CA2652461C - Antifungal polypeptides and uses thereof in inducing fungal resistance in plants - Google Patents
Antifungal polypeptides and uses thereof in inducing fungal resistance in plants Download PDFInfo
- Publication number
- CA2652461C CA2652461C CA2652461A CA2652461A CA2652461C CA 2652461 C CA2652461 C CA 2652461C CA 2652461 A CA2652461 A CA 2652461A CA 2652461 A CA2652461 A CA 2652461A CA 2652461 C CA2652461 C CA 2652461C
- Authority
- CA
- Canada
- Prior art keywords
- plant
- seq
- polypeptide
- leu
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 207
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 162
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 159
- 230000001939 inductive effect Effects 0.000 title claims abstract description 15
- 230000000843 anti-fungal effect Effects 0.000 title claims description 73
- 230000002538 fungal effect Effects 0.000 title abstract description 33
- 229940121375 antifungal agent Drugs 0.000 title description 46
- 230000001775 anti-pathogenic effect Effects 0.000 claims abstract description 116
- 238000000034 method Methods 0.000 claims abstract description 103
- 239000002773 nucleotide Substances 0.000 claims abstract description 91
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 91
- 239000000203 mixture Substances 0.000 claims abstract description 82
- 230000014509 gene expression Effects 0.000 claims abstract description 68
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 46
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 37
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 33
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 33
- 244000053095 fungal pathogen Species 0.000 claims abstract description 19
- 206010034133 Pathogen resistance Diseases 0.000 claims abstract description 16
- 241000196324 Embryophyta Species 0.000 claims description 255
- 102000040430 polynucleotide Human genes 0.000 claims description 112
- 108091033319 polynucleotide Proteins 0.000 claims description 112
- 239000002157 polynucleotide Substances 0.000 claims description 112
- 240000008042 Zea mays Species 0.000 claims description 44
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 41
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 39
- 241000223195 Fusarium graminearum Species 0.000 claims description 32
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 30
- 235000009973 maize Nutrition 0.000 claims description 30
- 241000233732 Fusarium verticillioides Species 0.000 claims description 27
- 241000692746 Stenocarpella maydis Species 0.000 claims description 26
- 241001429695 Colletotrichum graminicola Species 0.000 claims description 25
- 150000001413 amino acids Chemical class 0.000 claims description 19
- 244000068988 Glycine max Species 0.000 claims description 18
- 235000007340 Hordeum vulgare Nutrition 0.000 claims description 16
- 240000005979 Hordeum vulgare Species 0.000 claims description 16
- 235000010469 Glycine max Nutrition 0.000 claims description 15
- 244000000003 plant pathogen Species 0.000 claims description 15
- 239000002689 soil Substances 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 12
- 230000001965 increasing effect Effects 0.000 claims description 10
- 240000007594 Oryza sativa Species 0.000 claims description 8
- 235000007164 Oryza sativa Nutrition 0.000 claims description 8
- 235000021307 Triticum Nutrition 0.000 claims description 8
- 238000010410 dusting Methods 0.000 claims description 7
- 235000009566 rice Nutrition 0.000 claims description 7
- 244000020551 Helianthus annuus Species 0.000 claims description 6
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 6
- 240000006394 Sorghum bicolor Species 0.000 claims description 6
- 235000011684 Sorghum saccharatum Nutrition 0.000 claims description 6
- 239000002671 adjuvant Substances 0.000 claims description 6
- 239000008187 granular material Substances 0.000 claims description 6
- 239000001963 growth medium Substances 0.000 claims description 6
- 230000002792 vascular Effects 0.000 claims description 6
- 241000209510 Liliopsida Species 0.000 claims description 5
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 claims description 5
- 241001233957 eudicotyledons Species 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 235000011331 Brassica Nutrition 0.000 claims description 4
- 241000219198 Brassica Species 0.000 claims description 4
- 229920000742 Cotton Polymers 0.000 claims description 4
- 235000007238 Secale cereale Nutrition 0.000 claims description 4
- 240000004658 Medicago sativa Species 0.000 claims description 3
- 239000000443 aerosol Substances 0.000 claims description 3
- 239000004495 emulsifiable concentrate Substances 0.000 claims description 3
- 239000000839 emulsion Substances 0.000 claims description 3
- 238000005538 encapsulation Methods 0.000 claims description 3
- 244000098338 Triticum aestivum Species 0.000 claims description 2
- 241000219146 Gossypium Species 0.000 claims 1
- 241000209056 Secale Species 0.000 claims 1
- 244000052769 pathogen Species 0.000 abstract description 65
- 239000012634 fragment Substances 0.000 abstract description 53
- 230000001717 pathogenic effect Effects 0.000 abstract description 46
- 244000005700 microbiome Species 0.000 abstract description 24
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 17
- 238000000855 fermentation Methods 0.000 abstract description 5
- 230000004151 fermentation Effects 0.000 abstract description 5
- 235000010633 broth Nutrition 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 191
- 102000004169 proteins and genes Human genes 0.000 description 99
- 235000018102 proteins Nutrition 0.000 description 98
- 108020004414 DNA Proteins 0.000 description 78
- 210000004027 cell Anatomy 0.000 description 75
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 60
- 238000003752 polymerase chain reaction Methods 0.000 description 48
- 239000013615 primer Substances 0.000 description 44
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 42
- 239000002609 medium Substances 0.000 description 36
- 210000001519 tissue Anatomy 0.000 description 32
- 238000009396 hybridization Methods 0.000 description 28
- 241000282326 Felis catus Species 0.000 description 26
- 239000000523 sample Substances 0.000 description 26
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 24
- 230000009466 transformation Effects 0.000 description 23
- 210000002257 embryonic structure Anatomy 0.000 description 22
- 238000012163 sequencing technique Methods 0.000 description 22
- 238000003556 assay Methods 0.000 description 21
- 238000004128 high performance liquid chromatography Methods 0.000 description 20
- 235000001014 amino acid Nutrition 0.000 description 19
- 201000010099 disease Diseases 0.000 description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 19
- 241000894007 species Species 0.000 description 19
- 230000012010 growth Effects 0.000 description 18
- 239000002245 particle Substances 0.000 description 18
- 229940024606 amino acid Drugs 0.000 description 17
- -1 f3-conglycinin Proteins 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 238000002414 normal-phase solid-phase extraction Methods 0.000 description 16
- 229920001817 Agar Polymers 0.000 description 15
- 239000008272 agar Substances 0.000 description 15
- 239000000284 extract Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 238000006467 substitution reaction Methods 0.000 description 15
- 241000233866 Fungi Species 0.000 description 14
- 241000700605 Viruses Species 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 238000009395 breeding Methods 0.000 description 13
- 230000001488 breeding effect Effects 0.000 description 13
- 239000002299 complementary DNA Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000003550 marker Substances 0.000 description 13
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 12
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 12
- 241001501993 Penicillium glandicola Species 0.000 description 12
- 238000007792 addition Methods 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 235000019253 formic acid Nutrition 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000013519 translation Methods 0.000 description 12
- MLSQXWSRHURDMF-GARJFASQSA-N Ser-His-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CO)N)C(=O)O MLSQXWSRHURDMF-GARJFASQSA-N 0.000 description 11
- 102000004139 alpha-Amylases Human genes 0.000 description 11
- 108090000637 alpha-Amylases Proteins 0.000 description 11
- 229940024171 alpha-amylase Drugs 0.000 description 11
- 235000013339 cereals Nutrition 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 239000006228 supernatant Substances 0.000 description 11
- 241000985553 Penicillium citreonigrum Species 0.000 description 10
- 235000010419 agar Nutrition 0.000 description 10
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 108010010096 glycyl-glycyl-tyrosine Proteins 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 239000001965 potato dextrose agar Substances 0.000 description 10
- 108010004914 prolylarginine Proteins 0.000 description 10
- 230000008685 targeting Effects 0.000 description 10
- 101710083587 Antifungal protein Proteins 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 9
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 9
- 235000005822 corn Nutrition 0.000 description 9
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 230000005764 inhibitory process Effects 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 230000000306 recurrent effect Effects 0.000 description 9
- 108010048818 seryl-histidine Proteins 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- 241000589158 Agrobacterium Species 0.000 description 8
- RMAWDDRDTRSZIR-ZLUOBGJFSA-N Ala-Ser-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O RMAWDDRDTRSZIR-ZLUOBGJFSA-N 0.000 description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000002595 Solanum tuberosum Nutrition 0.000 description 8
- 244000061456 Solanum tuberosum Species 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000004009 herbicide Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- BBYTXXRNSFUOOX-IHRRRGAJSA-N Arg-Cys-Phe Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O BBYTXXRNSFUOOX-IHRRRGAJSA-N 0.000 description 7
- PJWIPBIMSKJTIE-DCAQKATOSA-N Cys-His-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)[C@H](CS)N PJWIPBIMSKJTIE-DCAQKATOSA-N 0.000 description 7
- SOYCWSKCUVDLMC-AVGNSLFASA-N His-Pro-Arg Chemical compound N[C@@H](Cc1cnc[nH]1)C(=O)N2CCC[C@H]2C(=O)N[C@@H](CCCNC(=N)N)C(=O)O SOYCWSKCUVDLMC-AVGNSLFASA-N 0.000 description 7
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 7
- 244000061176 Nicotiana tabacum Species 0.000 description 7
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 7
- 241000209140 Triticum Species 0.000 description 7
- BCOBSVIZMQXKFY-KKUMJFAQSA-N Tyr-Ser-His Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N)O BCOBSVIZMQXKFY-KKUMJFAQSA-N 0.000 description 7
- 108010005233 alanylglutamic acid Proteins 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 230000008929 regeneration Effects 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 230000009261 transgenic effect Effects 0.000 description 7
- 229940088594 vitamin Drugs 0.000 description 7
- 229930003231 vitamin Natural products 0.000 description 7
- 235000013343 vitamin Nutrition 0.000 description 7
- 239000011782 vitamin Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- DPNZTBKGAUAZQU-DLOVCJGASA-N Ala-Leu-His Chemical compound C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N DPNZTBKGAUAZQU-DLOVCJGASA-N 0.000 description 6
- KYQJHBWHRASMKG-ZLUOBGJFSA-N Asn-Ser-Cys Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(O)=O KYQJHBWHRASMKG-ZLUOBGJFSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000002028 Biomass Substances 0.000 description 6
- INLIXXRWNUKVCF-JTQLQIEISA-N Gly-Gly-Tyr Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 INLIXXRWNUKVCF-JTQLQIEISA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 6
- 241000244206 Nematoda Species 0.000 description 6
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 108010047857 aspartylglycine Proteins 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 6
- 230000002363 herbicidal effect Effects 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- YPJUNDFVDDCYIH-UHFFFAOYSA-N perfluorobutyric acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)F YPJUNDFVDDCYIH-UHFFFAOYSA-N 0.000 description 6
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 239000003643 water by type Substances 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 5
- AITKTFCQOBRJTG-CIUDSAMLSA-N Asp-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N AITKTFCQOBRJTG-CIUDSAMLSA-N 0.000 description 5
- 208000035240 Disease Resistance Diseases 0.000 description 5
- 241000223218 Fusarium Species 0.000 description 5
- 244000046052 Phaseolus vulgaris Species 0.000 description 5
- 241000589615 Pseudomonas syringae Species 0.000 description 5
- 241000918584 Pythium ultimum Species 0.000 description 5
- 241000813090 Rhizoctonia solani Species 0.000 description 5
- 241000589636 Xanthomonas campestris Species 0.000 description 5
- 229920002494 Zein Polymers 0.000 description 5
- 239000003905 agrochemical Substances 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000408 embryogenic effect Effects 0.000 description 5
- 108010040030 histidinoalanine Proteins 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 239000011253 protective coating Substances 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 230000000392 somatic effect Effects 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 150000003722 vitamin derivatives Chemical class 0.000 description 5
- 239000005019 zein Substances 0.000 description 5
- 229940093612 zein Drugs 0.000 description 5
- WFIYPADYPQQLNN-UHFFFAOYSA-N 2-[2-(4-bromopyrazol-1-yl)ethyl]isoindole-1,3-dione Chemical compound C1=C(Br)C=NN1CCN1C(=O)C2=CC=CC=C2C1=O WFIYPADYPQQLNN-UHFFFAOYSA-N 0.000 description 4
- 241000223602 Alternaria alternata Species 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 244000105624 Arachis hypogaea Species 0.000 description 4
- NONSEUUPKITYQT-BQBZGAKWSA-N Arg-Asn-Gly Chemical compound C(C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)NCC(=O)O)N)CN=C(N)N NONSEUUPKITYQT-BQBZGAKWSA-N 0.000 description 4
- IGFJVXOATGZTHD-UHFFFAOYSA-N Arg-Phe-His Natural products NC(CCNC(=N)N)C(=O)NC(Cc1ccccc1)C(=O)NC(Cc2c[nH]cn2)C(=O)O IGFJVXOATGZTHD-UHFFFAOYSA-N 0.000 description 4
- RAKKBBHMTJSXOY-XVYDVKMFSA-N Asn-His-Ala Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(O)=O RAKKBBHMTJSXOY-XVYDVKMFSA-N 0.000 description 4
- YNQMEIJEWSHOEO-SRVKXCTJSA-N Asn-Tyr-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N)O YNQMEIJEWSHOEO-SRVKXCTJSA-N 0.000 description 4
- 241000228197 Aspergillus flavus Species 0.000 description 4
- 241000228245 Aspergillus niger Species 0.000 description 4
- 241000223651 Aureobasidium Species 0.000 description 4
- 241000193830 Bacillus <bacterium> Species 0.000 description 4
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 4
- 244000020518 Carthamus tinctorius Species 0.000 description 4
- RESAHOSBQHMOKH-KKUMJFAQSA-N Cys-Phe-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CS)N RESAHOSBQHMOKH-KKUMJFAQSA-N 0.000 description 4
- 241000588698 Erwinia Species 0.000 description 4
- 229920002148 Gellan gum Polymers 0.000 description 4
- LRPXYSGPOBVBEH-IUCAKERBSA-N Glu-Gly-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O LRPXYSGPOBVBEH-IUCAKERBSA-N 0.000 description 4
- PJBVXVBTTFZPHJ-GUBZILKMSA-N Glu-Leu-Asp Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CCC(=O)O)N PJBVXVBTTFZPHJ-GUBZILKMSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- NGBGZCUWFVVJKC-IRXDYDNUSA-N Gly-Tyr-Tyr Chemical compound C([C@H](NC(=O)CN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=C(O)C=C1 NGBGZCUWFVVJKC-IRXDYDNUSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 244000299507 Gossypium hirsutum Species 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- WSAILOWUJZEAGC-DCAQKATOSA-N His-Val-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N WSAILOWUJZEAGC-DCAQKATOSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- DLFAACQHIRSQGG-CIUDSAMLSA-N Leu-Asp-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O DLFAACQHIRSQGG-CIUDSAMLSA-N 0.000 description 4
- ZDSNOSQHMJBRQN-SRVKXCTJSA-N Leu-Asp-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N ZDSNOSQHMJBRQN-SRVKXCTJSA-N 0.000 description 4
- 241000723994 Maize dwarf mosaic virus Species 0.000 description 4
- SXWQMBGNFXAGAT-FJXKBIBVSA-N Met-Gly-Thr Chemical compound CSCC[C@H](N)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(O)=O SXWQMBGNFXAGAT-FJXKBIBVSA-N 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 4
- UHRNIXJAGGLKHP-DLOVCJGASA-N Phe-Ala-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O UHRNIXJAGGLKHP-DLOVCJGASA-N 0.000 description 4
- 241000589516 Pseudomonas Species 0.000 description 4
- 241000918585 Pythium aphanidermatum Species 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 108091028664 Ribonucleotide Proteins 0.000 description 4
- 108091006629 SLC13A2 Proteins 0.000 description 4
- KNZQGAUEYZJUSQ-ZLUOBGJFSA-N Ser-Asp-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CO)N KNZQGAUEYZJUSQ-ZLUOBGJFSA-N 0.000 description 4
- YUJLIIRMIAGMCQ-CIUDSAMLSA-N Ser-Leu-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YUJLIIRMIAGMCQ-CIUDSAMLSA-N 0.000 description 4
- UNURFMVMXLENAZ-KJEVXHAQSA-N Thr-Arg-Tyr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O UNURFMVMXLENAZ-KJEVXHAQSA-N 0.000 description 4
- CYCGARJWIQWPQM-YJRXYDGGSA-N Thr-Tyr-Ser Chemical compound C[C@@H](O)[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CO)C([O-])=O)CC1=CC=C(O)C=C1 CYCGARJWIQWPQM-YJRXYDGGSA-N 0.000 description 4
- PRONOHBTMLNXCZ-BZSNNMDCSA-N Tyr-Leu-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 PRONOHBTMLNXCZ-BZSNNMDCSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- HIZMLPKDJAXDRG-FXQIFTODSA-N Val-Cys-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)O)N HIZMLPKDJAXDRG-FXQIFTODSA-N 0.000 description 4
- 230000029936 alkylation Effects 0.000 description 4
- 238000005804 alkylation reaction Methods 0.000 description 4
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000011483 antifungal activity assay Methods 0.000 description 4
- 239000012911 assay medium Substances 0.000 description 4
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 108010069495 cysteinyltyrosine Proteins 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 239000003337 fertilizer Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000035784 germination Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000002917 insecticide Substances 0.000 description 4
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 4
- 210000001161 mammalian embryo Anatomy 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 239000003147 molecular marker Substances 0.000 description 4
- 238000002703 mutagenesis Methods 0.000 description 4
- 231100000350 mutagenesis Toxicity 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 4
- 239000002336 ribonucleotide Substances 0.000 description 4
- 125000002652 ribonucleotide group Chemical group 0.000 description 4
- 238000002864 sequence alignment Methods 0.000 description 4
- 108010071207 serylmethionine Proteins 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 4
- 150000003871 sulfonates Chemical class 0.000 description 4
- 238000004114 suspension culture Methods 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000011426 transformation method Methods 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 3
- 244000283070 Abies balsamea Species 0.000 description 3
- 235000007173 Abies balsamea Nutrition 0.000 description 3
- 108010000700 Acetolactate synthase Proteins 0.000 description 3
- LDLSENBXQNDTPB-DCAQKATOSA-N Ala-Lys-Arg Chemical compound NCCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N LDLSENBXQNDTPB-DCAQKATOSA-N 0.000 description 3
- 108010011667 Ala-Phe-Ala Proteins 0.000 description 3
- 235000010777 Arachis hypogaea Nutrition 0.000 description 3
- IGULQRCJLQQPSM-DCAQKATOSA-N Arg-Cys-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O IGULQRCJLQQPSM-DCAQKATOSA-N 0.000 description 3
- PAPSMOYMQDWIOR-AVGNSLFASA-N Arg-Lys-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O PAPSMOYMQDWIOR-AVGNSLFASA-N 0.000 description 3
- KVMPVNGOKHTUHZ-GCJQMDKQSA-N Asp-Ala-Thr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O KVMPVNGOKHTUHZ-GCJQMDKQSA-N 0.000 description 3
- DTNUIAJCPRMNBT-WHFBIAKZSA-N Asp-Gly-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(O)=O DTNUIAJCPRMNBT-WHFBIAKZSA-N 0.000 description 3
- WBDWQKRLTVCDSY-WHFBIAKZSA-N Asp-Gly-Asp Chemical compound OC(=O)C[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O WBDWQKRLTVCDSY-WHFBIAKZSA-N 0.000 description 3
- MGSVBZIBCCKGCY-ZLUOBGJFSA-N Asp-Ser-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O MGSVBZIBCCKGCY-ZLUOBGJFSA-N 0.000 description 3
- 241001225321 Aspergillus fumigatus Species 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- 244000241257 Cucumis melo Species 0.000 description 3
- OXOQBEVULIBOSH-ZDLURKLDSA-N Cys-Gly-Thr Chemical compound [H]N[C@@H](CS)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(O)=O OXOQBEVULIBOSH-ZDLURKLDSA-N 0.000 description 3
- SRIRHERUAMYIOQ-CIUDSAMLSA-N Cys-Leu-Ser Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O SRIRHERUAMYIOQ-CIUDSAMLSA-N 0.000 description 3
- XZKJEOMFLDVXJG-KATARQTJSA-N Cys-Leu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)N)O XZKJEOMFLDVXJG-KATARQTJSA-N 0.000 description 3
- PGBLJHDDKCVSTC-CIUDSAMLSA-N Cys-Met-Gln Chemical compound CSCC[C@H](NC(=O)[C@@H](N)CS)C(=O)N[C@@H](CCC(N)=O)C(O)=O PGBLJHDDKCVSTC-CIUDSAMLSA-N 0.000 description 3
- YNJBLTDKTMKEET-ZLUOBGJFSA-N Cys-Ser-Ser Chemical compound SC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O YNJBLTDKTMKEET-ZLUOBGJFSA-N 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000223221 Fusarium oxysporum Species 0.000 description 3
- 241000482313 Globodera ellingtonae Species 0.000 description 3
- RUFHOVYUYSNDNY-ACZMJKKPSA-N Glu-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(O)=O RUFHOVYUYSNDNY-ACZMJKKPSA-N 0.000 description 3
- SOYWRINXUSUWEQ-DLOVCJGASA-N Glu-Val-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCC(O)=O SOYWRINXUSUWEQ-DLOVCJGASA-N 0.000 description 3
- SWQALSGKVLYKDT-UHFFFAOYSA-N Gly-Ile-Ala Natural products NCC(=O)NC(C(C)CC)C(=O)NC(C)C(O)=O SWQALSGKVLYKDT-UHFFFAOYSA-N 0.000 description 3
- UHPAZODVFFYEEL-QWRGUYRKSA-N Gly-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)CN UHPAZODVFFYEEL-QWRGUYRKSA-N 0.000 description 3
- 241000498254 Heterodera glycines Species 0.000 description 3
- VSLXGYMEHVAJBH-DLOVCJGASA-N His-Ala-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O VSLXGYMEHVAJBH-DLOVCJGASA-N 0.000 description 3
- AWASVTXPTOLPPP-MBLNEYKQSA-N His-Ala-Thr Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O AWASVTXPTOLPPP-MBLNEYKQSA-N 0.000 description 3
- AASLOGQZZKZWKH-SRVKXCTJSA-N His-Cys-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N AASLOGQZZKZWKH-SRVKXCTJSA-N 0.000 description 3
- VLPMGIJPAWENQB-SRVKXCTJSA-N His-Cys-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O VLPMGIJPAWENQB-SRVKXCTJSA-N 0.000 description 3
- DGVYSZUCRYXKOJ-XIRDDKMYSA-N His-Trp-Cys Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC3=CN=CN3)N DGVYSZUCRYXKOJ-XIRDDKMYSA-N 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- QPRQGENIBFLVEB-BJDJZHNGSA-N Leu-Ala-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O QPRQGENIBFLVEB-BJDJZHNGSA-N 0.000 description 3
- VCSBGUACOYUIGD-CIUDSAMLSA-N Leu-Asn-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O VCSBGUACOYUIGD-CIUDSAMLSA-N 0.000 description 3
- KWURTLAFFDOTEQ-GUBZILKMSA-N Leu-Cys-Glu Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N KWURTLAFFDOTEQ-GUBZILKMSA-N 0.000 description 3
- PBGDOSARRIJMEV-DLOVCJGASA-N Leu-His-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(O)=O PBGDOSARRIJMEV-DLOVCJGASA-N 0.000 description 3
- YOKVEHGYYQEQOP-QWRGUYRKSA-N Leu-Leu-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O YOKVEHGYYQEQOP-QWRGUYRKSA-N 0.000 description 3
- DRWMRVFCKKXHCH-BZSNNMDCSA-N Leu-Phe-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CC=CC=C1 DRWMRVFCKKXHCH-BZSNNMDCSA-N 0.000 description 3
- IRMLZWSRWSGTOP-CIUDSAMLSA-N Leu-Ser-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O IRMLZWSRWSGTOP-CIUDSAMLSA-N 0.000 description 3
- KIZIOFNVSOSKJI-CIUDSAMLSA-N Leu-Ser-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O)N KIZIOFNVSOSKJI-CIUDSAMLSA-N 0.000 description 3
- HGLKOTPFWOMPOB-MEYUZBJRSA-N Leu-Thr-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 HGLKOTPFWOMPOB-MEYUZBJRSA-N 0.000 description 3
- GQUDMNDPQTXZRV-DCAQKATOSA-N Lys-Arg-Asp Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O GQUDMNDPQTXZRV-DCAQKATOSA-N 0.000 description 3
- OWRUUFUVXFREBD-KKUMJFAQSA-N Lys-His-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(O)=O OWRUUFUVXFREBD-KKUMJFAQSA-N 0.000 description 3
- 241001495426 Macrophomina phaseolina Species 0.000 description 3
- 241000710118 Maize chlorotic mottle virus Species 0.000 description 3
- 241000219823 Medicago Species 0.000 description 3
- YRAWWKUTNBILNT-FXQIFTODSA-N Met-Ala-Ala Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O YRAWWKUTNBILNT-FXQIFTODSA-N 0.000 description 3
- LMKSBGIUPVRHEH-FXQIFTODSA-N Met-Ala-Asn Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(N)=O LMKSBGIUPVRHEH-FXQIFTODSA-N 0.000 description 3
- VHGIWFGJIHTASW-FXQIFTODSA-N Met-Ala-Asp Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O VHGIWFGJIHTASW-FXQIFTODSA-N 0.000 description 3
- HLQWFLJOJRFXHO-CIUDSAMLSA-N Met-Glu-Ser Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O HLQWFLJOJRFXHO-CIUDSAMLSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- AUEJLPRZGVVDNU-UHFFFAOYSA-N N-L-tyrosyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CC1=CC=C(O)C=C1 AUEJLPRZGVVDNU-UHFFFAOYSA-N 0.000 description 3
- 235000010617 Phaseolus lunatus Nutrition 0.000 description 3
- MYQCCQSMKNCNKY-KKUMJFAQSA-N Phe-His-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)N[C@@H](CO)C(=O)O)N MYQCCQSMKNCNKY-KKUMJFAQSA-N 0.000 description 3
- OLHDPZMYUSBGDE-GUBZILKMSA-N Pro-Arg-Cys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O OLHDPZMYUSBGDE-GUBZILKMSA-N 0.000 description 3
- 241000233639 Pythium Species 0.000 description 3
- 241000599030 Pythium debaryanum Species 0.000 description 3
- 108010079005 RDV peptide Proteins 0.000 description 3
- 241000947063 Ramulispora sorghi Species 0.000 description 3
- 241000589180 Rhizobium Species 0.000 description 3
- 241000223252 Rhodotorula Species 0.000 description 3
- 241000235070 Saccharomyces Species 0.000 description 3
- 241000228417 Sarocladium strictum Species 0.000 description 3
- 241000221696 Sclerotinia sclerotiorum Species 0.000 description 3
- 244000082988 Secale cereale Species 0.000 description 3
- NLQUOHDCLSFABG-GUBZILKMSA-N Ser-Arg-Arg Chemical compound NC(N)=NCCC[C@H](NC(=O)[C@H](CO)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O NLQUOHDCLSFABG-GUBZILKMSA-N 0.000 description 3
- QFBNNYNWKYKVJO-DCAQKATOSA-N Ser-Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CCCN=C(N)N QFBNNYNWKYKVJO-DCAQKATOSA-N 0.000 description 3
- LOKXAXAESFYFAX-CIUDSAMLSA-N Ser-His-Cys Chemical compound OC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CS)C(O)=O)CC1=CN=CN1 LOKXAXAESFYFAX-CIUDSAMLSA-N 0.000 description 3
- FUMGHWDRRFCKEP-CIUDSAMLSA-N Ser-Leu-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O FUMGHWDRRFCKEP-CIUDSAMLSA-N 0.000 description 3
- IAORETPTUDBBGV-CIUDSAMLSA-N Ser-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CO)N IAORETPTUDBBGV-CIUDSAMLSA-N 0.000 description 3
- IXZHZUGGKLRHJD-DCAQKATOSA-N Ser-Leu-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O IXZHZUGGKLRHJD-DCAQKATOSA-N 0.000 description 3
- 244000062793 Sorghum vulgare Species 0.000 description 3
- 241001250070 Sporisorium reilianum Species 0.000 description 3
- 241000222068 Sporobolomyces <Sporidiobolaceae> Species 0.000 description 3
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 3
- ASJDFGOPDCVXTG-KATARQTJSA-N Thr-Cys-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O ASJDFGOPDCVXTG-KATARQTJSA-N 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- ZAGPDPNPWYPEIR-SRVKXCTJSA-N Tyr-Cys-Ser Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O ZAGPDPNPWYPEIR-SRVKXCTJSA-N 0.000 description 3
- YYLHVUCSTXXKBS-IHRRRGAJSA-N Tyr-Pro-Ser Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O YYLHVUCSTXXKBS-IHRRRGAJSA-N 0.000 description 3
- PMDOQZFYGWZSTK-LSJOCFKGSA-N Val-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)C(C)C PMDOQZFYGWZSTK-LSJOCFKGSA-N 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 241000607479 Yersinia pestis Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000009418 agronomic effect Effects 0.000 description 3
- 108010086434 alanyl-seryl-glycine Proteins 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000012871 anti-fungal composition Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 108010068380 arginylarginine Proteins 0.000 description 3
- 108010062796 arginyllysine Proteins 0.000 description 3
- 108010038633 aspartylglutamate Proteins 0.000 description 3
- 229940091771 aspergillus fumigatus Drugs 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 210000003763 chloroplast Anatomy 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 244000038559 crop plants Species 0.000 description 3
- 239000005547 deoxyribonucleotide Substances 0.000 description 3
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 3
- 108020002326 glutamine synthetase Proteins 0.000 description 3
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 3
- 108010050848 glycylleucine Proteins 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000000383 hazardous chemical Substances 0.000 description 3
- 108010092114 histidylphenylalanine Proteins 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 108010083942 mannopine synthase Proteins 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 210000004898 n-terminal fragment Anatomy 0.000 description 3
- 235000001968 nicotinic acid Nutrition 0.000 description 3
- 229960003512 nicotinic acid Drugs 0.000 description 3
- 239000011664 nicotinic acid Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000006877 oatmeal agar Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 235000020232 peanut Nutrition 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 210000003705 ribosome Anatomy 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 235000019157 thiamine Nutrition 0.000 description 3
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 3
- 229960003495 thiamine Drugs 0.000 description 3
- 239000011721 thiamine Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 108010078580 tyrosylleucine Proteins 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 229940011671 vitamin b6 Drugs 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- XZVBUSAPGMMCSW-UHFFFAOYSA-L 2-amino-3-methyl-4h-imidazol-5-one;dichloroplatinum Chemical compound Cl[Pt]Cl.CN1CC(=O)N=C1N.CN1CC(=O)N=C1N XZVBUSAPGMMCSW-UHFFFAOYSA-L 0.000 description 2
- ZBMRKNMTMPPMMK-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid;azane Chemical compound [NH4+].CP(O)(=O)CCC(N)C([O-])=O ZBMRKNMTMPPMMK-UHFFFAOYSA-N 0.000 description 2
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 2
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 2
- 241000589220 Acetobacter Species 0.000 description 2
- 241001600124 Acidovorax avenae Species 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- YYSWCHMLFJLLBJ-ZLUOBGJFSA-N Ala-Ala-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O YYSWCHMLFJLLBJ-ZLUOBGJFSA-N 0.000 description 2
- IKKVASZHTMKJIR-ZKWXMUAHSA-N Ala-Asp-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O IKKVASZHTMKJIR-ZKWXMUAHSA-N 0.000 description 2
- NHLAEBFGWPXFGI-WHFBIAKZSA-N Ala-Gly-Asn Chemical compound C[C@@H](C(=O)NCC(=O)N[C@@H](CC(=O)N)C(=O)O)N NHLAEBFGWPXFGI-WHFBIAKZSA-N 0.000 description 2
- ANGAOPNEPIDLPO-XVYDVKMFSA-N Ala-His-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CS)C(=O)O)N ANGAOPNEPIDLPO-XVYDVKMFSA-N 0.000 description 2
- NOGFDULFCFXBHB-CIUDSAMLSA-N Ala-Leu-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)O)N NOGFDULFCFXBHB-CIUDSAMLSA-N 0.000 description 2
- DCVYRWFAMZFSDA-ZLUOBGJFSA-N Ala-Ser-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O DCVYRWFAMZFSDA-ZLUOBGJFSA-N 0.000 description 2
- OMSKGWFGWCQFBD-KZVJFYERSA-N Ala-Val-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O OMSKGWFGWCQFBD-KZVJFYERSA-N 0.000 description 2
- 241000588986 Alcaligenes Species 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 244000226021 Anacardium occidentale Species 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 2
- 235000007119 Ananas comosus Nutrition 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- RVDVDRUZWZIBJQ-CIUDSAMLSA-N Arg-Asn-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O RVDVDRUZWZIBJQ-CIUDSAMLSA-N 0.000 description 2
- OTCJMMRQBVDQRK-DCAQKATOSA-N Arg-Asp-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O OTCJMMRQBVDQRK-DCAQKATOSA-N 0.000 description 2
- BEXGZLUHRXTZCC-CIUDSAMLSA-N Arg-Gln-Ser Chemical compound C(C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N)CN=C(N)N BEXGZLUHRXTZCC-CIUDSAMLSA-N 0.000 description 2
- FSNVAJOPUDVQAR-AVGNSLFASA-N Arg-Lys-Arg Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FSNVAJOPUDVQAR-AVGNSLFASA-N 0.000 description 2
- FIQKRDXFTANIEJ-ULQDDVLXSA-N Arg-Phe-His Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N FIQKRDXFTANIEJ-ULQDDVLXSA-N 0.000 description 2
- OGZBJJLRKQZRHL-KJEVXHAQSA-N Arg-Thr-Tyr Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 OGZBJJLRKQZRHL-KJEVXHAQSA-N 0.000 description 2
- ZDOQDYFZNGASEY-BIIVOSGPSA-N Asn-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC(=O)N)N)C(=O)O ZDOQDYFZNGASEY-BIIVOSGPSA-N 0.000 description 2
- ULRPXVNMIIYDDJ-ACZMJKKPSA-N Asn-Glu-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC(=O)N)N ULRPXVNMIIYDDJ-ACZMJKKPSA-N 0.000 description 2
- GKKUBLFXKRDMFC-BQBZGAKWSA-N Asn-Pro-Gly Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O GKKUBLFXKRDMFC-BQBZGAKWSA-N 0.000 description 2
- KBQOUDLMWYWXNP-YDHLFZDLSA-N Asn-Val-Phe Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CC(=O)N)N KBQOUDLMWYWXNP-YDHLFZDLSA-N 0.000 description 2
- QHAJMRDEWNAIBQ-FXQIFTODSA-N Asp-Arg-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O QHAJMRDEWNAIBQ-FXQIFTODSA-N 0.000 description 2
- BUVNWKQBMZLCDW-UGYAYLCHSA-N Asp-Asn-Ile Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O BUVNWKQBMZLCDW-UGYAYLCHSA-N 0.000 description 2
- WCFCYFDBMNFSPA-ACZMJKKPSA-N Asp-Asp-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCC(O)=O WCFCYFDBMNFSPA-ACZMJKKPSA-N 0.000 description 2
- LXKLDWVHXNZQGB-SRVKXCTJSA-N Asp-Cys-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N)O LXKLDWVHXNZQGB-SRVKXCTJSA-N 0.000 description 2
- PZXPWHFYZXTFBI-YUMQZZPRSA-N Asp-Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC(O)=O PZXPWHFYZXTFBI-YUMQZZPRSA-N 0.000 description 2
- UMHUHHJMEXNSIV-CIUDSAMLSA-N Asp-Leu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UMHUHHJMEXNSIV-CIUDSAMLSA-N 0.000 description 2
- MNQMTYSEKZHIDF-GCJQMDKQSA-N Asp-Thr-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O MNQMTYSEKZHIDF-GCJQMDKQSA-N 0.000 description 2
- 241000193755 Bacillus cereus Species 0.000 description 2
- 241000193388 Bacillus thuringiensis Species 0.000 description 2
- 241000228438 Bipolaris maydis Species 0.000 description 2
- 241000371633 Bipolaris sorghicola Species 0.000 description 2
- 241000228439 Bipolaris zeicola Species 0.000 description 2
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241001674345 Callitropsis nootkatensis Species 0.000 description 2
- 244000045232 Canavalia ensiformis Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 235000009467 Carica papaya Nutrition 0.000 description 2
- 240000006432 Carica papaya Species 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108010022172 Chitinases Proteins 0.000 description 2
- 102000012286 Chitinases Human genes 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 241001149956 Cladosporium herbarum Species 0.000 description 2
- 241000384516 Claviceps sorghi Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000723377 Coffea Species 0.000 description 2
- 241000218631 Coniferophyta Species 0.000 description 2
- 235000009847 Cucumis melo var cantalupensis Nutrition 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 241000223211 Curvularia lunata Species 0.000 description 2
- BYALSSDCQYHKMY-XGEHTFHBSA-N Cys-Arg-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CS)N)O BYALSSDCQYHKMY-XGEHTFHBSA-N 0.000 description 2
- UQHYQYXOLIYNSR-CUJWVEQBSA-N Cys-His-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)[C@H](CS)N)O UQHYQYXOLIYNSR-CUJWVEQBSA-N 0.000 description 2
- WTEACWBAULENKE-SRVKXCTJSA-N Cys-Phe-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CS)N WTEACWBAULENKE-SRVKXCTJSA-N 0.000 description 2
- YXQDRIRSAHTJKM-IMJSIDKUSA-N Cys-Ser Chemical compound SC[C@H](N)C(=O)N[C@@H](CO)C(O)=O YXQDRIRSAHTJKM-IMJSIDKUSA-N 0.000 description 2
- UEHCDNYDBBCQEL-CIUDSAMLSA-N Cys-Ser-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CS)N UEHCDNYDBBCQEL-CIUDSAMLSA-N 0.000 description 2
- CLEFUAZULXANBU-MELADBBJSA-N Cys-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CS)N)C(=O)O CLEFUAZULXANBU-MELADBBJSA-N 0.000 description 2
- 238000007400 DNA extraction Methods 0.000 description 2
- 241000382787 Diaporthe sojae Species 0.000 description 2
- 244000078127 Eleusine coracana Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 240000002395 Euphorbia pulcherrima Species 0.000 description 2
- 108010074860 Factor Xa Proteins 0.000 description 2
- 241000145502 Fusarium subglutinans Species 0.000 description 2
- KVXVVDFOZNYYKZ-DCAQKATOSA-N Gln-Gln-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(O)=O KVXVVDFOZNYYKZ-DCAQKATOSA-N 0.000 description 2
- STHSGOZLFLFGSS-SUSMZKCASA-N Gln-Thr-Thr Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O STHSGOZLFLFGSS-SUSMZKCASA-N 0.000 description 2
- 241001442498 Globodera Species 0.000 description 2
- 241001442497 Globodera rostochiensis Species 0.000 description 2
- PCBBLFVHTYNQGG-LAEOZQHASA-N Glu-Asn-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCC(=O)O)N PCBBLFVHTYNQGG-LAEOZQHASA-N 0.000 description 2
- WATXSTJXNBOHKD-LAEOZQHASA-N Glu-Asp-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O WATXSTJXNBOHKD-LAEOZQHASA-N 0.000 description 2
- CGOHAEBMDSEKFB-FXQIFTODSA-N Glu-Glu-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O CGOHAEBMDSEKFB-FXQIFTODSA-N 0.000 description 2
- MUSGDMDGNGXULI-DCAQKATOSA-N Glu-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O MUSGDMDGNGXULI-DCAQKATOSA-N 0.000 description 2
- JYXKPJVDCAWMDG-ZPFDUUQYSA-N Glu-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCC(=O)O)N JYXKPJVDCAWMDG-ZPFDUUQYSA-N 0.000 description 2
- BPLNJYHNAJVLRT-ACZMJKKPSA-N Glu-Ser-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O BPLNJYHNAJVLRT-ACZMJKKPSA-N 0.000 description 2
- YQAQQKPWFOBSMU-WDCWCFNPSA-N Glu-Thr-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O YQAQQKPWFOBSMU-WDCWCFNPSA-N 0.000 description 2
- XQHSBNVACKQWAV-WHFBIAKZSA-N Gly-Asp-Asn Chemical compound [H]NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O XQHSBNVACKQWAV-WHFBIAKZSA-N 0.000 description 2
- YIFUFYZELCMPJP-YUMQZZPRSA-N Gly-Leu-Cys Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(O)=O YIFUFYZELCMPJP-YUMQZZPRSA-N 0.000 description 2
- JJGBXTYGTKWGAT-YUMQZZPRSA-N Gly-Pro-Glu Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O JJGBXTYGTKWGAT-YUMQZZPRSA-N 0.000 description 2
- YXTFLTJYLIAZQG-FJXKBIBVSA-N Gly-Thr-Arg Chemical compound NCC(=O)N[C@@H]([C@H](O)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YXTFLTJYLIAZQG-FJXKBIBVSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 241000379510 Heterodera schachtii Species 0.000 description 2
- 235000005206 Hibiscus Nutrition 0.000 description 2
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 2
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 2
- IPIVXQQRZXEUGW-UWJYBYFXSA-N His-Ala-His Chemical compound C([C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CN=CN1 IPIVXQQRZXEUGW-UWJYBYFXSA-N 0.000 description 2
- ZJSMFRTVYSLKQU-DJFWLOJKSA-N His-Asp-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC1=CN=CN1)N ZJSMFRTVYSLKQU-DJFWLOJKSA-N 0.000 description 2
- UJWYPUUXIAKEES-CUJWVEQBSA-N His-Cys-Thr Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)O)C(O)=O UJWYPUUXIAKEES-CUJWVEQBSA-N 0.000 description 2
- PYNPBMCLAKTHJL-SRVKXCTJSA-N His-Pro-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O PYNPBMCLAKTHJL-SRVKXCTJSA-N 0.000 description 2
- IXQGOKWTQPCIQM-YJRXYDGGSA-N His-Thr-His Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CC2=CN=CN2)N)O IXQGOKWTQPCIQM-YJRXYDGGSA-N 0.000 description 2
- 244000267823 Hydrangea macrophylla Species 0.000 description 2
- 235000014486 Hydrangea macrophylla Nutrition 0.000 description 2
- JZNVOBUNTWNZPW-GHCJXIJMSA-N Ile-Ser-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(=O)O)C(=O)O)N JZNVOBUNTWNZPW-GHCJXIJMSA-N 0.000 description 2
- RQJUKVXWAKJDBW-SVSWQMSJSA-N Ile-Ser-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N RQJUKVXWAKJDBW-SVSWQMSJSA-N 0.000 description 2
- ANTFEOSJMAUGIB-KNZXXDILSA-N Ile-Thr-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@@H]1C(=O)O)N ANTFEOSJMAUGIB-KNZXXDILSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 108010025815 Kanamycin Kinase Proteins 0.000 description 2
- 241000235649 Kluyveromyces Species 0.000 description 2
- PMGDADKJMCOXHX-UHFFFAOYSA-N L-Arginyl-L-glutamin-acetat Natural products NC(=N)NCCCC(N)C(=O)NC(CCC(N)=O)C(O)=O PMGDADKJMCOXHX-UHFFFAOYSA-N 0.000 description 2
- KFKWRHQBZQICHA-STQMWFEESA-N L-leucyl-L-phenylalanine Natural products CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KFKWRHQBZQICHA-STQMWFEESA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 235000003228 Lactuca sativa Nutrition 0.000 description 2
- 240000008415 Lactuca sativa Species 0.000 description 2
- 241000880493 Leptailurus serval Species 0.000 description 2
- PVMPDMIKUVNOBD-CIUDSAMLSA-N Leu-Asp-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O PVMPDMIKUVNOBD-CIUDSAMLSA-N 0.000 description 2
- OGUUKPXUTHOIAV-SDDRHHMPSA-N Leu-Glu-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N OGUUKPXUTHOIAV-SDDRHHMPSA-N 0.000 description 2
- YWYQSLOTVIRCFE-SRVKXCTJSA-N Leu-His-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(O)=O YWYQSLOTVIRCFE-SRVKXCTJSA-N 0.000 description 2
- KZZCOWMDDXDKSS-CIUDSAMLSA-N Leu-Ser-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O KZZCOWMDDXDKSS-CIUDSAMLSA-N 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 108010062166 Lys-Asn-Asp Proteins 0.000 description 2
- PBIPLDMFHAICIP-DCAQKATOSA-N Lys-Glu-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O PBIPLDMFHAICIP-DCAQKATOSA-N 0.000 description 2
- DCRWPTBMWMGADO-AVGNSLFASA-N Lys-Glu-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O DCRWPTBMWMGADO-AVGNSLFASA-N 0.000 description 2
- SLQJJFAVWSZLBL-BJDJZHNGSA-N Lys-Ile-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCCCN SLQJJFAVWSZLBL-BJDJZHNGSA-N 0.000 description 2
- XATKLFSXFINPSB-JYJNAYRXSA-N Lys-Tyr-Gln Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(N)=O)C(O)=O XATKLFSXFINPSB-JYJNAYRXSA-N 0.000 description 2
- RQILLQOQXLZTCK-KBPBESRZSA-N Lys-Tyr-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)NCC(O)=O RQILLQOQXLZTCK-KBPBESRZSA-N 0.000 description 2
- QFSYGUMEANRNJE-DCAQKATOSA-N Lys-Val-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCCN)N QFSYGUMEANRNJE-DCAQKATOSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 241001447067 Maize red stripe virus Species 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 235000014826 Mangifera indica Nutrition 0.000 description 2
- 240000007228 Mangifera indica Species 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- ZEDVFJPQNNBMST-CYDGBPFRSA-N Met-Arg-Ile Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O ZEDVFJPQNNBMST-CYDGBPFRSA-N 0.000 description 2
- CGUYGMFQZCYJSG-DCAQKATOSA-N Met-Lys-Ser Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O CGUYGMFQZCYJSG-DCAQKATOSA-N 0.000 description 2
- IHRFZLQEQVHXFA-RHYQMDGZSA-N Met-Thr-Lys Chemical compound CSCC[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CCCCN IHRFZLQEQVHXFA-RHYQMDGZSA-N 0.000 description 2
- SUZRRICLUFMAQD-UHFFFAOYSA-N N-Methyltaurine Chemical compound CNCCS(O)(=O)=O SUZRRICLUFMAQD-UHFFFAOYSA-N 0.000 description 2
- 241000234479 Narcissus Species 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 235000007199 Panicum miliaceum Nutrition 0.000 description 2
- 235000007195 Pennisetum typhoides Nutrition 0.000 description 2
- 241000760727 Peronosclerospora philippinensis Species 0.000 description 2
- 241000596141 Peronosclerospora sorghi Species 0.000 description 2
- 244000025272 Persea americana Species 0.000 description 2
- 235000008673 Persea americana Nutrition 0.000 description 2
- 240000007377 Petunia x hybrida Species 0.000 description 2
- 241000682645 Phakopsora pachyrhizi Species 0.000 description 2
- OXUMFAOVGFODPN-KKUMJFAQSA-N Phe-Asn-His Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N OXUMFAOVGFODPN-KKUMJFAQSA-N 0.000 description 2
- CMHTUJQZQXFNTQ-OEAJRASXSA-N Phe-Leu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC1=CC=CC=C1)N)O CMHTUJQZQXFNTQ-OEAJRASXSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000233614 Phytophthora Species 0.000 description 2
- 241000218606 Pinus contorta Species 0.000 description 2
- 235000013267 Pinus ponderosa Nutrition 0.000 description 2
- 235000008577 Pinus radiata Nutrition 0.000 description 2
- 241000218621 Pinus radiata Species 0.000 description 2
- 235000008566 Pinus taeda Nutrition 0.000 description 2
- 241000218679 Pinus taeda Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- LHALYDBUDCWMDY-CIUDSAMLSA-N Pro-Glu-Ala Chemical compound C[C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CCCN1)C(O)=O LHALYDBUDCWMDY-CIUDSAMLSA-N 0.000 description 2
- UIMCLYYSUCIUJM-UWVGGRQHSA-N Pro-Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H]1CCCN1 UIMCLYYSUCIUJM-UWVGGRQHSA-N 0.000 description 2
- VWHJZETTZDAGOM-XUXIUFHCSA-N Pro-Lys-Ile Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O VWHJZETTZDAGOM-XUXIUFHCSA-N 0.000 description 2
- FDMKYQQYJKYCLV-GUBZILKMSA-N Pro-Pro-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 FDMKYQQYJKYCLV-GUBZILKMSA-N 0.000 description 2
- DCHQYSOGURGJST-FJXKBIBVSA-N Pro-Thr-Gly Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O DCHQYSOGURGJST-FJXKBIBVSA-N 0.000 description 2
- IALSFJSONJZBKB-HRCADAONSA-N Pro-Tyr-Pro Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)N3CCC[C@@H]3C(=O)O IALSFJSONJZBKB-HRCADAONSA-N 0.000 description 2
- 241000589540 Pseudomonas fluorescens Species 0.000 description 2
- 240000001416 Pseudotsuga menziesii Species 0.000 description 2
- 241001622914 Pythium arrhenomanes Species 0.000 description 2
- 241001622911 Pythium graminicola Species 0.000 description 2
- 241001505297 Pythium irregulare Species 0.000 description 2
- 241001635622 Pythium splendens Species 0.000 description 2
- 240000005384 Rhizopus oryzae Species 0.000 description 2
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 2
- 241000208422 Rhododendron Species 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 description 2
- 241000332477 Scutellonema bradys Species 0.000 description 2
- 108010016634 Seed Storage Proteins Proteins 0.000 description 2
- UCOYFSCEIWQYNL-FXQIFTODSA-N Ser-Cys-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(O)=O UCOYFSCEIWQYNL-FXQIFTODSA-N 0.000 description 2
- MOVJSUIKUNCVMG-ZLUOBGJFSA-N Ser-Cys-Ser Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)O)N)O MOVJSUIKUNCVMG-ZLUOBGJFSA-N 0.000 description 2
- UQFYNFTYDHUIMI-WHFBIAKZSA-N Ser-Gly-Ala Chemical compound OC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](N)CO UQFYNFTYDHUIMI-WHFBIAKZSA-N 0.000 description 2
- VMLONWHIORGALA-SRVKXCTJSA-N Ser-Leu-Leu Chemical compound CC(C)C[C@@H](C([O-])=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H]([NH3+])CO VMLONWHIORGALA-SRVKXCTJSA-N 0.000 description 2
- NNFMANHDYSVNIO-DCAQKATOSA-N Ser-Lys-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O NNFMANHDYSVNIO-DCAQKATOSA-N 0.000 description 2
- 241000607720 Serratia Species 0.000 description 2
- 240000005498 Setaria italica Species 0.000 description 2
- 241000332749 Setosphaeria turcica Species 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 101000611441 Solanum lycopersicum Pathogenesis-related leaf protein 6 Proteins 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 241000266365 Stemphylium vesicarium Species 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000009470 Theobroma cacao Nutrition 0.000 description 2
- ADPHPKGWVDHWML-PPCPHDFISA-N Thr-Ile-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)O)NC(=O)[C@H]([C@@H](C)O)N ADPHPKGWVDHWML-PPCPHDFISA-N 0.000 description 2
- RRRRCRYTLZVCEN-HJGDQZAQSA-N Thr-Leu-Asp Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O RRRRCRYTLZVCEN-HJGDQZAQSA-N 0.000 description 2
- QFEYTTHKPSOFLV-OSUNSFLBSA-N Thr-Met-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H]([C@@H](C)O)N QFEYTTHKPSOFLV-OSUNSFLBSA-N 0.000 description 2
- NQQMWWVVGIXUOX-SVSWQMSJSA-N Thr-Ser-Ile Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O NQQMWWVVGIXUOX-SVSWQMSJSA-N 0.000 description 2
- 241000218638 Thuja plicata Species 0.000 description 2
- 241000723792 Tobacco etch virus Species 0.000 description 2
- 241000723873 Tobacco mosaic virus Species 0.000 description 2
- KHCSOLAHNLOXJR-BZSNNMDCSA-N Tyr-Leu-Leu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O KHCSOLAHNLOXJR-BZSNNMDCSA-N 0.000 description 2
- XJPXTYLVMUZGNW-IHRRRGAJSA-N Tyr-Pro-Asp Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O XJPXTYLVMUZGNW-IHRRRGAJSA-N 0.000 description 2
- GQVZBMROTPEPIF-SRVKXCTJSA-N Tyr-Ser-Asp Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O GQVZBMROTPEPIF-SRVKXCTJSA-N 0.000 description 2
- GOPQNCQSXBJAII-ULQDDVLXSA-N Tyr-Val-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N GOPQNCQSXBJAII-ULQDDVLXSA-N 0.000 description 2
- 241000233791 Ustilago tritici Species 0.000 description 2
- LTFLDDDGWOVIHY-NAKRPEOUSA-N Val-Ala-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)N LTFLDDDGWOVIHY-NAKRPEOUSA-N 0.000 description 2
- ISERLACIZUGCDX-ZKWXMUAHSA-N Val-Asp-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C(C)C)N ISERLACIZUGCDX-ZKWXMUAHSA-N 0.000 description 2
- LHADRQBREKTRLR-DCAQKATOSA-N Val-Cys-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](C(C)C)N LHADRQBREKTRLR-DCAQKATOSA-N 0.000 description 2
- BMOFUVHDBROBSE-DCAQKATOSA-N Val-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](C(C)C)N BMOFUVHDBROBSE-DCAQKATOSA-N 0.000 description 2
- LYERIXUFCYVFFX-GVXVVHGQSA-N Val-Leu-Glu Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N LYERIXUFCYVFFX-GVXVVHGQSA-N 0.000 description 2
- YTNGABPUXFEOGU-SRVKXCTJSA-N Val-Pro-Arg Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCN=C(N)N)C(O)=O YTNGABPUXFEOGU-SRVKXCTJSA-N 0.000 description 2
- GVNLOVJNNDZUHS-RHYQMDGZSA-N Val-Thr-Lys Chemical compound [H]N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(O)=O GVNLOVJNNDZUHS-RHYQMDGZSA-N 0.000 description 2
- WBPFYNYTYASCQP-CYDGBPFRSA-N Val-Val-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)N WBPFYNYTYASCQP-CYDGBPFRSA-N 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- 241001429320 Wheat streak mosaic virus Species 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 108010078114 alanyl-tryptophyl-alanine Proteins 0.000 description 2
- 108010047495 alanylglycine Proteins 0.000 description 2
- 108091005588 alkylated proteins Proteins 0.000 description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 108010008355 arginyl-glutamine Proteins 0.000 description 2
- 108010093581 aspartyl-proline Proteins 0.000 description 2
- 108010068265 aspartyltyrosine Proteins 0.000 description 2
- 229940097012 bacillus thuringiensis Drugs 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 244000022203 blackseeded proso millet Species 0.000 description 2
- 244000275904 brauner Senf Species 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000012707 chemical precursor Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 244000013123 dwarf bean Species 0.000 description 2
- 235000005489 dwarf bean Nutrition 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 238000000119 electrospray ionisation mass spectrum Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 239000000834 fixative Substances 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000004362 fungal culture Methods 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 102000005396 glutamine synthetase Human genes 0.000 description 2
- 108010057083 glutamyl-aspartyl-leucine Proteins 0.000 description 2
- 108010049041 glutamylalanine Proteins 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 108010002685 hygromycin-B kinase Proteins 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 108010044056 leucyl-phenylalanine Proteins 0.000 description 2
- 108010073472 leucyl-prolyl-proline Proteins 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 235000019713 millet Nutrition 0.000 description 2
- 238000001823 molecular biology technique Methods 0.000 description 2
- 239000003750 molluscacide Substances 0.000 description 2
- 230000002013 molluscicidal effect Effects 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 239000005645 nematicide Substances 0.000 description 2
- 235000021049 nutrient content Nutrition 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000005080 plant death Effects 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 108010031719 prolyl-serine Proteins 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 235000021251 pulses Nutrition 0.000 description 2
- 235000019171 pyridoxine hydrochloride Nutrition 0.000 description 2
- 239000011764 pyridoxine hydrochloride Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229930000044 secondary metabolite Natural products 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 230000010153 self-pollination Effects 0.000 description 2
- 239000013605 shuttle vector Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 229940063673 spermidine Drugs 0.000 description 2
- 238000012289 standard assay Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- PVYJZLYGTZKPJE-UHFFFAOYSA-N streptonigrin Chemical compound C=1C=C2C(=O)C(OC)=C(N)C(=O)C2=NC=1C(C=1N)=NC(C(O)=O)=C(C)C=1C1=CC=C(OC)C(OC)=C1O PVYJZLYGTZKPJE-UHFFFAOYSA-N 0.000 description 2
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 2
- 108010031491 threonyl-lysyl-glutamic acid Proteins 0.000 description 2
- 108010017949 tyrosyl-glycyl-glycine Proteins 0.000 description 2
- 108010020532 tyrosyl-proline Proteins 0.000 description 2
- 108010072644 valyl-alanyl-prolyl-glycine Proteins 0.000 description 2
- 108010073969 valyllysine Proteins 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- AXFMEGAFCUULFV-BLFANLJRSA-N (2s)-2-[[(2s)-1-[(2s,3r)-2-amino-3-methylpentanoyl]pyrrolidine-2-carbonyl]amino]pentanedioic acid Chemical compound CC[C@@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O AXFMEGAFCUULFV-BLFANLJRSA-N 0.000 description 1
- INOZZBHURUDQQR-AJNGGQMLSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-(1h-imidazol-5-yl)propanoyl]amino]-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]-4-methylpentanoic acid Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 INOZZBHURUDQQR-AJNGGQMLSA-N 0.000 description 1
- BKWMKTIGFLPGOV-RABCQHRBSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2s)-2-amino-3-hydroxypropanoyl]amino]-4-carboxybutanoyl]amino]hexanoyl]amino]-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]-4-methylpentanoic acid Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CO BKWMKTIGFLPGOV-RABCQHRBSA-N 0.000 description 1
- JBFQOLHAGBKPTP-NZATWWQASA-N (2s)-2-[[(2s)-4-carboxy-2-[[3-carboxy-2-[[(2s)-2,6-diaminohexanoyl]amino]propanoyl]amino]butanoyl]amino]-4-methylpentanoic acid Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)C(CC(O)=O)NC(=O)[C@@H](N)CCCCN JBFQOLHAGBKPTP-NZATWWQASA-N 0.000 description 1
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- JKMPXGJJRMOELF-UHFFFAOYSA-N 1,3-thiazole-2,4,5-tricarboxylic acid Chemical compound OC(=O)C1=NC(C(O)=O)=C(C(O)=O)S1 JKMPXGJJRMOELF-UHFFFAOYSA-N 0.000 description 1
- SQAINHDHICKHLX-UHFFFAOYSA-N 1-naphthaldehyde Chemical class C1=CC=C2C(C=O)=CC=CC2=C1 SQAINHDHICKHLX-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- 229940087195 2,4-dichlorophenoxyacetate Drugs 0.000 description 1
- LMSDCGXQALIMLM-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;iron Chemical compound [Fe].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O LMSDCGXQALIMLM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical class O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 1
- 102100026105 3-ketoacyl-CoA thiolase, mitochondrial Human genes 0.000 description 1
- XDRVGXCIPIURSL-UHFFFAOYSA-N 5,8-diethyl-3,10-dimethyldodec-6-yne-5,8-diol Chemical compound CCC(C)CC(O)(CC)C#CC(O)(CC)CC(C)CC XDRVGXCIPIURSL-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- LCYXNYNRVOBSHK-UHFFFAOYSA-N 8-ethoxy-1,3,7-trimethylpurine-2,6-dione Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=C(OCC)N2C LCYXNYNRVOBSHK-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- WFPZSXYXPSUOPY-ROYWQJLOSA-N ADP alpha-D-glucoside Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WFPZSXYXPSUOPY-ROYWQJLOSA-N 0.000 description 1
- 235000004507 Abies alba Nutrition 0.000 description 1
- 235000014081 Abies amabilis Nutrition 0.000 description 1
- 244000101408 Abies amabilis Species 0.000 description 1
- 244000178606 Abies grandis Species 0.000 description 1
- 235000017894 Abies grandis Nutrition 0.000 description 1
- 235000004710 Abies lasiocarpa Nutrition 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 244000235858 Acetobacter xylinum Species 0.000 description 1
- 235000002837 Acetobacter xylinum Nutrition 0.000 description 1
- 108010003902 Acetyl-CoA C-acyltransferase Proteins 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 1
- DKJPOZOEBONHFS-ZLUOBGJFSA-N Ala-Ala-Asp Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O DKJPOZOEBONHFS-ZLUOBGJFSA-N 0.000 description 1
- YLTKNGYYPIWKHZ-ACZMJKKPSA-N Ala-Ala-Glu Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCC(O)=O YLTKNGYYPIWKHZ-ACZMJKKPSA-N 0.000 description 1
- NHCPCLJZRSIDHS-ZLUOBGJFSA-N Ala-Asp-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O NHCPCLJZRSIDHS-ZLUOBGJFSA-N 0.000 description 1
- MCKSLROAGSDNFC-ACZMJKKPSA-N Ala-Asp-Gln Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O MCKSLROAGSDNFC-ACZMJKKPSA-N 0.000 description 1
- KIUYPHAMDKDICO-WHFBIAKZSA-N Ala-Asp-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O KIUYPHAMDKDICO-WHFBIAKZSA-N 0.000 description 1
- HWPXGQCMZITGFN-XVYDVKMFSA-N Ala-Cys-His Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N HWPXGQCMZITGFN-XVYDVKMFSA-N 0.000 description 1
- BLGHHPHXVJWCNK-GUBZILKMSA-N Ala-Gln-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(O)=O BLGHHPHXVJWCNK-GUBZILKMSA-N 0.000 description 1
- FUSPCLTUKXQREV-ACZMJKKPSA-N Ala-Glu-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O FUSPCLTUKXQREV-ACZMJKKPSA-N 0.000 description 1
- NJPMYXWVWQWCSR-ACZMJKKPSA-N Ala-Glu-Asn Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O NJPMYXWVWQWCSR-ACZMJKKPSA-N 0.000 description 1
- PAIHPOGPJVUFJY-WDSKDSINSA-N Ala-Glu-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O PAIHPOGPJVUFJY-WDSKDSINSA-N 0.000 description 1
- PUBLUECXJRHTBK-ACZMJKKPSA-N Ala-Glu-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O PUBLUECXJRHTBK-ACZMJKKPSA-N 0.000 description 1
- MQIGTEQXYCRLGK-BQBZGAKWSA-N Ala-Gly-Pro Chemical compound C[C@H](N)C(=O)NCC(=O)N1CCC[C@H]1C(O)=O MQIGTEQXYCRLGK-BQBZGAKWSA-N 0.000 description 1
- LNNSWWRRYJLGNI-NAKRPEOUSA-N Ala-Ile-Val Chemical compound C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O LNNSWWRRYJLGNI-NAKRPEOUSA-N 0.000 description 1
- HHRAXZAYZFFRAM-CIUDSAMLSA-N Ala-Leu-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O HHRAXZAYZFFRAM-CIUDSAMLSA-N 0.000 description 1
- LBYMZCVBOKYZNS-CIUDSAMLSA-N Ala-Leu-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O LBYMZCVBOKYZNS-CIUDSAMLSA-N 0.000 description 1
- OMCKWYSDUQBYCN-FXQIFTODSA-N Ala-Ser-Met Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(O)=O OMCKWYSDUQBYCN-FXQIFTODSA-N 0.000 description 1
- ARHJJAAWNWOACN-FXQIFTODSA-N Ala-Ser-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O ARHJJAAWNWOACN-FXQIFTODSA-N 0.000 description 1
- BUQICHWNXBIBOG-LMVFSUKVSA-N Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)N BUQICHWNXBIBOG-LMVFSUKVSA-N 0.000 description 1
- YNOCMHZSWJMGBB-GCJQMDKQSA-N Ala-Thr-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O YNOCMHZSWJMGBB-GCJQMDKQSA-N 0.000 description 1
- QKHWNPQNOHEFST-VZFHVOOUSA-N Ala-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](C)N)O QKHWNPQNOHEFST-VZFHVOOUSA-N 0.000 description 1
- KUFVXLQLDHJVOG-SHGPDSBTSA-N Ala-Thr-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](C)N)O KUFVXLQLDHJVOG-SHGPDSBTSA-N 0.000 description 1
- QRIYOHQJRDHFKF-UWJYBYFXSA-N Ala-Tyr-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=C(O)C=C1 QRIYOHQJRDHFKF-UWJYBYFXSA-N 0.000 description 1
- 241000919507 Albugo candida Species 0.000 description 1
- 241000724328 Alfalfa mosaic virus Species 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 241001149961 Alternaria brassicae Species 0.000 description 1
- 241000323764 Alternaria zinnae Species 0.000 description 1
- 241000429811 Alternariaster helianthi Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 235000001274 Anacardium occidentale Nutrition 0.000 description 1
- 241000744007 Andropogon Species 0.000 description 1
- 241001444080 Aphanomyces euteiches Species 0.000 description 1
- KJGNDQCYBNBXDA-GUBZILKMSA-N Arg-Arg-Cys Chemical compound C(C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N)CN=C(N)N KJGNDQCYBNBXDA-GUBZILKMSA-N 0.000 description 1
- UISQLSIBJKEJSS-GUBZILKMSA-N Arg-Arg-Ser Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CO)C(O)=O UISQLSIBJKEJSS-GUBZILKMSA-N 0.000 description 1
- NABSCJGZKWSNHX-RCWTZXSCSA-N Arg-Arg-Thr Chemical compound NC(N)=NCCC[C@@H](C(=O)N[C@@H]([C@H](O)C)C(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N NABSCJGZKWSNHX-RCWTZXSCSA-N 0.000 description 1
- OANWAFQRNQEDSY-DCAQKATOSA-N Arg-Cys-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCCN=C(N)N)N OANWAFQRNQEDSY-DCAQKATOSA-N 0.000 description 1
- JVMKBJNSRZWDBO-FXQIFTODSA-N Arg-Cys-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O JVMKBJNSRZWDBO-FXQIFTODSA-N 0.000 description 1
- RWDVGVPHEWOZMO-GUBZILKMSA-N Arg-Cys-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCCNC(N)=N)C(O)=O RWDVGVPHEWOZMO-GUBZILKMSA-N 0.000 description 1
- FEZJJKXNPSEYEV-CIUDSAMLSA-N Arg-Gln-Ala Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(O)=O FEZJJKXNPSEYEV-CIUDSAMLSA-N 0.000 description 1
- NMRHDSAOIURTNT-RWMBFGLXSA-N Arg-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N NMRHDSAOIURTNT-RWMBFGLXSA-N 0.000 description 1
- JEOCWTUOMKEEMF-RHYQMDGZSA-N Arg-Leu-Thr Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JEOCWTUOMKEEMF-RHYQMDGZSA-N 0.000 description 1
- FKQITMVNILRUCQ-IHRRRGAJSA-N Arg-Phe-Asp Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(O)=O FKQITMVNILRUCQ-IHRRRGAJSA-N 0.000 description 1
- NGYHSXDNNOFHNE-AVGNSLFASA-N Arg-Pro-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O NGYHSXDNNOFHNE-AVGNSLFASA-N 0.000 description 1
- CTAPSNCVKPOOSM-KKUMJFAQSA-N Arg-Tyr-Gln Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(N)=O)C(O)=O CTAPSNCVKPOOSM-KKUMJFAQSA-N 0.000 description 1
- QHUOOCKNNURZSL-IHRRRGAJSA-N Arg-Tyr-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(O)=O QHUOOCKNNURZSL-IHRRRGAJSA-N 0.000 description 1
- IZSMEUDYADKZTJ-KJEVXHAQSA-N Arg-Tyr-Thr Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O IZSMEUDYADKZTJ-KJEVXHAQSA-N 0.000 description 1
- 241000186063 Arthrobacter Species 0.000 description 1
- 240000005410 Ascochyta medicaginicola var. medicaginicola Species 0.000 description 1
- 241001414024 Ascochyta sorghi Species 0.000 description 1
- 244000309473 Ascochyta tritici Species 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- KXEGPPNPXOKKHK-ZLUOBGJFSA-N Asn-Asp-Ala Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O KXEGPPNPXOKKHK-ZLUOBGJFSA-N 0.000 description 1
- BGINHSZTXRJIPP-FXQIFTODSA-N Asn-Asp-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC(=O)N)N BGINHSZTXRJIPP-FXQIFTODSA-N 0.000 description 1
- JREOBWLIZLXRIS-GUBZILKMSA-N Asn-Glu-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O JREOBWLIZLXRIS-GUBZILKMSA-N 0.000 description 1
- HYQYLOSCICEYTR-YUMQZZPRSA-N Asn-Gly-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O HYQYLOSCICEYTR-YUMQZZPRSA-N 0.000 description 1
- OFQPMRDJVWLMNJ-CIUDSAMLSA-N Asn-His-Cys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N OFQPMRDJVWLMNJ-CIUDSAMLSA-N 0.000 description 1
- PNHQRQTVBRDIEF-CIUDSAMLSA-N Asn-Leu-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(=O)N)N PNHQRQTVBRDIEF-CIUDSAMLSA-N 0.000 description 1
- PPCORQFLAZWUNO-QWRGUYRKSA-N Asn-Phe-Gly Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CC(=O)N)N PPCORQFLAZWUNO-QWRGUYRKSA-N 0.000 description 1
- JTXVXGXTRXMOFJ-FXQIFTODSA-N Asn-Pro-Asn Chemical compound NC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(O)=O JTXVXGXTRXMOFJ-FXQIFTODSA-N 0.000 description 1
- NCXTYSVDWLAQGZ-ZKWXMUAHSA-N Asn-Ser-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O NCXTYSVDWLAQGZ-ZKWXMUAHSA-N 0.000 description 1
- JNCRAQVYJZGIOW-QSFUFRPTSA-N Asn-Val-Ile Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JNCRAQVYJZGIOW-QSFUFRPTSA-N 0.000 description 1
- CBHVAFXKOYAHOY-NHCYSSNCSA-N Asn-Val-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O CBHVAFXKOYAHOY-NHCYSSNCSA-N 0.000 description 1
- KRXIWXCXOARFNT-ZLUOBGJFSA-N Asp-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O KRXIWXCXOARFNT-ZLUOBGJFSA-N 0.000 description 1
- XBQSLMACWDXWLJ-GHCJXIJMSA-N Asp-Ala-Ile Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O XBQSLMACWDXWLJ-GHCJXIJMSA-N 0.000 description 1
- VPPXTHJNTYDNFJ-CIUDSAMLSA-N Asp-Ala-Lys Chemical compound C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(=O)O)N VPPXTHJNTYDNFJ-CIUDSAMLSA-N 0.000 description 1
- SOYOSFXLXYZNRG-CIUDSAMLSA-N Asp-Arg-Gln Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(O)=O SOYOSFXLXYZNRG-CIUDSAMLSA-N 0.000 description 1
- CELPEWWLSXMVPH-CIUDSAMLSA-N Asp-Asp-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC(O)=O CELPEWWLSXMVPH-CIUDSAMLSA-N 0.000 description 1
- UFAQGGZUXVLONR-AVGNSLFASA-N Asp-Gln-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)O)N)O UFAQGGZUXVLONR-AVGNSLFASA-N 0.000 description 1
- OGTCOKZFOJIZFG-CIUDSAMLSA-N Asp-His-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(O)=O OGTCOKZFOJIZFG-CIUDSAMLSA-N 0.000 description 1
- JNNVNVRBYUJYGS-CIUDSAMLSA-N Asp-Leu-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O JNNVNVRBYUJYGS-CIUDSAMLSA-N 0.000 description 1
- QNMKWNONJGKJJC-NHCYSSNCSA-N Asp-Leu-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O QNMKWNONJGKJJC-NHCYSSNCSA-N 0.000 description 1
- HJCGDIGVVWETRO-ZPFDUUQYSA-N Asp-Lys-Ile Chemical compound CC[C@H](C)[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC(O)=O)C(O)=O HJCGDIGVVWETRO-ZPFDUUQYSA-N 0.000 description 1
- SARSTIZOZFBDOM-FXQIFTODSA-N Asp-Met-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(O)=O SARSTIZOZFBDOM-FXQIFTODSA-N 0.000 description 1
- HSGOFISJLFDMBJ-CIUDSAMLSA-N Asp-Met-Gln Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC(=O)O)N HSGOFISJLFDMBJ-CIUDSAMLSA-N 0.000 description 1
- JXGJJQJHXHXJQF-CIUDSAMLSA-N Asp-Met-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(O)=O JXGJJQJHXHXJQF-CIUDSAMLSA-N 0.000 description 1
- MVRGBQGZSDJBSM-GMOBBJLQSA-N Asp-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CC(=O)O)N MVRGBQGZSDJBSM-GMOBBJLQSA-N 0.000 description 1
- UTLCRGFJFSZWAW-OLHMAJIHSA-N Asp-Thr-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC(=O)O)N)O UTLCRGFJFSZWAW-OLHMAJIHSA-N 0.000 description 1
- XWKBWZXGNXTDKY-ZKWXMUAHSA-N Asp-Val-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC(O)=O XWKBWZXGNXTDKY-ZKWXMUAHSA-N 0.000 description 1
- XWKPSMRPIKKDDU-RCOVLWMOSA-N Asp-Val-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O XWKPSMRPIKKDDU-RCOVLWMOSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000132092 Aster Species 0.000 description 1
- 241001530056 Athelia rolfsii Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 241000589151 Azotobacter Species 0.000 description 1
- 241000589154 Azotobacter group Species 0.000 description 1
- 241000589149 Azotobacter vinelandii Species 0.000 description 1
- 241001112741 Bacillaceae Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- 241000709756 Barley yellow dwarf virus Species 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- 235000021533 Beta vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 241000190150 Bipolaris sorokiniana Species 0.000 description 1
- 241000895502 Blumeria graminis f. sp. tritici Species 0.000 description 1
- 241000123650 Botrytis cinerea Species 0.000 description 1
- 239000011547 Bouin solution Substances 0.000 description 1
- 241000131971 Bradyrhizobiaceae Species 0.000 description 1
- 241000589174 Bradyrhizobium japonicum Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 244000178993 Brassica juncea Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 241000220243 Brassica sp. Species 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 241000724256 Brome mosaic virus Species 0.000 description 1
- 239000005489 Bromoxynil Substances 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 241000498608 Cadophora gregata Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 239000005745 Captan Substances 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 239000005746 Carboxin Substances 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 101001033883 Cenchritis muricatus Protease inhibitor 2 Proteins 0.000 description 1
- 241001435629 Cephalosporium gramineum Species 0.000 description 1
- 241001290235 Ceratobasidium cereale Species 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 241001658057 Cercospora kikuchii Species 0.000 description 1
- 244000309550 Cercospora medicaginis Species 0.000 description 1
- 241000113401 Cercospora sojina Species 0.000 description 1
- 241000437818 Cercospora vignicola Species 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- 239000005496 Chlorsulfuron Substances 0.000 description 1
- 108010003662 Chorismate synthase Proteins 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- 235000010523 Cicer arietinum Nutrition 0.000 description 1
- 244000045195 Cicer arietinum Species 0.000 description 1
- 241000186650 Clavibacter Species 0.000 description 1
- 241001430230 Clavibacter nebraskensis Species 0.000 description 1
- 241000221760 Claviceps Species 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 1
- 241001330709 Cochliobolus pallescens Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 241000456686 Colletotrichum sublineola Species 0.000 description 1
- 241000222237 Colletotrichum trifolii Species 0.000 description 1
- 241000222239 Colletotrichum truncatum Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 101710190853 Cruciferin Proteins 0.000 description 1
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000724252 Cucumber mosaic virus Species 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000010071 Cucumis prophetarum Nutrition 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- 241001537312 Curvularia inaequalis Species 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- BDWIZLQVVWQMTB-XKBZYTNZSA-N Cys-Glu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CS)N)O BDWIZLQVVWQMTB-XKBZYTNZSA-N 0.000 description 1
- ANRWXLYGJRSQEQ-CIUDSAMLSA-N Cys-His-Asp Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(O)=O ANRWXLYGJRSQEQ-CIUDSAMLSA-N 0.000 description 1
- KCPOQGRVVXYLAC-KKUMJFAQSA-N Cys-Leu-Phe Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CS)N KCPOQGRVVXYLAC-KKUMJFAQSA-N 0.000 description 1
- BSGXXYRIDXUEOM-IHRRRGAJSA-N Cys-Phe-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CS)N BSGXXYRIDXUEOM-IHRRRGAJSA-N 0.000 description 1
- YYLBXQJGWOQZOU-IHRRRGAJSA-N Cys-Phe-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CS)N YYLBXQJGWOQZOU-IHRRRGAJSA-N 0.000 description 1
- YWEHYKGJWHPGPY-XGEHTFHBSA-N Cys-Thr-Arg Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CS)N)O YWEHYKGJWHPGPY-XGEHTFHBSA-N 0.000 description 1
- HPZAJRPYUIHDIN-BZSNNMDCSA-N Cys-Tyr-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CS)N HPZAJRPYUIHDIN-BZSNNMDCSA-N 0.000 description 1
- VXDXZGYXHIADHF-YJRXYDGGSA-N Cys-Tyr-Thr Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O VXDXZGYXHIADHF-YJRXYDGGSA-N 0.000 description 1
- 206010011732 Cyst Diseases 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 101710096830 DNA-3-methyladenine glycosylase Proteins 0.000 description 1
- 102100039128 DNA-3-methyladenine glycosylase Human genes 0.000 description 1
- 241000605716 Desulfovibrio Species 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 1
- 240000006497 Dianthus caryophyllus Species 0.000 description 1
- 240000003421 Dianthus chinensis Species 0.000 description 1
- 241000866066 Diaporthe caulivora Species 0.000 description 1
- 241000042001 Diaporthe helianthi Species 0.000 description 1
- 241000588700 Dickeya chrysanthemi Species 0.000 description 1
- 241001422851 Didymella maydis Species 0.000 description 1
- 235000014466 Douglas bleu Nutrition 0.000 description 1
- 241001057636 Dracaena deremensis Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 102100039371 ER lumen protein-retaining receptor 1 Human genes 0.000 description 1
- 235000007349 Eleusine coracana Nutrition 0.000 description 1
- 235000013499 Eleusine coracana subsp coracana Nutrition 0.000 description 1
- 241000710188 Encephalomyocarditis virus Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241001337814 Erysiphe glycines Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010087894 Fatty acid desaturases Proteins 0.000 description 1
- 241000218218 Ficus <angiosperm> Species 0.000 description 1
- 241000589565 Flavobacterium Species 0.000 description 1
- 241000122692 Fusarium avenaceum Species 0.000 description 1
- 241000223194 Fusarium culmorum Species 0.000 description 1
- 241001208371 Fusarium incarnatum Species 0.000 description 1
- 241000690372 Fusarium proliferatum Species 0.000 description 1
- 241000221779 Fusarium sambucinum Species 0.000 description 1
- 241000427940 Fusarium solani Species 0.000 description 1
- 241001508365 Gaeumannomyces tritici Species 0.000 description 1
- 206010071602 Genetic polymorphism Diseases 0.000 description 1
- INKFLNZBTSNFON-CIUDSAMLSA-N Gln-Ala-Arg Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O INKFLNZBTSNFON-CIUDSAMLSA-N 0.000 description 1
- JESJDAAGXULQOP-CIUDSAMLSA-N Gln-Arg-Ser Chemical compound C(C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCC(=O)N)N)CN=C(N)N JESJDAAGXULQOP-CIUDSAMLSA-N 0.000 description 1
- MGJMFSBEMSNYJL-AVGNSLFASA-N Gln-Asn-Tyr Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O MGJMFSBEMSNYJL-AVGNSLFASA-N 0.000 description 1
- XJKAKYXMFHUIHT-AUTRQRHGSA-N Gln-Glu-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)N)N XJKAKYXMFHUIHT-AUTRQRHGSA-N 0.000 description 1
- VZRAXPGTUNDIDK-GUBZILKMSA-N Gln-Leu-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)N)N VZRAXPGTUNDIDK-GUBZILKMSA-N 0.000 description 1
- QKCZZAZNMMVICF-DCAQKATOSA-N Gln-Leu-Glu Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O QKCZZAZNMMVICF-DCAQKATOSA-N 0.000 description 1
- CAXXTYYGFYTBPV-IUCAKERBSA-N Gln-Leu-Gly Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O CAXXTYYGFYTBPV-IUCAKERBSA-N 0.000 description 1
- XZUUUKNKNWVPHQ-JYJNAYRXSA-N Gln-Phe-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O XZUUUKNKNWVPHQ-JYJNAYRXSA-N 0.000 description 1
- ARYKRXHBIPLULY-XKBZYTNZSA-N Gln-Thr-Ser Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O ARYKRXHBIPLULY-XKBZYTNZSA-N 0.000 description 1
- JTWZNMUVQWWGOX-SOUVJXGZSA-N Gln-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CCC(=O)N)N)C(=O)O JTWZNMUVQWWGOX-SOUVJXGZSA-N 0.000 description 1
- 101710186901 Globulin 1 Proteins 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- LKDIBBOKUAASNP-FXQIFTODSA-N Glu-Ala-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O LKDIBBOKUAASNP-FXQIFTODSA-N 0.000 description 1
- CKRUHITYRFNUKW-WDSKDSINSA-N Glu-Asn-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O CKRUHITYRFNUKW-WDSKDSINSA-N 0.000 description 1
- NTBDVNJIWCKURJ-ACZMJKKPSA-N Glu-Asp-Asn Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O NTBDVNJIWCKURJ-ACZMJKKPSA-N 0.000 description 1
- OXEMJGCAJFFREE-FXQIFTODSA-N Glu-Gln-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(O)=O OXEMJGCAJFFREE-FXQIFTODSA-N 0.000 description 1
- IQACOVZVOMVILH-FXQIFTODSA-N Glu-Glu-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O IQACOVZVOMVILH-FXQIFTODSA-N 0.000 description 1
- LGYCLOCORAEQSZ-PEFMBERDSA-N Glu-Ile-Asp Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(O)=O LGYCLOCORAEQSZ-PEFMBERDSA-N 0.000 description 1
- SWRVAQHFBRZVNX-GUBZILKMSA-N Glu-Lys-Asn Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O SWRVAQHFBRZVNX-GUBZILKMSA-N 0.000 description 1
- HOIPREWORBVRLD-XIRDDKMYSA-N Glu-Met-Trp Chemical compound CSCC[C@H](NC(=O)[C@@H](N)CCC(O)=O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(O)=O HOIPREWORBVRLD-XIRDDKMYSA-N 0.000 description 1
- TWYFJOHWGCCRIR-DCAQKATOSA-N Glu-Pro-Arg Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(O)=O TWYFJOHWGCCRIR-DCAQKATOSA-N 0.000 description 1
- ALMBZBOCGSVSAI-ACZMJKKPSA-N Glu-Ser-Asn Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(=O)N)C(=O)O)N ALMBZBOCGSVSAI-ACZMJKKPSA-N 0.000 description 1
- RFTVTKBHDXCEEX-WDSKDSINSA-N Glu-Ser-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(O)=O RFTVTKBHDXCEEX-WDSKDSINSA-N 0.000 description 1
- TWYSSILQABLLME-HJGDQZAQSA-N Glu-Thr-Arg Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O TWYSSILQABLLME-HJGDQZAQSA-N 0.000 description 1
- YPHPEHMXOYTEQG-LAEOZQHASA-N Glu-Val-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCC(O)=O YPHPEHMXOYTEQG-LAEOZQHASA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- BRFJMRSRMOMIMU-WHFBIAKZSA-N Gly-Ala-Asn Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(O)=O BRFJMRSRMOMIMU-WHFBIAKZSA-N 0.000 description 1
- MZZSCEANQDPJER-ONGXEEELSA-N Gly-Ala-Phe Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MZZSCEANQDPJER-ONGXEEELSA-N 0.000 description 1
- LERGJIVJIIODPZ-ZANVPECISA-N Gly-Ala-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](NC(=O)CN)C)C(O)=O)=CNC2=C1 LERGJIVJIIODPZ-ZANVPECISA-N 0.000 description 1
- JRDYDYXZKFNNRQ-XPUUQOCRSA-N Gly-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)CN JRDYDYXZKFNNRQ-XPUUQOCRSA-N 0.000 description 1
- JXYMPBCYRKWJEE-BQBZGAKWSA-N Gly-Arg-Ala Chemical compound [H]NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(O)=O JXYMPBCYRKWJEE-BQBZGAKWSA-N 0.000 description 1
- GRIRDMVMJJDZKV-RCOVLWMOSA-N Gly-Asn-Val Chemical compound [H]NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O GRIRDMVMJJDZKV-RCOVLWMOSA-N 0.000 description 1
- GYAUWXXORNTCHU-QWRGUYRKSA-N Gly-Cys-Tyr Chemical compound NCC(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 GYAUWXXORNTCHU-QWRGUYRKSA-N 0.000 description 1
- HDNXXTBKOJKWNN-WDSKDSINSA-N Gly-Glu-Asn Chemical compound NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O HDNXXTBKOJKWNN-WDSKDSINSA-N 0.000 description 1
- STVHDEHTKFXBJQ-LAEOZQHASA-N Gly-Glu-Ile Chemical compound [H]NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O STVHDEHTKFXBJQ-LAEOZQHASA-N 0.000 description 1
- JSNNHGHYGYMVCK-XVKPBYJWSA-N Gly-Glu-Val Chemical compound [H]NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O JSNNHGHYGYMVCK-XVKPBYJWSA-N 0.000 description 1
- YWAQATDNEKZFFK-BYPYZUCNSA-N Gly-Gly-Ser Chemical compound NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O YWAQATDNEKZFFK-BYPYZUCNSA-N 0.000 description 1
- BHPQOIPBLYJNAW-NGZCFLSTSA-N Gly-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)CN BHPQOIPBLYJNAW-NGZCFLSTSA-N 0.000 description 1
- NNCSJUBVFBDDLC-YUMQZZPRSA-N Gly-Leu-Ser Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O NNCSJUBVFBDDLC-YUMQZZPRSA-N 0.000 description 1
- LHYJCVCQPWRMKZ-WEDXCCLWSA-N Gly-Leu-Thr Chemical compound [H]NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LHYJCVCQPWRMKZ-WEDXCCLWSA-N 0.000 description 1
- PDUHNKAFQXQNLH-ZETCQYMHSA-N Gly-Lys-Gly Chemical compound NCCCC[C@H](NC(=O)CN)C(=O)NCC(O)=O PDUHNKAFQXQNLH-ZETCQYMHSA-N 0.000 description 1
- PTIIBFKSLCYQBO-NHCYSSNCSA-N Gly-Lys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)CN PTIIBFKSLCYQBO-NHCYSSNCSA-N 0.000 description 1
- SOEGEPHNZOISMT-BYPYZUCNSA-N Gly-Ser-Gly Chemical compound NCC(=O)N[C@@H](CO)C(=O)NCC(O)=O SOEGEPHNZOISMT-BYPYZUCNSA-N 0.000 description 1
- WNGHUXFWEWTKAO-YUMQZZPRSA-N Gly-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CN WNGHUXFWEWTKAO-YUMQZZPRSA-N 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 241000896246 Golovinomyces cichoracearum Species 0.000 description 1
- 240000000047 Gossypium barbadense Species 0.000 description 1
- 235000009429 Gossypium barbadense Nutrition 0.000 description 1
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 1
- 241000308375 Graminicola Species 0.000 description 1
- 241000190714 Gymnosporangium clavipes Species 0.000 description 1
- 241000193159 Hathewaya histolytica Species 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 241001480224 Heterodera Species 0.000 description 1
- 241001481225 Heterodera avenae Species 0.000 description 1
- AFPFGFUGETYOSY-HGNGGELXSA-N His-Ala-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O AFPFGFUGETYOSY-HGNGGELXSA-N 0.000 description 1
- RXVOMIADLXPJGW-GUBZILKMSA-N His-Asp-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O RXVOMIADLXPJGW-GUBZILKMSA-N 0.000 description 1
- LSQHWKPPOFDHHZ-YUMQZZPRSA-N His-Asp-Gly Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)NCC(=O)O)N LSQHWKPPOFDHHZ-YUMQZZPRSA-N 0.000 description 1
- OQDLKDUVMTUPPG-AVGNSLFASA-N His-Leu-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O OQDLKDUVMTUPPG-AVGNSLFASA-N 0.000 description 1
- QCBYAHHNOHBXIH-UWVGGRQHSA-N His-Pro-Gly Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)C1=CN=CN1 QCBYAHHNOHBXIH-UWVGGRQHSA-N 0.000 description 1
- CWSZWFILCNSNEX-CIUDSAMLSA-N His-Ser-Asn Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(=O)N)C(=O)O)N CWSZWFILCNSNEX-CIUDSAMLSA-N 0.000 description 1
- 101000812437 Homo sapiens ER lumen protein-retaining receptor 1 Proteins 0.000 description 1
- 101000899240 Homo sapiens Endoplasmic reticulum chaperone BiP Proteins 0.000 description 1
- 241000549404 Hyaloperonospora parasitica Species 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- JRHFQUPIZOYKQP-KBIXCLLPSA-N Ile-Ala-Glu Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCC(O)=O JRHFQUPIZOYKQP-KBIXCLLPSA-N 0.000 description 1
- UKTUOMWSJPXODT-GUDRVLHUSA-N Ile-Asn-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N1CCC[C@@H]1C(=O)O)N UKTUOMWSJPXODT-GUDRVLHUSA-N 0.000 description 1
- HVWXAQVMRBKKFE-UGYAYLCHSA-N Ile-Asp-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)N HVWXAQVMRBKKFE-UGYAYLCHSA-N 0.000 description 1
- WUKLZPHVWAMZQV-UKJIMTQDSA-N Ile-Glu-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](C(C)C)C(=O)O)N WUKLZPHVWAMZQV-UKJIMTQDSA-N 0.000 description 1
- KLBVGHCGHUNHEA-BJDJZHNGSA-N Ile-Leu-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)O)N KLBVGHCGHUNHEA-BJDJZHNGSA-N 0.000 description 1
- RQQCJTLBSJMVCR-DSYPUSFNSA-N Ile-Leu-Trp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N RQQCJTLBSJMVCR-DSYPUSFNSA-N 0.000 description 1
- IIWQTXMUALXGOV-PCBIJLKTSA-N Ile-Phe-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(=O)O)C(=O)O)N IIWQTXMUALXGOV-PCBIJLKTSA-N 0.000 description 1
- VEPIBPGLTLPBDW-URLPEUOOSA-N Ile-Phe-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N VEPIBPGLTLPBDW-URLPEUOOSA-N 0.000 description 1
- WLRJHVNFGAOYPS-HJPIBITLSA-N Ile-Ser-Tyr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N WLRJHVNFGAOYPS-HJPIBITLSA-N 0.000 description 1
- QGXQHJQPAPMACW-PPCPHDFISA-N Ile-Thr-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)O)N QGXQHJQPAPMACW-PPCPHDFISA-N 0.000 description 1
- UYODHPPSCXBNCS-XUXIUFHCSA-N Ile-Val-Leu Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC(C)C UYODHPPSCXBNCS-XUXIUFHCSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010021929 Infertility male Diseases 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 235000021506 Ipomoea Nutrition 0.000 description 1
- 241000207783 Ipomoea Species 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 241000222058 Kabatiella Species 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- TYYLDKGBCJGJGW-UHFFFAOYSA-N L-tryptophan-L-tyrosine Natural products C=1NC2=CC=CC=C2C=1CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 TYYLDKGBCJGJGW-UHFFFAOYSA-N 0.000 description 1
- 241001468155 Lactobacillaceae Species 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000219729 Lathyrus Species 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000611348 Leifsonia xyli subsp. xyli Species 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 241000228457 Leptosphaeria maculans Species 0.000 description 1
- 241001198950 Leptosphaerulina trifolii Species 0.000 description 1
- 244000309551 Leptotrochila medicaginis Species 0.000 description 1
- LJHGALIOHLRRQN-DCAQKATOSA-N Leu-Ala-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N LJHGALIOHLRRQN-DCAQKATOSA-N 0.000 description 1
- KWTVLKBOQATPHJ-SRVKXCTJSA-N Leu-Ala-Lys Chemical compound C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(C)C)N KWTVLKBOQATPHJ-SRVKXCTJSA-N 0.000 description 1
- DQPQTXMIRBUWKO-DCAQKATOSA-N Leu-Ala-Met Chemical compound C[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CC(C)C)N DQPQTXMIRBUWKO-DCAQKATOSA-N 0.000 description 1
- XBBKIIGCUMBKCO-JXUBOQSCSA-N Leu-Ala-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XBBKIIGCUMBKCO-JXUBOQSCSA-N 0.000 description 1
- BPANDPNDMJHFEV-CIUDSAMLSA-N Leu-Asp-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O BPANDPNDMJHFEV-CIUDSAMLSA-N 0.000 description 1
- NFHJQETXTSDZSI-DCAQKATOSA-N Leu-Cys-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O NFHJQETXTSDZSI-DCAQKATOSA-N 0.000 description 1
- YORLGJINWYYIMX-KKUMJFAQSA-N Leu-Cys-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O YORLGJINWYYIMX-KKUMJFAQSA-N 0.000 description 1
- PIHFVNPEAHFNLN-KKUMJFAQSA-N Leu-Cys-Tyr Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N PIHFVNPEAHFNLN-KKUMJFAQSA-N 0.000 description 1
- GLBNEGIOFRVRHO-JYJNAYRXSA-N Leu-Gln-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O GLBNEGIOFRVRHO-JYJNAYRXSA-N 0.000 description 1
- POZULHZYLPGXMR-ONGXEEELSA-N Leu-Gly-Val Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O POZULHZYLPGXMR-ONGXEEELSA-N 0.000 description 1
- BTNXKBVLWJBTNR-SRVKXCTJSA-N Leu-His-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(N)=O)C(O)=O BTNXKBVLWJBTNR-SRVKXCTJSA-N 0.000 description 1
- KUIDCYNIEJBZBU-AJNGGQMLSA-N Leu-Ile-Leu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O KUIDCYNIEJBZBU-AJNGGQMLSA-N 0.000 description 1
- KYIIALJHAOIAHF-KKUMJFAQSA-N Leu-Leu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 KYIIALJHAOIAHF-KKUMJFAQSA-N 0.000 description 1
- UCNNZELZXFXXJQ-BZSNNMDCSA-N Leu-Leu-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 UCNNZELZXFXXJQ-BZSNNMDCSA-N 0.000 description 1
- RZXLZBIUTDQHJQ-SRVKXCTJSA-N Leu-Lys-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O RZXLZBIUTDQHJQ-SRVKXCTJSA-N 0.000 description 1
- DPURXCQCHSQPAN-AVGNSLFASA-N Leu-Pro-Pro Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DPURXCQCHSQPAN-AVGNSLFASA-N 0.000 description 1
- MVHXGBZUJLWZOH-BJDJZHNGSA-N Leu-Ser-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O MVHXGBZUJLWZOH-BJDJZHNGSA-N 0.000 description 1
- SQUFDMCWMFOEBA-KKUMJFAQSA-N Leu-Ser-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 SQUFDMCWMFOEBA-KKUMJFAQSA-N 0.000 description 1
- VUBIPAHVHMZHCM-KKUMJFAQSA-N Leu-Tyr-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CO)C(O)=O)CC1=CC=C(O)C=C1 VUBIPAHVHMZHCM-KKUMJFAQSA-N 0.000 description 1
- MVJRBCJCRYGCKV-GVXVVHGQSA-N Leu-Val-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O MVJRBCJCRYGCKV-GVXVVHGQSA-N 0.000 description 1
- 241000192132 Leuconostoc Species 0.000 description 1
- 108010034715 Light-Harvesting Protein Complexes Proteins 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- 244000309548 Longiseptatispora meliloti Species 0.000 description 1
- 241000215452 Lotus corniculatus Species 0.000 description 1
- VHXMZJGOKIMETG-CQDKDKBSSA-N Lys-Ala-Tyr Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)NC(=O)[C@H](CCCCN)N VHXMZJGOKIMETG-CQDKDKBSSA-N 0.000 description 1
- ZTPWXNOOKAXPPE-DCAQKATOSA-N Lys-Arg-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N ZTPWXNOOKAXPPE-DCAQKATOSA-N 0.000 description 1
- BYPMOIFBQPEWOH-CIUDSAMLSA-N Lys-Asn-Asp Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N BYPMOIFBQPEWOH-CIUDSAMLSA-N 0.000 description 1
- CTBMEDOQJFGNMI-IHPCNDPISA-N Lys-His-Trp Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)NC(=O)[C@H](CC3=CN=CN3)NC(=O)[C@H](CCCCN)N CTBMEDOQJFGNMI-IHPCNDPISA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101150050813 MPI gene Proteins 0.000 description 1
- 241000208467 Macadamia Species 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 240000007575 Macadamia integrifolia Species 0.000 description 1
- 241000584607 Macrospora Species 0.000 description 1
- 241001598086 Magnaporthiopsis maydis Species 0.000 description 1
- 241000499445 Maize chlorotic dwarf virus Species 0.000 description 1
- 241000495102 Maize mosaic nucleorhabdovirus Species 0.000 description 1
- 241000611254 Maize rayado fino virus Species 0.000 description 1
- 241000702659 Maize rough dwarf virus Species 0.000 description 1
- 241000702489 Maize streak virus Species 0.000 description 1
- 241000724202 Maize stripe tenuivirus Species 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 208000007466 Male Infertility Diseases 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 235000004456 Manihot esculenta Nutrition 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 101000763602 Manilkara zapota Thaumatin-like protein 1 Proteins 0.000 description 1
- 101000763586 Manilkara zapota Thaumatin-like protein 1a Proteins 0.000 description 1
- 235000010624 Medicago sativa Nutrition 0.000 description 1
- 241001143352 Meloidogyne Species 0.000 description 1
- 241000243785 Meloidogyne javanica Species 0.000 description 1
- ONGCSGVHCSAATF-CIUDSAMLSA-N Met-Ala-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCC(O)=O ONGCSGVHCSAATF-CIUDSAMLSA-N 0.000 description 1
- HUKLXYYPZWPXCC-KZVJFYERSA-N Met-Ala-Thr Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O HUKLXYYPZWPXCC-KZVJFYERSA-N 0.000 description 1
- OHMKUHXCDSCOMT-QXEWZRGKSA-N Met-Asn-Val Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O OHMKUHXCDSCOMT-QXEWZRGKSA-N 0.000 description 1
- MYKLINMAGAIRPJ-CIUDSAMLSA-N Met-Gln-Asn Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O MYKLINMAGAIRPJ-CIUDSAMLSA-N 0.000 description 1
- QMIXOTQHYHOUJP-KKUMJFAQSA-N Met-Gln-Tyr Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N QMIXOTQHYHOUJP-KKUMJFAQSA-N 0.000 description 1
- MTBVQFFQMXHCPC-CIUDSAMLSA-N Met-Glu-Asp Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O MTBVQFFQMXHCPC-CIUDSAMLSA-N 0.000 description 1
- 241001022799 Microdochium sorghi Species 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 241000234295 Musa Species 0.000 description 1
- 101000966653 Musa acuminata Glucan endo-1,3-beta-glucosidase Proteins 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 1
- 108010002311 N-glycylglutamic acid Proteins 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 241001443590 Naganishia albida Species 0.000 description 1
- 241000033319 Naganishia diffluens Species 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 241000083076 Neopseudocercosporella brassicae Species 0.000 description 1
- 241000368696 Nigrospora oryzae Species 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 235000002725 Olea europaea Nutrition 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 241000932831 Pantoea stewartii Species 0.000 description 1
- 241000222051 Papiliotrema laurentii Species 0.000 description 1
- 241000218222 Parasponia andersonii Species 0.000 description 1
- 241000787361 Parastagonospora avenae Species 0.000 description 1
- 241000736122 Parastagonospora nodorum Species 0.000 description 1
- 101710096342 Pathogenesis-related protein Proteins 0.000 description 1
- 241000588701 Pectobacterium carotovorum Species 0.000 description 1
- 241000985513 Penicillium oxalicum Species 0.000 description 1
- 244000038248 Pennisetum spicatum Species 0.000 description 1
- 244000115721 Pennisetum typhoides Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 241000063951 Perconia Species 0.000 description 1
- 241000596140 Peronosclerospora Species 0.000 description 1
- 241000760719 Peronosclerospora maydis Species 0.000 description 1
- 241001670203 Peronospora manshurica Species 0.000 description 1
- 241000342283 Peronospora trifoliorum Species 0.000 description 1
- 244000100170 Phaseolus lunatus Species 0.000 description 1
- 101000870887 Phaseolus vulgaris Glycine-rich cell wall structural protein 1.8 Proteins 0.000 description 1
- QCHNRQQVLJYDSI-DLOVCJGASA-N Phe-Asn-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 QCHNRQQVLJYDSI-DLOVCJGASA-N 0.000 description 1
- WMGVYPPIMZPWPN-SRVKXCTJSA-N Phe-Asp-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N WMGVYPPIMZPWPN-SRVKXCTJSA-N 0.000 description 1
- METZZBCMDXHFMK-BZSNNMDCSA-N Phe-Leu-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CC2=CC=CC=C2)N METZZBCMDXHFMK-BZSNNMDCSA-N 0.000 description 1
- GLJZDMZJHFXJQG-BZSNNMDCSA-N Phe-Ser-Phe Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O GLJZDMZJHFXJQG-BZSNNMDCSA-N 0.000 description 1
- 244000309499 Phoma insidiosa Species 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-OUBTZVSYSA-N Phosphorus-32 Chemical compound [32P] OAICVXFJPJFONN-OUBTZVSYSA-N 0.000 description 1
- 241000607568 Photobacterium Species 0.000 description 1
- 241001478707 Phyllosticta sojicola Species 0.000 description 1
- 241001246239 Physopella Species 0.000 description 1
- 241000233620 Phytophthora cryptogea Species 0.000 description 1
- 240000000020 Picea glauca Species 0.000 description 1
- 235000008127 Picea glauca Nutrition 0.000 description 1
- 241000218595 Picea sitchensis Species 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 235000005205 Pinus Nutrition 0.000 description 1
- 241000218602 Pinus <genus> Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000008593 Pinus contorta Nutrition 0.000 description 1
- 235000011334 Pinus elliottii Nutrition 0.000 description 1
- 241000142776 Pinus elliottii Species 0.000 description 1
- 244000019397 Pinus jeffreyi Species 0.000 description 1
- 241000555277 Pinus ponderosa Species 0.000 description 1
- 235000013269 Pinus ponderosa var ponderosa Nutrition 0.000 description 1
- 235000013268 Pinus ponderosa var scopulorum Nutrition 0.000 description 1
- 239000005924 Pirimiphos-methyl Substances 0.000 description 1
- 241000233610 Plasmopara halstedii Species 0.000 description 1
- 108090000051 Plastocyanin Proteins 0.000 description 1
- 241000886313 Plenodomus lindquistii Species 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- 241000710078 Potyvirus Species 0.000 description 1
- 241000193943 Pratylenchus Species 0.000 description 1
- LNLNHXIQPGKRJQ-SRVKXCTJSA-N Pro-Arg-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H]1CCCN1 LNLNHXIQPGKRJQ-SRVKXCTJSA-N 0.000 description 1
- SGCZFWSQERRKBD-BQBZGAKWSA-N Pro-Asp-Gly Chemical compound OC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]1CCCN1 SGCZFWSQERRKBD-BQBZGAKWSA-N 0.000 description 1
- KIPIKSXPPLABPN-CIUDSAMLSA-N Pro-Glu-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CCCN1 KIPIKSXPPLABPN-CIUDSAMLSA-N 0.000 description 1
- NMELOOXSGDRBRU-YUMQZZPRSA-N Pro-Glu-Gly Chemical compound OC(=O)CNC(=O)[C@H](CCC(=O)O)NC(=O)[C@@H]1CCCN1 NMELOOXSGDRBRU-YUMQZZPRSA-N 0.000 description 1
- RCYUBVHMVUHEBM-RCWTZXSCSA-N Pro-Pro-Thr Chemical compound [H]N1CCC[C@H]1C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(O)=O RCYUBVHMVUHEBM-RCWTZXSCSA-N 0.000 description 1
- CZCCVJUUWBMISW-FXQIFTODSA-N Pro-Ser-Cys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O CZCCVJUUWBMISW-FXQIFTODSA-N 0.000 description 1
- QUBVFEANYYWBTM-VEVYYDQMSA-N Pro-Thr-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O QUBVFEANYYWBTM-VEVYYDQMSA-N 0.000 description 1
- ZYJMLBCDFPIGNL-JYJNAYRXSA-N Pro-Tyr-Arg Chemical compound NC(=N)NCCC[C@H](NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H]1CCCN1)C(O)=O ZYJMLBCDFPIGNL-JYJNAYRXSA-N 0.000 description 1
- KHRLUIPIMIQFGT-AVGNSLFASA-N Pro-Val-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O KHRLUIPIMIQFGT-AVGNSLFASA-N 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 240000008296 Prunus serotina Species 0.000 description 1
- 235000014441 Prunus serotina Nutrition 0.000 description 1
- 241000682843 Pseudocercosporella Species 0.000 description 1
- 241000947836 Pseudomonadaceae Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241001480435 Pseudopeziza medicaginis Species 0.000 description 1
- 235000008572 Pseudotsuga menziesii Nutrition 0.000 description 1
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- 240000001679 Psidium guajava Species 0.000 description 1
- 235000013929 Psidium pyriferum Nutrition 0.000 description 1
- 241000567197 Puccinia graminis f. sp. tritici Species 0.000 description 1
- 241000183512 Puccinia helianthi Species 0.000 description 1
- 241001304534 Puccinia polysora Species 0.000 description 1
- 241001304535 Puccinia purpurea Species 0.000 description 1
- 241001123569 Puccinia recondita Species 0.000 description 1
- 241001123567 Puccinia sorghi Species 0.000 description 1
- 241001123583 Puccinia striiformis Species 0.000 description 1
- 241001192932 Pustula tragopogonis Species 0.000 description 1
- 241000190117 Pyrenophora tritici-repentis Species 0.000 description 1
- 238000012181 QIAquick gel extraction kit Methods 0.000 description 1
- 101150075111 ROLB gene Proteins 0.000 description 1
- 244000309516 Ramulispora sorghicola Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241001633102 Rhizobiaceae Species 0.000 description 1
- 241000235546 Rhizopus stolonifer Species 0.000 description 1
- 241000158450 Rhodobacter sp. KYW73 Species 0.000 description 1
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 1
- 241000190932 Rhodopseudomonas Species 0.000 description 1
- 241000223253 Rhodotorula glutinis Species 0.000 description 1
- 241000223254 Rhodotorula mucilaginosa Species 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 235000011449 Rosa Nutrition 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 108010000614 SEKDEL sequence Proteins 0.000 description 1
- 241000209051 Saccharum Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 241001183191 Sclerophthora macrospora Species 0.000 description 1
- 241000342322 Sclerospora graminicola Species 0.000 description 1
- 241001136641 Sclerotinia trifoliorum Species 0.000 description 1
- 241001479507 Senecio odorus Species 0.000 description 1
- 241001597349 Septoria glycines Species 0.000 description 1
- 241000093892 Septoria helianthi Species 0.000 description 1
- 241001116459 Sequoia Species 0.000 description 1
- DKKGAAJTDKHWOD-BIIVOSGPSA-N Ser-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CO)N)C(=O)O DKKGAAJTDKHWOD-BIIVOSGPSA-N 0.000 description 1
- RDFQNDHEHVSONI-ZLUOBGJFSA-N Ser-Asn-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O RDFQNDHEHVSONI-ZLUOBGJFSA-N 0.000 description 1
- CTRHXXXHUJTTRZ-ZLUOBGJFSA-N Ser-Asp-Cys Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CO)N)C(=O)O CTRHXXXHUJTTRZ-ZLUOBGJFSA-N 0.000 description 1
- NJSPTZXVPZDRCU-UBHSHLNASA-N Ser-Asp-Trp Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CO)N NJSPTZXVPZDRCU-UBHSHLNASA-N 0.000 description 1
- WKLJLEXEENIYQE-SRVKXCTJSA-N Ser-Cys-Tyr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O WKLJLEXEENIYQE-SRVKXCTJSA-N 0.000 description 1
- WBINSDOPZHQPPM-AVGNSLFASA-N Ser-Glu-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CO)N)O WBINSDOPZHQPPM-AVGNSLFASA-N 0.000 description 1
- GZFAWAQTEYDKII-YUMQZZPRSA-N Ser-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CO GZFAWAQTEYDKII-YUMQZZPRSA-N 0.000 description 1
- UIGMAMGZOJVTDN-WHFBIAKZSA-N Ser-Gly-Ser Chemical compound OC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O UIGMAMGZOJVTDN-WHFBIAKZSA-N 0.000 description 1
- XERQKTRGJIKTRB-CIUDSAMLSA-N Ser-His-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CO)N)CC1=CN=CN1 XERQKTRGJIKTRB-CIUDSAMLSA-N 0.000 description 1
- IOVBCLGAJJXOHK-SRVKXCTJSA-N Ser-His-His Chemical compound C([C@H](NC(=O)[C@H](CO)N)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CN=CN1 IOVBCLGAJJXOHK-SRVKXCTJSA-N 0.000 description 1
- WGDYNRCOQRERLZ-KKUMJFAQSA-N Ser-Lys-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)N WGDYNRCOQRERLZ-KKUMJFAQSA-N 0.000 description 1
- NIOYDASGXWLHEZ-CIUDSAMLSA-N Ser-Met-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(O)=O NIOYDASGXWLHEZ-CIUDSAMLSA-N 0.000 description 1
- WOJYIMBIKTWKJO-KKUMJFAQSA-N Ser-Phe-His Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)NC(=O)[C@H](CO)N WOJYIMBIKTWKJO-KKUMJFAQSA-N 0.000 description 1
- KQNDIKOYWZTZIX-FXQIFTODSA-N Ser-Ser-Arg Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCNC(N)=N KQNDIKOYWZTZIX-FXQIFTODSA-N 0.000 description 1
- OZPDGESCTGGNAD-CIUDSAMLSA-N Ser-Ser-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CO OZPDGESCTGGNAD-CIUDSAMLSA-N 0.000 description 1
- ILZAUMFXKSIUEF-SRVKXCTJSA-N Ser-Ser-Phe Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ILZAUMFXKSIUEF-SRVKXCTJSA-N 0.000 description 1
- XQJCEKXQUJQNNK-ZLUOBGJFSA-N Ser-Ser-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O XQJCEKXQUJQNNK-ZLUOBGJFSA-N 0.000 description 1
- SOACHCFYJMCMHC-BWBBJGPYSA-N Ser-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CO)N)O SOACHCFYJMCMHC-BWBBJGPYSA-N 0.000 description 1
- VVKVHAOOUGNDPJ-SRVKXCTJSA-N Ser-Tyr-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(O)=O VVKVHAOOUGNDPJ-SRVKXCTJSA-N 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 235000008515 Setaria glauca Nutrition 0.000 description 1
- 235000007226 Setaria italica Nutrition 0.000 description 1
- 241000266353 Setosphaeria pedicellata Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241001135883 Soil-borne wheat mosaic virus Species 0.000 description 1
- 235000007230 Sorghum bicolor Nutrition 0.000 description 1
- 241000723811 Soybean mosaic virus Species 0.000 description 1
- 241000253368 Spirillaceae Species 0.000 description 1
- 241000605008 Spirillum Species 0.000 description 1
- 241000202917 Spiroplasma Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 241000893482 Sporisorium sorghi Species 0.000 description 1
- 241000123675 Sporobolomyces roseus Species 0.000 description 1
- 108010039811 Starch synthase Proteins 0.000 description 1
- 241000514831 Stemphylium botryosum Species 0.000 description 1
- 241000116011 Stenocarpella macrospora Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- SSDZRWBPFCFZGB-UHFFFAOYSA-N TCA-ethadyl Chemical compound ClC(Cl)(Cl)C(=O)OCCOC(=O)C(Cl)(Cl)Cl SSDZRWBPFCFZGB-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 235000006468 Thea sinensis Nutrition 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 239000005843 Thiram Substances 0.000 description 1
- YRNBANYVJJBGDI-VZFHVOOUSA-N Thr-Ala-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(=O)O)N)O YRNBANYVJJBGDI-VZFHVOOUSA-N 0.000 description 1
- LHUBVKCLOVALIA-HJGDQZAQSA-N Thr-Arg-Gln Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(O)=O LHUBVKCLOVALIA-HJGDQZAQSA-N 0.000 description 1
- NAXBBCLCEOTAIG-RHYQMDGZSA-N Thr-Arg-Lys Chemical compound NC(N)=NCCC[C@H](NC(=O)[C@@H](N)[C@H](O)C)C(=O)N[C@@H](CCCCN)C(O)=O NAXBBCLCEOTAIG-RHYQMDGZSA-N 0.000 description 1
- CQNFRKAKGDSJFR-NUMRIWBASA-N Thr-Glu-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N)O CQNFRKAKGDSJFR-NUMRIWBASA-N 0.000 description 1
- KBLYJPQSNGTDIU-LOKLDPHHSA-N Thr-Glu-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N)O KBLYJPQSNGTDIU-LOKLDPHHSA-N 0.000 description 1
- SIMKLINEDYOTKL-MBLNEYKQSA-N Thr-His-Ala Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](C)C(=O)O)N)O SIMKLINEDYOTKL-MBLNEYKQSA-N 0.000 description 1
- YUOCMLNTUZAGNF-KLHWPWHYSA-N Thr-His-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N2CCC[C@@H]2C(=O)O)N)O YUOCMLNTUZAGNF-KLHWPWHYSA-N 0.000 description 1
- GXUWHVZYDAHFSV-FLBSBUHZSA-N Thr-Ile-Thr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O GXUWHVZYDAHFSV-FLBSBUHZSA-N 0.000 description 1
- HOVLHEKTGVIKAP-WDCWCFNPSA-N Thr-Leu-Gln Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O HOVLHEKTGVIKAP-WDCWCFNPSA-N 0.000 description 1
- SCSVNSNWUTYSFO-WDCWCFNPSA-N Thr-Lys-Glu Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O SCSVNSNWUTYSFO-WDCWCFNPSA-N 0.000 description 1
- AHERARIZBPOMNU-KATARQTJSA-N Thr-Ser-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O AHERARIZBPOMNU-KATARQTJSA-N 0.000 description 1
- VUXIQSUQQYNLJP-XAVMHZPKSA-N Thr-Ser-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N)O VUXIQSUQQYNLJP-XAVMHZPKSA-N 0.000 description 1
- LVRFMARKDGGZMX-IZPVPAKOSA-N Thr-Tyr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)O)C(O)=O)CC1=CC=C(O)C=C1 LVRFMARKDGGZMX-IZPVPAKOSA-N 0.000 description 1
- 235000015450 Tilia cordata Nutrition 0.000 description 1
- 240000007313 Tilia cordata Species 0.000 description 1
- 241000722093 Tilletia caries Species 0.000 description 1
- 241000167577 Tilletia indica Species 0.000 description 1
- 241000031845 Tilletia laevis Species 0.000 description 1
- 241000723677 Tobacco ringspot virus Species 0.000 description 1
- 241000724291 Tobacco streak virus Species 0.000 description 1
- 241000016010 Tomato spotted wilt orthotospovirus Species 0.000 description 1
- 244000288561 Torulaspora delbrueckii Species 0.000 description 1
- 235000014681 Torulaspora delbrueckii Nutrition 0.000 description 1
- 241001495125 Torulaspora pretoriensis Species 0.000 description 1
- 241000218225 Trema Species 0.000 description 1
- 241000223261 Trichoderma viride Species 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 101150046432 Tril gene Proteins 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- AVYVKJMBNLPWRX-WFBYXXMGSA-N Trp-Ala-Ser Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O)=CNC2=C1 AVYVKJMBNLPWRX-WFBYXXMGSA-N 0.000 description 1
- TZNNEYFZZAHLBL-BPUTZDHNSA-N Trp-Arg-Asp Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O TZNNEYFZZAHLBL-BPUTZDHNSA-N 0.000 description 1
- DTPARJBMONKGGC-IHPCNDPISA-N Trp-Cys-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N DTPARJBMONKGGC-IHPCNDPISA-N 0.000 description 1
- PFCQMGDEHBTIIM-JYBASQMISA-N Trp-Cys-Thr Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@H](O)C)C(O)=O)=CNC2=C1 PFCQMGDEHBTIIM-JYBASQMISA-N 0.000 description 1
- JWGRSJCYCXEIKH-QEJZJMRPSA-N Trp-Glu-Cys Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N JWGRSJCYCXEIKH-QEJZJMRPSA-N 0.000 description 1
- RERRMBXDSFMBQE-ZFWWWQNUSA-N Trp-Met-Gly Chemical compound CSCC[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N RERRMBXDSFMBQE-ZFWWWQNUSA-N 0.000 description 1
- SSSDKJMQMZTMJP-BVSLBCMMSA-N Trp-Tyr-Val Chemical compound C([C@@H](C(=O)N[C@@H](C(C)C)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CC=C(O)C=C1 SSSDKJMQMZTMJP-BVSLBCMMSA-N 0.000 description 1
- 108010075344 Tryptophan synthase Proteins 0.000 description 1
- 240000003021 Tsuga heterophylla Species 0.000 description 1
- 235000008554 Tsuga heterophylla Nutrition 0.000 description 1
- 241000722923 Tulipa Species 0.000 description 1
- 241000722921 Tulipa gesneriana Species 0.000 description 1
- AZZLDIDWPZLCCW-ZEWNOJEFSA-N Tyr-Ile-Phe Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O AZZLDIDWPZLCCW-ZEWNOJEFSA-N 0.000 description 1
- HZDQUVQEVVYDDA-ACRUOGEOSA-N Tyr-Tyr-Leu Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HZDQUVQEVVYDDA-ACRUOGEOSA-N 0.000 description 1
- BQASAMYRHNCKQE-IHRRRGAJSA-N Tyr-Val-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N BQASAMYRHNCKQE-IHRRRGAJSA-N 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 241000083901 Urocystis agropyri Species 0.000 description 1
- 241000965658 Uromyces striatus Species 0.000 description 1
- 241000237690 Ustilago cruenta Species 0.000 description 1
- 235000015919 Ustilago maydis Nutrition 0.000 description 1
- 244000301083 Ustilago maydis Species 0.000 description 1
- 108010064997 VPY tripeptide Proteins 0.000 description 1
- ZLFHAAGHGQBQQN-GUBZILKMSA-N Val-Ala-Pro Natural products CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O ZLFHAAGHGQBQQN-GUBZILKMSA-N 0.000 description 1
- CVUDMNSZAIZFAE-UHFFFAOYSA-N Val-Arg-Pro Natural products NC(N)=NCCCC(NC(=O)C(N)C(C)C)C(=O)N1CCCC1C(O)=O CVUDMNSZAIZFAE-UHFFFAOYSA-N 0.000 description 1
- FRUYSSRPJXNRRB-GUBZILKMSA-N Val-Cys-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N FRUYSSRPJXNRRB-GUBZILKMSA-N 0.000 description 1
- FPCIBLUVDNXPJO-XPUUQOCRSA-N Val-Cys-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CS)C(=O)NCC(O)=O FPCIBLUVDNXPJO-XPUUQOCRSA-N 0.000 description 1
- YLHLNFUXDBOAGX-DCAQKATOSA-N Val-Cys-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N YLHLNFUXDBOAGX-DCAQKATOSA-N 0.000 description 1
- JXGWQYWDUOWQHA-DZKIICNBSA-N Val-Gln-Phe Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N JXGWQYWDUOWQHA-DZKIICNBSA-N 0.000 description 1
- BTWMICVCQLKKNR-DCAQKATOSA-N Val-Leu-Ser Chemical compound CC(C)[C@H]([NH3+])C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C([O-])=O BTWMICVCQLKKNR-DCAQKATOSA-N 0.000 description 1
- MBGFDZDWMDLXHQ-GUBZILKMSA-N Val-Met-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](C(C)C)N MBGFDZDWMDLXHQ-GUBZILKMSA-N 0.000 description 1
- QZKVWWIUSQGWMY-IHRRRGAJSA-N Val-Ser-Phe Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QZKVWWIUSQGWMY-IHRRRGAJSA-N 0.000 description 1
- PFMSJVIPEZMKSC-DZKIICNBSA-N Val-Tyr-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N PFMSJVIPEZMKSC-DZKIICNBSA-N 0.000 description 1
- JSOXWWFKRJKTMT-WOPDTQHZSA-N Val-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)O)N JSOXWWFKRJKTMT-WOPDTQHZSA-N 0.000 description 1
- 241000324230 Valsa translucens Species 0.000 description 1
- 241001123669 Verticillium albo-atrum Species 0.000 description 1
- 241000020705 Verticillium alfalfae Species 0.000 description 1
- 241001123668 Verticillium dahliae Species 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 241000219977 Vigna Species 0.000 description 1
- 240000004922 Vigna radiata Species 0.000 description 1
- 235000010721 Vigna radiata var radiata Nutrition 0.000 description 1
- 235000011469 Vigna radiata var sublobata Nutrition 0.000 description 1
- 235000010726 Vigna sinensis Nutrition 0.000 description 1
- 108700010756 Viral Polyproteins Proteins 0.000 description 1
- 108700002693 Viral Replicase Complex Proteins Proteins 0.000 description 1
- 241000726445 Viroids Species 0.000 description 1
- 229930003571 Vitamin B5 Natural products 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 241000209149 Zea Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 101001036768 Zea mays Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic/amyloplastic Proteins 0.000 description 1
- 101001040871 Zea mays Glutelin-2 Proteins 0.000 description 1
- 101000662549 Zea mays Sucrose synthase 1 Proteins 0.000 description 1
- 241000588901 Zymomonas Species 0.000 description 1
- 241001360088 Zymoseptoria tritici Species 0.000 description 1
- 230000000895 acaricidal effect Effects 0.000 description 1
- 239000000642 acaricide Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001251 acridines Chemical class 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 239000012872 agrochemical composition Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940010556 ammonium phosphate Drugs 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- 230000000680 avirulence Effects 0.000 description 1
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- OCBHHZMJRVXXQK-UHFFFAOYSA-M benzyl-dimethyl-tetradecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 OCBHHZMJRVXXQK-UHFFFAOYSA-M 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- JIJAYWGYIDJVJI-UHFFFAOYSA-N butyl naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)OCCCC)=CC=CC2=C1 JIJAYWGYIDJVJI-UHFFFAOYSA-N 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 229940117949 captan Drugs 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- GYSSRZJIHXQEHQ-UHFFFAOYSA-N carboxin Chemical compound S1CCOC(C)=C1C(=O)NC1=CC=CC=C1 GYSSRZJIHXQEHQ-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000012677 causal agent Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- TVFDJXOCXUVLDH-RNFDNDRNSA-N cesium-137 Chemical compound [137Cs] TVFDJXOCXUVLDH-RNFDNDRNSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002962 chemical mutagen Substances 0.000 description 1
- 230000031902 chemoattractant activity Effects 0.000 description 1
- 108010031100 chloroplast transit peptides Proteins 0.000 description 1
- VJYIFXVZLXQVHO-UHFFFAOYSA-N chlorsulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)Cl)=N1 VJYIFXVZLXQVHO-UHFFFAOYSA-N 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000003967 crop rotation Methods 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 108010016616 cysteinylglycine Proteins 0.000 description 1
- 239000004062 cytokinin Substances 0.000 description 1
- UQHKFADEQIVWID-UHFFFAOYSA-N cytokinin Natural products C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1CC(O)C(CO)O1 UQHKFADEQIVWID-UHFFFAOYSA-N 0.000 description 1
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical class NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229940111685 dibasic potassium phosphate Drugs 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- KWABLUYIOFEZOY-UHFFFAOYSA-N dioctyl butanedioate Chemical compound CCCCCCCCOC(=O)CCC(=O)OCCCCCCCC KWABLUYIOFEZOY-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical class O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000003008 fumonisin Substances 0.000 description 1
- 244000000004 fungal plant pathogen Species 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 1
- 238000010359 gene isolation Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 101150091511 glb-1 gene Proteins 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 1
- 108010037850 glycylvaline Proteins 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 108010041601 histidyl-aspartyl-glutamyl-leucine Proteins 0.000 description 1
- 108010085325 histidylproline Proteins 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 244000052637 human pathogen Species 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009399 inbreeding Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 108010078274 isoleucylvaline Proteins 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 230000000974 larvacidal effect Effects 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 235000014684 lodgepole pine Nutrition 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 108010089256 lysyl-aspartyl-glutamyl-leucine Proteins 0.000 description 1
- 108010064235 lysylglycine Proteins 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000007102 metabolic function Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000002252 panizo Nutrition 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 108010051242 phenylalanylserine Proteins 0.000 description 1
- 108010083476 phenylalanyltryptophan Proteins 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229940097886 phosphorus 32 Drugs 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- QHOQHJPRIBSPCY-UHFFFAOYSA-N pirimiphos-methyl Chemical group CCN(CC)C1=NC(C)=CC(OP(=S)(OC)OC)=N1 QHOQHJPRIBSPCY-UHFFFAOYSA-N 0.000 description 1
- 239000005648 plant growth regulator Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 210000002706 plastid Anatomy 0.000 description 1
- 230000010152 pollination Effects 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000003405 preventing effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 108010070643 prolylglutamic acid Proteins 0.000 description 1
- 108010029020 prolylglycine Proteins 0.000 description 1
- 108010015796 prolylisoleucine Proteins 0.000 description 1
- 108010053725 prolylvaline Proteins 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000005892 protein maturation Effects 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 108010050873 prunasin hydrolase Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 235000008160 pyridoxine Nutrition 0.000 description 1
- 239000011677 pyridoxine Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 101150100657 rsef-1 gene Proteins 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 108010026333 seryl-proline Proteins 0.000 description 1
- QYOJSKGCWNAKGW-HCWXCVPCSA-N shikimate-3-phosphate Chemical compound O[C@H]1CC(C(O)=O)=C[C@H](OP(O)(O)=O)[C@@H]1O QYOJSKGCWNAKGW-HCWXCVPCSA-N 0.000 description 1
- 235000000673 shore pine Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229960001866 silicon dioxide Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940080236 sodium cetyl sulfate Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- GGHPAKFFUZUEKL-UHFFFAOYSA-M sodium;hexadecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCCCOS([O-])(=O)=O GGHPAKFFUZUEKL-UHFFFAOYSA-M 0.000 description 1
- NWZBFJYXRGSRGD-UHFFFAOYSA-M sodium;octadecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCCCCCOS([O-])(=O)=O NWZBFJYXRGSRGD-UHFFFAOYSA-M 0.000 description 1
- 108010048090 soybean lectin Proteins 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007361 sporulation-agar Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- HOWHQWFXSLOJEF-MGZLOUMQSA-N systemin Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]2N(CCC2)C(=O)[C@H]2N(CCC2)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)C(C)C)CCC1 HOWHQWFXSLOJEF-MGZLOUMQSA-N 0.000 description 1
- 108010050014 systemin Proteins 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 108010080629 tryptophan-leucine Proteins 0.000 description 1
- 108010014563 tryptophyl-cysteinyl-serine Proteins 0.000 description 1
- 108010044292 tryptophyltyrosine Proteins 0.000 description 1
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000009492 vitamin B5 Nutrition 0.000 description 1
- 239000011675 vitamin B5 Substances 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000004563 wettable powder Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from fungal fermentation broths. Nucleic acids that encode the antipathogenic polypeptides are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.
Description
ANTIFUNGAL POLYPEPTIDES AND USES THEREOF IN INDUCING FUNGAL
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with government support under contract number DE-ACO2-= 05CH I 1231 awarded by the United States Depai tment of Energy.
The government has certain rights in the invention.
FIELD OF THE INVENTION
The present invention relates to polypeptides having antipathogenic activity and the nucleic acid sequences that encode them. Methods of the invention utilize these antipathogenic polypeptides and nucleic acid sequences to control plant pathogens and to 15 increase pathogen resistance in plants.
BACKGROUND OF THE INVENTION
Plant diseases are often a serious limitation on agricultural productivity and therefore have influenced the history and development of agricultural practices. A
variety of pathogens = 20 are responsible for plant diseases, including fungi, bacteria, viruses, and nematodes. Among the causal agents of infectious diseases of crop plants, however, fungi are the most economically important group of plant pathogens and are responsible for huge annual losses of marketable food, fiber, and feed.
=
=
Incidence of plant diseases has traditionally been controlled by agronomic practices 25 that include crop rotation, the use of agrochemicals, and conventional breeding techniques.
The use of chemicals to control plant pathogens, however, increases costs to farmers and causes harmful effects on the ecosystem. Consumers and government regulators alike are becoming increasingly concerned with the environmental hazards associated with the production and use of synthetic agrochemicals for protecting plants from pathogens. Because 30 of such concerns, regulators have banned or limited the use of some of the most hazardous chemicals. The incidence of fungal diseases has been controlled to some extent by breeding resistant crops. Traditional breeding methods, however, are time-consuming and require continuous effort to maintain disease resistance as pathogens evolve. See, for example, Grover and Gowthaman (2003) Curr. Sci. 84:330-340. Thus, there is a significant need for =
35 novel alternatives for the control of plant pathogens that possess a lower risk of pollution and environmental hazards than is characteristic of traditional agrochemical-based methods and that are less cumbersome than conventional breeding techniques.
=
Many plant diseases, including, but not limited to, maize stalk rot and ear mold, can be caused by a variety of pathogens. Stalk rot, for example, is one of the most destructive and widespread diseases of maize. The disease is caused by a complex of fungi and bacteria that attack and degrade stalks near plant maturity. Significant yield loss can occur as a result of lodging of weakened stalks as well as premature plant death. Maize stalk rot is typically caused by more than one fungal species, but Gibberella stalk rot, caused by Gibberella zeae, Fusarium stalk rot, caused by Fusarium verticillioides, F. proliferatum, or F.
subglutinans, and Anthracnose stalk rot, caused by Colletotrichum graminicola are the most frequently reported (Smith and White (1988); Diseases of corn, pp. 701-766 in Corn and Corn Improvement, Agronomy Series #18 (3rd ed.), Sprague, C.F., and Dudley, J.W., eds.
Madison, WI). Due to the fact that plant diseases can be caused by a complex of pathogens, broad spectrum resistance is required to effectively mediate disease control.
Thus, a significant need exists for antifungal compositions that target multiple stalk rot and ear mold-causing pathogens.
Recently, agricultural scientists have developed crop plants with enhanced pathogen resistance by genetically engineering plants to express antipathogenic proteins. For example, potatoes and tobacco plants genetically engineered to produce an antifungal endochitinase protein were shown to exhibit increased resistance to foliar and soil-borne fungal pathogens.
See Lorito et al. (1998) Proc. Natl. Acad. Sci. 95:7860-7865. Moreover, transgenic barley that is resistant to the stem rust fungus has also been developed. See Horvath et al. (2003) Proc. Natl. Acad. Sci. 100:364-369. A continuing effort to identify antipathogenic agents and to genetically engineer disease-resistant plants is underway.
Thus, in light of the significant impact of plant pathogens, particularly fungal pathogens, on the yield and quality of crops, new compositions and methods for protecting plants from pathogens are needed. Methods and compositions for controlling multiple fungal pathogens are of particular interest.
BRIEF SUMMARY OF THE INVENTION
Compositions and methods for protecting a plant from a pathogen are provided.
The compositions include nucleotide and amino acid sequences for antipathogenic, particularly antifungal, polypeptides. The polypeptides of the invention display antipathogenic activity against plant fungal pathogens. More particularly, the compositions of the invention comprise the antipathogenic polypeptides set forth in SEQ ID NOs:1 and 3, and variants and fragments thereof. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are further provided.
Compositions also include expression cassettes comprising a promoter operably linked to a nucleotide sequence that
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with government support under contract number DE-ACO2-= 05CH I 1231 awarded by the United States Depai tment of Energy.
The government has certain rights in the invention.
FIELD OF THE INVENTION
The present invention relates to polypeptides having antipathogenic activity and the nucleic acid sequences that encode them. Methods of the invention utilize these antipathogenic polypeptides and nucleic acid sequences to control plant pathogens and to 15 increase pathogen resistance in plants.
BACKGROUND OF THE INVENTION
Plant diseases are often a serious limitation on agricultural productivity and therefore have influenced the history and development of agricultural practices. A
variety of pathogens = 20 are responsible for plant diseases, including fungi, bacteria, viruses, and nematodes. Among the causal agents of infectious diseases of crop plants, however, fungi are the most economically important group of plant pathogens and are responsible for huge annual losses of marketable food, fiber, and feed.
=
=
Incidence of plant diseases has traditionally been controlled by agronomic practices 25 that include crop rotation, the use of agrochemicals, and conventional breeding techniques.
The use of chemicals to control plant pathogens, however, increases costs to farmers and causes harmful effects on the ecosystem. Consumers and government regulators alike are becoming increasingly concerned with the environmental hazards associated with the production and use of synthetic agrochemicals for protecting plants from pathogens. Because 30 of such concerns, regulators have banned or limited the use of some of the most hazardous chemicals. The incidence of fungal diseases has been controlled to some extent by breeding resistant crops. Traditional breeding methods, however, are time-consuming and require continuous effort to maintain disease resistance as pathogens evolve. See, for example, Grover and Gowthaman (2003) Curr. Sci. 84:330-340. Thus, there is a significant need for =
35 novel alternatives for the control of plant pathogens that possess a lower risk of pollution and environmental hazards than is characteristic of traditional agrochemical-based methods and that are less cumbersome than conventional breeding techniques.
=
Many plant diseases, including, but not limited to, maize stalk rot and ear mold, can be caused by a variety of pathogens. Stalk rot, for example, is one of the most destructive and widespread diseases of maize. The disease is caused by a complex of fungi and bacteria that attack and degrade stalks near plant maturity. Significant yield loss can occur as a result of lodging of weakened stalks as well as premature plant death. Maize stalk rot is typically caused by more than one fungal species, but Gibberella stalk rot, caused by Gibberella zeae, Fusarium stalk rot, caused by Fusarium verticillioides, F. proliferatum, or F.
subglutinans, and Anthracnose stalk rot, caused by Colletotrichum graminicola are the most frequently reported (Smith and White (1988); Diseases of corn, pp. 701-766 in Corn and Corn Improvement, Agronomy Series #18 (3rd ed.), Sprague, C.F., and Dudley, J.W., eds.
Madison, WI). Due to the fact that plant diseases can be caused by a complex of pathogens, broad spectrum resistance is required to effectively mediate disease control.
Thus, a significant need exists for antifungal compositions that target multiple stalk rot and ear mold-causing pathogens.
Recently, agricultural scientists have developed crop plants with enhanced pathogen resistance by genetically engineering plants to express antipathogenic proteins. For example, potatoes and tobacco plants genetically engineered to produce an antifungal endochitinase protein were shown to exhibit increased resistance to foliar and soil-borne fungal pathogens.
See Lorito et al. (1998) Proc. Natl. Acad. Sci. 95:7860-7865. Moreover, transgenic barley that is resistant to the stem rust fungus has also been developed. See Horvath et al. (2003) Proc. Natl. Acad. Sci. 100:364-369. A continuing effort to identify antipathogenic agents and to genetically engineer disease-resistant plants is underway.
Thus, in light of the significant impact of plant pathogens, particularly fungal pathogens, on the yield and quality of crops, new compositions and methods for protecting plants from pathogens are needed. Methods and compositions for controlling multiple fungal pathogens are of particular interest.
BRIEF SUMMARY OF THE INVENTION
Compositions and methods for protecting a plant from a pathogen are provided.
The compositions include nucleotide and amino acid sequences for antipathogenic, particularly antifungal, polypeptides. The polypeptides of the invention display antipathogenic activity against plant fungal pathogens. More particularly, the compositions of the invention comprise the antipathogenic polypeptides set forth in SEQ ID NOs:1 and 3, and variants and fragments thereof. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are further provided.
Compositions also include expression cassettes comprising a promoter operably linked to a nucleotide sequence that
2 encodes an antipathogenic polypeptide of the invention. Transformed plants, plant cells, seeds, and microorganisms comprising an expression cassette of the invention are further provided.
The compositions of the invention are useful in methods directed to inducing pathogen resistance, particularly fungal resistance, in plants. In particular embodiments, the methods comprise introducing into a plant at least one expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. As a result, the antipathogenic polypeptide is expressed in the plant, and the pathogen is exposed to the protein at the site of pathogen attack, thereby leading to increased pathogen resistance. A tissue-preferred promoter may be used to drive expression of an antipathogenic protein in specific plant tissues that are particularly vulnerable to pathogen attack, such as, for example, the roots, leaves, stalks, vascular tissues, and seeds. Pathogen-inducible promoters may also be used to drive expression of an antipathogenic protein of the invention at or near the site of pathogen infection.
1 5 The present invention further provides antipathogenic compositions and formulations and methods for their use in protecting a plant from a pathogen, particularly a fungal pathogen. In some embodiments, compositions comprise an antipathogenic polypeptide or a transformed microorganism comprising a nucleotide sequence encoding an antipathogenic polypeptide of the invention in combination with a carrier.
Methods of using these compositions to protect a plant from a pathogen comprise applying the antipathogenic composition to the environment of the plant pathogen by, for example, spraying, dusting, broadcasting, or seed coating. The methods and compositions of the invention find use in protecting plants from pathogens, including fungal pathogens, viruses, nematodes, and the like.
Specific aspects of the invention include:
- an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: a) a polypeptide comprising the amino acid sequence set forth in SEQ ID
NO:1; b) a polypeptide having at least 90% sequence identity relative to the full length of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity; and, c) a polypeptide
The compositions of the invention are useful in methods directed to inducing pathogen resistance, particularly fungal resistance, in plants. In particular embodiments, the methods comprise introducing into a plant at least one expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. As a result, the antipathogenic polypeptide is expressed in the plant, and the pathogen is exposed to the protein at the site of pathogen attack, thereby leading to increased pathogen resistance. A tissue-preferred promoter may be used to drive expression of an antipathogenic protein in specific plant tissues that are particularly vulnerable to pathogen attack, such as, for example, the roots, leaves, stalks, vascular tissues, and seeds. Pathogen-inducible promoters may also be used to drive expression of an antipathogenic protein of the invention at or near the site of pathogen infection.
1 5 The present invention further provides antipathogenic compositions and formulations and methods for their use in protecting a plant from a pathogen, particularly a fungal pathogen. In some embodiments, compositions comprise an antipathogenic polypeptide or a transformed microorganism comprising a nucleotide sequence encoding an antipathogenic polypeptide of the invention in combination with a carrier.
Methods of using these compositions to protect a plant from a pathogen comprise applying the antipathogenic composition to the environment of the plant pathogen by, for example, spraying, dusting, broadcasting, or seed coating. The methods and compositions of the invention find use in protecting plants from pathogens, including fungal pathogens, viruses, nematodes, and the like.
Specific aspects of the invention include:
- an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: a) a polypeptide comprising the amino acid sequence set forth in SEQ ID
NO:1; b) a polypeptide having at least 90% sequence identity relative to the full length of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity; and, c) a polypeptide
3 having at least 15 consecutive amino acids of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity;
- an isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of: a) a polynucleotide comprising the sequence set forth in SEQ ID
NO:2; b) a polynucleotide having at least 90% sequence identity relative to the full length of SEQ ID NO:2, wherein the polynucleotide encodes a polypeptide having antipathogenic activity; c) a polynucleotide encoding the amino acid sequence of SEQ ID NO:1;
d) a polynucleotide encoding the amino acid sequence of a polypeptide having at least 90%
sequence identity relative to the full length of SEQ ID NO: 1, wherein said polypeptide has 1 0 antipathogenic activity; and, e) a polynucleotide encoding the amino acid sequence of a polypeptide having at least 15 consecutive amino acids of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity;
- an expression cassette comprising a polynucleotide as described herein operably linked to a promoter that drives expression in a plant or plant cell;
1 5 - a transformed plant cell comprising at least one expression cassette as described herein;
- the plant cell as described herein which is a seed cell comprising the nucleic acid as described herein;
- a method for inducing plant pathogen resistance in a plant, said method 20 comprising introducing into a plant at least one expression cassette as described herein;
- an antipathogenic composition comprising a carrier and at least one polypeptide as described herein, wherein said carrier is selected from the group consisting of;
a suspension, a solution, an emulsion, a dusting powder, a dispersible granule, a settable powder, an emulsifiable concentrate, an aerosol, an impregnated granule, an adjuvant, a 25 coatable paste and an encapsulation; and 3a - a method for protecting a plant from a plant pathogen comprising applying the composition as described herein to a plant or in the soil or other growth medium surrounding the roots of a plant.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a sequence alignment of the amino acid sequences of the LB-09812 (SEQ ID NO:1) and LB-12922 (SEQ ID NO:3) polypeptides with the putative homologues set forth in SEQ ID NOs:5, 7, 9, 10, and 12. Detailed descriptions of these putative homologues are provided herein below.
Figure 2 shows photographic examples of the level of inhibition associated 1 0 with each numerical score in the antifungal plate assay described in Example 2.
Figure 3 provides the results of antifungal activity assays performed with the polypeptide set forth in SEQ ID NO:1, as described in Example 3. Antifungal activity against Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, and Fusarium verticillioides was observed with both polypeptides.
3b DETAILED DESCRIPTION OF THE INVENTION
The present invention provides compositions and methods directed to inducing pathogen resistance, particularly fungal resistance, in plants. The compositions are nucleotide and amino acid sequences for antipathogenic polypeptides. Specifically, the present invention provides antipathogenic polypeptides having the amino acid sequences set forth in SEQ ID
NOs:1 and 3, and variants and fragments thereof, that were isolated from fungal fermentation broth extracts of Penicillium glandicola and Penicillium citreonigrum and designated LB-09812 and LB-12922, respectively. The LB-09812 fungal strain was isolated from forest soil with rotten wood of Populus trenola L. in Kiev, Ukraine. The LB-12922 fungal strain was isolated from cultivated soil in the Ternapol region of the Ukraine. The amino acid sequences set forth in SEQ ID NOs:1 and 3 represent the mature peptide forms of the corresponding unprocessed, full-length polypeptides, as defined herein below. An antifungal polypeptide having the same N-terminal amino acid sequence as SEQ ID NO:1 was also purified from a Penicillium glandicola fungal fermentation broth that was isolated from forest soil with rotten wood of Tilia cordata L. in Kiev. Isolated nucleic acid molecules, such as, for example, SEQ
ID NOs:2 and 4, and variants and fragments thereof, comprising nucleotide sequences that encode the amino acid sequences shown in SEQ ID NO:1 and 3, respectively are further provided.
Nucleotide sequences that are optimized for expression in plants, particularly maize, and that encode the polypeptide of SEQ ID NO:1 or SEQ ID NO:3 can be generated using standard methods known in the art. Such plant-optimized nucleotide sequences are further encompassed by the present invention. Plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed herein. Antipathogenic compositions comprising an isolated antipathogenic, particularly an antifungal, polypeptide or a microorganism that expresses a polypeptide of the invention in combination with a carrier are further provided. The compositions of the invention find use in generating pathogen-resistant plants and in protecting plants from pathogens, particularly fungal pathogens.
The polypeptides disclosed herein as SEQ ID NOs:1 and 3 display antifungal activity against fungal plant pathogens, such as, for example, Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, and Fusarium verticillioides. The species of origin of the antifungal polypeptides of SEQ ID NOs:1 and 3 have been determined to be fungal. In particular, the fungal source of the polypeptide of SEQ ID NO:1 is Penicillium glandicola.
The fungal source of the polypeptide set forth in SEQ ID NO:3 is Penicillium citreonigrum.
Putative homologues with sequence similarity to the antifungal polypeptides of SEQ
ID NO:1 and SEQ ID NO:3 have been identified from other fungal sources.
Database searches revealed that SEQ ID NOs:1 and 3 share sequence similarity with the predicted
- an isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of: a) a polynucleotide comprising the sequence set forth in SEQ ID
NO:2; b) a polynucleotide having at least 90% sequence identity relative to the full length of SEQ ID NO:2, wherein the polynucleotide encodes a polypeptide having antipathogenic activity; c) a polynucleotide encoding the amino acid sequence of SEQ ID NO:1;
d) a polynucleotide encoding the amino acid sequence of a polypeptide having at least 90%
sequence identity relative to the full length of SEQ ID NO: 1, wherein said polypeptide has 1 0 antipathogenic activity; and, e) a polynucleotide encoding the amino acid sequence of a polypeptide having at least 15 consecutive amino acids of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity;
- an expression cassette comprising a polynucleotide as described herein operably linked to a promoter that drives expression in a plant or plant cell;
1 5 - a transformed plant cell comprising at least one expression cassette as described herein;
- the plant cell as described herein which is a seed cell comprising the nucleic acid as described herein;
- a method for inducing plant pathogen resistance in a plant, said method 20 comprising introducing into a plant at least one expression cassette as described herein;
- an antipathogenic composition comprising a carrier and at least one polypeptide as described herein, wherein said carrier is selected from the group consisting of;
a suspension, a solution, an emulsion, a dusting powder, a dispersible granule, a settable powder, an emulsifiable concentrate, an aerosol, an impregnated granule, an adjuvant, a 25 coatable paste and an encapsulation; and 3a - a method for protecting a plant from a plant pathogen comprising applying the composition as described herein to a plant or in the soil or other growth medium surrounding the roots of a plant.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a sequence alignment of the amino acid sequences of the LB-09812 (SEQ ID NO:1) and LB-12922 (SEQ ID NO:3) polypeptides with the putative homologues set forth in SEQ ID NOs:5, 7, 9, 10, and 12. Detailed descriptions of these putative homologues are provided herein below.
Figure 2 shows photographic examples of the level of inhibition associated 1 0 with each numerical score in the antifungal plate assay described in Example 2.
Figure 3 provides the results of antifungal activity assays performed with the polypeptide set forth in SEQ ID NO:1, as described in Example 3. Antifungal activity against Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, and Fusarium verticillioides was observed with both polypeptides.
3b DETAILED DESCRIPTION OF THE INVENTION
The present invention provides compositions and methods directed to inducing pathogen resistance, particularly fungal resistance, in plants. The compositions are nucleotide and amino acid sequences for antipathogenic polypeptides. Specifically, the present invention provides antipathogenic polypeptides having the amino acid sequences set forth in SEQ ID
NOs:1 and 3, and variants and fragments thereof, that were isolated from fungal fermentation broth extracts of Penicillium glandicola and Penicillium citreonigrum and designated LB-09812 and LB-12922, respectively. The LB-09812 fungal strain was isolated from forest soil with rotten wood of Populus trenola L. in Kiev, Ukraine. The LB-12922 fungal strain was isolated from cultivated soil in the Ternapol region of the Ukraine. The amino acid sequences set forth in SEQ ID NOs:1 and 3 represent the mature peptide forms of the corresponding unprocessed, full-length polypeptides, as defined herein below. An antifungal polypeptide having the same N-terminal amino acid sequence as SEQ ID NO:1 was also purified from a Penicillium glandicola fungal fermentation broth that was isolated from forest soil with rotten wood of Tilia cordata L. in Kiev. Isolated nucleic acid molecules, such as, for example, SEQ
ID NOs:2 and 4, and variants and fragments thereof, comprising nucleotide sequences that encode the amino acid sequences shown in SEQ ID NO:1 and 3, respectively are further provided.
Nucleotide sequences that are optimized for expression in plants, particularly maize, and that encode the polypeptide of SEQ ID NO:1 or SEQ ID NO:3 can be generated using standard methods known in the art. Such plant-optimized nucleotide sequences are further encompassed by the present invention. Plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed herein. Antipathogenic compositions comprising an isolated antipathogenic, particularly an antifungal, polypeptide or a microorganism that expresses a polypeptide of the invention in combination with a carrier are further provided. The compositions of the invention find use in generating pathogen-resistant plants and in protecting plants from pathogens, particularly fungal pathogens.
The polypeptides disclosed herein as SEQ ID NOs:1 and 3 display antifungal activity against fungal plant pathogens, such as, for example, Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, and Fusarium verticillioides. The species of origin of the antifungal polypeptides of SEQ ID NOs:1 and 3 have been determined to be fungal. In particular, the fungal source of the polypeptide of SEQ ID NO:1 is Penicillium glandicola.
The fungal source of the polypeptide set forth in SEQ ID NO:3 is Penicillium citreonigrum.
Putative homologues with sequence similarity to the antifungal polypeptides of SEQ
ID NO:1 and SEQ ID NO:3 have been identified from other fungal sources.
Database searches revealed that SEQ ID NOs:1 and 3 share sequence similarity with the predicted
4 translation products of a nucleotide sequence isolated from an Aspergillus flavus normalized cDNA expression library (amino acid sequence set forth in SEQ ID NO:5;
nucleotide sequence set forth in SEQ ID NO:6 (Accession No. C0133987)) and a nucleotide sequence isolated from an Aspergillus niger cDNA library (amino acid sequence set forth in SEQ ID
NO:7; nucleotide sequence set forth in SEQ ID NO:8 (Accession No. DR698208 (complementary strand of DR698208 cDNA); and amino acid sequence set forth in SEQ ID
NO:9). The antifungal polypeptides of SEQ ID NOs:1 and 3 also share homology with a hypothetical protein of unknown function isolated from Aspergillus fumigatus (amino acid sequence set forth in SEQ ID NO:10 (derived from Accession No. EAL92121 (corrected));
nucleotide sequence set forth in SEQ ID NO:11 (Accession No. AAHF01000002). A
genomic DNA encoding an LB-09812/LB-12922 homologue from Fusarium graminearum was also isolated. The predicted translation product of the genomic sequence isolated from Fusarium graminearum is also disclosed herein (amino acid sequence set forth in SEQ ID
NO:12; nucleotide sequence set forth in SEQ ID NO:13 (Accession No.
AACM01000196.1 )). None of the putative homologues of SEQ ID NOs:1 and 3 described above are reported in the literature to possess antifungal activity. An alignment of the polypeptides of the invention and these putative homologues is provided in Figures 1. The amino acid sequences set forth in SEQ ID NOs:1, 3, 5, 7, 9, 10, and 12 and the nucleotide sequences set forth in SEQ ID
NOs:2, 4, 6, 8, 11, and 13 can be used in the antipathogenic compositions and methods of the invention.
The nucleic acids and polypeptides of the present invention find use in methods for inducing pathogen resistance in a plant. Accordingly, the compositions and methods disclosed herein are useful in protecting plants against fungal pathogens, viruses, nematodes and the like. "Pathogen resistance" or "disease resistance" is intended to mean that the plant avoids the disease symptoms that are the outcome of plant-pathogen interactions. That is, pathogens are prevented from causing plant diseases and the associated disease symptoms, or alternatively, the disease symptoms caused by the pathogen are minimized or lessened, such as, for example, the reduction of stress and associated yield loss. One of skill in the art will appreciate that the compositions and methods disclosed herein can be used with other compositions and methods available in the art for protecting plants from insect and pathogen attack.
"Antipathogenic compositions" or "antipathogenic polypeptides" is intended to mean that the compositions of the invention have antipathogenic activity and thus are capable of suppressing, controlling, and/or killing the invading pathogenic organism. An antipathogenic polypeptide of the invention will reduce the disease symptoms resulting from pathogen challenge by at least about 5% to about 50%, at least about 10% to about 60%, at least about 30% to about 70%, at least about 40% to about 80%, or at least about 50% to about 90% or
nucleotide sequence set forth in SEQ ID NO:6 (Accession No. C0133987)) and a nucleotide sequence isolated from an Aspergillus niger cDNA library (amino acid sequence set forth in SEQ ID
NO:7; nucleotide sequence set forth in SEQ ID NO:8 (Accession No. DR698208 (complementary strand of DR698208 cDNA); and amino acid sequence set forth in SEQ ID
NO:9). The antifungal polypeptides of SEQ ID NOs:1 and 3 also share homology with a hypothetical protein of unknown function isolated from Aspergillus fumigatus (amino acid sequence set forth in SEQ ID NO:10 (derived from Accession No. EAL92121 (corrected));
nucleotide sequence set forth in SEQ ID NO:11 (Accession No. AAHF01000002). A
genomic DNA encoding an LB-09812/LB-12922 homologue from Fusarium graminearum was also isolated. The predicted translation product of the genomic sequence isolated from Fusarium graminearum is also disclosed herein (amino acid sequence set forth in SEQ ID
NO:12; nucleotide sequence set forth in SEQ ID NO:13 (Accession No.
AACM01000196.1 )). None of the putative homologues of SEQ ID NOs:1 and 3 described above are reported in the literature to possess antifungal activity. An alignment of the polypeptides of the invention and these putative homologues is provided in Figures 1. The amino acid sequences set forth in SEQ ID NOs:1, 3, 5, 7, 9, 10, and 12 and the nucleotide sequences set forth in SEQ ID
NOs:2, 4, 6, 8, 11, and 13 can be used in the antipathogenic compositions and methods of the invention.
The nucleic acids and polypeptides of the present invention find use in methods for inducing pathogen resistance in a plant. Accordingly, the compositions and methods disclosed herein are useful in protecting plants against fungal pathogens, viruses, nematodes and the like. "Pathogen resistance" or "disease resistance" is intended to mean that the plant avoids the disease symptoms that are the outcome of plant-pathogen interactions. That is, pathogens are prevented from causing plant diseases and the associated disease symptoms, or alternatively, the disease symptoms caused by the pathogen are minimized or lessened, such as, for example, the reduction of stress and associated yield loss. One of skill in the art will appreciate that the compositions and methods disclosed herein can be used with other compositions and methods available in the art for protecting plants from insect and pathogen attack.
"Antipathogenic compositions" or "antipathogenic polypeptides" is intended to mean that the compositions of the invention have antipathogenic activity and thus are capable of suppressing, controlling, and/or killing the invading pathogenic organism. An antipathogenic polypeptide of the invention will reduce the disease symptoms resulting from pathogen challenge by at least about 5% to about 50%, at least about 10% to about 60%, at least about 30% to about 70%, at least about 40% to about 80%, or at least about 50% to about 90% or
5 greater. Hence, the methods of the invention can be utilized to protect plants from disease, particularly those diseases that are caused by plant pathogens. In particular embodiments, the antipathogenic activity exhibited by the polypeptides of the invention is antifungal activity.
As used herein, "antifungal activity" refers to the ability to suppress, control, and/or kill the 5 invading fungal pathogen. Likewise, "fungal resistance" refers to enhanced tolerance to a fungal pathogen when compared to that of an untreated or wild type plant.
Resistance may vary from a slight increase in tolerance to the effects of the fungal pathogen (e.g., partial inhibition) to total resistance such that the plant is unaffected by the presence of the fwigal pathogen. An increased level of resistance against a particular fungal pathogen or against a 10 wider spectrum of fungal pathogens may both constitute antifungal activity or improved fungal resistance.
Assays that measure antipathogenic activity are commonly known in the art, as are = methods to quantitate disease resistance in plants following pathogen infection. See, for example, U.S. Patent No. 5,614,395, herein incorporated by reference. Such techniques 15 include, measuring over time, the average lesion diameter, the pathogen biomass, and the overall percentage of decayed plant tissues. For example, a plant either expressing an antipathogenic polypeptide or having an antipathogenic composition applied to its surface shows a decrease in tissue necrosis (i.e., lesion diameter) or a decrease in plant death following pathogen challenge when compared to a control plant that was not exposed to the = 20 antipathogenic composition. Alternatively, antipathogenic activity can be measured by a decrease in pathogen biomass. For example, a plant expressing an antipathogenic polypeptide or exposed to an antipathogenic composition is challenged with a pathogen of interest. Over time, tissue samples from the pathogen-inoculated tissues are obtained and RNA
is extracted.
The percent of a specific pathogen RNA transcript relative to the level of a plant specific 25 transcript allows the level of pathogen biomass to be determined. See, for example, Thornma et al. (1998)P/wit Biology 95:15107-15111.
Furthermore, in vitro antipathogenic assays include, for example, the addition of varying concentrations of the antipathogenic composition to paper disks and placing the disks on agar containing a suspension of the pathogen of interest. Following incubation, clear 30 inhibition zones develop around the discs that contain an effective concentration of the antipathogenic polypeptide (Liu et al. (1994) Plant Biology 91:1888-1892).
Additionally, microspectrophotometrical analysis can be used to measure the in vitro antipathogenic properties of a composition (Hu et al.
(1997) Plant Mol.
Biol. 34:949-959 and Camniue et al. (1992)J. Biol. Chem. 267: 2228-2233).
= 35 Assays that specifically measure antifungal activity are = also well known in the art. See, for example, Duvick et al. (1992)J.
Biol. Chem. 267:18814-18820; Lacadena et al. (1995) Arch. Biochem. Biophys. 324:273-281; Xu et al.
(1997) Plant
As used herein, "antifungal activity" refers to the ability to suppress, control, and/or kill the 5 invading fungal pathogen. Likewise, "fungal resistance" refers to enhanced tolerance to a fungal pathogen when compared to that of an untreated or wild type plant.
Resistance may vary from a slight increase in tolerance to the effects of the fungal pathogen (e.g., partial inhibition) to total resistance such that the plant is unaffected by the presence of the fwigal pathogen. An increased level of resistance against a particular fungal pathogen or against a 10 wider spectrum of fungal pathogens may both constitute antifungal activity or improved fungal resistance.
Assays that measure antipathogenic activity are commonly known in the art, as are = methods to quantitate disease resistance in plants following pathogen infection. See, for example, U.S. Patent No. 5,614,395, herein incorporated by reference. Such techniques 15 include, measuring over time, the average lesion diameter, the pathogen biomass, and the overall percentage of decayed plant tissues. For example, a plant either expressing an antipathogenic polypeptide or having an antipathogenic composition applied to its surface shows a decrease in tissue necrosis (i.e., lesion diameter) or a decrease in plant death following pathogen challenge when compared to a control plant that was not exposed to the = 20 antipathogenic composition. Alternatively, antipathogenic activity can be measured by a decrease in pathogen biomass. For example, a plant expressing an antipathogenic polypeptide or exposed to an antipathogenic composition is challenged with a pathogen of interest. Over time, tissue samples from the pathogen-inoculated tissues are obtained and RNA
is extracted.
The percent of a specific pathogen RNA transcript relative to the level of a plant specific 25 transcript allows the level of pathogen biomass to be determined. See, for example, Thornma et al. (1998)P/wit Biology 95:15107-15111.
Furthermore, in vitro antipathogenic assays include, for example, the addition of varying concentrations of the antipathogenic composition to paper disks and placing the disks on agar containing a suspension of the pathogen of interest. Following incubation, clear 30 inhibition zones develop around the discs that contain an effective concentration of the antipathogenic polypeptide (Liu et al. (1994) Plant Biology 91:1888-1892).
Additionally, microspectrophotometrical analysis can be used to measure the in vitro antipathogenic properties of a composition (Hu et al.
(1997) Plant Mol.
Biol. 34:949-959 and Camniue et al. (1992)J. Biol. Chem. 267: 2228-2233).
= 35 Assays that specifically measure antifungal activity are = also well known in the art. See, for example, Duvick et al. (1992)J.
Biol. Chem. 267:18814-18820; Lacadena et al. (1995) Arch. Biochem. Biophys. 324:273-281; Xu et al.
(1997) Plant
6
7 Ma Biol. 34: 949-959; Lee et al. (1999) Biochem. Biophys. Res. Comm. 263:646-651; Vila et al. (2001) Mol. Plant Microbe Interact. 14:1327-1331; Moreno et al. (2003) Phyq,athol.
93:1344-1353; Kaiserer et al. (2003) Arch. Microbiol. 180:204-210; and U.S.
Pat. No.
6,015,941.
The compositions disclosed herein comprise isolated nucleic acids that encode antipathogenic polypeptides, expression cassettes comprising the nucleotide sequences of the invention, and isolated antipathogenic polypeptides. Antipathogenic compositions comprising a polypeptide of the invention in combination with a carrier are also provided.
The invention further discloses plants and microorganisms transformed with nucleic acids that encode antipathogenic proteins. The compositions find use in methods for inducing pathogen resistance in a plant and for protecting a plant from a pathogen, particularly fungal pathogens.
In particular aspects, methods for inducing pathogen resistance in a plant comprise introducing into a plant at least one expression cassette, wherein the expression cassette comprises a nucleotide sequence encoding an antipathogenic polypeptide of the invention operably linked to a promoter that drives expression in the plant. The plant expresses the antipathogenic polypeptide, thereby exposing the pathogen to the polypeptide at the site of pathogen attack. In particular embodiments, the polypeptides have antifungal activity, and the pathogen is a fungus, such as, for example, Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, or Fusarium verticillioides. Expression of an antipathogenic polypeptide of the invention may be targeted to specific plant tissues where pathogen resistance is particularly important, such as, for example, the leaves, roots, stalks, or vascular tissues. Such tissue-preferred expression may be accomplished by root-preferred, leaf-preferred, vascular tissue-preferred, stalk-preferred, or seed-preferred promoters. Moreover, the polypeptides of the invention may also be targeted to specific subcellular locations within a plant cell or, alternatively, secreted from the cell, as described herein below.
Just as expression of an antipathogenic polypeptide of the invention may be targeted to specific plant tissues or cell types through the use of appropriate promoters, it may also be targeted to different locations within the cell through the use of targeting information or "targeting labels." Unlike the promoter, which acts at the transcriptional level, such targeting information is part of the initial translation product. Depending on the mode of infection of the pathogen or the metabolic function of the tissue or cell type, the location of the protein in different compai __ talents of the cell may make it more efficacious against a given pathogen or make it interfere less with the functions of the cell. For example, one may produce a protein preceded by a signal peptide, which directs the translation product into the endoplasmic reticulum, by including in the construct (i.e. expression cassette) sequences encoding a signal peptide (such sequences may also be called the "signal sequence"). The signal sequence used could be, for example, one associated with the gene encoding the polypeptide, or it may be taken from another gene. There are many signal peptides described in the literature, and they are largely interchangeable (Raikhel and Chrispeels, "Protein sorting and vesicle traffic" in Buchanan et al., eds, (2000) Biochemistry and Molecular Biology of Plants (American Society of Plant Physiologists, Rockville, MD), The 5 addition of a signal peptide will result in the translation product entering the endoplasmic reticuluin (in the process of which the signal peptide itself is removed from the polypeptide), but the final intracellular location of the protein depends on other factors, which may be manipulated to result in localization most appropriate for the pathogen and cell type. The = default pathway, that is, the pathway taken by the polypeptide if no other targeting labels are 10 included, results in secretion of the polypeptide across the cell membrane (Raikhel and = Chrispeels, supra) into the apoplast. The apoplast is the region outside the plasma membrane system and includes cell walls, intercellular spaces, and the xylem vessels that form a continuous, permeable system through which water and solutes may move. This will often be a suitable location. In particular embodiments, a nucleotide sequence encoding a barley 15 alpha-amylase (BAA) signal peptide is joined in frame with a polynucleotide of the invention.
The nucleotide sequence encoding the BAA signal peptide and the amino acid sequence for the BAA signal peptide are set forth in SEQ ID NO:14 and SEQ ID NO:15, respectively. An exemplary nucleotide sequence encoding the BAA signal peptide joined with a nucleotide sequence encoding SEQ ID NO:1 and the amino acid sequence for BAA-SEQ ID NO:1 are 20 provided in SEQ ID NO:16 and SEQ ID NO:17, respectively. An exemplary nucleotide = sequence encoding the BAA signal peptide joined with a nucleotide sequence encoding SEQ
ID NO:3 and the amino acid sequence for BAA-SEQ ID NO:3 are further provided in SEQ TD
NO:18 and SEQ ID NO:19, respectively.
Other pathogens may be more effectively combated by locating the peptide within the 25 cell rather than outside the cell membrane. This can be accomplished, for example, by adding an endoplasmic reticulum retention signal encoding sequence to the sequence of the gene.
= Methods and sequences for doing this are described in Raikhel and Chrispeels, supra; for example, adding sequences encoding the amino acids K, D, E and L in that order, or variations thereof described in the literature, to the end of the protein coding portion of the 30 polypeptide will accomplish this. ER retention sequences are well known in the art and include, for example, KDEL (SEQ ID NO:20), SEKDEL (SEQ ID NO:21), HDEL (SEQ ID
= NO:22), and HDEF (SEQ ID NO:23). See, for example, Denecke et al. (1992).
EMBO J.
11:2345-2355; Wandelt et al. (1992) Plant J. 2:181-192; Denecke et al.
(1993)J. Exp. Bat.
= 44:213-221; Vitale et al. (1993) J, Exp. Bot. 44:1417-1444; Gomord et al.
(1996)Plant 35 Physiol. Biochem. 34:165-181; Lehmann et al. (2001) Plant Physiol. 127 (2): 436-449.
93:1344-1353; Kaiserer et al. (2003) Arch. Microbiol. 180:204-210; and U.S.
Pat. No.
6,015,941.
The compositions disclosed herein comprise isolated nucleic acids that encode antipathogenic polypeptides, expression cassettes comprising the nucleotide sequences of the invention, and isolated antipathogenic polypeptides. Antipathogenic compositions comprising a polypeptide of the invention in combination with a carrier are also provided.
The invention further discloses plants and microorganisms transformed with nucleic acids that encode antipathogenic proteins. The compositions find use in methods for inducing pathogen resistance in a plant and for protecting a plant from a pathogen, particularly fungal pathogens.
In particular aspects, methods for inducing pathogen resistance in a plant comprise introducing into a plant at least one expression cassette, wherein the expression cassette comprises a nucleotide sequence encoding an antipathogenic polypeptide of the invention operably linked to a promoter that drives expression in the plant. The plant expresses the antipathogenic polypeptide, thereby exposing the pathogen to the polypeptide at the site of pathogen attack. In particular embodiments, the polypeptides have antifungal activity, and the pathogen is a fungus, such as, for example, Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, or Fusarium verticillioides. Expression of an antipathogenic polypeptide of the invention may be targeted to specific plant tissues where pathogen resistance is particularly important, such as, for example, the leaves, roots, stalks, or vascular tissues. Such tissue-preferred expression may be accomplished by root-preferred, leaf-preferred, vascular tissue-preferred, stalk-preferred, or seed-preferred promoters. Moreover, the polypeptides of the invention may also be targeted to specific subcellular locations within a plant cell or, alternatively, secreted from the cell, as described herein below.
Just as expression of an antipathogenic polypeptide of the invention may be targeted to specific plant tissues or cell types through the use of appropriate promoters, it may also be targeted to different locations within the cell through the use of targeting information or "targeting labels." Unlike the promoter, which acts at the transcriptional level, such targeting information is part of the initial translation product. Depending on the mode of infection of the pathogen or the metabolic function of the tissue or cell type, the location of the protein in different compai __ talents of the cell may make it more efficacious against a given pathogen or make it interfere less with the functions of the cell. For example, one may produce a protein preceded by a signal peptide, which directs the translation product into the endoplasmic reticulum, by including in the construct (i.e. expression cassette) sequences encoding a signal peptide (such sequences may also be called the "signal sequence"). The signal sequence used could be, for example, one associated with the gene encoding the polypeptide, or it may be taken from another gene. There are many signal peptides described in the literature, and they are largely interchangeable (Raikhel and Chrispeels, "Protein sorting and vesicle traffic" in Buchanan et al., eds, (2000) Biochemistry and Molecular Biology of Plants (American Society of Plant Physiologists, Rockville, MD), The 5 addition of a signal peptide will result in the translation product entering the endoplasmic reticuluin (in the process of which the signal peptide itself is removed from the polypeptide), but the final intracellular location of the protein depends on other factors, which may be manipulated to result in localization most appropriate for the pathogen and cell type. The = default pathway, that is, the pathway taken by the polypeptide if no other targeting labels are 10 included, results in secretion of the polypeptide across the cell membrane (Raikhel and = Chrispeels, supra) into the apoplast. The apoplast is the region outside the plasma membrane system and includes cell walls, intercellular spaces, and the xylem vessels that form a continuous, permeable system through which water and solutes may move. This will often be a suitable location. In particular embodiments, a nucleotide sequence encoding a barley 15 alpha-amylase (BAA) signal peptide is joined in frame with a polynucleotide of the invention.
The nucleotide sequence encoding the BAA signal peptide and the amino acid sequence for the BAA signal peptide are set forth in SEQ ID NO:14 and SEQ ID NO:15, respectively. An exemplary nucleotide sequence encoding the BAA signal peptide joined with a nucleotide sequence encoding SEQ ID NO:1 and the amino acid sequence for BAA-SEQ ID NO:1 are 20 provided in SEQ ID NO:16 and SEQ ID NO:17, respectively. An exemplary nucleotide = sequence encoding the BAA signal peptide joined with a nucleotide sequence encoding SEQ
ID NO:3 and the amino acid sequence for BAA-SEQ ID NO:3 are further provided in SEQ TD
NO:18 and SEQ ID NO:19, respectively.
Other pathogens may be more effectively combated by locating the peptide within the 25 cell rather than outside the cell membrane. This can be accomplished, for example, by adding an endoplasmic reticulum retention signal encoding sequence to the sequence of the gene.
= Methods and sequences for doing this are described in Raikhel and Chrispeels, supra; for example, adding sequences encoding the amino acids K, D, E and L in that order, or variations thereof described in the literature, to the end of the protein coding portion of the 30 polypeptide will accomplish this. ER retention sequences are well known in the art and include, for example, KDEL (SEQ ID NO:20), SEKDEL (SEQ ID NO:21), HDEL (SEQ ID
= NO:22), and HDEF (SEQ ID NO:23). See, for example, Denecke et al. (1992).
EMBO J.
11:2345-2355; Wandelt et al. (1992) Plant J. 2:181-192; Denecke et al.
(1993)J. Exp. Bat.
= 44:213-221; Vitale et al. (1993) J, Exp. Bot. 44:1417-1444; Gomord et al.
(1996)Plant 35 Physiol. Biochem. 34:165-181; Lehmann et al. (2001) Plant Physiol. 127 (2): 436-449.
8 Alternatively, the use of vacuolar targeting labels such as those described by Raikhel and Chrispeels, supra, in addition to a signal peptide will result in localization of the peptide in a vacuolar structure. As described in Raikhel and Chrispeels, supra, the vacuolar targeting label may be placed in different positions in the construct. Use of a plastid transit peptide 5 encoding sequence instead of a signal peptide encoding sequence will result in localization of the polypeptide in the plastid of the cell type chosen (Raikhel and Chrispeels, supra). Such transit peptides are known in the art. See, for example, Von Heijne et al.
(1991)Plant MoL
Biol. Rep. 9:104-126; Clark et al. (1989)1. Biol. Chem. 264:17544-17550; Della-Cioppa et al.
(1987) Plant PhysioL 84:965-968; Romer et al. (1993) Biochem. Biophys. Res.
Commun.
=
10 196:1414-1421; and Shah et al. (1986) Science 233:478-481. Chloroplast targeting sequences that encode such transit peptides are also known in the art and include the chloroplast small subunit of ribulose-1,5-bisphosphate carboxylase (Rubisco) (de Castro Silva Filho et al.
(1996) Plant Mol. Biol. 30:769-780; 'Schnell et al. (1991)J. Biol. Chem.
266(5):3335-3342);
5-(enolpyruvyl)shikimate-3-phosphate synthase (EPSPS) (Archer et al. (1990)J.
Bioenerg.
15 Biomemb. 22(6):789-810); tryptophan synthase (Zhao et al. (1995)J. Biol.
Chem.
270(11):6081-6087); plastocyanin (Lawrence et al. (1997)J. Biol. Chem.
272(33):20357-20363); chorismate synthase (Schmidt et al. (1993)J. Biol. Chem. 268(36):27447-27457);
and the light harvesting chlorophyll aTh binding protein (LHBP) (Lamppa et al.
(1988)J. Biol.
Chem. 263:14996-14999). A person skilled in the art could also envision generating 20 transgenic plants in which the chloroplasts have been transformed to overexpress a gene for an antipathogenic peptide. See, for example, Daniell (1999) Nature Biotech 17:855-856; and U.S. Patent No. 6,338,168.
One could also envision localizing the antipathogenic polypeptide in other cellular compartments by addition of suitable targeting information. (Raikhel and Chrispeels, supra).
25 A useful site available on the world wide web that provides information and references regarding recognition of the various targeting sequences can be found at:
psort.nibb.ac,jp/mit.
Other references regarding the state of the art of protein targeting include Silva-Filho (2003) Cu,-r. Opin. Plant BioL 6:589-595; Nicchitta (2002) Curr. Opin. Cell Biol.
14:412-416; Bruce (2001) Biochim Biophys Acta 1541: 2-21; Hadlington & Denecke (2000) Curr.
Opin. Plant 30 Biol. 3: 461-468; Emanuelsson et al. (2000)J Mot. Biol. 300: 1005-1016;
Emanuelsson &
von Heijne (2001) Biochim Biophys Acta 1541: 114-119.
The compositions of the invention find further use in methods directed to protecting a plant from a pathogen. "Protecting a plant from a pathogen" is intended to mean killing the pathogen or preventing or limiting disease formation on a plant. In some embodiments, an 35 antipathogenic composition comprising an antipathogenic polypeptide and a carrier is applied directly to the environment of a plant pathogen, such as, for example, on a plant or in the soil or other growth medium surrounding the roots of the plant, in order to protect the plant from
(1991)Plant MoL
Biol. Rep. 9:104-126; Clark et al. (1989)1. Biol. Chem. 264:17544-17550; Della-Cioppa et al.
(1987) Plant PhysioL 84:965-968; Romer et al. (1993) Biochem. Biophys. Res.
Commun.
=
10 196:1414-1421; and Shah et al. (1986) Science 233:478-481. Chloroplast targeting sequences that encode such transit peptides are also known in the art and include the chloroplast small subunit of ribulose-1,5-bisphosphate carboxylase (Rubisco) (de Castro Silva Filho et al.
(1996) Plant Mol. Biol. 30:769-780; 'Schnell et al. (1991)J. Biol. Chem.
266(5):3335-3342);
5-(enolpyruvyl)shikimate-3-phosphate synthase (EPSPS) (Archer et al. (1990)J.
Bioenerg.
15 Biomemb. 22(6):789-810); tryptophan synthase (Zhao et al. (1995)J. Biol.
Chem.
270(11):6081-6087); plastocyanin (Lawrence et al. (1997)J. Biol. Chem.
272(33):20357-20363); chorismate synthase (Schmidt et al. (1993)J. Biol. Chem. 268(36):27447-27457);
and the light harvesting chlorophyll aTh binding protein (LHBP) (Lamppa et al.
(1988)J. Biol.
Chem. 263:14996-14999). A person skilled in the art could also envision generating 20 transgenic plants in which the chloroplasts have been transformed to overexpress a gene for an antipathogenic peptide. See, for example, Daniell (1999) Nature Biotech 17:855-856; and U.S. Patent No. 6,338,168.
One could also envision localizing the antipathogenic polypeptide in other cellular compartments by addition of suitable targeting information. (Raikhel and Chrispeels, supra).
25 A useful site available on the world wide web that provides information and references regarding recognition of the various targeting sequences can be found at:
psort.nibb.ac,jp/mit.
Other references regarding the state of the art of protein targeting include Silva-Filho (2003) Cu,-r. Opin. Plant BioL 6:589-595; Nicchitta (2002) Curr. Opin. Cell Biol.
14:412-416; Bruce (2001) Biochim Biophys Acta 1541: 2-21; Hadlington & Denecke (2000) Curr.
Opin. Plant 30 Biol. 3: 461-468; Emanuelsson et al. (2000)J Mot. Biol. 300: 1005-1016;
Emanuelsson &
von Heijne (2001) Biochim Biophys Acta 1541: 114-119.
The compositions of the invention find further use in methods directed to protecting a plant from a pathogen. "Protecting a plant from a pathogen" is intended to mean killing the pathogen or preventing or limiting disease formation on a plant. In some embodiments, an 35 antipathogenic composition comprising an antipathogenic polypeptide and a carrier is applied directly to the environment of a plant pathogen, such as, for example, on a plant or in the soil or other growth medium surrounding the roots of the plant, in order to protect the plant from
9 =
pathogen attack. Transformed microorganisms comprising a nucleotide sequence encoding an antipathogenic protein of the invention and methods of using them to protect a plant from a pathogen are further provided. In some embodiments, the transformed microorganism is applied directly to a plant or to the soil in which a plant grows.
As used herein, "nucleic acid" includes reference to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues (e.g., peptide nucleic acids) having the essential nature of natural nucleotides in that they hybridize to single-stranded nucleic acids in a manner similar to naturally occurring nucleotides.
The terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.
Polypeptides of the invention can be produced either from a nucleic acid disclosed herein, or by the use of standard molecular biology techniques. For example, a truncated protein of the invention can be produced by expression of a recombinant nucleic acid of the invention in an appropriate host cell, or alternatively by a combination of ex vivo procedures, such as protease digestion and purification.
As used herein, the terms "encoding" or "encoded" when used in the context of a specified nucleic acid mean that the nucleic acid comprises the requisite information to direct translation of the nucleotide sequence into a specified protein. The information by which a protein is encoded is specified by the use of codons. A nucleic acid encoding a protein may comprise non-translated sequences (e.g., introns) within translated regions of the nucleic acid or may lack such intervening non-translated sequences (e.g., as in cDNA).
The invention encompasses isolated or substantially purified polynucleotide or protein compositions. An "isolated" or "purified" polynucleotide or protein, or biologically active portion thereof, is substantially or essentially free from components that normally accompany or interact with the polynucleotide or protein as found in its naturally occurring environment. Thus, an isolated or purified polynucleotide or protein is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
Optimally, an "isolated" polynucleotide is free of sequences (optimally protein encoding sequences) that naturally flank the polynucleotide (i.e., sequences located at the 5' and 3' ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various embodiments, the isolated polynucleotide can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequence that naturally flank the polynucleotide in genomic DNA of the cell from which the polynucleotide is derived. A protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, 5%, or 1% (by dry weight) of contaminating protein. When the protein of the invention or biologically active portion thereof is recombinantly produced, optimally culture medium represents less than about 30%, 20%,
pathogen attack. Transformed microorganisms comprising a nucleotide sequence encoding an antipathogenic protein of the invention and methods of using them to protect a plant from a pathogen are further provided. In some embodiments, the transformed microorganism is applied directly to a plant or to the soil in which a plant grows.
As used herein, "nucleic acid" includes reference to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues (e.g., peptide nucleic acids) having the essential nature of natural nucleotides in that they hybridize to single-stranded nucleic acids in a manner similar to naturally occurring nucleotides.
The terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.
Polypeptides of the invention can be produced either from a nucleic acid disclosed herein, or by the use of standard molecular biology techniques. For example, a truncated protein of the invention can be produced by expression of a recombinant nucleic acid of the invention in an appropriate host cell, or alternatively by a combination of ex vivo procedures, such as protease digestion and purification.
As used herein, the terms "encoding" or "encoded" when used in the context of a specified nucleic acid mean that the nucleic acid comprises the requisite information to direct translation of the nucleotide sequence into a specified protein. The information by which a protein is encoded is specified by the use of codons. A nucleic acid encoding a protein may comprise non-translated sequences (e.g., introns) within translated regions of the nucleic acid or may lack such intervening non-translated sequences (e.g., as in cDNA).
The invention encompasses isolated or substantially purified polynucleotide or protein compositions. An "isolated" or "purified" polynucleotide or protein, or biologically active portion thereof, is substantially or essentially free from components that normally accompany or interact with the polynucleotide or protein as found in its naturally occurring environment. Thus, an isolated or purified polynucleotide or protein is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
Optimally, an "isolated" polynucleotide is free of sequences (optimally protein encoding sequences) that naturally flank the polynucleotide (i.e., sequences located at the 5' and 3' ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various embodiments, the isolated polynucleotide can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequence that naturally flank the polynucleotide in genomic DNA of the cell from which the polynucleotide is derived. A protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, 5%, or 1% (by dry weight) of contaminating protein. When the protein of the invention or biologically active portion thereof is recombinantly produced, optimally culture medium represents less than about 30%, 20%,
10%, 5%, or 1% (by dry weight) of chemical precursors or non-protein-of-interest chemicals.
Fragments and variants of the disclosed nucleotide sequences and proteins encoded thereby are also encompassed by the present invention. "Fragment" is intended to mean a portion of the nucleotide sequence or a portion of the amino acid sequence and hence protein encoded thereby. Fragments of a nucleotide sequence may encode protein fragments that retain the biological activity of the native protein and hence have antipathogenic activity, more particularly antifungal activity. Alternatively, fragments of a nucleotide sequence that are useful as hybridization probes generally do not encode fragment proteins retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length 15 nucleotide sequence encoding the polypeptides of the invention.
A fragment of a nucleotide sequence that encodes a biologically active portion of an antifungal polypeptide of the invention will encode at least 15, 25, 30, 40, or 50 contiguous amino acids, or up to the total number of amino acids present in a full-length antifungal polypeptide of the invention (for example, 33 amino acids for SEQ ID NO:1).
Fragments of a 20 nucleotide sequence that are useful as hybridization probes or PCR
primers generally need not encode a biologically active portion of an antipathogenic protein.
As used herein, "full-length sequence" in reference to a specified polynucleotide means having the entire nucleic acid sequence of a native sequence. "Native sequence" is intended to mean an endogenous sequence, i.e., a non-engineered sequence found in an organism's genome.
Thus, a fragment of a nucleotide sequence of the invention may encode a biologically active portion of an antipathogenic polypeptide, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. A
biologically active portion of an antipathogenic polypeptide can be prepared by isolating a portion of one of the nucleotide sequences of the invention, expressing the encoded portion of the antipathogenic protein (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the antifungal protein. Nucleic acid molecules that are fragments of a nucleotide sequence of the invention comprise at least 15, 20, 50, 75, 100, or 150 contiguous nucleotides, or up to the number of nucleotides present in a full-length nucleotide sequence disclosed herein.
Fragments and variants of the disclosed nucleotide sequences and proteins encoded thereby are also encompassed by the present invention. "Fragment" is intended to mean a portion of the nucleotide sequence or a portion of the amino acid sequence and hence protein encoded thereby. Fragments of a nucleotide sequence may encode protein fragments that retain the biological activity of the native protein and hence have antipathogenic activity, more particularly antifungal activity. Alternatively, fragments of a nucleotide sequence that are useful as hybridization probes generally do not encode fragment proteins retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length 15 nucleotide sequence encoding the polypeptides of the invention.
A fragment of a nucleotide sequence that encodes a biologically active portion of an antifungal polypeptide of the invention will encode at least 15, 25, 30, 40, or 50 contiguous amino acids, or up to the total number of amino acids present in a full-length antifungal polypeptide of the invention (for example, 33 amino acids for SEQ ID NO:1).
Fragments of a 20 nucleotide sequence that are useful as hybridization probes or PCR
primers generally need not encode a biologically active portion of an antipathogenic protein.
As used herein, "full-length sequence" in reference to a specified polynucleotide means having the entire nucleic acid sequence of a native sequence. "Native sequence" is intended to mean an endogenous sequence, i.e., a non-engineered sequence found in an organism's genome.
Thus, a fragment of a nucleotide sequence of the invention may encode a biologically active portion of an antipathogenic polypeptide, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. A
biologically active portion of an antipathogenic polypeptide can be prepared by isolating a portion of one of the nucleotide sequences of the invention, expressing the encoded portion of the antipathogenic protein (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the antifungal protein. Nucleic acid molecules that are fragments of a nucleotide sequence of the invention comprise at least 15, 20, 50, 75, 100, or 150 contiguous nucleotides, or up to the number of nucleotides present in a full-length nucleotide sequence disclosed herein.
11 "Variants" is intended to mean substantially similar sequences. For polynucleotides, a variant comprises a deletion and/or addition of one or more nucleotides at one or more internal sites within the native polynucleotide and/or a substitution of one or more nucleotides at one or more sites in the native polynucleotide. As used herein, a "native"
polynucleotide or polypeptide comprises a naturally occurring nucleotide sequence or amino acid sequence, respectively. One of skill in the art will recognize that variants of the nucleic acids of the invention will be constructed such that the open reading frame is maintained.
For polynucleotides, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the antipathogenic polypeptides of the invention. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant polynucleotides also include synthetically derived polynucleotide, such as those generated, for example, by using site-directed mutagenesis but which still encode an antipathogenic protein of the invention. Generally, variants of a particular polynucleotide of the invention will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters described elsewhere herein.
Variants of a particular polynucleotide of the invention (i.e., the reference polynucleotide) can also be evaluated by comparison of the percent sequence identity between the polypeptide encoded by a variant polynucleotide and the polypeptide encoded by the reference polynucleotide. Thus, for example, an isolated polynucleotide that encodes a polypeptide with a given percent sequence identity to the polypeptide of SEQ
ID NO:1 or SEQ ID NO:3 is disclosed. Percent sequence identity between any two polypeptides can be calculated using sequence alignment programs and parameters described elsewhere herein.
Where any given pair of polynucleotides of the invention is evaluated by comparison of the percent sequence identity shared by the two polypeptides they encode, the percent sequence identity between the two encoded polypeptides is at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity.
"Variant" protein is intended to mean a protein derived from the native protein by deletion or addition of one or more amino acids at one or more internal sites in the native protein and/or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, antipathogenic, particularly antifungal, activity as described herein. Such variants may result
polynucleotide or polypeptide comprises a naturally occurring nucleotide sequence or amino acid sequence, respectively. One of skill in the art will recognize that variants of the nucleic acids of the invention will be constructed such that the open reading frame is maintained.
For polynucleotides, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the antipathogenic polypeptides of the invention. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant polynucleotides also include synthetically derived polynucleotide, such as those generated, for example, by using site-directed mutagenesis but which still encode an antipathogenic protein of the invention. Generally, variants of a particular polynucleotide of the invention will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters described elsewhere herein.
Variants of a particular polynucleotide of the invention (i.e., the reference polynucleotide) can also be evaluated by comparison of the percent sequence identity between the polypeptide encoded by a variant polynucleotide and the polypeptide encoded by the reference polynucleotide. Thus, for example, an isolated polynucleotide that encodes a polypeptide with a given percent sequence identity to the polypeptide of SEQ
ID NO:1 or SEQ ID NO:3 is disclosed. Percent sequence identity between any two polypeptides can be calculated using sequence alignment programs and parameters described elsewhere herein.
Where any given pair of polynucleotides of the invention is evaluated by comparison of the percent sequence identity shared by the two polypeptides they encode, the percent sequence identity between the two encoded polypeptides is at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity.
"Variant" protein is intended to mean a protein derived from the native protein by deletion or addition of one or more amino acids at one or more internal sites in the native protein and/or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, antipathogenic, particularly antifungal, activity as described herein. Such variants may result
12 = from, for example, genetic polymorphism or from human manipulation.
Biologically active variants of a native antipathogenic protein of the invention will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs and parameters described elsewhere herein. A
biologically active variant of a protein of the invention may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.
= The proteins of the invention may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants and fragments of the antipathogenic proteins can be prepared by mutations in the DNA. Methods for mutagenesis and polynucleotide alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Patent No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein.
Guidance as to appropriate arnino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.).
Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be optimal.
Thus, the genes and polynucleotides of the invention include both the naturally occurring sequences as well as mutant fonus. Likewise, the proteins of the invention encompass naturally occurring proteins as well as variations and modified forms thereof.
Such variants will continue to possess the desired antipathogenic, particularly antifungal, activity. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and optimally will not create complementary regions that could produce secondary mRNA structure. See, EP Patent No.
0075444, In nature, some polypeptides are produced as complex precursors which, in addition to targeting labels such as the signal peptides discussed elsewhere in this application, also contain other fragments of peptides which are removed (processed) at some point during protein maturation, resulting in a mature form of the polypeptide that is different from the =
primary translation product (aside from the removal of the signal peptide).
"Mature protein"
refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed.
"Precursor protein" or "prepropeptide" or "preproprotein" all refer to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may include, but
Biologically active variants of a native antipathogenic protein of the invention will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs and parameters described elsewhere herein. A
biologically active variant of a protein of the invention may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.
= The proteins of the invention may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants and fragments of the antipathogenic proteins can be prepared by mutations in the DNA. Methods for mutagenesis and polynucleotide alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Patent No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein.
Guidance as to appropriate arnino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.).
Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be optimal.
Thus, the genes and polynucleotides of the invention include both the naturally occurring sequences as well as mutant fonus. Likewise, the proteins of the invention encompass naturally occurring proteins as well as variations and modified forms thereof.
Such variants will continue to possess the desired antipathogenic, particularly antifungal, activity. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and optimally will not create complementary regions that could produce secondary mRNA structure. See, EP Patent No.
0075444, In nature, some polypeptides are produced as complex precursors which, in addition to targeting labels such as the signal peptides discussed elsewhere in this application, also contain other fragments of peptides which are removed (processed) at some point during protein maturation, resulting in a mature form of the polypeptide that is different from the =
primary translation product (aside from the removal of the signal peptide).
"Mature protein"
refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed.
"Precursor protein" or "prepropeptide" or "preproprotein" all refer to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may include, but
13 =
are not limited to, intracellular localization signals. "Pre" in this nomenclature generally refers to the signal peptide. The form of the translation product with only the signal peptide removed but no further processing yet is called a "propeptide" or "proprotein." The fragments or segments to be removed may themselves also be referred to as "propepticles." A
5 proprotein or propeptide thus has had the signal peptide removed, but contains propeptides (here referring to propeptide segments) and the portions that will make up the mature protein.
The skilled artisan is able to determine, depending on the species in which the proteins are being expressed and the desired intracellular location, if higher expression levels might be obtained by using a gene construct encoding just the mature form of the protein, the mature 10 form with a signal peptide, or the proprotein (i.e., a form including propeptides) with a signal peptide. For optimal expression in plants or fungi, the pre- and propeptide sequences may be needed. The propeptide segments may play a role in aiding correct peptide folding.
The genornic sequence that encodes full-length LB-09812 polypeptide is provided in SEQ ID NO:24. The full-length LB-09812 polypeptide is set forth is SEQ ID
NO:25. A
15 genomic sequence that encodes full-length LB-12922 polypeptide is provided in SEQ ID
NO:26. The predicted full-length LB-12922 polypeptide sequence is set forth in SEQ ID
NO:27. Experimental details regarding isolation of the LB-09812 and LB-12922 genes are = provided in Example 4 below.
The deletions, insertions, and substitutions of the protein sequences encompassed 20 herein are not expected to produce radical changes in the characteristics of the protein.
However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays. That is, the activity can be evaluated by assays that measure antipathogenic activity such as antifungal plate assays. See, for example, Duvick et 25 al. (1992) J. Biol. Chem. 267:18841-18820.
Variant polynucleotides and proteins also encompass sequences and proteins derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, one or more different antipathogenic protein coding sequences can be manipulated to create a new antipathogenic protein possessing the desired properties. In this manner, 30 libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between the antipathogenic protein gene of the invention and other known antipathogenic protein genes to obtain a new gene 35 coding for a protein with an improved property of interest, such as increased antifungal activity. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer = (1994) Proc. Natl. Acad. Sci. USA 91;10747-10751; Stemmer (1994) Nature 370:389-391;
Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol.
Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Patent Nos. 5,605,793 and 5,837,458.
The polynucleotides of the invention can be used to isolate corresponding sequences from other organisms, particularly other microorganisms, more particularly other fungi. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein.
Sequences isolated based on their sequence identity to the entire sequences set forth herein or to variants and fragments thereof are encompassed by the present invention. Such sequences include sequences that are orthologs of the disclosed sequences. "Orthologs" is intended to mean genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share at least 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity. Functions of orthologs are often highly conserved among species.
Thus, isolated polynucleotides that encode for an antipathogenic, particularly antifungal, protein and which hybridize under stringent conditions to the sequences disclosed herein, or to variants or fragments thereof, are encompassed by the present invention.
In a PCR approach, oligonucleotide primers can be designed for use in PCR
reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A
Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
See also Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like.
In hybridization techniques, all or part of a known polynucleotide is used as a probe that selectively hybridizes to other corresponding polynucleotides present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA
libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA
fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as 32P, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the polynucleotides of the invention. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
For example, an entire polynucleotide disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding polynucleotides and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among antipathogenic polynucleotide sequences and are optimally at least about 10 nucleotides in length, and most optimally at least about 20 nucleotides in length. Such probes may be used to amplify corresponding polynucleotides from a chosen organism by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
Hybridization of such sequences may be carried out under stringent conditions.
"Stringent conditions" or "stringent hybridization conditions" is intended to mean conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100%
complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, optimally less than 500 nucleotides in length.
Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 C for short probes (e.g., 10 to 50 nucleotides) and at least about 60 C for long probes (e.g., greater than 50 nucleotides).
Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaC1, 1% SDS (sodium dodecyl sulphate) at 37 C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaC1/0.3 M trisodium citrate) at 50 to 55 C.
Exemplary moderate stringency conditions include hybridization in 40 to 45%
formamide, 1.0 M NaC1, 1% SDS at 37 C, and a wash in 0.5X to 1X SSC at 55 to 60 C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaC1, 1% SDS
at 37 C, and a wash in 0.1X SSC at 60 to 65 C. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours. The duration of the wash time will be at least a length of time sufficient to reach equilibrium.
Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the thermal melting point (Tm) can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem. 138:267-284: Tm = 81.5 C + 16.6 (log M) + 0.41 (%GC) -0.61 (%
form) - 500/L; where M is the molarity of monovalent cations, %GC is the percentage of g-uanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. Tm is reduced by about 1 C
for each 1% of mismatching; thus, T, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90%
identity are sought, the Tm can be decreased 10 C. Generally, stringent conditions are selected to be about 5 C
lower than the Tm for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4 C lower than the Tm; moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10 C lower than the Tm; low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20 C lower than the T.
Using the equation, hybridization and wash compositions, and desired Tm, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a Tm of less than 45 C
(aqueous solution) or 32 C (formamide solution), it is optimal to increase the SSC
concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology¨Hybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, New York); and Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
The following terms are used to describe the sequence relationships between two or more polynucleotides or polypeptides: (a) "reference sequence", (b) "comparison window", (c) "sequence identity", and, (d) "percentage of sequence identity."
(a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.
(b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two polynucleotides. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.
Methods of alignment of sequences for comparison are well known in the art.
Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) CABIOS 4:11-17; the local alignment algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; the global alignment algorithm of Needleman and Wunsch (1970)J. Mol. Biol. 48:443-453; the search-for-local alignment method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877.
Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, California, USA).
Alignments using these programs can be performed using the default parameters.
The CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237-244 (1988);
Higgins et al. (1989) CABIOS 5:151-153; Corpet et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992) CABIOS 8:155-65; and Pearson et al. (1994) Meth. Mol.
Biol. 24:307-331. The ALIGN program is based on the algorithm of Myers and Miller (1988) supra. A
PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul et al (1990) J. Mol. Biol. 215:403 are based on the algorithm of Karlin and Altschul (1990) supra. BLAST nucleotide searches can be performed with the BLASTN
program, score = 100, wordlength = 12, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score = 50, wordlength = 3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST
(in BLAST
2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See www.ncbi.nlm.nih.gov.
Alignment may also be performed manually by inspection.
Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: %
identity and %
similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof "Equivalent program" is intended to mean any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the con-esponding alignment generated by GAP Version 10.
GAP uses the algorithm of Needleman and Wunsch (1970) J. MoL Biol. 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG
Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.
GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar.
Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the GCG Wisconsin Genetics Software Package is BLOSUM62 (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).
(c) As used herein, "sequence identity" or "identity" in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity." Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).
(d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
The use of the term "polynucleotide" is not intended to limit the present invention to polynucleotides comprising DNA. Those of ordinary skill in the art will recognize that polynucleotides, can comprise ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The polynucleotides of the invention also encompass all forms of sequences including, but not limited to, single-stranded forms, double-stranded forms, and the like.
In some embodiments, expression cassettes comprising a promoter operably linked to a heterologous nucleotide sequence of the invention that encodes an antipathogenic polypeptide are further provided. The expression cassettes of the invention find use in generating transformed plants, plant cells, and microorganisms and in practicing the methods for inducing pathogen resistance disclosed herein. The expression cassette will include 5' and 3' regulatory sequences operably linked to a polynucleotide of the invention.
"Operably linked" is intended to mean a functional linkage between two or more elements.
For example, an operable linkage between a polynucleotide of interest and a regulatory sequence (i.e., a promoter) is functional link that allows for expression of the polynucleotide of interest.
Operably linked elements may be contiguous or non-contiguous. When used to refer to the joining of two protein coding regions, by operably linked is intended that the coding regions are in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes. Such an expression cassette is provided with a plurality of restriction sites and/or recombination sites for insertion of the polynucleotide that encodes an antipathogenic polypeptide to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.
The expression cassette will include in the 5'-3' direction of transcription, a transcriptional initiation region (i.e., a promoter), translational initiation region, a polynucleotide of the invention, a translational termination region and, optionally, a transcriptional termination region functional in the host organism. The regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or the polynucleotide of the invention may be native/analogous to the host cell or to each other. Alternatively, the regulatory regions and/or the polynucleotide of the invention may be heterologous to the host cell or to each other. As used herein, "heterologous"
in reference to a sequence is a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous polynucleotide is from a species different from the species from which the polynucleotide was =
= derived, or, if from the same/analogous species, one or both are substantially modified from their original form and/or genoinic locus, or the promoter is not the native promoter for the operably linked polynucleotide.
The optionally included termination region may be native with the transcriptional 5 initiation region, may be native with the operably linked polynucleotide of interest, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous) to the promoter, the polynucleotide of interest, the host, or any combination thereof. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerincau 10 et al. (1991) Mol. Gen. Genet. 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272;
Munroe et al.
(1990) Gene 91:151-158; Ballas et aL (1989)Nucleic Acids Res. 17:7891-7903;
and Joshi et al. (1987) Nucleic Acids Res. 15:9627-9639. In particular embodiments, the potato protease inhibitor II gene (Pint') terminator is used. See, for example, Keil et al.
(1986) Nucl. Acids 15 Res. 14:5641-5650; and An et al. (1989) Plant Cell 1:115-122.
Where appropriate, the polynucleotides may be optimized for increased expression in the transformed organism. For example, the polynucleotides can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri (1990) 20 Plant Physiol. 92:1-11 for a discussion of host-preferred codon usage.
Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S.
Patent Nos.
5,380,831, and 5,436,391, and Murray et al. (1989)Nucleic Acids Res. 17:477-498.
Additional sequence modifications are known to enhance gene expression in a 25 cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-' characterized sequences that may be deleterious to gene expression. The G-C
content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified 30 to avoid predicted hairpin secondary mRNA structures.
The expression cassettes may additionally contain 5' leader sequence. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' = noncoding region) (Elroy-Stein et al. (1989) Proc. Natl. Acad. Sci. USA
86:6126-6130);
35 potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Gallic et al. (1995) Gene 165(2):233-238), MDMV leader (Maize Dwarf Mosaic Virus), and human immunoglobulin heavy-chain binding protein (BiP) (Macejak et al. (1991) Nature 353:90-94);
untranslated =
leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al.
(1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al.
(1989) in Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology 81:382-385). See also, Della-Cioppa et al. (1987) Plant Physiol. 84:965-968.
In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA
fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.
The expression cassette can also comprise a selectable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D). Additional selectable markers include phenotypic markers such as f3-galactosidase and fluorescent proteins such as green fluorescent protein (GFP) (Su et al. (2004) Biotechnol Bioeng 85:610-9 and Fetter et al.
(2004) Plant Cell 16:215-28), cyan florescent protein (CYP) (Bolte et al.
(2004)J. Cell Science 117:943-54 and Kato et al. (2002) Plant Physiol 129:913-42), and yellow florescent protein (PhiYFPTM from Evrogen, see, Bolte et al. (2004) J. Cell Science / /
7:943-54). For additional selectable markers, see generally, Yarranton (1992) Curr. Opin.
Biotech. 3:506-511;
Christopherson et al. (1992) Proc. Natl. Acad. Sci. USA 89:6314-6318; Yao et al. (1992) Cell 71:63-72; Reznikoff (1992) Mol. Microbiol. 6:2419-2422; Barkley et al. (1980) in The Operon, pp. 177-220; Hu et al. (1987) Cell 48:555-566; Brown et al. (1987) Cell 49:603-612; Figge et al.
(1988) Cell 52:713-722; Deuschle et al. (1989) Proc. Natl. Acad. Aci. USA
86:5400-5404; Fuerst et al. (1989) Proc. Natl. Acad. Sci. USA 86:2549-2553; Deuschle et al. (1990) Science 248:480-483; Gossen (1993) Ph.D. Thesis, University of Heidelberg; Reines et al.
(1993) Proc. Natl.
Acad. Sci. USA 90:1917-1921; Labow et a/. (1990) Mo/. Cell. Biol. 10:3343-3356; Zambretti et al. (1992) Proc. Natl. Acad. Sci. USA 89:3952-3956; Baim et al. (1991) Proc.
Natl. Acad. Sci.
USA 88:5072-5076; Wyborski et al. (1991) Nucleic Acids Res. 19:4647-4653;
Hillenand-Wissman (1989) Topics Mol. Struc. Biol. 10:143-162; Degenkolb et al. (1991) Antimicrob.
Agents Chemother. 35:1591-1595; Kleinschnidt et al. (1988) Biochemistry 27:1094-1104; Bonin (1993) Ph.D. Thesis, University of Heidelberg; Gossen et al. (1992) Proc.
Natl. Acad. Sci. USA
89:5547-5551; Oliva et al. (1992) Antimicrob. Agents Chemother. 36:913-919;
Illavka et al.
(1985)Handbook of Experimental Pharmacology, Vol. 78 ( Springer-Verlag, Berlin); Gill et aL
(1988) Nature 334:721-724.
The above list of selectable marker genes is not meant to be limiting. Any selectable 5 marker gene can be used in the present invention.
A number of promoters can be used in the practice of the invention, including the native promoter of the polynucleotide sequence of interest. The promoters can be selected based on the desired outcome. A wide range of plant promoters are discussed in the recent review of Potenza et al. (2004) I71 Vitro Cell Dev Biol ¨ Plant 40:1-22, herein incorporated by 10 reference. For example, the nucleic acids can be combined with constitutive, tissue-preferred, pathogen-inducible, or other promoters for expression in plants. Such constitutive promoters include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Patent No. 6,072,050; the core CaMV 35S
promoter (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al.
(1990) Plant 15 Cell 2:163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol.
12:619-632 and =
Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al.
(1991) Theor.
Appl. Genet. 81:581-588); MAS (Velten et al. (1984) EMBO J. 3:2723-2730); ALS
promoter (U.S. Patent No. 5,659,026), and the like. Other constitutive promoters include, for example, U.S. Patent Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785;
5,399,680;
= 20 5,268,463; 5,608,142; and 6,177,611. In particular embodiments, the E35S-Ubi promoter is used for strong constitutive expression.
Generally, it will be beneficial to express the gene from an inducible promoter, particularly from a pathogen-inducible promoter. Such promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a 25 pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for =
example, Redolfi et al. (1983) Neth. J. Plant PathoL 89:245-254; Uknes et al.
(1992) Plant Cell 4:645-656; and Van Loon (1985) Plant Mol. ViroL 4:111-116. See also WO
99/43819.
Of interest are promoters that result in expression of a protein locally at or near the 30 site of pathogen infection. See, for example, Marineau et al. (1987) Plant Mol. Biol. 9:335-342; Matton et al. (1989) Molecular Plant-Microbe Interactions 2:325-331;
Somsisch et al.
(1986) Proc. Natl. Acad. Sci. USA 83:2427-2430; Somsisch et al. (1988)11101.
Gen. Genet.
2:93-98; and Yang (1996) Proc. Natl. Acad. Sci. USA 93:14972-14977. See also, Chen et al.
(1996) Plant J. 10:955-966; Zhang et al. (1994) Proc. Natl. Acad. Sci. USA
91:2507-2511;
35 Warner et al. (1993) Plant J. 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968; U.S.
Patent No. 5,750,386 (nematode-inducible); and the references cited therein.
Of particular interest are the inducible promoter for the maize PRms gene, whose expression is induced by the pathogen Fusarium monilifonne (see, for example, Cordero et al. (1992) Physiol. MoL
Plant Path. 41:189-200) and the inducible maize promoters described in U.S
Patent Nos.
6,429,362 (e.g., Zni-PR1-81 and Zm-PR1-83 promoters).
The promoters described in U.S. Patent No. 6,720,480, such as 5 the Zm-BBIl promoter, may also be used in the practice of the invention.
Additionally, as pathogens find entry into plants through wounds or insect damage, a wound-inducible promoter may be used in the constructions of the invention.
Such wound-inducible promoters include potato proteinase inhibitor (pin II) gene (Ryan (1990) Ann. Rev, Phytopath. 28:425-449; Duan et al. (1996) Nature Biotechnology 14:494-498);
wunl and 10 wun2, U.S. Patent No. 5,428,148; winl and win2 (Stanford et al. (1989) Mol. Gen. Genet.
215:200-208); systemin (McGurl et al. (1992) Science 225:1570-1573); WIPI
(Rohmeier et al. (1993) Plant Mol. Biol. 22:783-792; Eckelkamp et al. (1993) FEBS Letters 323:73-76);
MPI gene (Corderok et al. (1994) Plant .1. 6(2):141-150); and the like.
I 5 Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art 20 and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-la promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the 25 glueocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl, Acad. Sci. USA
88:10421-10425 and McNeilis et al. (1998) Plant J. I 4(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (I 991) Mol.
Gen. Genet. 227:229-237, and U.S. Patent Nos. 5,814,618 and 5,789,156).
=
30 Tissue-preferred promoters can be utilized to target enhanced expression of the antipathogenic polypeptides of the invention within a particular plant tissue.
For example, a tissue-preferred promoter may be used to express an antifungal polypeptide in a plant tissue where disease resistance is particularly important, such as, for example, the roots or the leaves. Tissue-preferred promoters include Yamamoto et al. (1997) Plant 1 12(2):255-265;
35 Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al.
(1997) Mol. Gen Genet. 254(3):337-343; Russell et at (1997) Transgenic Res. 6(2):157-168;
Rinehart et al.
(1996) Plant PhysioL I 12(3):1331-1341; Van Camp et al. (1996) Plant Physiol.
112(2):525-, 62451-1042 535; Canevascini et al. (1996)Plant Physiol. 112(2):513-524; Yamamoto et al.
(1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Pt-obi. Cell Differ. 20:181-196; Orozco et al. (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl.
Acad. Sci.
' USA 90(20):9586-9590; and Guevara-Garcia et al.
(1993)Plant J. 4(3):495-505. Such 5 promoters can be modified, if necessary, for weak expression.
Vascular tissue-preferred promoters are known in the art and include those promoters that selectively drive protein expression in, for example, xylem and phloem tissue. Vascular tissue-preferred promoters include, but are not limited to, the Prunus serotina prunasin hydrolase gene promoter (see, e.g., International Publication No. WO
03/006651), and also 10 those found in US Patent Application Serial No. 10/109,488.
Stalk-preferred promoters may be used to drive expression of an antipathogenic polypeptide of the invention. Exemplary stalk-preferred promoters include the maize MS8-15 gene promoter (see, for example, U.S. Patent No. 5,986,174 and International Publication No.
WO 98/00533), and those found in Graham et al. (1997) Plant Mol Biol 33(4):
729-735. In 15 certain embodiments of the invention, the Zm-419 promoter is used for tissue preferred-expression in maize stalk tissue. See, for example, U.S. Provisional Application No.
60/729,772, entitled "Promoter Active at High Levels in Stalks, Stalk Nodes, Roots and Leaf Sheaths," filed October 24, 2005.
Leaf-preferred protnoters are known in the art. See, for example, Yamamoto et al.
20 (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J.
3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc.
Natl. Acad.
Sci. USA 90(20):9586-9590.
Root-preferred promoters are known and can be selected from the many available 25 from the literature or isolated de novo from various compatible species.
See, for example, Hire et al. (1992)Plant Mol. Biol. 20(2):207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10):1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mal.
Biol.
are not limited to, intracellular localization signals. "Pre" in this nomenclature generally refers to the signal peptide. The form of the translation product with only the signal peptide removed but no further processing yet is called a "propeptide" or "proprotein." The fragments or segments to be removed may themselves also be referred to as "propepticles." A
5 proprotein or propeptide thus has had the signal peptide removed, but contains propeptides (here referring to propeptide segments) and the portions that will make up the mature protein.
The skilled artisan is able to determine, depending on the species in which the proteins are being expressed and the desired intracellular location, if higher expression levels might be obtained by using a gene construct encoding just the mature form of the protein, the mature 10 form with a signal peptide, or the proprotein (i.e., a form including propeptides) with a signal peptide. For optimal expression in plants or fungi, the pre- and propeptide sequences may be needed. The propeptide segments may play a role in aiding correct peptide folding.
The genornic sequence that encodes full-length LB-09812 polypeptide is provided in SEQ ID NO:24. The full-length LB-09812 polypeptide is set forth is SEQ ID
NO:25. A
15 genomic sequence that encodes full-length LB-12922 polypeptide is provided in SEQ ID
NO:26. The predicted full-length LB-12922 polypeptide sequence is set forth in SEQ ID
NO:27. Experimental details regarding isolation of the LB-09812 and LB-12922 genes are = provided in Example 4 below.
The deletions, insertions, and substitutions of the protein sequences encompassed 20 herein are not expected to produce radical changes in the characteristics of the protein.
However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays. That is, the activity can be evaluated by assays that measure antipathogenic activity such as antifungal plate assays. See, for example, Duvick et 25 al. (1992) J. Biol. Chem. 267:18841-18820.
Variant polynucleotides and proteins also encompass sequences and proteins derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, one or more different antipathogenic protein coding sequences can be manipulated to create a new antipathogenic protein possessing the desired properties. In this manner, 30 libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between the antipathogenic protein gene of the invention and other known antipathogenic protein genes to obtain a new gene 35 coding for a protein with an improved property of interest, such as increased antifungal activity. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer = (1994) Proc. Natl. Acad. Sci. USA 91;10747-10751; Stemmer (1994) Nature 370:389-391;
Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol.
Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Patent Nos. 5,605,793 and 5,837,458.
The polynucleotides of the invention can be used to isolate corresponding sequences from other organisms, particularly other microorganisms, more particularly other fungi. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein.
Sequences isolated based on their sequence identity to the entire sequences set forth herein or to variants and fragments thereof are encompassed by the present invention. Such sequences include sequences that are orthologs of the disclosed sequences. "Orthologs" is intended to mean genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share at least 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity. Functions of orthologs are often highly conserved among species.
Thus, isolated polynucleotides that encode for an antipathogenic, particularly antifungal, protein and which hybridize under stringent conditions to the sequences disclosed herein, or to variants or fragments thereof, are encompassed by the present invention.
In a PCR approach, oligonucleotide primers can be designed for use in PCR
reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A
Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
See also Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like.
In hybridization techniques, all or part of a known polynucleotide is used as a probe that selectively hybridizes to other corresponding polynucleotides present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA
libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA
fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as 32P, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the polynucleotides of the invention. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
For example, an entire polynucleotide disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding polynucleotides and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among antipathogenic polynucleotide sequences and are optimally at least about 10 nucleotides in length, and most optimally at least about 20 nucleotides in length. Such probes may be used to amplify corresponding polynucleotides from a chosen organism by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
Hybridization of such sequences may be carried out under stringent conditions.
"Stringent conditions" or "stringent hybridization conditions" is intended to mean conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100%
complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, optimally less than 500 nucleotides in length.
Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 C for short probes (e.g., 10 to 50 nucleotides) and at least about 60 C for long probes (e.g., greater than 50 nucleotides).
Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaC1, 1% SDS (sodium dodecyl sulphate) at 37 C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaC1/0.3 M trisodium citrate) at 50 to 55 C.
Exemplary moderate stringency conditions include hybridization in 40 to 45%
formamide, 1.0 M NaC1, 1% SDS at 37 C, and a wash in 0.5X to 1X SSC at 55 to 60 C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaC1, 1% SDS
at 37 C, and a wash in 0.1X SSC at 60 to 65 C. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours. The duration of the wash time will be at least a length of time sufficient to reach equilibrium.
Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the thermal melting point (Tm) can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem. 138:267-284: Tm = 81.5 C + 16.6 (log M) + 0.41 (%GC) -0.61 (%
form) - 500/L; where M is the molarity of monovalent cations, %GC is the percentage of g-uanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. Tm is reduced by about 1 C
for each 1% of mismatching; thus, T, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90%
identity are sought, the Tm can be decreased 10 C. Generally, stringent conditions are selected to be about 5 C
lower than the Tm for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4 C lower than the Tm; moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10 C lower than the Tm; low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20 C lower than the T.
Using the equation, hybridization and wash compositions, and desired Tm, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a Tm of less than 45 C
(aqueous solution) or 32 C (formamide solution), it is optimal to increase the SSC
concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology¨Hybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, New York); and Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
The following terms are used to describe the sequence relationships between two or more polynucleotides or polypeptides: (a) "reference sequence", (b) "comparison window", (c) "sequence identity", and, (d) "percentage of sequence identity."
(a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.
(b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two polynucleotides. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.
Methods of alignment of sequences for comparison are well known in the art.
Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) CABIOS 4:11-17; the local alignment algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; the global alignment algorithm of Needleman and Wunsch (1970)J. Mol. Biol. 48:443-453; the search-for-local alignment method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877.
Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, California, USA).
Alignments using these programs can be performed using the default parameters.
The CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237-244 (1988);
Higgins et al. (1989) CABIOS 5:151-153; Corpet et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992) CABIOS 8:155-65; and Pearson et al. (1994) Meth. Mol.
Biol. 24:307-331. The ALIGN program is based on the algorithm of Myers and Miller (1988) supra. A
PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul et al (1990) J. Mol. Biol. 215:403 are based on the algorithm of Karlin and Altschul (1990) supra. BLAST nucleotide searches can be performed with the BLASTN
program, score = 100, wordlength = 12, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score = 50, wordlength = 3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST
(in BLAST
2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See www.ncbi.nlm.nih.gov.
Alignment may also be performed manually by inspection.
Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: %
identity and %
similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof "Equivalent program" is intended to mean any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the con-esponding alignment generated by GAP Version 10.
GAP uses the algorithm of Needleman and Wunsch (1970) J. MoL Biol. 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG
Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.
GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar.
Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the GCG Wisconsin Genetics Software Package is BLOSUM62 (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).
(c) As used herein, "sequence identity" or "identity" in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity." Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).
(d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
The use of the term "polynucleotide" is not intended to limit the present invention to polynucleotides comprising DNA. Those of ordinary skill in the art will recognize that polynucleotides, can comprise ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The polynucleotides of the invention also encompass all forms of sequences including, but not limited to, single-stranded forms, double-stranded forms, and the like.
In some embodiments, expression cassettes comprising a promoter operably linked to a heterologous nucleotide sequence of the invention that encodes an antipathogenic polypeptide are further provided. The expression cassettes of the invention find use in generating transformed plants, plant cells, and microorganisms and in practicing the methods for inducing pathogen resistance disclosed herein. The expression cassette will include 5' and 3' regulatory sequences operably linked to a polynucleotide of the invention.
"Operably linked" is intended to mean a functional linkage between two or more elements.
For example, an operable linkage between a polynucleotide of interest and a regulatory sequence (i.e., a promoter) is functional link that allows for expression of the polynucleotide of interest.
Operably linked elements may be contiguous or non-contiguous. When used to refer to the joining of two protein coding regions, by operably linked is intended that the coding regions are in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes. Such an expression cassette is provided with a plurality of restriction sites and/or recombination sites for insertion of the polynucleotide that encodes an antipathogenic polypeptide to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.
The expression cassette will include in the 5'-3' direction of transcription, a transcriptional initiation region (i.e., a promoter), translational initiation region, a polynucleotide of the invention, a translational termination region and, optionally, a transcriptional termination region functional in the host organism. The regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or the polynucleotide of the invention may be native/analogous to the host cell or to each other. Alternatively, the regulatory regions and/or the polynucleotide of the invention may be heterologous to the host cell or to each other. As used herein, "heterologous"
in reference to a sequence is a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous polynucleotide is from a species different from the species from which the polynucleotide was =
= derived, or, if from the same/analogous species, one or both are substantially modified from their original form and/or genoinic locus, or the promoter is not the native promoter for the operably linked polynucleotide.
The optionally included termination region may be native with the transcriptional 5 initiation region, may be native with the operably linked polynucleotide of interest, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous) to the promoter, the polynucleotide of interest, the host, or any combination thereof. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerincau 10 et al. (1991) Mol. Gen. Genet. 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272;
Munroe et al.
(1990) Gene 91:151-158; Ballas et aL (1989)Nucleic Acids Res. 17:7891-7903;
and Joshi et al. (1987) Nucleic Acids Res. 15:9627-9639. In particular embodiments, the potato protease inhibitor II gene (Pint') terminator is used. See, for example, Keil et al.
(1986) Nucl. Acids 15 Res. 14:5641-5650; and An et al. (1989) Plant Cell 1:115-122.
Where appropriate, the polynucleotides may be optimized for increased expression in the transformed organism. For example, the polynucleotides can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri (1990) 20 Plant Physiol. 92:1-11 for a discussion of host-preferred codon usage.
Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S.
Patent Nos.
5,380,831, and 5,436,391, and Murray et al. (1989)Nucleic Acids Res. 17:477-498.
Additional sequence modifications are known to enhance gene expression in a 25 cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-' characterized sequences that may be deleterious to gene expression. The G-C
content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified 30 to avoid predicted hairpin secondary mRNA structures.
The expression cassettes may additionally contain 5' leader sequence. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' = noncoding region) (Elroy-Stein et al. (1989) Proc. Natl. Acad. Sci. USA
86:6126-6130);
35 potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Gallic et al. (1995) Gene 165(2):233-238), MDMV leader (Maize Dwarf Mosaic Virus), and human immunoglobulin heavy-chain binding protein (BiP) (Macejak et al. (1991) Nature 353:90-94);
untranslated =
leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al.
(1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al.
(1989) in Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology 81:382-385). See also, Della-Cioppa et al. (1987) Plant Physiol. 84:965-968.
In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA
fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.
The expression cassette can also comprise a selectable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D). Additional selectable markers include phenotypic markers such as f3-galactosidase and fluorescent proteins such as green fluorescent protein (GFP) (Su et al. (2004) Biotechnol Bioeng 85:610-9 and Fetter et al.
(2004) Plant Cell 16:215-28), cyan florescent protein (CYP) (Bolte et al.
(2004)J. Cell Science 117:943-54 and Kato et al. (2002) Plant Physiol 129:913-42), and yellow florescent protein (PhiYFPTM from Evrogen, see, Bolte et al. (2004) J. Cell Science / /
7:943-54). For additional selectable markers, see generally, Yarranton (1992) Curr. Opin.
Biotech. 3:506-511;
Christopherson et al. (1992) Proc. Natl. Acad. Sci. USA 89:6314-6318; Yao et al. (1992) Cell 71:63-72; Reznikoff (1992) Mol. Microbiol. 6:2419-2422; Barkley et al. (1980) in The Operon, pp. 177-220; Hu et al. (1987) Cell 48:555-566; Brown et al. (1987) Cell 49:603-612; Figge et al.
(1988) Cell 52:713-722; Deuschle et al. (1989) Proc. Natl. Acad. Aci. USA
86:5400-5404; Fuerst et al. (1989) Proc. Natl. Acad. Sci. USA 86:2549-2553; Deuschle et al. (1990) Science 248:480-483; Gossen (1993) Ph.D. Thesis, University of Heidelberg; Reines et al.
(1993) Proc. Natl.
Acad. Sci. USA 90:1917-1921; Labow et a/. (1990) Mo/. Cell. Biol. 10:3343-3356; Zambretti et al. (1992) Proc. Natl. Acad. Sci. USA 89:3952-3956; Baim et al. (1991) Proc.
Natl. Acad. Sci.
USA 88:5072-5076; Wyborski et al. (1991) Nucleic Acids Res. 19:4647-4653;
Hillenand-Wissman (1989) Topics Mol. Struc. Biol. 10:143-162; Degenkolb et al. (1991) Antimicrob.
Agents Chemother. 35:1591-1595; Kleinschnidt et al. (1988) Biochemistry 27:1094-1104; Bonin (1993) Ph.D. Thesis, University of Heidelberg; Gossen et al. (1992) Proc.
Natl. Acad. Sci. USA
89:5547-5551; Oliva et al. (1992) Antimicrob. Agents Chemother. 36:913-919;
Illavka et al.
(1985)Handbook of Experimental Pharmacology, Vol. 78 ( Springer-Verlag, Berlin); Gill et aL
(1988) Nature 334:721-724.
The above list of selectable marker genes is not meant to be limiting. Any selectable 5 marker gene can be used in the present invention.
A number of promoters can be used in the practice of the invention, including the native promoter of the polynucleotide sequence of interest. The promoters can be selected based on the desired outcome. A wide range of plant promoters are discussed in the recent review of Potenza et al. (2004) I71 Vitro Cell Dev Biol ¨ Plant 40:1-22, herein incorporated by 10 reference. For example, the nucleic acids can be combined with constitutive, tissue-preferred, pathogen-inducible, or other promoters for expression in plants. Such constitutive promoters include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Patent No. 6,072,050; the core CaMV 35S
promoter (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al.
(1990) Plant 15 Cell 2:163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol.
12:619-632 and =
Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al.
(1991) Theor.
Appl. Genet. 81:581-588); MAS (Velten et al. (1984) EMBO J. 3:2723-2730); ALS
promoter (U.S. Patent No. 5,659,026), and the like. Other constitutive promoters include, for example, U.S. Patent Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785;
5,399,680;
= 20 5,268,463; 5,608,142; and 6,177,611. In particular embodiments, the E35S-Ubi promoter is used for strong constitutive expression.
Generally, it will be beneficial to express the gene from an inducible promoter, particularly from a pathogen-inducible promoter. Such promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a 25 pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for =
example, Redolfi et al. (1983) Neth. J. Plant PathoL 89:245-254; Uknes et al.
(1992) Plant Cell 4:645-656; and Van Loon (1985) Plant Mol. ViroL 4:111-116. See also WO
99/43819.
Of interest are promoters that result in expression of a protein locally at or near the 30 site of pathogen infection. See, for example, Marineau et al. (1987) Plant Mol. Biol. 9:335-342; Matton et al. (1989) Molecular Plant-Microbe Interactions 2:325-331;
Somsisch et al.
(1986) Proc. Natl. Acad. Sci. USA 83:2427-2430; Somsisch et al. (1988)11101.
Gen. Genet.
2:93-98; and Yang (1996) Proc. Natl. Acad. Sci. USA 93:14972-14977. See also, Chen et al.
(1996) Plant J. 10:955-966; Zhang et al. (1994) Proc. Natl. Acad. Sci. USA
91:2507-2511;
35 Warner et al. (1993) Plant J. 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968; U.S.
Patent No. 5,750,386 (nematode-inducible); and the references cited therein.
Of particular interest are the inducible promoter for the maize PRms gene, whose expression is induced by the pathogen Fusarium monilifonne (see, for example, Cordero et al. (1992) Physiol. MoL
Plant Path. 41:189-200) and the inducible maize promoters described in U.S
Patent Nos.
6,429,362 (e.g., Zni-PR1-81 and Zm-PR1-83 promoters).
The promoters described in U.S. Patent No. 6,720,480, such as 5 the Zm-BBIl promoter, may also be used in the practice of the invention.
Additionally, as pathogens find entry into plants through wounds or insect damage, a wound-inducible promoter may be used in the constructions of the invention.
Such wound-inducible promoters include potato proteinase inhibitor (pin II) gene (Ryan (1990) Ann. Rev, Phytopath. 28:425-449; Duan et al. (1996) Nature Biotechnology 14:494-498);
wunl and 10 wun2, U.S. Patent No. 5,428,148; winl and win2 (Stanford et al. (1989) Mol. Gen. Genet.
215:200-208); systemin (McGurl et al. (1992) Science 225:1570-1573); WIPI
(Rohmeier et al. (1993) Plant Mol. Biol. 22:783-792; Eckelkamp et al. (1993) FEBS Letters 323:73-76);
MPI gene (Corderok et al. (1994) Plant .1. 6(2):141-150); and the like.
I 5 Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art 20 and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-la promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the 25 glueocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl, Acad. Sci. USA
88:10421-10425 and McNeilis et al. (1998) Plant J. I 4(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (I 991) Mol.
Gen. Genet. 227:229-237, and U.S. Patent Nos. 5,814,618 and 5,789,156).
=
30 Tissue-preferred promoters can be utilized to target enhanced expression of the antipathogenic polypeptides of the invention within a particular plant tissue.
For example, a tissue-preferred promoter may be used to express an antifungal polypeptide in a plant tissue where disease resistance is particularly important, such as, for example, the roots or the leaves. Tissue-preferred promoters include Yamamoto et al. (1997) Plant 1 12(2):255-265;
35 Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al.
(1997) Mol. Gen Genet. 254(3):337-343; Russell et at (1997) Transgenic Res. 6(2):157-168;
Rinehart et al.
(1996) Plant PhysioL I 12(3):1331-1341; Van Camp et al. (1996) Plant Physiol.
112(2):525-, 62451-1042 535; Canevascini et al. (1996)Plant Physiol. 112(2):513-524; Yamamoto et al.
(1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Pt-obi. Cell Differ. 20:181-196; Orozco et al. (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl.
Acad. Sci.
' USA 90(20):9586-9590; and Guevara-Garcia et al.
(1993)Plant J. 4(3):495-505. Such 5 promoters can be modified, if necessary, for weak expression.
Vascular tissue-preferred promoters are known in the art and include those promoters that selectively drive protein expression in, for example, xylem and phloem tissue. Vascular tissue-preferred promoters include, but are not limited to, the Prunus serotina prunasin hydrolase gene promoter (see, e.g., International Publication No. WO
03/006651), and also 10 those found in US Patent Application Serial No. 10/109,488.
Stalk-preferred promoters may be used to drive expression of an antipathogenic polypeptide of the invention. Exemplary stalk-preferred promoters include the maize MS8-15 gene promoter (see, for example, U.S. Patent No. 5,986,174 and International Publication No.
WO 98/00533), and those found in Graham et al. (1997) Plant Mol Biol 33(4):
729-735. In 15 certain embodiments of the invention, the Zm-419 promoter is used for tissue preferred-expression in maize stalk tissue. See, for example, U.S. Provisional Application No.
60/729,772, entitled "Promoter Active at High Levels in Stalks, Stalk Nodes, Roots and Leaf Sheaths," filed October 24, 2005.
Leaf-preferred protnoters are known in the art. See, for example, Yamamoto et al.
20 (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J.
3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc.
Natl. Acad.
Sci. USA 90(20):9586-9590.
Root-preferred promoters are known and can be selected from the many available 25 from the literature or isolated de novo from various compatible species.
See, for example, Hire et al. (1992)Plant Mol. Biol. 20(2):207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10):1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mal.
Biol.
14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of 30 Agrobacterium tumefaciens); and Miao et al. (1991)Plant Cell 3(1):11-22 (full-length cDNA
clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz et al. (1990) Plant Cell 2(7):633-641, where two root-specific promoters isolated from hemoglobin genes from the nitrogen-fixing nonlegume Parasponia andersonii and the related non-nitrogen-fixing nonlegume Trema tomemosa are 35 described. The promoters of these genes were linked to a 13-g1ucuronidase reporter gene and introduced into both the nonlegume Nicotiana tabacum and the legume Lotus corniculatus, and in both instances root-specific promoter activity was preserved. Leach and Aoyagi (1991) describe their analysis of the promoters of the highly expressed roIC
and rolD root-inducing genes of Agrobacterium rhizogenes (see Plant Science (Limerick) 79(1):69-76).
They concluded that enhancer and tissue-preferred DNA determinants are dissociated in those promoters. Teeri et al. (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopinc synthase is especially active in the epidermis of the root tip and that the TR2' gene is root specific in the intact plant and stimulated by wounding in leaf tissue, an especially desirable combination of characteristics for use with an insecticidal or larvicidal gene (see EMBO J. 8(2):343-350). The TRI' gene, fused to nptlI
(neomycin phosphotransfcrase II) showed similar characteristics. Additional root-preferred promoters include the VfENOD-GRP3 gene promoter (Kuster et al. (1995) Plant Mol. Biol.
29(4):759-772); and rolB promoter (Capana et al. (1994) Plant Mol. Biol. 25(4):681-691.
See also U.S. =
Patent Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732;
and 5,023,179.
"Seed-preferred" promoters include both "seed-specific" promoters (those promoters active during seed developtnent such as promoters of seed storage proteins) as well as "seed-germinating" promoters (those promoters active during seed germination). See Thompson et al. (1989) BioEssays 10:108. Such seed-preferred promoters include, but are not limited to, Ciml (cytokinin-induced message);
cZ19B1 (maize 19 kDa zein); milps (myo-inositol-l-phosphate synthase) (see WO 00/11177 and U.S. Patent No. 6,225,529). Gamma-zein is an endosperm-specific promoter. Globulin 1 (Glb-1) is a representative embryo-specific promoter. For dicots, seed-specific promoters include, but are not limited to, bean f3-phaseolin, napin, f3-conglycinin, soybean lectin, cruciferin, and the like. For monocots, seed-specific promoters include, but arc not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, gamma-zein, waxy, shrunken 1, shrunken 2, Globulin I, etc. See also WO 00/12733, where seed-preferred promoters from end/ and end2 genes are disclosed.
In certain embodiments the nucleic acid sequences of the present invention can be stacked with any combination of polynucleotide sequences of interest in order to create plants with a desired phenotype. For example, the polynucleotides of the present invention may be stacked with other antifungal genes and the like. The combinations generated can also include multiple copies of any one of the polynucleotides of interest. 'The polymicleotides of the present invention can also be stacked with any other gene or combination of genes to produce plants with a variety of desired trait combinations including but not limited to traits desirable for animal feed such as high oil genes (e.g., U.S. Patent No.
6,232,529); balanced amino acids (e.g. hordothionins (U.S. Patent Nos. 5,990,389; 5,885,801;
5,885,802; and 5,703,409); barley high lysine (Williamson et al. (1987) Eur. J. Biocheni, 165:99-106; and WO 98/20122); and high methionine proteins (Pedersen et al. (1986),I. Biol.
Chem.
,i;tz =
261:6279; Kirihara et al. (1988) Gene 71:359; and Musumura et al. (1989) Plant Mol. Biol.
12: 123)); increased digestibility (e.g., modified storage proteins (U.S.
Patent No. 6,858,778, filed November 7, 2001); and thioredoxins (U.S. Patent No. 7,009,087, filed December 3, 2001)). The polynucleotides of 5 the present invention can also be stacked with traits desirable for insect, disease or herbicide resistance (e.g., Bacillus thuringiensis toxic proteins (U.S. Patent Nos.
5,366,892; 5,747,450;
5,737,514; 5723,756; 5,593,881; Geiser et al (1986) Gene 48:109); lectins (Van Damme et al.
(1994) Plant Mal. Biol. 24:825); fumonisin detoxification genes (U.S. Patent No. 5,792,931);
avirulence and disease resistance genes (Jones et al. (1994) Science 266:789;
Martin et al.
10 (1993) Science 262:1432; Mindrinos ei aL (1994) Cell 78:1()89);
acetolactate synthase (ALS) mutants that lead to herbicide resistance such as the S4 and/or Hra mutations;
inhibitors of glutamine synthase such as phosphinothricin or basta (e.g., bar gene); and glyphosate resistance (EPSPS genes, GAT genes such as those disclosed in U.S. Patent Application Publication US2004/0082770, also W002/36782 and W003/092360)); and traits desirable for
clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz et al. (1990) Plant Cell 2(7):633-641, where two root-specific promoters isolated from hemoglobin genes from the nitrogen-fixing nonlegume Parasponia andersonii and the related non-nitrogen-fixing nonlegume Trema tomemosa are 35 described. The promoters of these genes were linked to a 13-g1ucuronidase reporter gene and introduced into both the nonlegume Nicotiana tabacum and the legume Lotus corniculatus, and in both instances root-specific promoter activity was preserved. Leach and Aoyagi (1991) describe their analysis of the promoters of the highly expressed roIC
and rolD root-inducing genes of Agrobacterium rhizogenes (see Plant Science (Limerick) 79(1):69-76).
They concluded that enhancer and tissue-preferred DNA determinants are dissociated in those promoters. Teeri et al. (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopinc synthase is especially active in the epidermis of the root tip and that the TR2' gene is root specific in the intact plant and stimulated by wounding in leaf tissue, an especially desirable combination of characteristics for use with an insecticidal or larvicidal gene (see EMBO J. 8(2):343-350). The TRI' gene, fused to nptlI
(neomycin phosphotransfcrase II) showed similar characteristics. Additional root-preferred promoters include the VfENOD-GRP3 gene promoter (Kuster et al. (1995) Plant Mol. Biol.
29(4):759-772); and rolB promoter (Capana et al. (1994) Plant Mol. Biol. 25(4):681-691.
See also U.S. =
Patent Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732;
and 5,023,179.
"Seed-preferred" promoters include both "seed-specific" promoters (those promoters active during seed developtnent such as promoters of seed storage proteins) as well as "seed-germinating" promoters (those promoters active during seed germination). See Thompson et al. (1989) BioEssays 10:108. Such seed-preferred promoters include, but are not limited to, Ciml (cytokinin-induced message);
cZ19B1 (maize 19 kDa zein); milps (myo-inositol-l-phosphate synthase) (see WO 00/11177 and U.S. Patent No. 6,225,529). Gamma-zein is an endosperm-specific promoter. Globulin 1 (Glb-1) is a representative embryo-specific promoter. For dicots, seed-specific promoters include, but are not limited to, bean f3-phaseolin, napin, f3-conglycinin, soybean lectin, cruciferin, and the like. For monocots, seed-specific promoters include, but arc not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, gamma-zein, waxy, shrunken 1, shrunken 2, Globulin I, etc. See also WO 00/12733, where seed-preferred promoters from end/ and end2 genes are disclosed.
In certain embodiments the nucleic acid sequences of the present invention can be stacked with any combination of polynucleotide sequences of interest in order to create plants with a desired phenotype. For example, the polynucleotides of the present invention may be stacked with other antifungal genes and the like. The combinations generated can also include multiple copies of any one of the polynucleotides of interest. 'The polymicleotides of the present invention can also be stacked with any other gene or combination of genes to produce plants with a variety of desired trait combinations including but not limited to traits desirable for animal feed such as high oil genes (e.g., U.S. Patent No.
6,232,529); balanced amino acids (e.g. hordothionins (U.S. Patent Nos. 5,990,389; 5,885,801;
5,885,802; and 5,703,409); barley high lysine (Williamson et al. (1987) Eur. J. Biocheni, 165:99-106; and WO 98/20122); and high methionine proteins (Pedersen et al. (1986),I. Biol.
Chem.
,i;tz =
261:6279; Kirihara et al. (1988) Gene 71:359; and Musumura et al. (1989) Plant Mol. Biol.
12: 123)); increased digestibility (e.g., modified storage proteins (U.S.
Patent No. 6,858,778, filed November 7, 2001); and thioredoxins (U.S. Patent No. 7,009,087, filed December 3, 2001)). The polynucleotides of 5 the present invention can also be stacked with traits desirable for insect, disease or herbicide resistance (e.g., Bacillus thuringiensis toxic proteins (U.S. Patent Nos.
5,366,892; 5,747,450;
5,737,514; 5723,756; 5,593,881; Geiser et al (1986) Gene 48:109); lectins (Van Damme et al.
(1994) Plant Mal. Biol. 24:825); fumonisin detoxification genes (U.S. Patent No. 5,792,931);
avirulence and disease resistance genes (Jones et al. (1994) Science 266:789;
Martin et al.
10 (1993) Science 262:1432; Mindrinos ei aL (1994) Cell 78:1()89);
acetolactate synthase (ALS) mutants that lead to herbicide resistance such as the S4 and/or Hra mutations;
inhibitors of glutamine synthase such as phosphinothricin or basta (e.g., bar gene); and glyphosate resistance (EPSPS genes, GAT genes such as those disclosed in U.S. Patent Application Publication US2004/0082770, also W002/36782 and W003/092360)); and traits desirable for
15 processing or process products such as high oil (e.g., U.S. Patent No.
6,232,529); modified oils (e.g., fatty acid desaturase genes (U.S. Patent No. 5,952,544; WO
94/11516)); modified starches (e.g., ADPG pyrophosphorylases (AGPase), starch synthases (SS), starch branching enzymes (SBE) and starch clebranching enzymes (SDBE)); and polymers or bioplastics (e.g., U.S. patent No. 5.602,321; beta-ketothiolase, polyhydroxybutyrate synthase, and acetoacetyl-.
20 CoA reductase (Schubert et al. (1988)J. Bacteriol. 170:5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs)). One could also combine the polynucleotides of the present invention with polynucleotides providing agronomic traits such as male sterility (e.g., see U.S. Patent No.
5,583,210), stalk strength, flowering time, or transformation technology traits such as cell 25 cycle regulation or gene targeting (e.g. WO 99/61619; W0.00/17364;
W099/25821).
These stacked combinations can be created by any method including but not limited to cross breeding plants by any conventional or TopCrose methodology, or genetic transfolination. If the traits are stacked by genetically transforming the plants, the 30 polynucleotide sequences of interest can be combined at any time and in any order. For example, a transgenic plant comprising one or more desired traits can be used as the target to introduce further traits by subsequent transformation. The traits can be introduced simultaneously in a co-transformation protocol with the polynueleotides of interest provided by any combination of transformation cassettes. For example, if two sequences will be 35 introduced, the two sequences can be contained in separate transformation cassettes (trans) or contained on the same transformation cassette (cis). Expression of the sequences can be driven by the same promoter or by different promoters. In certain cases, it may be desirable to introduce a transformation cassette that will suppress the expression of the polynucleotide of interest. This may be combined with any combination of other suppression cassettes or overexpression cassettes to generate the desired combination of traits in the plant. It is further recognized that polynucleotide sequences can be stacked at a desired genomic location using 5 a site-specific recombination system. See, for example, W099/25821, W099/25854, W099/25840, W099/25855, and W099/25853.
The methods of the invention involve introducing a polypeptide or polynucleotide into a plant. "Introducing" is intended to mean presenting to the plant the polynucleotide. In 10 some embodiments, the polynucleotide will be presented in such a manner that the sequence gains access to the interior of a cell of the plant, including its potential insertion into the . - genome of a plant. The methods of the invention do not depend on a particular method for introducing a sequence into a plant, only that the polynucleotide gains access to the interior of at least one cell of the plant Methods for introducing polynucleotides into plants are known 15 in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods. Polypeptides can also be introduced to a plant in such a manner that they gain access to the interior of the plant cell or remain external to the cell but in close contact with it.
"Stable transformation" is intended to mean that the nucleotide construct introduced 20 into a plant integrates into the genome of the plant and is capable of being inherited by the progeny thereof. "Transient transformation" or "transient expression" is intended to mean that a polynucleotide is introduced into the plant and does not integrate into the genome of the plant or a polypeptide is introduced into a plant.
Transformation protocols as well as protocols for introducing polypeptides or 25 polynucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing = polypeptides and polynucleotides into plant cells include microinjection (Crossway et al.
(1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986)Proc.
Natl. Acad. Sci.
USA 83:5602-5606, Agrobacteriwn-mediated transformation (U.S. Patent Nos.
5,563,055-and 30 5,981,840), direct gene transfer (Paszkowski et al. (1984) EMBO 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al., U.S. Patent Nos. 4,945,050;
5,879,918; 5,886,244; and 5,932,782; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe et al. (1988) Biotechnology 6:923-926); and Lecl transformation (WO 00/28058).
Also see -35 Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al.
(1987) Particulate Science and Technology 5:27-37 (onion); Christou eI al. (1988) Plant PhysioL
87:671-674 (soybean); McCabe et al. (1988) Bio/7'echnology 6:923-926 (soybean); Finer and McMullen -(1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al. (1998) Theor. Appl.
Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al.
(1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); U.S. Patent Nos. 5,240,855; 5,322,783 and 5,324,646; Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et al. (1990) Biotechnology 8:833-839 (maize);
Hooykaas-Van Slogteren et al. (1984) Nature (London) 311:763-764; U.S. Patent No.
5,736,369 (cereals); Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 84:5345-(Liliaceae); De Wet et al. (1985) in The Experimental Alanipzilation of Ovule Tissues, ed.
Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al.
(1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation);
Li et al. (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995)Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterizim tumefaciens).
In specific embodiments, the antipathogenic sequences of the invention can be provided to a plant using a variety of transient transformation methods. Such transient transformation methods include, but are not limited to, the introduction of the antipathogenic protein or variants and fragments thereof directly into the plant or the introduction of the antipathogenic protein transcript into the plant. Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway et al.
(1986) Mal Gen.
Genet. 202:179-185; Nomura et al. (1986) Plant Sci. 44:53-58; Hepler et al.
(1994) Proc.
Natl. Acad. Sci. 91: 2176-2180 and Hush et al. (1994) The Journal of Cell Science 107:775-784. Alternatively, the polynucleotide can be transiently transformed into the plant using techniques known in the art.
Such techniques include viral vector system and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA. Thus, the transcription from the particle-bound DNA can occur, but the frequency with which it's released to become integrated into the genome is greatly reduced. Such methods include the use particles coated with polyethyleneimine (PEI; Sigma #P3143).
In other embodiments, the polynucleotide of the invention may be introduced into plants by contacting plants with a virus or viral nucleic acids. Generally, such methods involve incorporating a nucleotide construct of the invention within a viral DNA or RNA
molecule. It is recognized that the an antipathogenic polypeptide of the invention may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis in vivo or in vitro to produce the desired recombinant protein.
Further, it is recognized that promoters of the invention also encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing polynucleotides into plants and expressing a protein encoded therein, involving viral DNA or RNA
molecules, are known in the art. See, for example, U.S. Patent Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367, 5,316,931, and Porta et al. (1996) Molecular Biotechnology 5:209-221 5 Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome. In one embodiment, the insertion of the polynucleotide at a desired genomic location is achieved using a site-specific recombination system. See, for example, W099/25821, W099/25854, W099/25840, W099/25855, and W099/25853. Briefly, the polynucleotide of the invention can 10 be contained in transfer cassette flanked by two non-recombinogenic recombination sites.
The transfer cassette is introduced into a plant that has stably incorporated into its genome a target site which is flanked by two non-recombinogenic recombination sites that correspond to the sites of the transfer cassette. An appropriate recombinase is provided and the transfer cassette is integrated at the target site. The polynucleotide of interest is thereby integrated at a 15 specific chromosomal position in the plant genome.
The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84.
These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting progeny having constitutive expression of the desired 20 phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then = seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved. In this manner, the present invention provides transformed seed (also referred to as "transgenic seed") having a nucleotide construct of the invention, for example, an expression 25 cassette of the invention, stably incorporated into their genome.
Pedigree breeding starts with the crossing of two genotypes, such as an elite line of interest and one other elite inbred line having one or more desirable characteristics (i.e., having stably incorporated a polynucleotide of the invention, having a modulated activity and/or level of the polypeptide of the invention, etc) which complements the elite line of 30 interest. If the two original parents do not provide all the desired characteristics, other sources can be included in the breeding population. In the pedigree method, superior plants are selfed and selected in successive filial generations. In the succeeding filial generations the heterozygous condition gives way to homogeneous lines as a result of self-pollination and selection. Typically in the pedigree method of breeding, five or more successive filial 35 generations of selfing and selection is practiced: Fl ¨> F2; F2¨> F3; F3 ¨> F4; F4 ¨> F5, etc.
After a sufficient amount of inbreeding, successive filial generations will serve to increase seed of the developed inbred. In specific embodiments, the inbred line comprises homozygous alleles at about 95% or more of its loci.
In addition to being used to create a backcross conversion, backcrossing can also be used in combination with pedigree breeding to modify an elite line of interest and a hybrid that is made using the modified elite line. As discussed previously, backcrossing can be used to transfer one or more specifically desirable traits from one line, the donor parent, to an inbred called the recurrent parent, which has overall good agronomic characteristics yet lacks that desirable trait or traits. However, the same procedure can be used to move the progeny toward the genotype of the recurrent parent but at the same time retain many components of the non-recurrent parent by stopping the backcrossing at an early stage and proceeding with selfing and selection. For example, an Fl, such as a commercial hybrid, is created. This commercial hybrid may be backcrossed to one of its parent lines to create a BC1 or BC2.
Progeny are selfed and selected so that the newly developed inbred has many of the attributes of the recurrent parent and yet several of the desired attributes of the non-recurrent parent.
This approach leverages the value and strengths of the recurrent parent for use in new hybrids and breeding.
Therefore, an embodiment of this invention is a method of making a backcross conversion of maize inbred line of interest, comprising the steps of crossing a plant of maize inbred line of interest with a donor plant comprising a mutant gene or transgene conferring a desired trait (i.e., increased pathogen resistance), selecting an Fl progeny plant comprising the mutant gene or transgene conferring the desired trait, and backcrossing the selected Fl progeny plant to the plant of maize inbred line of interest. This method may further comprise the step of obtaining a molecular marker profile of maize inbred line of interest and using the molecular marker profile to select for a progeny plant with the desired trait and the molecular marker profile of the inbred line of interest. In the same manner, this method may be used to produce an Fl hybrid seed by adding a final step of crossing the desired trait conversion of maize inbred line of interest with a different maize plant to make Fl hybrid maize seed comprising a mutant gene or transgene conferring the desired trait.
Recurrent selection is a method used in a plant breeding program to improve a population of plants. The method entails individual plants cross pollinating with each other to form progeny. The progeny are grown and the superior progeny selected by any number of selection methods, which include individual plant, half-sib progeny, full-sib progeny, selfed progeny and toperossing. The selected progeny are cross-pollinated with each other to form progeny for another population. This population is planted and again superior plants are selected to cross pollinate with each other. Recurrent selection is a cyclical process and therefore can be repeated as many times as desired. The objective of recurrent selection is to improve the traits of a population. The improved population can then be used as a source of breeding material to obtain inbred lines to be used in hybrids or used as parents for a synthetic cultivar. A synthetic cultivar is the resultant progeny formed by the intercrossing of several selected inbreds.
Mass selection is a useful technique when used in conjunction with molecular marker enhanced selection. In mass selection seeds from individuals are selected based on phenotype and/or genotype. These selected seeds are then bulked and used to grow the next generation.
Bulk selection requires growing a population of plants in a bulk plot, allowing the plants to self-pollinate, harvesting the seed in bulk and then using a sample of the seed harvested in bulk to plant the next generation. Instead of self pollination, directed pollination could be used as part of the breeding program.
Mutation breeding is one of many methods that could be used to introduce new traits into an elite line. Mutations that occur spontaneously or are artificially induced can be useful sources of variability for a plant breeder. The goal of artificial mutagenesis is to increase the rate of mutation for a desired characteristic. Mutation rates can be increased by many different means including temperature, long-term seed storage, tissue culture conditions, radiation; such as X-rays, Gamma rays (e.g. cobalt 60 or cesium 137), neutrons, (product of nuclear fission by uranium 235 in an atomic reactor), Beta radiation (emitted from = radioisotopes such as phosphorus 32 or carbon 14), or ultraviolet radiation (preferably from 2500 to 2900nm), or chemical mutagens (such as base analogues (5-bromo-uracil), related compounds (8-ethoxy caffeine), antibiotics (streptonigrin), allcylating agents (sulfur mustards, nitrogen mustards, epoxides, ethyleneamines, sulfates, sulfonates, sulfones, lactones), azide, hydroxylamine, nitrous acid, or acridines. Once a desired trait is observed through mutagenesis the trait may then be incorporated into existing gennplasm by traditional breeding techniques, such as backcrossing. Details of mutation breeding can be found in "Principles of Cultivar Development" Fehr, 1993 Macmillan Publishing _ Company, New York. In addition, inutations created in other lines may be used to produce a backcross conversion of elite lines that comprises such mutations.
As used herein, the term plant includes plant cells, plant protoplasts, plant cell tissue cultures from which maize plant can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced polynucleotides.
The present invention may be used to induce pathogen resistance or protect from pathogen attack any plant species, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B.
napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, and conifers.
Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C.
cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus cagophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum.
Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca);
redwood (Sequoia sempen)irens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow cedar (Chamaecyparis nootkatensis). In specific embodiments, plants of the present invention are crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.). In other embodiments, corn and soybean plants are optimal, and in yet other embodiments corn plants are optimal.
Other plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc. Leguminous plants include beans and peas.
Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mung bean, lima bean, fava bean, lentils, chickpea, etc.
Antipathogenic compositions, particularly antifungal compositions, are also encompassed by the present invention. Antipathogenic compositions may comprise antipathogenic polypeptides or transformed microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide. The antipathogenic compositions of the invention may be applied to the environment of a plant pathogen, as described herein below, thereby protecting a plant from pathogen attack. Moreover, an antipathogenic composition can be formulated with an acceptable carrier that is, for example, a suspension, a solution, an emulsion, a dusting powder, a dispersible granule, a wettable powder, and an emulsifiable concentrate, an aerosol, an impregnated granule, an adjuvant, a coatable paste, and also encapsulations in, for example, polymer substances.
A gene encoding an antipathogenic, particularly antifungal, polypeptide of the invention may be introduced into any suitable microbial host according to standard methods in the art. For example, microorganism hosts that are known to occupy the "phytosphere"
(phylloplane, phyllosphere, rhizosphere, and/or rhizoplane) of one or more crops of interest may be selected. These microorganisms are selected so as to be capable of successfully competing in the particular environment with the wild-type microorganisms, and to provide for stable maintenance and expression of the gene expressing the antifungal protein.
Such microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms such as bacteria, e.g., Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylius, Agrobacterium, Acetobacter, Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes, fungi, particularly yeast, e.g., Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are such phytosphere bacterial species as Pseudomonas syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter xylinum, Agrobacteria, Rhodopseudomonas spheroides, Xanthomonas campestris, Rhizobium melioti, Alcaligenes entrophus, Clavibacter xyli and Azotobacter vinelandii and phytosphere yeast species such as Rhodotorula rubra, R.
glutinis, R. marina, R.
aurantiaca, Cryptococcus albidus, C. diffluens, C. laurentii, Saccharomyces rosei, S.
pretoriensis, S. cerevisiae, Sporobolomyces roseus, S. odorus, Kluyveromyces veronae, and Aureobasidium pollulans. Of particular interest are the pigmented microorganisms.
Other illustrative prokaryotes, both Gram-negative and gram-positive, include Enterobacteriaceae, such as Escherichia, Erwinia, Shigella, Salmonella, and Proteus;
Bacillaceae; Rhizobiaceae, such as Rhizobium; Spirillaceae, such as photobacterium, Zymomonas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spirillum;
Lactobacillaceae;
Pseudomonadaceae, such as Pseudomonas and Acetobacter; Azotobacteraceae and Nitrobacteraceae. Among eukaryotes are fungi, such as Phycomycetes and Ascomycetes, which includes yeast, such as Saccharomyces and Schizosaccharomyces; and Basidiomycetes yeast, such as Rhodotorula, Aureobasidium, Sporobolomyces, and the like.
Microbial host organisms of particular interest include yeast, such as Rhodotorula spp., Aureobasidium spp., Saccharomyces spp., and Sporobolomyces spp., phylloplane organisms such as Pseudomonas spp., Erwinia spp., and Flavobacterium spp., and other such organisms, including Pseudomonas aeruginosa, Pseudomonas fluorescens, Saccharomyces cerevisiae, Bacillus thuringiensis, Escherichia coli, Bacillus subtilis, and the like.
Genes encoding the antifungal proteins of the invention can be introduced into microorganisms that multiply on plants (epiphytes) to deliver antifungal proteins to potential target pests. Epiphytes, for example, can be gram-positive or gram-negative bacteria.
Root-colonizing bacteria, for example, can be isolated from the plant of interest by methods known in the art. Specifically, a Bacillus cereus strain that colonizes roots can be isolated from roots of a plant (see, for example, Handelsman et al. (1991) AppL Environ.
Microbiol. 56:713-718). Genes encoding the antifungal polypeptides of the invention can be introduced into a root-colonizing Bacillus cereus by standard methods known in the art.
Genes encoding antifungal proteins can be introduced, for example, into the root-colonizing Bacillus by means of electrotransformation. Specifically, genes encoding the antifungal proteins can be cloned into a shuttle vector, for example, pHT3101 (Lerecius et al.
(1989) FEMS Microbiol. Letts. 60: 211-218. The shuttle vector pHT3101 containing the coding sequence for the particular antifungal protein gene can, for example, be transformed into the root-colonizing Bacillus by means of electroporation (Lerecius et al.
(1989) FEMS
Microbiol. Letts. 60: 211-218).
Methods are provided for protecting a plant from a pathogen comprising applying an effective amount of an antipathogenic protein or composition of the invention to the environment of the pathogen. "Effective amount" is intended to mean an amount of a protein or composition sufficient to control a pathogen. The antipathogenic proteins and compositions can be applied to the environment of the pathogen by methods known to those of ordinary skill in the art.
The antifungal compositions of the invention may be obtained by the addition of a surface-active agent, an inert carrier, a preservative, a humectant, a feeding stimulant, an attractant, an encapsulating agent, a binder, an emulsifier, a dye, a UV
protective, a buffer, a flow agent or fertilizers, micronutrient donors, or other preparations that influence plant growth. One or more agrochemicals including, but not limited to, herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides, acaricides, plant growth regulators, harvest aids, and fertilizers, can be combined with carriers, surfactants or adjuvants customarily employed in the art of formulation or other components to facilitate product handling and application for particular target pathogens. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g., natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders, or fertilizers. The active ingredients of the present invention are normally applied in the form of compositions and can be applied to the crop area, plant, or seed to be treated. For example, the compositions of the present invention may be applied to grain in preparation for or during storage in a grain bin or silo, etc. The compositions of the present invention may be applied simultaneously or in succession with other compounds.
Methods of applying an active ingredient of the present invention or an agrochemical composition of the present invention that contains at least one of the antipathogenic proteins, more particularly antifungal proteins, of the present invention include, but are not limited to, foliar application, seed coating, and soil application. The number of applications and the rate of application depend on the intensity of infestation by the corresponding pest or pathogen.
Suitable surface-active agents include, but are not limited to, anionic compounds such as a carboxylate of, for example, a metal; carboxylate of a long chain fatty acid; an N-acylsarcosinate; mono or di-esters of phosphoric acid with fatty alcohol ethoxylates or salts of such esters; fatty alcohol sulfates such as sodium dodecyl sulfate, sodium octadecyl sulfate or sodium cetyl sulfate; ethoxylated fatty alcohol sulfates; ethoxylated alkylphenol sulfates;
lignin sulfonates; petroleum sulfonates; alkyl aryl sulfonates such as alkyl-benzene sulfonates or lower alkylnaphtalene sulfonates, e.g., butyl-naphthalene sulfonate; salts of sulfonated naphthalene-formaldehyde condensates; salts of sulfonated phenol-formaldehyde condensates; more complex sulfonates such as the amide sulfonates, e.g., the sulfonated condensation product of oleic acid and N-methyl taurine; or the dialkyl sulfosuccinates, e.g., the sodium sulfonate or dioctyl succinate. Non-ionic agents include condensation products of fatty acid esters, fatty alcohols, fatty acid amides or fatty-alkyl- or alkenyl-substituted phenols with ethylene oxide, fatty esters of polyhydric alcohol ethers, e.g., sorbitan fatty acid esters, condensation products of such esters with ethylene oxide, e.g., polyoxyethylene sorbitar fatty acid esters, block copolymers of ethylene oxide and propylene oxide, acetylenic glycols such as 2,4,7,9-tetraethyl-5-decyn-4,7-diol, or ethoxylated acetylenic glycols.
Examples of a cationic surface-active agent include, for instance, an aliphatic mono-, di-, or polyamine such as an acetate, naphthenate or oleate; or oxygen-containing amine such as an amine oxide of polyoxyethylene alkylamine; an amide-linked amine prepared by the condensation of a carboxylic acid with a di- or polyamine; or a quaternary ammonium salt.
Examples of inert materials include but are not limited to inorganic minerals such as kaolin, phyllosilicates, carbonates, sulfates, phosphates, or botanical materials such as cork, powdered corncobs, peanut hulls, rice hulls, and walnut shells.
The antipathogenic compositions of the present invention can be in a suitable form for direct application or as a concentrate of primary composition that requires dilution with a suitable quantity of water or other diluent before application. The concentration of the antipathogenic polypeptide will vary depending upon the nature of the particular formulation, specifically, whether it is a concentrate or to be used directly. The composition contains 1 to 98% of a solid or liquid inert carrier, and 0 to 50%, optimally 0.1 to 50% of a surfactant.
These compositions will be administered at the labeled rate for the commercial product, optimally about 0.01 lb-5.0 lb. per acre when in dry form and at about 0.01 pts. - 10 pts. per acre when in liquid form.
In a further embodiment, the compositions, as well as the transformed microorganisms and antipathogenic proteins, of the invention can be treated prior to formulation to prolong the antipathogenic, particularly antifungal, activity when applied to the environment of a target pathogen as long as the pretreatment is not deleterious to the activity.
Such treatment can be by chemical and/or physical means as long as the treatment does not deleteriously affect the properties of the composition(s). Examples of chemical reagents include but are not limited to halogenating agents; aldehydes such a formaldehyde and glutaraldehyde; anti-infectives, such as zephiran chloride; alcohols, such as isopropanol and ethanol; and histological fixatives, such as Bouin's fixative and Helly's fixative (see, for example, Humason (1967) Animal Tissue Techniques (W.H. Freeman and Co.).
The antipathogenic compositions of the invention can be applied to the environment of a plant pathogen by, for example, spraying, atomizing, dusting, scattering, coating or pouring, introducing into or on the soil, introducing into irrigation water, by seed treatment or general application or dusting at the time when the pathogen has begun to appear or before the appearance of pathogens as a protective measure. For example, the antipathogenic protein and/or transformed microorganisms of the invention may be mixed with grain to protect the grain during storage. It is generally important to obtain good control of pathogens in the early stages of plant growth, as this is the time when the plant can be most severely damaged. The compositions of the invention can conveniently contain an insecticide if this is thought necessary. In one embodiment of the invention, the composition is applied directly to the soil, at a time of planting, in granular form of a composition of a carrier and dead cells of a Bacillus strain or transformed microorganism of the invention. Another embodiment is a granular form of a composition comprising an agrochemical such as, for example, a herbicide, an insecticide, a fertilizer, an inert carrier, and dead cells of a Bacillus strain or transformed microorganism of the invention.
Compositions of the invention find use in protecting plants, seeds, and plant products in a variety of ways. For example, the compositions can be used in a method that involves = CA 02652461 2013-07-08 placing an effective amount of the antipathogenic, more particularly, antifungal, composition in the environment of the pathogen by a procedure selected from the group consisting of spraying, dusting, broadcasting, or seed coating.
Before plant propagation material (fruit, tuber, bulb, corm, grains, seed), but 5 especially seed, is sold as a commercial product, it is customarily treated with a protective coating comprising herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides, or mixtures of several of these preparations, if desired together with further carriers, surfactants, or application-promoting adjuvants customarily employed in the art of formulation to provide protection against damage caused by bacterial, fungal, or animal pests.
10 In order to treat the seed, the protective coating may be applied to the seeds either by impregnating the tubers or grains with a liquid formulation or by coating them with a combined wet or dry formulation. In addition, in special cases, other methods of application to plants are possible, e.g., treatment directed at the buds or the fruit.
The plant seed of the invention comprising a DNA molecule comprising a nucleotide 15 sequence encoding an antipathogenic polypeptide of the invention may be treated with a seed protective coating comprising a seed treatment compound, such as, for example, captan, carboxin, thiram, methalaxyl, pirimiphos-methyl, and others that are commonly used in seed = treatment. Alternatively, a seed of the invention comprises a seed protective coating =
comprising an antipathogenic, more particularly antifungal, composition of the invention is 20 used alone or in combination with one of the seed protective coatings customarily used in seed treatment.
The antifungal polypeptides of the invention can be used for any application =
including coating surfaces to target microbes. In this manner, the target microbes include human pathogens or microorganisms. Surfaces that might be coated with the antifungal 25 polypeptides of the invention include carpets and sterile medical facilities. Polymer bound polypeptides of the invention may be used to coat surfaces. Methods for incorporating compositions with antimicrobial properties into polymers are known in the art.
See U.S.
Patent No. 5,847,047.
The embodiments of the present invention may be effective against a variety of plant 30 pathogens, particularly fungal pathogens, such as, for example, Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, and Fusarium verticillioides. Pathogens of the invention include, but are not limited to, viruses or viroids, bacteria, insects, nematodes, fungi, and the like. Viruses include any plant virus, for example, tobacco or cucumber mosaic virus, ringspot virus, necrosis virus, -maize dwarf mosaic virus, etc. Fungal pathogens, 35 include but are not limited to, Colletotrichum graminicola, Diplodia maydis, Fusarium graminearuni, and Fusarium verticillioides. Specific pathogens for the major crops include:
Soybeans: Phakopsora pachyrhizi, Phytophthora tnegasperma fsp. glycinea, Itlacrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Diaporthe phaseolorum var. sojae (Phomopsis sojae), Diaporthe phaseolorum var.
caulivora, Sclerotium rolfsii, Cercospora kikuchii, Cercospora sojina, Peronospora manshurica, Co lletotrichum dematium (Colletotichum truncatum), Corynespora cassiicola, Septoria glycines, Phyllosticta sojicola, Alternaria alternata, Pseudomonas syringae p.v. glycinea, Xanthomonas campestris p.v. phaseoli, Microsphaera diffusa, Fusarium semitectum, Phialophora gregata, Soybean mosaic virus, Glomerella glycines, Tobacco Ring spot virus, Tobacco Streak virus, Phakopsora pachyrhizi, Pythium aphanidermatum, Pythium ultimum, Pythium debaryanum, Tomato spotted wilt virus, Heterodera glycines Fusarium solani;
Canola: Albugo candida, Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia solani, Sclerotinia sclerotiorum, Mycosphaerella brassicicola, Pythium ultimum, Peronospora parasitica, Fusarium roseum, Alternaria alternata; Alfalfa: Clavibacter michiganese subsp.
insidiosum, Pythium ultimum, Pythium irregulare, Pythium splendens, Pythium debaryanum, Pythium aphanidermatum, Phytophthora megaspenna, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginis, Leptotrochila medicaginis, Fusarium oxysporum, Verticillium albo-atrum, Xanthomonas campestris p.v. alfalfae, Aphanomyces euteiches, Stemphylium herbarum, Stemphylium alfalfae, Colletotrichum trifolii, Leptosphaerulina briosiana, Uromyces striatus, Sclerotinia trifoliorum, Stagonospora meliloti, Stemphylium botryosum, Leptotrichila medicaginis;
Wheat: Pseudomonas syringae p.v. atrofaciens, Urocystis agropyri, Xanthomonas campestris p.v. translucens, Pseudomonas syringae p.v. syringae, Alternaria alternata, Cladosporium herbarum, Fusarium gram inearum, Fusarium avenaceum, Fusarium culmorum, Ustilago tritici, Ascochyta tritici, Cephalosporium gramineum, Collotetrichum graminicola, Erysiphe graminis f.sp. tritici, Puccinia graminis f.sp. tritici, Puccinia recondita Esp. tritici, Puccinia striiformis, Pyrenophora tritici-repentis, Septoria nodorum, Septoria tritici, Septoria avenae, Pseudocercosporella hopotrichoides, Rhizoctonia solani, Rhizoctonia cerealis, Gaeumannomyces graminis var. tritici, Pythium aphanidermatum, Pythium arrhenomanes, Pythium ultimum, Bipolaris sorokiniana, Barley Yellow Dwarf Virus, Brome Mosaic Virus, Soil Borne Wheat Mosaic Virus, Wheat Streak Mosaic Virus, Wheat Spindle Streak Virus, American Wheat Striate Virus, Claviceps puipurea, Tilletia tritici, Tilletia laevis, Ustilago tritici, Tilletia indica, Rhizoctonia solani, Pythium arrhenomannes, Pythium gramicola, Pythium aphanidermatum, High Plains Virus, European wheat striate virus; Sunflower: Plasmopara halstedii, Sclerotinia sclerotiorum, Aster Yellows, Septoria helianthi, Phomopsis helianthi, Alternaria helianthi, Alternaria zinniae, Botrytis cinerea, Phoma macdonaldii, Macrophomina phaseolina, Erysiphe cichoracearum, Rhizopus oryzae, Rhizopus arrhizus, Rhizopus stolonifer, Puccinia helianthi, Verticillium dahliae, Erwinia carotovorum pv. carotovora, Cephalosporium acremonium, Phytophthora cryptogea, Albugo tragopogonis; Corn: Colletotrichum graminicola, Fusarium moniliforme var. subglutinans, Erwinia stewartii, F. verticillioides, Gibberella zeae (Fusarium graminearum), Stenocarpella maydi (Diplodia maydis), Pythium irregulare, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidennatum, Aspergillus flavus, Bipolaris maydis 0, T (Cochliobolus heterostrophus), Helminthosporium carbonum I, II & III (Cochliobolus carbonum), Exserohilum turcicum I, II
& III, Helminthosporium pedicellatum, Physodenna maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macrophomina phaseolina, Penicillium oxalicum, Nigrospora oryzae, Cladosporium herbarum, Curvularia lunata, Curvularia inaequalis, Curvularia pallescens, Clavibacter michiganense subsp. nebraskense, Trichoderma viride, Maize Dwarf Mosaic Virus A & B, Wheat Streak Mosaic Virus, Maize Chlorotic Dwarf Virus, Claviceps sorghi, Pseudonomas avenae, Erwinia chrysanthemi pv. zea, Erwinia carotovora, Corn stunt spiroplasma, Diplodia macrospora, Sclerophthora macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis, Peronosclerospora maydis, Peronosclerospora sacchan, Sphacelotheca reiliana, Physopella zeae, Cephalosporium maydis, Cephalosporium acremonium, Maize Chlorotic Mottle Virus, High Plains Virus, Maize Mosaic Virus, Maize Rayado Fino Virus, Maize Streak Virus, Maize Stripe Virus, Maize Rough Dwarf Virus; Sorghum:
Exserohilum turcicum, C. sublineolum, Cercospora sorghi, Gloeocercospora sorghi, Ascochyta sorghina, Pseudomonas syringae p.v. syringae, Xanthomonas campestris p.v. holcicola, Pseudomonas andropogon is, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium monilifonne, Alternaria alternata, Bipolaris sorghicola, Helminthosporium sorghicola, Curvularia lunata, Phoma insidiosa, Pseudomonas avenae (Pseudomonas alboprecipitans), Ramulispora sorghi, Ramulispora sorghicola, Phyllachara sacchan, Sporisorium reilianum (Sphacelotheca reiliana), Sphacelotheca cruenta, Sporisorium sorghi, Sugarcane mosaic H, Maize Dwarf Mosaic Virus A & B, Claviceps sorghi, Rhizoctonia solani, Acremonium strictum, Sclerophthona macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis, Sclerospora graminicola, Fusarium gram inearum, Fusarium oxysporum, Pythium arrhenomanes, Pythium graminicola, etc.
Nematodes include parasitic nematodes such as root-knot, cyst, and lesion nematodes, including Heterodera spp., Meloidogyne spp., and Globodera spp.; particularly members of the cyst nematodes, including, but not limited to, Heterodera glycines (soybean cyst nematode); Heterodera schachtii (beet cyst nematode); Heterodera avenae (cereal cyst nematode); and Globodera rostochiensis and Globodera pailida (potato cyst nematodes).
Lesion nematodes include Pratylenchus spp.
The article "a" and "an" are used herein to refer to one or more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one or more element.
Units, prefixes, and symbols may be denoted in their SI accepted form. Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. Numeric ranges are inclusive of the numbers defining the range. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
The above-defined terms are more fully defined by reference to the specification as a whole.
The following examples are provided by way of illustration, not by way of limitation.
EXPERIMENTAL
Methods of growing fungal cultures are well known in the art. For subculturing the fungal cultures disclosed herein, any broth generally suitable for growing fungi may be used, including, for example, potato dextrose broth infra (Becton Dickinson Microbiology Systems, Sparks, MD), Czapek-Dox broth infra (Becton Dickinson Microbiology Systems, Sparks MD), Sabouraud broth (BBL #210986, Voigt Global Distribution LLC, Kansas City, MO), and the like.
Example 1: Isolation of Antifungal Polypeptide LB-09812 (SEQ ID NO:1) A soil sample was collected from rotten pieces of wood from the tree Populus tremula L., in the Kiev region. The fungal isolate of interest, denoted herein as IMV 01051, that produced the antifungal polypeptide SEQ ID NO: 1, was isolated using potato dextrose agar. The strain was later identified as Penicillium glandicola (Oudemans) Seifert et Samson.
The pure culture of the organism has been maintained at room temperature on malt extract agar slant by sub-culturing it in regular intervals. Isolate IMV 01051 was transferred to Berkeley Lab where the cultures were grown on PDA and preserved by placing 10 agar plugs per strain sampled with sterile P1000 plastic tips into 2 mL cryotubes containing 0.7 mL 45%
(w/v) sterile glycerol. The cryotubes then were placed in a wooden block and frozen overnight in a -20 C freezer at an approximate freezing rate of 1 C/min. The now frozen material was transferred to a -84 C freezer for long-term maintenance.
The species identification was confirmed by sequencing the D1/D2 domains of the large subunit rRNA-coding gene. Total genomic DNA extraction was performed with the FastDNA Kit using FastPrep and the SpinColumn protocol of BIO 101 Systems (Q-BIOgene, Vista, CA). The PCR amplification was carried out in Platinum Blue PCR
SuperMix (Invitrogen, Carlsbad, CA), The generic fungal D1/D2 domains (nucleotides 63-642) primers uSed for the PCR amplification and for sequencing were published earlier by Kurtzman and Robnett (1998) Aittonie Vat: Leeuweithoek 73(4)331-71; and Kurtzman and Robnett (2003) FEMS Yeast Res. 3(4):417-32. DNA sequencing was done at the University of California at Berkeley DNA Sequence Facility.
The raw sequence was edited with EditView Version 1Ø] .1 (ABI, Foster City, CA) and aligned using online multiple sequence aligner subroutines (BCM Search Launcher (searchlauneher.bcm.tmc.edu/multi-alignimulti-align.html) and MultAlin (prodes.toulouse.inra.fr/multalinimultalin.html)). Aligned sequence for the Dl/D2 domains was further analyzed- for consensus using online subroutines by the Ribosomal Database Project (rdp.cme.msu.edu/html/) and Boxshade (ch.emnet.org/sOftware/BOX_form.litml; a "www" prefix must be used), and finally BLASTed against the NCBI database (nebi.nlm.nih.gov/BLAST; a "www" prefix must be used) for species determination.
A designed set of specific growth conditions, i.e., nutrient content, temperature, pH, incubation time, aeration, etc., were applied to the isolated fungus to promote the production of secondary metabolites and novel natural products. The small molecules of interest were = secreted by the above fungal strain when it was grown in 250-ml Erlenmeyer flasks filled = 20 with 50 mL of a medium. Strain IMY 01051 was grown in a medium containing maltose (12,75 g/L), malt extract (15 g,/L), dextrin (2.75 g/L). glycerol (2.35 g/L), dibasic potassium phosphate (1 g/L), ammonium chloride (1 g/L), and bacto-peptone (0.75 g/L).
The pH of the medium was adjusted with hydrochloric acid to a final value of 4.8. The -strain was incubated at 16 C on an orbital shaker incubator at 180 rpm for 144 h. Biomass and supernatant of the = 25 resulting microbial fermentation were then separated by centrifugation at 10,322 x g, 15 'C
for 20 min.. The cell-free supernatant, labeled as LB-09812, was assayed to determine the presence of heat labile antifungal activity.. After confirming that heat labile antifungal activity was present in the LB-09812 supernatant, the cell-free supernatant o.f a large scale, 500 mL
culture was provided and subjected to solid phase extraction, as described below.
= 30 Oasis HLB extraction cartridges (6 gram, 35 mL) (Waters Corporation, Milford, MA) were used for solid phase extraction (SPE). Specifically, the SPE cartridge was made wet with one cartridge volume of methanol and then conditioned with approximately 40 inL
Solvent A (2% acetonitrile, 0.1% TFA). Approximately 90 mL of crude culture filtrate was treated with 5X solvent A to a final concentration of IX and centrifuged for 20 min at 3,000 x 35 g. The supernatant was loaded onto an SPE cartridge, and the SPE Cartridge was washed with approximately 40 triL solvent A. The SPE cartridge was eluted with approximately 40 mL
= 43 =
=
90% acetonitrile, 0.1% TFA. The eluted sample was partially dried in a centrifugal evaporator (Speed Vac), frozen with liquid nitrogen and lyophilized to dryness.
The dried extract was re-suspended in phosphate buffered saline (PBS) (0.5 mL
: 20 mL starting culture filtrate), and the re-suspended extract was enriched for proteins using a Sephadex G10 (Amersham Biosciences AB, Uppsala, Sweden) spin column. Bio-Spin disposable chromatography columns (Bio-Rad Laboratories, Hercules CA) were filled to approximately 0.75 mL bed volume with Sephadex G10 that had been pre-equilibrated in phosphate buffered saline (PBS) and were centrifuged for 1 minute at 1,000 x g. 200 L of SPE extract in PBS was added to each pre-spun Bio-Spin column, and loaded Bio-Spin columns were centrifuged for 5 minutes at 1,000 x g to elute proteins.
G10 treated antifungal extracts were fractionated by HPLC with a Jupiter 51.1 300A 150 mm x 4.6 mm column (Phenomenex, Torrance, CA). HPLC starting conditions were 5% acetonitrile, 0.04% heptafluorobutyric acid (HFBA), 0.4 mL/minute.
After injecting 200 L of G10 treated antifungal extract, the flow rate was raised to 0.8 mL/minute over 1 minute. After an additional minute, a 94 minute exponentially curved gradient (Waters gradient curve 7, Waters Corporation, Milford, MA) was started to 86%
acetonitrile, 0.04% HFBA. The HPLC fractions were divided into four 1/2 area 96 well clear bottom assay plates. Plates containing fractionated extracts were then dried in a centrifugal evaporator.
The dried fractionated extracts were then screened for antifungal activity against FVE, CGR, FGR, and DMA using an antifungal plate assay, as described in Example 3. FVE, FGR and DMA were tested at 4,000 spores/mL in 1/4 X potato dextrose broth (Becton Dickinson Microbiology Systems, Sparks, MD). CGR was tested at 4,000 spores/mL in 1/4 X
Czapek-Dox (Becton Dickinson Microbiology Systems, Sparks MD) + 180 mL/L V8 juice.
Cultures were allowed to develop at 27 C for 24 hours. Assays were scored by visualizing fungal growth with an inverted microscope. The HPLC fractions from approximately 65.5 to 67 minutes were found to have antifungal activity against FVE, CGR, FGR and DMA.
Additional HPLC fractionations were performed to bulk up the antifungal fraction.
This bulked up antifungal fraction was further purified using p.-bore HPLC
with a Zorbax 3.5 , C8 300A 150 mm x 1.0 mm column (Agilent Technologies, Palo Alto, CA).
Starting conditions were 9.5% acetonitrile, 0.1% formic acid, 0.025% trifluoroacetic acid (TFA), 50 1.1L/minute. Two minutes following sample injection, a 25 minute linear gradient was started to 32% acetonitrile, 0.1% formic acid, 0.025% TFA. 214 nm peak based fractions were collected using an Agilent micro-fraction collector, dried in a centrifugal evaporator and assayed for antifungal activity as described above. A peak eluting at approximately 27 minutes was found to have activity against FGR. ESI mass spectra were obtained on an integrated Agilent MSD TOF mass spectrometer. The peak had the ion profile of a peptide and a mass of 3802 Da.
Reduction and alkylation was required for efficient N-terminal sequencing.
Approximately 10 i.tg of dried protein was re-suspended into 18 1.1L 0.1 M
ammonium bicarbonate, 8 M urea pH 8.3. This solution was transferred to limited volume HPLC
autosampler vial. 1 1.1L 200 mM DTT was added and the solution was incubated at 50 C for 1 hour. Subsequently 1 1,IL 500 mM iodoacetamide was added, and the solution was incubated at 37 C for 30 minutes in the dark. The iodoacetamide alkylation was then quenched by adding 2 1,IL 25% trifluoroacetic acid. The alkylated protein was then purified by 1.1-bore HPLC on a Zorbax 3.51a C8 300A 150 mm x 1.0 mm column (Agilent Technologies, Palo Alto, CA). Starting conditions were 7.7% acetonitrile, 0.1% formic acid, 0.025% TFA.
After 15 minutes a 70 minute linear gradient was performed to reach 70.7%
acetonitrile, 0.1%
formic acid, 0.025% TFA. The column flow rate was 501.1L/minute. 214 nm peak based fractions were collected using an Agilent micro fraction collector.
N-terminal sequencing Initial N-terminal sequencing yielded the following sequence:
ALHNSCSHPRCFNHAHCLTYS (SEQ ID NO:28). Further elucidation of the N-terminal sequence required sequencing of ArgC digested fragments.
ArgC Digestion ArgC (excision grade, Clostridium histolyticum Calbiochem cat. #324711) was prepared by adding water to achieve 100 ng/i.IL. 2 tg alkylated LB09812 was suspended in
6,232,529); modified oils (e.g., fatty acid desaturase genes (U.S. Patent No. 5,952,544; WO
94/11516)); modified starches (e.g., ADPG pyrophosphorylases (AGPase), starch synthases (SS), starch branching enzymes (SBE) and starch clebranching enzymes (SDBE)); and polymers or bioplastics (e.g., U.S. patent No. 5.602,321; beta-ketothiolase, polyhydroxybutyrate synthase, and acetoacetyl-.
20 CoA reductase (Schubert et al. (1988)J. Bacteriol. 170:5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs)). One could also combine the polynucleotides of the present invention with polynucleotides providing agronomic traits such as male sterility (e.g., see U.S. Patent No.
5,583,210), stalk strength, flowering time, or transformation technology traits such as cell 25 cycle regulation or gene targeting (e.g. WO 99/61619; W0.00/17364;
W099/25821).
These stacked combinations can be created by any method including but not limited to cross breeding plants by any conventional or TopCrose methodology, or genetic transfolination. If the traits are stacked by genetically transforming the plants, the 30 polynucleotide sequences of interest can be combined at any time and in any order. For example, a transgenic plant comprising one or more desired traits can be used as the target to introduce further traits by subsequent transformation. The traits can be introduced simultaneously in a co-transformation protocol with the polynueleotides of interest provided by any combination of transformation cassettes. For example, if two sequences will be 35 introduced, the two sequences can be contained in separate transformation cassettes (trans) or contained on the same transformation cassette (cis). Expression of the sequences can be driven by the same promoter or by different promoters. In certain cases, it may be desirable to introduce a transformation cassette that will suppress the expression of the polynucleotide of interest. This may be combined with any combination of other suppression cassettes or overexpression cassettes to generate the desired combination of traits in the plant. It is further recognized that polynucleotide sequences can be stacked at a desired genomic location using 5 a site-specific recombination system. See, for example, W099/25821, W099/25854, W099/25840, W099/25855, and W099/25853.
The methods of the invention involve introducing a polypeptide or polynucleotide into a plant. "Introducing" is intended to mean presenting to the plant the polynucleotide. In 10 some embodiments, the polynucleotide will be presented in such a manner that the sequence gains access to the interior of a cell of the plant, including its potential insertion into the . - genome of a plant. The methods of the invention do not depend on a particular method for introducing a sequence into a plant, only that the polynucleotide gains access to the interior of at least one cell of the plant Methods for introducing polynucleotides into plants are known 15 in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods. Polypeptides can also be introduced to a plant in such a manner that they gain access to the interior of the plant cell or remain external to the cell but in close contact with it.
"Stable transformation" is intended to mean that the nucleotide construct introduced 20 into a plant integrates into the genome of the plant and is capable of being inherited by the progeny thereof. "Transient transformation" or "transient expression" is intended to mean that a polynucleotide is introduced into the plant and does not integrate into the genome of the plant or a polypeptide is introduced into a plant.
Transformation protocols as well as protocols for introducing polypeptides or 25 polynucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing = polypeptides and polynucleotides into plant cells include microinjection (Crossway et al.
(1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986)Proc.
Natl. Acad. Sci.
USA 83:5602-5606, Agrobacteriwn-mediated transformation (U.S. Patent Nos.
5,563,055-and 30 5,981,840), direct gene transfer (Paszkowski et al. (1984) EMBO 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al., U.S. Patent Nos. 4,945,050;
5,879,918; 5,886,244; and 5,932,782; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe et al. (1988) Biotechnology 6:923-926); and Lecl transformation (WO 00/28058).
Also see -35 Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al.
(1987) Particulate Science and Technology 5:27-37 (onion); Christou eI al. (1988) Plant PhysioL
87:671-674 (soybean); McCabe et al. (1988) Bio/7'echnology 6:923-926 (soybean); Finer and McMullen -(1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al. (1998) Theor. Appl.
Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al.
(1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); U.S. Patent Nos. 5,240,855; 5,322,783 and 5,324,646; Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et al. (1990) Biotechnology 8:833-839 (maize);
Hooykaas-Van Slogteren et al. (1984) Nature (London) 311:763-764; U.S. Patent No.
5,736,369 (cereals); Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 84:5345-(Liliaceae); De Wet et al. (1985) in The Experimental Alanipzilation of Ovule Tissues, ed.
Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al.
(1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation);
Li et al. (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995)Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterizim tumefaciens).
In specific embodiments, the antipathogenic sequences of the invention can be provided to a plant using a variety of transient transformation methods. Such transient transformation methods include, but are not limited to, the introduction of the antipathogenic protein or variants and fragments thereof directly into the plant or the introduction of the antipathogenic protein transcript into the plant. Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway et al.
(1986) Mal Gen.
Genet. 202:179-185; Nomura et al. (1986) Plant Sci. 44:53-58; Hepler et al.
(1994) Proc.
Natl. Acad. Sci. 91: 2176-2180 and Hush et al. (1994) The Journal of Cell Science 107:775-784. Alternatively, the polynucleotide can be transiently transformed into the plant using techniques known in the art.
Such techniques include viral vector system and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA. Thus, the transcription from the particle-bound DNA can occur, but the frequency with which it's released to become integrated into the genome is greatly reduced. Such methods include the use particles coated with polyethyleneimine (PEI; Sigma #P3143).
In other embodiments, the polynucleotide of the invention may be introduced into plants by contacting plants with a virus or viral nucleic acids. Generally, such methods involve incorporating a nucleotide construct of the invention within a viral DNA or RNA
molecule. It is recognized that the an antipathogenic polypeptide of the invention may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis in vivo or in vitro to produce the desired recombinant protein.
Further, it is recognized that promoters of the invention also encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing polynucleotides into plants and expressing a protein encoded therein, involving viral DNA or RNA
molecules, are known in the art. See, for example, U.S. Patent Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367, 5,316,931, and Porta et al. (1996) Molecular Biotechnology 5:209-221 5 Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome. In one embodiment, the insertion of the polynucleotide at a desired genomic location is achieved using a site-specific recombination system. See, for example, W099/25821, W099/25854, W099/25840, W099/25855, and W099/25853. Briefly, the polynucleotide of the invention can 10 be contained in transfer cassette flanked by two non-recombinogenic recombination sites.
The transfer cassette is introduced into a plant that has stably incorporated into its genome a target site which is flanked by two non-recombinogenic recombination sites that correspond to the sites of the transfer cassette. An appropriate recombinase is provided and the transfer cassette is integrated at the target site. The polynucleotide of interest is thereby integrated at a 15 specific chromosomal position in the plant genome.
The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84.
These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting progeny having constitutive expression of the desired 20 phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then = seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved. In this manner, the present invention provides transformed seed (also referred to as "transgenic seed") having a nucleotide construct of the invention, for example, an expression 25 cassette of the invention, stably incorporated into their genome.
Pedigree breeding starts with the crossing of two genotypes, such as an elite line of interest and one other elite inbred line having one or more desirable characteristics (i.e., having stably incorporated a polynucleotide of the invention, having a modulated activity and/or level of the polypeptide of the invention, etc) which complements the elite line of 30 interest. If the two original parents do not provide all the desired characteristics, other sources can be included in the breeding population. In the pedigree method, superior plants are selfed and selected in successive filial generations. In the succeeding filial generations the heterozygous condition gives way to homogeneous lines as a result of self-pollination and selection. Typically in the pedigree method of breeding, five or more successive filial 35 generations of selfing and selection is practiced: Fl ¨> F2; F2¨> F3; F3 ¨> F4; F4 ¨> F5, etc.
After a sufficient amount of inbreeding, successive filial generations will serve to increase seed of the developed inbred. In specific embodiments, the inbred line comprises homozygous alleles at about 95% or more of its loci.
In addition to being used to create a backcross conversion, backcrossing can also be used in combination with pedigree breeding to modify an elite line of interest and a hybrid that is made using the modified elite line. As discussed previously, backcrossing can be used to transfer one or more specifically desirable traits from one line, the donor parent, to an inbred called the recurrent parent, which has overall good agronomic characteristics yet lacks that desirable trait or traits. However, the same procedure can be used to move the progeny toward the genotype of the recurrent parent but at the same time retain many components of the non-recurrent parent by stopping the backcrossing at an early stage and proceeding with selfing and selection. For example, an Fl, such as a commercial hybrid, is created. This commercial hybrid may be backcrossed to one of its parent lines to create a BC1 or BC2.
Progeny are selfed and selected so that the newly developed inbred has many of the attributes of the recurrent parent and yet several of the desired attributes of the non-recurrent parent.
This approach leverages the value and strengths of the recurrent parent for use in new hybrids and breeding.
Therefore, an embodiment of this invention is a method of making a backcross conversion of maize inbred line of interest, comprising the steps of crossing a plant of maize inbred line of interest with a donor plant comprising a mutant gene or transgene conferring a desired trait (i.e., increased pathogen resistance), selecting an Fl progeny plant comprising the mutant gene or transgene conferring the desired trait, and backcrossing the selected Fl progeny plant to the plant of maize inbred line of interest. This method may further comprise the step of obtaining a molecular marker profile of maize inbred line of interest and using the molecular marker profile to select for a progeny plant with the desired trait and the molecular marker profile of the inbred line of interest. In the same manner, this method may be used to produce an Fl hybrid seed by adding a final step of crossing the desired trait conversion of maize inbred line of interest with a different maize plant to make Fl hybrid maize seed comprising a mutant gene or transgene conferring the desired trait.
Recurrent selection is a method used in a plant breeding program to improve a population of plants. The method entails individual plants cross pollinating with each other to form progeny. The progeny are grown and the superior progeny selected by any number of selection methods, which include individual plant, half-sib progeny, full-sib progeny, selfed progeny and toperossing. The selected progeny are cross-pollinated with each other to form progeny for another population. This population is planted and again superior plants are selected to cross pollinate with each other. Recurrent selection is a cyclical process and therefore can be repeated as many times as desired. The objective of recurrent selection is to improve the traits of a population. The improved population can then be used as a source of breeding material to obtain inbred lines to be used in hybrids or used as parents for a synthetic cultivar. A synthetic cultivar is the resultant progeny formed by the intercrossing of several selected inbreds.
Mass selection is a useful technique when used in conjunction with molecular marker enhanced selection. In mass selection seeds from individuals are selected based on phenotype and/or genotype. These selected seeds are then bulked and used to grow the next generation.
Bulk selection requires growing a population of plants in a bulk plot, allowing the plants to self-pollinate, harvesting the seed in bulk and then using a sample of the seed harvested in bulk to plant the next generation. Instead of self pollination, directed pollination could be used as part of the breeding program.
Mutation breeding is one of many methods that could be used to introduce new traits into an elite line. Mutations that occur spontaneously or are artificially induced can be useful sources of variability for a plant breeder. The goal of artificial mutagenesis is to increase the rate of mutation for a desired characteristic. Mutation rates can be increased by many different means including temperature, long-term seed storage, tissue culture conditions, radiation; such as X-rays, Gamma rays (e.g. cobalt 60 or cesium 137), neutrons, (product of nuclear fission by uranium 235 in an atomic reactor), Beta radiation (emitted from = radioisotopes such as phosphorus 32 or carbon 14), or ultraviolet radiation (preferably from 2500 to 2900nm), or chemical mutagens (such as base analogues (5-bromo-uracil), related compounds (8-ethoxy caffeine), antibiotics (streptonigrin), allcylating agents (sulfur mustards, nitrogen mustards, epoxides, ethyleneamines, sulfates, sulfonates, sulfones, lactones), azide, hydroxylamine, nitrous acid, or acridines. Once a desired trait is observed through mutagenesis the trait may then be incorporated into existing gennplasm by traditional breeding techniques, such as backcrossing. Details of mutation breeding can be found in "Principles of Cultivar Development" Fehr, 1993 Macmillan Publishing _ Company, New York. In addition, inutations created in other lines may be used to produce a backcross conversion of elite lines that comprises such mutations.
As used herein, the term plant includes plant cells, plant protoplasts, plant cell tissue cultures from which maize plant can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced polynucleotides.
The present invention may be used to induce pathogen resistance or protect from pathogen attack any plant species, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B.
napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, and conifers.
Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C.
cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus cagophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum.
Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca);
redwood (Sequoia sempen)irens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow cedar (Chamaecyparis nootkatensis). In specific embodiments, plants of the present invention are crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.). In other embodiments, corn and soybean plants are optimal, and in yet other embodiments corn plants are optimal.
Other plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc. Leguminous plants include beans and peas.
Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mung bean, lima bean, fava bean, lentils, chickpea, etc.
Antipathogenic compositions, particularly antifungal compositions, are also encompassed by the present invention. Antipathogenic compositions may comprise antipathogenic polypeptides or transformed microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide. The antipathogenic compositions of the invention may be applied to the environment of a plant pathogen, as described herein below, thereby protecting a plant from pathogen attack. Moreover, an antipathogenic composition can be formulated with an acceptable carrier that is, for example, a suspension, a solution, an emulsion, a dusting powder, a dispersible granule, a wettable powder, and an emulsifiable concentrate, an aerosol, an impregnated granule, an adjuvant, a coatable paste, and also encapsulations in, for example, polymer substances.
A gene encoding an antipathogenic, particularly antifungal, polypeptide of the invention may be introduced into any suitable microbial host according to standard methods in the art. For example, microorganism hosts that are known to occupy the "phytosphere"
(phylloplane, phyllosphere, rhizosphere, and/or rhizoplane) of one or more crops of interest may be selected. These microorganisms are selected so as to be capable of successfully competing in the particular environment with the wild-type microorganisms, and to provide for stable maintenance and expression of the gene expressing the antifungal protein.
Such microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms such as bacteria, e.g., Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylius, Agrobacterium, Acetobacter, Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes, fungi, particularly yeast, e.g., Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are such phytosphere bacterial species as Pseudomonas syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter xylinum, Agrobacteria, Rhodopseudomonas spheroides, Xanthomonas campestris, Rhizobium melioti, Alcaligenes entrophus, Clavibacter xyli and Azotobacter vinelandii and phytosphere yeast species such as Rhodotorula rubra, R.
glutinis, R. marina, R.
aurantiaca, Cryptococcus albidus, C. diffluens, C. laurentii, Saccharomyces rosei, S.
pretoriensis, S. cerevisiae, Sporobolomyces roseus, S. odorus, Kluyveromyces veronae, and Aureobasidium pollulans. Of particular interest are the pigmented microorganisms.
Other illustrative prokaryotes, both Gram-negative and gram-positive, include Enterobacteriaceae, such as Escherichia, Erwinia, Shigella, Salmonella, and Proteus;
Bacillaceae; Rhizobiaceae, such as Rhizobium; Spirillaceae, such as photobacterium, Zymomonas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spirillum;
Lactobacillaceae;
Pseudomonadaceae, such as Pseudomonas and Acetobacter; Azotobacteraceae and Nitrobacteraceae. Among eukaryotes are fungi, such as Phycomycetes and Ascomycetes, which includes yeast, such as Saccharomyces and Schizosaccharomyces; and Basidiomycetes yeast, such as Rhodotorula, Aureobasidium, Sporobolomyces, and the like.
Microbial host organisms of particular interest include yeast, such as Rhodotorula spp., Aureobasidium spp., Saccharomyces spp., and Sporobolomyces spp., phylloplane organisms such as Pseudomonas spp., Erwinia spp., and Flavobacterium spp., and other such organisms, including Pseudomonas aeruginosa, Pseudomonas fluorescens, Saccharomyces cerevisiae, Bacillus thuringiensis, Escherichia coli, Bacillus subtilis, and the like.
Genes encoding the antifungal proteins of the invention can be introduced into microorganisms that multiply on plants (epiphytes) to deliver antifungal proteins to potential target pests. Epiphytes, for example, can be gram-positive or gram-negative bacteria.
Root-colonizing bacteria, for example, can be isolated from the plant of interest by methods known in the art. Specifically, a Bacillus cereus strain that colonizes roots can be isolated from roots of a plant (see, for example, Handelsman et al. (1991) AppL Environ.
Microbiol. 56:713-718). Genes encoding the antifungal polypeptides of the invention can be introduced into a root-colonizing Bacillus cereus by standard methods known in the art.
Genes encoding antifungal proteins can be introduced, for example, into the root-colonizing Bacillus by means of electrotransformation. Specifically, genes encoding the antifungal proteins can be cloned into a shuttle vector, for example, pHT3101 (Lerecius et al.
(1989) FEMS Microbiol. Letts. 60: 211-218. The shuttle vector pHT3101 containing the coding sequence for the particular antifungal protein gene can, for example, be transformed into the root-colonizing Bacillus by means of electroporation (Lerecius et al.
(1989) FEMS
Microbiol. Letts. 60: 211-218).
Methods are provided for protecting a plant from a pathogen comprising applying an effective amount of an antipathogenic protein or composition of the invention to the environment of the pathogen. "Effective amount" is intended to mean an amount of a protein or composition sufficient to control a pathogen. The antipathogenic proteins and compositions can be applied to the environment of the pathogen by methods known to those of ordinary skill in the art.
The antifungal compositions of the invention may be obtained by the addition of a surface-active agent, an inert carrier, a preservative, a humectant, a feeding stimulant, an attractant, an encapsulating agent, a binder, an emulsifier, a dye, a UV
protective, a buffer, a flow agent or fertilizers, micronutrient donors, or other preparations that influence plant growth. One or more agrochemicals including, but not limited to, herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides, acaricides, plant growth regulators, harvest aids, and fertilizers, can be combined with carriers, surfactants or adjuvants customarily employed in the art of formulation or other components to facilitate product handling and application for particular target pathogens. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g., natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders, or fertilizers. The active ingredients of the present invention are normally applied in the form of compositions and can be applied to the crop area, plant, or seed to be treated. For example, the compositions of the present invention may be applied to grain in preparation for or during storage in a grain bin or silo, etc. The compositions of the present invention may be applied simultaneously or in succession with other compounds.
Methods of applying an active ingredient of the present invention or an agrochemical composition of the present invention that contains at least one of the antipathogenic proteins, more particularly antifungal proteins, of the present invention include, but are not limited to, foliar application, seed coating, and soil application. The number of applications and the rate of application depend on the intensity of infestation by the corresponding pest or pathogen.
Suitable surface-active agents include, but are not limited to, anionic compounds such as a carboxylate of, for example, a metal; carboxylate of a long chain fatty acid; an N-acylsarcosinate; mono or di-esters of phosphoric acid with fatty alcohol ethoxylates or salts of such esters; fatty alcohol sulfates such as sodium dodecyl sulfate, sodium octadecyl sulfate or sodium cetyl sulfate; ethoxylated fatty alcohol sulfates; ethoxylated alkylphenol sulfates;
lignin sulfonates; petroleum sulfonates; alkyl aryl sulfonates such as alkyl-benzene sulfonates or lower alkylnaphtalene sulfonates, e.g., butyl-naphthalene sulfonate; salts of sulfonated naphthalene-formaldehyde condensates; salts of sulfonated phenol-formaldehyde condensates; more complex sulfonates such as the amide sulfonates, e.g., the sulfonated condensation product of oleic acid and N-methyl taurine; or the dialkyl sulfosuccinates, e.g., the sodium sulfonate or dioctyl succinate. Non-ionic agents include condensation products of fatty acid esters, fatty alcohols, fatty acid amides or fatty-alkyl- or alkenyl-substituted phenols with ethylene oxide, fatty esters of polyhydric alcohol ethers, e.g., sorbitan fatty acid esters, condensation products of such esters with ethylene oxide, e.g., polyoxyethylene sorbitar fatty acid esters, block copolymers of ethylene oxide and propylene oxide, acetylenic glycols such as 2,4,7,9-tetraethyl-5-decyn-4,7-diol, or ethoxylated acetylenic glycols.
Examples of a cationic surface-active agent include, for instance, an aliphatic mono-, di-, or polyamine such as an acetate, naphthenate or oleate; or oxygen-containing amine such as an amine oxide of polyoxyethylene alkylamine; an amide-linked amine prepared by the condensation of a carboxylic acid with a di- or polyamine; or a quaternary ammonium salt.
Examples of inert materials include but are not limited to inorganic minerals such as kaolin, phyllosilicates, carbonates, sulfates, phosphates, or botanical materials such as cork, powdered corncobs, peanut hulls, rice hulls, and walnut shells.
The antipathogenic compositions of the present invention can be in a suitable form for direct application or as a concentrate of primary composition that requires dilution with a suitable quantity of water or other diluent before application. The concentration of the antipathogenic polypeptide will vary depending upon the nature of the particular formulation, specifically, whether it is a concentrate or to be used directly. The composition contains 1 to 98% of a solid or liquid inert carrier, and 0 to 50%, optimally 0.1 to 50% of a surfactant.
These compositions will be administered at the labeled rate for the commercial product, optimally about 0.01 lb-5.0 lb. per acre when in dry form and at about 0.01 pts. - 10 pts. per acre when in liquid form.
In a further embodiment, the compositions, as well as the transformed microorganisms and antipathogenic proteins, of the invention can be treated prior to formulation to prolong the antipathogenic, particularly antifungal, activity when applied to the environment of a target pathogen as long as the pretreatment is not deleterious to the activity.
Such treatment can be by chemical and/or physical means as long as the treatment does not deleteriously affect the properties of the composition(s). Examples of chemical reagents include but are not limited to halogenating agents; aldehydes such a formaldehyde and glutaraldehyde; anti-infectives, such as zephiran chloride; alcohols, such as isopropanol and ethanol; and histological fixatives, such as Bouin's fixative and Helly's fixative (see, for example, Humason (1967) Animal Tissue Techniques (W.H. Freeman and Co.).
The antipathogenic compositions of the invention can be applied to the environment of a plant pathogen by, for example, spraying, atomizing, dusting, scattering, coating or pouring, introducing into or on the soil, introducing into irrigation water, by seed treatment or general application or dusting at the time when the pathogen has begun to appear or before the appearance of pathogens as a protective measure. For example, the antipathogenic protein and/or transformed microorganisms of the invention may be mixed with grain to protect the grain during storage. It is generally important to obtain good control of pathogens in the early stages of plant growth, as this is the time when the plant can be most severely damaged. The compositions of the invention can conveniently contain an insecticide if this is thought necessary. In one embodiment of the invention, the composition is applied directly to the soil, at a time of planting, in granular form of a composition of a carrier and dead cells of a Bacillus strain or transformed microorganism of the invention. Another embodiment is a granular form of a composition comprising an agrochemical such as, for example, a herbicide, an insecticide, a fertilizer, an inert carrier, and dead cells of a Bacillus strain or transformed microorganism of the invention.
Compositions of the invention find use in protecting plants, seeds, and plant products in a variety of ways. For example, the compositions can be used in a method that involves = CA 02652461 2013-07-08 placing an effective amount of the antipathogenic, more particularly, antifungal, composition in the environment of the pathogen by a procedure selected from the group consisting of spraying, dusting, broadcasting, or seed coating.
Before plant propagation material (fruit, tuber, bulb, corm, grains, seed), but 5 especially seed, is sold as a commercial product, it is customarily treated with a protective coating comprising herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides, or mixtures of several of these preparations, if desired together with further carriers, surfactants, or application-promoting adjuvants customarily employed in the art of formulation to provide protection against damage caused by bacterial, fungal, or animal pests.
10 In order to treat the seed, the protective coating may be applied to the seeds either by impregnating the tubers or grains with a liquid formulation or by coating them with a combined wet or dry formulation. In addition, in special cases, other methods of application to plants are possible, e.g., treatment directed at the buds or the fruit.
The plant seed of the invention comprising a DNA molecule comprising a nucleotide 15 sequence encoding an antipathogenic polypeptide of the invention may be treated with a seed protective coating comprising a seed treatment compound, such as, for example, captan, carboxin, thiram, methalaxyl, pirimiphos-methyl, and others that are commonly used in seed = treatment. Alternatively, a seed of the invention comprises a seed protective coating =
comprising an antipathogenic, more particularly antifungal, composition of the invention is 20 used alone or in combination with one of the seed protective coatings customarily used in seed treatment.
The antifungal polypeptides of the invention can be used for any application =
including coating surfaces to target microbes. In this manner, the target microbes include human pathogens or microorganisms. Surfaces that might be coated with the antifungal 25 polypeptides of the invention include carpets and sterile medical facilities. Polymer bound polypeptides of the invention may be used to coat surfaces. Methods for incorporating compositions with antimicrobial properties into polymers are known in the art.
See U.S.
Patent No. 5,847,047.
The embodiments of the present invention may be effective against a variety of plant 30 pathogens, particularly fungal pathogens, such as, for example, Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, and Fusarium verticillioides. Pathogens of the invention include, but are not limited to, viruses or viroids, bacteria, insects, nematodes, fungi, and the like. Viruses include any plant virus, for example, tobacco or cucumber mosaic virus, ringspot virus, necrosis virus, -maize dwarf mosaic virus, etc. Fungal pathogens, 35 include but are not limited to, Colletotrichum graminicola, Diplodia maydis, Fusarium graminearuni, and Fusarium verticillioides. Specific pathogens for the major crops include:
Soybeans: Phakopsora pachyrhizi, Phytophthora tnegasperma fsp. glycinea, Itlacrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Diaporthe phaseolorum var. sojae (Phomopsis sojae), Diaporthe phaseolorum var.
caulivora, Sclerotium rolfsii, Cercospora kikuchii, Cercospora sojina, Peronospora manshurica, Co lletotrichum dematium (Colletotichum truncatum), Corynespora cassiicola, Septoria glycines, Phyllosticta sojicola, Alternaria alternata, Pseudomonas syringae p.v. glycinea, Xanthomonas campestris p.v. phaseoli, Microsphaera diffusa, Fusarium semitectum, Phialophora gregata, Soybean mosaic virus, Glomerella glycines, Tobacco Ring spot virus, Tobacco Streak virus, Phakopsora pachyrhizi, Pythium aphanidermatum, Pythium ultimum, Pythium debaryanum, Tomato spotted wilt virus, Heterodera glycines Fusarium solani;
Canola: Albugo candida, Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia solani, Sclerotinia sclerotiorum, Mycosphaerella brassicicola, Pythium ultimum, Peronospora parasitica, Fusarium roseum, Alternaria alternata; Alfalfa: Clavibacter michiganese subsp.
insidiosum, Pythium ultimum, Pythium irregulare, Pythium splendens, Pythium debaryanum, Pythium aphanidermatum, Phytophthora megaspenna, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginis, Leptotrochila medicaginis, Fusarium oxysporum, Verticillium albo-atrum, Xanthomonas campestris p.v. alfalfae, Aphanomyces euteiches, Stemphylium herbarum, Stemphylium alfalfae, Colletotrichum trifolii, Leptosphaerulina briosiana, Uromyces striatus, Sclerotinia trifoliorum, Stagonospora meliloti, Stemphylium botryosum, Leptotrichila medicaginis;
Wheat: Pseudomonas syringae p.v. atrofaciens, Urocystis agropyri, Xanthomonas campestris p.v. translucens, Pseudomonas syringae p.v. syringae, Alternaria alternata, Cladosporium herbarum, Fusarium gram inearum, Fusarium avenaceum, Fusarium culmorum, Ustilago tritici, Ascochyta tritici, Cephalosporium gramineum, Collotetrichum graminicola, Erysiphe graminis f.sp. tritici, Puccinia graminis f.sp. tritici, Puccinia recondita Esp. tritici, Puccinia striiformis, Pyrenophora tritici-repentis, Septoria nodorum, Septoria tritici, Septoria avenae, Pseudocercosporella hopotrichoides, Rhizoctonia solani, Rhizoctonia cerealis, Gaeumannomyces graminis var. tritici, Pythium aphanidermatum, Pythium arrhenomanes, Pythium ultimum, Bipolaris sorokiniana, Barley Yellow Dwarf Virus, Brome Mosaic Virus, Soil Borne Wheat Mosaic Virus, Wheat Streak Mosaic Virus, Wheat Spindle Streak Virus, American Wheat Striate Virus, Claviceps puipurea, Tilletia tritici, Tilletia laevis, Ustilago tritici, Tilletia indica, Rhizoctonia solani, Pythium arrhenomannes, Pythium gramicola, Pythium aphanidermatum, High Plains Virus, European wheat striate virus; Sunflower: Plasmopara halstedii, Sclerotinia sclerotiorum, Aster Yellows, Septoria helianthi, Phomopsis helianthi, Alternaria helianthi, Alternaria zinniae, Botrytis cinerea, Phoma macdonaldii, Macrophomina phaseolina, Erysiphe cichoracearum, Rhizopus oryzae, Rhizopus arrhizus, Rhizopus stolonifer, Puccinia helianthi, Verticillium dahliae, Erwinia carotovorum pv. carotovora, Cephalosporium acremonium, Phytophthora cryptogea, Albugo tragopogonis; Corn: Colletotrichum graminicola, Fusarium moniliforme var. subglutinans, Erwinia stewartii, F. verticillioides, Gibberella zeae (Fusarium graminearum), Stenocarpella maydi (Diplodia maydis), Pythium irregulare, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidennatum, Aspergillus flavus, Bipolaris maydis 0, T (Cochliobolus heterostrophus), Helminthosporium carbonum I, II & III (Cochliobolus carbonum), Exserohilum turcicum I, II
& III, Helminthosporium pedicellatum, Physodenna maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macrophomina phaseolina, Penicillium oxalicum, Nigrospora oryzae, Cladosporium herbarum, Curvularia lunata, Curvularia inaequalis, Curvularia pallescens, Clavibacter michiganense subsp. nebraskense, Trichoderma viride, Maize Dwarf Mosaic Virus A & B, Wheat Streak Mosaic Virus, Maize Chlorotic Dwarf Virus, Claviceps sorghi, Pseudonomas avenae, Erwinia chrysanthemi pv. zea, Erwinia carotovora, Corn stunt spiroplasma, Diplodia macrospora, Sclerophthora macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis, Peronosclerospora maydis, Peronosclerospora sacchan, Sphacelotheca reiliana, Physopella zeae, Cephalosporium maydis, Cephalosporium acremonium, Maize Chlorotic Mottle Virus, High Plains Virus, Maize Mosaic Virus, Maize Rayado Fino Virus, Maize Streak Virus, Maize Stripe Virus, Maize Rough Dwarf Virus; Sorghum:
Exserohilum turcicum, C. sublineolum, Cercospora sorghi, Gloeocercospora sorghi, Ascochyta sorghina, Pseudomonas syringae p.v. syringae, Xanthomonas campestris p.v. holcicola, Pseudomonas andropogon is, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium monilifonne, Alternaria alternata, Bipolaris sorghicola, Helminthosporium sorghicola, Curvularia lunata, Phoma insidiosa, Pseudomonas avenae (Pseudomonas alboprecipitans), Ramulispora sorghi, Ramulispora sorghicola, Phyllachara sacchan, Sporisorium reilianum (Sphacelotheca reiliana), Sphacelotheca cruenta, Sporisorium sorghi, Sugarcane mosaic H, Maize Dwarf Mosaic Virus A & B, Claviceps sorghi, Rhizoctonia solani, Acremonium strictum, Sclerophthona macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis, Sclerospora graminicola, Fusarium gram inearum, Fusarium oxysporum, Pythium arrhenomanes, Pythium graminicola, etc.
Nematodes include parasitic nematodes such as root-knot, cyst, and lesion nematodes, including Heterodera spp., Meloidogyne spp., and Globodera spp.; particularly members of the cyst nematodes, including, but not limited to, Heterodera glycines (soybean cyst nematode); Heterodera schachtii (beet cyst nematode); Heterodera avenae (cereal cyst nematode); and Globodera rostochiensis and Globodera pailida (potato cyst nematodes).
Lesion nematodes include Pratylenchus spp.
The article "a" and "an" are used herein to refer to one or more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one or more element.
Units, prefixes, and symbols may be denoted in their SI accepted form. Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. Numeric ranges are inclusive of the numbers defining the range. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
The above-defined terms are more fully defined by reference to the specification as a whole.
The following examples are provided by way of illustration, not by way of limitation.
EXPERIMENTAL
Methods of growing fungal cultures are well known in the art. For subculturing the fungal cultures disclosed herein, any broth generally suitable for growing fungi may be used, including, for example, potato dextrose broth infra (Becton Dickinson Microbiology Systems, Sparks, MD), Czapek-Dox broth infra (Becton Dickinson Microbiology Systems, Sparks MD), Sabouraud broth (BBL #210986, Voigt Global Distribution LLC, Kansas City, MO), and the like.
Example 1: Isolation of Antifungal Polypeptide LB-09812 (SEQ ID NO:1) A soil sample was collected from rotten pieces of wood from the tree Populus tremula L., in the Kiev region. The fungal isolate of interest, denoted herein as IMV 01051, that produced the antifungal polypeptide SEQ ID NO: 1, was isolated using potato dextrose agar. The strain was later identified as Penicillium glandicola (Oudemans) Seifert et Samson.
The pure culture of the organism has been maintained at room temperature on malt extract agar slant by sub-culturing it in regular intervals. Isolate IMV 01051 was transferred to Berkeley Lab where the cultures were grown on PDA and preserved by placing 10 agar plugs per strain sampled with sterile P1000 plastic tips into 2 mL cryotubes containing 0.7 mL 45%
(w/v) sterile glycerol. The cryotubes then were placed in a wooden block and frozen overnight in a -20 C freezer at an approximate freezing rate of 1 C/min. The now frozen material was transferred to a -84 C freezer for long-term maintenance.
The species identification was confirmed by sequencing the D1/D2 domains of the large subunit rRNA-coding gene. Total genomic DNA extraction was performed with the FastDNA Kit using FastPrep and the SpinColumn protocol of BIO 101 Systems (Q-BIOgene, Vista, CA). The PCR amplification was carried out in Platinum Blue PCR
SuperMix (Invitrogen, Carlsbad, CA), The generic fungal D1/D2 domains (nucleotides 63-642) primers uSed for the PCR amplification and for sequencing were published earlier by Kurtzman and Robnett (1998) Aittonie Vat: Leeuweithoek 73(4)331-71; and Kurtzman and Robnett (2003) FEMS Yeast Res. 3(4):417-32. DNA sequencing was done at the University of California at Berkeley DNA Sequence Facility.
The raw sequence was edited with EditView Version 1Ø] .1 (ABI, Foster City, CA) and aligned using online multiple sequence aligner subroutines (BCM Search Launcher (searchlauneher.bcm.tmc.edu/multi-alignimulti-align.html) and MultAlin (prodes.toulouse.inra.fr/multalinimultalin.html)). Aligned sequence for the Dl/D2 domains was further analyzed- for consensus using online subroutines by the Ribosomal Database Project (rdp.cme.msu.edu/html/) and Boxshade (ch.emnet.org/sOftware/BOX_form.litml; a "www" prefix must be used), and finally BLASTed against the NCBI database (nebi.nlm.nih.gov/BLAST; a "www" prefix must be used) for species determination.
A designed set of specific growth conditions, i.e., nutrient content, temperature, pH, incubation time, aeration, etc., were applied to the isolated fungus to promote the production of secondary metabolites and novel natural products. The small molecules of interest were = secreted by the above fungal strain when it was grown in 250-ml Erlenmeyer flasks filled = 20 with 50 mL of a medium. Strain IMY 01051 was grown in a medium containing maltose (12,75 g/L), malt extract (15 g,/L), dextrin (2.75 g/L). glycerol (2.35 g/L), dibasic potassium phosphate (1 g/L), ammonium chloride (1 g/L), and bacto-peptone (0.75 g/L).
The pH of the medium was adjusted with hydrochloric acid to a final value of 4.8. The -strain was incubated at 16 C on an orbital shaker incubator at 180 rpm for 144 h. Biomass and supernatant of the = 25 resulting microbial fermentation were then separated by centrifugation at 10,322 x g, 15 'C
for 20 min.. The cell-free supernatant, labeled as LB-09812, was assayed to determine the presence of heat labile antifungal activity.. After confirming that heat labile antifungal activity was present in the LB-09812 supernatant, the cell-free supernatant o.f a large scale, 500 mL
culture was provided and subjected to solid phase extraction, as described below.
= 30 Oasis HLB extraction cartridges (6 gram, 35 mL) (Waters Corporation, Milford, MA) were used for solid phase extraction (SPE). Specifically, the SPE cartridge was made wet with one cartridge volume of methanol and then conditioned with approximately 40 inL
Solvent A (2% acetonitrile, 0.1% TFA). Approximately 90 mL of crude culture filtrate was treated with 5X solvent A to a final concentration of IX and centrifuged for 20 min at 3,000 x 35 g. The supernatant was loaded onto an SPE cartridge, and the SPE Cartridge was washed with approximately 40 triL solvent A. The SPE cartridge was eluted with approximately 40 mL
= 43 =
=
90% acetonitrile, 0.1% TFA. The eluted sample was partially dried in a centrifugal evaporator (Speed Vac), frozen with liquid nitrogen and lyophilized to dryness.
The dried extract was re-suspended in phosphate buffered saline (PBS) (0.5 mL
: 20 mL starting culture filtrate), and the re-suspended extract was enriched for proteins using a Sephadex G10 (Amersham Biosciences AB, Uppsala, Sweden) spin column. Bio-Spin disposable chromatography columns (Bio-Rad Laboratories, Hercules CA) were filled to approximately 0.75 mL bed volume with Sephadex G10 that had been pre-equilibrated in phosphate buffered saline (PBS) and were centrifuged for 1 minute at 1,000 x g. 200 L of SPE extract in PBS was added to each pre-spun Bio-Spin column, and loaded Bio-Spin columns were centrifuged for 5 minutes at 1,000 x g to elute proteins.
G10 treated antifungal extracts were fractionated by HPLC with a Jupiter 51.1 300A 150 mm x 4.6 mm column (Phenomenex, Torrance, CA). HPLC starting conditions were 5% acetonitrile, 0.04% heptafluorobutyric acid (HFBA), 0.4 mL/minute.
After injecting 200 L of G10 treated antifungal extract, the flow rate was raised to 0.8 mL/minute over 1 minute. After an additional minute, a 94 minute exponentially curved gradient (Waters gradient curve 7, Waters Corporation, Milford, MA) was started to 86%
acetonitrile, 0.04% HFBA. The HPLC fractions were divided into four 1/2 area 96 well clear bottom assay plates. Plates containing fractionated extracts were then dried in a centrifugal evaporator.
The dried fractionated extracts were then screened for antifungal activity against FVE, CGR, FGR, and DMA using an antifungal plate assay, as described in Example 3. FVE, FGR and DMA were tested at 4,000 spores/mL in 1/4 X potato dextrose broth (Becton Dickinson Microbiology Systems, Sparks, MD). CGR was tested at 4,000 spores/mL in 1/4 X
Czapek-Dox (Becton Dickinson Microbiology Systems, Sparks MD) + 180 mL/L V8 juice.
Cultures were allowed to develop at 27 C for 24 hours. Assays were scored by visualizing fungal growth with an inverted microscope. The HPLC fractions from approximately 65.5 to 67 minutes were found to have antifungal activity against FVE, CGR, FGR and DMA.
Additional HPLC fractionations were performed to bulk up the antifungal fraction.
This bulked up antifungal fraction was further purified using p.-bore HPLC
with a Zorbax 3.5 , C8 300A 150 mm x 1.0 mm column (Agilent Technologies, Palo Alto, CA).
Starting conditions were 9.5% acetonitrile, 0.1% formic acid, 0.025% trifluoroacetic acid (TFA), 50 1.1L/minute. Two minutes following sample injection, a 25 minute linear gradient was started to 32% acetonitrile, 0.1% formic acid, 0.025% TFA. 214 nm peak based fractions were collected using an Agilent micro-fraction collector, dried in a centrifugal evaporator and assayed for antifungal activity as described above. A peak eluting at approximately 27 minutes was found to have activity against FGR. ESI mass spectra were obtained on an integrated Agilent MSD TOF mass spectrometer. The peak had the ion profile of a peptide and a mass of 3802 Da.
Reduction and alkylation was required for efficient N-terminal sequencing.
Approximately 10 i.tg of dried protein was re-suspended into 18 1.1L 0.1 M
ammonium bicarbonate, 8 M urea pH 8.3. This solution was transferred to limited volume HPLC
autosampler vial. 1 1.1L 200 mM DTT was added and the solution was incubated at 50 C for 1 hour. Subsequently 1 1,IL 500 mM iodoacetamide was added, and the solution was incubated at 37 C for 30 minutes in the dark. The iodoacetamide alkylation was then quenched by adding 2 1,IL 25% trifluoroacetic acid. The alkylated protein was then purified by 1.1-bore HPLC on a Zorbax 3.51a C8 300A 150 mm x 1.0 mm column (Agilent Technologies, Palo Alto, CA). Starting conditions were 7.7% acetonitrile, 0.1% formic acid, 0.025% TFA.
After 15 minutes a 70 minute linear gradient was performed to reach 70.7%
acetonitrile, 0.1%
formic acid, 0.025% TFA. The column flow rate was 501.1L/minute. 214 nm peak based fractions were collected using an Agilent micro fraction collector.
N-terminal sequencing Initial N-terminal sequencing yielded the following sequence:
ALHNSCSHPRCFNHAHCLTYS (SEQ ID NO:28). Further elucidation of the N-terminal sequence required sequencing of ArgC digested fragments.
ArgC Digestion ArgC (excision grade, Clostridium histolyticum Calbiochem cat. #324711) was prepared by adding water to achieve 100 ng/i.IL. 2 tg alkylated LB09812 was suspended in
16 1,IL 100 mM Tris-HC1/10 mM CaC12, pH 7.6. 2 1.1L 50 mM DTT/5 mM EDTA was then added followed by 2 1.1L ArgC which had been diluted 1:4 with 100 mM Tris-HC1/10 mM
CaC12, pH 7.6. The solution was incubated at 37 C for 18 hours. Finally, the solution was diluted with 20 1.1L 5% acetonitrile, 0.1% formic acid, 0.025% TFA and injected onto 1.0 x 150 mm Zorbax 300SB C8 3.5 lam column. Starting conditions were 6.8%
acetonitrile, 0.1%
formic acid, 0.025% trifluoroacetic acid (TFA), 50 1.1L/minute. Four minutes following sample injection, a 66 minute linear gradient was started to 26.6%
acetonitrile, 0.1% formic acid, 0.025% TFA. 214 nm peak based fractions were collected using an Agilent micro-fraction collector. Masses for the isolated fragments were determined by splitting ¨10% of the HPLC flow into an integrated Agilent MSD TOF mass spectrometer equipped with an ESI
source. Seven peaks were collected and sent for N-terminal sequencing. ArgC
Peak V, which eluted at 33 minutes, yielded useful sequence.
N-terminal sequencing results ArgC Peak V: CFNHAHCLTYSHCHVXCS (SEQ ID NO:29) The complete amino acid sequence for the LB-09812 antifungal polypeptide was determined by using Genome Walker PCR which allowed for the identification of the nucleotide sequence set forth in SEQ ID NO:24, corresponding to the full-length genomic sequence for the LB-09812 protein. The full-length, unprocessed LB-09812 protein is set forth in SEQ ID NO:25 The gene sequencing results together with those from N-terminal sequencing of LB-09812 predicted a mature peptide (set forth in SEQ ID NO:1) having a mass identical to that of the HPLC-purified LB-09812. Further details of the Genome Walker Experiments are provided herein below.
Example 2: Isolation of Antifungal Polypeptide LB-12922 (SEQ ID NO:3) A cultivated agricultural soil sample in the Ternapol region, Ukraine, was isolated about twelve years after the Chernobyl nuclear accident. The fungal isolate of interest, denoted herein as LB-12922, that produced the antifungal polypeptide SEQ ID
NO:3, was isolated using potato dextrose agar. The strain was later identified as Penicillium citreonigrum Dierckx. The pure culture of the organism has been maintained at room temperature on malt extract agar slant by sub-culturing it in regular intervals. Isolate LB-12922 was transferred to Berkeley Lab where the cultures were grown on PDA and preserved by placing 10 agar plugs per strain sampled with sterile P1000 plastic tips into 2 mL
cryotubes containing 0.7 mL 45% (w/v) sterile glycerol. The cryotubes then were placed in a wooden block and frozen overnight in a -20 C freezer at an approximate freezing rate of 1 C/min. The now frozen material was transferred to a -84 C freezer for long-term maintenance.
The species identification was confirmed by sequencing the D1/D2 domains of the large subunit rRNA-coding gene. Whole-cell fatty acid methyl ester (FAME) analysis was performed following manufacturer's recommendations (MIDI, Newark, DE). The pure culture of strain was grown in Saboui-aud liquid medium on an orbital shaker (180 rpm) at 30 C for 3-5 days. The biomass was harvested by centrifugation and about 50 mg of cells were extracted. The fatty acid methyl ester profile was determined on a Agilent Technologies (Palo Alto, CA) Model 6890 gas chromatograph. Chromatograms were analyzed with the Sherlock Microbial Identification System Version 4.5 (MIDI, Newark, DE). Similarity among the chromatograms was established by the dendrogram subroutine. The available fungal database could not resolve the identification of the strain at genus or species level Sequencing of the Dl/D2 domains of the large subunit ribosomal RNA-coding genes involved growing the strain in Sabouraud liquid medium, extracting the total genomic DNA, and PCR amplifying the target sequences. Total genomic DNA extraction was performed with the FastDNA Kit using FastPrep and the SpinColumn protocol of BIO 101 Systems (Q-BIOgene, Vista, CA). The PCR amplification was carried out in Platinum Blue PCR
SuperMix (Invitrogen, Carlsbad, CA). The generic fungal D1/D2 domains (nucleotides 63-, 642) primers used for the PCR amplification and for sequencing were published earlier by Kurtzman and Robnett (1998) Antonie Van Leeuwenhoek 73_01:331-71; and Kurtzman and Robnett (2003) FEMS Yeast Res. 3(4):417-32.
DNA sequencing was done at the University of California at Berkeley DNA Sequencing Facility.
The raw sequence was edited with EditView Version 1Ø1.1 (ABI, Foster City, CA) and aligned using online multiple sequence aligner subroutines (BCM Search Launcher = (searchlauncher.bern.tmc.edu/multi-align/multi-align.html) and MultAlin (prodes.toulouse.inra.fr/multalin/multalin.httn1)). Aligned sequence for the DI/D2 domains was further analyzed for consensus using online subroutines by the Ribosomal Database = I 5 Project (rdp,cme.msu.edu/html/) and Boxshade (ch.emnet.org/software/BoXforrn.html; a "www" prefix must be used), and finally BLASTed against the NCBI database (ncbi.nlm.nih.gov/BLAST; a "www" prefix must be used) for species determination.
A designed set of specific growth conditions, i.e., nutrient content, temperature, pH, incubation time, aeration, etc., were applied to the isolated fungus to promote the production of secondary metabolites and novel natural products. The small molecules of interest were secreted by the above fungal strain when it was grown in 250 mL Erlenmeyer flasks filled with 50 mL of a medium. Strain IMV 00738 was gown in a medium containing glucose (75 g/L), tartaric acid (4 g/L), ammonium tartrate (4 g/L), ammonium_phosphate (0.6 g/L), potassium carbonate (1 g/L), ammonium chloride (0.6 g/L), magnesium carbonate (0.4 g/L), ammonium sulfate (0.25 g/L), zinc sulfate (700 ng/L), and iron sulfate (700 ng/L). The pH of the medium was adjusted with hydrochloric acid to a final value of 4.8. The strain was = incubated at 16 'V on an orbital shaker incubator at 180 rpm for 144 h.
Biomass and supernatant of the resulting microbial fermentation were then separated by centrifugation at 10,322 x g, 15 C for 20 min. The cell-free supernatant, labeled as LB-12922, was assayed to = 30 determine the presence of heat labile antifungal activity. After confirming that heat labile antifungal activity was present in the LB-12922 supernatant, the cell-free supernatant of a large scale, 500 mL culture was provided and subjected to solid phase extraction, as described below.
Oasis HLB extraction cartridges (6 gram, 35 mL) (Waters Corporation, Milford, MA) were used for solid phase extraction (SPE). Specifically, the SPE cartridge was made wet with one cartridge volume of methanol and then conditioned with approximately 40 mL
Solvent A (2% acetonitrile, 0.1% TFA). Approximately 90 milliliters of crude culture filtrate was treated with 5X solvent A to a final concentration of 1X and centrifuged for 20 min at 3,000 x g. The supernatant was loaded onto an SPE cartridge, and the SPE
cartridge was washed with approximately 40 mL solvent A. The SPE cartridge was eluted with approximately 40 mL 90% acetonitrile, 0.1% TFA. The eluted sample was partially dried in a centrifugal evaporator (Speed Vac), frozen with liquid nitrogen and lyophilized to dryness.
The dried extract was re-suspended in phosphate buffered saline (PBS) (0.5 mL
: 20 mL starting culture filtrate), and the re-suspended extract was enriched for proteins using a Sephadex G10 (Amersham Biosciences AB, Uppsala, Sweden) spin column. Bio-Spin disposable chromatography columns (Bio-Rad Laboratories, Hercules CA) were filled to approximately 0.75 mL bed volume with Sephadex G10 that had been pre-equilibrated in phosphate buffered saline (PBS) and were centrifuged for 1 minute at 1,000 x g. 200 L of SPE extract in PBS was added to each pre-spun Bio-Spin column, and loaded Bio-Spin columns were centrifuged for 5 minutes at 1,000 x g to elute proteins.
G10 treated antifungal extracts were fractionated by HPLC with a Jupiter 5 C5 300A 150 mm x 4.6 mm column (Phenomenex, Torrance, CA). HPLC starting conditions were 5% acetonitrile, 0.04% heptafluorobutyric acid (HFBA), 0.4 mL/minute.
After injecting 200 L of G10 treated antifungal extract, the flow rate was raised to 0.8 mL/minute over 1 minute. After an additional minute, a 94 minute exponentially curved gradient (Waters gradient curve 7, Waters Corporation, Milford, MA) was started to 86%
acetonitrile, 0.04% HFBA. The HPLC fractions were divided into four 1/2 area 96 well clear bottom assay plates. Plates containing fractionated extracts were then dried in a centrifugal evaporator.
The dried fractionated extracts were then screened for antifungal activity against FVE, CGR, FGR, and DMA using an antifungal plate assay, as described in Example 3. FVE, FGR and DMA were tested at 4,000 spores/mL in 1/4 X potato dextrose broth (Becton Dickinson Microbiology Systems, Sparks, MD). CGR was tested at 4,000 spores/mL in 1/4 X
Czapek-Dox (Becton Dickinson Microbiology Systems, Sparks MD) + 180 mL/L V8 juice.
Cultures were allowed to develop at 27 C for 24 hours. Assays were scored by visualizing fungal growth with an inverted microscope. The HPLC fractions from approximately 64.5 to 66 minutes were found to have antifungal activity against FVE, CGR, FGR and DMA.
FVE
antifungal activity was observed for fractions from 63 to 72.5 minutes.
Additional HPLC fractionations were performed to bulk up the 63 to 72.5 minute antifungal fraction. This bulked up antifungal fraction was further purified using -bore HPLC with a Zorbax 3.5 C8 300A 150 mm x 1.0 mm column (Agilent Technologies, Palo Alto, CA). Starting conditions were 7.7% acetonitrile, 0.05% formic acid, 0.025%
trifluoroacetic acid (TFA), 50 L/minute. Following sample injection, a 40 minute linear gradient was started to 25.7% acetonitrile, 0.05% formic acid, 0.025% TFA.
Subsequently, a 20 minute gradient was started to 43.7% acetonitrile, 0.05% formic acid, 0.025% TFA. 214 nm peak based fractions were collected using an Agilent micro-fraction collector, dried in a centrifugal evaporator and assayed for antifungal activity as described above.
A peak eluting at approximately 41 minutes was found to have activity against FVE. ESI mass spectra were obtained on an integrated Agilent MSD TOF mass spectrometer. The peak had the ion profile of a peptide and a mass of 4445 Da.
Reduction and alkylation was required for efficient N-terminal sequencing.
Approximately 10 ug of dried protein was re-suspended into 18 uL 0.1 M
ammonium bicarbonate, 8 M urea pH 8.3. This solution was transferred to limited volume HPLC
autosampler vial. 1 uL 200 mM DTT was added and the solution was incubated at 50 C for 1 hour. Subsequently 1 uL 500 mM iodoacetamide was added, and the solution was incubated at 37 C for 30 minutes in the dark. The iodoacetamide alkylation was then quenched by adding 2 uL 25% trifluoroacetic acid. The alkylated protein was then purified by u-bore HPLC on a Zorbax 3.5 C8 300A 150 mm x 1.0 mm column (Agilent Technologies, Palo Alto, CA). Starting conditions were 7.7% acetonitrile, 0.1% formic acid, 0.025% TFA.
After 15 minutes a 70 minute linear gradient was performed to reach 70.7%
acetonitrile, 0.1%
formic acid, 0.025% TFA. The column flow rate was 50 uL/minute. 214 nm peak based fractions were collected using an Agilent micro fraction collector. The alkylated LB-12922 eluted at about 41 minutes.
N-terminal sequencing Initial N-terminal sequencing yielded the following sequence:
LSCYPSCMQNYCSHPRXFLXAT (SEQ ID NO:30).
The complete amino acid sequence for the LB-12922 antifungal polypeptide was determined by using Genome Walker PCR which allowed for the identification of the nucleotide sequence set forth in SEQ ID NO:26, corresponding to the full-length genomic sequence for the LB-12922 antifungal protein. The full-length,unprocessed LB-12922 protein is set forth in SEQ ID NO:27. The gene sequencing results together with those from N-terminal sequencing of LB-12922 predicted a mature peptide (set forth in SEQ
ID NO:3) having a mass identical to that of the HPLC-purified LB-12922. Details of the Genome Walker experiments are provided below.
Example 3: Antifungal Activity of Polypeptides LB-09812 (SEQ ID NO:1) The antifungal activity of the polypeptide of SEQ ID NO:1 against the fungal pathogens Fusarium verticillioides (FVE), Colletotrichum graminicola (CGR), Fusarium graminearum (FGR) and Diplodia maydis (DMA) was assessed using a standard plate assay.
Specifically, an E. coli transformation vector comprising a nucleotide sequence that encodes the polypeptide of SEQ ID NO:1 fused to a His-tagged maltose binding protein via a factor XA cleavage site was generated and used to express the fusion protein in E. coli. The fusion protein was then affinity (Ni-NTA) ¨purified, and the protein preparation was subjected to Factor XA cleavage. The desired LB-09812 peptide (SEQ ID NO:1) was then purified by HPLC, and the purity and mass of the peptide verified by LCMS.
Purified peptide was quantified and used in standard assays to measure antifungal activity, as described below.
Preparation of cultures for spore production:
Cultures of FVE were prepared using V8 agar plates. FGR, CGR, and DMA cultures were prepared using 1/2 x oatmeal agar. Media recipes are provided below.
Specifically, tubes containing silica-gel fungal stocks stored at ¨20 C were briefly flamed, and approximately 5 crystals were sprinkled onto the agar surface. 2-3 plates of each fungal isolate were prepared. The newly plated cultures were stored in a plastic box to prevent the cultures from drying out. FVE cultures were grown in the dark at room temperature. CGR cultures were grown in ambient light at room temperature. FGR
and DMA cultures were grown in an illuminated growth chamber at 27 C. New cultures were prepared every other week to maintain a consistent supply of spores.
Spore Preparation:
Spores were prepared from 2-4 week old cultures of FVE, FGR, CGR, and DMA.
For FGR, FVE, and DMA, a portion of the culture plate was rinsed with a small amount of assay medium. The rinse solution was permitted to remain on the DMA plates for a time sufficient to allow the pycnidia to rupture. The assay medium was then transferred to a sterile tube. Samples were vortexed, and spores were quantified using a hemacytometer.
For CGR, a sterile loop was gently dragged across orange areas of the culture plate.
The loop was then inserted into a small volume of assay media, and the media was mixed with the loop to suspend the spores. Samples were vortexed, and spores were quantified using a hemacytometer.
Spores were diluted to the desired concentration with assay medium (4,000 spores per mL for FGR, FVE, and CGR, and 6,000 spores per mL for DMA) and kept on ice prior to beginning the antifungal activity assay.
Assay Plate Preparation Details:
Standard non-tissue culture treated 96 well flat bottom plates or 1/2 area non-treated plates (Costar) were used in the antifungal plate assays. Assay medium was 1/4 x potato dextrose broth for FVE, FGR and DMA, and 1/4 x Czapec-Dox V8 was used for CGR.
Antifungal polypeptides at various concentrations were added to the plates at 1.1L/we11 for a standard assay plate or 251.1L/we11 for a half area plate. An equal volume of media with fungal spores at 2 times the above concentrations was then added to start the assay. Alternatively HPLC fractionated lead samples were assayed by adding media with fungal spores (as above) into assay plates that the HPLC samples had been dried into (Savant Speed-vac). The plates were sealed with a gas permeable membrane ("Breathe-Easy", Cat.
No. BEM-1, Diversified Biotech, Boston, MA), and the assay was allowed to develop in the dark at 28 C for 24 to 48 hours.
After the incubation period, the plates were placed on an inverted microscope, and each well was examined and scored on a scale of 0 ¨ 4, according to the following parameters: 0 = no inhibition of fungal growth when compared to the negative control, 0.5 =
slight inhibition (overall growth is less than the negative control but growth from individual spores is not distinct), 1 = slight inhibition (overall growth is less than the negative control but growth from individual spores is apparent, albeit not quite confluent), 2 =
moderate inhibition (growth from 1 spore can easily be identified and is significantly less abundant than the negative control; growth from each spore tends to look spherical), 3 = strong inhibition (spores have germinated but growth is limited to a few branches of short hyphae), 4 =
complete inhibition (spores have not germinated. See, for example, Duvick et al. (1992)J.
Biol. Chem. 267: 18814-18820). A score sheet containing representative examples of each level of antifungal activity is provided in Figure 2.
Results Figure 3 provides the results of antifungal activity assays with the polypeptide set forth in SEQ ID NO: 1. This polypeptide exhibited antifungal activity against FVE, FGR, CGR, and DMA.
Media Recipes:
lx Czapek-Dox V8 Broth:
For each liter, suspend 35 grams Difco Czapek-Dox Broth (#233810) in dH20 and add 180 milliliters V8 juice that has been clarified by centrifugation (3,000 x g is plenty).
Raise final volume to 1 liter and autoclave at 121 C for 20 minutes. The media is filter sterilized to remove any remaining debris.
lx potato dextrose broth:
For each liter, suspend 24 grams Difco Potato Dextrose Broth (#0549-17-9) in dH20 and raise final volume to 1 liter and autoclave at 121 C for 20 minutes. The media is filter sterilized to remove any remaining debris.
V8 Agar:
For each liter, dissolve 180 mL V8 juice and 3 grams calcium carbonate in 820 mL
deionized water and then add 17 grams Bacto-agar in dH20 in a 4 liter vessel.
10 drops of 5%
antifoam A may be optionally added per liter prepared. Cover and autoclave at 121 C for 20 minutes. Pour plates in sterile hood.
Oatmeal agar:
For each liter, suspend 36.24 grams of Difco Oatmeal Agar (#0552-17-3) and 4.25 grams agar in dH20 in a 4 liter vessel, cover and autoclave at 121 C for 20 minutes. Pour plates in sterile hood.
Table 1: Details of Growth Conditions for FVE, FGR, CGR, and DMA Strains for Use in In Vitro Antifungal Activity Assays FVE FGR CGR DMA
Isolate name M033 73B ISU Carroll-IA-99 Warren-IN-96 Medium for V8 Agar 1/2X
Oatmeal 1/2X Oatmeal 1/2X Oatmeal sporulation Agar Agar Agar Agar culture age range for in vitro 2-4 weeks old 2-4 weeks old 2-4 weeks old 2-4 weeks old assay Suggested schedule for Every other week Every other Every other Every other starting agar week week week cultures Liquid medium 1/4 x potato 1/4 x potato 1/4 x Czapec- 1/4 x potato for in vitro assay dextrose broth dextrose broth Dox V8 broth dextrose broth Spore Density for in vitro assay 4,000 4,000 4,000 6,000 (spores/mL) Example 4: Isolation of full-length LB-09812 and LB-12922 Genes from Genomic DNA
Genome Walker experiments were performed to isolate the full length LB-09812 and LB-12922 genes from genomic DNA of Penicillium glandicola and Penicillium citreonigrum, respectively.
Isolation of LB-09812 and LB-12922 genes The procedure for gene isolation is described in the User Manual for the Genome Walker kit sold by Becton Dickinson BioSciences (formerly Clontech Laboratories, Inc.; Palo Alto, CA). Genomic DNA from fungal lines LB-09812 and LB-12922 was isolated at Lawrence Berkeley National Laboratory using the FastDNA SPIN Kit (QbioGene, Inc., Carlsbad, CA) and the ballistic cell disruption method according to the manufacturer's instructions. The DNA was then used exactly as described in the Genome Walker Use Manual (Clontech PT3042-1, version PR03300). Briefly, the DNA was digested separately with restriction enzymes DraI, EcoRV, PvuII and StuI, all blunt-end cutters.
The DNA was extracted with phenol, then chloroform, and then precipitated with ethanol.
The Genome Walker adapters were ligated onto the ends of the restricted DNA. The resulting DNA is referred to as DL1-4, respectively.
For isolation of the LB-09812 gene, a number of overlapping, degenerate primers were designed to the underlined and italicized regions in the peptide sequence available, ALHNSCSHPRCFNHAHCLTYS (SEQ ID NO:28). These primers were used in amplification reactions run on each DNA sample (DL 1-4) with the appropriate Genome Walker primers in one or two rounds of PCR. PCR was performed in a model PTC-thermal cycler with HotBonnet from MJ Research (Watertown, Maine). The first fragment of the LB-09812 gene was cloned using only one round of PCR using the BD
BioSciences AP2 primer (5'-ACTATAGGGCACGCGTGGT-3'; SEQ ID NO:31) and gspR2 (5'-RTGRTTRAARCAYCTNGGRTG-3' ; SEQ ID NO:32). PCR reactions were carried out using the BD AdvantageTM HF 2 PCR kit in 25 1.11_, reactions, with final primer concentrations at 2 mM. The cycling parameters were: 5 cycles of 92 C for 30 sec, then 68 C
for 3 min, followed by 28 cycles of 92 C for 20 sec, and 55 C for 3 min and finally 5 min at 65 C.
About 201.11_, of each reaction were run on a 1.0% agarose gel, and bands were excised and purified with the QIAquick gel extraction kit, Qiagen, Inc. (Valencia, Calif.) and cloned into the pCR-Blunt vector (Invitrogen, San Diego, Calif). Clones were sequenced for verification. The resulting fragment, part of SEQ ID NO:2 of the LB-09812 gene, was cloned in this manner using the AP2 and gspR2 primers. The gene fragment and the protein encoded thereby are set forth below and in SEQ ID NOs:33 and 34:
TACCCGGACGGGCTTCTTCACCCCGAGAACGGTGGCTACTACCTGAAGGATGGGG
ATGAAGTCGTCGTTGGCATTGCCAGCGACGATCTTTGCAAGGAGCTGGACGGTGC
ATTCGCTAGCGTCGATGCAAAAATTGCCGAAGAAGCTGAAAGCGCTGGACCCGA
AGATAATATTTCTGATGCTGAAAATGTCAAGAGAGATGTACTTGCCCTACATAAC
TCATGCAGCCACCCTCGCTGCTTCAATCAC (SEQ ID NO:33) YPDGLLHPENGGYYLKDGDEVVVGIASDDLCKELDGAFASVDAKIAEEAESAGPED
NISDAENVKRDVLALHNSCSHPRCFNH (SEQ ID NO:34) The region in bold corresponds to the N-terminal two-thirds of the peptide sequence known at the time the Genome Walker experiments were performed. The carboxy-terminus was obtained with PCR reactions carried out as described above, but with the BD
BioSciences AP1 primer (5' -GTAATACGACTCACTATAGGGC-3'; SEQ ID NO:35) and gspF4 (5' -TTYAAYCAYGCNCAYTGYTTRAC-3'; SEQ ID NO:36). The resulting fragment is set forth below and in SEQ ID NO:37.
TTCAACCACGCTCACTGCYTGACCTACTCGCACTGCCATGTATGCTCTTCCCGCAA
GCGT
TGTCTTTAGAGTATCCTGCAATTTTGATAGTGGGAATGTTGGAGAGATTTACGAA
GGCTT
ACAGAGATGTGGTTGGATAGTGAAAGTGGGGGAGGTAGTCTGGGGGTATAGCGG
CCTCTG
GTTAGTTTCAATTAAGATGCGAATTTTGGCCTGATTCTTGCCTTGCTTTATTTAGA
TTCA
ACAGAAAATTAAGATACCTGAAATACCATTACAGAGCCTATATAAAGCTAGCGT
AGGGGG
GAAATCATCAGTTATTAAGAGGAGTCTCGGCGAACGAGATACTCAGGTTGACGA
GCAATC
CTCTGGTCAAAATTCCATCTGGAAAGATGTGTACCGTACCGTCAATAATTGGGTC
GATGA
GTAGTGCCCTAATTTAACGCCTGTACACGGTGAACTCCATGA (SEQ ID NO :37) Translated in frame 1, this fragment encodes the following polypeptide (SEQ ID
NO:38):
FNHAHCLTYSHCHVCSSRKRCL*SILQF**WECWRDLRRLTEMWLDSESGGGSLGV
*RPL
VSFN*DANFGLILALLYLDSTEN*DT*NTITEPI*S*RRGEIISY*EESRRTRYSG*RAI
LWSKFHLERCVPYRQ*LGR*VVP*FNACTR*TP* (SEQ ID NO:38) The composite sequence generated from these two genomic DNA fragments encodes the mature LB-09812 amino acid sequence, SEQ ID NO: 1.
In order to obtain a putative preprotein sequence, i.e., a sequence encoding a methionine at the predicted N-terminus of the unprocessed protein, two rounds of PCR were carried out using the Genome Walker DL-2 DNA as template. Reagents and cycling conditions for both rounds of PCR were as described above, using these primer combinations:
Round 1: BD BioSciences AP1 primer (5'-GTAATACGACTCACTATAGGGC-3'; SEQ ID
NO:35) and PHN99817 (5'-CGACGCTAGCGAATGCACCGTC-3'; SEQ ID NO:39) Round 2: BD BioSciences AP2 primer (5'-ACTATAGGGCACGCGTGGT-3'; SEQ ID
NO:31)) and PHN99816 (5' -TCATCCCCATCCTTCAGGTAGTAGC-3' ; SEQ ID NO:40).
As described in the Genome Walker User Manual, the DNA from the first round of PCR was diluted 50X and served as a template for the second round of PCR. To clone the LB-09812 gene as a single molecule, PCR was performed using LB-09812 genomic DNA as template, with forward primer PHN10110 (5' -TATACCAAACGAAGAAGGATAGT-3' :
SEQ ID NO:41) and reverse primer PHP10108 (5' -ATCTAAATAAAGCAAGGCAAG-3';
SEQ ID NO:42). Bands were purified as described above, and cloned into the pCR-Blunt vector for sequence verification, resulting in SEQ ID NO:24.
For isolation of the LB-12922 gene, a number of overlapping, degenerate primers were designed to the underlined and italicized regions in the peptide sequence available, LSCYPSCMONYCSHPRXFLXAT (SEQ ID NO:30). Genome Walker libraries and PCR
was carried out as described for the cloning of LB-09812. The first genomic region of the LB-12922 cloned was the product of PCR reactions run in two rounds. The first-round PCR
was primed with the BD BioSciences AP1 primer (SEQ ID NO:35) and gspP1BF1 (5'-TGYATGCARAAYTAYTGY-3'; SEQ ID NO:50). The first-round reactions were diluted 50X, and used as template for the second round of PCR, primed with the BD
BioSciences AP2 primer (SEQ ID NO:31) and gspP1BF3 (5' -TAYTGYAGYCAYCCNCG-3' ; SEQ ID
NO:51)). Bands were purified as described above, and cloned into the pCR-Blunt vector for sequence verification. The resulting fragment sequence is set forth below and in SEQ ID
NO:43:
TACTGYAGCCATCCCCGTTGCTTCCTCCACGCTACTTGTTTGTCCTACTCTCATTG
CCATGTGTGCGGTACCCGGAAGGTCTGTCTCTAA (SE ID NO:43), which encodes the C-terminal half of the LB-12992 peptide, YCSHPRCFLHATCLSYSHCHVCGTRKVCL*
(SEQ ID NO:44). The residues in this fragment sequence that were known prior to the Genome Walker experiments are in bold. This fragment sequence, when added to the N-terminal residues determined by peptide sequencing, resulted in the sequence for the mature LB-12922 peptide (SEQ ID NO:3).
To clone additional 5' genomic fragments of the LB-12992 gene, another set of Genome Walker reactions were run as described above. The gene-specific primers were gspP1BR6 (5'-YCKNGGRTGNGARCARTA-3'; SEQ ID NO:45) and gspP1BR1 (sequence 5'-RCARTARTTYTGCATRCA-3'; SEQ ID NO:46) for the first and second rounds of PCR, respectively. These reactions resulted in the nucleotide sequence set forth below and in SEQ
ID NO:47, a larger part of which is SEQ ID NO:26:
ATGACTAAGACATCCATAGAGACCTTAATTACCCCTCACGACATCGACATGCAAT
ACATT
TTTACCTCCCTCGTTCAATTTCTGTGCTTCATGAACGTCATGGCTGAAGGTCTAAC
CCGG
TACCAAACCTCACCCCCGACTGATGTCGTGATTCTCCACGATAGACAATCCCTGA
ACGAT
TACGTGAAGATCAATCCAAACGGTCTGCTCCATGCCGAGAATGGAGGCTACTACC
TGAAA
GACATGGAAGACGTAGTCGTTGCTATCGCTAGTGATGACCTGTGCAATGAGCTGG
ATGGT
GCCTGGGCTAGCGCTGAGGCTGCTGCTGATGCGCTTGACGCGGCTGAATCTAATT
CTGGA
TCTGGCTCTTTGAGCGGCGCGAATGTTACGAAGAGAAACGAAGACCTTTCTTGTT
ATCCC
AGCTGTATGCAGAATTAT (SEQ ID NO:47) To clone the genomic sequence encoding the putative unprocessed LB-12992 protein as a single molecule, thus confirming its sequence, primers PHN100279 (5'-ATGTCCTCCTCCCAAGTTTCCTTC-3'; SEQ ID NO:48) and PHN100615 (5' -AGTGGGTGGATATTTGTCTCAGAAA-3' ; SEQ ID NO:49) were used with LB-12992 genomic DNA as template in a single round of PCR using Genome Walker-type conditions.
The resulting fragment was gel-purified, cloned and sequenced thoroughly, producing SEQ
ID NO:26.
The genomic sequence for LB-09812 is set forth in SEQ ID NO:24 and encodes the predicted full-length, unprocessed polypeptide set forth in SEQ ID NO:25. The full-length LB-09812 polypeptide has a predicted signal peptide and propeptide region. The putative signal sequence is presented in bold with the predicted cleavage site designated with a "A."
The predicted propeptide region is highlighted and italicized. The predicted mature peptide is underlined.
MKSISTSLVLVLCFLTTMIEGAMMV371MOMIMPO, IMPV#
WYRKRODOMIOMPOkicOMMEAVPMMEMEMOPARMIPARNISWEAA
LHNSCSHPRCFNHAHCLTYSHCHVCSSRKRCL (SEQ ID NO:25) A genomic sequence encoding the predicted full-length LB-12922 polypeptide sequence was similarly isolated as described above. The sequence is set forth in SEQ ID
NO:26 and encodes the predicted full-length, unprocessed polypeptide set forth in SEQ ID
NO:27. The full-length LB-12922 polypeptide has a predicted signal peptide and propeptide region. The full-length LB-12922 polypeptide has a predicted signal peptide and propeptide region. The putative signal sequence is presented in bold with the predicted cleavage site designated with a "A." The cleavage site is not predicted with high certainty.
The predicted propeptide region is highlighted and italicized. The predicted mature peptide is underlined.
MTKTSIETLITPHDIDMQYIFTSLVQFLCFmNvmAAMMUMPIMARAM
ENDIWMPNVELIMEMOVITEMMETYPWRAMTVOIREIVAWAVEA
NiMpAWANVIMMEDI_ScYPSCMQNYCSHPRCFLHATCLSY SHCHVCGTRKVCL
(SEQ ID NO:27) Example 5: Transformation and Regeneration of Transgenic Maize Plants Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing a nucleotide sequence encoding the antipathogenic polypeptide set forth in SEQ ID NO:1 operably linked to a promoter that drives expression in a maize plant cell and a selectable marker (e.g., the selectable marker gene PAT (Wohlleben et al.
(1988) Gene 70:25-37), which confers resistance to the herbicide Bialaphos). Alternatively, the selectable marker gene is provided on a separate plasmid.
Transformation is performed as follows. Media recipes follow below.
Preparation of Target Tissue The ears are husked and surface sterilized in 30% Clorox bleach plus 0.5%
Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned within the 2.5-cm target zone in preparation for bombardment.
Preparation of DNA
A plasmid vector comprising a nucleotide sequence encoding the antipathogenic polypeptide set forth in SEQ ID NO:1 operably linked to a promoter that drives expression in a maize cell is made. This plasmid DNA plus plasmid DNA containing a selectable marker (e.g., PAT) is precipitated onto 1.1 lam (average diameter) tungsten pellets using a CaC12 precipitation procedure as follows:
1001,IL prepared tungsten particles in water 101.11_, (11.1g) DNA in Tris EDTA buffer (1 tg total DNA) 1001.11_, 2.5 M CaC12 101.11_, 0.1 M spermidine Each reagent is added sequentially to the tungsten particle suspension, while maintained on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 mL 100% ethanol, and centrifuged for 30 seconds. Again the liquid is removed, and 105 t 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA
particles are briefly sonicated and 100_, spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment.
Particle Gun Treatment The sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2.
All samples receive a single shot at 650 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA.
Subsequent Treatment Following bombardment, the embryos are kept on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/L Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5" pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored and scored for fungal resistance.
Bombardment and Culture Media Bombardment medium (560Y) comprises 4.0 g/L N6 basal salts (SIGMA C-1416), 1.0 mL/L Eriksson's Vitamin Mix (1000X SIGMA-1511), 0.5 mg/L thiamine HC1, 120.0 g/L
sucrose, 1.0 mg/L 2,4-D, and 2.88 g/L L-proline (brought to volume with D-I
H20 following adjustment to pH 5.8 with KOH); 2.0 g/L Gelrite (added after bringing to volume with D-I
H20); and 8.5 mg/L silver nitrate (added after sterilizing the medium and cooling to room temperature). Selection medium (560R) comprises 4.0 g/L N6 basal salts (SIGMA
C-1416), 1.0 mL/L Eriksson's Vitamin Mix (1000X SIGMA-1511), 0.5 mg/L thiamine HC1, 30.0 g/L
sucrose, and 2.0 mg/L 2,4-D (brought to volume with D-I H20 following adjustment to pH
'62451-1042 5.8 with KOH); 3.0 g/L Gelrite (added after bringing to volume with D-I 1120);
and 0.85 mg/L silver nitrate and 3.0 mg/L bialaphos(both added after sterilizing the medium and cooling to room temperature).
Plant regeneration medium (288J) comprises 4.3 g/L MS salts (GIBCO 11117 -074), 5.0 mL/L MS vitamins stock solution (0.100 g nicotinic acid, 0,02 g/L thiamine HCL, 0.10 g/L pyridoxine HCL, and 0.40 g/L glycine brought to volume with polished D-I
1120) (Murashige and Skoog (1962) Physio/. Plant. 15:473), 100 mg/L myo-inositol, 0.5 mg/L
zcatin, 60 g/L sucrose, and 1.0 mL/L of 0.1 mM abscisic acid (brought to volume with polished D-I 1120 after adjusting to pH 5.6); 3.0 g/L Gelrite (added after bringing to volume with D-I H20); and 1.0 mg/L indoleacetie acid and 3.0 mg/L bialaphos (added after sterilizing the medium and cooling to 60 C). Hormone-free medium (272V) comprises 4.3 g/L
MS salts (GIBCO 11117-074), 5.0 mL/L MS vitamins stock solution (0.100 g/L nicotinic acid, 0.02 g/L thiamine HCL, 0.10 g/L pyridoxine HCL, and 0.40 g/L glycine brought to volume with polished D-I 1120), 0.1 g/L myo-inositol, and 40.0 g/L sucrose (brought to volume with polished D-I 1420 after adjusting pH to 5.6); and 6 g/L bacto-agar (addedafter bringing to volume with polished D-I 1120), sterilized and cooled to 60 C.
Example 6: Agrobacterium-mediated Transformation of Maize and Regeneration of Transgenic Plants For Agrabacterium-mediated transformation of maize with a nucleotide sequence encoding the polypeptide of SEQ ID N0:1, the method of Zhao is employed (U.S.
Patent No.
5,981,840, and PCT patent publication W098/32326.
Briefly, immature embryos are isolated from maize and the embryos contacted with a suspension of Agrobacterium, where the bacteria are capable of = transferring the polynucleotide construct to at least one cell of at least one of the immature embryos (step 1: the infection step). In this step the immature embryos are immersed in an Agrobacterium suspension for the initiation of inoculation. The embryos are co-cultured for a time with the Agrobacterium (step 2: the co-cultivation step). The immature embryos are cultured on solid medium following the infection step: Following this co-cultivation period an optional "resting" step is pertained. In this resting step, the embryos are incubated in the presence of at least one antibiotic known to inhibit the growth of Agrobacterium without the addition of a selective agent for plant transfonnants (step 3: resting step).
The immature embryos are cultured on solid medium with antibiotic, but without a selecting agent, for elimination of Agrobacterium and for a resting phase for the infected cells.
Next, inoculated embryos are cultured on medium containing a selective agent and growing transformed callus is recovered (step 4: the selection step). The immature embryos are cultured on solid medium with a selective agent resulting in the selective growth of transformed cells.
The callus is then regenerated into plants (step 5: the regeneration step), and calli grown on selective medium are cultured on solid medium to regenerate the plants.
Example 7: Transformation Of Somatic Soybean Embryo Cultures and Regeneration Of Soybean Plants The following stock solutions and media are used for transformation and regeneration of soybean plants:
Stock solutions Sulfate 100 X Stock: 37.0 g Mg504.7H20, 1.69 g Mn504.H20, 0.86 g Zn504.7H20, 0.0025 g Cu504.5H20.
Halides 100 X Stock: 30.0 g CaC12.2H20, 0.083 g KI, 0.0025 g CoC12.6H20, P, B, Mo 100X Stock: 18.5 g KH2PO4, 0.62 g H3B03, 0.025 g Na2Mo04.2H20 Fe EDTA 100X Stock: 3.724 g Na2EDTA, 2.784 g Fe504.7H20.
2,4-D Stock: 10 mg/mL.
Vitamin B5 1000X Stock: 10.0 g myo-inositol, 0.10 g nicotinic acid, 0.10 g pyridoxine HC1, 1 g thiamine.
Media (per Liter) SB196: 10 mL of each of the above stock solutions, 1 mL B5 vitamin stock, 0.463 g (NH4)2 SO4, 2.83 g KNO3, 1 mL 2,4-D stock, 1 g asparagine, 10 g sucrose, pH 5.7.
SB103: 1 pk. Murashige & Skoog salts mixture, 1 mL B5 vitamin stock, 750 mg MgC12 hexahydrate, 60 g maltose, 2 g gelrite, pH 5.7.
SB166: 5B103 supplemented with 5 g per liter activated charcoal.
SB71-4: Gamborg's B5 salts (Gibco-BRL catalog No. 21153-028), 1 mL B5 vitamin stock, 30 g sucrose, 5 g TC agar, pH 5.7.
Soybean embryogenic suspension cultures are maintained in 35 mL liquid medium (5B196) on a rotary shaker (150 rpm) at 28 C with fluorescent lights providing a 16 hour day/8 hour night cycle. Cultures are subcultured every 2 weeks by inoculating approximately mg of tissue into 35 mL of fresh liquid media.
30 Soybean embryogenic suspension cultures are transformed by the method of particle gun bombardment (see Klein et al. (1987) Nature 327:70-73) using a DuPont Biolistic PDS1000/He instrument.
In particle gun bombardment procedures it is possible to use purified 1) entire plasmid DNA or, 2) DNA fragments containing only the recombinant DNA
expression 35 cassette(s) of interest. For every eight bombardment transformations, 30 id of suspension is prepared containing 1 to 90 picograms (pg) of DNA fragment per base pair of DNA fragment.
The recombinant DNA plasmid or fragment used to express the antifungal gene is on a separate recombinant DNA plasmid or fragment from the selectable marker gene.
Both recombinant DNA plasmids or fragments are co-precipitated onto gold particles as follows.
The DNAs in suspension are added to 50 0 L of a 20 - 60 mg/mL 0.6 Om gold particle suspension and then combined with 50 01_, CaC12 (2.5 M) and 20 0 L spermidine (0.1 M) The mixture is pulse vortexed 5 times, spun in a microfuge for 10 seconds, and the supernatant removed. The DNA-coated particles are then washed once with 150 0 L of 100%
ethanol, pulse vortexed and spun in a microfuge again, and resuspended in 85 0 L of anhydrous ethanol. Five 0 L of the DNA-coated gold particles are then loaded on each macrocarrier disk.
Approximately 150 to 250 mg of two-week-old suspension culture is placed in an empty 60 mm X 15 mm petri plate and the residual liquid is removed from the tissue using a pipette. The tissue is placed about 3.5 inches away from the retaining screen and each plate of tissue is bombarded once. Membrane rupture pressure is set at 650 psi and the chamber is evacuated to ¨28 inches of Hg. Eighteen plates are bombarded, and, following bombardment, the tissue from each plate is divided between two flasks, placed back into liquid media, and cultured as described above.
Seven days after bombardment, the liquid medium is exchanged with fresh SB196 medium supplemented with 50 mg/mL hygromycin or 100 ng/mL chlorsulfuron, depending on the selectable marker gene used in transformation. The selective medium is refreshed weekly or biweekly. Seven weeks post-bombardment, green, transformed tissue is observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally-propagated, transformed embryogenic suspension cultures. Thus, each new line is treated as independent transformation event. These suspensions can then be maintained as suspensions of embryos clustered in an immature developmental stage through subculture or can be regenerated into whole plants by maturation and germination of individual somatic embryos.
Transformed embryogenic clusters are removed from liquid culture and placed on solid agar medium (SB166) containing no hormones or antibiotics for one week.
Embryos are cultured at 26 C with mixed fluorescent and incandescent lights on a 16 hour day:8 hour night schedule. After one week, the cultures are then transferred to SB103 medium and maintained in the same growth conditions for 3 additional weeks. Prior to transfer from liquid culture to solid medium, tissue from selected lines is assayed by PCR or Southern analysis for the presence of the antifungal gene.
Somatic embryos become suitable for germination after 4 weeks and are then removed from the maturation medium and dried in empty petri dishes for 1 to 5 days. The dried embryos are then planted in SB71-4 medium where they are allowed to germinate under the same light and germination conditions described above. Germinated embryos are transferred to sterile soil and grown to maturity.
All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains.
=
SEQUENCE LISTING IN ELECTRONIC FORM
In accordance with Section 111(1) of the Patent Rules, this description contains a sequence listing in electronic form in ASCII text format (file: 62451-1042 Seq 22-03-10 v2.txt).
A copy of the sequence listing in electronic form is available from the Canadian Intellectual Property Office.
The sequences in the sequence listing in electronic form are reproduced in the following table.
SEQUENCE TABLE
<110> Altier, Dan Crane, Virginia Ellanskaya, I.A.
Gilliam, Jacob Hunter-Cevera, Jennie Presnail, James Schepers, Eric Simmons, Carl Tamas Torok Yalpani, Nasser <120> ANTIFUNGAL POLYPEPTIDES
<130> 035718/326498 <150> 60/800,804 <151> 2006-05-16 <160> 51 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 33 <212> PRT
<213> Penicillium glandicola <220>
<221> PEPTIDE
<222> (1)...(33) <223> Predicted mature LB-09812 peptide <400> 1 Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys Leu <210> 2 <211> 102 <212> DNA
<213> Penicillium glandicola <220>
<221> misc_feature <222> (0)...(0) <223> Nucleotide sequence encoding the predicted mature LB-09812 peptide set forth in SEQ ID NO:1 <220>
<221> CDS
<222> (1)...(102) <400> 2 gcc cta cat aac tca tgc agc cac cct cgc tgc ttc aat cac gcc cat 48 Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His tgc ctg acc tac tcg cac tgc cat gta tgc tct tcc cgc aag cgt tgt 96 Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys ctt tag 102 Leu *
<210> 3 <211> 39 <212> PRT
<213> Penicillium citreonigrum <220>
<221> PEPTIDE
<222> (1)...(39) <223> Predicted mature LB-12922 peptide <400> 3 Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu <210> 4 <211> 120 <212> DNA
<213> Penicillium citreonigrum <220>
<221> misc_feature <222> (0)...(0) <223> Nucleotide sequence encoding the mature LB-12922 peptide set forth in SEQ ID NO:3 <220>
<221> CDS
<222> (1)...(120) <400> 4 ctt tct tgt tat ccc agc tgt atg cag aat tac tgc agt cat ccc cgt 48 Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg tgc ttc ctc cac gct act tgt ttg tcc tac tct cat tgc cat gtg tgc 96 Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys ggt acc cgg aag gtc tgt ctc taa 120 Gly Thr Arg Lys Val Cys Leu *
<210> 5 <211> 125 <212> PRT
<213> Aspergillus flavus <400> 5 Met Ala Ala Ala Tyr Ser Met Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp His Asp Gly Lys Ile Leu Ala Val Ala Ala Asp Gly Leu Cys Glu Glu Leu Asp Asn Ser Val Ala Ser Ala Arg Arg Val Tyr Glu Gln Arg Ser Arg Phe Asp Leu Tyr Ser Gly Glu Val Gln Glu Val Thr Leu Gln Ser His Asp Ala Gln Leu Arg Arg Ser Gly Glu Asn Ser Cys Ser His Pro Arg Cys Tyr Thr His Ala Leu Cys Glu Thr Tyr Ser Asp Cys Phe Val Cys Ser Ser Ser His His Trp Cys Thr Asp Val Gly Val Leu Ser Trp Met Gly Leu Ala Arg Leu Cys Tyr <210> 6 <211> 378 <212> DNA
<213> Aspergillus flavus <400> 6 atggcagccg catactcaat ggggacactg gatgatcgaa acggcgggta ttacctccta 60 gaccacgatg gtaaaattct agccgtggca gcagatggcc tatgcgaaga gctcgacaat 120 tcggtggcat cggcaagaag agtctacgag caacgttcac gcttcgattt atatagcgga 180 gaggtccagg aggttaccct tcagagccat gatgcacagt tacggagaag tggggagaac 240 tcttgttcgc accctcgttg ttatacgcat gcgctgtgtg aaacttatag tgattgcttt 300 gtgtgctctt ctagtcatca ttggtgcact gatgttgggg ttttgtcttg gatggggctt 360 gctcgcttat gctattaa 378 <210> 7 <211> 106 <212> PRT
<213> Aspergillus niger <400> 7 Met Ala Asp Pro Tyr Pro Met Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp His Asp Ala Thr Val Leu Ala Ile Ala Ser Asp Ser Leu Cys Glu Glu Leu Asp Ser Ser Met Glu Ser Ala Lys Arg Phe His Ser Asn Asp Pro Ile Phe Asp Asn Glu Ala Glu Asp Val Ala Pro Gly Lys Gly Glu Ala Ala Asn Pro Gly Leu Ser Asn His Cys Thr His Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser Asp Trp Tyr Val Cys Leu Phe Ser Phe His Trp Cys Phe <210> 8 <211> 321 <212> DNA
<213> Aspergillus niger <220>
<221> CDS
<222> (1)...(321) <400> 8 atg gca gac cca tat cct atg gga acc ttg gac gat agg aat ggg gga 48 Met Ala Asp Pro Tyr Pro Met Gly Thr Leu Asp Asp Arg Asn Gly Gly tac tat ctg cta gac cat gat gct aca gtg tta gct att gca tca gat 96 Tyr Tyr Leu Leu Asp His Asp Ala Thr Val Leu Ala Ile Ala Ser Asp tct ctc tgc gaa gaa ctg gac tcc tca atg gaa tcg gca aaa agg ttc 144 Ser Leu Cys Glu Glu Leu Asp Ser Ser Met Glu Ser Ala Lys Arg Phe cat agc aat gac cca att ttt gat aat gaa gcc gag gat gtt gca cct 192 His Ser Asn Asp Pro Ile Phe Asp Asn Glu Ala Glu Asp Val Ala Pro ggg aag ggt gaa gca gcc aat cct ggc cta tca aat cat tgc act cac 240 Gly Lys Gly Glu Ala Ala Asn Pro Gly Leu Ser Asn His Cys Thr His cca cgc tgt cat aca cat gct ctt tgt cgg acc tac agc gat tgg tac 288 Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser Asp Trp Tyr gtg tgt ttg ttc agt ttc cat tgg tgt ttt tga 321 Val Cys Leu Phe Ser Phe His Trp Cys Phe *
<210> 9 <211> 109 <212> PRT
<213> Aspergillus niger <400> 9 Met Ala Asp Gln Tyr Pro Met Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp His Asp Ala Thr Val Leu Ala Ile Ala Ser Asp Ser Leu Cys Glu Gly Leu Asp Ser Ser Met Glu Ser Ala Lys Arg Phe His Ser Asn Asp Pro Ile Ser Asp Asn Glu Ala Glu Asp Val Ala Pro Gly Lys Ala Glu Gly Ser Asn Pro Gly Leu Ser Asn His Cys Thr His Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser Asp Cys Tyr Val Cys Ser Ser Ser Phe His Trp Cys Ser Glu Tyr Ile <210> 10 <211> 141 <212> PRT
<213> Aspergillus fumigatus <400> 10 Met Arg Ile Asn Val Phe Thr Ile Leu Ser Leu Leu Phe Ala Ser Asn Leu Ala Met Ala Thr Thr Arg Tyr Thr Glu Pro Ile Pro Glu Gly Ile Pro Val Leu Glu Thr Arg Gln Gln Leu Asn Asp Met Ala Asp Gln Tyr Pro Thr Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp His Asp Gly Ala Val Leu Ala Val Thr Ser Asp Ala Leu Cys Glu Glu Leu Asp Ala Ser Met Glu Gln Ala Arg Arg Phe His Ala Gly Asn Leu Asp Asp Glu Ala Asp Val Val Pro Arg Gly Asp Asn Ala Ala Ala Ser Cys Ser His Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser Asp Cys Tyr Val Cys Ser Ser Ser Lys His Trp Cys Phe <210> 11 <211> 426 <212> DNA
<213> Aspergillus fumigatus <220>
<221> misc_feature <222> (0)...(0) <223> Corrected sequence based on cDNA XM_749066.1 <220>
<221> CDS
<222> (1)...(426) <400> 11 atg aga atc aac gtc ttt acc atc ctg tcc ctt ctc ttc gcc agc aat 48 Met Arg Ile Asn Val Phe Thr Ile Leu Ser Leu Leu Phe Ala Ser Asn ctc gcc atg gct aca acc aga tac acc gag ccg atc ccc gag gga atc 96 Leu Ala Met Ala Thr Thr Arg Tyr Thr Glu Pro Ile Pro Glu Gly Ile ccc gtc ctc gag acc cgc caa caa ctc aac gac atg gca gac caa tat 144 Pro Val Leu Glu Thr Arg Gln Gln Leu Asn Asp Met Ala Asp Gln Tyr ccc acg ggg act ctg gac gat cga aac ggg ggc tac tac ctg ctc gac 192 Pro Thr Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp cac gac ggc gcc gtc ttg gcc gtt acg tct gat gcg cta tgc gag gaa 240 His Asp Gly Ala Val Leu Ala Val Thr Ser Asp Ala Leu Cys Glu Glu ctg gac gcc tcg atg gaa caa gcg agg aga ttt cat gcc ggg aac ttg 288 Leu Asp Ala Ser Met Glu Gln Ala Arg Arg Phe His Ala Gly Asn Leu gac gac gag gcc gat gtt gtt cct agg ggt gat aat gcg gct gcg agt 336 Asp Asp Glu Ala Asp Val Val Pro Arg Gly Asp Asn Ala Ala Ala Ser tgc tct cac ccg cgc tgt cat acc cat gct ttg tgt cgc aca tat agt 384 Cys Ser His Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser gac tgc tat gtt tgt tcg tcg agc aaa cat tgg tgt ttt tga 426 Asp Cys Tyr Val Cys Ser Ser Ser Lys His Trp Cys Phe *
<210> 12 <211> 103 <212> PRT
<213> Fusarium graminearum <400> 12 Met Ala Ala Lys Tyr Gln Asp Thr Ala Leu Glu Pro Lys Tyr Gly Gly Asn Val Ile Glu Val Asp Gly Lys Ile Val Leu Ala Thr Asp Asp Lys Ile Thr Lys Glu Ile Asp Asp Leu Val Gln Gln Leu Glu Lys Asn Asp Pro Glu Ala Lys Glu Glu Pro Lys Ile Ser Lys Arg Arg Asp Leu Asn Val Leu Glu Pro Arg Arg Arg Cys Ser His Pro Gly Cys Tyr Phe His Ser Thr Cys Leu Thr Tyr Thr Ala Cys His Val Cys Arg Leu Pro Pro Ser Arg Arg Gly Leu Cys Ile <210> 13 <211> 312 <212> DNA
<213> Fusarium graminearum <220>
<221> misc_feature <222> (0)...(0) <223> Fragment of genomic DNA of AACM01000196.1 <220>
<221> CDS
<222> (1)...(312) <400> 13 atg gct gca aag tac cag gac aca gca ctt gaa cca aag tat ggc ggc 48 Met Ala Ala Lys Tyr Gln Asp Thr Ala Leu Glu Pro Lys Tyr Gly Gly aat gtc att gaa gtc gat ggg aag att gtc ctt gca acg gat gat aaa 96 Asn Val Ile Glu Val Asp Gly Lys Ile Val Leu Ala Thr Asp Asp Lys att acc aaa gag att gac gac ctt gtt caa cag ttg gag aag aat gat 144 Ile Thr Lys Glu Ile Asp Asp Leu Val Gln Gln Leu Glu Lys Asn Asp cca gag gct aaa gaa gag ccc aag att tca aag aga cga gat ctc aat 192 Pro Glu Ala Lys Glu Glu Pro Lys Ile Ser Lys Arg Arg Asp Leu Asn gtc ctt gag ccc cgc cgc cgg tgt agc cac cca ggt tgc tat ttc cat 240 Val Leu Glu Pro Arg Arg Arg Cys Ser His Pro Gly Cys Tyr Phe His tct acc tgc ttg acc tat act gct tgt cac gtc tgt aga cta cca ccc 288 Ser Thr Cys Leu Thr Tyr Thr Ala Cys His Val Cys Arg Leu Pro Pro agc agg cga ggg tta tgt atc tag 312 Ser Arg Arg Gly Leu Cys Ile *
<210> 14 <211> 72 <212> DNA
<213> Artificial Sequence <220>
<223> Nucleotide sequence encoding the barley alpha amylase signal peptide <400> 14 atggccaaca agcacctgtc cctctccctc ttcctcgtgc tcctcggcct ctccgcctcc 60 ctcgcctccg ga 72 <210> 15 <211> 24 <212> PRT
<213> Artificial Sequence <220>
<223> Barley alpha amylase signal peptide <400> 15 Met Ala Asn Lys His Leu Ser Leu Ser Leu Phe Leu Val Leu Leu Gly Leu Ser Ala Ser Leu Ala Ser Gly <210> 16 <211> 174 <212> DNA
<213> Artificial Sequence <220>
<223> Nucleotide sequence encoding the barley alpha amylase signal peptide joined to the nucleotide sequence of SEQ ID NO:2 <220>
<221> misc_feature <222> (1)...(72) <223> Nucleotide sequence encoding the barley alpha amylase signal peptide <220>
<221> misc_feature <222> (73)...(174) <223> Nucleotide sequence encoding the mature LB-09812 peptide set forth in SEQ ID NO:1 <400> 16 atggccaaca agcacctgtc cctctccctc ttcctcgtgc tcctcggcct ctccgcctcc 60 ctcgcctccg gagccctaca taactcatgc agccaccctc gctgcttcaa tcacgcccat 120 tgcctgacct actcgcactg ccatgtatgc tcttcccgca agcgttgtct ttag 174 <210> 17 <211> 57 <212> PRT
<213> Artificial Sequence <220>
<223> Barley alpha amylase signal peptide joined to the amino acid sequence of SEQ ID NO:1 <220>
<221> SIGNAL
<222> (1)...(24) <223> Barley alpha amylase signal peptide <220>
<221> PEPTIDE
<222> (25)...(57) <223> Mature LB-09812 peptide set forth in SEQ ID NO:1 <400> 17 Met Ala Asn Lys His Leu Ser Leu Ser Leu Phe Leu Val Leu Leu Gly Leu Ser Ala Ser Leu Ala Ser Gly Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys Leu <210> 18 <211> 192 <212> DNA
<213> Artificial Sequence <220>
<223> Nucleotide sequence encoding the barley alpha amylase signal peptide joined to the nucleotide sequence of SEQ ID NO:4 <220>
<221> misc_feature <222> (1)...(72) <223> Nucleotide sequence encoding the barley alpha amylase signal peptide <220>
<221> misc_feature <222> (73)...(192) <223> Nucleotide sequence encoding the mature LB-12922 peptide set forth in SEQ ID NO:3 <400> 18 atggccaaca agcacctgtc cctctccctc ttcctcgtgc tcctcggcct ctccgcctcc 60 ctcgcctccg gactttcttg ttatcccagc tgtatgcaga attactgcag tcatccccgt 120 tgcttcctcc acgctacttg tttgtcctac tctcattgcc atgtgtgcgg tacccggaag 180 gtctgtctct aa 192 <210> 19 <211> 63 <212> PRT
<213> Artificial Sequence <220>
<223> Barley alpha amylase signal peptide joined to the amino acid sequence of SEQ ID NO:3 <220>
<221> SIGNAL
<222> (1)...(24) <223> Barley alpha amylase signal peptide <220>
<221> PEPTIDE
<222> (25)...(63) <223> Mature LB-012922 peptide set forth in SEQ ID NO:3 <400> 19 Met Ala Asn Lys His Leu Ser Leu Ser Leu Phe Leu Val Leu Leu Gly Leu Ser Ala Ser Leu Ala Ser Gly Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu <210> 20 <211> 4 <212> PRT
<213> Artificial Sequence <220>
<223> Endoplasmic reticulum retention sequence <400> 20 Lys Asp Glu Leu <210> 21 <211> 6 <212> PRT
<213> Artificial Sequence <220>
<223> Endoplasmic reticulum retention sequence <400> 21 Ser Glu Lys Asp Glu Leu <210> 22 <211> 4 <212> PRT
<213> Artificial Sequence <220>
<223> Endoplasmic reticulum retention sequence <400> 22 His Asp Glu Leu <210> 23 <211> 4 <212> PRT
<213> Artificial Sequence <220>
<223> Endoplasmic reticulum retention sequence <400> 23 His Asp Glu Phe <210> 24 <211> 453 <212> DNA
<213> Penicillium glandicola <220>
<221> misc_feature <222> (0)...(0) <223> Genomic sequence encoding the full-length LB-09812 polypeptide set forth in SEQ ID NO:25 <220>
<221> misc_feature <222> (352)...(453) <223> Nucleotide sequence encoding the mature LB-09812 peptide set forth in SEQ ID NO:1 <220>
<221> CDS
<222> (1)...(453) <400> 24 atg aaa tcc att tcc acc tcc ctt gtc ttg gtc ctg tgc ttc ttg acc 48 Met Lys Ser Ile Ser Thr Ser Leu Val Leu Val Leu Cys Phe Leu Thr acc atg att gaa ggt ctc acc cgt tac caa acc aca ccc cca agc gac 96 Thr Met Ile Glu Gly Leu Thr Arg Tyr Gln Thr Thr Pro Pro Ser Asp gcc atc gtc tgc cat gac aga caa gct ctt aac gac ctg gcc aag gcc 144 Ala Ile Val Cys His Asp Arg Gln Ala Leu Asn Asp Leu Ala Lys Ala tac ccg gac ggg ctt ctt cac ccc gag aac ggt ggc tac tac ctg aag 192 Tyr Pro Asp Gly Leu Leu His Pro Glu Asn Gly Gly Tyr Tyr Leu Lys gat ggg gat gaa gtc gtc gtt ggc att gcc agc gac gat ctt tgc aag 240 Asp Gly Asp Glu Val Val Val Gly Ile Ala Ser Asp Asp Leu Cys Lys gag ctg gac ggt gca ttc gct agc gtc gat gca aaa att gcc gaa gaa 288 Glu Leu Asp Gly Ala Phe Ala Ser Val Asp Ala Lys Ile Ala Glu Glu gct gaa agc gct gga ccc gaa gat aat att tct gat gct gaa aat gtc 336 Ala Glu Ser Ala Gly Pro Glu Asp Asn Ile Ser Asp Ala Glu Asn Val aag aga gat gta ctt gcc cta cat aac tca tgc agc cac cct cgc tgc 384 Lys Arg Asp Val Leu Ala Leu His Asn Ser Cys Ser His Pro Arg Cys ttc aat cac gcc cat tgc ctg acc tac tcg cac tgc cat gta tgc tct 432 Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser tcc cgc aag cgt tgt ctt tag 453 Ser Arg Lys Arg Cys Leu *
<210> 25 <211> 150 <212> PRT
<213> Penicillium glandicola <220>
<221> SIGNAL
<222> (1)...(21) <223> Predicted signal peptide <220>
<221> PROPEP
<222> (22)...(118) <223> Predicted propeptide region <220>
<221> PEPTIDE
<222> (119)...(150) <223> Mature LB-09812 peptide set forth in SEQ ID NO:1 <400> 25 Met Lys Ser Ile Ser Thr Ser Leu Val Leu Val Leu Cys Phe Leu Thr Thr Met Ile Glu Gly Leu Thr Arg Tyr Gln Thr Thr Pro Pro Ser Asp Ala Ile Val Cys His Asp Arg Gln Ala Leu Asn Asp Leu Ala Lys Ala Tyr Pro Asp Gly Leu Leu His Pro Glu Asn Gly Gly Tyr Tyr Leu Lys Asp Gly Asp Glu Val Val Val Gly Ile Ala Ser Asp Asp Leu Cys Lys Glu Leu Asp Gly Ala Phe Ala Ser Val Asp Ala Lys Ile Ala Glu Glu Ala Glu Ser Ala Gly Pro Glu Asp Asn Ile Ser Asp Ala Glu Asn Val Lys Arg Asp Val Leu Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys Leu <210> 26 <211> 525 <212> DNA
<213> Penicillum citreonigrum <220>
<221> misc_feature <222> (0)...(0) <223> Genomic sequence encoding the full-length LB-12922 polypeptide set forth in SEQ ID NO:27 <220>
<221> misc_feature <222> (406)...(525) <223> Nucleotide sequence encoding the mature LB-12922 peptide set forth in SEQ ID NO:3 <220>
<221> CDS
<222> (1)...(525) <400> 26 atg act aag aca tcc ata gag acc tta att acc cct cac gac atc gac 48 Met Thr Lys Thr Ser Ile Glu Thr Leu Ile Thr Pro His Asp Ile Asp atg caa tac att ttt acc tcc ctc gtt caa ttt ctg tgc ttc atg aac 96 Met Gln Tyr Ile Phe Thr Ser Leu Val Gln Phe Leu Cys Phe Met Asn gtc atg gct gaa ggt cta acc cgg tac caa acc tca ccc ccg act gat 144 Val Met Ala Glu Gly Leu Thr Arg Tyr Gln Thr Ser Pro Pro Thr Asp gtc gtg att ctc cac gat aga caa tcc ctg aac gat tac gtg aag atc 192 Val Val Ile Leu His Asp Arg Gln Ser Leu Asn Asp Tyr Val Lys Ile aat cca aac ggt ctg ctc cat gcc gag aat gga ggc tac tac ctg aaa 240 Asn Pro Asn Gly Leu Leu His Ala Glu Asn Gly Gly Tyr Tyr Leu Lys gac atg gaa gac gta gtc gtt gct atc gct agt gat gac ctg tgc aat 288 Asp Met Glu Asp Val Val Val Ala Ile Ala Ser Asp Asp Leu Cys Asn gag ctg gat ggt gcc tgg gct agc gct gag gct gct gct gat gcg ctt 336 Glu Leu Asp Gly Ala Trp Ala Ser Ala Glu Ala Ala Ala Asp Ala Leu gac gcg gct gaa tct aat tct gga tct ggc tct ttg agc ggc gcg aat 384 Asp Ala Ala Glu Ser Asn Ser Gly Ser Gly Ser Leu Ser Gly Ala Asn =
gtt acg aag aga aac gaa gac ctt tct tgt tat ccc agc tgt atg cag 432 Val Thr Lys Arg Asn Glu Asp Leu Ser Cys Tyr Pro Ser Cys Met Gln aat tac tgc agt cat ccc cgt tgc ttc ctc cac gct act tgt ttg tcc 480 Asn Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser tac tct cat tgc cat gtg tgc ggt acc cgg aag gtc tgt ctc taa 525 Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu *
<210> 27 <211> 174 <212> PRT
<213> Penicillium citreonigrum <220>
<221> SIGNAL
<222> (1)...(35) <223> Predicted signal peptide <220>
<221> PROPEP
<222> (36)...(136) <223> Predicted propeptide region <220>
<221> PEPTIDE
<222> (137)...(174) <223> Mature LB-12922 peptide set forth in SEQ ID NO:3 <400> 27 Met Thr Lys Thr Ser Ile Glu Thr Leu Ile Thr Pro His Asp Ile Asp Met Gln Tyr Ile Phe Thr Ser Leu Val Gln Phe Leu Cys Phe Met Asn Val Met Ala Glu Gly Leu Thr Arg Tyr Gln Thr Ser Pro Pro Thr Asp Val Val Ile Leu His Asp Arg Gln Ser Leu Asn Asp Tyr Val Lys Ile Asn Pro Asn Gly Leu Leu His Ala Glu Asn Gly Gly Tyr Tyr Leu Lys Asp Met Glu Asp Val Val Val Ala Ile Ala Ser Asp Asp Leu Cys Asn Glu Leu Asp Gly Ala Trp Ala Ser Ala Glu Ala Ala Ala Asp Ala Leu Asp Ala Ala Glu Ser Asn Ser Gly Ser Gly Ser Leu Ser Gly Ala Asn Val Thr Lys Arg Asn Glu Asp Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu <210> 28 <211> 21 <212> PRT
<213> Artificial Sequence <220>
<223> N-terminal fragment of LB-9812 peptide generated during N-terminal sequencing <400> 28 Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser <210> 29 <211> 18 <212> PRT
<213> Artificial Sequence <220>
<223> N-terminal fragment of LB-9812 peptide generated during N-terminal sequencing <220>
<221> VARIANT
<222> 16 <223> Xaa = any amino acid <400> 29 Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Xaa Cys Ser <210> 30 <211> 22 <212> PRT
<213> Artificial Sequence <220>
<223> N-terminal fragment of LB-12922 peptide generated during N-terminal sequencing <220>
<221> VARIANT
<222> 17, 20 <223> Xaa = any amino acid <400> 30 Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg Xaa Phe Leu Xaa Ala Thr <210> 31 <211> 19 <212> DNA
<213> Artificial Sequence <220>
<223> AP2 PCR primer <400> 31 actatagggc acgcgtggt 19 =
<210> 32 <211> 21 <212> DNA
<213> Artificial Sequence <220>
<223> gspR2 PCR primer <220>
<221> misc_feature <222> 16 <223> n = A, T, C, or G
<400> 32 rtgrttraar cayctnggrt g 21 <210> 33 <211> 249 <212> DNA
<213> Penicillium glandicola <220>
<221> misc_feature <222> (0)...(0) <223> Fragment of the LB-9812 gene obtained during Genome Walker experiments <400> 33 tacccggacg ggcttcttca ccccgagaac ggtggctact acctgaagga tggggatgaa 60 gtcgtcgttg gcattgccag cgacgatctt tgcaaggagc tggacggtgc attcgctagc 120 gtcgatgcaa aaattgccga agaagctgaa agcgctggac ccgaagataa tatttctgat 180 gctgaaaatg tcaagagaga tgtacttgcc ctacataact catgcagcca ccctcgctgc 240 ttcaatcac 249 <210> 34 <211> 83 <212> PRT
<213> Penicillium glandicola <220>
<221> PEPTIDE
<222> (1)...(83) <223> Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO:33 <400> 34 Tyr Pro Asp Gly Leu Leu His Pro Glu Asn Gly Gly Tyr Tyr Leu Lys Asp Gly Asp Glu Val Val Val Gly Ile Ala Ser Asp Asp Leu Cys Lys Glu Leu Asp Gly Ala Phe Ala Ser Val Asp Ala Lys Ile Ala Glu Glu Ala Glu Ser Ala Gly Pro Glu Asp Asn Ile Ser Asp Ala Glu Asn Val Lys Arg Asp Val Leu Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His <210> 35 <211> 22 <212> DNA
<213> Artificial Sequence <220>
<223> AP1 PCR primer <400> 35 gtaatacgac tcactatagg gc 22 <210> 36 <211> 23 <212> DNA
<213> Artificial Sequence <220>
<223> gspF4 PCR primer <220>
<221> misc_feature <222> 12 <223> n = A, T, C, or G
<400> 36 ttyaaycayg cncaytgytt rac 23 <210> 37 <211> 462 <212> DNA
<213> Pencillium glandicola <220>
<221> misc_feature <222> (0)...(0) <223> Fragment of the LB-9812 gene obtained during Genome Walker experiments <400> 37 ttcaaccacg ctcactgcyt gacctactcg cactgccatg tatgctcttc ccgcaagcgt 60 tgtctttaga gtatcctgca attttgatag tgggaatgtt ggagagattt acgaaggctt 120 acagagatgt ggttggatag tgaaagtggg ggaggtagtc tgggggtata gcggcctctg 180 gttagtttca attaagatgc gaattttggc ctgattcttg ccttgcttta tttagattca 240 acagaaaatt aagatacctg aaataccatt acagagccta tataaagcta gcgtaggggg 300 gaaatcatca gttattaaga ggagtctcgg cgaacgagat actcaggttg acgagcaatc 360 ctctggtcaa aattccatct ggaaagatgt gtaccgtacc gtcaataatt gggtcgatga 420 gtagtgccct aatttaacgc ctgtacacgg tgaactccat ga 462 <210> 38 <211> 138 <212> PRT
<213> Penicillium glandicola <220>
<221> PEPTIDE
<222> (1)...(138) <223> Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO:37 <400> 38 Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys Leu Ser Ile Leu Gln Phe Trp Glu Cys Trp Arg Asp Leu Arg Arg Leu Thr Glu Met Trp Leu Asp Ser Glu Ser Gly Gly Gly Ser Leu Gly Val Arg Pro Leu Val Ser Phe Asn Asp Ala Asn Phe Gly Leu Ile Leu Ala Leu Leu Tyr Leu Asp Ser Thr Glu Asn Asp Thr Asn Thr Ile Thr Glu Pro Ile Ser Arg Arg Gly Glu Ile Ile Ser Tyr Glu Glu Ser Arg Arg Thr Arg Tyr Ser Gly Arg Ala Ile Leu Trp Ser Lys Phe His Leu Glu Arg Cys Val Pro Tyr Arg Gln Leu Gly Arg Val Val Pro Phe Asn Ala Cys Thr Arg Thr Pro <210> 39 <211> 22 <212> DNA
<213> Artificial Sequence <220>
<223> PHN99817 PCR primer <400> 39 cgacgctagc gaatgcaccg tc 22 <210> 40 <211> 25 <212> DNA
<213> Artificial Sequence <220>
<223> PHN99816 PCR primer <400> 40 tcatccccat ccttcaggta gtagc 25 <210> 41 <211> 23 <212> DNA
<213> Artificial Sequence <220>
<223> PHN10110 PCR primer <400> 41 tataccaaac gaagaaggat agt 23 <210> 42 <211> 21 <212> DNA
<213> Artificial Sequence <220>
<223> PHP10108 PCR primer <400> 42 atctaaataa agcaaggcaa g 21 <210> 43 <211> 90 <212> DNA
<213> Penicillium citreonigrum <220>
<221> misc_feature <222> (0)...(0) <223> Fragment of the LB-12922 gene obtained during Genome Walker experiments <220>
<221> CDS
<222> (1)...(30) <400> 43 tac tgy agc cat ccc cgt tgc ttc ctc cac gctacttgtt tgtcctactc 50 Tyr Cys Ser His Pro Arg Cys Phe Leu His tcattgccat gtgtgcggta cccggaaggt ctgtctctaa 90 <210> 44 <211> 29 <212> PRT
<213> Penicillium citreonigrum <220>
<221> PEPTIDE
<222> (1)...(29) <223> Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO:43 <400> 44 Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu <210> 45 <211> 18 <212> DNA
<213> Artificial Sequence <220>
<223> gspP1BR6 PCR primer <220>
<221> misc feature <222> 4, 1-0-<223> n = A, T, C, or G
<400> 45 ycknggrtgn garcarta 18 <210> 46 <211> 18 <212> DNA
<213> Artificial Sequence <220>
<223> gspP1BR1 PCR primer <400> 46 rcartartty tgcatrca 18 <210> 47 <211> 438 <212> DNA
<213> Penicillium citreonigrum <220>
<221> misc feature <222> (0)...(0) <223> Fragment of the LB-12922 gene obtained during Genome Walker experiments <400> 47 atgactaaga catccataga gaccttaatt acccctcacg acatcgacat gcaatacatt 60 tttacctccc tcgttcaatt tctgtgcttc atgaacgtca tggctgaagg tctaacccgg 120 taccaaacct cacccccgac tgatgtcgtg attctccacg atagacaatc cctgaacgat 180 tacgtgaaga tcaatccaaa cggtctgctc catgccgaga atggaggcta ctacctgaaa 240 gacatggaag acgtagtcgt tgctatcgct agtgatgacc tgtgcaatga gctggatggt 300 gcctgggcta gcgctgaggc tgctgctgat gcgcttgacg cggctgaatc taattctgga 360 tctggctctt tgagcggcgc gaatgttacg aagagaaacg aagacctttc ttgttatccc 420 agctgtatgc agaattat 438 <210> 48 <211> 24 <212> DNA
<213> Artificial Sequence <220>
<223> PHN100279 PCR primer <400> 48 atgtcctcct cccaagtttc cttc 24 <210> 49 <211> 25 <212> DNA
<213> Artificial Sequence <220>
<223> PHN100615 PCR primer <400> 49 agtgggtgga tatttgtctc agaaa 25 <210> 50 <211> 18 <212> DNA
<213> Artificial Sequence <220>
<223> gspP1BF1 PCR primer <400> 50 tgyatgcara aytaytgy 18 <210> 51 <211> 17 <212> DNA
<213> Artificial Sequence <220>
<223> gspP1BF3 PCR primer <220>
<221> misc_feature <222> 15 <223> n - A, T, C, or G
<400> 51 taytgyagyc ayccncg 17
CaC12, pH 7.6. The solution was incubated at 37 C for 18 hours. Finally, the solution was diluted with 20 1.1L 5% acetonitrile, 0.1% formic acid, 0.025% TFA and injected onto 1.0 x 150 mm Zorbax 300SB C8 3.5 lam column. Starting conditions were 6.8%
acetonitrile, 0.1%
formic acid, 0.025% trifluoroacetic acid (TFA), 50 1.1L/minute. Four minutes following sample injection, a 66 minute linear gradient was started to 26.6%
acetonitrile, 0.1% formic acid, 0.025% TFA. 214 nm peak based fractions were collected using an Agilent micro-fraction collector. Masses for the isolated fragments were determined by splitting ¨10% of the HPLC flow into an integrated Agilent MSD TOF mass spectrometer equipped with an ESI
source. Seven peaks were collected and sent for N-terminal sequencing. ArgC
Peak V, which eluted at 33 minutes, yielded useful sequence.
N-terminal sequencing results ArgC Peak V: CFNHAHCLTYSHCHVXCS (SEQ ID NO:29) The complete amino acid sequence for the LB-09812 antifungal polypeptide was determined by using Genome Walker PCR which allowed for the identification of the nucleotide sequence set forth in SEQ ID NO:24, corresponding to the full-length genomic sequence for the LB-09812 protein. The full-length, unprocessed LB-09812 protein is set forth in SEQ ID NO:25 The gene sequencing results together with those from N-terminal sequencing of LB-09812 predicted a mature peptide (set forth in SEQ ID NO:1) having a mass identical to that of the HPLC-purified LB-09812. Further details of the Genome Walker Experiments are provided herein below.
Example 2: Isolation of Antifungal Polypeptide LB-12922 (SEQ ID NO:3) A cultivated agricultural soil sample in the Ternapol region, Ukraine, was isolated about twelve years after the Chernobyl nuclear accident. The fungal isolate of interest, denoted herein as LB-12922, that produced the antifungal polypeptide SEQ ID
NO:3, was isolated using potato dextrose agar. The strain was later identified as Penicillium citreonigrum Dierckx. The pure culture of the organism has been maintained at room temperature on malt extract agar slant by sub-culturing it in regular intervals. Isolate LB-12922 was transferred to Berkeley Lab where the cultures were grown on PDA and preserved by placing 10 agar plugs per strain sampled with sterile P1000 plastic tips into 2 mL
cryotubes containing 0.7 mL 45% (w/v) sterile glycerol. The cryotubes then were placed in a wooden block and frozen overnight in a -20 C freezer at an approximate freezing rate of 1 C/min. The now frozen material was transferred to a -84 C freezer for long-term maintenance.
The species identification was confirmed by sequencing the D1/D2 domains of the large subunit rRNA-coding gene. Whole-cell fatty acid methyl ester (FAME) analysis was performed following manufacturer's recommendations (MIDI, Newark, DE). The pure culture of strain was grown in Saboui-aud liquid medium on an orbital shaker (180 rpm) at 30 C for 3-5 days. The biomass was harvested by centrifugation and about 50 mg of cells were extracted. The fatty acid methyl ester profile was determined on a Agilent Technologies (Palo Alto, CA) Model 6890 gas chromatograph. Chromatograms were analyzed with the Sherlock Microbial Identification System Version 4.5 (MIDI, Newark, DE). Similarity among the chromatograms was established by the dendrogram subroutine. The available fungal database could not resolve the identification of the strain at genus or species level Sequencing of the Dl/D2 domains of the large subunit ribosomal RNA-coding genes involved growing the strain in Sabouraud liquid medium, extracting the total genomic DNA, and PCR amplifying the target sequences. Total genomic DNA extraction was performed with the FastDNA Kit using FastPrep and the SpinColumn protocol of BIO 101 Systems (Q-BIOgene, Vista, CA). The PCR amplification was carried out in Platinum Blue PCR
SuperMix (Invitrogen, Carlsbad, CA). The generic fungal D1/D2 domains (nucleotides 63-, 642) primers used for the PCR amplification and for sequencing were published earlier by Kurtzman and Robnett (1998) Antonie Van Leeuwenhoek 73_01:331-71; and Kurtzman and Robnett (2003) FEMS Yeast Res. 3(4):417-32.
DNA sequencing was done at the University of California at Berkeley DNA Sequencing Facility.
The raw sequence was edited with EditView Version 1Ø1.1 (ABI, Foster City, CA) and aligned using online multiple sequence aligner subroutines (BCM Search Launcher = (searchlauncher.bern.tmc.edu/multi-align/multi-align.html) and MultAlin (prodes.toulouse.inra.fr/multalin/multalin.httn1)). Aligned sequence for the DI/D2 domains was further analyzed for consensus using online subroutines by the Ribosomal Database = I 5 Project (rdp,cme.msu.edu/html/) and Boxshade (ch.emnet.org/software/BoXforrn.html; a "www" prefix must be used), and finally BLASTed against the NCBI database (ncbi.nlm.nih.gov/BLAST; a "www" prefix must be used) for species determination.
A designed set of specific growth conditions, i.e., nutrient content, temperature, pH, incubation time, aeration, etc., were applied to the isolated fungus to promote the production of secondary metabolites and novel natural products. The small molecules of interest were secreted by the above fungal strain when it was grown in 250 mL Erlenmeyer flasks filled with 50 mL of a medium. Strain IMV 00738 was gown in a medium containing glucose (75 g/L), tartaric acid (4 g/L), ammonium tartrate (4 g/L), ammonium_phosphate (0.6 g/L), potassium carbonate (1 g/L), ammonium chloride (0.6 g/L), magnesium carbonate (0.4 g/L), ammonium sulfate (0.25 g/L), zinc sulfate (700 ng/L), and iron sulfate (700 ng/L). The pH of the medium was adjusted with hydrochloric acid to a final value of 4.8. The strain was = incubated at 16 'V on an orbital shaker incubator at 180 rpm for 144 h.
Biomass and supernatant of the resulting microbial fermentation were then separated by centrifugation at 10,322 x g, 15 C for 20 min. The cell-free supernatant, labeled as LB-12922, was assayed to = 30 determine the presence of heat labile antifungal activity. After confirming that heat labile antifungal activity was present in the LB-12922 supernatant, the cell-free supernatant of a large scale, 500 mL culture was provided and subjected to solid phase extraction, as described below.
Oasis HLB extraction cartridges (6 gram, 35 mL) (Waters Corporation, Milford, MA) were used for solid phase extraction (SPE). Specifically, the SPE cartridge was made wet with one cartridge volume of methanol and then conditioned with approximately 40 mL
Solvent A (2% acetonitrile, 0.1% TFA). Approximately 90 milliliters of crude culture filtrate was treated with 5X solvent A to a final concentration of 1X and centrifuged for 20 min at 3,000 x g. The supernatant was loaded onto an SPE cartridge, and the SPE
cartridge was washed with approximately 40 mL solvent A. The SPE cartridge was eluted with approximately 40 mL 90% acetonitrile, 0.1% TFA. The eluted sample was partially dried in a centrifugal evaporator (Speed Vac), frozen with liquid nitrogen and lyophilized to dryness.
The dried extract was re-suspended in phosphate buffered saline (PBS) (0.5 mL
: 20 mL starting culture filtrate), and the re-suspended extract was enriched for proteins using a Sephadex G10 (Amersham Biosciences AB, Uppsala, Sweden) spin column. Bio-Spin disposable chromatography columns (Bio-Rad Laboratories, Hercules CA) were filled to approximately 0.75 mL bed volume with Sephadex G10 that had been pre-equilibrated in phosphate buffered saline (PBS) and were centrifuged for 1 minute at 1,000 x g. 200 L of SPE extract in PBS was added to each pre-spun Bio-Spin column, and loaded Bio-Spin columns were centrifuged for 5 minutes at 1,000 x g to elute proteins.
G10 treated antifungal extracts were fractionated by HPLC with a Jupiter 5 C5 300A 150 mm x 4.6 mm column (Phenomenex, Torrance, CA). HPLC starting conditions were 5% acetonitrile, 0.04% heptafluorobutyric acid (HFBA), 0.4 mL/minute.
After injecting 200 L of G10 treated antifungal extract, the flow rate was raised to 0.8 mL/minute over 1 minute. After an additional minute, a 94 minute exponentially curved gradient (Waters gradient curve 7, Waters Corporation, Milford, MA) was started to 86%
acetonitrile, 0.04% HFBA. The HPLC fractions were divided into four 1/2 area 96 well clear bottom assay plates. Plates containing fractionated extracts were then dried in a centrifugal evaporator.
The dried fractionated extracts were then screened for antifungal activity against FVE, CGR, FGR, and DMA using an antifungal plate assay, as described in Example 3. FVE, FGR and DMA were tested at 4,000 spores/mL in 1/4 X potato dextrose broth (Becton Dickinson Microbiology Systems, Sparks, MD). CGR was tested at 4,000 spores/mL in 1/4 X
Czapek-Dox (Becton Dickinson Microbiology Systems, Sparks MD) + 180 mL/L V8 juice.
Cultures were allowed to develop at 27 C for 24 hours. Assays were scored by visualizing fungal growth with an inverted microscope. The HPLC fractions from approximately 64.5 to 66 minutes were found to have antifungal activity against FVE, CGR, FGR and DMA.
FVE
antifungal activity was observed for fractions from 63 to 72.5 minutes.
Additional HPLC fractionations were performed to bulk up the 63 to 72.5 minute antifungal fraction. This bulked up antifungal fraction was further purified using -bore HPLC with a Zorbax 3.5 C8 300A 150 mm x 1.0 mm column (Agilent Technologies, Palo Alto, CA). Starting conditions were 7.7% acetonitrile, 0.05% formic acid, 0.025%
trifluoroacetic acid (TFA), 50 L/minute. Following sample injection, a 40 minute linear gradient was started to 25.7% acetonitrile, 0.05% formic acid, 0.025% TFA.
Subsequently, a 20 minute gradient was started to 43.7% acetonitrile, 0.05% formic acid, 0.025% TFA. 214 nm peak based fractions were collected using an Agilent micro-fraction collector, dried in a centrifugal evaporator and assayed for antifungal activity as described above.
A peak eluting at approximately 41 minutes was found to have activity against FVE. ESI mass spectra were obtained on an integrated Agilent MSD TOF mass spectrometer. The peak had the ion profile of a peptide and a mass of 4445 Da.
Reduction and alkylation was required for efficient N-terminal sequencing.
Approximately 10 ug of dried protein was re-suspended into 18 uL 0.1 M
ammonium bicarbonate, 8 M urea pH 8.3. This solution was transferred to limited volume HPLC
autosampler vial. 1 uL 200 mM DTT was added and the solution was incubated at 50 C for 1 hour. Subsequently 1 uL 500 mM iodoacetamide was added, and the solution was incubated at 37 C for 30 minutes in the dark. The iodoacetamide alkylation was then quenched by adding 2 uL 25% trifluoroacetic acid. The alkylated protein was then purified by u-bore HPLC on a Zorbax 3.5 C8 300A 150 mm x 1.0 mm column (Agilent Technologies, Palo Alto, CA). Starting conditions were 7.7% acetonitrile, 0.1% formic acid, 0.025% TFA.
After 15 minutes a 70 minute linear gradient was performed to reach 70.7%
acetonitrile, 0.1%
formic acid, 0.025% TFA. The column flow rate was 50 uL/minute. 214 nm peak based fractions were collected using an Agilent micro fraction collector. The alkylated LB-12922 eluted at about 41 minutes.
N-terminal sequencing Initial N-terminal sequencing yielded the following sequence:
LSCYPSCMQNYCSHPRXFLXAT (SEQ ID NO:30).
The complete amino acid sequence for the LB-12922 antifungal polypeptide was determined by using Genome Walker PCR which allowed for the identification of the nucleotide sequence set forth in SEQ ID NO:26, corresponding to the full-length genomic sequence for the LB-12922 antifungal protein. The full-length,unprocessed LB-12922 protein is set forth in SEQ ID NO:27. The gene sequencing results together with those from N-terminal sequencing of LB-12922 predicted a mature peptide (set forth in SEQ
ID NO:3) having a mass identical to that of the HPLC-purified LB-12922. Details of the Genome Walker experiments are provided below.
Example 3: Antifungal Activity of Polypeptides LB-09812 (SEQ ID NO:1) The antifungal activity of the polypeptide of SEQ ID NO:1 against the fungal pathogens Fusarium verticillioides (FVE), Colletotrichum graminicola (CGR), Fusarium graminearum (FGR) and Diplodia maydis (DMA) was assessed using a standard plate assay.
Specifically, an E. coli transformation vector comprising a nucleotide sequence that encodes the polypeptide of SEQ ID NO:1 fused to a His-tagged maltose binding protein via a factor XA cleavage site was generated and used to express the fusion protein in E. coli. The fusion protein was then affinity (Ni-NTA) ¨purified, and the protein preparation was subjected to Factor XA cleavage. The desired LB-09812 peptide (SEQ ID NO:1) was then purified by HPLC, and the purity and mass of the peptide verified by LCMS.
Purified peptide was quantified and used in standard assays to measure antifungal activity, as described below.
Preparation of cultures for spore production:
Cultures of FVE were prepared using V8 agar plates. FGR, CGR, and DMA cultures were prepared using 1/2 x oatmeal agar. Media recipes are provided below.
Specifically, tubes containing silica-gel fungal stocks stored at ¨20 C were briefly flamed, and approximately 5 crystals were sprinkled onto the agar surface. 2-3 plates of each fungal isolate were prepared. The newly plated cultures were stored in a plastic box to prevent the cultures from drying out. FVE cultures were grown in the dark at room temperature. CGR cultures were grown in ambient light at room temperature. FGR
and DMA cultures were grown in an illuminated growth chamber at 27 C. New cultures were prepared every other week to maintain a consistent supply of spores.
Spore Preparation:
Spores were prepared from 2-4 week old cultures of FVE, FGR, CGR, and DMA.
For FGR, FVE, and DMA, a portion of the culture plate was rinsed with a small amount of assay medium. The rinse solution was permitted to remain on the DMA plates for a time sufficient to allow the pycnidia to rupture. The assay medium was then transferred to a sterile tube. Samples were vortexed, and spores were quantified using a hemacytometer.
For CGR, a sterile loop was gently dragged across orange areas of the culture plate.
The loop was then inserted into a small volume of assay media, and the media was mixed with the loop to suspend the spores. Samples were vortexed, and spores were quantified using a hemacytometer.
Spores were diluted to the desired concentration with assay medium (4,000 spores per mL for FGR, FVE, and CGR, and 6,000 spores per mL for DMA) and kept on ice prior to beginning the antifungal activity assay.
Assay Plate Preparation Details:
Standard non-tissue culture treated 96 well flat bottom plates or 1/2 area non-treated plates (Costar) were used in the antifungal plate assays. Assay medium was 1/4 x potato dextrose broth for FVE, FGR and DMA, and 1/4 x Czapec-Dox V8 was used for CGR.
Antifungal polypeptides at various concentrations were added to the plates at 1.1L/we11 for a standard assay plate or 251.1L/we11 for a half area plate. An equal volume of media with fungal spores at 2 times the above concentrations was then added to start the assay. Alternatively HPLC fractionated lead samples were assayed by adding media with fungal spores (as above) into assay plates that the HPLC samples had been dried into (Savant Speed-vac). The plates were sealed with a gas permeable membrane ("Breathe-Easy", Cat.
No. BEM-1, Diversified Biotech, Boston, MA), and the assay was allowed to develop in the dark at 28 C for 24 to 48 hours.
After the incubation period, the plates were placed on an inverted microscope, and each well was examined and scored on a scale of 0 ¨ 4, according to the following parameters: 0 = no inhibition of fungal growth when compared to the negative control, 0.5 =
slight inhibition (overall growth is less than the negative control but growth from individual spores is not distinct), 1 = slight inhibition (overall growth is less than the negative control but growth from individual spores is apparent, albeit not quite confluent), 2 =
moderate inhibition (growth from 1 spore can easily be identified and is significantly less abundant than the negative control; growth from each spore tends to look spherical), 3 = strong inhibition (spores have germinated but growth is limited to a few branches of short hyphae), 4 =
complete inhibition (spores have not germinated. See, for example, Duvick et al. (1992)J.
Biol. Chem. 267: 18814-18820). A score sheet containing representative examples of each level of antifungal activity is provided in Figure 2.
Results Figure 3 provides the results of antifungal activity assays with the polypeptide set forth in SEQ ID NO: 1. This polypeptide exhibited antifungal activity against FVE, FGR, CGR, and DMA.
Media Recipes:
lx Czapek-Dox V8 Broth:
For each liter, suspend 35 grams Difco Czapek-Dox Broth (#233810) in dH20 and add 180 milliliters V8 juice that has been clarified by centrifugation (3,000 x g is plenty).
Raise final volume to 1 liter and autoclave at 121 C for 20 minutes. The media is filter sterilized to remove any remaining debris.
lx potato dextrose broth:
For each liter, suspend 24 grams Difco Potato Dextrose Broth (#0549-17-9) in dH20 and raise final volume to 1 liter and autoclave at 121 C for 20 minutes. The media is filter sterilized to remove any remaining debris.
V8 Agar:
For each liter, dissolve 180 mL V8 juice and 3 grams calcium carbonate in 820 mL
deionized water and then add 17 grams Bacto-agar in dH20 in a 4 liter vessel.
10 drops of 5%
antifoam A may be optionally added per liter prepared. Cover and autoclave at 121 C for 20 minutes. Pour plates in sterile hood.
Oatmeal agar:
For each liter, suspend 36.24 grams of Difco Oatmeal Agar (#0552-17-3) and 4.25 grams agar in dH20 in a 4 liter vessel, cover and autoclave at 121 C for 20 minutes. Pour plates in sterile hood.
Table 1: Details of Growth Conditions for FVE, FGR, CGR, and DMA Strains for Use in In Vitro Antifungal Activity Assays FVE FGR CGR DMA
Isolate name M033 73B ISU Carroll-IA-99 Warren-IN-96 Medium for V8 Agar 1/2X
Oatmeal 1/2X Oatmeal 1/2X Oatmeal sporulation Agar Agar Agar Agar culture age range for in vitro 2-4 weeks old 2-4 weeks old 2-4 weeks old 2-4 weeks old assay Suggested schedule for Every other week Every other Every other Every other starting agar week week week cultures Liquid medium 1/4 x potato 1/4 x potato 1/4 x Czapec- 1/4 x potato for in vitro assay dextrose broth dextrose broth Dox V8 broth dextrose broth Spore Density for in vitro assay 4,000 4,000 4,000 6,000 (spores/mL) Example 4: Isolation of full-length LB-09812 and LB-12922 Genes from Genomic DNA
Genome Walker experiments were performed to isolate the full length LB-09812 and LB-12922 genes from genomic DNA of Penicillium glandicola and Penicillium citreonigrum, respectively.
Isolation of LB-09812 and LB-12922 genes The procedure for gene isolation is described in the User Manual for the Genome Walker kit sold by Becton Dickinson BioSciences (formerly Clontech Laboratories, Inc.; Palo Alto, CA). Genomic DNA from fungal lines LB-09812 and LB-12922 was isolated at Lawrence Berkeley National Laboratory using the FastDNA SPIN Kit (QbioGene, Inc., Carlsbad, CA) and the ballistic cell disruption method according to the manufacturer's instructions. The DNA was then used exactly as described in the Genome Walker Use Manual (Clontech PT3042-1, version PR03300). Briefly, the DNA was digested separately with restriction enzymes DraI, EcoRV, PvuII and StuI, all blunt-end cutters.
The DNA was extracted with phenol, then chloroform, and then precipitated with ethanol.
The Genome Walker adapters were ligated onto the ends of the restricted DNA. The resulting DNA is referred to as DL1-4, respectively.
For isolation of the LB-09812 gene, a number of overlapping, degenerate primers were designed to the underlined and italicized regions in the peptide sequence available, ALHNSCSHPRCFNHAHCLTYS (SEQ ID NO:28). These primers were used in amplification reactions run on each DNA sample (DL 1-4) with the appropriate Genome Walker primers in one or two rounds of PCR. PCR was performed in a model PTC-thermal cycler with HotBonnet from MJ Research (Watertown, Maine). The first fragment of the LB-09812 gene was cloned using only one round of PCR using the BD
BioSciences AP2 primer (5'-ACTATAGGGCACGCGTGGT-3'; SEQ ID NO:31) and gspR2 (5'-RTGRTTRAARCAYCTNGGRTG-3' ; SEQ ID NO:32). PCR reactions were carried out using the BD AdvantageTM HF 2 PCR kit in 25 1.11_, reactions, with final primer concentrations at 2 mM. The cycling parameters were: 5 cycles of 92 C for 30 sec, then 68 C
for 3 min, followed by 28 cycles of 92 C for 20 sec, and 55 C for 3 min and finally 5 min at 65 C.
About 201.11_, of each reaction were run on a 1.0% agarose gel, and bands were excised and purified with the QIAquick gel extraction kit, Qiagen, Inc. (Valencia, Calif.) and cloned into the pCR-Blunt vector (Invitrogen, San Diego, Calif). Clones were sequenced for verification. The resulting fragment, part of SEQ ID NO:2 of the LB-09812 gene, was cloned in this manner using the AP2 and gspR2 primers. The gene fragment and the protein encoded thereby are set forth below and in SEQ ID NOs:33 and 34:
TACCCGGACGGGCTTCTTCACCCCGAGAACGGTGGCTACTACCTGAAGGATGGGG
ATGAAGTCGTCGTTGGCATTGCCAGCGACGATCTTTGCAAGGAGCTGGACGGTGC
ATTCGCTAGCGTCGATGCAAAAATTGCCGAAGAAGCTGAAAGCGCTGGACCCGA
AGATAATATTTCTGATGCTGAAAATGTCAAGAGAGATGTACTTGCCCTACATAAC
TCATGCAGCCACCCTCGCTGCTTCAATCAC (SEQ ID NO:33) YPDGLLHPENGGYYLKDGDEVVVGIASDDLCKELDGAFASVDAKIAEEAESAGPED
NISDAENVKRDVLALHNSCSHPRCFNH (SEQ ID NO:34) The region in bold corresponds to the N-terminal two-thirds of the peptide sequence known at the time the Genome Walker experiments were performed. The carboxy-terminus was obtained with PCR reactions carried out as described above, but with the BD
BioSciences AP1 primer (5' -GTAATACGACTCACTATAGGGC-3'; SEQ ID NO:35) and gspF4 (5' -TTYAAYCAYGCNCAYTGYTTRAC-3'; SEQ ID NO:36). The resulting fragment is set forth below and in SEQ ID NO:37.
TTCAACCACGCTCACTGCYTGACCTACTCGCACTGCCATGTATGCTCTTCCCGCAA
GCGT
TGTCTTTAGAGTATCCTGCAATTTTGATAGTGGGAATGTTGGAGAGATTTACGAA
GGCTT
ACAGAGATGTGGTTGGATAGTGAAAGTGGGGGAGGTAGTCTGGGGGTATAGCGG
CCTCTG
GTTAGTTTCAATTAAGATGCGAATTTTGGCCTGATTCTTGCCTTGCTTTATTTAGA
TTCA
ACAGAAAATTAAGATACCTGAAATACCATTACAGAGCCTATATAAAGCTAGCGT
AGGGGG
GAAATCATCAGTTATTAAGAGGAGTCTCGGCGAACGAGATACTCAGGTTGACGA
GCAATC
CTCTGGTCAAAATTCCATCTGGAAAGATGTGTACCGTACCGTCAATAATTGGGTC
GATGA
GTAGTGCCCTAATTTAACGCCTGTACACGGTGAACTCCATGA (SEQ ID NO :37) Translated in frame 1, this fragment encodes the following polypeptide (SEQ ID
NO:38):
FNHAHCLTYSHCHVCSSRKRCL*SILQF**WECWRDLRRLTEMWLDSESGGGSLGV
*RPL
VSFN*DANFGLILALLYLDSTEN*DT*NTITEPI*S*RRGEIISY*EESRRTRYSG*RAI
LWSKFHLERCVPYRQ*LGR*VVP*FNACTR*TP* (SEQ ID NO:38) The composite sequence generated from these two genomic DNA fragments encodes the mature LB-09812 amino acid sequence, SEQ ID NO: 1.
In order to obtain a putative preprotein sequence, i.e., a sequence encoding a methionine at the predicted N-terminus of the unprocessed protein, two rounds of PCR were carried out using the Genome Walker DL-2 DNA as template. Reagents and cycling conditions for both rounds of PCR were as described above, using these primer combinations:
Round 1: BD BioSciences AP1 primer (5'-GTAATACGACTCACTATAGGGC-3'; SEQ ID
NO:35) and PHN99817 (5'-CGACGCTAGCGAATGCACCGTC-3'; SEQ ID NO:39) Round 2: BD BioSciences AP2 primer (5'-ACTATAGGGCACGCGTGGT-3'; SEQ ID
NO:31)) and PHN99816 (5' -TCATCCCCATCCTTCAGGTAGTAGC-3' ; SEQ ID NO:40).
As described in the Genome Walker User Manual, the DNA from the first round of PCR was diluted 50X and served as a template for the second round of PCR. To clone the LB-09812 gene as a single molecule, PCR was performed using LB-09812 genomic DNA as template, with forward primer PHN10110 (5' -TATACCAAACGAAGAAGGATAGT-3' :
SEQ ID NO:41) and reverse primer PHP10108 (5' -ATCTAAATAAAGCAAGGCAAG-3';
SEQ ID NO:42). Bands were purified as described above, and cloned into the pCR-Blunt vector for sequence verification, resulting in SEQ ID NO:24.
For isolation of the LB-12922 gene, a number of overlapping, degenerate primers were designed to the underlined and italicized regions in the peptide sequence available, LSCYPSCMONYCSHPRXFLXAT (SEQ ID NO:30). Genome Walker libraries and PCR
was carried out as described for the cloning of LB-09812. The first genomic region of the LB-12922 cloned was the product of PCR reactions run in two rounds. The first-round PCR
was primed with the BD BioSciences AP1 primer (SEQ ID NO:35) and gspP1BF1 (5'-TGYATGCARAAYTAYTGY-3'; SEQ ID NO:50). The first-round reactions were diluted 50X, and used as template for the second round of PCR, primed with the BD
BioSciences AP2 primer (SEQ ID NO:31) and gspP1BF3 (5' -TAYTGYAGYCAYCCNCG-3' ; SEQ ID
NO:51)). Bands were purified as described above, and cloned into the pCR-Blunt vector for sequence verification. The resulting fragment sequence is set forth below and in SEQ ID
NO:43:
TACTGYAGCCATCCCCGTTGCTTCCTCCACGCTACTTGTTTGTCCTACTCTCATTG
CCATGTGTGCGGTACCCGGAAGGTCTGTCTCTAA (SE ID NO:43), which encodes the C-terminal half of the LB-12992 peptide, YCSHPRCFLHATCLSYSHCHVCGTRKVCL*
(SEQ ID NO:44). The residues in this fragment sequence that were known prior to the Genome Walker experiments are in bold. This fragment sequence, when added to the N-terminal residues determined by peptide sequencing, resulted in the sequence for the mature LB-12922 peptide (SEQ ID NO:3).
To clone additional 5' genomic fragments of the LB-12992 gene, another set of Genome Walker reactions were run as described above. The gene-specific primers were gspP1BR6 (5'-YCKNGGRTGNGARCARTA-3'; SEQ ID NO:45) and gspP1BR1 (sequence 5'-RCARTARTTYTGCATRCA-3'; SEQ ID NO:46) for the first and second rounds of PCR, respectively. These reactions resulted in the nucleotide sequence set forth below and in SEQ
ID NO:47, a larger part of which is SEQ ID NO:26:
ATGACTAAGACATCCATAGAGACCTTAATTACCCCTCACGACATCGACATGCAAT
ACATT
TTTACCTCCCTCGTTCAATTTCTGTGCTTCATGAACGTCATGGCTGAAGGTCTAAC
CCGG
TACCAAACCTCACCCCCGACTGATGTCGTGATTCTCCACGATAGACAATCCCTGA
ACGAT
TACGTGAAGATCAATCCAAACGGTCTGCTCCATGCCGAGAATGGAGGCTACTACC
TGAAA
GACATGGAAGACGTAGTCGTTGCTATCGCTAGTGATGACCTGTGCAATGAGCTGG
ATGGT
GCCTGGGCTAGCGCTGAGGCTGCTGCTGATGCGCTTGACGCGGCTGAATCTAATT
CTGGA
TCTGGCTCTTTGAGCGGCGCGAATGTTACGAAGAGAAACGAAGACCTTTCTTGTT
ATCCC
AGCTGTATGCAGAATTAT (SEQ ID NO:47) To clone the genomic sequence encoding the putative unprocessed LB-12992 protein as a single molecule, thus confirming its sequence, primers PHN100279 (5'-ATGTCCTCCTCCCAAGTTTCCTTC-3'; SEQ ID NO:48) and PHN100615 (5' -AGTGGGTGGATATTTGTCTCAGAAA-3' ; SEQ ID NO:49) were used with LB-12992 genomic DNA as template in a single round of PCR using Genome Walker-type conditions.
The resulting fragment was gel-purified, cloned and sequenced thoroughly, producing SEQ
ID NO:26.
The genomic sequence for LB-09812 is set forth in SEQ ID NO:24 and encodes the predicted full-length, unprocessed polypeptide set forth in SEQ ID NO:25. The full-length LB-09812 polypeptide has a predicted signal peptide and propeptide region. The putative signal sequence is presented in bold with the predicted cleavage site designated with a "A."
The predicted propeptide region is highlighted and italicized. The predicted mature peptide is underlined.
MKSISTSLVLVLCFLTTMIEGAMMV371MOMIMPO, IMPV#
WYRKRODOMIOMPOkicOMMEAVPMMEMEMOPARMIPARNISWEAA
LHNSCSHPRCFNHAHCLTYSHCHVCSSRKRCL (SEQ ID NO:25) A genomic sequence encoding the predicted full-length LB-12922 polypeptide sequence was similarly isolated as described above. The sequence is set forth in SEQ ID
NO:26 and encodes the predicted full-length, unprocessed polypeptide set forth in SEQ ID
NO:27. The full-length LB-12922 polypeptide has a predicted signal peptide and propeptide region. The full-length LB-12922 polypeptide has a predicted signal peptide and propeptide region. The putative signal sequence is presented in bold with the predicted cleavage site designated with a "A." The cleavage site is not predicted with high certainty.
The predicted propeptide region is highlighted and italicized. The predicted mature peptide is underlined.
MTKTSIETLITPHDIDMQYIFTSLVQFLCFmNvmAAMMUMPIMARAM
ENDIWMPNVELIMEMOVITEMMETYPWRAMTVOIREIVAWAVEA
NiMpAWANVIMMEDI_ScYPSCMQNYCSHPRCFLHATCLSY SHCHVCGTRKVCL
(SEQ ID NO:27) Example 5: Transformation and Regeneration of Transgenic Maize Plants Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing a nucleotide sequence encoding the antipathogenic polypeptide set forth in SEQ ID NO:1 operably linked to a promoter that drives expression in a maize plant cell and a selectable marker (e.g., the selectable marker gene PAT (Wohlleben et al.
(1988) Gene 70:25-37), which confers resistance to the herbicide Bialaphos). Alternatively, the selectable marker gene is provided on a separate plasmid.
Transformation is performed as follows. Media recipes follow below.
Preparation of Target Tissue The ears are husked and surface sterilized in 30% Clorox bleach plus 0.5%
Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned within the 2.5-cm target zone in preparation for bombardment.
Preparation of DNA
A plasmid vector comprising a nucleotide sequence encoding the antipathogenic polypeptide set forth in SEQ ID NO:1 operably linked to a promoter that drives expression in a maize cell is made. This plasmid DNA plus plasmid DNA containing a selectable marker (e.g., PAT) is precipitated onto 1.1 lam (average diameter) tungsten pellets using a CaC12 precipitation procedure as follows:
1001,IL prepared tungsten particles in water 101.11_, (11.1g) DNA in Tris EDTA buffer (1 tg total DNA) 1001.11_, 2.5 M CaC12 101.11_, 0.1 M spermidine Each reagent is added sequentially to the tungsten particle suspension, while maintained on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 mL 100% ethanol, and centrifuged for 30 seconds. Again the liquid is removed, and 105 t 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA
particles are briefly sonicated and 100_, spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment.
Particle Gun Treatment The sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2.
All samples receive a single shot at 650 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA.
Subsequent Treatment Following bombardment, the embryos are kept on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/L Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5" pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored and scored for fungal resistance.
Bombardment and Culture Media Bombardment medium (560Y) comprises 4.0 g/L N6 basal salts (SIGMA C-1416), 1.0 mL/L Eriksson's Vitamin Mix (1000X SIGMA-1511), 0.5 mg/L thiamine HC1, 120.0 g/L
sucrose, 1.0 mg/L 2,4-D, and 2.88 g/L L-proline (brought to volume with D-I
H20 following adjustment to pH 5.8 with KOH); 2.0 g/L Gelrite (added after bringing to volume with D-I
H20); and 8.5 mg/L silver nitrate (added after sterilizing the medium and cooling to room temperature). Selection medium (560R) comprises 4.0 g/L N6 basal salts (SIGMA
C-1416), 1.0 mL/L Eriksson's Vitamin Mix (1000X SIGMA-1511), 0.5 mg/L thiamine HC1, 30.0 g/L
sucrose, and 2.0 mg/L 2,4-D (brought to volume with D-I H20 following adjustment to pH
'62451-1042 5.8 with KOH); 3.0 g/L Gelrite (added after bringing to volume with D-I 1120);
and 0.85 mg/L silver nitrate and 3.0 mg/L bialaphos(both added after sterilizing the medium and cooling to room temperature).
Plant regeneration medium (288J) comprises 4.3 g/L MS salts (GIBCO 11117 -074), 5.0 mL/L MS vitamins stock solution (0.100 g nicotinic acid, 0,02 g/L thiamine HCL, 0.10 g/L pyridoxine HCL, and 0.40 g/L glycine brought to volume with polished D-I
1120) (Murashige and Skoog (1962) Physio/. Plant. 15:473), 100 mg/L myo-inositol, 0.5 mg/L
zcatin, 60 g/L sucrose, and 1.0 mL/L of 0.1 mM abscisic acid (brought to volume with polished D-I 1120 after adjusting to pH 5.6); 3.0 g/L Gelrite (added after bringing to volume with D-I H20); and 1.0 mg/L indoleacetie acid and 3.0 mg/L bialaphos (added after sterilizing the medium and cooling to 60 C). Hormone-free medium (272V) comprises 4.3 g/L
MS salts (GIBCO 11117-074), 5.0 mL/L MS vitamins stock solution (0.100 g/L nicotinic acid, 0.02 g/L thiamine HCL, 0.10 g/L pyridoxine HCL, and 0.40 g/L glycine brought to volume with polished D-I 1120), 0.1 g/L myo-inositol, and 40.0 g/L sucrose (brought to volume with polished D-I 1420 after adjusting pH to 5.6); and 6 g/L bacto-agar (addedafter bringing to volume with polished D-I 1120), sterilized and cooled to 60 C.
Example 6: Agrobacterium-mediated Transformation of Maize and Regeneration of Transgenic Plants For Agrabacterium-mediated transformation of maize with a nucleotide sequence encoding the polypeptide of SEQ ID N0:1, the method of Zhao is employed (U.S.
Patent No.
5,981,840, and PCT patent publication W098/32326.
Briefly, immature embryos are isolated from maize and the embryos contacted with a suspension of Agrobacterium, where the bacteria are capable of = transferring the polynucleotide construct to at least one cell of at least one of the immature embryos (step 1: the infection step). In this step the immature embryos are immersed in an Agrobacterium suspension for the initiation of inoculation. The embryos are co-cultured for a time with the Agrobacterium (step 2: the co-cultivation step). The immature embryos are cultured on solid medium following the infection step: Following this co-cultivation period an optional "resting" step is pertained. In this resting step, the embryos are incubated in the presence of at least one antibiotic known to inhibit the growth of Agrobacterium without the addition of a selective agent for plant transfonnants (step 3: resting step).
The immature embryos are cultured on solid medium with antibiotic, but without a selecting agent, for elimination of Agrobacterium and for a resting phase for the infected cells.
Next, inoculated embryos are cultured on medium containing a selective agent and growing transformed callus is recovered (step 4: the selection step). The immature embryos are cultured on solid medium with a selective agent resulting in the selective growth of transformed cells.
The callus is then regenerated into plants (step 5: the regeneration step), and calli grown on selective medium are cultured on solid medium to regenerate the plants.
Example 7: Transformation Of Somatic Soybean Embryo Cultures and Regeneration Of Soybean Plants The following stock solutions and media are used for transformation and regeneration of soybean plants:
Stock solutions Sulfate 100 X Stock: 37.0 g Mg504.7H20, 1.69 g Mn504.H20, 0.86 g Zn504.7H20, 0.0025 g Cu504.5H20.
Halides 100 X Stock: 30.0 g CaC12.2H20, 0.083 g KI, 0.0025 g CoC12.6H20, P, B, Mo 100X Stock: 18.5 g KH2PO4, 0.62 g H3B03, 0.025 g Na2Mo04.2H20 Fe EDTA 100X Stock: 3.724 g Na2EDTA, 2.784 g Fe504.7H20.
2,4-D Stock: 10 mg/mL.
Vitamin B5 1000X Stock: 10.0 g myo-inositol, 0.10 g nicotinic acid, 0.10 g pyridoxine HC1, 1 g thiamine.
Media (per Liter) SB196: 10 mL of each of the above stock solutions, 1 mL B5 vitamin stock, 0.463 g (NH4)2 SO4, 2.83 g KNO3, 1 mL 2,4-D stock, 1 g asparagine, 10 g sucrose, pH 5.7.
SB103: 1 pk. Murashige & Skoog salts mixture, 1 mL B5 vitamin stock, 750 mg MgC12 hexahydrate, 60 g maltose, 2 g gelrite, pH 5.7.
SB166: 5B103 supplemented with 5 g per liter activated charcoal.
SB71-4: Gamborg's B5 salts (Gibco-BRL catalog No. 21153-028), 1 mL B5 vitamin stock, 30 g sucrose, 5 g TC agar, pH 5.7.
Soybean embryogenic suspension cultures are maintained in 35 mL liquid medium (5B196) on a rotary shaker (150 rpm) at 28 C with fluorescent lights providing a 16 hour day/8 hour night cycle. Cultures are subcultured every 2 weeks by inoculating approximately mg of tissue into 35 mL of fresh liquid media.
30 Soybean embryogenic suspension cultures are transformed by the method of particle gun bombardment (see Klein et al. (1987) Nature 327:70-73) using a DuPont Biolistic PDS1000/He instrument.
In particle gun bombardment procedures it is possible to use purified 1) entire plasmid DNA or, 2) DNA fragments containing only the recombinant DNA
expression 35 cassette(s) of interest. For every eight bombardment transformations, 30 id of suspension is prepared containing 1 to 90 picograms (pg) of DNA fragment per base pair of DNA fragment.
The recombinant DNA plasmid or fragment used to express the antifungal gene is on a separate recombinant DNA plasmid or fragment from the selectable marker gene.
Both recombinant DNA plasmids or fragments are co-precipitated onto gold particles as follows.
The DNAs in suspension are added to 50 0 L of a 20 - 60 mg/mL 0.6 Om gold particle suspension and then combined with 50 01_, CaC12 (2.5 M) and 20 0 L spermidine (0.1 M) The mixture is pulse vortexed 5 times, spun in a microfuge for 10 seconds, and the supernatant removed. The DNA-coated particles are then washed once with 150 0 L of 100%
ethanol, pulse vortexed and spun in a microfuge again, and resuspended in 85 0 L of anhydrous ethanol. Five 0 L of the DNA-coated gold particles are then loaded on each macrocarrier disk.
Approximately 150 to 250 mg of two-week-old suspension culture is placed in an empty 60 mm X 15 mm petri plate and the residual liquid is removed from the tissue using a pipette. The tissue is placed about 3.5 inches away from the retaining screen and each plate of tissue is bombarded once. Membrane rupture pressure is set at 650 psi and the chamber is evacuated to ¨28 inches of Hg. Eighteen plates are bombarded, and, following bombardment, the tissue from each plate is divided between two flasks, placed back into liquid media, and cultured as described above.
Seven days after bombardment, the liquid medium is exchanged with fresh SB196 medium supplemented with 50 mg/mL hygromycin or 100 ng/mL chlorsulfuron, depending on the selectable marker gene used in transformation. The selective medium is refreshed weekly or biweekly. Seven weeks post-bombardment, green, transformed tissue is observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally-propagated, transformed embryogenic suspension cultures. Thus, each new line is treated as independent transformation event. These suspensions can then be maintained as suspensions of embryos clustered in an immature developmental stage through subculture or can be regenerated into whole plants by maturation and germination of individual somatic embryos.
Transformed embryogenic clusters are removed from liquid culture and placed on solid agar medium (SB166) containing no hormones or antibiotics for one week.
Embryos are cultured at 26 C with mixed fluorescent and incandescent lights on a 16 hour day:8 hour night schedule. After one week, the cultures are then transferred to SB103 medium and maintained in the same growth conditions for 3 additional weeks. Prior to transfer from liquid culture to solid medium, tissue from selected lines is assayed by PCR or Southern analysis for the presence of the antifungal gene.
Somatic embryos become suitable for germination after 4 weeks and are then removed from the maturation medium and dried in empty petri dishes for 1 to 5 days. The dried embryos are then planted in SB71-4 medium where they are allowed to germinate under the same light and germination conditions described above. Germinated embryos are transferred to sterile soil and grown to maturity.
All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains.
=
SEQUENCE LISTING IN ELECTRONIC FORM
In accordance with Section 111(1) of the Patent Rules, this description contains a sequence listing in electronic form in ASCII text format (file: 62451-1042 Seq 22-03-10 v2.txt).
A copy of the sequence listing in electronic form is available from the Canadian Intellectual Property Office.
The sequences in the sequence listing in electronic form are reproduced in the following table.
SEQUENCE TABLE
<110> Altier, Dan Crane, Virginia Ellanskaya, I.A.
Gilliam, Jacob Hunter-Cevera, Jennie Presnail, James Schepers, Eric Simmons, Carl Tamas Torok Yalpani, Nasser <120> ANTIFUNGAL POLYPEPTIDES
<130> 035718/326498 <150> 60/800,804 <151> 2006-05-16 <160> 51 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 33 <212> PRT
<213> Penicillium glandicola <220>
<221> PEPTIDE
<222> (1)...(33) <223> Predicted mature LB-09812 peptide <400> 1 Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys Leu <210> 2 <211> 102 <212> DNA
<213> Penicillium glandicola <220>
<221> misc_feature <222> (0)...(0) <223> Nucleotide sequence encoding the predicted mature LB-09812 peptide set forth in SEQ ID NO:1 <220>
<221> CDS
<222> (1)...(102) <400> 2 gcc cta cat aac tca tgc agc cac cct cgc tgc ttc aat cac gcc cat 48 Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His tgc ctg acc tac tcg cac tgc cat gta tgc tct tcc cgc aag cgt tgt 96 Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys ctt tag 102 Leu *
<210> 3 <211> 39 <212> PRT
<213> Penicillium citreonigrum <220>
<221> PEPTIDE
<222> (1)...(39) <223> Predicted mature LB-12922 peptide <400> 3 Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu <210> 4 <211> 120 <212> DNA
<213> Penicillium citreonigrum <220>
<221> misc_feature <222> (0)...(0) <223> Nucleotide sequence encoding the mature LB-12922 peptide set forth in SEQ ID NO:3 <220>
<221> CDS
<222> (1)...(120) <400> 4 ctt tct tgt tat ccc agc tgt atg cag aat tac tgc agt cat ccc cgt 48 Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg tgc ttc ctc cac gct act tgt ttg tcc tac tct cat tgc cat gtg tgc 96 Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys ggt acc cgg aag gtc tgt ctc taa 120 Gly Thr Arg Lys Val Cys Leu *
<210> 5 <211> 125 <212> PRT
<213> Aspergillus flavus <400> 5 Met Ala Ala Ala Tyr Ser Met Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp His Asp Gly Lys Ile Leu Ala Val Ala Ala Asp Gly Leu Cys Glu Glu Leu Asp Asn Ser Val Ala Ser Ala Arg Arg Val Tyr Glu Gln Arg Ser Arg Phe Asp Leu Tyr Ser Gly Glu Val Gln Glu Val Thr Leu Gln Ser His Asp Ala Gln Leu Arg Arg Ser Gly Glu Asn Ser Cys Ser His Pro Arg Cys Tyr Thr His Ala Leu Cys Glu Thr Tyr Ser Asp Cys Phe Val Cys Ser Ser Ser His His Trp Cys Thr Asp Val Gly Val Leu Ser Trp Met Gly Leu Ala Arg Leu Cys Tyr <210> 6 <211> 378 <212> DNA
<213> Aspergillus flavus <400> 6 atggcagccg catactcaat ggggacactg gatgatcgaa acggcgggta ttacctccta 60 gaccacgatg gtaaaattct agccgtggca gcagatggcc tatgcgaaga gctcgacaat 120 tcggtggcat cggcaagaag agtctacgag caacgttcac gcttcgattt atatagcgga 180 gaggtccagg aggttaccct tcagagccat gatgcacagt tacggagaag tggggagaac 240 tcttgttcgc accctcgttg ttatacgcat gcgctgtgtg aaacttatag tgattgcttt 300 gtgtgctctt ctagtcatca ttggtgcact gatgttgggg ttttgtcttg gatggggctt 360 gctcgcttat gctattaa 378 <210> 7 <211> 106 <212> PRT
<213> Aspergillus niger <400> 7 Met Ala Asp Pro Tyr Pro Met Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp His Asp Ala Thr Val Leu Ala Ile Ala Ser Asp Ser Leu Cys Glu Glu Leu Asp Ser Ser Met Glu Ser Ala Lys Arg Phe His Ser Asn Asp Pro Ile Phe Asp Asn Glu Ala Glu Asp Val Ala Pro Gly Lys Gly Glu Ala Ala Asn Pro Gly Leu Ser Asn His Cys Thr His Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser Asp Trp Tyr Val Cys Leu Phe Ser Phe His Trp Cys Phe <210> 8 <211> 321 <212> DNA
<213> Aspergillus niger <220>
<221> CDS
<222> (1)...(321) <400> 8 atg gca gac cca tat cct atg gga acc ttg gac gat agg aat ggg gga 48 Met Ala Asp Pro Tyr Pro Met Gly Thr Leu Asp Asp Arg Asn Gly Gly tac tat ctg cta gac cat gat gct aca gtg tta gct att gca tca gat 96 Tyr Tyr Leu Leu Asp His Asp Ala Thr Val Leu Ala Ile Ala Ser Asp tct ctc tgc gaa gaa ctg gac tcc tca atg gaa tcg gca aaa agg ttc 144 Ser Leu Cys Glu Glu Leu Asp Ser Ser Met Glu Ser Ala Lys Arg Phe cat agc aat gac cca att ttt gat aat gaa gcc gag gat gtt gca cct 192 His Ser Asn Asp Pro Ile Phe Asp Asn Glu Ala Glu Asp Val Ala Pro ggg aag ggt gaa gca gcc aat cct ggc cta tca aat cat tgc act cac 240 Gly Lys Gly Glu Ala Ala Asn Pro Gly Leu Ser Asn His Cys Thr His cca cgc tgt cat aca cat gct ctt tgt cgg acc tac agc gat tgg tac 288 Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser Asp Trp Tyr gtg tgt ttg ttc agt ttc cat tgg tgt ttt tga 321 Val Cys Leu Phe Ser Phe His Trp Cys Phe *
<210> 9 <211> 109 <212> PRT
<213> Aspergillus niger <400> 9 Met Ala Asp Gln Tyr Pro Met Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp His Asp Ala Thr Val Leu Ala Ile Ala Ser Asp Ser Leu Cys Glu Gly Leu Asp Ser Ser Met Glu Ser Ala Lys Arg Phe His Ser Asn Asp Pro Ile Ser Asp Asn Glu Ala Glu Asp Val Ala Pro Gly Lys Ala Glu Gly Ser Asn Pro Gly Leu Ser Asn His Cys Thr His Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser Asp Cys Tyr Val Cys Ser Ser Ser Phe His Trp Cys Ser Glu Tyr Ile <210> 10 <211> 141 <212> PRT
<213> Aspergillus fumigatus <400> 10 Met Arg Ile Asn Val Phe Thr Ile Leu Ser Leu Leu Phe Ala Ser Asn Leu Ala Met Ala Thr Thr Arg Tyr Thr Glu Pro Ile Pro Glu Gly Ile Pro Val Leu Glu Thr Arg Gln Gln Leu Asn Asp Met Ala Asp Gln Tyr Pro Thr Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp His Asp Gly Ala Val Leu Ala Val Thr Ser Asp Ala Leu Cys Glu Glu Leu Asp Ala Ser Met Glu Gln Ala Arg Arg Phe His Ala Gly Asn Leu Asp Asp Glu Ala Asp Val Val Pro Arg Gly Asp Asn Ala Ala Ala Ser Cys Ser His Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser Asp Cys Tyr Val Cys Ser Ser Ser Lys His Trp Cys Phe <210> 11 <211> 426 <212> DNA
<213> Aspergillus fumigatus <220>
<221> misc_feature <222> (0)...(0) <223> Corrected sequence based on cDNA XM_749066.1 <220>
<221> CDS
<222> (1)...(426) <400> 11 atg aga atc aac gtc ttt acc atc ctg tcc ctt ctc ttc gcc agc aat 48 Met Arg Ile Asn Val Phe Thr Ile Leu Ser Leu Leu Phe Ala Ser Asn ctc gcc atg gct aca acc aga tac acc gag ccg atc ccc gag gga atc 96 Leu Ala Met Ala Thr Thr Arg Tyr Thr Glu Pro Ile Pro Glu Gly Ile ccc gtc ctc gag acc cgc caa caa ctc aac gac atg gca gac caa tat 144 Pro Val Leu Glu Thr Arg Gln Gln Leu Asn Asp Met Ala Asp Gln Tyr ccc acg ggg act ctg gac gat cga aac ggg ggc tac tac ctg ctc gac 192 Pro Thr Gly Thr Leu Asp Asp Arg Asn Gly Gly Tyr Tyr Leu Leu Asp cac gac ggc gcc gtc ttg gcc gtt acg tct gat gcg cta tgc gag gaa 240 His Asp Gly Ala Val Leu Ala Val Thr Ser Asp Ala Leu Cys Glu Glu ctg gac gcc tcg atg gaa caa gcg agg aga ttt cat gcc ggg aac ttg 288 Leu Asp Ala Ser Met Glu Gln Ala Arg Arg Phe His Ala Gly Asn Leu gac gac gag gcc gat gtt gtt cct agg ggt gat aat gcg gct gcg agt 336 Asp Asp Glu Ala Asp Val Val Pro Arg Gly Asp Asn Ala Ala Ala Ser tgc tct cac ccg cgc tgt cat acc cat gct ttg tgt cgc aca tat agt 384 Cys Ser His Pro Arg Cys His Thr His Ala Leu Cys Arg Thr Tyr Ser gac tgc tat gtt tgt tcg tcg agc aaa cat tgg tgt ttt tga 426 Asp Cys Tyr Val Cys Ser Ser Ser Lys His Trp Cys Phe *
<210> 12 <211> 103 <212> PRT
<213> Fusarium graminearum <400> 12 Met Ala Ala Lys Tyr Gln Asp Thr Ala Leu Glu Pro Lys Tyr Gly Gly Asn Val Ile Glu Val Asp Gly Lys Ile Val Leu Ala Thr Asp Asp Lys Ile Thr Lys Glu Ile Asp Asp Leu Val Gln Gln Leu Glu Lys Asn Asp Pro Glu Ala Lys Glu Glu Pro Lys Ile Ser Lys Arg Arg Asp Leu Asn Val Leu Glu Pro Arg Arg Arg Cys Ser His Pro Gly Cys Tyr Phe His Ser Thr Cys Leu Thr Tyr Thr Ala Cys His Val Cys Arg Leu Pro Pro Ser Arg Arg Gly Leu Cys Ile <210> 13 <211> 312 <212> DNA
<213> Fusarium graminearum <220>
<221> misc_feature <222> (0)...(0) <223> Fragment of genomic DNA of AACM01000196.1 <220>
<221> CDS
<222> (1)...(312) <400> 13 atg gct gca aag tac cag gac aca gca ctt gaa cca aag tat ggc ggc 48 Met Ala Ala Lys Tyr Gln Asp Thr Ala Leu Glu Pro Lys Tyr Gly Gly aat gtc att gaa gtc gat ggg aag att gtc ctt gca acg gat gat aaa 96 Asn Val Ile Glu Val Asp Gly Lys Ile Val Leu Ala Thr Asp Asp Lys att acc aaa gag att gac gac ctt gtt caa cag ttg gag aag aat gat 144 Ile Thr Lys Glu Ile Asp Asp Leu Val Gln Gln Leu Glu Lys Asn Asp cca gag gct aaa gaa gag ccc aag att tca aag aga cga gat ctc aat 192 Pro Glu Ala Lys Glu Glu Pro Lys Ile Ser Lys Arg Arg Asp Leu Asn gtc ctt gag ccc cgc cgc cgg tgt agc cac cca ggt tgc tat ttc cat 240 Val Leu Glu Pro Arg Arg Arg Cys Ser His Pro Gly Cys Tyr Phe His tct acc tgc ttg acc tat act gct tgt cac gtc tgt aga cta cca ccc 288 Ser Thr Cys Leu Thr Tyr Thr Ala Cys His Val Cys Arg Leu Pro Pro agc agg cga ggg tta tgt atc tag 312 Ser Arg Arg Gly Leu Cys Ile *
<210> 14 <211> 72 <212> DNA
<213> Artificial Sequence <220>
<223> Nucleotide sequence encoding the barley alpha amylase signal peptide <400> 14 atggccaaca agcacctgtc cctctccctc ttcctcgtgc tcctcggcct ctccgcctcc 60 ctcgcctccg ga 72 <210> 15 <211> 24 <212> PRT
<213> Artificial Sequence <220>
<223> Barley alpha amylase signal peptide <400> 15 Met Ala Asn Lys His Leu Ser Leu Ser Leu Phe Leu Val Leu Leu Gly Leu Ser Ala Ser Leu Ala Ser Gly <210> 16 <211> 174 <212> DNA
<213> Artificial Sequence <220>
<223> Nucleotide sequence encoding the barley alpha amylase signal peptide joined to the nucleotide sequence of SEQ ID NO:2 <220>
<221> misc_feature <222> (1)...(72) <223> Nucleotide sequence encoding the barley alpha amylase signal peptide <220>
<221> misc_feature <222> (73)...(174) <223> Nucleotide sequence encoding the mature LB-09812 peptide set forth in SEQ ID NO:1 <400> 16 atggccaaca agcacctgtc cctctccctc ttcctcgtgc tcctcggcct ctccgcctcc 60 ctcgcctccg gagccctaca taactcatgc agccaccctc gctgcttcaa tcacgcccat 120 tgcctgacct actcgcactg ccatgtatgc tcttcccgca agcgttgtct ttag 174 <210> 17 <211> 57 <212> PRT
<213> Artificial Sequence <220>
<223> Barley alpha amylase signal peptide joined to the amino acid sequence of SEQ ID NO:1 <220>
<221> SIGNAL
<222> (1)...(24) <223> Barley alpha amylase signal peptide <220>
<221> PEPTIDE
<222> (25)...(57) <223> Mature LB-09812 peptide set forth in SEQ ID NO:1 <400> 17 Met Ala Asn Lys His Leu Ser Leu Ser Leu Phe Leu Val Leu Leu Gly Leu Ser Ala Ser Leu Ala Ser Gly Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys Leu <210> 18 <211> 192 <212> DNA
<213> Artificial Sequence <220>
<223> Nucleotide sequence encoding the barley alpha amylase signal peptide joined to the nucleotide sequence of SEQ ID NO:4 <220>
<221> misc_feature <222> (1)...(72) <223> Nucleotide sequence encoding the barley alpha amylase signal peptide <220>
<221> misc_feature <222> (73)...(192) <223> Nucleotide sequence encoding the mature LB-12922 peptide set forth in SEQ ID NO:3 <400> 18 atggccaaca agcacctgtc cctctccctc ttcctcgtgc tcctcggcct ctccgcctcc 60 ctcgcctccg gactttcttg ttatcccagc tgtatgcaga attactgcag tcatccccgt 120 tgcttcctcc acgctacttg tttgtcctac tctcattgcc atgtgtgcgg tacccggaag 180 gtctgtctct aa 192 <210> 19 <211> 63 <212> PRT
<213> Artificial Sequence <220>
<223> Barley alpha amylase signal peptide joined to the amino acid sequence of SEQ ID NO:3 <220>
<221> SIGNAL
<222> (1)...(24) <223> Barley alpha amylase signal peptide <220>
<221> PEPTIDE
<222> (25)...(63) <223> Mature LB-012922 peptide set forth in SEQ ID NO:3 <400> 19 Met Ala Asn Lys His Leu Ser Leu Ser Leu Phe Leu Val Leu Leu Gly Leu Ser Ala Ser Leu Ala Ser Gly Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu <210> 20 <211> 4 <212> PRT
<213> Artificial Sequence <220>
<223> Endoplasmic reticulum retention sequence <400> 20 Lys Asp Glu Leu <210> 21 <211> 6 <212> PRT
<213> Artificial Sequence <220>
<223> Endoplasmic reticulum retention sequence <400> 21 Ser Glu Lys Asp Glu Leu <210> 22 <211> 4 <212> PRT
<213> Artificial Sequence <220>
<223> Endoplasmic reticulum retention sequence <400> 22 His Asp Glu Leu <210> 23 <211> 4 <212> PRT
<213> Artificial Sequence <220>
<223> Endoplasmic reticulum retention sequence <400> 23 His Asp Glu Phe <210> 24 <211> 453 <212> DNA
<213> Penicillium glandicola <220>
<221> misc_feature <222> (0)...(0) <223> Genomic sequence encoding the full-length LB-09812 polypeptide set forth in SEQ ID NO:25 <220>
<221> misc_feature <222> (352)...(453) <223> Nucleotide sequence encoding the mature LB-09812 peptide set forth in SEQ ID NO:1 <220>
<221> CDS
<222> (1)...(453) <400> 24 atg aaa tcc att tcc acc tcc ctt gtc ttg gtc ctg tgc ttc ttg acc 48 Met Lys Ser Ile Ser Thr Ser Leu Val Leu Val Leu Cys Phe Leu Thr acc atg att gaa ggt ctc acc cgt tac caa acc aca ccc cca agc gac 96 Thr Met Ile Glu Gly Leu Thr Arg Tyr Gln Thr Thr Pro Pro Ser Asp gcc atc gtc tgc cat gac aga caa gct ctt aac gac ctg gcc aag gcc 144 Ala Ile Val Cys His Asp Arg Gln Ala Leu Asn Asp Leu Ala Lys Ala tac ccg gac ggg ctt ctt cac ccc gag aac ggt ggc tac tac ctg aag 192 Tyr Pro Asp Gly Leu Leu His Pro Glu Asn Gly Gly Tyr Tyr Leu Lys gat ggg gat gaa gtc gtc gtt ggc att gcc agc gac gat ctt tgc aag 240 Asp Gly Asp Glu Val Val Val Gly Ile Ala Ser Asp Asp Leu Cys Lys gag ctg gac ggt gca ttc gct agc gtc gat gca aaa att gcc gaa gaa 288 Glu Leu Asp Gly Ala Phe Ala Ser Val Asp Ala Lys Ile Ala Glu Glu gct gaa agc gct gga ccc gaa gat aat att tct gat gct gaa aat gtc 336 Ala Glu Ser Ala Gly Pro Glu Asp Asn Ile Ser Asp Ala Glu Asn Val aag aga gat gta ctt gcc cta cat aac tca tgc agc cac cct cgc tgc 384 Lys Arg Asp Val Leu Ala Leu His Asn Ser Cys Ser His Pro Arg Cys ttc aat cac gcc cat tgc ctg acc tac tcg cac tgc cat gta tgc tct 432 Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser tcc cgc aag cgt tgt ctt tag 453 Ser Arg Lys Arg Cys Leu *
<210> 25 <211> 150 <212> PRT
<213> Penicillium glandicola <220>
<221> SIGNAL
<222> (1)...(21) <223> Predicted signal peptide <220>
<221> PROPEP
<222> (22)...(118) <223> Predicted propeptide region <220>
<221> PEPTIDE
<222> (119)...(150) <223> Mature LB-09812 peptide set forth in SEQ ID NO:1 <400> 25 Met Lys Ser Ile Ser Thr Ser Leu Val Leu Val Leu Cys Phe Leu Thr Thr Met Ile Glu Gly Leu Thr Arg Tyr Gln Thr Thr Pro Pro Ser Asp Ala Ile Val Cys His Asp Arg Gln Ala Leu Asn Asp Leu Ala Lys Ala Tyr Pro Asp Gly Leu Leu His Pro Glu Asn Gly Gly Tyr Tyr Leu Lys Asp Gly Asp Glu Val Val Val Gly Ile Ala Ser Asp Asp Leu Cys Lys Glu Leu Asp Gly Ala Phe Ala Ser Val Asp Ala Lys Ile Ala Glu Glu Ala Glu Ser Ala Gly Pro Glu Asp Asn Ile Ser Asp Ala Glu Asn Val Lys Arg Asp Val Leu Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys Leu <210> 26 <211> 525 <212> DNA
<213> Penicillum citreonigrum <220>
<221> misc_feature <222> (0)...(0) <223> Genomic sequence encoding the full-length LB-12922 polypeptide set forth in SEQ ID NO:27 <220>
<221> misc_feature <222> (406)...(525) <223> Nucleotide sequence encoding the mature LB-12922 peptide set forth in SEQ ID NO:3 <220>
<221> CDS
<222> (1)...(525) <400> 26 atg act aag aca tcc ata gag acc tta att acc cct cac gac atc gac 48 Met Thr Lys Thr Ser Ile Glu Thr Leu Ile Thr Pro His Asp Ile Asp atg caa tac att ttt acc tcc ctc gtt caa ttt ctg tgc ttc atg aac 96 Met Gln Tyr Ile Phe Thr Ser Leu Val Gln Phe Leu Cys Phe Met Asn gtc atg gct gaa ggt cta acc cgg tac caa acc tca ccc ccg act gat 144 Val Met Ala Glu Gly Leu Thr Arg Tyr Gln Thr Ser Pro Pro Thr Asp gtc gtg att ctc cac gat aga caa tcc ctg aac gat tac gtg aag atc 192 Val Val Ile Leu His Asp Arg Gln Ser Leu Asn Asp Tyr Val Lys Ile aat cca aac ggt ctg ctc cat gcc gag aat gga ggc tac tac ctg aaa 240 Asn Pro Asn Gly Leu Leu His Ala Glu Asn Gly Gly Tyr Tyr Leu Lys gac atg gaa gac gta gtc gtt gct atc gct agt gat gac ctg tgc aat 288 Asp Met Glu Asp Val Val Val Ala Ile Ala Ser Asp Asp Leu Cys Asn gag ctg gat ggt gcc tgg gct agc gct gag gct gct gct gat gcg ctt 336 Glu Leu Asp Gly Ala Trp Ala Ser Ala Glu Ala Ala Ala Asp Ala Leu gac gcg gct gaa tct aat tct gga tct ggc tct ttg agc ggc gcg aat 384 Asp Ala Ala Glu Ser Asn Ser Gly Ser Gly Ser Leu Ser Gly Ala Asn =
gtt acg aag aga aac gaa gac ctt tct tgt tat ccc agc tgt atg cag 432 Val Thr Lys Arg Asn Glu Asp Leu Ser Cys Tyr Pro Ser Cys Met Gln aat tac tgc agt cat ccc cgt tgc ttc ctc cac gct act tgt ttg tcc 480 Asn Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser tac tct cat tgc cat gtg tgc ggt acc cgg aag gtc tgt ctc taa 525 Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu *
<210> 27 <211> 174 <212> PRT
<213> Penicillium citreonigrum <220>
<221> SIGNAL
<222> (1)...(35) <223> Predicted signal peptide <220>
<221> PROPEP
<222> (36)...(136) <223> Predicted propeptide region <220>
<221> PEPTIDE
<222> (137)...(174) <223> Mature LB-12922 peptide set forth in SEQ ID NO:3 <400> 27 Met Thr Lys Thr Ser Ile Glu Thr Leu Ile Thr Pro His Asp Ile Asp Met Gln Tyr Ile Phe Thr Ser Leu Val Gln Phe Leu Cys Phe Met Asn Val Met Ala Glu Gly Leu Thr Arg Tyr Gln Thr Ser Pro Pro Thr Asp Val Val Ile Leu His Asp Arg Gln Ser Leu Asn Asp Tyr Val Lys Ile Asn Pro Asn Gly Leu Leu His Ala Glu Asn Gly Gly Tyr Tyr Leu Lys Asp Met Glu Asp Val Val Val Ala Ile Ala Ser Asp Asp Leu Cys Asn Glu Leu Asp Gly Ala Trp Ala Ser Ala Glu Ala Ala Ala Asp Ala Leu Asp Ala Ala Glu Ser Asn Ser Gly Ser Gly Ser Leu Ser Gly Ala Asn Val Thr Lys Arg Asn Glu Asp Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu <210> 28 <211> 21 <212> PRT
<213> Artificial Sequence <220>
<223> N-terminal fragment of LB-9812 peptide generated during N-terminal sequencing <400> 28 Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser <210> 29 <211> 18 <212> PRT
<213> Artificial Sequence <220>
<223> N-terminal fragment of LB-9812 peptide generated during N-terminal sequencing <220>
<221> VARIANT
<222> 16 <223> Xaa = any amino acid <400> 29 Cys Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Xaa Cys Ser <210> 30 <211> 22 <212> PRT
<213> Artificial Sequence <220>
<223> N-terminal fragment of LB-12922 peptide generated during N-terminal sequencing <220>
<221> VARIANT
<222> 17, 20 <223> Xaa = any amino acid <400> 30 Leu Ser Cys Tyr Pro Ser Cys Met Gln Asn Tyr Cys Ser His Pro Arg Xaa Phe Leu Xaa Ala Thr <210> 31 <211> 19 <212> DNA
<213> Artificial Sequence <220>
<223> AP2 PCR primer <400> 31 actatagggc acgcgtggt 19 =
<210> 32 <211> 21 <212> DNA
<213> Artificial Sequence <220>
<223> gspR2 PCR primer <220>
<221> misc_feature <222> 16 <223> n = A, T, C, or G
<400> 32 rtgrttraar cayctnggrt g 21 <210> 33 <211> 249 <212> DNA
<213> Penicillium glandicola <220>
<221> misc_feature <222> (0)...(0) <223> Fragment of the LB-9812 gene obtained during Genome Walker experiments <400> 33 tacccggacg ggcttcttca ccccgagaac ggtggctact acctgaagga tggggatgaa 60 gtcgtcgttg gcattgccag cgacgatctt tgcaaggagc tggacggtgc attcgctagc 120 gtcgatgcaa aaattgccga agaagctgaa agcgctggac ccgaagataa tatttctgat 180 gctgaaaatg tcaagagaga tgtacttgcc ctacataact catgcagcca ccctcgctgc 240 ttcaatcac 249 <210> 34 <211> 83 <212> PRT
<213> Penicillium glandicola <220>
<221> PEPTIDE
<222> (1)...(83) <223> Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO:33 <400> 34 Tyr Pro Asp Gly Leu Leu His Pro Glu Asn Gly Gly Tyr Tyr Leu Lys Asp Gly Asp Glu Val Val Val Gly Ile Ala Ser Asp Asp Leu Cys Lys Glu Leu Asp Gly Ala Phe Ala Ser Val Asp Ala Lys Ile Ala Glu Glu Ala Glu Ser Ala Gly Pro Glu Asp Asn Ile Ser Asp Ala Glu Asn Val Lys Arg Asp Val Leu Ala Leu His Asn Ser Cys Ser His Pro Arg Cys Phe Asn His <210> 35 <211> 22 <212> DNA
<213> Artificial Sequence <220>
<223> AP1 PCR primer <400> 35 gtaatacgac tcactatagg gc 22 <210> 36 <211> 23 <212> DNA
<213> Artificial Sequence <220>
<223> gspF4 PCR primer <220>
<221> misc_feature <222> 12 <223> n = A, T, C, or G
<400> 36 ttyaaycayg cncaytgytt rac 23 <210> 37 <211> 462 <212> DNA
<213> Pencillium glandicola <220>
<221> misc_feature <222> (0)...(0) <223> Fragment of the LB-9812 gene obtained during Genome Walker experiments <400> 37 ttcaaccacg ctcactgcyt gacctactcg cactgccatg tatgctcttc ccgcaagcgt 60 tgtctttaga gtatcctgca attttgatag tgggaatgtt ggagagattt acgaaggctt 120 acagagatgt ggttggatag tgaaagtggg ggaggtagtc tgggggtata gcggcctctg 180 gttagtttca attaagatgc gaattttggc ctgattcttg ccttgcttta tttagattca 240 acagaaaatt aagatacctg aaataccatt acagagccta tataaagcta gcgtaggggg 300 gaaatcatca gttattaaga ggagtctcgg cgaacgagat actcaggttg acgagcaatc 360 ctctggtcaa aattccatct ggaaagatgt gtaccgtacc gtcaataatt gggtcgatga 420 gtagtgccct aatttaacgc ctgtacacgg tgaactccat ga 462 <210> 38 <211> 138 <212> PRT
<213> Penicillium glandicola <220>
<221> PEPTIDE
<222> (1)...(138) <223> Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO:37 <400> 38 Phe Asn His Ala His Cys Leu Thr Tyr Ser His Cys His Val Cys Ser Ser Arg Lys Arg Cys Leu Ser Ile Leu Gln Phe Trp Glu Cys Trp Arg Asp Leu Arg Arg Leu Thr Glu Met Trp Leu Asp Ser Glu Ser Gly Gly Gly Ser Leu Gly Val Arg Pro Leu Val Ser Phe Asn Asp Ala Asn Phe Gly Leu Ile Leu Ala Leu Leu Tyr Leu Asp Ser Thr Glu Asn Asp Thr Asn Thr Ile Thr Glu Pro Ile Ser Arg Arg Gly Glu Ile Ile Ser Tyr Glu Glu Ser Arg Arg Thr Arg Tyr Ser Gly Arg Ala Ile Leu Trp Ser Lys Phe His Leu Glu Arg Cys Val Pro Tyr Arg Gln Leu Gly Arg Val Val Pro Phe Asn Ala Cys Thr Arg Thr Pro <210> 39 <211> 22 <212> DNA
<213> Artificial Sequence <220>
<223> PHN99817 PCR primer <400> 39 cgacgctagc gaatgcaccg tc 22 <210> 40 <211> 25 <212> DNA
<213> Artificial Sequence <220>
<223> PHN99816 PCR primer <400> 40 tcatccccat ccttcaggta gtagc 25 <210> 41 <211> 23 <212> DNA
<213> Artificial Sequence <220>
<223> PHN10110 PCR primer <400> 41 tataccaaac gaagaaggat agt 23 <210> 42 <211> 21 <212> DNA
<213> Artificial Sequence <220>
<223> PHP10108 PCR primer <400> 42 atctaaataa agcaaggcaa g 21 <210> 43 <211> 90 <212> DNA
<213> Penicillium citreonigrum <220>
<221> misc_feature <222> (0)...(0) <223> Fragment of the LB-12922 gene obtained during Genome Walker experiments <220>
<221> CDS
<222> (1)...(30) <400> 43 tac tgy agc cat ccc cgt tgc ttc ctc cac gctacttgtt tgtcctactc 50 Tyr Cys Ser His Pro Arg Cys Phe Leu His tcattgccat gtgtgcggta cccggaaggt ctgtctctaa 90 <210> 44 <211> 29 <212> PRT
<213> Penicillium citreonigrum <220>
<221> PEPTIDE
<222> (1)...(29) <223> Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO:43 <400> 44 Tyr Cys Ser His Pro Arg Cys Phe Leu His Ala Thr Cys Leu Ser Tyr Ser His Cys His Val Cys Gly Thr Arg Lys Val Cys Leu <210> 45 <211> 18 <212> DNA
<213> Artificial Sequence <220>
<223> gspP1BR6 PCR primer <220>
<221> misc feature <222> 4, 1-0-<223> n = A, T, C, or G
<400> 45 ycknggrtgn garcarta 18 <210> 46 <211> 18 <212> DNA
<213> Artificial Sequence <220>
<223> gspP1BR1 PCR primer <400> 46 rcartartty tgcatrca 18 <210> 47 <211> 438 <212> DNA
<213> Penicillium citreonigrum <220>
<221> misc feature <222> (0)...(0) <223> Fragment of the LB-12922 gene obtained during Genome Walker experiments <400> 47 atgactaaga catccataga gaccttaatt acccctcacg acatcgacat gcaatacatt 60 tttacctccc tcgttcaatt tctgtgcttc atgaacgtca tggctgaagg tctaacccgg 120 taccaaacct cacccccgac tgatgtcgtg attctccacg atagacaatc cctgaacgat 180 tacgtgaaga tcaatccaaa cggtctgctc catgccgaga atggaggcta ctacctgaaa 240 gacatggaag acgtagtcgt tgctatcgct agtgatgacc tgtgcaatga gctggatggt 300 gcctgggcta gcgctgaggc tgctgctgat gcgcttgacg cggctgaatc taattctgga 360 tctggctctt tgagcggcgc gaatgttacg aagagaaacg aagacctttc ttgttatccc 420 agctgtatgc agaattat 438 <210> 48 <211> 24 <212> DNA
<213> Artificial Sequence <220>
<223> PHN100279 PCR primer <400> 48 atgtcctcct cccaagtttc cttc 24 <210> 49 <211> 25 <212> DNA
<213> Artificial Sequence <220>
<223> PHN100615 PCR primer <400> 49 agtgggtgga tatttgtctc agaaa 25 <210> 50 <211> 18 <212> DNA
<213> Artificial Sequence <220>
<223> gspP1BF1 PCR primer <400> 50 tgyatgcara aytaytgy 18 <210> 51 <211> 17 <212> DNA
<213> Artificial Sequence <220>
<223> gspP1BF3 PCR primer <220>
<221> misc_feature <222> 15 <223> n - A, T, C, or G
<400> 51 taytgyagyc ayccncg 17
Claims (21)
1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
a) a polypeptide comprising the amino acid sequence set forth in SEQ ID
NO:1;
b) a polypeptide having at least 90% sequence identity relative to the full length of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity;
and, c) a polypeptide having at least 15 consecutive amino acids of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity.
a) a polypeptide comprising the amino acid sequence set forth in SEQ ID
NO:1;
b) a polypeptide having at least 90% sequence identity relative to the full length of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity;
and, c) a polypeptide having at least 15 consecutive amino acids of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity.
2. The polypeptide of claim 1, wherein the polypeptide has antifungal activity.
3. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
a) a polynucleotide comprising the sequence set forth in SEQ ID NO:2;
b) a polynucleotide having at least 90% sequence identity relative to the full length of SEQ ID NO:2, wherein the polynucleotide encodes a polypeptide having antipathogenic activity;
c) a polynucleotide encoding the amino acid sequence of SEQ ID NO:1;
d) a polynucleotide encoding the amino acid sequence of a polypeptide having at least 90% sequence identity relative to the full length of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity; and, e) a polynucleotide encoding the amino acid sequence of a polypeptide having at least 15 consecutive amino acids of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity.
a) a polynucleotide comprising the sequence set forth in SEQ ID NO:2;
b) a polynucleotide having at least 90% sequence identity relative to the full length of SEQ ID NO:2, wherein the polynucleotide encodes a polypeptide having antipathogenic activity;
c) a polynucleotide encoding the amino acid sequence of SEQ ID NO:1;
d) a polynucleotide encoding the amino acid sequence of a polypeptide having at least 90% sequence identity relative to the full length of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity; and, e) a polynucleotide encoding the amino acid sequence of a polypeptide having at least 15 consecutive amino acids of SEQ ID NO:1, wherein said polypeptide has antipathogenic activity.
4. The nucleic acid molecule of claim 3, wherein the nucleotide sequence is optimized for expression in a plant.
5. An expression cassette comprising a polynucleotide of claim 3 operably linked to a promoter that drives expression in a plant or plant cell.
6. The expression cassette of claim 5 further comprising an operably linked polynucleotide encoding a signal peptide.
7. The expression cassette of claim 6, wherein said polynucleotide encoding a signal peptide comprises the nucleotide sequence of SEQ ID NO:14.
8. The expression cassette of claim 7, wherein said signal peptide comprises the amino acid sequence of SEQ ID NO:15.
9. A transformed plant cell comprising at least one expression cassette according to claim 5.
10. The plant cell of claim 9, wherein said plant cell is from a monocot.
11. The plant cell of claim 10, wherein said monocot is maize, wheat, rice, barley, sorghum, or rye.
12. The plant cell of claim 9, wherein said plant cell is from a dicot.
13. The plant cell of claim 12, wherein said dicot is soybean, Brassica, sunflower, cotton, or alfalfa.
14. The plant cell of claim 9, wherein said plant cell displays increased resistance to a plant fungal pathogen.
15. The plant cell of claim 14, wherein said plant fungal pathogen is selected from the group consisting of Colletotrichum graminicola, Diplodia maydis, Fusarium graminearum, and Fusarium verticillioides.
16. The plant cell of claim 9, wherein said promoter is a tissue-preferred promoter selected from the group consisting of a leaf-preferred promoter, a root-preferred promoter, a seed-preferred promoter, a stalk-preferred promoter, and a vascular tissue-preferred promoter.
17. The plant cell of claim 9, wherein said promoter is a pathogen-inducible promoter.
18. The plant cell of claim 9 which is a seed cell comprising the nucleic acid of claim 3.
19. A method for inducing plant pathogen resistance in a plant, said method comprising introducing into a plant at least one expression cassette according to claim 5.
20. An antipathogenic composition comprising a carrier and at least one polypeptide in accordance with claim 1, wherein said carrier is selected from the group consisting of; a suspension, a solution, an emulsion, a dusting powder, a dispersible granule, a settable powder, an emulsifiable concentrate, an aerosol, an impregnated granule, an adjuvant, a coatable paste and an encapsulation.
21. A method for protecting a plant from a plant pathogen comprising applying the composition according to claim 20 to a plant or in the soil or other growth medium surrounding the roots of a plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2905478A CA2905478A1 (en) | 2006-05-16 | 2007-05-15 | Antifungal polypeptides |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80080406P | 2006-05-16 | 2006-05-16 | |
US60/800,804 | 2006-05-16 | ||
PCT/US2007/068984 WO2007149657A2 (en) | 2006-05-16 | 2007-05-15 | Antifungal polypeptides |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2905478A Division CA2905478A1 (en) | 2006-05-16 | 2007-05-15 | Antifungal polypeptides |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2652461A1 CA2652461A1 (en) | 2007-12-27 |
CA2652461C true CA2652461C (en) | 2015-12-01 |
Family
ID=38834202
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2652461A Expired - Fee Related CA2652461C (en) | 2006-05-16 | 2007-05-15 | Antifungal polypeptides and uses thereof in inducing fungal resistance in plants |
CA2905478A Abandoned CA2905478A1 (en) | 2006-05-16 | 2007-05-15 | Antifungal polypeptides |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2905478A Abandoned CA2905478A1 (en) | 2006-05-16 | 2007-05-15 | Antifungal polypeptides |
Country Status (9)
Country | Link |
---|---|
US (2) | US7598346B1 (en) |
EP (2) | EP2027276B1 (en) |
CN (1) | CN101490265B (en) |
AT (1) | ATE497539T1 (en) |
BR (1) | BRPI0711582A2 (en) |
CA (2) | CA2652461C (en) |
DE (1) | DE602007012343D1 (en) |
MX (1) | MX2008014614A (en) |
WO (1) | WO2007149657A2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR122015026849C8 (en) * | 2004-07-02 | 2017-06-20 | Du Pont | expression cassette, transformed microorganism, method for inducing plant pathogen resistance in a plant, anti-pathogenic composition and method for protecting a plant against a plant pathogen |
US8802933B2 (en) * | 2010-08-19 | 2014-08-12 | Pioneer Hi Bred International Inc | Bacillus thuringiensis gene with lepidopteran activity |
US8802934B2 (en) * | 2010-08-19 | 2014-08-12 | Pioneer Hi Bred International Inc | Bacillus thuringiensis gene with lepidopteran activity |
US8933299B2 (en) * | 2010-08-20 | 2015-01-13 | Pioneer Hi Bred International Inc | Bacillus thuringiensis gene with coleopteran activity |
WO2012027209A2 (en) * | 2010-08-23 | 2012-03-01 | Pioneer Hi-Bred International, Inc. | Novel defensin variants and methods of use |
US20120054912A1 (en) | 2010-09-01 | 2012-03-01 | Pioneer Hi-Bred International, Inc. | Vacuole Targeting Peptides and Methods of Use |
AU2016315655A1 (en) | 2015-08-28 | 2018-02-01 | E. I. Du Pont De Nemours And Company | Ochrobactrum-mediated transformation of plants |
CN107904179B (en) * | 2017-12-18 | 2020-10-23 | 云南天禾地生物科技股份有限公司 | Cryptococcus laurentii with plant growth promotion and disease resistance and application thereof |
WO2019123349A1 (en) * | 2017-12-21 | 2019-06-27 | The New Zealand Institute For Plant And Food Research Limited | Viral mediated biological control of plant pathogenic microorganisms |
CN111771911B (en) * | 2020-06-30 | 2021-06-04 | 武汉合缘绿色生物股份有限公司 | Microbial preparation for preventing and treating tobacco mosaic virus and preparation method thereof |
Family Cites Families (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ201918A (en) | 1981-09-18 | 1987-04-30 | Genentech Inc | N-terminal methionyl analogues of bovine growth hormone |
US5380831A (en) | 1986-04-04 | 1995-01-10 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
US4945050A (en) | 1984-11-13 | 1990-07-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
US5569597A (en) | 1985-05-13 | 1996-10-29 | Ciba Geigy Corp. | Methods of inserting viral DNA into plant material |
US5268463A (en) | 1986-11-11 | 1993-12-07 | Jefferson Richard A | Plant promoter α-glucuronidase gene construct |
US5608142A (en) | 1986-12-03 | 1997-03-04 | Agracetus, Inc. | Insecticidal cotton plants |
US4873192A (en) | 1987-02-17 | 1989-10-10 | The United States Of America As Represented By The Department Of Health And Human Services | Process for site specific mutagenesis without phenotypic selection |
US5316931A (en) | 1988-02-26 | 1994-05-31 | Biosource Genetics Corp. | Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes |
US5614395A (en) | 1988-03-08 | 1997-03-25 | Ciba-Geigy Corporation | Chemically regulatable and anti-pathogenic DNA sequences and uses thereof |
US5990387A (en) | 1988-06-10 | 1999-11-23 | Pioneer Hi-Bred International, Inc. | Stable transformation of plant cells |
US5023179A (en) | 1988-11-14 | 1991-06-11 | Eric Lam | Promoter enhancer element for gene expression in plant roots |
US5110732A (en) | 1989-03-14 | 1992-05-05 | The Rockefeller University | Selective gene expression in plants |
US5879918A (en) | 1989-05-12 | 1999-03-09 | Pioneer Hi-Bred International, Inc. | Pretreatment of microprojectiles prior to using in a particle gun |
US5240855A (en) | 1989-05-12 | 1993-08-31 | Pioneer Hi-Bred International, Inc. | Particle gun |
US5322783A (en) | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
ATE225853T1 (en) | 1990-04-12 | 2002-10-15 | Syngenta Participations Ag | TISSUE-SPECIFIC PROMOTORS |
EP0528857B1 (en) | 1990-04-26 | 2002-01-30 | Aventis CropScience N.V. | New bacillus thuringiensis strain and its gene encoding insecticidal toxin |
US5498830A (en) | 1990-06-18 | 1996-03-12 | Monsanto Company | Decreased oil content in plant seeds |
US5932782A (en) | 1990-11-14 | 1999-08-03 | Pioneer Hi-Bred International, Inc. | Plant transformation method using agrobacterium species adhered to microprojectiles |
US5277905A (en) | 1991-01-16 | 1994-01-11 | Mycogen Corporation | Coleopteran-active bacillus thuringiensis isolate |
US5459252A (en) | 1991-01-31 | 1995-10-17 | North Carolina State University | Root specific gene promoter |
US5399680A (en) | 1991-05-22 | 1995-03-21 | The Salk Institute For Biological Studies | Rice chitinase promoter |
EP0602064B1 (en) | 1991-08-02 | 1998-12-16 | Mycogen Corporation | Novel microorganism and insecticide |
DE69230290T2 (en) | 1991-08-27 | 2000-07-20 | Novartis Ag, Basel | PROTEINS WITH INSECTICIDAL PROPERTIES AGAINST HOMOPTERAN INSECTS AND THEIR USE IN PLANT PROTECTION |
EP0612208B1 (en) | 1991-10-04 | 2004-09-15 | North Carolina State University | Pathogen-resistant transgenic plants |
TW261517B (en) | 1991-11-29 | 1995-11-01 | Mitsubishi Shozi Kk | |
AU675923B2 (en) | 1991-12-04 | 1997-02-27 | E.I. Du Pont De Nemours And Company | Fatty acid desaturase genes from plants |
US5324646A (en) | 1992-01-06 | 1994-06-28 | Pioneer Hi-Bred International, Inc. | Methods of regeneration of Medicago sativa and expressing foreign DNA in same |
US5428148A (en) | 1992-04-24 | 1995-06-27 | Beckman Instruments, Inc. | N4 - acylated cytidinyl compounds useful in oligonucleotide synthesis |
US5401836A (en) | 1992-07-16 | 1995-03-28 | Pioneer Hi-Bre International, Inc. | Brassica regulatory sequence for root-specific or root-abundant gene expression |
CA2140910C (en) | 1992-07-27 | 1999-03-23 | Jeffrey A. Townsend | An improved method of agrobacterium-mediated transformation of cultured soybean cells |
AU5407594A (en) | 1992-11-17 | 1994-06-08 | E.I. Du Pont De Nemours And Company | Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants |
CA2127807A1 (en) | 1992-11-20 | 1994-06-09 | John Maliyakal | Transgenic cotton plants producing heterologous bioplastic |
IL108241A (en) | 1992-12-30 | 2000-08-13 | Biosource Genetics Corp | Plant expression system comprising a defective tobamovirus replicon integrated into the plant chromosome and a helper virus |
EP0745126B1 (en) | 1993-01-13 | 2001-09-12 | Pioneer Hi-Bred International, Inc. | High lysine derivatives of alpha-hordothionin |
US5583210A (en) | 1993-03-18 | 1996-12-10 | Pioneer Hi-Bred International, Inc. | Methods and compositions for controlling plant development |
US5789156A (en) | 1993-06-14 | 1998-08-04 | Basf Ag | Tetracycline-regulated transcriptional inhibitors |
US5814618A (en) | 1993-06-14 | 1998-09-29 | Basf Aktiengesellschaft | Methods for regulating gene expression |
US5847047A (en) | 1993-06-22 | 1998-12-08 | E. I. Du Pont De Nemours And Company | Antimicrobial composition of a polymer and a peptide forming amphiphilic helices of the magainin-type |
JPH07177130A (en) | 1993-12-21 | 1995-07-14 | Fujitsu Ltd | Error count circuit |
US5605793A (en) | 1994-02-17 | 1997-02-25 | Affymax Technologies N.V. | Methods for in vitro recombination |
US5837458A (en) | 1994-02-17 | 1998-11-17 | Maxygen, Inc. | Methods and compositions for cellular and metabolic engineering |
US5593881A (en) | 1994-05-06 | 1997-01-14 | Mycogen Corporation | Bacillus thuringiensis delta-endotoxin |
US5633363A (en) | 1994-06-03 | 1997-05-27 | Iowa State University, Research Foundation In | Root preferential promoter |
US5736369A (en) | 1994-07-29 | 1998-04-07 | Pioneer Hi-Bred International, Inc. | Method for producing transgenic cereal plants |
US5792931A (en) | 1994-08-12 | 1998-08-11 | Pioneer Hi-Bred International, Inc. | Fumonisin detoxification compositions and methods |
US5608144A (en) | 1994-08-12 | 1997-03-04 | Dna Plant Technology Corp. | Plant group 2 promoters and uses thereof |
US5659026A (en) | 1995-03-24 | 1997-08-19 | Pioneer Hi-Bred International | ALS3 promoter |
AU705933B2 (en) | 1995-06-02 | 1999-06-03 | Pioneer Hi-Bred International, Inc. | High threonine derivatives of alpha-hordothionin |
PL323635A1 (en) | 1995-06-02 | 1998-04-14 | Pioneer Hi Bred Int | Derivatives of alpha-hordothionine of high methionine content |
US5837876A (en) | 1995-07-28 | 1998-11-17 | North Carolina State University | Root cortex specific gene promoter |
US5737514A (en) | 1995-11-29 | 1998-04-07 | Texas Micro, Inc. | Remote checkpoint memory system and protocol for fault-tolerant computer system |
US6072050A (en) | 1996-06-11 | 2000-06-06 | Pioneer Hi-Bred International, Inc. | Synthetic promoters |
US5986174A (en) | 1996-06-21 | 1999-11-16 | Pioneer Hi-Bred International, Inc. | Maize promoter sequence for leaf- and stalk-preferred gene expression |
JP3441899B2 (en) | 1996-11-01 | 2003-09-02 | 理化学研究所 | How to make a full-length cDNA library |
US6232529B1 (en) | 1996-11-20 | 2001-05-15 | Pioneer Hi-Bred International, Inc. | Methods of producing high-oil seed by modification of starch levels |
US6121436A (en) * | 1996-12-13 | 2000-09-19 | Monsanto Company | Antifungal polypeptide and methods for controlling plant pathogenic fungi |
AUPO427596A0 (en) | 1996-12-20 | 1997-01-23 | Cooperative Research Centre For Tropical Plant Pathology | Anti-microbial protein |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
US6015941A (en) | 1997-10-31 | 2000-01-18 | Pioneer Hi-Bred International, Inc. | Peptide derivatives of tachyplesin having antimicrobial activity |
ATE454459T1 (en) | 1997-11-18 | 2010-01-15 | Pioneer Hi Bred Int | MOBILIZATION OF A VIRAL GENOME FROM T-DNA THROUGH SITE-SPECIFIC RECOMBINATION SYSTEMS |
WO1999025840A1 (en) | 1997-11-18 | 1999-05-27 | Pioneer Hi-Bred International, Inc. | A novel method for the integration of foreign dna into eukaryoticgenomes |
AU1526199A (en) | 1997-11-18 | 1999-06-07 | Pioneer Hi-Bred International, Inc. | Targeted manipulation of herbicide-resistance genes in plants |
AU760113C (en) | 1997-11-18 | 2004-04-22 | Pioneer Hi-Bred International, Inc. | Compositions and methods for genetic modification of plants |
ES2273127T3 (en) | 1998-02-26 | 2007-05-01 | Pioneer Hi-Bred International, Inc. | ALFA-TUBULIN 3-18 CORN PROMOTER. |
WO1999043819A1 (en) | 1998-02-26 | 1999-09-02 | Pioneer Hi-Bred International, Inc. | Family of maize pr-1 genes and promoters |
WO1999061619A2 (en) | 1998-05-22 | 1999-12-02 | Pioneer Hi-Bred International, Inc. | Cell cycle genes, proteins and uses thereof |
EP1104469B1 (en) | 1998-08-20 | 2005-11-09 | Pioneer Hi-Bred International, Inc. | Seed-preferred promoters |
WO2000012733A1 (en) | 1998-08-28 | 2000-03-09 | Pioneer Hi-Bred International, Inc. | Seed-preferred promoters from end genes |
US6518487B1 (en) | 1998-09-23 | 2003-02-11 | Pioneer Hi-Bred International, Inc. | Cyclin D polynucleotides, polypeptides and uses thereof |
JP2002529096A (en) | 1998-11-09 | 2002-09-10 | パイオニア ハイ−ブレッド インターナショナル, インコーポレイテッド | Transcriptional activator LEC1 nucleic acids, polypeptides and uses thereof |
US20090087878A9 (en) | 1999-05-06 | 2009-04-02 | La Rosa Thomas J | Nucleic acid molecules associated with plants |
US6573361B1 (en) | 1999-12-06 | 2003-06-03 | Monsanto Technology Llc | Antifungal proteins and methods for their use |
US6338168B1 (en) | 2000-09-08 | 2002-01-15 | Carolyn E. Valentine | Weight core drain covering system |
US6720480B2 (en) | 2000-10-25 | 2004-04-13 | Pioneer Hi-Bred International, Inc. | Maize proteinase inhibitor-like polynucleotides and defense-activated promoter, transformed plants, and methods of use |
BR0115046A (en) | 2000-10-30 | 2005-04-12 | Maxygen Inc | Glyphosate n-acetyl transferase (gat) genes |
US7462481B2 (en) | 2000-10-30 | 2008-12-09 | Verdia, Inc. | Glyphosate N-acetyltransferase (GAT) genes |
US6858778B1 (en) | 2000-11-07 | 2005-02-22 | Pioneer Hi-Bred International, Inc. | Plants transformed with a DNA construct comprising a nucleic acid molecule encoding an 18 kD α-globulin |
US7009087B1 (en) | 2000-12-01 | 2006-03-07 | Pioneer Hi-Bred International, Inc. | Compositions and methods for altering the disulfide status of proteins |
US7319087B2 (en) | 2001-05-04 | 2008-01-15 | Novozymes A/S | Antimicrobial polypeptide from Aspergillus niger |
MXPA04000366A (en) | 2001-07-13 | 2004-05-04 | Pioneer Hi Bred Int | Vascular tissue preferred promoters. |
CN1374322A (en) * | 2002-04-05 | 2002-10-16 | 西南农业大学 | Wide-spectrum antifungal polypeptide LHAFP from motherwort and its purification process |
AU2003234328A1 (en) | 2002-04-30 | 2003-11-17 | Pioneer Hi-Bred International, Inc. | Novel glyphosate-n-acetyltransferase (gat) genes |
US7465708B2 (en) | 2002-11-25 | 2008-12-16 | Mixson A James | Branched cationic copolymers and methods for antimicrobial use |
BR122015026849C8 (en) | 2004-07-02 | 2017-06-20 | Du Pont | expression cassette, transformed microorganism, method for inducing plant pathogen resistance in a plant, anti-pathogenic composition and method for protecting a plant against a plant pathogen |
JP7222255B2 (en) | 2019-01-28 | 2023-02-15 | 富士通株式会社 | WAVELENGTH CONVERTER AND WAVELENGTH CONVERSION METHOD |
-
2007
- 2007-05-15 CA CA2652461A patent/CA2652461C/en not_active Expired - Fee Related
- 2007-05-15 AT AT07845231T patent/ATE497539T1/en not_active IP Right Cessation
- 2007-05-15 EP EP07845231A patent/EP2027276B1/en not_active Not-in-force
- 2007-05-15 CN CN2007800266728A patent/CN101490265B/en not_active Expired - Fee Related
- 2007-05-15 CA CA2905478A patent/CA2905478A1/en not_active Abandoned
- 2007-05-15 EP EP10014650.5A patent/EP2333088B1/en not_active Not-in-force
- 2007-05-15 WO PCT/US2007/068984 patent/WO2007149657A2/en active Application Filing
- 2007-05-15 US US11/748,994 patent/US7598346B1/en active Active
- 2007-05-15 MX MX2008014614A patent/MX2008014614A/en active IP Right Grant
- 2007-05-15 BR BRPI0711582-2A patent/BRPI0711582A2/en not_active Application Discontinuation
- 2007-05-15 DE DE602007012343T patent/DE602007012343D1/en active Active
-
2008
- 2008-11-05 US US12/265,461 patent/US7700832B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101490265B (en) | 2013-09-04 |
EP2333088A1 (en) | 2011-06-15 |
BRPI0711582A2 (en) | 2011-11-16 |
CN101490265A (en) | 2009-07-22 |
WO2007149657A2 (en) | 2007-12-27 |
MX2008014614A (en) | 2008-11-28 |
EP2027276B1 (en) | 2011-02-02 |
EP2333088B1 (en) | 2013-08-28 |
DE602007012343D1 (en) | 2011-03-17 |
CA2905478A1 (en) | 2007-12-27 |
CA2652461A1 (en) | 2007-12-27 |
ATE497539T1 (en) | 2011-02-15 |
US7598346B1 (en) | 2009-10-06 |
WO2007149657A3 (en) | 2008-07-17 |
US20090089895A1 (en) | 2009-04-02 |
EP2027276A2 (en) | 2009-02-25 |
US7700832B2 (en) | 2010-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2264053B1 (en) | Antifungal polypeptides | |
US7589176B2 (en) | Antifungal polypeptides | |
US7700832B2 (en) | Isolated nucleic acids encoding antipathogenic polypeptides and uses thereof | |
US7714184B2 (en) | Maize antimicrobial nucleic acids useful for enhancing plant resistance to pathogens | |
US8802932B2 (en) | Antipathogenic proteins and methods of use | |
LT et al. | Antimykotische Polypeptide Polypeptides antifongiques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDC | Discontinued application reinstated |
Effective date: 20120621 |
|
MKLA | Lapsed |
Effective date: 20200831 |