CN102604310B - Water-phase preparing method of silica-coating polymer nano particles - Google Patents
Water-phase preparing method of silica-coating polymer nano particles Download PDFInfo
- Publication number
- CN102604310B CN102604310B CN201210060239.9A CN201210060239A CN102604310B CN 102604310 B CN102604310 B CN 102604310B CN 201210060239 A CN201210060239 A CN 201210060239A CN 102604310 B CN102604310 B CN 102604310B
- Authority
- CN
- China
- Prior art keywords
- water
- deionized water
- reaction
- coated polymer
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title abstract description 17
- 229920001688 coating polymer Polymers 0.000 title 1
- 229920000642 polymer Polymers 0.000 claims abstract description 66
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 27
- 239000010703 silicon Substances 0.000 claims abstract description 27
- 238000002360 preparation method Methods 0.000 claims abstract description 16
- 239000008346 aqueous phase Substances 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 21
- 239000008367 deionised water Substances 0.000 claims description 19
- 229910021641 deionized water Inorganic materials 0.000 claims description 19
- 239000000178 monomer Substances 0.000 claims description 18
- 239000012986 chain transfer agent Substances 0.000 claims description 15
- 239000000047 product Substances 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 10
- -1 dimethylaminoethyl acrylate methyl ammonia methyl esters Chemical class 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 239000003999 initiator Substances 0.000 claims description 8
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 238000000502 dialysis Methods 0.000 claims description 6
- 238000001291 vacuum drying Methods 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- 239000006227 byproduct Substances 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- IYWCBYFJFZCCGV-UHFFFAOYSA-N formamide;hydrate Chemical compound O.NC=O IYWCBYFJFZCCGV-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 5
- 238000010025 steaming Methods 0.000 claims 4
- 239000003795 chemical substances by application Substances 0.000 claims 3
- 238000013019 agitation Methods 0.000 claims 2
- 230000035945 sensitivity Effects 0.000 claims 2
- 239000007858 starting material Substances 0.000 claims 2
- 238000003756 stirring Methods 0.000 claims 2
- CPYRNEFBPGOZKT-UHFFFAOYSA-N 1-(2-methylpropyl)-4,5-dihydroimidazole Chemical class CC(C)CN1CCN=C1 CPYRNEFBPGOZKT-UHFFFAOYSA-N 0.000 claims 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- UGXJZKVFQWEYNV-UHFFFAOYSA-N benzenecarbodithioic acid;2-cyanopentanoic acid Chemical compound CCCC(C#N)C(O)=O.SC(=S)C1=CC=CC=C1 UGXJZKVFQWEYNV-UHFFFAOYSA-N 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 239000003643 water by type Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 7
- 239000002086 nanomaterial Substances 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 abstract description 4
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 3
- 239000011147 inorganic material Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000003937 drug carrier Substances 0.000 abstract 1
- 239000000693 micelle Substances 0.000 description 42
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 14
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 238000003760 magnetic stirring Methods 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 238000012712 reversible addition−fragmentation chain-transfer polymerization Methods 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- BCAGFJXMCZSAHD-UHFFFAOYSA-N 1,2-bis(2-iodoethoxy)ethane Chemical compound ICCOCCOCCI BCAGFJXMCZSAHD-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920002246 poly[2-(dimethylamino)ethyl methacrylate] polymer Polymers 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229920006037 cross link polymer Polymers 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 238000002390 rotary evaporation Methods 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 229920000428 triblock copolymer Polymers 0.000 description 3
- JJYWRQLLQAKNAD-UHFFFAOYSA-N 2-methylpent-2-enoic acid Chemical compound CCC=C(C)C(O)=O JJYWRQLLQAKNAD-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 2
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 2
- 210000000617 arm Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000011557 critical solution Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Natural products CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000429 sodium aluminium silicate Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- YXMISKNUHHOXFT-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) prop-2-enoate Chemical compound C=CC(=O)ON1C(=O)CCC1=O YXMISKNUHHOXFT-UHFFFAOYSA-N 0.000 description 1
- UUGXDEDGRPYWHG-UHFFFAOYSA-N (dimethylamino)methyl 2-methylprop-2-enoate Chemical compound CN(C)COC(=O)C(C)=C UUGXDEDGRPYWHG-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920000469 amphiphilic block copolymer Polymers 0.000 description 1
- ZGRWZUDBZZBJQB-UHFFFAOYSA-N benzenecarbodithioic acid Chemical compound SC(=S)C1=CC=CC=C1 ZGRWZUDBZZBJQB-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000013267 controlled drug release Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 description 1
- 229940099500 cystamine Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- WDFKEEALECCKTJ-UHFFFAOYSA-N n-propylprop-2-enamide Chemical compound CCCNC(=O)C=C WDFKEEALECCKTJ-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001510 poly[2-(diisopropylamino)ethyl methacrylate] polymer Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000005956 quaternization reaction Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Graft Or Block Polymers (AREA)
- Medicinal Preparation (AREA)
Abstract
本发明属有机无机杂化纳米材料技术领域,具体涉及一种硅包覆聚合物纳米粒子的水相制备方法,该硅包覆聚合物纳米粒子具有纳米级结构,热稳定性好,兼具有机聚合物和无机材料的优点,具有特殊的光学、磁学、电学及机械性能。本发明的制备方法降低了生产硅包覆聚合物纳米粒子的生产成本,具有工艺简单、投入产出比高、产品质量高、应用前景广泛等优点,利用本发明制备的产品,符合当今社会对绿色环保高性能化工产品的需求,可用于纳米药物载体等领域。
The invention belongs to the technical field of organic-inorganic hybrid nanomaterials, and specifically relates to a method for preparing a silicon-coated polymer nanoparticle in an aqueous phase. The silicon-coated polymer nanoparticle has a nanoscale structure, good thermal stability, and organic The advantages of polymers and inorganic materials have special optical, magnetic, electrical and mechanical properties. The preparation method of the present invention reduces the production cost of producing silicon-coated polymer nanoparticles, and has the advantages of simple process, high input-output ratio, high product quality, and wide application prospects. The demand for green and high-performance chemical products can be used in nano drug carriers and other fields.
Description
技术领域 technical field
本发明属于有机无机杂化纳米材料技术领域,具体涉及一种硅包覆聚合物纳米粒子的水相制备方法。 The invention belongs to the technical field of organic-inorganic hybrid nanomaterials, and in particular relates to an aqueous phase preparation method of silicon-coated polymer nanoparticles.
背景技术 Background technique
RAFT聚合法由于其对功能性单体的自由选择并可良好的控制聚合物的结构,被广泛应用于嵌段聚合物的制备。然而,由于RAFT聚合所需的链转移剂在水相环境中极易水解,大大降低了单体的转化率。目前研究者们大部分是在油相环境下RAFT聚合法制备嵌段共聚物,而此过程中有机试剂的加入无疑违背了当今绿色环保的主题,即使有少部分研究者尝试了水性条件下RAFT聚合法制备双亲性嵌段聚合物,反应48h后,单体的转化率依然很低[陈卫星,范晓东,刘郁杨. 温度敏感型两亲性嵌段共聚物的合成与表征. 高分子材料科学与工程,2006,22:44-47;潘景云,何军坡,杨玉良等. 基于RAFT过程的MMA可控自由基聚合及嵌段共聚物的合成. 高等学校化学学报,2004,9:1759-1764]。 RAFT polymerization is widely used in the preparation of block polymers due to its free choice of functional monomers and good control over the polymer structure. However, since the chain transfer agent required for RAFT polymerization is easily hydrolyzed in an aqueous environment, the conversion of monomers is greatly reduced. At present, most researchers prepare block copolymers by RAFT polymerization in oil phase environment, and the addition of organic reagents in this process undoubtedly violates the current theme of green environmental protection, even if a small number of researchers have tried RAFT in water-based conditions. Amphiphilic block polymers were prepared by polymerization. After 48 hours of reaction, the conversion rate of monomers was still very low [Chen Weixing, Fan Xiaodong, Liu Yuyang. Synthesis and Characterization of Temperature Sensitive Amphiphilic Block Copolymers. Polymer Materials Science and Engineering, 2006,22:44-47; Pan Jingyun, He Junpo, Yang Yuliang, etc. Controlled free radical polymerization of MMA and synthesis of block copolymers based on RAFT process. Chemical Journal of Chinese Universities, 2004,9:1759- 1764].
另外,在胶束自组装过程中,当聚合物浓度低于临界胶束浓度时,胶束的稀释效应严重影响药物的可控释放效率。而为了提高聚合物胶束的稳定性及超分子纳米结构的完整性,以便于它们在生物环境中更好的应用,近年来,人们一直致力于壳交联聚合物胶束的研究。Liu课题组在制得双亲性嵌段聚合物胶束后,加入一定量的1,2-双(2-碘代乙氧基)乙烷,该交联剂很好的控制了聚合物胶束的形态,但是交联剂的用量不好控制,所有产物需要通过微滤膜过滤后才能用于下一步实验[Luo S Z, Liu S Y, Wu C, et al. Double Hydrophilic Block Copolymer Monolayer Protected Hybrid Gold Nanoparticles and Their Shell Cross-Linking. J. Phys. Chem. B, 2005, 109:22159-22166]。Armes课题组利用聚电解质间的络合作用,通过调节pH获得嵌段聚合物胶束后,添加二乙烯基砜,使其与聚合物链上的羟基发生交联反应,成功制得了壳交联胶束,该方法避免了副产物的产生,制备过程无毒性,而且也可通过添加盐来实现聚合物胶束交联与解交联的可逆过程,然而同时伴随的胶束间的聚集使得该方法并不理想[Liu S Y, Save M, Armes S P, et al. Synthesis of pH-Responsive Shell Cross-Linked Micelles and Their Use as Nanoreactors for the Preparation of Gold Nanoparticles. Langmuir, 2002, 18:8350-8357],这引起了学者们的广泛关注。到目前为止,制备壳交联胶束主要采用的方法是紫外诱导肉桂酰耦合、碳二亚胺耦合法、1,2-双(2-碘代乙氧基)乙烷使胺季铵化、羟基与二乙烯基砜交联,点击化学以及多价金离子原位还原反应等[Li Y T, Armes S P, McCormick C L, et al. Synthesis of Reversible Shell Cross-Linked Micelles for Controlled Release of Bioactive Agents. Macromolecules, 2006, 39:2726-2728; Hernandez J R, Babin J, Lecommandoux S, et al.Preparation of Shell Cross-Linked Nano-Objects from Hybrid-Peptide Block Copolymers. Biomacromolecules, 2005, 6: 2213–2220; Joralemon M J, Hawker C J, Wooley K L, et al. Shell Click-Crosslinked (SCC) Nanoparticles:? A New Methodology for Synthesis and Orthogonal Functionalization. J. Am. Chem. Soc., 2005, 127:16892–16899; Liu S Y, Weaver J V M, Armes S P, et al. Synthesis of Shell Cross-Linked Micelles with pH-Responsive Cores Using ABC Triblock Copolymers. Macromolecules, 2002, 35: 6121–6131]. 然而由于试剂材料价格昂贵,同时要求进一步纯化以除去小分子副产物,限制了它们的大规模使用。利用水性条件下有机无机杂化制备硅包覆纳米聚合物胶束正在进行以简化生产工艺、环保健康和降低成本为目标的研究,而且有机无机杂化材料的快速发展也使得研究开发具有优良性能的聚合物胶束成为该领域的研究热点之一。 In addition, during the micellar self-assembly process, when the polymer concentration is lower than the critical micelle concentration, the dilution effect of micelles seriously affects the controlled drug release efficiency. In order to improve the stability of polymer micelles and the integrity of supramolecular nanostructures for their better application in biological environments, in recent years, people have been working on the research of shell cross-linked polymer micelles. Liu's research group added a certain amount of 1,2-bis(2-iodoethoxy)ethane after preparing the amphiphilic block polymer micelles. The crosslinking agent controlled the polymer micelles well. form, but the amount of cross-linking agent is not easy to control, and all products need to be filtered through a microfiltration membrane before they can be used in the next experiment[Luo S Z, Liu S Y, Wu C, et al. Double Hydrophilic Block Copolymer Monolayer Protected Hybrid Gold Nanoparticles and Their Shell Cross-Linking. J. Phys. Chem. B, 2005, 109:22159-22166]. The Armes research group used the complexation between polyelectrolytes to obtain block polymer micelles by adjusting the pH, then added divinyl sulfone to make it cross-link with the hydroxyl groups on the polymer chain, and successfully prepared the shell cross-link Micelles, this method avoids the generation of by-products, the preparation process is non-toxic, and the reversible process of polymer micelle cross-linking and de-cross-linking can also be achieved by adding salt, but the accompanying aggregation between micelles makes this The method is not ideal [Liu S Y, Save M, Armes S P, et al. Synthesis of pH-Responsive Shell Cross-Linked Micelles and Their Use as Nanoreactors for the Preparation of Gold Nanoparticles. Langmuir, 2002, 18:8350-8357 ], which has aroused extensive attention of scholars. So far, the main methods used to prepare shell-crosslinked micelles are UV-induced cinnamoyl coupling, carbodiimide coupling, 1,2-bis(2-iodoethoxy)ethane quaternization of amines, Hydroxyl and divinyl sulfone cross-linking, click chemistry and in situ reduction of polyvalent gold ions, etc. [Li Y T, Armes S P, McCormick CL, et al. Synthesis of Reversible Shell Cross-Linked Micelles for Controlled Release of Bioactive Agents. Macromolecules, 2006, 39:2726-2728; Hernandez J R, Babin J, Lecommandoux S, et al. Preparation of Shell Cross-Linked Nano-Objects from Hybrid-Peptide Block Copolymers. Biomacromolecules, 2005, –6: 2 2213 ; Joralemon M J, Hawker C J, Wooley K L, et al. Shell Click-Crosslinked (SCC) Nanoparticles:? A New Methodology for Synthesis and Orthogonal Functionalization. J. Am. Chem. Soc., 2005, 127:16892– 16899; Liu S Y, Weaver J V M, Armes S P, et al. Synthesis of Shell Cross-Linked Micelles with pH-Responsive Cores Using ABC Triblock Copolymers. Macromolecules, 2002, 35: 6121–6131]. They are expensive and require further purification to remove small molecule by-products, limiting their large-scale use. The use of organic-inorganic hybridization under aqueous conditions to prepare silicon-coated nano-polymer micelles is being studied with the goal of simplifying the production process, environmental protection and health, and reducing costs, and the rapid development of organic-inorganic hybrid materials also makes research and development have excellent performance. The polymer micelles have become one of the research hotspots in this field.
为了制备结构稳定的壳交联聚合物胶束,人们一直在做不懈的努力。2005年,McCormick课题组通过RAFT聚合法合成了三嵌段共聚物聚环氧乙烷-b-(N,N-二甲基丙烯酰胺-s-铝硅酸钠)-b- N-异丙基丙烯酰胺(PEO-b-(DMA-s-NAS)-b-NIPAM)。当温度高于温敏性嵌段NIPAM的低临界溶解温度时,聚合物自组装成以NIPAM为核和亲水性PEO为壳的胶束,添加二乙胺,使其与剩余的NAS反应,可制得壳交联胶束[Li Y T, Lokitz B Z, McCormick C L. RAFT Synthesis of a Thermally Responsive ABC Triblock Copolymer Incorporating N-Acryloxysuccinimide for Facile in Situ Formation of Shell Cross-Linked Micelles in Aqueous Media. Macromolecules, 2006, 39:81-89]。2007年,Wang通过RAFT聚合法合成了具有温度敏感性嵌段NIPAM-co-NAS(N-异丙基丙烯酰胺-co-铝硅酸钠)的聚合物,当温度高于温敏性嵌段的低临界溶解温度时,聚合物自组装成NIPAM-co-NAS为核和亲水性PEO为壳的胶束,添加胱胺,使其与剩余的NAS反应,也可制得壳交联胶束 [Wang R, Lowe A B. RAFT polymerization of styrenic-based phosphonium monomers and a new family of well-defined statistical and block polyampholytes. J Polym Sci Polym Chem, 2007, 45:2468–2483]。 In order to prepare structurally stable shell cross-linked polymer micelles, people have been making unremitting efforts. In 2005, McCormick's research group synthesized a triblock copolymer polyethylene oxide-b-(N,N-dimethylacrylamide-s-sodium aluminosilicate)-b-N-isopropyl through RAFT polymerization NIPAM (PEO-b-(DMA-s-NAS)-b-NIPAM). When the temperature is higher than the lower critical solution temperature of the thermosensitive block NIPAM, the polymer self-assembles into micelles with NIPAM as the core and hydrophilic PEO as the shell, adding diethylamine to react with the remaining NAS, Shell crosslinked micelles can be prepared [Li Y T, Lokitz B Z, McCormick C L. RAFT Synthesis of a Thermally Responsive ABC Triblock Copolymer Incorporating N-Acryloxysuccinimide for Facile in Situ Formation of Shell Cross-Linked Micelles in Maccules in Aquerom , 2006, 39:81-89]. In 2007, Wang synthesized a polymer with temperature-sensitive block NIPAM-co-NAS (N-isopropylacrylamide-co-sodium aluminosilicate) by RAFT polymerization, when the temperature was higher than the temperature-sensitive block When the critical solution temperature is low, the polymer self-assembles into micelles with NIPAM-co-NAS as the core and hydrophilic PEO as the shell, adding cystamine to react with the remaining NAS, and the shell cross-linked gel can also be prepared Beam [Wang R, Lowe A B. RAFT polymerization of tyrenic-based phosphonium monomers and a new family of well-defined statistical and block polyampholytes. J Polym Sci Polym Chem, 2007, 45:2468–2483].
有机/无机杂化材料尤其是含硅纳米材料由于其极具吸引力的纳米级光学、磁学及电学性能而引起人们的广泛关注。近年来,已经相继有报道阐述了硅包覆壳交联胶束的制备方法。2008年武汉大学张先正和卓仁禧教授课题组在聚合过程中首先选用含有硅氧(Si-O)键的功能性单体,然后通过聚合物自组装过程中酸催化溶胶凝胶形成Si-O-Si网状结构,率先制备出了壳交联热响应性杂化聚合物胶束[Wei H, Chang C, Zhuo R X, et al. Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate). Langmuir, 2008, 24:4564-4570];2009年Li将聚((2-(二甲基胺)乙基甲基丙烯酸)-b-(2-(二异丙基胺)乙基甲基丙烯酸))(PDMA-b-PDPA) 聚合物胶束和硅烷偶联剂反应,利用硅烷偶联剂水解缩合形成的网状结构包覆聚合物胶束,很好地控制了聚合物胶束的形态结构[Li Y T, Du J Z, Armes S P. Shell Cross-Linked Micelles as Cationic Templates for the Preparation of Silica-Coated Nanoparticles: Strategies for Controlling the Mean Particle Diameter. Macromol. Rapid. Commun., 2009, 30:464–468]。选用硅交联体系制备的壳交联胶束兼有有机聚合物的结构和无机材料的特点,即具有以下优点:第一,将无机硅网状结构引入有机聚合物链,可以提高壳交联胶束的刚性,使其更稳定;第二,相比于其他有机“小分子”交联剂,硅烷偶联剂成本更低,毒性更小,使得壳交联胶束的商业化应用更有可能性,而这也与绿色化学的理念相一致;第三,不需要添加有机小分子试剂,提纯过程简单方便。因此硅包覆壳交联胶束既具有无机物的光学、磁学、电学和机械性能,又具有聚合物的可加工性、兼容性和刺激响应性能,有着广阔的发展空间。这些新的思路打破了传统设计的惯性,为材料合成提供了更大的便利。但是这些方法获得的壳交联嵌段聚合物胶束对外界环境如温度、pH等的响应性比较单一,目前国内外尚无关于在水性环境下制备硅包覆壳交联聚合物胶束的文献和专利。 Organic/inorganic hybrid materials, especially silicon-containing nanomaterials, have attracted widespread attention due to their attractive nanoscale optical, magnetic, and electrical properties. In recent years, there have been reports describing the preparation methods of silicon-coated shell cross-linked micelles. In 2008, the research group of Professor Zhang Xianzheng and Zhuo Renxi of Wuhan University first selected functional monomers containing silicon-oxygen (Si-O) bonds in the polymerization process, and then formed Si- O-Si network structure, the first to prepare shell cross-linked thermoresponsive hybrid polymer micelles [Wei H, Chang C, Zhuo R X, et al. Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly ( N -isopropylacrylamide- co -3-(trimethoxysilyl)propyl methacrylate)- b -poly(methyl methacrylate). Langmuir, 2008, 24:4564-4570]; Ethyl methacrylic acid)-b-(2-(diisopropylamine) ethyl methacrylic acid)) (PDMA-b-PDPA) polymer micelles react with silane coupling agent and hydrolyze with silane coupling agent The network structure formed by condensation covers the polymer micelles, and the morphology of the polymer micelles is well controlled [Li Y T, Du J Z, Armes S P. Shell Cross-Linked Micelles as Cationic Templates for the Preparation of Silica- Coated Nanoparticles: Strategies for Controlling the Mean Particle Diameter. Macromol. Rapid. Commun., 2009, 30:464–468]. The shell cross-linked micelles prepared by using the silicon cross-linking system have both the structure of the organic polymer and the characteristics of the inorganic material, which has the following advantages: First, introducing the inorganic silicon network structure into the organic polymer chain can improve the shell cross-linking. The rigidity of the micelles makes them more stable; second, compared to other organic "small molecule" crosslinking agents, silane coupling agents are less costly and less toxic, making the commercial application of shell crosslinked micelles more efficient. Possibility, which is also consistent with the concept of green chemistry; third, no organic small molecule reagents need to be added, and the purification process is simple and convenient. Therefore, silicon-coated shell cross-linked micelles not only have the optical, magnetic, electrical and mechanical properties of inorganic substances, but also have the processability, compatibility and stimuli response properties of polymers, and have broad development space. These new ideas break the inertia of traditional design and provide greater convenience for material synthesis. However, the shell cross-linked block polymer micelles obtained by these methods have a relatively simple response to external environments such as temperature and pH, and there is no research on the preparation of silicon-coated shell cross-linked polymer micelles in an aqueous environment at home and abroad. literature and patents.
发明内容 Contents of the invention
本发明的目的在于克服现有技术存在的不足,提供一种硅包覆聚合物纳米粒子的水相制备方法。 The purpose of the present invention is to overcome the deficiencies in the prior art and provide a method for preparing a silicon-coated polymer nanoparticle in water.
本发明提出的一种硅包覆聚合物纳米粒子的水相制备方法,采用RAFT聚合法,以水为介质,甲基丙烯酸二甲氨乙酯(DMAEMA)及N-异丙基丙烯酰胺(NIPAM)作为功能性单体,合成出PDMAEMA-b-NIPAM嵌段聚合物,通过调节两种单体的摩尔比例来控制嵌段聚合物在温度或pH环境变化时自组装过程中形成的胶束或胶囊形态;然后以该嵌段聚合物胶束作为模板,与硅烷偶联剂发生反应,硅烷偶联剂水解缩合形成的Si-O-Si网状结构很好的包覆在聚合物胶束的表面,该过程既无有机试剂的引入,又完整保存了嵌段聚合物胶束的纳米级精确结构;具体步骤如下: The aqueous phase preparation method of a kind of silicon-coated polymer nanoparticles proposed by the present invention adopts RAFT polymerization method, takes water as medium, dimethylaminoethyl methacrylate (DMAEMA) and N-isopropylacrylamide (NIPAM ) as a functional monomer to synthesize a PDMAEMA-b-NIPAM block polymer, by adjusting the molar ratio of the two monomers to control the micelle or Capsule form; then use the block polymer micelles as a template to react with the silane coupling agent, and the Si-O-Si network structure formed by the hydrolysis and condensation of the silane coupling agent is well coated on the polymer micelles On the surface, this process neither introduces organic reagents nor completely preserves the nanoscale precise structure of block polymer micelles; the specific steps are as follows:
(1) 将1-2 g pH敏感性单体加入25 mL反应瓶中,浓盐酸调节pH至5-6,0℃保存;在另一样品瓶中加入19-20 mg链转移剂和4-5 mg水溶性引发剂,缓慢加入0.5-1 mL溶剂使得链转移剂溶解,然后加入4-5 mL冰去离子水;待样品瓶中的所有物质都溶解后,将该混合溶液倒入反应瓶中,0℃通氮气30 min,磁力搅拌氮气保护下于75-80℃反应3-6 h,结束反应时将反应瓶冷却至室温,通大气,将产物在pH为6-7的去离子水中透析3天,旋蒸,25℃真空干燥12-48 h,得到一种大分子链转移剂,产率为75%-95%。其中:链转移剂为四氰基戊酸二硫代苯甲酸,水溶性引发剂为4,4,-偶氮-4-氰基戊酸。
(1) Add 1-2 g of pH-sensitive monomer into a 25 mL reaction bottle, adjust the pH to 5-6 with concentrated hydrochloric acid, and store at 0°C; add 19-20 mg of chain transfer agent and 4- 5 mg of water-soluble initiator, slowly add 0.5-1 mL of solvent to dissolve the chain transfer agent, then add 4-5 mL of ice deionized water; after all the substances in the sample bottle are dissolved, pour the mixed solution into the
(2) 将1-1.5g步骤(1)所制得的大分子链转移剂、0.5-2 g温度敏感性单体,5-15 mg水溶性偶氮类引发剂和2-8 mL去离子水加入反应瓶中,通氮气30 min,常温磁力搅拌氮气保护下反应6-8 h,结束反应时使反应瓶通大气,将产物于去离子水中透析3天,旋蒸,25℃真空干燥12-48 h,得到嵌段聚合物,产率为80%-96%。其中:水溶性偶氮类引发剂为偶氮二异丁咪唑啉盐酸盐。 (2) Combine 1-1.5g of the macromolecular chain transfer agent prepared in step (1), 0.5-2 g of temperature-sensitive monomer, 5-15 mg of water-soluble azo initiator and 2-8 mL of deionized Add water into the reaction flask, pass nitrogen gas for 30 min, and react for 6-8 h under the protection of nitrogen with magnetic stirring at room temperature. -48 h, the block polymer was obtained with a yield of 80%-96%. Wherein: the water-soluble azo initiator is azobisisobutylimidazoline hydrochloride.
(3) 将0.1-0.2 g步骤(2)所制得的嵌段聚合物、20-30 mg交联剂和2-3 mL去离子水常温下磁力搅拌反应3天,将产物于去离子水中透析3天,旋蒸,25℃真空干燥12-48 h ,得到壳交联的嵌段聚合物。其中:所述交联剂为1,2-双(2-碘代乙氧基)乙烷。 (3) React 0.1-0.2 g of the block polymer prepared in step (2), 20-30 mg of cross-linking agent and 2-3 mL of deionized water with magnetic stirring at room temperature for 3 days, and dissolve the product in deionized water Dialysis for 3 days, rotary evaporation, and vacuum drying at 25°C for 12-48 h to obtain a shell-crosslinked block polymer. Wherein: the crosslinking agent is 1,2-bis(2-iodoethoxy)ethane.
(4) 将0.1-0.2g步骤(3)所制得的壳交联的嵌段聚合物溶于2 mL去离子水中与0.2-0.4 g硅烷偶联剂常温下磁力搅拌反应20 min,将产物于去离子水中透析3天,得到硅包覆聚合物纳米粒子。 (4) Dissolve 0.1-0.2 g of the shell-crosslinked block polymer prepared in step (3) in 2 mL of deionized water and react with 0.2-0.4 g of silane coupling agent under magnetic stirring at room temperature for 20 min. Dialyzed in deionized water for 3 days to obtain silicon-coated polymer nanoparticles.
本发明中,步骤(1)中所述pH敏感性单体可以是含有大量可离子化基团(COO-、-NR3 +、-NR2H+、-NRH2 +等),如丙烯酸、甲基丙烯酸二甲氨乙酯或甲基丙烯酸二甲氨甲酯等。 In the present invention, the pH-sensitive monomer in step (1) may contain a large number of ionizable groups (COO - , -NR 3 + , -NR 2 H + , -NRH 2 + , etc.), such as acrylic acid, Dimethylaminoethyl methacrylate or dimethylaminomethyl methacrylate, etc.
本发明中,步骤(2)中所述温度敏感性单体可以是由N取代的丙烯酰胺或其类似单体,例如N-异丙基丙烯酰胺、N-正丙基丙烯酰胺或N,N-二甲基丙烯酰胺等。 In the present invention, the temperature-sensitive monomer in step (2) may be N-substituted acrylamide or similar monomers, such as N-isopropylacrylamide, N-n-propylacrylamide or N,N -Dimethacrylamide, etc.
本发明中,步骤(1)中所述溶剂可以是二氧六环、水与二氧六环的混合溶液,水与四氢呋喃的混合溶液、水与甲醇的混合溶液或水与二甲基甲酰胺的混合溶液。 In the present invention, the solvent described in step (1) can be dioxane, a mixed solution of water and dioxane, a mixed solution of water and tetrahydrofuran, a mixed solution of water and methanol or water and dimethylformamide mixed solution.
本发明中,步骤(4)中所述硅烷偶联剂可以是氨丙基三乙氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷或正硅酸乙酯等中任一种。 In the present invention, the silane coupling agent described in step (4) can be aminopropyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane, γ-methacryloxypropyl Either of trimethoxysilane or tetraethyl orthosilicate.
本发明中,步骤(4)所述的反应结束后处理产物时可以是透析旋蒸,也可以是透析后冷冻干燥,或者是沉淀剂沉淀后干燥。 In the present invention, the treatment of the product after the reaction described in step (4) may be dialysis and rotary evaporation, or freeze-drying after dialysis, or drying after precipitant precipitation.
本发明的优点是:①本发明为一种硅包覆聚合物纳米粒子的水相制备方法,水性环境下制备该嵌段共聚物,既无大量有机溶剂的加入,反应条件更环保健康,单体转化率又高,可以方便得到窄分布的理想嵌段聚合物及其为模板的硅包覆纳米粒子产品(PDI系数为1.07);②利用本发明制备的硅包覆聚合物纳米粒子产品具有纳米级精确结构,性能更稳定,并兼具有机聚合物和无机材料特殊的光学、磁学、电学和机械性能;③本发明的制备方法降低了生产壳交联胶束的生产成本,具有工艺简单、投入产出比高、产品质量高、应用前景广泛等优点,利用本发明制备的产品,符合当今社会对绿色环保高性能化工产品的需求,可用于纳米生物医用材料等领域。 The advantages of the present invention are: ① The present invention is a water-phase preparation method of silicon-coated polymer nanoparticles. The block copolymer is prepared in an aqueous environment without the addition of a large amount of organic solvents, and the reaction conditions are more environmentally friendly and healthy. The bulk conversion rate is high again, can conveniently obtain the ideal block polymer of narrow distribution and the silicon-coated nanoparticle product (PDI coefficient is 1.07) of template thereof; 2. the silicon-coated polymer nanoparticle product prepared by the present invention has Nano-scale precise structure, more stable performance, and both organic polymers and inorganic materials special optical, magnetic, electrical and mechanical properties; ③The preparation method of the present invention reduces the production cost of producing shell cross-linked micelles, and has the advantages of process With the advantages of simplicity, high input-output ratio, high product quality, and wide application prospects, the products prepared by the present invention meet the needs of today's society for green, environmentally friendly and high-performance chemical products, and can be used in fields such as nano-biomedical materials.
附图说明 Description of drawings
图1是嵌段聚合物聚甲基丙烯酸二甲氨乙酯-b-N-异丙基丙烯酰胺的氢核磁谱图。 Figure 1 is the proton magnetic spectrum of the block polymer polydimethylaminoethyl methacrylate-b-N-isopropylacrylamide.
图2是25℃时嵌段聚合物PDMAEMA50-b-PNIPAM170聚集体的粒径随pH变化的动态光散射图谱。 Fig. 2 is a dynamic light scattering spectrum of the particle size of block polymer PDMAEMA 50 -b-PNIPAM 170 aggregates changing with pH at 25°C.
图3是pH=7时嵌段聚合物PDMAEMA50-b-PNIPAM170聚集体的粒径随温度变化的动态光散射图谱。 Fig. 3 is the dynamic light scattering spectrum of the particle size of block polymer PDMAEMA 50 -b-PNIPAM 170 aggregates changing with temperature at pH=7.
图4是25℃、pH=9时硅包覆纳米粒子的TEM谱图:(a) 以嵌段聚合物PDMAEMA50-b-PNIPAM170为模板的硅包覆聚合物纳米粒子; (b) 以嵌段聚合物PDMAEMA50-b-PNIPAM80为模板的硅包覆聚合物纳米粒子。 Figure 4 is the TEM spectrum of silicon-coated nanoparticles at 25°C and pH=9: (a) silicon-coated polymer nanoparticles with block polymer PDMAEMA 50 -b-PNIPAM 170 as template; (b) with Block polymer PDMAEMA 50 -b-PNIPAM 80 templated silicon-coated polymer nanoparticles.
具体实施方式 Detailed ways
实施例1 Example 1
将2 g甲基丙烯酸二甲氨乙酯单体加入25 mL反应瓶中,浓盐酸调节pH至5,0℃保存;在另一样品瓶中加入19 mg链转移剂四氰基戊酸二硫代苯甲酸,5 mg水溶性引发剂偶氮二氰基戊酸,缓慢加入0.5 mL二氧六环使得链转移剂溶解,然后加入5 mL冰去离子水。待样品瓶中的所有物质都溶解后,将该混合溶液倒入反应瓶中,0℃通氮气30 min,磁力搅拌氮气保护下于80℃反应6 h,结束反应时将反应瓶冷却至室温,与空气接触,将产物在pH为6-7的去离子水中透析3天,旋蒸,25℃真空干燥48 h,得到一种大分子链转移剂聚甲基丙烯酸二甲氨乙酯,产率为90%。 Add 2 g of dimethylaminoethyl methacrylate monomer to a 25 mL reaction bottle, adjust the pH to 5 with concentrated hydrochloric acid, and store at 0°C; add 19 mg of chain transfer agent tetracyanovaleric acid disulfide to another sample bottle Substituted benzoic acid, 5 mg of water-soluble initiator azobiscyanovaleric acid, slowly added 0.5 mL of dioxane to dissolve the chain transfer agent, and then added 5 mL of ice deionized water. After all the substances in the sample bottle were dissolved, the mixed solution was poured into the reaction bottle, nitrogen gas was passed at 0°C for 30 min, and the reaction was carried out at 80°C for 6 h under the protection of magnetic stirring under nitrogen, and the reaction bottle was cooled to room temperature when the reaction was completed. In contact with air, the product was dialyzed in deionized water with a pH of 6-7 for 3 days, rotary evaporated, and vacuum-dried at 25°C for 48 hours to obtain a macromolecular chain transfer agent polydimethylaminoethyl methacrylate. 90%.
将1 g上述大分子链转移剂聚甲基丙烯酸二甲氨乙酯、0.4 g单体N-异丙基丙烯酰胺,5 mg常温水溶性偶氮类引发剂偶氮二异丁咪唑啉盐酸盐,4 mL去离子水加入反应瓶中,通氮气30 min,常温磁力搅拌氮气保护下反应6 h,结束反应时使反应瓶通大气,将产物于去离子水中透析3天,旋蒸,25℃真空干燥48 h,得到嵌段聚合物聚甲基丙烯酸二甲氨乙酯-b-N-异丙基丙烯酰胺,其数均分子量为9699,产率为88%。 Mix 1 g of the above-mentioned macromolecular chain transfer agent polydimethylaminoethyl methacrylate, 0.4 g of monomer N-isopropylacrylamide, and 5 mg of room temperature water-soluble azo initiator azobisisobutylimidazoline hydrochloride Add salt and 4 mL deionized water into the reaction bottle, pass nitrogen gas for 30 min, and react for 6 h under the protection of nitrogen with magnetic stirring at room temperature. After vacuum drying at ℃ for 48 h, the block polymer polydimethylaminoethyl methacrylate-b-N-isopropylacrylamide was obtained with a number average molecular weight of 9699 and a yield of 88%.
将0.1 g上述嵌段聚合物聚甲基丙烯酸二甲氨乙酯-b-N-异丙基丙烯酰胺与20 mg交联剂1,2-双(2-碘代乙氧基)乙烷、2 mL去离子水常温下磁力搅拌反应3天,将产物于去离子水中透析3天,旋蒸,25℃真空干燥48 h ,得到壳交联的嵌段聚合物。 Mix 0.1 g of the above block polymer polydimethylaminoethyl methacrylate-b-N-isopropylacrylamide with 20 mg of cross-linking agent 1,2-bis(2-iodoethoxy)ethane, 2 mL Magnetic stirring reaction was carried out under deionized water at room temperature for 3 days, the product was dialyzed in deionized water for 3 days, rotary evaporated, and vacuum dried at 25 °C for 48 h to obtain a shell crosslinked block polymer.
将0.1 g上述嵌段聚合物溶于2 mL去离子水中与0.2 g硅烷偶联剂γ-(甲基丙烯酰氧)丙基三甲氧基硅烷常温下磁力搅拌反应20 min,将产物于去离子水中透析3天,得到硅包覆聚合物纳米粒子。 Dissolve 0.1 g of the above block polymer in 2 mL of deionized water and react with 0.2 g of silane coupling agent γ-(methacryloyloxy)propyltrimethoxysilane under magnetic stirring at room temperature for 20 min. Dialyzed in water for 3 days to obtain silicon-coated polymer nanoparticles.
该聚甲基丙烯酸二甲氨乙酯-b-N-异丙基丙烯酰胺的氢核磁谱图如图1所示,图2和图3分别是在不同温度、pH时嵌段聚合物胶束的粒径变化,图4是常温中性条件下嵌段聚合物胶束为模板的硅包覆纳米粒子的透射电镜图。 The proton magnetic spectrum of this polydimethylaminoethyl methacrylate-b-N-isopropylacrylamide is shown in Figure 1, and Figure 2 and Figure 3 are the particles of block polymer micelles at different temperatures and pHs respectively. Figure 4 is a transmission electron microscope image of silicon-coated nanoparticles with block polymer micelles as templates under normal temperature and neutral conditions.
实施例2 Example 2
与实施例1相同,但是二氧六环溶剂改为四氢呋喃,而其与水的体积比保持1:5~1:10。 Same as Example 1, but the dioxane solvent was changed to tetrahydrofuran, and the volume ratio between it and water remained 1:5~1:10.
实施例3 Example 3
与实施例1相同,但是甲基丙烯酸二甲氨乙酯与N-异丙基丙烯酰胺的摩尔比例变为60:30。 Same as Example 1, but the molar ratio of dimethylaminoethyl methacrylate to N-isopropylacrylamide is changed to 60:30.
实施例4 Example 4
与实施例1相同,但是甲基丙烯酸二甲氨乙酯与N-异丙基丙烯酰胺的摩尔比例变为70:40。 Same as Example 1, but the molar ratio of dimethylaminoethyl methacrylate to N-isopropylacrylamide is changed to 70:40.
实施例5 Example 5
与实施例1相同,但是甲基丙烯酸二甲氨乙酯与N-异丙基丙烯酰胺的摩尔比例变为80:50。 Same as Example 1, but the molar ratio of dimethylaminoethyl methacrylate and N-isopropylacrylamide is changed to 80:50.
实施例6 Example 6
与实施例1相同,但是甲基丙烯酸二甲氨乙酯与N-异丙基丙烯酰胺的摩尔比例变为20:110。 Same as Example 1, but the molar ratio of dimethylaminoethyl methacrylate to N-isopropylacrylamide is changed to 20:110.
实施例7 Example 7
与实施例1相同,但是甲基丙烯酸二甲氨乙酯与N-异丙基丙烯酰胺的摩尔比例变为30:100。 Same as Example 1, but the molar ratio of dimethylaminoethyl methacrylate and N-isopropylacrylamide is changed to 30:100.
实施例8 Example 8
与实施例1相同,但是甲基丙烯酸二甲氨乙酯与N-异丙基丙烯酰胺的摩尔比例变为40:90。 Same as Example 1, but the molar ratio of dimethylaminoethyl methacrylate to N-isopropylacrylamide is changed to 40:90.
实施例 9 Example 9
与实施例1相同,但是甲基丙烯酸二甲氨乙酯与N-异丙基丙烯酰胺的摩尔比例变为50:80。 Same as Example 1, but the molar ratio of dimethylaminoethyl methacrylate to N-isopropylacrylamide was changed to 50:80.
实施例2-9中获得的嵌段聚合物与实施例1具有类似的窄分布,实施例3、4、5与实施例1制备的嵌段聚合物在外界环境变化的刺激下形成不同粒径的胶束,实施例6、7、8、9制备的嵌段聚合物在外界环境变化的刺激下形成不同粒径的胶囊。 The block polymers obtained in Examples 2-9 have a similar narrow distribution to Example 1, and the block polymers prepared in Examples 3, 4, 5 and Example 1 form different particle sizes under the stimulation of changes in the external environment The micelles, the block polymers prepared in Examples 6, 7, 8, and 9 form capsules of different particle sizes under the stimulation of changes in the external environment.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210060239.9A CN102604310B (en) | 2012-03-09 | 2012-03-09 | Water-phase preparing method of silica-coating polymer nano particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210060239.9A CN102604310B (en) | 2012-03-09 | 2012-03-09 | Water-phase preparing method of silica-coating polymer nano particles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102604310A CN102604310A (en) | 2012-07-25 |
CN102604310B true CN102604310B (en) | 2014-04-02 |
Family
ID=46522114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210060239.9A Expired - Fee Related CN102604310B (en) | 2012-03-09 | 2012-03-09 | Water-phase preparing method of silica-coating polymer nano particles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102604310B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104492371B (en) * | 2014-12-04 | 2016-05-04 | 常州大学 | A kind of preparation method of hollow bromine silicon ball sorbing material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004056880A1 (en) * | 2002-12-23 | 2004-07-08 | Stichting Dutch Polymer Institute | Process for the preparation of a multiblock copolymer |
CN101200526A (en) * | 2007-11-29 | 2008-06-18 | 上海交通大学 | Multi-environment responsive tri-block copolymer and preparation method thereof |
CN101693749A (en) * | 2009-10-22 | 2010-04-14 | 浙江大学 | Method for preparing dissaving vinyl or propenyl amide polymer |
WO2010133680A1 (en) * | 2009-05-22 | 2010-11-25 | Novartis Ag | Actinically-crosslinkable siloxane-containing copolymers |
CN101967215A (en) * | 2010-09-10 | 2011-02-09 | 浙江大学 | Methods for preparing multiple environment-responding type hairy polymer micro-spheres and photo-initiation RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization thereof |
WO2011016656A3 (en) * | 2009-08-07 | 2011-06-09 | 세종대학교산학협력단 | Method for preparing olefin-based segmented copolymers |
CN102134299A (en) * | 2011-01-18 | 2011-07-27 | 浙江大学 | Method for preparing multiple environmental response hair-like polymer microspheres by loading photoinitiator and reversible addition fragmentation transfer (RAFT) reagent on same microspheres |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8043369B2 (en) * | 2009-06-16 | 2011-10-25 | Bausch & Lomb Incorporated | Biomedical devices |
PT2598937T (en) * | 2010-07-30 | 2016-10-04 | Novartis Ag | Amphiphilic polysiloxane prepolymers and uses thereof |
-
2012
- 2012-03-09 CN CN201210060239.9A patent/CN102604310B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004056880A1 (en) * | 2002-12-23 | 2004-07-08 | Stichting Dutch Polymer Institute | Process for the preparation of a multiblock copolymer |
CN101200526A (en) * | 2007-11-29 | 2008-06-18 | 上海交通大学 | Multi-environment responsive tri-block copolymer and preparation method thereof |
WO2010133680A1 (en) * | 2009-05-22 | 2010-11-25 | Novartis Ag | Actinically-crosslinkable siloxane-containing copolymers |
WO2011016656A3 (en) * | 2009-08-07 | 2011-06-09 | 세종대학교산학협력단 | Method for preparing olefin-based segmented copolymers |
CN101693749A (en) * | 2009-10-22 | 2010-04-14 | 浙江大学 | Method for preparing dissaving vinyl or propenyl amide polymer |
CN101967215A (en) * | 2010-09-10 | 2011-02-09 | 浙江大学 | Methods for preparing multiple environment-responding type hairy polymer micro-spheres and photo-initiation RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization thereof |
CN102134299A (en) * | 2011-01-18 | 2011-07-27 | 浙江大学 | Method for preparing multiple environmental response hair-like polymer microspheres by loading photoinitiator and reversible addition fragmentation transfer (RAFT) reagent on same microspheres |
Non-Patent Citations (4)
Title |
---|
RAFT聚合法制备聚合物胶束及其应用前景;杨正龙等;《化学进展》;20111130;第23卷(第11期);2360-2367 * |
基于超支化聚合物的单分子胶束的研究进展;蔡相宇等;《高分子通报》;20081215(第12期);全文 * |
杨正龙等.RAFT聚合法制备聚合物胶束及其应用前景.《化学进展》.2011,第23卷(第11期),2360-2367. |
蔡相宇等.基于超支化聚合物的单分子胶束的研究进展.《高分子通报》.2008,(第12期), |
Also Published As
Publication number | Publication date |
---|---|
CN102604310A (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI553041B (en) | Polyalkylsilsesquioxane particulates and a preparation method thereof | |
CN104211842B (en) | A kind of new type amphoteric ionic polyelectrolyte dispersant and method thereof and application | |
Goto et al. | Creation of coating surfaces possessing superhydrophobic and superoleophobic characteristics with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene segments | |
CN105694051A (en) | Click chemistry based metal-organic framework cross-linking membrane and preparation method and application thereof | |
JP2008542220A5 (en) | ||
CN102633953A (en) | Method for preparing temperature/pH double responsive star hybrid material with POSS (polyhedral oligomeric silsesquioxane) as core | |
CN111298711A (en) | A pH-responsive mesoporous Janus nanosheet emulsifier and its preparation method and use | |
CN101260219A (en) | A preparation method of a triblock copolymer micelle system for reversible fluorescence regulation | |
CN103407992A (en) | Method for preparing hydrophilic temperature and pH dual-sensitive graphene through thiol-ene click chemistry method | |
CN103087088A (en) | Preparation and applications of novel alkyl cage silsesquioxane nanometer hybrid | |
CN102731738B (en) | Polyhedral oligomeric silsesquioxane (POSS) based patterned nano microsphere and preparation method thereof | |
CN114685907B (en) | Preparation method and application of adjustable amphiphobic fluorescent polystyrene microsphere filler | |
CN110498946A (en) | Preparation method of porous polydopamine nanoparticles with controllable morphology | |
CN106732221B (en) | A kind of preparation method of amphipathic Janus grading-hole micro-capsule having an open structure | |
CN104829793B (en) | Preparation method of temperature and pH sensitive organic/inorganic hybrid material POSS/PDMAEMA-b-PNIPAM | |
Yuan et al. | Ordered Honeycomb‐Pattern Membrane | |
Li et al. | Synthesis and self-assembly behavior of thermoresponsive poly (oligo (ethylene glycol) methyl ether methacrylate)-POSS with tunable lower critical solution temperature | |
CN104151563A (en) | Gold nano particles coated with amphiphilic polymer self-assembly micelle with photoresponse | |
CN105461935A (en) | Hyperbranched polymer containing imidazole, preparation method and method thereof for stabilizing nano-silver | |
CN102604310B (en) | Water-phase preparing method of silica-coating polymer nano particles | |
CN107265465A (en) | A kind of preparation method of hollow silica nanosphere and products thereof | |
CN108359109A (en) | A kind of preparation method of hybridized hydrogel | |
CN108586681A (en) | A kind of aqueous hyper-dispersant of block copolymer and preparation method thereof | |
Li et al. | Biomimetic synthesis of copolymer–silica nanoparticles with tunable compositions and surface property | |
Cao-Luu et al. | Synthesis and characterization of poly (N-isopropylacrylamide-co-N, N′-methylenebisacrylamide-co-acrylamide) core–Silica shell nanoparticles by using reactive surfactant polyoxyethylene alkylphenyl ether ammonium sulfate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140402 Termination date: 20170309 |