Computer Science > Machine Learning
[Submitted on 31 Mar 2024]
Title:Meta Learning in Bandits within Shared Affine Subspaces
View PDF HTML (experimental)Abstract:We study the problem of meta-learning several contextual stochastic bandits tasks by leveraging their concentration around a low-dimensional affine subspace, which we learn via online principal component analysis to reduce the expected regret over the encountered bandits. We propose and theoretically analyze two strategies that solve the problem: One based on the principle of optimism in the face of uncertainty and the other via Thompson sampling. Our framework is generic and includes previously proposed approaches as special cases. Besides, the empirical results show that our methods significantly reduce the regret on several bandit tasks.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.