a variant having at least 90% sequence identity to SEQ ID NO: 12.
- Preferred amylase variants are those having a substitution, a deletion or an insertion in one of more of the following positions of SEQ ID NO: 12 in WO01/66712: R28, R1 18, N174; R181 , G182, D183, G184, G186, W189, N195, M202, Y298, N299, K302, S303, N306, R310, N314; R320, H324, E345, Y396, R400, W439, R444, N445, K446, Q449, R458, N471 , N484.
- amylases include variants having a deletion of D183 and G184 and having the substitutions R1 18K, N195F, R320K and R458K, and a variant additionally having substitutions in one or more position selected from the group: M9, G149, G182, G186, M202, T257, Y295, N299, M323, E345 and A339, most preferred a variant that additionally has substitutions in all these positions.
- Other examples are amylase variants such as those described in WO201 1/098531 , WO2013/001078 and WO2013/001087.
- amylases are DuramylTM, TermamylTM, FungamylTM, Stainzyme TM, Stainzyme PlusTM, NatalaseTM, Liquozyme X and BANTM (from Novozymes A/S), and RapidaseTM , PurastarTM/EffectenzTM, Powerase and Preferenz S100 (from Genencor International Inc./DuPont).
- Peroxidases/Oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered variants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g., from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
- peroxidases include GuardzymeTM (Novozymes A/S).
- the detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes.
- a detergent additive of the invention i.e., a separate additive or a combined additive, can be formulated, for example, as a granulate, liquid, slurry, etc.
- Preferred detergent additive formulations are granulates, in particular non-dusting granulates as described above, liquids, in particular stabilized liquids, or slurries.
- the detergent composition comprises (by weight of the composition) one or more surfactants in the range of 0% to 50%, preferably from 2% to 40%, more preferably from 5% to 35%, more preferably from 7% to 30%, most preferably from 10% to 25%, even most preferably from 15% to 20%.
- the detergent is a liquid or powder detergent comprising less than 40%, preferably less than 30%, more preferably less than 25%, even more preferably less than 20% by weight of surfactant.
- the composition may comprise from 1 % to 15%, preferably from 2% to 12%, 3% to 10%, most preferably from 4% to 8%, even most preferably from 4% to 6% of one or more surfactants.
- Preferred surfactants are anionic surfactants, non-ionic surfactants, cationic surfactants, zwitterionic surfactants, amphoteric surfactants, and mixtures thereof.
- the major part of the surfactant is anionic.
- Suitable anionic surfactants are well known in the art and may comprise fatty acid carboxylates (soap), branced-chain, linear-chain and random chain alkyl sulfates or fatty alcohol sulfates or primary alcohol sulfates or alkyl benzenesulfonates such as LAS and LAB or phenylalknesulfonates or alkenyl sulfonates or alkenyl benzenesulfonates or alkyl ethoxysulfates or fatty alcohol ether sulfates or alpha-olefin sulfonate or dodecenyl/tetradecnylsuccinic acid.
- the anionic surfactants may be alkoxylated.
- the detergent composition may also comprise from 1 wt% to 10 wt% of non-ionic surfactant, preferably from 2 wt% to 8 wt%, more preferably from 3 wt% to 7 wt%, even more preferably less than 5 wt% of non-ionic surfactant.
- Suitable non-ionic surfactants are well known in the art and may comprise alcohol ethoxylates, and/or alkyl ethoxylates, and/or alkylphenol ethoxylates, and/or glucamides such as fatty acid N-glucosyl N-methyl amides, and/or alkyl polyglucosides and/or mono- or diethanolamides or fatty acid amides.
- the detergent composition may also comprise from 0 wt% to 10 wt% of cationic surfactant, preferably from 0.1 wt% to 8 wt%, more preferably from 0.5 wt% to 7 wt%, even more preferably less than 5 wt% of cationic surfactant.
- Suitable cationic surfactants are well known in the art and may comprise alkyl quaternary ammonium compounds, and/or alkyl pyridinium compounds and/or alkyl quaternary phosphonium compounds and/or alkyl ternary sulphonium compounds.
- the composition preferably comprises surfactant in an amount to provide from 100 ppm to 5,000 ppm surfactant in the wash liquor during the laundering process.
- the composition upon contact with water typically forms a wash liquor comprising from 0.5 g/l to 10 g/l detergent composition.
- Many suitable surface active compounds are available and fully described in the literature, for example, in "Surface- Active Agents and Detergents", Volumes I and 1 1 , by Schwartz, Perry and Berch.
- builder The main role of builder is to sequester divalent metal ions (such as calcium and magnesium ions) from the wash solution that would otherwise interact negatively with the surfactant system.
- Builders are also effective at removing metal ions and inorganic soils from the fabric surface, leading to improved removal of particulate and beverage stains.
- Builders are also a source of alkalinity and buffer the pH of the wash water to a level of 9.5 to 1 1.
- the buffering capacity is also termed reserve alkalinity, and should preferably be greater than 4.
- the detergent compositions of the present invention may comprise one or more detergent builders or builder systems.
- Many suitable builder systems are described in the literature, for example in Powdered Detergents, Surfactant science series volume 71 , Marcel Dekker, Inc.
- Builder may comprise from 0% to 60%, preferably from 5% to 45%, more preferably from 10% to 40%, most preferably from 15% to 35%, even more preferably from 20% to 30% builder by weight of the subject composition.
- the composition may comprise from 0% to 15%, preferably from 1 % to 12%, 2% to 10%, most preferably from 3% to 8%, even most preferably from 4% to 6% of builder by weight of the subject composition.
- Builders include, but are not limited to, the alkali metal, ammonium and alkanolammoni- um salts of polyphosphates (e.g., tripolyphosphate STPP), alkali metal silicates, alkaline earth and alkali metal carbonates, aluminosilicate builders (e.g., zeolite) and polycarboxylate compounds, ether hydroxypolycarboxylat.es, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1 , 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, citric acid, oxydisuccinic acid, polymaleic acid, benz
- the detergent compositions of the present invention may comprise one or more bleaching agents.
- powdered detergents may comprise one or more bleaching agents.
- Suitable bleaching agents include other photobleaches, pre-formed peracids, sources of hydrogen peroxide, bleach activators, hydrogen peroxide, bleach catalysts and mixtures thereof.
- the compositions of the present invention may comprise from about 0.1 % to about 50% or even from about 0.1 % to about 25% bleaching agent by weight of the subject cleaning composition.
- suitable bleaching agents include:
- Suitable preformed peracids include, but are not limited to, compounds selected from the group consisting of percarboxylic acids and salts, percarbonic acids and salts, perimidic acids and salts, peroxymonosulfuric acids and salts, for example, Oxone , and mixtures thereof.
- sources of hydrogen peroxide for example, inorganic perhydrate salts, including al- kali metal salts such as sodium salts of perborate (usually mono- or tetra-hydrate), percar- bonate, persulphate, perphosphate, persilicate salts and mixtures thereof.
- the inorganic perhydrate salts are selected from the group consisting of sodium salts of perborate, percarbonate and mixtures thereof.
- inorganic perhydrate salts are typically present in amounts of from 0.05 to 40 wt%, or 1 to 30 wt% of the overall composi- tion and are typically incorporated into such compositions as a crystalline solid that may be coated.
- Suitable coatings include inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as water-soluble or dispersible polymers, waxes, oils or fatty soaps.
- Suitable leaving groups are ben- zoic acid and derivatives thereof - especially benzene sulphonate.
- Suitable bleach activators include dodecanoyl oxybenzene sulphonate, decanoyl oxybenzene sulphonate, decanoyl ox- ybenzoic acid or salts thereof, 3,5,5-trimethyl hexanoyloxybenzene sulphonate, tetraacetyl ethylene diamine (TAED) and nonanoyloxybenzene sulphonate (NOBS).
- TAED tetraacetyl ethylene diamine
- NOBS nonanoyloxybenzene sulphonate
- Suitable bleach activators are also disclosed in WO 98/17767. While any suitable bleach activator may be employed, in one aspect of the invention the subject cleaning composition may comprise NOBS, TAED or mixtures thereof; and
- bleach catalysts that are capable of accepting an oxygen atom from peroxyacid and transferring the oxygen atom to an oxidizable substrate are described in WO 2008/007319.
- Suitable bleach catalysts include, but are not limited to: iminium cations and polyions; iminium zwitterions; modified amines; modified amine oxides; N-sulphonyl imines; N-phosphonyl imines; N-acyl imines; thiadiazole dioxides; perfluoroimines; cyclic sugar ketones and mixtures thereof.
- the bleach catalyst will typically be comprised in the detergent composition at a level of from 0.0005% to 0.2%, from 0.001 % to 0.1 %, or even from 0.005% to 0.05% by weight.
- the peracid and/or bleach activator is generally present in the composi- tion in an amount of from about 0.1 to about 60 wt%, from about 0.5 to about 40 wt% or even from about 0.6 to about 10 wt% based on the composition.
- One or more hydrophobic peracids or precursors thereof may be used in combination with one or more hydrophilic peracid or precursor thereof.
- the amounts of hydrogen peroxide source and peracid or bleach activator may be se- lected such that the molar ratio of available oxygen (from the peroxide source) to peracid is from 1 :1 to 35:1 , or even 2:1 to 10:1.
- Dispersants can also contain dis- persants.
- powdered detergents may comprise dispersants.
- Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycar- boxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
- Suitable dispersants are for example described in Powdered Detergents, Surfactant science series volume 71 , Marcel Dekker, Inc.
- Dye Transfer Inhibiting Agents The detergent compositions of the present invention may also include one or more dye transfer inhibiting agents.
- Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
- the dye transfer inhibiting agents may be present at levels from about 0.0001 % to about 10%, from about 0.01 % to about 5% or even from about 0.1 % to about 3% by weight of the composition.
- Fluorescent whitening agent - The detergent compositions of the present invention will preferably also contain additional components that may tint articles being cleaned, such as fluo- rescent whitening agent or optical brighterners.
- Any fluorescent whitening agent suitable for use in a laundry detergent composition may be used in the composition of the present invention.
- the most commonly used fluorescent whitening agents are those belonging to the classes of diaminostilbene-sulphonic acid derivatives, diarylpyrazoline derivatives and bisphenyl-distyryl derivatives. Examples of the diaminostilbene-sulphonic acid derivative type of fluorescent whit- ening agents include the sodium salts of:
- Tinopal DMS is the disodium salt of 4,4'-bis-(2-morpholino-4 anilino-s-triazin-6-ylamino) stilbene disul- phonate.
- Tinopal CBS is the disodium salt of 2,2'-bis-(phenyl-styryl) disulphonate.
- fluorescent whitening agents is the commercially available Parawhite KX, supplied by Paramount Minerals and Chemicals, Mumbai, India.
- fluorescers suitable for use in the invention include the 1 -3-diaryl pyrazolines and the 7- alkylaminocoumarins.
- Suitable fluorescent brightener levels include lower levels of from about 0.01 , from 0.05, from about 0.1 or even from about 0.2 wt% to upper levels of 0.5 or even 0.75 wt%.
- Fabric hueing agents - may also include fabric hueing agents such as dyes or pigments which when formulated in detergent com- positions can deposit onto a fabric when said fabric is contacted with a wash liquor comprising said detergent compositions thus altering the tint of said fabric through absorption of visible light.
- fabric hueing agents alter the tint of a surface as they absorb at least a portion of the visible light spectrum.
- Suitable fabric hueing agents include dyes and dye-clay conjugates, and may also include pigments.
- Suitable dyes include small molecule dyes and polymeric dyes.
- Suitable small molecule dyes include small molecule dyes selected from the group consisting of dyes falling into the Colour Index (C.I.) classifications of Direct Blue, Direct Red, Direct Violet, Acid Blue, Acid Red, Acid Violet, Basic Blue, Basic Violet and Basic Red, or mixtures thereof, for example as described in WO 2005/03274, WO 2005/03275, WO 2005/03276 and EP 1 876 226.
- the detergent composition preferably comprises from about 0.00003 wt% to about 0.2 wt%, from about 0.00008 wt% to about 0.05 wt%, or even from about 0.0001 wt% to about 0.04 wt% fabric hueing agent.
- the composition may comprise from 0.0001 wt% to 0.2 wt% fabric hueing agent, this may be especially preferred when the composition is in the form of a unit dose pouch.
- Soil release polymers - The detergent compositions of the present invention may also include one or more soil release polymers which aid the removal of soils from fabrics such as cotton and polyester based fabrics, in particular the removal of hydrophobic soils from polyester based fabrics.
- the soil release polymers may for example be nonionic or anionic terephthalte based polymers, polyvinyl caprolactam and related copolymers, vinyl graft copolymers, polyester polyamides see for example Chapter 7 in Powdered Detergents, Surfactant science series, volume 71 , Marcel Dekker, Inc.
- soil release polymers are amphiphilic alkoxylat- ed grease cleaning polymers comprising a core structure and a plurality of alkoxylate groups attached to that core structure.
- the core structure may comprise a polyalkylenimine structure or a polyalkanolamine structure as described in detail in WO 2009/087523.
- random graft co-polymers are suitable soil release polymers Suitable graft co-polymers are described in more detail in WO 2007/138054, WO 2006/108856 and WO 2006/1 13314.
- Other soil release polymers are substituted polysaccharide structures especially substituted cellulosic structures such as modified cellulose deriviatives such as those described in EP 1 867 808 or WO 2003/040279.
- Suitable cellulosic polymers include cellulose, cellulose ethers, cellulose esters, cellulose amides and mixtures thereof. Suitable cellulosic polymers include anionically modified cellulose, nonionically modified cellulose, cationically modified cellulose, zwitterionically modi- fied cellulose, and mixtures thereof. Suitable cellulosic polymers include methyl cellulose, car- boxy methyl cellulose, ethyl cellulose, hydroxyl ethyl cellulose, hydroxyl propyl methyl cellulose, ester carboxy methyl cellulose, and mixtures thereof.
- the detergent compositions of the present invention may also include one or more anti-redeposition agents such as carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyoxyethylene and/or polyethyleneglycol (PEG), homopolymers of acrylic acid, copolymers of acrylic acid and maleic acid, and ethoxylated poly- ethyleneimines.
- CMC carboxymethylcellulose
- PVA polyvinyl alcohol
- PVP polyvinylpyrrolidone
- PEG polyethyleneglycol
- homopolymers of acrylic acid copolymers of acrylic acid and maleic acid
- the cellulose based polymers described under soil release polymers above may also function as anti-redeposition agents.
- adjunct materials include, but are not limited to, anti-shrink agents, anti- wrinkling agents, bactericides, binders, carriers, dyes, enzyme stabilizers, fabric softeners, fill- ers, foam regulators, hydrotropes, perfumes, pigments, sod suppressors, solvents, structurants for liquid detergents and/or structure elasticizing agents.
- the detergent is a compact fluid laundry detergent composition
- a compact fluid laundry detergent composition comprising: a) at least about 10%, preferably from 20 to 80% by weight of the composition, of surfactant selected from anionic surfactants, non-ionic surfactants, soap and mixtures thereof; b) from about 1 % to about 30%, preferably from 5 to 30%, by weight of the composition, of water; c) from about 1 % to about 15%, preferably from 3 to 10% by weight of the composition, of non- aminofunctional solvent; and d) from about 5% to about 20%, by weight of the composition, of a performance additive selected from chelants, soil release polymers, enzymes and mixtures thereof; wherein the compact fluid laundry detergent composition comprises at least one of:
- the surfactant has a weight ratio of the anionic surfactant to the nonionic surfactant from about 1 .5:1 to about 5:1 , the surfactant comprises from about 15% to about 40%, by weight of the composition, of anionic surfactant and comprises from about 5% to about 40%, by weight of the composition, of the soap; (ii) from about 0.1 % to about 10%, by weight of the composition, of a suds boosting agent selected from suds boosting polymers, cationic surfac- tants, zwitterionic surfactants, amine oxide surfactants, amphoteric surfactants, and mixtures thereof; and (ii) both (i) and (ii). All the ingredients are described in WO 2007/130562. Further polymers useful in detergent formulations are described in WO 2007/149806.
- the detergent is a compact granular (powdered) detergent comprising a) at least about 10%, preferably from 15 to 60% by weight of the composition, of surfactant se- lected from anionic surfactants, non-ionic surfactants, soap and mixtures thereof; b) from about 10 to 80% by weight of the composition, of a builder, preferably from 20% to 60% where the builder may be a mixture of builders selected from i) phosphate builder, preferably less than 20%, more preferably less than 10% even more preferably less than 5% of the total builder is a phosphate builder; ii) a zeolite builder, preferably less than 20%, more preferably less than 10% even more preferably less than 5% of the total builder is a zeolite builder; iii) citrate, preferably 0 to 5% of the total builder is a citrate builder; iv) polycarboxylate, preferably 0 to 5% of the total builder is a citrate
- the soils and stains that are important for detergent formulators are composed of many different substances, and a range of different enzymes, all with different substrate specificities have been developed for use in detergents both in relation to laundry and hard surface cleaning, such as dishwashing. These enzymes are considered to provide an enzyme detergency benefit, since they specifically improve stain removal in the cleaning process they are applied in as compared to the same process without enzymes.
- Stain removing enzymes that are known in the art include enzymes such as carbohydrases, amylases, proteases, lipases, cellulases, hem- icellulases, xylanases, cutinases, and pectinase.
- the present invention concerns the use of metalloprotease of the invention in detergent compositions and cleaning processes, such as laundry and hard surface cleaning.
- the present invention demonstrates the detergency effect of the metal- loprotease of the invention on various stains and under various conditions.
- the detergent composition and the use in cleaning process concerns the use of a metalloprotease of the invention together with at least one of the above mentioned stain removal enzymes, such as another protease, and in particular a serine protease.
- the metalloprotease of the invention useful according to the invention may be combined with at least two enzymes. These additional enzymes are described in details in the section "other enzymes", more preferred at least three, four or five enzymes.
- the enzymes have different substrate specificity, e.g., carbolyt- ic activity, proteolytic activity, amylolytic activity, lipolytic activity, hemicellulytic activity or pecto- lytic activity.
- the enzyme combination may for example be a metalloprotease of the invention with another stain removing enzyme, e.g., a metalloprotease of the invention and a protease, a metalloprotease of the invention and a serine protease, a metalloprotease of the invention and another metalloprotease, a metalloprotease of the invention and an amylase, a metalloprotease of the invention and a cellulase, a metalloprotease of the invention and a hemicellulase, a metalloprotease of the invention and a lipase, a metalloprotease of the invention and a cutinase, a metalloprotease of the invention and a pectinase or a metalloprotease of the invention and an anti-redeposition enzyme.
- a metalloprotease of the invention and a protease e.g., a metalloprotease of the invention and a protease, a metallop
- the metalloprotease of the invention is combined with at least two other stain removing enzymes, e.g., a metalloprotease of the invention, a lipase and an amylase; or a metalloprotease of the invention, a protease and an amylase; or a metalloprotease of the invention, a protease and a lipase; or a metalloprotease of the invention, a protease and a pectinase; or a metalloprotease of the invention, a protease and a cellulase; or a metalloprotease of the invention, a protease and a hemicellulase; or a metalloprotease of the invention, a protease and a cutinase; or a metalloprotease of the invention, an amylase and a pectinase; or a metalloprotease of the invention, an amylase and a pect
- a metalloprotease of the invention may be combined with at least three other stain removing enzymes, e.g., a metalloprotease of the invention, a protease, a lipase and an amylase; or a metalloprotease of the invention, a protease, an amylase and a pectinase; or a metalloprotease of the invention, a protease, an amylase and a cutinase; or a metalloprotease of the invention, a protease, an amylase and a cellulase; or a metalloprotease of the invention, a protease, an amylase and a hemicellulase; or a metalloprotease of the invention, an amylase, a lipase and a pectinase; or a metalloprotease of the invention, an amylase, a lipase and a cu- t
- a metalloprotease according to the present invention may be combined with any of the enzymes selected from the non-exhaustive list comprising: carbohydrases, such as an amylase, a hemicellulase, a pectinase, a cellulase, a xanthanase or a pullulanase, a peptidase, a protease or a lipase.
- carbohydrases such as an amylase, a hemicellulase, a pectinase, a cellulase, a xanthanase or a pullulanase, a peptidase, a protease or a lipase.
- a metalloprotease of the invention is combined with a serine protease, e.g., an S8 family protease such as Savinase®.
- a metalloprotease of the invention useful according to the present invention may be combined with one or more other metalloproteas- es, such as another M4 metalloprotease, including Neutrase® or Thermolysin. Such combinations may further comprise combinations of the other detergent enzymes as outlined above.
- the cleaning process or the textile care process may for example be a laundry process, a dishwashing process or cleaning of hard surfaces such as bathroom tiles, floors, table tops, drains, sinks and washbasins.
- Laundry processes can for example be household laundering, but it may also be industrial laundering.
- the invention relates to a process for laundering of fabrics and/or garments where the process comprises treating fabrics with a wash- ing solution containing a detergent composition, and at least one metalloprotease of the invention.
- the cleaning process or a textile care process can for example be carried out in a machine washing process or in a manual washing process.
- the washing solution can for example be an aqueous washing solution containing a detergent composition.
- the fabrics and/or garments subjected to a washing, cleaning or textile care process of the present invention may be conventional washable laundry, for example household laundry.
- the major part of the laundry is garments and fabrics, including knits, woven, denims, non-woven, felts, yarns, and towelling.
- the fabrics may be cellulose based such as natural cellulosics, including cotton, flax, linen, jute, ramie, sisal or coir or manmade cellulosics (e.g., originating from wood pulp) including viscose/rayon, ramie, cellulose acetate fibers (tricell), lyocell or blends thereof.
- the fabrics may also be non-cellulose based such as natural polyam- ides including wool, camel, cashmere, mohair, rabit and silk or synthetic polymer such as nylon, aramid, polyester, acrylic, polypropylen and spandex/elastane, or blends thereof as well as blend of cellulose based and non-cellulose based fibers.
- non-cellulose based such as natural polyam- ides including wool, camel, cashmere, mohair, rabit and silk or synthetic polymer such as nylon, aramid, polyester, acrylic, polypropylen and spandex/elastane, or blends thereof as well as blend of cellulose based and non-cellulose based fibers.
- blends are blends of cotton and/or rayon/viscose with one or more companion material such as wool, synthetic fibers (e.g., polyamide fibers, acrylic fibers, polyester fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyurethane fibers, polyurea fibers, aramid fibers), and cellulose-containing fibers (e.g., rayon/viscose, ramie, flax, linen, jute, cellulose acetate fibers, lyocell).
- companion material such as wool, synthetic fibers (e.g., polyamide fibers, acrylic fibers, polyester fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyurethane fibers, polyurea fibers, aramid fibers), and cellulose-containing fibers (e.g., rayon/viscose, ramie, flax, linen, jute, cellulose acetate fibers, lyocell).
- the invention further concerns the use of metalloprotease of the invention in a proteina- ceous stain removing processes.
- the proteinaceous stains may be stains such as food stains, e.g., baby food, sebum, cocoa, egg, blood, milk, ink, grass, or a combination hereof.
- Typical detergent compositions includes various components in addition to the enzymes, these components have different effects, some components like the surfactants lower the surface tension in the detergent, which allows the stain being cleaned to be lifted and dispersed and then washed away, other components like bleach systems removes discolor often by oxidation and many bleaches also have strong bactericidal properties, and are used for disinfecting and sterilizing. Yet other components like builder and chelator softens, e.g., the wash water by removing the metal ions form the liquid.
- the invention concerns the use of a composition comprising a metalloprotease of the invention, wherein said enzyme composition further comprises at least one or more of the following a surfactant, a builder, a chelator or chelating agent, bleach system or bleach component in laundry or dish wash.
- the amount of a surfactant, a builder, a chelator or chelating agent, bleach system and/or bleach component are reduced compared to amount of surfactant, builder, chelator or chelating agent, bleach system and/or bleach component used without the added metalloprotease of the invention.
- the at least one component which is a surfactant, a builder, a chelator or chelating agent, bleach system and/or bleach component is present in an amount that is 1 % less, such as 2% less, such as 3% less, such as 4% less, such as 5% less, such as 6% less, such as 7% less, such as 8% less, such as 9% less, such as 10% less, such as 15% less, such as 20% less, such as 25% less, such as 30% less, such as 35% less, such as 40% less, such as 45% less, such as 50% less than the amount of the component in the system without the addition of metalloprotease of the invention, such as a conventional amount of such component.
- the metalloprotease of the invention is used in detergent compositions wherein said composition is free of at least one component which is a surfactant, a builder, a chelator or chelating agent, bleach system or bleach component and/or polymer.
- the present invention includes a method for laundering a fabric.
- the method comprises the steps of contacting a fabric to be laundered with a cleaning laundry solution comprising the detergent composition according to the invention.
- the fabric may comprise any fabric capable of being laundered in normal consumer use conditions.
- the solution preferably has a pH of from about 5.5 to about 8.
- the compositions may be employed at concentrations of from about 100 ppm, preferably 500 ppm to about 15,000 ppm in solution.
- the water temperatures typically range from about 5°C to about 90°C, including about 10°C, about 15°C, about 20°C, about 25°C, about 30°C, about 35°C, about 40°C, about 45°C, about 50°C, about 55°C, about 60°C, about 65°C, about 70°C, about 75°C, about 80°C, about 85°C and about 90°C.
- the water to fabric ratio is typically from about 1 :1 to about 30:1.
- the washing method is conducted at a pH of from about 5.0 to about 1 1 .5, or in alternative embodiments, even from about 6 to about 10.5, such as about 5 to about 1 1 , about 5 to about 10, about 5 to about 9, about 5 to about 8, about 5 to about 7, about 5.5 to about 1 1 , about 5.5 to about 10, about 5.5 to about 9, about 5.5 to about 8, about 5.5.
- the washing method is conducted at a degree of hardness of from about 0°dH to about 30°dH, such as about 1 °dH, about 2°dH, about 3°dH, about 4°dH, about 5°dH, about 6°dH, about 7°dH, about 8°dH, about 9°dH, about 10°dH, about 1 1 °dH, about 12°dH, about 13°dH, about 14°dH, about 15°dH, about 16°dH, about 17°dH, about 18°dH, about 19°dH, about 20°dH, about 21 °dH, about 22°dH, about 23°dH, about 24°dH, about 25°dH, about 26°dH, about 27°dH, about 28°dH, about 29°dH,about 30°dH.
- the degree of hardness is about 15°dH, under typical US wash con- ditions about 6°dH, and under typical Asian
- the present invention relates to a method of cleaning a fabric, a dishware or hard surface with a detergent composition comprising a metalloprotease of the invention.
- a preferred embodiment concerns a method of cleaning, said method comprising the steps of: contacting an object with a cleaning composition comprising a metalloprotease of the invention under conditions suitable for cleaning said object.
- the cleaning composition is a detergent composition and the process is a laundry or a dish wash process.
- Still another embodiment relates to a method for removing stains from fabric which comprises contacting said a fabric with a composition comprising a metalloprotease of the invention under conditions suitable for cleaning said object.
- compositions for use in the methods above further comprises at least one additional enzyme as set forth in the "other enzymes" section above, such as an enzyme selected from the group consisting of carbohydrases, peptidases, proteases, lipases, cellulase, xylanases or cutinases or a combination hereof.
- additional enzyme such as an enzyme selected from the group consisting of carbohydrases, peptidases, proteases, lipases, cellulase, xylanases or cutinases or a combination hereof.
- the compositions comprises a reduced amount of at least one or more of the following components a surfactant, a builder, a chelator or chelating agent, bleach system or bleach component or a polymer.
- One embodiment of the invention concerns a method of doing laundry, dish wash or in- dustrial cleaning comprising contacting a surface to be cleaned with a metalloprotease of the invention, and wherein said laundry, dish wash, industrial or institutional cleaning is performed at a temperature of about 40°C or below.
- One embodiment of the invention relates to the use of a metalloprotease in laundry, dish wash or a cleaning process wherein the temperature in laundry, dish wash, industrial cleaning is about 40°C or below
- the invention concerns the use of a metalloprotease according to the invention in a protein removing process, wherein the temperature in the protein removing process is about 40°C or below.
- the present invention also relates to the use in laundry, dish wash or industrial cleaning process of a metalloprotease having at least one improved property compared to a commercial metalloprotease such as Neutrase® and wherein the temperature in laundry, dish wash or cleaning process is performed at a temperature of about 40°C or below.
- the wash temperature is about 40°C or below, such as about 39°C or below, such as about 38°C or below, such as about 37°C or below, such as about 36°C or below, such as about 35°C or below, such as about 34°C or below, such as about 33°C or below, such as about 32°C or below, such as about 31 °C or below, such as about 30°C or below, such as about 29°C or below, such as about 28°C or below, such as about 27°C or below, such as about 26°C or below, such as about 25°C or below, such as about 24°C or below, such as about 23°C or below, such as about 22°C or below, such as about 21°C or below, such as about 20°C or below, such as about 19°C or below, such as about 18°C or below, such as about 17°C or below, such as about 16°C or below, such as about 15°C or below, such as about 14°C
- the wash temperature is in the range of about 5-40°C, such as about 5-30°C, about 5-20°C, about 5-10°C, about 10-40°C, about 10-30°C, about 10- 20°C, about 15-40°C, about 15-30°C, about 15-20°C, about 20-40°C, about 20-30°C, about 25- 40°C, about 25-30°C, or about 30-40°C.
- the wash temperature is about 20°C, about 30°C, or about 40°C.
- the low temperature washing method is conducted at a pH of from about 5.0 to about 1 1.5, or in alternative embodiments, even from about 6 to about 10.5, such as about 5 to about 1 1 , about 5 to about 10, about 5 to about 9, about 5 to about 8, about 5 to about 7, about 5.5 to about 1 1 , about 5.5 to about 10, about 5.5 to about 9, about 5.5 to about 8, about 5.5.
- the low temperature washing method is conducted at a degree of hardness of from about 0°dH to about 30°dH, such as about 1 °dH, about 2°dH, about 3°dH, about 4°dH, about 5°dH, about 6°dH, about 7°dH, about 8°dH, about 9°dH, about 10°dH, about 1 1 °dH, about 12°dH, about 13°dH, about 14°dH, about 15°dH, about 16°dH, about 17°dH, about 18°dH, about 19°dH, about 20°dH, about 21 °dH, about 22°dH, about 23°dH, about 24°dH, about 25°dH, about 26°dH, about 27°dH, about 28°dH, about 29°dH,about 30°dH.
- the degree of hardness is about 15°dH, under typical US wash conditions about 6°dH, and under typical Asian wash conditions
- Another particular embodiment of the invention concerns removal of egg stains. These types of stain are often very difficult to remove completely. Egg stains are particularly problematic in hard surface cleaning such as dish wash where the stains often remain on the plates and cutlery after washing.
- the metalloproteases of the invention are particularly suitable for removing egg stains.
- the invention further concerns methods for removing egg stains from textiles, fabrics and/or hard surfaces like dishes and cutlery in particular from fabrics and textiles.
- a preferred aspect of the invention concerns a method of removing egg stains from textiles and/or fabrics comprising contacting a surface in need of removal of an egg stain with a metalloprote- ase of the invention.
- the invention comprises a method of removing egg stains from textiles and/or fabrics comprising contacting a surface in need of removal of an egg stain with a detergent composition comprising a metalloprotease of the invention.
- the invention also concerns a method of removing egg stains comprising adding a metalloprotease of the invention to a laundry and/or washing process wherein said textiles and/or fabric comprises various egg stains.
- One embodiment of the present invention relates to a method for removal of egg stains from a hard surface or from laundry, the method comprising contacting the egg stain-containing hard surface or the egg stain-containing laundry with a cleaning or detergent composition, preferably a laundry or dish wash composition, containing a metalloprotease of the invention.
- Another embodiment relates a method for removing egg stains from fabric or textile which comprises contacting the fabric or textile with a cleaning or detergent composition, preferably a laundry or dish wash composition, comprising a metalloprotease of the invention.
- a still further embodiment relates to a method for removing egg stains from fabric or textile which comprises contacting said a fabric or textile with a composition comprising a metalloprotease of the invention, wherein said composition further comprises at least one additional enzyme as set forth in the "other enzymes" section above, such as an enzyme selected from the group consisting of a carbohydrase, a peptidase, a protease, a lipase, a cellulase, a xylanase, a cutinase or a combination hereof.
- the egg removing method is conducted at a pH of from about 5.0 to about 1 1.5, or in alternative embodiments, even from about 6 to about 10.5, such as about 5 to about 1 1 , about 5 to about 10, about 5 to about 9, about 5 to about 8, about 5 to about 7, about 5.5 to about 1 1 , about 5.5 to about 10, about 5.5 to about 9, about 5.5 to about
- the egg removing method is conducted at a degree of hardness of from about 0°dH to about 30°dH, such as about 1 °dH, about 2°dH, about 3°dH, about 4°dH, about 5°dH, about 6°dH, about 7°dH, about 8°dH, about 9°dH, about 10°dH, about 1 1 °dH, about 12°dH, about 13°dH, about 14°dH, about 15°dH, about 16°dH, about 17°dH, about 18°dH, about 19°dH, about 20°dH, about 21 °dH, about 22°dH, about 23°dH, about 24°dH, about 25°dH, about 26°dH, about 27°dH, about 28°dH, about 29°dH,about 30°dH.
- the degree of hardness is about 15°dH, under typical US wash conditions about 6°dH, and under typical Asian wash conditions
- the grass stain swatch 062KC was obtained swatch from Warwick Equest Ltd, Unit 55, Consett Business Park, Consett County Durham, DH8 6BN England,
- the grass stain swatch NZ Grass was prepared by applying juice from blended whole grass on WFK20A cotton/polyester.
- Model detergent B is similar to a European type liquid detergent composition.
- Model detergent J is similar to a US type liquid detergent composition.
- the AMSA plate has a number of slots for test solutions and a lid firmly squeezing the laundry sample, the textile to be washed against all the slot openings. During the washing time, the plate, test solutions, textile and lid are vigorously shaken to bring the test solution in contact with the textile and apply mechanical stress in a regular, periodic oscillating manner.
- WO02/42740 especially the paragraph "Special method embodiments" on pages 23-24.
- the wash performance is measured as the brightness of the colour of the textile washed. Brightness can also be expressed as the intensity of the light reflected from the sample when illuminated with white light. When the sample is stained the intensity of the reflected light is lower, than that of a clean sample. Therefore the intensity of the reflected light can be used to measure wash performance. Colour measurements are made with a professional flatbed scanner (Kodak iQsmart, Kodak, Midtager 29, DK-2605 Brandby, Denmark), which is used to capture an image of the washed textile.
- RGB red, green and blue
- Wash performance is assessed in laundry wash experiment using a Mini wash assay, which is a test method where soiled textile is continuously is lifted up and down into the test solution and subsequently rinsed.
- the washed textiles are subsequently air-dried and the wash performance is measured as the brightness of the colour of these textiles. Brightness can also be expressed as the Re- mission (R), which is a measure for the light reflected or emitted from the test material when illuminated with white light.
- the Remission (R) of the textiles is measured at 460 nm using a Zeiss MCS 521 VIS spectrophotometer. The measurements are done according to the manufacturer's protocol.
- the performance of the new enzyme is compared to the performance of reference enzymes at 2.5 nM, 5 nM, 10 nM, 30 nM, or 60 nM protease concentration by calculating the relative performance:
- An enzyme is considered to exhibit improved wash performance, if it performs better than the reference (RP > 1 ) in at least one detergent composition.
- the Tergo-O-Tometer is a medium scale model wash system that can be applied to test 16 different wash conditions simultaneously.
- a TOM is basically a large temperature controlled water bath with up to 16 open metal beakers submerged into it. Each beaker constitutes one small top loader style washing machine and during an experiment, each of them will contain a solution of a specific detergent/enzyme system and the soiled and unsoiled fabrics its performance is tested on. Mechanical stress is achieved by a rotating stirring arm, which stirs the liquid within each beaker - 500 or 1200ml_ of detergent solution per beaker. Because the TOM beakers have no lid, it is possible to withdraw samples during a TOM experiment and assay for information on-line during wash.
- the TOM provides the link between small scale experiments, such as AMSA and mini-wash, and the more time consuming full scale experiments in full scale washing machines.
- the TOM wash experiment is conducted under the experimental conditions specified below:
- pH pH was measured to be 7.6, but is used "as is” in the current detergent solution and is not adjusted.
- Enzyme cone 60 nM
- PC-03 Chocolate-milk/ink on cotton/polyester
- Cotton ballast swatches (50%:50% WFK10A:WFK80A, 5x5 cm) added to give a total weight of 30 g of soiled textile swatches + ballast per TOM beaker.
- Protazyme AK purification activity assay Substrate: Protazyme AK tablet (AZCL-casein, Megazyme T-PRAK 1000).
- Assay buffer 50mM HEPES/NaOH, pH 7.0.
- a Protazyme AK tablet is suspended in 2.0ml 0.01 % Triton X-100 by gentle stirring. 500 ⁇ of this suspension and 500 ⁇ assay buffer are dispensed in an Eppendorf tube and placed on ice. 20 ⁇ protease sample (diluted in 0.01 % Triton X-100) is added to the ice cold tube. The assay is initiated by transferring the Eppendorf tube to an Eppendorf thermomixer, which is set to the assay temperature. The tube is incubated for 15 minutes on the Eppendorf thermomixer at its highest shaking rate (1400 rpm). The incubation is stopped by transferring the tube back to the ice bath.
- OD 65 o is read as a measure of protease activity.
- a buffer blind is included in the assay (instead of enzyme).
- Substrate Protazyme OL tablet (AZCL-collagen, Megazyme T-PROL 1000).
- Assay buffers 100mM succinic acid, 100mM HEPES, 100mM CHES, 100mM CABS,
- a Protazyme OL tablet is suspended in 2.0ml 0.01 % Triton X-100 by gentle stirring. 500 ⁇ of this suspension and 500 ⁇ assay buffer are dispensed in an Eppendorf tube and placed on ice. 20 ⁇ protease sample (diluted in 0.01 % Triton X-100) is added to the ice cold tube. The assay is initiated by transferring the Eppendorf tube to an Eppendorf thermomixer, which is set to the assay temperature. The tube is incubated for 15 minutes on the Eppendorf thermomixer at its highest shaking rate (1400 rpm). The incubation is stopped by transferring the tube back to the ice bath.
- Example 1 Cloning and expression of a M4 metalloprotease from Chryseobacterium sp. 10696
- the metalloprotease was derived from a bacterial strain received as NCIMB1314; originally isolated from a sample of minced fish meat and identified as a Flavobacterium sp. Chromosomal DNA from a pure culture was purified and subjected to full genome sequencing using lllumina technology. The assembled genome sequence and subsequent analysis of the 16S ribosomal subunit gene sequences indicated that the correct taxonomical identification was as a new species within the genus Chryseobacterium and the strain was named Chryseobacterium sp. 10696.
- the genome sequence was analyzed for metalloproteases from the MEROPS family M4 by comparison to the M4 protease NprE from B. subtilis 168 (Uniprot P68736) by search using the BLAST program. This analysis identified a gene encoding a putative M4 metalloprotease with the nucleotide sequence given in SEQ ID: 1.
- the gene encoding the M4 metalloprotease was amplified by PCR and fused with regulatory elements and homology regions for recombination into the B. subtilis genome.
- the linear integration construct was a SOE-PCR fusion product (Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. and Pease, L.R. (1989) Engineering hybrid genes without the use of restriction enzymes, gene splicing by overlap extension Gene 77: 61-68) made by fusion of the gene between two Bacillus subtilis chromosomal regions along with strong promoters and a chloramphenicol resistance marker.
- the SOE PCR method is also described in patent application WO 2003095658.
- the gene was expressed under the control of a triple promoter system (as described in WO 99/43835), consisting of the promoters from Bacillus licheniformis alpha-amylase gene (amyL), Bacillus amyloliquefaciens alpha-amylase gene (amyQ), and the Bacillus thuringiensis crylllA promoter including stabilizing sequence.
- the gene was expressed with a Bacillus clausii secretion signal (encoding the following amino acid sequence: MKKPLGKIVASTALLISVAFSSSIASA) replacing the native secretion signal. Additionally a tag encoding a poly histidine -tag (HHHHHH) was fused to the 3 ' -end of the wildtype gene.
- the SOE-PCR product was transformed into Bacillus subtilis and integrated in the chromosome by homologous recombination into the pectate lyase locus. Subsequently a recombinant Bacillus subtilis clone containing the integrated expression construct was grown in liquid culture. The culture broth was centrifuged (20000 x g, 20 min) and the supernatant was carefully decanted from the precipitate and used for purification of the enzyme.
- Example 2 Purification of the M4 protease from Chryseobacterium sp. 10696
- the supernatant was filtered through a Nalgene 0.2 ⁇ filtration unit in order to remove the rest of the Bacillus host cells.
- Solid (NH 4 ) 2 S0 4 was added to the 0.2 ⁇ filtrate to a final concentration of 1.5M (NH 4 ) 2 S0 4 and the M4 protease solution was applied to a Phenyl- Toyopearl column (from TosoHaas) equilibrated in 100mM H 3 B0 3 , 10mM MES, 2mM CaCI 2 , 1 .5M (NH 4 ) 2 S0 4 , pH 6.
- the M4 protease was eluted with "l OOmM H 3 B0 3 , 10mM MES, 2mM CaCI 2 , pH 6.
- the eluted peak was applied to a Bacitracin agarose column (from Upfront chromatography) equilibrated in 100mM H 3 B0 3 , 10mM MES, 2mM CaCI 2 , pH 6.
- the M4 protease was eluted with 100mM H 3 B0 3 , 10mM MES, 2mM CaCI 2 , 1 M NaCI, pH 6 with 25%(v/v) 2-propanol.
- the eluted peak was transferred to 20mM MES, 2mM CaCI 2 , pH 6 on a G25 sephadex column (from GE Healthcare).
- the G25 sephadex transferred enzyme was concentrated by ultrafiltration on an Amicon Ultra centrifugal filter 3kDa cut-off device (from Millipore) and the concentrated M4 protease was applied to a Superdex 75 column (from GE Healthcare) equilibrated in 20mM MES, 100mM NaCI, 2mM CaCI 2 , pH 6.
- the column was eluted with the same buffer. Fractions from the column were analysed for protease activity (Protazyme OL purification activity assay at pH 7) and active fractions were further analysed by SDS-PAGE. Fractions, where only one band was seen on the coomassie stained SDS-PAGE gel, were pooled. The pool was the purified preparation and was used for further characterization.
- Intact molecular weight analysis of the purified protein was done by mass spectroscopy. The analysis indicated a molecular weight 36.77 kDa for the mature enzyme corresponding to amino acids 1 to 339 of SEQ ID NO: 2 of SEQ ID: 2 (mature peptide).
- the Protazyme OL characterization assay was used for obtaining the pH-activity profile at 37°C, the pH-stability profile (residual activity after 2 hours at indicated pH-values) and the temperature-activity profile at pH 7.
- the protease was diluted 7x in the different characterization assay buffers to reach the pH-values of these buffers and incubated for 2 hours at 37°C. After incubation, the pH of the protease incubations was transferred to pH 7, before assay for residual activity, by dilution in the pH 7 assay buffer. The results are shown in Tables 6-8 below.
- Buffer 10mM MES, 0.01 % TritonX, 1 mM CaCI 2 , pH 6
- Detergent solutions 50 % and 90 % (w/w) model detergent B in mili Q water. 90 % model detergent B with 2 mM CaCI 2 and 2 mM ZnCI 2 . 10 % model B in 15 °dH water.
- Substrate solution One amupule EnzCheck-red substrate mixed with 20 ml 0.3 % model detergent B in 15 °dH water.
- 20 ⁇ enzyme solution was mixed with 180 ⁇ detergent solution and incubated for 30 minutes at 25 °C in 96 well plates (Nunc, florescence Maxi Sorp).
- 20 ⁇ enzyme solution was mixed with 180 ⁇ buffer, and activity was measured immediately after (see below for assay protocol).
- 20 ⁇ sample was mixed with 180 ⁇ buffer after which 7 times 2-fold dilutions were made of each sample. This resulted in 8 concentrations for each enzyme sample ranging from 10X-1280X dilution. The reason for this high span of concentrations is to ensure that data is obtained within the approximate linear range of the assay.
- 20 ⁇ sample was mixed with 80 ⁇ buffer and 100 ⁇ substrate and assayed as described under "activity assay" below.
- EnzCheck assay kit red fluorescence
- enzyme sample was mixed with substrate solution as described above in 96 well microtiter plates and fluorescence was measured for 10 minutes at 25 °C. Excitation was set to 589 nm and emission to 617nm. The fluorescent value after 10 min was used as activity measurement.
- Residual activity was calculated from the ratio of activity after incubation (A
- Residual activity (A
- the Chryseobacterium protease is much more stable in the tested detergent compositions than the reference metalloprotease Neutrase.
- Example 5 AMSA wash performance of M4 protease from Chryseobacterium sp.
- the wash performance the M4 protease from Chryseobacterium sp. was tested using different liquid detergents and different wash temperatures on different technical stains using the Automatic Mechanical Stress Assay.
- the Chryseobacterium sp. metalloprotease surpassed the performance of both Neu- trase and Savinase on the PC-03 (Chocolate/milk/soot on cotton/polyester) swatch at the two temperatures tested. On the egg stains the Chryseobacterium sp. metalloprotease surpassed Savinase whilst it showed similar wash performance to Neutrase under the tested conditions (table 10).
- the Chryseobacterium sp. metalloprotease surpassed or equaled the performance of both Neutrase and Savinase on the PC-05 (Blood/milk/ink on cotton/polyester) and the C-05 (Blood/milk/ink on cotton) swatches at the two temperatures tested.
- the Chryseobacterium sp. metalloprotease was on par with both Neutrase and Savinase at standard pH of the detergent (around pH 7.5).
- Table 1 1 AMSA data for Chryseobacterium sp. protease in Delta Intensity Units and relative to prior art proteases Neutrase and Savinase. Conditions are 15 °dH (4:1 :7.5 Ca 2+ :Mg 2+ :HC0 3" ), 60 nM protease, EU type liquid laundry detergent (model B - 60% surfactant level) 3.33 g/L,
- Example 6 Mini wash assay performance of M4 protease from Chryseobacterium sp.
- Wash performance was assessed in laundry wash experiment using the Mini wash assay as described above.
- Example 7 TOM wash performance of M4 protease from Chryseobacterium sp.
- Wash performance was assessed in laundry wash experiment using the TOM wash assay as described above.
- Conditions are 60 nM protease, 20 °C, 15 °dH (4:1 :7.5 Ca 2+ :Mg 2+ :HC0 3 " ), EU type liquid laundry detergent (model B - 60% surfactant level) 3.33 g/L, 20 °C, 30 g swatches +ballast/L, 30 min. (120 rpm)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Detergent Compositions (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15717465.7A EP3132032B1 (en) | 2014-04-14 | 2015-04-14 | Metalloprotease from chryseobacterium |
CN201580019425.XA CN106164264A (en) | 2014-04-14 | 2015-04-14 | Metalloproteinases from Chryseobacterium |
BR112016023996A BR112016023996A2 (en) | 2014-04-14 | 2015-04-14 | chryseobacterium metalloprotease |
US15/301,624 US10106761B2 (en) | 2014-04-14 | 2015-04-14 | Metalloprotease from chryseobacterium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14164579.6 | 2014-04-14 | ||
EP14164579 | 2014-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015158723A1 true WO2015158723A1 (en) | 2015-10-22 |
Family
ID=50478333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/058087 WO2015158723A1 (en) | 2014-04-14 | 2015-04-14 | Metalloprotease from chryseobacterium |
Country Status (5)
Country | Link |
---|---|
US (1) | US10106761B2 (en) |
EP (1) | EP3132032B1 (en) |
CN (1) | CN106164264A (en) |
BR (1) | BR112016023996A2 (en) |
WO (1) | WO2015158723A1 (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3339414A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339415A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339417A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339419A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339416A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339418A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113643A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113644A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020007863A1 (en) | 2018-07-02 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020114965A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | LOW pH POWDER DETERGENT COMPOSITION |
WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
WO2021009067A1 (en) | 2019-07-12 | 2021-01-21 | Novozymes A/S | Enzymatic emulsions for detergents |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
WO2021121394A1 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Stabilized liquid boron-free enzyme compositions |
WO2021122118A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
WO2021214059A1 (en) | 2020-04-21 | 2021-10-28 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
WO2022090320A1 (en) | 2020-10-28 | 2022-05-05 | Novozymes A/S | Use of lipoxygenase |
WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
EP4032966A1 (en) | 2021-01-22 | 2022-07-27 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
WO2022162043A1 (en) | 2021-01-28 | 2022-08-04 | Novozymes A/S | Lipase with low malodor generation |
WO2022171872A1 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Stabilized biological detergents |
WO2022189521A1 (en) | 2021-03-12 | 2022-09-15 | Novozymes A/S | Polypeptide variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
WO2022199418A1 (en) | 2021-03-26 | 2022-09-29 | Novozymes A/S | Detergent composition with reduced polymer content |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
WO2024226828A2 (en) | 2023-04-26 | 2024-10-31 | Novozymes A/S | Cleaning composition and cleaning method |
EP4461796A1 (en) | 2023-05-10 | 2024-11-13 | Novozymes A/S | Detergent composition comprising laccase |
EP4461795A1 (en) | 2023-05-10 | 2024-11-13 | Novozymes A/S | Detergent composition comprising laccase |
WO2024257876A1 (en) * | 2023-06-14 | 2024-12-19 | 天野エンザイム株式会社 | Liquid enzyme preparation |
WO2025002934A1 (en) | 2023-06-28 | 2025-01-02 | Novozymes A/S | Detergent composition comprising lipases |
WO2025011933A1 (en) | 2023-07-07 | 2025-01-16 | Novozymes A/S | Washing method for removing proteinaceous stains |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111944790B (en) * | 2020-07-01 | 2022-09-09 | 深圳润康生态环境股份有限公司 | Neutral protease gene, neutral protease, preparation method and application thereof |
WO2024209106A1 (en) * | 2023-04-06 | 2024-10-10 | Unilever Ip Holdings B.V. | Use of metalloprotease |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007044993A2 (en) * | 2005-10-12 | 2007-04-19 | Genencor International, Inc. | Use and production of storage-stable neutral metalloprotease |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002541306A (en) | 1999-04-01 | 2002-12-03 | ザ、プロクター、エンド、ギャンブル、カンパニー | Detergent composition containing metal protease |
US6544941B1 (en) | 2001-08-27 | 2003-04-08 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Dishwashing composition |
MX2010004370A (en) | 2007-10-31 | 2010-05-20 | Danisco Us Inc | Use and production of neutral metallproteases in a serine protease-free background. |
-
2015
- 2015-04-14 WO PCT/EP2015/058087 patent/WO2015158723A1/en active Application Filing
- 2015-04-14 EP EP15717465.7A patent/EP3132032B1/en active Active
- 2015-04-14 CN CN201580019425.XA patent/CN106164264A/en active Pending
- 2015-04-14 US US15/301,624 patent/US10106761B2/en active Active
- 2015-04-14 BR BR112016023996A patent/BR112016023996A2/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007044993A2 (en) * | 2005-10-12 | 2007-04-19 | Genencor International, Inc. | Use and production of storage-stable neutral metalloprotease |
Non-Patent Citations (3)
Title |
---|
DATABASE UniProt [online] 5 October 2010 (2010-10-05), "SubName: Full=Thermolysin metallopeptidase, catalytic domain protein; EC=3.4.24.-;", XP002730559, retrieved from EBI accession no. UNIPROT:D7VZJ2 Database accession no. D7VZJ2 * |
WANG S L ET AL: "Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium", BIORESOURCE TECHNOLOGY, ELSEVIER BV, GB, vol. 99, no. 13, 1 September 2008 (2008-09-01), pages 5679 - 5686, XP022647414, ISSN: 0960-8524, [retrieved on 20071126], DOI: 10.1016/J.BIORTECH.2007.10.024 * |
YASUKAWA ET AL: "Improving the activity and stability of thermolysin by site-directed mutagenesis", BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - PROTEINS & PROTEOMICS, ELSEVIER, NETHERLANDS, vol. 1774, no. 10, 28 September 2007 (2007-09-28), pages 1281 - 1288, XP022277478, ISSN: 1570-9639, DOI: 10.1016/J.BBAPAP.2007.08.002 * |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3339414A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339415A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339417A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339419A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339416A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
EP3339418A1 (en) * | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113643A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
WO2018113644A1 (en) * | 2016-12-22 | 2018-06-28 | The Procter & Gamble Company | Laundry detergent composition |
EP3559188A4 (en) * | 2016-12-22 | 2020-05-20 | The Procter and Gamble Company | Laundry detergent composition |
EP3559189A4 (en) * | 2016-12-22 | 2020-05-20 | The Procter and Gamble Company | Laundry detergent composition |
WO2020007863A1 (en) | 2018-07-02 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020114965A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | LOW pH POWDER DETERGENT COMPOSITION |
WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
WO2021009067A1 (en) | 2019-07-12 | 2021-01-21 | Novozymes A/S | Enzymatic emulsions for detergents |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
WO2021121394A1 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Stabilized liquid boron-free enzyme compositions |
WO2021122118A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
WO2021214059A1 (en) | 2020-04-21 | 2021-10-28 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
WO2022008387A1 (en) | 2020-07-08 | 2022-01-13 | Henkel Ag & Co. Kgaa | Cleaning compositions and uses thereof |
WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
WO2022090320A1 (en) | 2020-10-28 | 2022-05-05 | Novozymes A/S | Use of lipoxygenase |
WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
EP4032966A1 (en) | 2021-01-22 | 2022-07-27 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
WO2022157311A1 (en) | 2021-01-22 | 2022-07-28 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
WO2022162043A1 (en) | 2021-01-28 | 2022-08-04 | Novozymes A/S | Lipase with low malodor generation |
WO2022171872A1 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Stabilized biological detergents |
WO2022189521A1 (en) | 2021-03-12 | 2022-09-15 | Novozymes A/S | Polypeptide variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022194668A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
WO2022199418A1 (en) | 2021-03-26 | 2022-09-29 | Novozymes A/S | Detergent composition with reduced polymer content |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
WO2023126254A1 (en) | 2021-12-30 | 2023-07-06 | Novozymes A/S | Protein particles with improved whiteness |
WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
WO2024226828A2 (en) | 2023-04-26 | 2024-10-31 | Novozymes A/S | Cleaning composition and cleaning method |
EP4461796A1 (en) | 2023-05-10 | 2024-11-13 | Novozymes A/S | Detergent composition comprising laccase |
EP4461795A1 (en) | 2023-05-10 | 2024-11-13 | Novozymes A/S | Detergent composition comprising laccase |
WO2024257876A1 (en) * | 2023-06-14 | 2024-12-19 | 天野エンザイム株式会社 | Liquid enzyme preparation |
WO2025002934A1 (en) | 2023-06-28 | 2025-01-02 | Novozymes A/S | Detergent composition comprising lipases |
WO2025011933A1 (en) | 2023-07-07 | 2025-01-16 | Novozymes A/S | Washing method for removing proteinaceous stains |
Also Published As
Publication number | Publication date |
---|---|
US20170114301A1 (en) | 2017-04-27 |
BR112016023996A2 (en) | 2017-10-17 |
US10106761B2 (en) | 2018-10-23 |
EP3132032B1 (en) | 2020-06-10 |
CN106164264A (en) | 2016-11-23 |
EP3132032A1 (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10106761B2 (en) | Metalloprotease from chryseobacterium | |
US10538722B2 (en) | Metalloproteases and uses thereof | |
US10030239B2 (en) | Polypeptides having protease activity and polynucleotides encoding same | |
WO2015193488A1 (en) | Metalloprotease from kribbella aluminosa and detergent compositions comprising the metalloprotease | |
US10407650B2 (en) | Detergent compositions comprising a protease | |
WO2015091990A1 (en) | Polypeptides having protease activity and polynucleotides encoding same | |
WO2014029819A1 (en) | Metalloprotease from exiguobacterium | |
US9719054B2 (en) | Metalloproteases from Alicyclobacillus | |
US10829753B2 (en) | Polypeptides having protease activity and polynucleotides encoding same | |
WO2017089366A1 (en) | Polypeptides having protease activity and polynucleotides encoding same | |
EP3405572B1 (en) | Polypeptides having protease activity and polynucleotides encoding same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15717465 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15301624 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015717465 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015717465 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016023996 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112016023996 Country of ref document: BR Kind code of ref document: A2 Effective date: 20161014 |