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We describe here a mean to find formulas similar to those in [1]. We show
in particular that
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This formula is very interesting because, with the algorithm described in [1],
it enables us to compute the nth binary digit of = 43% faster than the previous
known formula [1]:
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The method to get formulas such as (1) is in fact very simple. We use that
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for y real.

In particular
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With a < 2 in (3) we get
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which is mentionned in [1].
Some classical arctangent relations give interesting results:

g = 2atan(%) — atan(%) (6)
g = 2atan(%) + atan(%) (7)
g = 2atan(%) — atan(%) - atan(%) (8)
g = atan(%) + atan(%) . 9)

In particular, we obtain from (6) and (3)
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which gives (1) by reordering the terms.
The existence of a formula faster than (1) to calculate the nth binary digit
of 7 remains an open question.
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