Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Nov 2018 (v1), last revised 12 Dec 2018 (this version, v4)]
Title:GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition
View PDFAbstract:As a unique biometric feature that can be recognized at a distance, gait has broad applications in crime prevention, forensic identification and social security. To portray a gait, existing gait recognition methods utilize either a gait template, where temporal information is hard to preserve, or a gait sequence, which must keep unnecessary sequential constraints and thus loses the flexibility of gait recognition. In this paper we present a novel perspective, where a gait is regarded as a set consisting of independent frames. We propose a new network named GaitSet to learn identity information from the set. Based on the set perspective, our method is immune to permutation of frames, and can naturally integrate frames from different videos which have been filmed under different scenarios, such as diverse viewing angles, different clothes/carrying conditions. Experiments show that under normal walking conditions, our single-model method achieves an average rank-1 accuracy of 95.0% on the CASIA-B gait dataset and an 87.1% accuracy on the OU-MVLP gait dataset. These results represent new state-of-the-art recognition accuracy. On various complex scenarios, our model exhibits a significant level of robustness. It achieves accuracies of 87.2% and 70.4% on CASIA-B under bag-carrying and coat-wearing walking conditions, respectively. These outperform the existing best methods by a large margin. The method presented can also achieve a satisfactory accuracy with a small number of frames in a test sample, e.g., 82.5% on CASIA-B with only 7 frames. The source code has been released at this https URL.
Submission history
From: Hanqing Chao [view email][v1] Thu, 15 Nov 2018 05:23:14 UTC (1,287 KB)
[v2] Sun, 18 Nov 2018 07:23:17 UTC (1,287 KB)
[v3] Fri, 30 Nov 2018 13:21:47 UTC (1,287 KB)
[v4] Wed, 12 Dec 2018 06:07:17 UTC (1,310 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.