Computer Science > Machine Learning
[Submitted on 29 Mar 2024 (this version), latest version 27 May 2024 (v2)]
Title:Multiple-policy Evaluation via Density Estimation
View PDF HTML (experimental)Abstract:In this work, we focus on the multiple-policy evaluation problem where we are given a set of $K$ target policies and the goal is to evaluate their performance (the expected total rewards) to an accuracy $\epsilon$ with probability at least $1-\delta$. We propose an algorithm named $\mathrm{CAESAR}$ to address this problem. Our approach is based on computing an approximate optimal offline sampling distribution and using the data sampled from it to perform the simultaneous estimation of the policy values. $\mathrm{CAESAR}$ consists of two phases. In the first one we produce coarse estimates of the vistation distributions of the target policies at a low order sample complexity rate that scales with $\tilde{O}(\frac{1}{\epsilon})$. In the second phase, we approximate the optimal offline sampling distribution and compute the importance weighting ratios for all target policies by minimizing a step-wise quadratic loss function inspired by the objective in DualDICE. Up to low order and logarithm terms $\mathrm{CAESAR}$ achieves a sample complexity $\tilde{O}\left(\frac{H^4}{\epsilon^2}\sum_{h=1}^H\max_{k\in[K]}\sum_{s,a}\frac{(d_h^{\pi^k}(s,a))^2}{\mu^*_h(s,a)}\right)$, where $d^{\pi}$ is the visitation distribution of policy $\pi$ and $\mu^*$ is the optimal sampling distribution.
Submission history
From: Yilei Chen [view email][v1] Fri, 29 Mar 2024 23:55:25 UTC (30 KB)
[v2] Mon, 27 May 2024 23:57:02 UTC (168 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.