General Relativity and Quantum Cosmology
[Submitted on 2 Feb 2016 (v1), last revised 6 Feb 2016 (this version, v2)]
Title:Was there a negative vacuum energy in your past?
View PDFAbstract:A model for gravitational collapse where the event horizon is a quantum critical phase transition is extended to provide an explanation for the origin of the observable universe, where the expanding universe that we observe today was proceeded by a flat universe with a negative cosmological constant. In principal this allows one derive all the features of our universe from a single parameter: the magnitude of the pre-big bang negative vacuum energy density. In this paper a simple model for the big bang is introduced which allows us to relate the present day energy density and temperature fluctuations of the CMB, to the present day density of dark matter. This model for the big bang also makes a dramatic prediction: dark matter mostly consists of compact objects with a masses on the order of 10^4 solar masses. Remarkably this is consistent with numerical simulations for how primordial fluctuations in the density of dark give rise to the observed inhomogeneous distribution of matter in our universe. Our model for the big bang also allows for the production of some compact objects with masses greater than 10^4 solar masses, which is consistent with numerical simulations of structure formation which require massive primordial comapact objects as the seeds for galaxies in order to explain galactic morphologies.
Submission history
From: George F. Chapline [view email][v1] Tue, 2 Feb 2016 23:12:25 UTC (460 KB)
[v2] Sat, 6 Feb 2016 01:57:57 UTC (476 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.