Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Nov 2020 (v1), last revised 12 Jul 2021 (this version, v5)]
Title:Exploring intermediate representation for monocular vehicle pose estimation
View PDFAbstract:We present a new learning-based framework to recover vehicle pose in SO(3) from a single RGB image. In contrast to previous works that map from local appearance to observation angles, we explore a progressive approach by extracting meaningful Intermediate Geometrical Representations (IGRs) to estimate egocentric vehicle orientation. This approach features a deep model that transforms perceived intensities to IGRs, which are mapped to a 3D representation encoding object orientation in the camera coordinate system. Core problems are what IGRs to use and how to learn them more effectively. We answer the former question by designing IGRs based on an interpolated cuboid that derives from primitive 3D annotation readily. The latter question motivates us to incorporate geometry knowledge with a new loss function based on a projective invariant. This loss function allows unlabeled data to be used in the training stage to improve representation learning. Without additional labels, our system outperforms previous monocular RGB-based methods for joint vehicle detection and pose estimation on the KITTI benchmark, achieving performance even comparable to stereo methods. Code and pre-trained models are available at this https URL.
Submission history
From: Shichao Li [view email][v1] Tue, 17 Nov 2020 06:30:51 UTC (14,025 KB)
[v2] Sun, 31 Jan 2021 05:02:20 UTC (14,028 KB)
[v3] Tue, 16 Mar 2021 07:20:09 UTC (14,030 KB)
[v4] Tue, 30 Mar 2021 09:11:57 UTC (8,101 KB)
[v5] Mon, 12 Jul 2021 12:09:45 UTC (15,170 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.