Computer Science > Machine Learning
[Submitted on 6 Nov 2021 (v1), last revised 29 Jul 2023 (this version, v4)]
Title:Physics-Informed Neural Operator for Learning Partial Differential Equations
View PDFAbstract:In this paper, we propose physics-informed neural operators (PINO) that combine training data and physics constraints to learn the solution operator of a given family of parametric Partial Differential Equations (PDE). PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator. Specifically, in PINO, we combine coarse-resolution training data with PDE constraints imposed at a higher resolution. The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families and shows no degradation in accuracy even under zero-shot super-resolution, i.e., being able to predict beyond the resolution of training data. PINO uses the Fourier neural operator (FNO) framework that is guaranteed to be a universal approximator for any continuous operator and discretization-convergent in the limit of mesh refinement. By adding PDE constraints to FNO at a higher resolution, we obtain a high-fidelity reconstruction of the ground-truth operator. Moreover, PINO succeeds in settings where no training data is available and only PDE constraints are imposed, while previous approaches, such as the Physics-Informed Neural Network (PINN), fail due to optimization challenges, e.g., in multi-scale dynamic systems such as Kolmogorov flows.
Submission history
From: Zongyi Li [view email][v1] Sat, 6 Nov 2021 03:41:34 UTC (14,692 KB)
[v2] Mon, 14 Nov 2022 01:18:03 UTC (18,750 KB)
[v3] Fri, 14 Apr 2023 07:02:51 UTC (32,788 KB)
[v4] Sat, 29 Jul 2023 07:58:37 UTC (33,914 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.