CN103383990A - Application of Hexaazatriphenylene Derivatives in Organic Light-Emitting Devices - Google Patents

Application of Hexaazatriphenylene Derivatives in Organic Light-Emitting Devices Download PDF

Info

Publication number
CN103383990A
CN103383990A CN 201210134336 CN201210134336A CN103383990A CN 103383990 A CN103383990 A CN 103383990A CN 201210134336 CN201210134336 CN 201210134336 CN 201210134336 A CN201210134336 A CN 201210134336A CN 103383990 A CN103383990 A CN 103383990A
Authority
CN
China
Prior art keywords
layer
organic light
hexaazatriphenylene derivative
cathode
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201210134336
Other languages
Chinese (zh)
Inventor
张宏毅
蔡纶
林蓓羚
辛孟鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to CN 201210134336 priority Critical patent/CN103383990A/en
Publication of CN103383990A publication Critical patent/CN103383990A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An application of hexaazatriphenylene derivative in organic light-emitting element. The organic light-emitting element comprises a substrate, an anode, a cathode and at least one electroluminescent structure. The substrate is made of light-permeable material; the anode is electrically connected with a positive electrode of an external electric field and is suitable for providing hole current; the cathode is electrically connected with a negative electrode of an external electric field and is suitable for providing electron current. The electroluminescent structure is arranged between the anode and the cathode; forming at least one hexaazatriphenylene derivative layer in the electroluminescent structure, wherein the hexaazatriphenylene derivative layer comprises a material containing six functional groups R, each functional group being independently or simultaneously selected from nitrile group (nitril-CN), hydrogen group (hydrogen-H), carboxyl group (carboxyl-COOH), carboxamide group (carboxamide-CONH)2) Trifluoromethyl (trifluoromethyl, -CF)3) And halogen radicals (halogen-halo).

Description

六氮杂苯并菲衍生物在有机发光元件的应用Application of Hexaazatriphenylene Derivatives in Organic Light-Emitting Devices

所属技术领域 Technical field

本发明涉及一种六氮杂苯并菲衍生物的应用,且特别涉及一种六氮杂苯并菲衍生物在有机发光元件的应用。The present invention relates to the application of a hexaazatriphenylene derivative, and in particular to the application of a hexaazatriphenylene derivative in an organic light-emitting element.

背景技术 Background technique

化合物的分子轨道可区分为最低空分子轨道(lowest unoccupied molecularoribital,LUMO)以及最高占据分子轨道(highest occupied molecular oribital,HOMO),其中HOMO至真空能级(vacuum level)的能量差相当于有机材料的电离电势(ionization potential),LUMO至真空能级(vacuum level)的能量差相当于电子亲和能(electron affinity)。有机发光元件(organic light emitting device,OLED)中包含了不同的有机材料,不同的有机材料间形成异质接面,当OLED的阳极与阴极分别与外部电场的正极与负极电性连接,外部电场施以顺向偏压后利用不同的有机材料的异质接面上所形成势垒(potential barrier)可将电子与空穴局限在异质接面附近。因为不同的有机材料彼此间的LUMO能级差值高于最HOMO的能级差值,而使电子进入特定的有机材料的HOMO中与空穴结合而释出能量,其中部份以辐射的方式而发射特定波长范围的电激光。然而,大部份应用于OLED的有机半导体材料,其空穴的迁移速率远高于电子的迁移速率,使得OLED中的空穴与电子容易趋向阴极侧发生结合,电子和空穴过早在接近阴极侧结合会减低OLED中的电流密度,从而导致降低有机发光层的发光效率,并且在无法降低OLED操作电压的情况下,OLED内部的高温使得有机材料快速劣化而缩短了OLED的使用寿命。The molecular orbitals of compounds can be divided into the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), where the energy difference between HOMO and vacuum level is equivalent to that of organic materials. The ionization potential, the energy difference from LUMO to vacuum level is equivalent to electron affinity. The organic light emitting device (OLED) contains different organic materials, and heterojunctions are formed between different organic materials. When the anode and cathode of the OLED are electrically connected to the positive and negative electrodes of the external electric field, the external electric field After applying a forward bias voltage, the potential barrier formed on the heterojunction of different organic materials can be used to confine electrons and holes near the heterojunction. Because the LUMO energy level difference between different organic materials is higher than the most HOMO energy level difference, electrons enter the HOMO of a specific organic material and combine with holes to release energy, part of which is in the form of radiation. And emit electric laser light in a specific wavelength range. However, in most organic semiconductor materials used in OLEDs, the mobility of holes is much higher than that of electrons, which makes it easy for holes and electrons in OLEDs to combine with the cathode side, and electrons and holes are too close to each other too early. The cathode side combination will reduce the current density in the OLED, thereby reducing the luminous efficiency of the organic light-emitting layer, and when the operating voltage of the OLED cannot be reduced, the high temperature inside the OLED will rapidly deteriorate the organic material and shorten the service life of the OLED.

发明内容 Contents of the invention

本发明的目的在于,提供一种六氮杂苯并菲衍生物在有机发光元件的应用,以有效降低元件驱动电压、提高元件发光效率、提升元件制程良率以及增加元件使用寿命达到环保节能的功效。The purpose of the present invention is to provide an application of a hexaazatriphenylene derivative in an organic light-emitting element, so as to effectively reduce the driving voltage of the element, improve the luminous efficiency of the element, improve the yield of the element manufacturing process, and increase the service life of the element to achieve environmental protection and energy saving. effect.

本发明解决其技术问题是采用以下的技术方案来实现的。The present invention solves the technical problem by adopting the following technical solutions.

本发明提出一种六氮杂苯并菲衍生物在有机发光元件的应用。有机发光元件包含基板、阳极、阴极以及至少一个电致发光结构。基板选用可透光材料。阳极与外部电场的正电极电性连接,并适于提供空穴电流。阴极与外部电场的负电极电性连接,并适于提供电子电流。电致发光结构配置于阳极与阴极之间,在电致发光结构中形成有至少一层六氮杂苯并菲衍生物层,六氮杂苯并菲衍生物层的六氮杂苯并菲衍生物的化学式为:The invention proposes the application of a hexaazatriphenylene derivative in an organic light-emitting element. The organic light emitting device includes a substrate, an anode, a cathode and at least one electroluminescent structure. The substrate is made of light-transmitting material. The anode is electrically connected to the positive electrode of the external electric field and is suitable for providing hole current. The cathode is electrically connected to the negative electrode of the external electric field and adapted to provide electron current. The electroluminescence structure is arranged between the anode and the cathode, and at least one layer of hexaazatriphenylene derivative is formed in the electroluminescence structure, and the hexaazatriphenylene derivative layer of the hexaazatriphenylene derivative layer is The chemical formula of the substance is:

Figure BDA0000159489430000021
Figure BDA0000159489430000021

其中,R为官能基(functional group),六氮杂苯并菲衍生物包括六个官能基,各官能基独立地或同时地选自腈基(nitril,-CN)、氢基(hydrogen,-H)、羧基(carboxylic,-COOH)、甲酰胺基(carboxamide,-CONH2)、三氟甲基(trifluomethyl,-CF3)以及卤素基(halogen,-halo)。Wherein, R is a functional group (functional group), and the hexaazatriphenylene derivative includes six functional groups, and each functional group is independently or simultaneously selected from a nitrile group (nitrol, -CN), a hydrogen group (hydrogen, - H), carboxylic (-COOH), carboxamide (-CONH 2 ), trifluoromethyl (trifluoromethyl, -CF 3 ) and halogen (halogen, -halo).

本发明的有益效果是,因采用具有高电子亲合力的六氮杂苯并菲衍生物应用在有机发光元件中,六氮杂苯并菲衍生物的最低空分子轨道(LUMO)能级值较低,因此具有较高的电子亲合力以及良好的导电性等特性,可作为半导体元件中用以吸引电子并提供空穴的受体性质(p-type)结构的材料,用于有机发光元件(OLED)的电荷传输结构中,可大幅降低有机发光元件的操作电压,提高有机发光元件的发光效率,增加元件使用寿命达到环保节能的功效。The beneficial effect of the present invention is that because the hexaazatriphenylene derivatives with high electron affinity are used in organic light-emitting elements, the lowest unoccupied molecular orbital (LUMO) energy level value of the hexaazatriphenylene derivatives is relatively low. Low, so it has high electron affinity and good conductivity and other characteristics, it can be used as a material for the acceptor property (p-type) structure used to attract electrons and provide holes in semiconductor elements, and is used in organic light-emitting elements ( In the charge transport structure of OLED), the operating voltage of the organic light-emitting element can be greatly reduced, the luminous efficiency of the organic light-emitting element can be improved, and the service life of the element can be increased to achieve the effect of environmental protection and energy saving.

附图说明 Description of drawings

下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

图1为六氮杂苯并菲衍生物的化学式。Figure 1 is the chemical formula of hexaazatriphenylene derivatives.

图2为本发明第一实施例的剖面示意图。FIG. 2 is a schematic cross-sectional view of the first embodiment of the present invention.

图3为本发明第二实施例的剖面示意图。FIG. 3 is a schematic cross-sectional view of a second embodiment of the present invention.

图4为本发明第三实施例的剖面示意图。FIG. 4 is a schematic cross-sectional view of a third embodiment of the present invention.

100、200、300:基板        110、230、310:阳极100, 200, 300: substrate 110, 230, 310: anode

120:第一电致发光结构      121:第一空穴注入层120: the first electroluminescent structure 121: the first hole injection layer

122:第一空穴传输层        123:第一有机发光层122: The first hole transport layer 123: The first organic light-emitting layer

124:第一电子传输层        125:第一电子注入层124: The first electron transport layer 125: The first electron injection layer

130:连接层                140:第二电致发光结构130: connection layer 140: second electroluminescent structure

141:第二空穴注入层        142:第二空穴传输层141: Second hole injection layer 142: Second hole transport layer

143:第二有机发光层        144:第二电子传输层143: Second organic light-emitting layer 144: Second electron transport layer

145:第二电子注入层        150、210、330:阴极145: Second electron injection layer 150, 210, 330: Cathode

220、320:电致发光结构     221、325:电子注入层220, 320: Electroluminescence structure 221, 325: Electron injection layer

222、324:电子传输层       223、323:有机发光层222, 324: electron transport layer 223, 323: organic light-emitting layer

224、322:空穴传输层       225、321:空穴注入层224, 322: hole transport layer 225, 321: hole injection layer

具体实施方式 Detailed ways

图1为六氮杂苯并菲衍生物(hexaazatriphenylene derivatives,HAT derivatives)的化学式。请参见图1所示,六氮杂苯并菲衍生物包含四个苯环,其中三个外围苯环环绕中心苯环,每个外围苯环与中心苯环共享两个碳原子,有两个氮原子取代两个碳原子,以及两个非共享碳原子上连接两个官能基(functional group)R,其中各官能基R独立地或同时地选自腈基(nitril,-CN)、氢基(hydrogen,-H)、ve羧基(carboxylic,-COOH)、甲酰胺基(carboxamide,-CONH2)、三氟甲基(trifluomethyl,-CF3)以及卤素基(halogen,-halo)。相较于现有的有机半导体材料,六氮杂苯并菲衍生物的最低空分子轨道(LUMO)能级值较低,因此具有较高的电子亲合力以及良好的导电性等特性,可作为半导体元件中用以吸引电子并提供空穴之受体性质(p-type)结构的材料。进一步而言,具有良好受体性质(p-type)的六氮杂苯并菲衍生物适用于有机发光元件(OLED)的电荷传输结构中,可大幅降低有机发光元件的操作电压,提高有机发光元件的发光效率。Figure 1 is the chemical formula of hexaazatriphenylene derivatives (HAT derivatives). Please refer to Figure 1, the hexaazatriphenylene derivative contains four benzene rings, of which three peripheral benzene rings surround the central benzene ring, each peripheral benzene ring shares two carbon atoms with the central benzene ring, and there are two A nitrogen atom replaces two carbon atoms, and two non-shared carbon atoms are connected to two functional groups (functional group) R, wherein each functional group R is independently or simultaneously selected from nitrile (nitril, -CN), hydrogen (hydrogen, -H), ve carboxyl (carboxylic, -COOH), carboxamide (-CONH 2 ), trifluoromethyl (trifluoromethyl, -CF 3 ) and halogen (halogen, -halo). Compared with the existing organic semiconductor materials, the lowest unoccupied molecular orbital (LUMO) energy level value of hexaazatriphenylene derivatives is lower, so it has higher electron affinity and good conductivity, and can be used as Materials used in semiconductor devices to attract electrons and provide hole acceptor properties (p-type) structure. Furthermore, hexaazatriphenylene derivatives with good acceptor properties (p-type) are suitable for the charge transport structure of organic light-emitting devices (OLEDs), which can greatly reduce the operating voltage of organic light-emitting devices and improve organic light-emitting luminous efficiency of the component.

图2为本发明第一实施例的剖面示意图。请参见图2所示,串接式有机发光元件(tandem organic light-emitting diode,Tandem OLED)包含基板100、阳极110(anode)、第一电致发光结构120、连接层130(connecting Layer)、第二电致发光结构140以及阴极150(cathode)。Tandem OLED中串联数个可产生不同色光的电致发光结构,其受外部电场激发后,由各有机发光结构所产生的光混合而成的光线穿透阳极侧或阴极侧向外部发射。Tandem OLED通常被设计为白光有机发光元件(white organic light-emitting diode,WOLED),其发光效率随着串联有机发光结构的数目增加而可以呈倍数增加。并且,以相同的电流密度值来测定劣化速度,Tandem OLED与一般OLED相同,由于Tandem OLED的初始亮度较大,换算成相等初始亮度值后来计算使用寿命,Tandem OLED较一般TandemOLED长。但是相对地,因Tandem OLED中具有较多数目的膜层,其驱动电压也会随着膜层的数目增加而增加。在本实施例中,Tandem OLED所产生的光穿透阳极侧向外部发射。依据不同的使用目的,基板100可选用透光的玻璃基板或透光的可挠性基板。阳极110配置于基板100上,形成阳极110的材料可为透光导电氧化物(transparent conductive oxide,TCO),例如氧化铟锡(indium tinoxide,ITO)。若是为了进一步增加电子亲合力或调整阳极110的透光率,还可在透光导电氧化物层上叠合其它导电材料层来形成阳极110。另一方面,为使有机发光元件所产生的电激光只能穿透阳极110向外部发射,所以选用电离电势较大并且可反射光线的金属导电材料形成阴极150,例如锂(Li)、铝(Al)、镁(Mg)、银(Ag)等或上述金属任意组合比例的合金,或叠合上述金属与其它导电材料例如透光导电氧化物层或有机化合物等,来形成阴极150。FIG. 2 is a schematic cross-sectional view of the first embodiment of the present invention. Please refer to FIG. 2, the tandem organic light-emitting diode (Tandem OLED) includes a substrate 100, an anode 110 (anode), a first electroluminescent structure 120, a connecting layer 130 (connecting Layer), The second electroluminescent structure 140 and the cathode 150 (cathode). Several electroluminescent structures that can produce different colors of light are connected in series in Tandem OLED. After being excited by an external electric field, the light generated by the light generated by each organic light-emitting structure is mixed and emitted through the anode side or the cathode side to the outside. Tandem OLED is usually designed as a white organic light-emitting diode (WOLED), and its luminous efficiency can increase exponentially with the number of organic light-emitting structures in series. Moreover, the degradation rate is measured with the same current density value, and the Tandem OLED is the same as the general OLED. Since the initial brightness of the Tandem OLED is larger, the service life of the Tandem OLED is longer than that of the general Tandem OLED after being converted into an equal initial brightness value. But relatively, because there are more film layers in Tandem OLED, its driving voltage will also increase with the increase of the number of film layers. In this embodiment, the light generated by the Tandem OLED penetrates the anode side and emits to the outside. According to different purposes, the substrate 100 can be a transparent glass substrate or a transparent flexible substrate. The anode 110 is disposed on the substrate 100, and the material forming the anode 110 may be transparent conductive oxide (transparent conductive oxide, TCO), such as indium tin oxide (indium tin oxide, ITO). For the purpose of further increasing the electron affinity or adjusting the light transmittance of the anode 110 , other conductive material layers can be laminated on the light-transmitting conductive oxide layer to form the anode 110 . On the other hand, in order to make the electric laser generated by the organic light-emitting element only pass through the anode 110 and emit to the outside, the cathode 150 is formed of a metal conductive material with a high ionization potential and light reflection, such as lithium (Li), aluminum ( Al), magnesium (Mg), silver (Ag), or alloys of any combination of the above metals, or lamination of the above metals and other conductive materials such as light-transmitting conductive oxide layers or organic compounds, etc., to form the cathode 150 .

在本实施例中,第一电致发光结构120包含第一电荷传输结构以及第一有机发光层123(emitting material layer,EML),其中第一电荷传输结构还可进一步包含第一空穴注入层121(hole inject layer,HIL)、第一空穴传输层122(holetransport layer,HTL)、第一电子传输层124(electron transport layer,ETL)以及第一电子注入层125(electron inject layer,EIL),其中第一空穴注入层121与第一空穴传输层122依序配置于阳极110与第一有机发光层123之间,第一电子传输层124与第一电子注入层125依序配置于第一有机发光层123与连接层130之间。第二电致发光结构包含第二电荷传输结构以及第二有机发光层143,其中第二电荷传输结构还可进一步包含第二空穴注入层141、第二空穴传输层142、第二电子传输层144以及第二电子注入层145,其中第二空穴注入层141与第二空穴传输层142依序配置于连接层130与第二有机发光层143之间,第二电子传输层144与第二电子注入层145依序配置于第二有机发光层143与阴极150之间。In this embodiment, the first electroluminescent structure 120 includes a first charge transport structure and a first organic light-emitting layer 123 (emitting material layer, EML), wherein the first charge transport structure may further include a first hole injection layer 121 (hole inject layer, HIL), the first hole transport layer 122 (hole transport layer, HTL), the first electron transport layer 124 (electron transport layer, ETL) and the first electron injection layer 125 (electron inject layer, EIL) , wherein the first hole injection layer 121 and the first hole transport layer 122 are sequentially disposed between the anode 110 and the first organic light-emitting layer 123, and the first electron transport layer 124 and the first electron injection layer 125 are sequentially disposed on the between the first organic light emitting layer 123 and the connection layer 130 . The second electroluminescent structure includes a second charge transport structure and a second organic light-emitting layer 143, wherein the second charge transport structure can further include a second hole injection layer 141, a second hole transport layer 142, a second electron transport layer layer 144 and a second electron injection layer 145, wherein the second hole injection layer 141 and the second hole transport layer 142 are sequentially arranged between the connection layer 130 and the second organic light-emitting layer 143, the second electron transport layer 144 and the The second electron injection layer 145 is sequentially disposed between the second organic light emitting layer 143 and the cathode 150 .

详细来说,Tandem OLED产生电激光的过程是,当阳极110与外部电场的正电极电性连接后产生空穴,配置于阳极110上的第一空穴注入层121将空穴注入第一空穴传输层122,第一空穴传输层122传输空穴至第一有机发光层123,连接层130再注入空穴至第二空穴注入层141,第二空穴注入层141注入空穴至第二空穴传输层142,第二空穴传输层142再传输空穴至第二有机发光层143。另一方面,阴极150与外部电场的负电极电性连接后产生电子,配置于阴极上的第二电子注入层145将电子注入第二电子传输层144,第二电子传输层144传输电子至第二有机发光层130,连接层130注入电子至第一电子注入层125,第一电子注入层125注入空穴至第一电子传输层124,第一电子传输层124再传输电子至第一有机发光层123中。接着,传输至各有机发光层的电子与空穴相结合后释放能量而发射特定波长范围之电激光。由上述发光过程可知,串接式有机发光元件中最关键的部分之一即为设置于各电致发光结构间的连接层130。连接层又可被称为电荷产生层(charge generation layer,CGL),其可决定各有机发光层中空穴与电子相结合的数量。进一步来说,可适用于OLED的有机材料都具有半导体性质,其中又区分为具有施体性质(n-type)的有机材料以及具有受体性质(p-type)的有机材料。改善OLED中有机材料空穴的迁移速率高于电子的迁移速率的现象,避免电子和空穴过早在接近阴极侧结合的方法是降低空穴传输层中的空穴迁移速率或增进电子注入电子传输层。特别是在Tandem OLED中串联两个电致发光结构的连接层130,其不仅必须具备可注入空穴的受体性质以及可注入电子的施体性质,同时更需要能够适当地平衡串联于两侧的各电致发光结构中空穴与电子的迁移速率。In detail, the process of Tandem OLED generating electric laser is that when the anode 110 is electrically connected to the positive electrode of the external electric field, holes are generated, and the first hole injection layer 121 arranged on the anode 110 injects the holes into the first hole. The hole transport layer 122, the first hole transport layer 122 transports holes to the first organic light-emitting layer 123, the connection layer 130 injects holes into the second hole injection layer 141, and the second hole injection layer 141 injects holes into the The second hole transport layer 142 , and the second hole transport layer 142 transports holes to the second organic light emitting layer 143 . On the other hand, the cathode 150 is electrically connected to the negative electrode of the external electric field to generate electrons, and the second electron injection layer 145 disposed on the cathode injects electrons into the second electron transport layer 144, and the second electron transport layer 144 transports electrons to the second electron transport layer 144. Two organic light emitting layers 130, the connection layer 130 injects electrons into the first electron injection layer 125, the first electron injection layer 125 injects holes into the first electron transport layer 124, and the first electron transport layer 124 transports electrons to the first organic light emitting layer Layer 123. Then, the electrons and holes transported to each organic light-emitting layer are combined to release energy and emit electric laser light in a specific wavelength range. It can be known from the above light emitting process that one of the most critical parts of the tandem organic light emitting device is the connection layer 130 disposed between the electroluminescent structures. The connection layer can also be called a charge generation layer (CGL), which can determine the number of holes and electrons combined in each organic light-emitting layer. Furthermore, organic materials applicable to OLEDs all have semiconducting properties, which are further divided into organic materials having donor properties (n-type) and organic materials having acceptor properties (p-type). Improve the phenomenon that the migration rate of holes in organic materials in OLEDs is higher than that of electrons, and avoid the premature combination of electrons and holes near the cathode side by reducing the hole transfer rate in the hole transport layer or improving electron injection transport layer. Especially in Tandem OLED, the connecting layer 130 of two electroluminescent structures in series must not only have the acceptor property for injecting holes and the donor property for injecting electrons, but also need to be able to properly balance the connection between the two sides in series. The mobility of holes and electrons in each electroluminescent structure.

在本实施例中,选用如图1化学式所示的六氮杂苯并菲衍生物,以蒸镀法分别形成具有受体性质(p-type)的六氮杂苯并菲衍生物层以及具有施体性质(n-type)的有机材料层例如是苝(perylene)或含锂(Li)有机化合物等,再组合形成具有受体性质及施体性质的连接层130(图中虚线所示),其中形成六氮杂苯并菲衍生物层的厚度可在0.1纳米至100纳米之间,较佳的厚度在1纳米至50纳米之间。六氮杂苯并菲衍生物作为连接层130中受体性质的材料,其可降低连接层130与第二电荷传输结构145、144、142、141间之电子传输势垒,进而自阴极150吸引电子注入第二电荷传输结构145、144、142、141同时可注入空穴至第二电荷传输结构145、144、142、141,适当地平衡第二电致发光结构140中空穴与电子的迁移速率。因此,能以较低的驱动电压获得较高的电流密进而提高Tandem OLED的发光效率。值得一提的是,在OLED制程环境中的氧及水分会与电极反应产生氧化物而导致降低电流密度。此外,大多数应用于OLED的有机材料耐温性不佳,在持续高操作电压所产生温度环境下很容易快速劣化。相较于现有材料,六氮杂苯并菲衍生物还具有较高的结晶性以及较佳的耐温性。六氮杂苯并菲衍生物较高的结晶性可遮蔽制程环境中的氧及水分等物质,于电极上形成六氮杂苯并菲衍生物层作为电子注入层(图中虚线所示)可防止电极产生氧化物,进而提升有机发光元件的制程良率。六氮杂苯并菲衍生物较低的操作电压以及较佳的耐温性,在有机发光层上形成六氮杂苯并菲衍生物层作为电子传输层(图中虚线所示)可延缓劣化速度进而增加有机发光元件的使用寿命。In this embodiment, the hexaazatriphenylene derivative as shown in the chemical formula in Figure 1 is selected, and the hexaazatriphenylene derivative layer with acceptor properties (p-type) and the hexaazatriphenylene derivative layer with The n-type organic material layer is, for example, perylene or a lithium (Li)-containing organic compound, etc., and then combined to form a connection layer 130 with acceptor properties and donor properties (shown by a dotted line in the figure) , wherein the thickness of the hexaazatriphenylene derivative layer can be between 0.1 nanometer and 100 nanometers, and the preferred thickness is between 1 nanometer and 50 nanometers. The hexaazatriphenylene derivative is used as the acceptor material in the connection layer 130, which can reduce the electron transport barrier between the connection layer 130 and the second charge transport structure 145, 144, 142, 141, and then attracts electrons from the cathode 150. Electrons are injected into the second charge transport structure 145, 144, 142, 141 and holes can be injected into the second charge transport structure 145, 144, 142, 141 at the same time, so as to properly balance the mobility of holes and electrons in the second electroluminescent structure 140 . Therefore, a higher current density can be obtained with a lower driving voltage to improve the luminous efficiency of the Tandem OLED. It is worth mentioning that oxygen and moisture in the OLED process environment will react with the electrodes to produce oxides, resulting in reduced current density. In addition, most organic materials used in OLEDs have poor temperature resistance, and are prone to rapid deterioration in the temperature environment generated by continuous high operating voltage. Compared with existing materials, hexaazatriphenylene derivatives also have higher crystallinity and better temperature resistance. The higher crystallinity of hexaazatriphenylene derivatives can shield substances such as oxygen and moisture in the process environment, and the formation of a hexaazatriphenylene derivative layer on the electrode as an electron injection layer (shown by the dotted line in the figure) can Prevent oxides from being produced on electrodes, thereby improving the process yield of organic light-emitting devices. Hexaazatriphenylene derivatives have lower operating voltage and better temperature resistance. Forming a hexaazatriphenylene derivative layer on the organic light-emitting layer as an electron transport layer (shown by the dotted line in the figure) can delay deterioration The speed in turn increases the service life of the organic light-emitting element.

图3为本发明第二实施例的剖面示意图。请参见图3所示,倒置式有机发光元件(inverted organic light-emitting diode,Inverted OLED)包含基板200、阴极210(cathode)、电致发光结构220以及阳极230(anode)。Inverted OLED的阳极230与阴极210分别与外部电场的正极与负极电性连接。外部电场施以顺向偏压后,Inverted OLED所产生的电激光透过阴极210侧对外发射。阴极210的材料可为透光导电材料,阳极230的材料为可反射光线的金属导电材料。电致发光结构220包含电荷传输结构以及有机发光层223,其中电荷传输结构可包含电子注入层221、电子传输层222、空穴传输层224以及空穴注入层225。电子注入层221及电子传输层222依序配置于阴极210与有机发光层223之间,空穴传输层224以及空穴注入层225依序配置于有机发光层223与阳极230之间。由阳极230所产生的空穴通过空穴注入层225以及空穴传输层224传输至有机发光层223,由阴极210所产生的电子通过电子注入221层以及电子传输层222传输至有机发光层223,传输至有机发光层223的电子与空穴相结合后发射特定波长范围的ve电激光穿透阴极210侧向外部发射。值得一提的是,在本实施例中六氮杂苯并菲衍生物除可作为空穴注入层225的材料(图中虚线所示),也可作为电子注入层221或电子传输层222的材料(图中虚线所示)。FIG. 3 is a schematic cross-sectional view of a second embodiment of the present invention. Please refer to FIG. 3, an inverted organic light-emitting diode (Inverted OLED) includes a substrate 200, a cathode 210 (cathode), an electroluminescent structure 220 and an anode 230 (anode). The anode 230 and the cathode 210 of the inverted OLED are respectively electrically connected to the positive pole and the negative pole of the external electric field. After the forward bias is applied by the external electric field, the electric laser light generated by the Inverted OLED is emitted through the side of the cathode 210 . The material of the cathode 210 may be a light-transmitting conductive material, and the material of the anode 230 may be a metallic conductive material capable of reflecting light. The electroluminescent structure 220 includes a charge transport structure and an organic light emitting layer 223 , wherein the charge transport structure may include an electron injection layer 221 , an electron transport layer 222 , a hole transport layer 224 and a hole injection layer 225 . The electron injection layer 221 and the electron transport layer 222 are sequentially disposed between the cathode 210 and the organic light-emitting layer 223 , and the hole transport layer 224 and the hole injection layer 225 are sequentially disposed between the organic light-emitting layer 223 and the anode 230 . The holes generated by the anode 230 are transported to the organic light emitting layer 223 through the hole injection layer 225 and the hole transport layer 224, and the electrons generated by the cathode 210 are transported to the organic light emitting layer 223 through the electron injection layer 221 and the electron transport layer 222 The electrons transmitted to the organic light-emitting layer 223 are combined with the holes to emit ve laser light in a specific wavelength range to penetrate the cathode 210 and emit to the outside. It is worth mentioning that in this embodiment, hexaazatriphenylene derivatives can be used not only as the material of the hole injection layer 225 (shown by the dotted line in the figure), but also as the material of the electron injection layer 221 or the electron transport layer 222. materials (shown in dotted lines in the figure).

图4为本发明第三实施例的剖面示意图。请参见图4所示,并排式有机电光元件(side by side organic light-emitting diode,Side By Side OLED)包含基板300、阳极310、电致发光结构320以及阴极330。Side By Side OLED的阳极310与阴极330分别与外部电场的正极与负极电性连接。外部电场施以顺向偏压后,Side By Side OLED所产生的电激光穿透阳极310侧对外发射。电致发光结构320包含电荷传输结构以及有机发光层323,其中电荷传输结构可包含空穴注入层321、空穴传输层322、电子传输层324以及电子注入层325。空穴注入层321以及空穴传输层322依序配置于阳极310与有机发光层323之间,电子传输层324及电子注入层325依序配置于有机发光层323与阴极330之间。在本实施例中,六氮杂苯并菲衍生物除可作为空穴注入层321的材料(图中虚线所示)外,同样也可作为电子注入层325或电子传输层324的材料(图中虚线所示)。FIG. 4 is a schematic cross-sectional view of a third embodiment of the present invention. Please refer to FIG. 4 , a side by side organic light-emitting diode (Side By Side OLED) includes a substrate 300 , an anode 310 , an electroluminescent structure 320 and a cathode 330 . The anode 310 and the cathode 330 of the Side By Side OLED are electrically connected to the positive pole and the negative pole of the external electric field respectively. After the forward bias is applied by the external electric field, the electric laser light generated by the Side By Side OLED penetrates the side of the anode 310 and emits to the outside. The electroluminescent structure 320 includes a charge transport structure and an organic light emitting layer 323 , wherein the charge transport structure may include a hole injection layer 321 , a hole transport layer 322 , an electron transport layer 324 and an electron injection layer 325 . The hole injection layer 321 and the hole transport layer 322 are sequentially disposed between the anode 310 and the organic light emitting layer 323 , and the electron transport layer 324 and the electron injection layer 325 are sequentially disposed between the organic light emitting layer 323 and the cathode 330 . In this embodiment, the hexaazatriphenylene derivative can be used as the material of the hole injection layer 321 (shown by the dotted line in the figure), and can also be used as the material of the electron injection layer 325 or the electron transport layer 324 (shown in the figure). shown by the dotted line).

综上所述,应用六氮杂苯并菲衍生物在有机发光元件中作为连接层或电荷传输结构的材料,或应用六氮杂苯并菲衍生物在有机发光元件中同时作为连接层与电荷传输结构的材料,能有效降低元件驱动电压、提高元件发光效率、提升元件制程良率以及增加元件使用寿命达到环保节能的功效。In summary, the use of hexaazatriphenylene derivatives in organic light-emitting devices as materials for connection layers or charge transport structures, or the use of hexaazatriphenylene derivatives in organic light-emitting devices as connection layers and charge transport structures at the same time The material of the transmission structure can effectively reduce the driving voltage of the component, improve the luminous efficiency of the component, improve the yield rate of the component process, and increase the service life of the component to achieve the effect of environmental protection and energy saving.

Claims (11)

1.一种六氮杂苯并菲衍生物在有机发光元件的应用,该有机发光元件包含基板、阳极、阴极以及至少一个电致发光结构,该基板选用可透光材料,该阳极与外部电场的正电极电性连接,并适于提供空穴电流,该阴极与该外部电场的负电极电性连接,并适于提供电子电流,该至少一个电致发光结构配置于该阳极与该阴极之间,其特征是,在该电致发光结构中形成至少一层六氮杂苯并菲衍生物层,其中该六氮杂苯并菲衍生物层的六氮杂苯并菲衍生物的化学式为:1. An application of a hexaazatriphenylene derivative in an organic light-emitting element, the organic light-emitting element includes a substrate, an anode, a cathode and at least one electroluminescent structure, the substrate is made of light-transmitting materials, and the anode and an external electric field The positive electrode of the external electric field is electrically connected, and is suitable for providing hole current, and the cathode is electrically connected with the negative electrode of the external electric field, and is suitable for providing electron current, and the at least one electroluminescent structure is arranged between the anode and the cathode Among them, it is characterized in that at least one layer of hexaazatriphenylene derivatives is formed in the electroluminescent structure, wherein the chemical formula of the hexaazatriphenylene derivatives in the hexaazatriphenylene derivative layer is: :
Figure FDA0000159489420000011
Figure FDA0000159489420000011
其中,R为官能基,该六氮杂苯并菲衍生物包含六个官能基,该六个官能基独立地或同时地选自腈基(nitril,-CN)、氢基(hydrogen,-H)、羧基(carboxylic,-COOH)、甲酰胺基(carboxamide,-CONH2)、三氟甲基(trifluomethyl,-CF3)以及卤素基(halogen,-halo)。Wherein, R is a functional group, and the hexaazatriphenylene derivative contains six functional groups, and the six functional groups are independently or simultaneously selected from nitrile (nitrol, -CN), hydrogen (hydrogen, -H ), carboxylic (-COOH), carboxamide (-CONH 2 ), trifluoromethyl (trifluoromethyl, -CF 3 ) and halogen (halogen, -halo).
2.根据权利要求1所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该阳极选用可透光导电材料,并配置于该基板上;该至少一个电致发光结构包括第一电致发光结构以及第二电致发光结构,该第一电致发光结构包含第一有机发光层以及第一电荷传输结构,该第一有机发光层配置于该第一电荷传输结构中;该第二电致发光结构包含第二有机发光层以及第二电荷传输结构,该第二有机发光层配置于该第二电荷传输结构中;该阴极选用可反射光线的导电材料。2. The application of the hexaazatriphenylene derivative in an organic light-emitting element according to claim 1, wherein the anode is made of a light-transmitting conductive material and arranged on the substrate; the at least one electroluminescent The structure includes a first electroluminescent structure and a second electroluminescent structure, the first electroluminescent structure includes a first organic light-emitting layer and a first charge transport structure, and the first organic light-emitting layer is configured on the first charge transport structure In the middle; the second electroluminescent structure includes a second organic light emitting layer and a second charge transport structure, and the second organic light emitting layer is disposed in the second charge transport structure; the cathode is made of a conductive material that can reflect light. 3.根据权利要求2所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该有机发光元件更包含至少一层连接层,该第一电荷传输结构配置于该阳极与该连接层之间,并适于传输该空穴电流与该电子电流至该第一有机发光层,该第二电荷传输结构配置于该连接层与该阴极之间,并适于传输该电子电流与该空穴电流至该第二有机发光层。3. The application of the hexaazatriphenylene derivative in an organic light-emitting device according to claim 2, wherein the organic light-emitting device further comprises at least one connection layer, and the first charge transport structure is arranged on the anode between the connection layer and suitable for transporting the hole current and the electron current to the first organic light-emitting layer, the second charge transport structure is arranged between the connection layer and the cathode and suitable for transporting the electrons The current and the hole current flow to the second organic light-emitting layer. 4.根据权利要求3所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该连接层包含该六氮杂苯并菲衍生物层,并适于注入该空穴电流至该第二电荷传输结构。4. The application of the hexaazatriphenylene derivative in an organic light-emitting element according to claim 3, wherein the connection layer comprises the hexaazatriphenylene derivative layer and is suitable for injecting the holes current to the second charge transport structure. 5.根据权利要求3所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该第一电荷传输结构包含该六氮杂苯并菲衍生物层以及第一空穴传输层,该六氮杂苯并菲衍生物层配置于该阳极上,并适于注入该空穴电流至该第一空穴传输层。5. The application of the hexaazatriphenylene derivative in an organic light-emitting element according to claim 3, wherein the first charge transport structure comprises the hexaazatriphenylene derivative layer and a first hole The transport layer, the hexaazatriphenylene derivative layer is configured on the anode, and is suitable for injecting the hole current into the first hole transport layer. 6.根据权利要求3所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该第二电荷传输结构包含该六氮杂苯并菲衍生物层以及第二电子传输层,该六氮杂苯并菲衍生物层配置于该阴极上,并适于注入该电子电流至该第二电子传输层。6. The application of the hexaazatriphenylene derivative in an organic light-emitting element according to claim 3, wherein the second charge transport structure comprises the hexaazatriphenylene derivative layer and a second electron transport layer, the hexaazatriphenylene derivative layer is disposed on the cathode, and is suitable for injecting the electron current into the second electron transport layer. 7.根据权利要求3所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该第二电荷传输结构包含第二电子注入层以及该六氮杂苯并菲衍生物层,该第二电子注入层配置于该阴极上,适于注入该电子电流至该六氮杂苯并菲衍生物层,该六氮杂苯并菲衍生物层配置于该第二电子注入层与该第二有机发光层之间,并适于传输该电子电流至该第二有机发光层。7. The application of the hexaazatriphenylene derivative in an organic light-emitting device according to claim 3, wherein the second charge transport structure comprises a second electron injection layer and the hexaazatriphenylene derivative layer, the second electron injection layer is configured on the cathode, and is suitable for injecting the electron current into the hexaazatriphenylene derivative layer, and the hexaazatriphenylene derivative layer is configured on the second electron injection layer and the second organic light-emitting layer, and is suitable for transmitting the electron current to the second organic light-emitting layer. 8.根据权利要求1所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该阳极为可反射光线的导电材料且该阴极为可透光导电材料,或者该阳极为可透光导电材料且该阴极为可反射光线的导电材料,该电致发光结构包含有机发光层以及电荷传输结构,该有机发光层配置于该电荷传输结构中。8. The application of the hexaazatriphenylene derivative in an organic light-emitting element according to claim 1, wherein the anode is a conductive material that can reflect light and the cathode is a light-transmitting conductive material, or the anode The cathode is a light-transmitting conductive material and the cathode is a conductive material that can reflect light. The electroluminescent structure includes an organic light-emitting layer and a charge transport structure. The organic light-emitting layer is configured in the charge transport structure. 9.根据权利要求8所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该电荷传输结构包含该六氮杂苯并菲衍生物层以及空穴传输层,该六氮杂苯并菲衍生物层配置于该阳极上,并适于注入该空穴电流至该空穴传输层。9. The application of the hexaazatriphenylene derivative in an organic light-emitting element according to claim 8, wherein the charge transport structure comprises the hexaazatriphenylene derivative layer and a hole transport layer, the The hexaazatriphenylene derivative layer is disposed on the anode and is suitable for injecting the hole current into the hole transport layer. 10.根据权利要求8所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该电荷传输结构包含该六氮杂苯并菲衍生物层以及电子传输层,该六氮杂苯并菲衍生物层配置于该阴极上,适于注入该电子电流至该电子传输层。10. The application of the hexaazatriphenylene derivative in an organic light-emitting element according to claim 8, wherein the charge transport structure comprises the hexaazatriphenylene derivative layer and an electron transport layer, and the hexaazatriphenylene derivative layer and an electron transport layer, The azatriphenylene derivative layer is disposed on the cathode and is suitable for injecting the electron current into the electron transport layer. 11.根据权利要求8所述的六氮杂苯并菲衍生物在有机发光元件的应用,其特征是,该电荷传输结构包含电子注入层以及该六氮杂苯并菲衍生物层,该电子注入层配置于该阴极上,并适于注入该电子电流至该六氮杂苯并菲衍生物层,该六氮杂苯并菲衍生物层配置于该电子注入层与该有机发光层之间,并适于传输该电子电流至该有机发光层。11. The application of the hexaazatriphenylene derivative in an organic light-emitting element according to claim 8, wherein the charge transport structure comprises an electron injection layer and the hexaazatriphenylene derivative layer, and the electron The injection layer is arranged on the cathode, and is suitable for injecting the electron current into the hexaazatriphenylene derivative layer, and the hexaazatriphenylene derivative layer is arranged between the electron injection layer and the organic light-emitting layer , and is suitable for transmitting the electron current to the organic light-emitting layer.
CN 201210134336 2012-05-02 2012-05-02 Application of Hexaazatriphenylene Derivatives in Organic Light-Emitting Devices Pending CN103383990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210134336 CN103383990A (en) 2012-05-02 2012-05-02 Application of Hexaazatriphenylene Derivatives in Organic Light-Emitting Devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210134336 CN103383990A (en) 2012-05-02 2012-05-02 Application of Hexaazatriphenylene Derivatives in Organic Light-Emitting Devices

Publications (1)

Publication Number Publication Date
CN103383990A true CN103383990A (en) 2013-11-06

Family

ID=49491736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210134336 Pending CN103383990A (en) 2012-05-02 2012-05-02 Application of Hexaazatriphenylene Derivatives in Organic Light-Emitting Devices

Country Status (1)

Country Link
CN (1) CN103383990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663737A (en) * 2014-07-22 2017-05-10 株式会社Lg化学 Solar cell
US20230131274A1 (en) * 2020-05-27 2023-04-27 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. P-type organic semiconductor material, manufacturing method of same, and display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663737A (en) * 2014-07-22 2017-05-10 株式会社Lg化学 Solar cell
CN106663737B (en) * 2014-07-22 2019-10-11 株式会社Lg化学 Solar battery
US20230131274A1 (en) * 2020-05-27 2023-04-27 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. P-type organic semiconductor material, manufacturing method of same, and display panel

Similar Documents

Publication Publication Date Title
CN103715360B (en) Organic electroluminescent device and display device
JP4024754B2 (en) Light emitting device having organic layer
KR101772437B1 (en) Light-emitting Device fabricated utilizing charge generation layer formed by solution process and fabrication method thereof
JP3838518B2 (en) Luminescent structure
CN105161628B (en) Tandem-type organic light-emitting diode, array substrate, and display device
US8629603B2 (en) Organic light-emitting device with homogeneous temperature distribution
WO2016188041A1 (en) Electroluminescent component, manufacturing method therefor, display substrate, and display device
KR102126382B1 (en) Organic light-emitting display apparatus
CN1828968B (en) Organic light-emitting device and manufacturing method thereof
CN102074658A (en) Electric charge production layer, lamination layer organic light-emitting diode and preparation method thereof
CN106328820A (en) Laminated organic electroluminescent device
CN105161627A (en) Tandem-type organic light-emitting diode, array substrate, and display device
US20170170424A1 (en) Electroluminescent device and its manufacturing method, display substrate, display unit
WO2011148801A1 (en) Organic el element
TW201705578A (en) Organic light emitting device
CN103730586B (en) stacked organic light emitting diode and preparation method thereof
CN108682748A (en) A kind of series connection white light organic electroluminescent device
WO2018120327A1 (en) Organic light-emitting device, and organic light-emitting display
CN103383990A (en) Application of Hexaazatriphenylene Derivatives in Organic Light-Emitting Devices
CN103972390B (en) Bipolar type organic light-emitting field effect transistor
JP2013229411A (en) Organic el element
WO2019104848A1 (en) Anode with hole transdport function and organic light-emitting display device
TWI565360B (en) Improved organic light-emitting diode device
CN100456489C (en) Tandem type organic electroluminescent element and application thereof
CN104183713A (en) Top-emission organic light emission diode and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131106