Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 9 Oct 2014]
Title:Discovery of X-ray Pulsations from the INTEGRAL Source IGR J11014-6103
View PDFAbstract:We report the discovery of PSR J1101-6101, a 62.8 ms pulsar in IGR J11014-6103, a hard X-ray source with a jet and a cometary tail that strongly suggests it is moving away from the center of the supernova remnant (SNR) MSH 11-61A at v>1000 km/s. Two XMM-Newton observations were obtained with the EPIC pn in small window mode, resulting in the measurement of its spin-down luminosity E_dot = 1.36e36 erg/s, characteristic age Tau_c = 116 kyr, and surface magnetic field strength B_s = 7.4e11 G. In comparison to Tau_c, the 10-30 kyr age estimated for MSH 11-61A suggests that the pulsar was born in the SNR with initial period in the range 54 < P_0 < 60 ms. PSR J1101-6101 is the least energetic of the 15 rotation-powered pulsars detected by INTEGRAL, and has a high efficiency of hard X-ray radiation and jet power. We examine the shape of the cometary nebula in a Chandra image, which is roughly consistent with a bow shock at the velocity inferred from the SNR age and the pulsar's E-dot. However, its structure differs in detail from the classic bow shock, and we explore possible reasons for this.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.