CN104884776B - System and method for the fuel-air ratio that internal combustion engine is electronically controlled - Google Patents

System and method for the fuel-air ratio that internal combustion engine is electronically controlled Download PDF

Info

Publication number
CN104884776B
CN104884776B CN201480001412.5A CN201480001412A CN104884776B CN 104884776 B CN104884776 B CN 104884776B CN 201480001412 A CN201480001412 A CN 201480001412A CN 104884776 B CN104884776 B CN 104884776B
Authority
CN
China
Prior art keywords
throttle valve
controller
engine
temperature
engine speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480001412.5A
Other languages
Chinese (zh)
Other versions
CN104884776A (en
Inventor
M·R·克莱齐耶夫斯基
M·J·图尔斯基
P·S·帕特拉瓦拉
A·K·塔库尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Discovery Energy LLC
Original Assignee
Kohler Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohler Co filed Critical Kohler Co
Publication of CN104884776A publication Critical patent/CN104884776A/en
Application granted granted Critical
Publication of CN104884776B publication Critical patent/CN104884776B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/067Introducing corrections for particular operating conditions for engine starting or warming up for starting with control of the choke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/144Sensor in intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/02Carburettors with means for facilitating engine's starting or its idling below operational temperatures the means to facilitate starting or idling being chokes for enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/08Carburettors with means for facilitating engine's starting or its idling below operational temperatures the means to facilitate starting or idling becoming operative or inoperative automatically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/08Carburettors with means for facilitating engine's starting or its idling below operational temperatures the means to facilitate starting or idling becoming operative or inoperative automatically
    • F02M1/10Carburettors with means for facilitating engine's starting or its idling below operational temperatures the means to facilitate starting or idling becoming operative or inoperative automatically dependent on engine temperature, e.g. having thermostat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本申请公开了用于电子地控制提供给内燃机的燃料混合物的燃料空气比的系统和方法。在一个方面中,提供电子控制系统和方法,该系统和方法根据具有依赖于引擎温度和环境气温的第一特性的第一坡道来确定并自动地移动节流阀。在另一方面中,提供一种集成点火和电子自动节流模块。在又一个方面中,提供一种使用反馈回路来动态地控制节流阀的移动特性的电子控制系统和方法。

The present application discloses systems and methods for electronically controlling the fuel-to-air ratio of a fuel mixture provided to an internal combustion engine. In one aspect, an electronic control system and method is provided that determines and automatically moves a throttle valve based on a first ramp having a first characteristic that is dependent on engine temperature and ambient air temperature. In another aspect, an integrated ignition and electronic auto-throttle module is provided. In yet another aspect, an electronic control system and method for dynamically controlling a movement characteristic of a throttle valve using a feedback loop is provided.

Description

用于电子地控制内燃机的燃料空气比的系统和方法System and method for electronically controlling the fuel-to-air ratio of an internal combustion engine

相关专利申请的交叉引用Cross references to related patent applications

本申请要求2013年8月15日提交的美国临时专利申请第61/866,485号的权益,该美国临时专利申请的全部内容通过引用合并于此。This application claims the benefit of US Provisional Patent Application No. 61/866,485, filed August 15, 2013, which is hereby incorporated by reference in its entirety.

技术领域technical field

本发明总的来说涉及用于控制内燃机的燃料空气比的系统和方法,具体地说,涉及通过电子地控制化油器中的节流阀的位置来电子地控制内燃机的燃料空气比的系统和方法。The present invention relates generally to systems and methods for controlling the fuel-to-air ratio of an internal combustion engine, and more particularly to a system for electronically controlling the fuel-to-air ratio of an internal combustion engine by electronically controlling the position of a throttle valve in a carburetor and methods.

背景技术Background technique

已经开发出电子控制的化油器,以便提高引擎启动和性能特性(例如该引擎正在空转时的特性)。在这种已知的控制系统中,通过控制化油器内的节流阀的设置来调节引入到燃烧室的燃料混合物的燃料空气比。通过考虑某些变量,例如引擎转速、进气压力以及引擎冷却剂温度,来确定节流阀的设置。然而,在确定节流阀的设置中考虑上述变量已经被认为不是最优的。Electronically controlled carburetors have been developed in order to improve engine starting and performance characteristics (such as when the engine is idling). In this known control system, the fuel-air ratio of the fuel mixture introduced into the combustion chamber is regulated by controlling the setting of a throttle valve within the carburetor. Throttle setting is determined by taking into account variables such as engine speed, intake air pressure, and engine coolant temperature. However, taking into account the above variables in determining the setting of the throttle valve has been considered suboptimal.

另外,在控制燃料混合物的燃料空气比的已知系统中,控制系统作为相对于引擎和引擎的其它模块和/或子系统来说独立的和/或单独的模块来创建。因此,现有的电子控制系统可能增加额外的费用,占据引擎舱内的有用空间,并且在设计和/或建造该引擎方面引起复杂度增加。Additionally, in known systems for controlling the fuel-to-air ratio of the fuel mixture, the control system is created as an independent and/or separate module with respect to the engine and other modules and/or subsystems of the engine. Thus, existing electronic control systems may add additional expense, take up useful space in the engine compartment, and cause increased complexity in designing and/or building the engine.

鉴于上述问题,需要用于电子地控制内燃机的燃料空气比的改进的系统和方法。In view of the foregoing, there is a need for improved systems and methods for electronically controlling the fuel-to-air ratio of an internal combustion engine.

发明内容Contents of the invention

本发明涉及用于电子地控制提供给内燃机的燃料混合物的燃料空气比的系统和方法,并且在其它示例中涉及包括相同的系统和方法的内燃机。The present invention relates to systems and methods for electronically controlling the fuel-to-air ratio of a fuel mixture provided to an internal combustion engine, and in other examples to internal combustion engines including the same systems and methods.

根据本公开的一方面,公开了一种使用电子系统来控制内燃机的节流阀的方法,所述电子系统以可操作的协作方式包括:控制器、配置为测量表示引擎温度的第一温度的第一温度传感器、配置为测量表示环境气温的第二温度的第二温度传感器,以及配置为移动所述节流阀的致动器,所述方法包括:a)利用所述控制器确定依赖于所述第一温度的、用于所述节流阀的起动位置;b)执行第一节流开启阶段,所述第一节流开启阶段包括利用所述致动器将所述节流阀从初始位置移动到所述起动位置;c)利用所述控制器确定用于开启所述节流阀的第一坡道,其中所述第一坡道的第一特性依赖于所述第一和第二温度;以及d)在完成所述第一节流开启阶段后,执行第二节流开启阶段,所述第二节流开启阶段包括利用所述致动器根据所述第一坡道将所述节流阀朝着完全开启位置移动。According to an aspect of the present disclosure, there is disclosed a method of controlling a throttle valve of an internal combustion engine using an electronic system, the electronic system including in operable cooperation: a controller, a temperature sensor configured to measure a first temperature indicative of an engine temperature A first temperature sensor, a second temperature sensor configured to measure a second temperature indicative of ambient air temperature, and an actuator configured to move the throttle valve, the method comprising: a) determining, with the controller, a starting position for the throttle valve at the first temperature; b) performing a first throttle opening phase comprising moving the throttle valve from an initial position is moved to the starting position; c) determining, with the controller, a first ramp for opening the throttle valve, wherein a first characteristic of the first ramp depends on the first and second two temperatures; and d) after completion of said first throttle opening phase, performing a second throttle opening phase, said second throttle opening phase comprising using said actuator to move said first ramp The throttle valve moves toward the fully open position.

根据本公开的另一方面,公开了一种使用电子系统来控制内燃机的节流阀的方法,所述电子系统以可操作的协作方式包括控制器、配置为测量表示引擎温度的第一温度的第一温度传感器、配置为测量表示环境气温的第二温度的第二温度传感器,以及配置为移动所述节流阀的致动器,所述方法包括:a)利用所述控制器确定用于开启所述节流阀的第一坡道,其中所述第一坡道的第一特性依赖于所述第一温度以及所述第一温度和所述第二温度之间的差;以及b)使用所述致动器执行节流开启阶段,所述节流开启阶段包括利用所述致动器将所述节流阀根据所述第一坡道朝着完全开启位置移动。According to another aspect of the present disclosure, a method of controlling a throttle valve of an internal combustion engine using an electronic system is disclosed, the electronic system including in operable cooperation a controller, a temperature sensor configured to measure a first temperature representative of the temperature of the engine A first temperature sensor, a second temperature sensor configured to measure a second temperature indicative of ambient air temperature, and an actuator configured to move the throttle valve, the method comprising: a) determining, with the controller, opening a first ramp of the throttle valve, wherein a first characteristic of the first ramp is dependent on the first temperature and the difference between the first temperature and the second temperature; and b) A throttle opening phase is performed using the actuator, the throttle opening phase comprising moving the throttle valve according to the first ramp towards a fully open position with the actuator.

根据本公开的再一方面,公开了一种一种用于控制内燃机的节流阀的电子系统,所述电子系统包括:第一温度传感器,所述第一温度传感器配置为测量表示引擎温度的第一温度;第二温度传感器,所述第二温度传感器配置为测量表示环境气温的第二温度;致动器,所述致动器可操作地耦接到所述节流阀以调整所述节流阀的位置,从而调整要在所述内燃机中燃烧的燃料混合物的燃料空气比;以及控制器,所述控制器可操作地耦接到所述致动器、所述第一温度传感器,以及所述第二温度传感器,所述控制器配置为:(1)基于所述第一温度确定用于所述节流阀的起动位置,并且操作所述致动器以在第一节流开启阶段期间将节流阀从初始位置移动到所述起动位置;以及(2)确定第一坡道,所述第一坡道具有依赖于所述第一和第二温度的特性,并且根据所述第一坡道操作所述致动器,以在第二节流开启阶段期间将节流阀朝着完全开启位置移动。According to yet another aspect of the present disclosure, an electronic system for controlling a throttle valve of an internal combustion engine is disclosed, the electronic system includes: a first temperature sensor configured to measure a temperature indicative of engine temperature a first temperature; a second temperature sensor configured to measure a second temperature indicative of ambient air temperature; an actuator operatively coupled to the throttle valve to adjust the a position of a throttle valve, thereby adjusting a fuel-air ratio of a fuel mixture to be combusted in said internal combustion engine; and a controller operatively coupled to said actuator, said first temperature sensor, and the second temperature sensor, the controller configured to: (1) determine an actuation position for the throttle valve based on the first temperature, and operate the actuator to open at a first throttle moving a throttle valve from an initial position to said start position during a phase; and (2) determining a first ramp having characteristics dependent on said first and second temperatures and according to said A first ramp operates the actuator to move the throttle towards a fully open position during a second throttle opening phase.

在本公开的又一个方面中,公开了一种集成点火和电子自动节流模块。在本发明的这样一个方面中,所述集成点火和电子自动节流模块包括:外罩壳体,所述壳体配置为安装到飞轮附近的内燃机的引擎缸体;所述壳体容纳:第一温度传感器,所述第一温度传感器用于测量表示引擎温度的第一温度;控制器,所述控制器可操作地耦接到所述第一引擎温度传感器,所述控制器配置为:基于所述第一温度确定节流阀的起动位置;以及操作致动器,在第一节流开启阶段期间将所述节流阀移动到所述起动位置中;以及点火电路。In yet another aspect of the present disclosure, an integrated ignition and electronic auto-throttle module is disclosed. In such an aspect of the invention, the integrated ignition and electronic auto-throttle module includes: a housing housing configured to be mounted to an engine block of an internal combustion engine proximate to a flywheel; said housing housing: a first a temperature sensor, the first temperature sensor for measuring a first temperature indicative of an engine temperature; a controller, operatively coupled to the first engine temperature sensor, the controller configured to: based on the determining an actuation position of a throttle valve at the first temperature; and operating an actuator to move the throttle valve into the actuation position during a first throttle opening phase; and an ignition circuit.

在本公开的更一个方面中,公开了一种使用电子系统来控制内燃机的节流阀的方法,所述电子系统以可操作的协作方式包括控制器、配置为测量参数的反馈传感器,以及配置为移动所述节流阀的致动器,所述参数表示要在或者正在所述内燃机中燃烧的空气燃料混合物的空气燃料比,所述方法包括:a)所述控制器反复地从所述反馈传感器接收信号,该信号表示在所述节流阀从起动位置朝着完全开启位置的移动期间所测量的参数;b)基于来自所述反馈传感器的最近接收到的信号,利用所述控制器确定所述节流阀被朝着所述完全开启位置移动的速率;c)利用所述致动器,以在步骤b)期间最近所确定的速率将所述节流阀朝着所述完全开启位置移动;以及d)循环到步骤a),直到利用控制器确定所述节流阀处于所述完全开启位置为止。In yet another aspect of the present disclosure, a method of controlling a throttle valve of an internal combustion engine using an electronic system comprising, in operable cooperation, a controller, a feedback sensor configured to measure a parameter, and a To move an actuator of the throttle valve, the parameter representing the air-fuel ratio of the air-fuel mixture to be combusted or being combusted in the internal combustion engine, the method comprising: a) the controller iterating from the a feedback sensor receiving a signal representative of a parameter measured during movement of the throttle valve from the activated position towards the fully open position; b) based on the most recently received signal from the feedback sensor, using the controller determining the rate at which the throttle valve is being moved toward the fully open position; c) using the actuator, moving the throttle valve toward the fully open position at the rate most recently determined during step b) position shift; and d) looping to step a) until it is determined with the controller that the throttle valve is in the fully open position.

在本公开的甚至又一个方面中,公开了一种使用电子系统来控制内燃机的节流阀的方法,所述电子系统以可操作的协作方式包括控制器、配置为测量参数的反馈传感器,以及配置为移动所述节流阀的致动器,所述参数表示要在或者正在所述内燃机中燃烧的空气燃料混合物的空气燃料比,所述方法包括:a)执行动态节流开启阶段,所述动态节流开启阶段包括:根据形成在所述节流阀和所述反馈传感器之间的反馈环,基于由所述反馈传感器进行的测量,利用所述致动器将所述节流阀从起动位置朝着完全开启位置移动。In an even further aspect of the present disclosure, a method of controlling a throttle valve of an internal combustion engine using an electronic system comprising, in operable cooperation, a controller, a feedback sensor configured to measure a parameter, and An actuator configured to move said throttle valve, said parameter being indicative of an air-fuel ratio of an air-fuel mixture to be combusted or being combusted in said internal combustion engine, said method comprising: a) performing a dynamic throttle opening phase, said The dynamic throttle opening phase includes using the actuator to move the throttle valve from The start position moves toward the fully open position.

在本公开的甚至别的方面中,公开了一种用于控制内燃机的节流阀的电子系统,所述电子系统包括:配置为测量参数的反馈传感器,所述参数表示要在或者正在所述内燃机中燃烧的空气燃料混合物是否处于最佳空气燃料比的参数;致动器,所述致动器可操作地耦接到所述节流阀以调整所述节流阀的位置,从而调整所述燃料混合物中的燃料空气比;以及控制器,所述控制器可操作地耦接到所述致动器和所述反馈传感器以形成反馈环,所述控制器配置为,基于由所述反馈传感器进行的测量将所述节流阀从起动位置节流阀移动到完全开启位置。In an even further aspect of the present disclosure, an electronic system for controlling a throttle valve of an internal combustion engine is disclosed, the electronic system comprising: a feedback sensor configured to measure a parameter indicative of the A parameter of whether the air-fuel mixture combusted in an internal combustion engine is at an optimum air-fuel ratio; an actuator operatively coupled to the throttle valve to adjust the position of the throttle valve, thereby adjusting the a fuel-to-air ratio in the fuel mixture; and a controller operatively coupled to the actuator and the feedback sensor to form a feedback loop, the controller configured to, based on the Measurements made by the sensor move the throttle valve from the start position throttle valve to the fully open position.

本发明的可应用的又一个区域将从以下所提供的详细说明中变得明显。要理解的是,详细说明和特定的示例虽然表示本发明的优选实施例,但被设计为仅仅为了说明的目的而不是旨在限制本发明的范围。Yet another area of applicability of the present invention will become apparent from the detailed description provided below. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.

附图说明Description of drawings

根据具体实施方式和附图将更完全地被理解本发明,在附图中:The invention will be more fully understood from the detailed description and accompanying drawings, in which:

图1是根据本发明的电子自动节流系统的示意图;Fig. 1 is the schematic diagram of electronic automatic throttling system according to the present invention;

图2A至2C示出了通过根据本发明的、图1的电子自动节流系统所执行开启节流阀的方法的流程图;2A to 2C show a flow chart of a method for opening a throttle valve performed by the electronic automatic throttle system of FIG. 1 according to the present invention;

图3是在图2的方法的执行期间节流阀位置与时间的线形曲线图;3 is a linear graph of throttle valve position versus time during execution of the method of FIG. 2;

图4是基于所测量的引擎温度,通过控制器来确定节流阀的起动位置的关系数据表格;FIG. 4 is a relational data table for determining the starting position of the throttle valve by the controller based on the measured engine temperature;

图5是示出了根据图4的关系数据表格处于不同的起动位置的节流阀的图;FIG. 5 is a diagram showing the throttle valve at different starting positions according to the relational data table of FIG. 4;

图6是在执行图2的方法期间描绘节流阀位置对时间的线形图,其中当节流阀处于起动位置时已经检测到单个故障的引擎曲柄摇动事件;6 is a line graph depicting throttle position versus time during execution of the method of FIG. 2 , wherein a single faulty engine cranking event has been detected while the throttle is in the start position;

图7是在执行图2的方法期间描绘节流阀位置对时间的线形图,其中当节流阀处于起动位置并且系统被重新设置时已经检测到三个连续故障的引擎曲柄摇动事件;7 is a line graph depicting throttle position versus time during performance of the method of FIG. 2, wherein three consecutive failed engine cranking events have been detected while the throttle was in the start position and the system was reset;

图8是用于通过控制器确定节流阀的起动位置的关系数据表格;Fig. 8 is a relational data table for determining the starting position of the throttle valve by the controller;

图9是用于通过控制器确定针对低速协议的初始坡道、中间坡道以及最终坡道的关系数据表格;FIG. 9 is a relational data table for determining an initial ramp, an intermediate ramp, and a final ramp for a low-speed protocol by a controller;

图10是用于通过控制器确定针对高速协议的初始坡道、中间坡道以及最终坡道的关系数据表格;FIG. 10 is a relational data table for determining initial ramps, intermediate ramps, and final ramps for high-speed protocols by the controller;

图11是在执行图2的方法期间基于图8至10的关系数据表格的节流阀位置对时间的线形图,其中已经为冷引擎起动使用低速协议;11 is a line graph of throttle valve position versus time based on the relational data tables of FIGS. 8-10 during execution of the method of FIG. 2 , wherein a low speed protocol has been used for cold engine starting;

图12是在执行图2的方法期间基于图8至10的关系数据表格的节流阀位置对时间的线形图,其中已经为冷引擎起动使用高速协议;12 is a line graph of throttle valve position versus time based on the relational data tables of FIGS. 8-10 during execution of the method of FIG. 2 , wherein a high speed protocol has been used for cold engine starting;

图13是用于通过控制器确定节流阀的起动位置的关系数据表格;Fig. 13 is a relational data table for determining the starting position of the throttle valve by the controller;

图14是用于通过控制器确定针对低速协议的初始坡道、中间坡道以及最终坡道的关系数据表格;14 is a relational data table for determining initial ramps, intermediate ramps, and final ramps for a low-speed protocol by the controller;

图15是在执行图2的方法期间基于图13至14的关系数据表格的节流阀位置对时间的线形图,其中已经为冷引擎起动使用图8的低速协议;15 is a line graph of throttle valve position versus time based on the relational data tables of FIGS. 13-14 during execution of the method of FIG. 2 , wherein the low speed protocol of FIG. 8 has been used for cold engine starting;

图16是在执行图2的方法期间基于图13至14的关系数据表格的节流阀位置对时间的线形图,其中已经为热引擎起动使用图8的低速协议;16 is a line graph of throttle valve position versus time based on the relational data tables of FIGS. 13-14 during execution of the method of FIG. 2, wherein the low speed protocol of FIG. 8 has been used for hot engine starting;

图17是在检测到引擎关闭情形时在执行图2的方法期间节流阀位置与时间的线形曲线图;17 is a linear graph of throttle valve position versus time during execution of the method of FIG. 2 when an engine off condition is detected;

图18是用于驱动步进马达移动一个完整的旋转的4个脉冲信号组的图,该一个完整的旋转以相应的方式依次打开和关闭节流阀;Fig. 18 is a diagram of 4 pulse signal groups used to drive the stepper motor to move a complete rotation, which sequentially opens and closes the throttle valve in a corresponding manner;

图19是两个连续的4脉冲信号组的图,其中4脉冲组之间的延迟被设置为等于4脉冲组中的连续脉冲之间的延迟,从而实现打开节流阀的第一速率;FIG. 19 is a diagram of two consecutive 4-pulse signal groups, wherein the delay between 4-pulse groups is set equal to the delay between successive pulses in the 4-pulse group, thereby achieving a first rate of throttle opening;

图20是两个连续的4脉冲信号组的图,其中4脉冲组之间的延迟被设置为大于4脉冲组中的连续脉冲之间的延迟,从而实现打开节流阀的、小于图19的第一速率的第二速率;Figure 20 is a diagram of two consecutive 4-pulse signal groups, where the delay between the 4-pulse groups is set to be greater than the delay between successive pulses in the 4-pulse group, thereby achieving an opening of the throttle valve that is smaller than that of Figure 19 the second rate of the first rate;

图21是根据本发明的集成点火和电子自动节流模块的示意图;Figure 21 is a schematic diagram of an integrated ignition and electronic auto-throttle module according to the present invention;

图22是根据本发明的气冷式内燃机的示意图,其中图19的集成点火和自动节流模块已经安装于此;Fig. 22 is a schematic diagram of an air-cooled internal combustion engine according to the present invention, wherein the integrated ignition and automatic throttle module of Fig. 19 has been installed therein;

图23是根据本发明的图19的集成点火和电子自动节流模块的示例性结构布置的立体图;23 is a perspective view of an exemplary structural arrangement of the integrated ignition and electronic auto-throttle module of FIG. 19 in accordance with the present invention;

图24是根据本发明的除去壳体的、图23的集成点火和电子自动节流模块的内部部件的立体图;24 is a perspective view of the internal components of the integrated ignition and electronic auto-throttle module of FIG. 23 with the housing removed, in accordance with the present invention;

图25是根据本发明的另一集成点火和电子自动节流模块的示意图。25 is a schematic diagram of another integrated ignition and electronic auto-throttle module according to the present invention.

具体实施方式Detailed ways

以下对本发明实施例的描述实质上仅仅是示例性的并且决不意在限制本发明、本发明的应用或者使用。对根据本发明的原理的说明性的实施例的描述旨在与被认为是整个书面描述的一部分的附图一起阅读。在本文中公开的对本发明的描述中,对方向或者方位的任何引用仅仅为了描述的方便起见并且不意味着以任何方式限制本发明的范围。例如“更低的”、“更高的”、“水平的”、“竖直的”、“以上”、“以下”、“上”、“下”、“左”、“右”、“顶部”、“底部”、“前面”和“后面”以及它们的派生词(例如“水平地”、“向下地”、“向上地”等)应该解释为正如然后所描述的或者所讨论的附图中所示的方位。这些相关的术语仅仅为了描述的方便起见,并且除非明确地这样地指出,不需要该装置以特定的方位构建或者操作。除非另外清楚地说明,例如“附接”、“附属”、“连接”、“耦接”、“互连”、“固定”以及类似的术语指代各结构直接或者间接地通过插入结构被彼此固定或者附接的关系,以及可移动或者刚性的附接或者关系。此外,参考在本文中示出的示例来说明本发明的特征和益处。因此,即使被指出是优选的,本发明也显然不应该限于这样的示例。在本文中的讨论描述和示出了一些可能的非限制性的特征的组合,所述特征可以单独存在或者与其它特征组合。The following description of the embodiments of the invention is merely exemplary in nature and is in no way intended to limit the invention, the application or uses of the invention. The description of illustrative embodiments in accordance with the principles of the invention is intended to be read with the accompanying drawings which are considered a part of the entire written description. In describing the invention disclosed herein, any reference to direction or orientation is for convenience of description only and is not meant to limit the scope of the invention in any way. For example "lower", "higher", "horizontal", "vertical", "above", "below", "top", "bottom", "left", "right", "top ”, “bottom”, “front” and “rear” and their derivatives (such as “horizontally”, “downwardly”, “upwardly”, etc.) should be interpreted as orientation shown in . These relative terms are for convenience of description only and do not require that the device be constructed or operate in a particular orientation unless expressly so indicated. Unless expressly stated otherwise, terms such as "attached," "attached," "connected," "coupled," "interconnected," "fixed," and similar terms mean that structures are connected to each other directly or indirectly through intervening structures. A fixed or attached relationship, and a movable or rigid attachment or relationship. Furthermore, the features and benefits of the invention are explained with reference to the examples shown herein. Therefore, it is evident that the invention should not be limited to such examples, even if indicated to be preferred. The discussion herein describes and illustrates some possible non-limiting combinations of features, which may exist alone or in combination with other features.

首先参考图1,示出了根据本发明的电子自动节流系统1000。正如所例示的,电子自动节流系统1000通常包括控制器10、致动器20、第一温度传感器30、第二温度40以及引擎转速传感器60。正如以下讨论的,废气传感器50(或者正如以下讨论的其它传感器)可以包括在本发明的某些方面的电子自动节流系统1000内,以搜集可以用于控制节流阀的位置和移动的附加的或者可替换的输入。Referring first to FIG. 1 , there is shown an electronic throttle system 1000 in accordance with the present invention. As illustrated, the electronic throttle system 1000 generally includes a controller 10 , an actuator 20 , a first temperature sensor 30 , a second temperature sensor 40 , and an engine speed sensor 60 . As discussed below, an exhaust gas sensor 50 (or other sensors as discussed below) may be included in the electronic automatic throttle system 1000 of certain aspects of the present invention to gather additional information that may be used to control the position and movement of the throttle valve. or alternative input.

控制器10、致动器20、第一温度传感器30、第二温度40以及引擎转速传感器60可以通过由虚线示意性地表示的电连接/通信通道51-55彼此处于可操作的协作。取决于特定的电子自动节流系统1000的需要,电连接/通信通道51-55可以包括(不限于)电线、光导纤维、通信电缆、无线通信路径或者它们的组合。正如以下更详细地描述的,只要电连接/通信通道51-55中的每一个可以便于所耦接的元件/部件之间的期望的操作、发送、通信、供电和/或控制,电连接/通信通道51-55的准确的结构特性和布置就不是对本发明的限制。The controller 10, the actuator 20, the first temperature sensor 30, the second temperature 40 and the engine speed sensor 60 may be in operable cooperation with each other via electrical connections/communication channels 51-55, schematically indicated by dashed lines. Depending on the needs of a particular electronic throttle system 1000, electrical connections/communication channels 51-55 may include, without limitation, electrical wires, fiber optics, communication cables, wireless communication paths, or combinations thereof. As described in more detail below, as long as each of the electrical connection/communication channels 51-55 can facilitate desired operation, transmission, communication, power supply and/or control between the coupled elements/components, the electrical connection/communication channels 51-55 The exact structural characteristics and arrangement of communication channels 51-55 are not limiting of the invention.

如图1所示,电子自动节流系统1000可操作地耦接到根据本发明的内燃机100。如图所示,内燃机100通常包括化油器110和引擎缸体(engine block)120。燃料供给器130根据已知的技术可操作地耦接到内燃机100(具体地说,耦接到化油器110)。电子自动节流系统1000根据已知的技术可操作地耦接到例如电池、交流发电机或者其它储能装置的电源140。内燃机100理所当然包括并且由许多其它子系统以及元件/部件补充。为了便于讨论,如果这种细节不是理解本发明所必需的,则在本文中省去这种细节。As shown in FIG. 1 , an electronic throttle system 1000 is operatively coupled to an internal combustion engine 100 according to the present invention. As shown, internal combustion engine 100 generally includes a carburetor 110 and an engine block 120 . A fuel supplier 130 is operably coupled to internal combustion engine 100 (specifically, to carburetor 110 ) according to known techniques. Electronic throttle system 1000 is operatively coupled to a power source 140 such as a battery, alternator, or other energy storage device according to known techniques. The internal combustion engine 100 of course includes and is supplemented by many other subsystems and elements/components. For ease of discussion, such details have been omitted herein if such details are not necessary for an understanding of the invention.

控制器10包括处理器11和存储装置12。虽然处理器11和存储装置12被例示为独立的部件,但是如果需要的话,存储装置12可以与处理器11集成。此外,虽然仅仅例示了一个处理器11和一个存储装置12,但是控制器10可以包括多个处理器11和多个存储装置12。The controller 10 includes a processor 11 and a storage device 12 . Although the processor 11 and the storage device 12 are illustrated as separate components, the storage device 12 may be integrated with the processor 11 if necessary. Furthermore, although only one processor 11 and one storage device 12 are illustrated, the controller 10 may include a plurality of processors 11 and a plurality of storage devices 12 .

处理器11可以是任何计算机中央处理器(CPU)、微处理器、微控制器、计算装置或者电路,其配置为执行在本文中所描述的一些或者所有处理,包括(不限于):(1)查找和执行节流阀的关系数据表格;(2)接收、解析以及使用由第一和第二温度传感器30、40生成的温度信号,作为确定用于所述关系数据表格的变量;(3)在确定是否已经达到引擎曲轴摇转速度和/或引擎起动速度以及确定是否应该使用低速或者高速协议时,接收、解析以及使用由引擎转速传感器60所生成的引擎转速信号;以及(4)生成和发送对致动器20进行操作以将节流阀111移动到期望的位置并且以期望的速率进行移动的控制信号。Processor 11 may be any computer central processing unit (CPU), microprocessor, microcontroller, computing device or circuit configured to perform some or all of the processes described herein, including (without limitation): (1 ) look up and execute a throttle relational data table; (2) receive, parse, and use the temperature signals generated by the first and second temperature sensors 30, 40 as variables determined for the relational data table; (3 ) receiving, interpreting, and using the engine speed signal generated by engine speed sensor 60 in determining whether engine cranking speed and/or engine cranking speed has been reached and whether a low speed or high speed protocol should be used; and (4) generating and send control signals to operate the actuator 20 to move the throttle valve 111 to a desired position and at a desired rate.

存储装置12可以包括(不限于)任何合适的易失性或者非易失性存储器,包含随机存取存储器(RAM)及其各种类型、只读存储器(ROM)及其各种类型、USB闪速存储器以及磁性或者光学的数据存储装置(例如内部/外部硬盘、软性磁盘、磁带CD-ROM、DVD-ROM、光盘、ZIPTM驱动、蓝光磁盘及其它),其可以由可操作地连接至其的处理器11写入和/或读取。存储装置12可以存储关系数据表格(以下更详细地描述)或者其它算法和/或计算,所述其它算法和/或计算可以(通过处理器11)用于确定节流阀111的期望的位置和/或节流阀111被移动的速率。正如以下更详细地讨论的,通过第一和第二温度传感器30、40中的每一个所测量的温度以及通过引擎转速传感器60所测量的引擎转速可以一起用作输入变量,以确定在节流开启过程事件期间节流阀的最佳位置和/或节流阀111在所述最佳位置之间移动的速率。Storage device 12 may include, without limitation, any suitable volatile or non-volatile memory, including random access memory (RAM) and its various types, read only memory (ROM) and its various types, USB flash memory, Flash memory and magnetic or optical data storage devices (such as internal/external hard disks, floppy disks, magnetic tape CD-ROMs, DVD-ROMs, optical disks, ZIP drives, Blu-ray disks, and others) that can be operatively connected to Its processor 11 writes and/or reads. Storage device 12 may store relational data tables (described in more detail below) or other algorithms and/or calculations that may be used (by processor 11) to determine a desired position and position of throttle valve 111. and/or the rate at which the throttle valve 111 is moved. As discussed in more detail below, the temperature measured by each of the first and second temperature sensors 30, 40 and the engine speed measured by the engine speed sensor 60 can be used together as input variables to determine the The optimal position of the throttle valve and/or the rate at which the throttle valve 111 moves between the optimal positions during an open process event.

虽然在本文中将关于利用关系数据表格来描述对节流阀111的最佳位置和节流阀111在所述最佳位置之间移动的最佳速率的确定,但是本发明在所有方面中不是如此被限制。例如,节流阀定位和移动速率的计算可以采用许多形式,包括(不限于)一个或更多个算法、一个或更多个关系数据表格,或者它们的组合。Although the determination of the optimum position of the throttle valve 111 and the optimum rate of movement of the throttle valve 111 between the optimum positions will be described herein with respect to utilizing a relational data table, the present invention is not in all respects so restricted. For example, the calculation of throttle position and travel rate may take many forms including, without limitation, one or more algorithms, one or more relational data tables, or combinations thereof.

控制器10可操作地耦接到致动器20。致动器20接着可操作地耦接到节流阀111。控制器10可以通过生成和发送控制信号按照期望的方式操作致动器20。例如,控制器10可以基于在执行本文中讨论的方法期间作出的确定来生成控制信号(例如以下讨论的图17至19所示出的4个脉冲组)。响应于由执行本文中所描述的方法引起的控制信号,致动器20被适当地启动,从而将节流阀111调整/移动到期望的位置,该位置对应于已经由控制器10确定的那个位置。响应于这些控制信号,致动器20被适当地启动,从而调整节流阀111的定位和节流阀111移动的速率。Controller 10 is operatively coupled to actuator 20 . The actuator 20 is then operatively coupled to the throttle valve 111 . Controller 10 can operate actuator 20 in a desired manner by generating and sending control signals. For example, controller 10 may generate control signals (such as the groups of 4 pulses shown in FIGS. 17-19 discussed below) based on determinations made during execution of the methods discussed herein. In response to a control signal resulting from execution of the methods described herein, the actuator 20 is suitably activated to adjust/move the throttle valve 111 to a desired position corresponding to that which has been determined by the controller 10 Location. In response to these control signals, the actuator 20 is appropriately actuated to adjust the position of the throttle valve 111 and the rate at which the throttle valve 111 moves.

节流阀111可以在完全关闭位置、完全开启位置以及完全关闭位置和完全开启位置之间的任何递增的和/或连续的位置设置之间调整。一个这样的位置是起动位置,其可以被确定为用于实现引擎从引擎关闭状态起动的最佳位置。致动器20通过机械联动装置65可操作地耦接到节流阀111。机械联动装置可以采取在节流阀111和致动器20之间的任何机械连接的形式,使得当致动器20操作/移动时,存在节流阀111(可以是化油器110的节流板)相关的和所确定的移动。机械联动装置可以包括具有球窝式接头的杆、连接在节流板之间的联动条,以及通过挂钩的致动器轴的端部的耦接。然而,可以预见非机械式联动装置,例如电磁和/或热耦接。当使用机械联动装置65时,要理解的是机械联动装置65可以采取各种联动元件和它们的布置,其中没有一个应该被认为是对本发明的限制。The throttle valve 111 is adjustable between a fully closed position, a fully open position, and any incremental and/or continuous position settings between the fully closed and fully open positions. One such position is the starting position, which may be determined as the optimum position for effecting engine starting from an engine off state. Actuator 20 is operatively coupled to throttle valve 111 via mechanical linkage 65 . The mechanical linkage may take the form of any mechanical connection between the throttle valve 111 and the actuator 20 such that when the actuator 20 operates/moves, the throttle valve 111 (which may be a throttle of the carburetor 110 board) related and determined movements. The mechanical linkage may include a rod with a ball joint, a linkage bar connected between the damper plates, and a coupling of the end of the actuator shaft through a hook. However, non-mechanical linkages are foreseen, such as electromagnetic and/or thermal couplings. When a mechanical linkage 65 is used, it is understood that the mechanical linkage 65 may take on a variety of linkage elements and their arrangements, none of which should be considered limiting of the invention.

节流阀111在某些结构布置中可以是正如化油器的本领域常见的蝶形阀。在这样的布置中,节流板的位置通过关于节流轴线(其可以是大致与气流的方向垂直)转动节流板来控制,使得节流板在化油器110的空气通路内呈现不同的角向位置。在每个不同的角向位置处,节流板阻挡化油器110的空气通路的不同百分比的横向区域。因此,改变通过空气通路的环境气流112的流动特性。因为燃料经由燃料供给管线被引入到这个环境气流112,所以在化油器110内建立(并且经由燃料混合物管线115最终提供给燃烧室121)的燃料混合物的燃料空气比通过节流板位置来改变。The throttle valve 111 may in certain arrangements be a butterfly valve as is common in the art for carburetors. In such an arrangement, the position of the throttle plate is controlled by rotating the throttle plate about a throttle axis (which may be approximately perpendicular to the direction of airflow) so that the throttle plate assumes a different position within the air passage of the carburetor 110. angular position. At each different angular position, the throttle plate blocks a different percentage of the lateral area of the air passage of the carburetor 110 . Thus, the flow characteristics of the ambient airflow 112 through the air passage are altered. Because fuel is introduced into this ambient airflow 112 via the fuel supply line, the fuel-to-air ratio of the fuel mixture established within the carburetor 110 (and ultimately supplied to the combustion chamber 121 via the fuel mixture line 115) is varied by the throttle plate position .

虽然节流阀111被例示为包括节流板的蝶形阀,但是在本发明的所有方面中,节流阀111不限于节流板结构。节流阀111可以是可被操纵到最终改变提供到燃烧室121的燃料混合物的燃料空气比的各个位置(即设置)的任何类型的装置。例如并且不作限制,节流阀111可以采取闸门阀、球形阀、夹阀、膜式阀、针形阀、旋塞阀、球阀、控制阀或者它们的组合的形式。Although the throttle valve 111 is illustrated as a butterfly valve including a throttle plate, the throttle valve 111 is not limited to a throttle plate structure in all aspects of the present invention. Throttle valve 111 may be any type of device that may be manipulated to various positions (ie, settings) that ultimately vary the fuel-to-air ratio of the fuel mixture provided to combustion chamber 121 . For example and without limitation, throttle valve 111 may take the form of a gate valve, a ball valve, a pinch valve, a diaphragm valve, a needle valve, a plug valve, a ball valve, a control valve, or combinations thereof.

在一个方面中,致动器20可以包括步进马达。步进马达可以将节流阀111从完全关闭位置调整到完全开启位置所需要的转动划分为若干相等的增量,使得可以实现节流阀111的设置的精细调整。步进马达的位置可以由控制器110命令,以在这些增量中的任何一个处移动和保持。在某些布置中,马达驱动电路160(参见图24)可以作为电子自动节流系统1000的一部分而被包括,并且可操作地耦接在控制器10和致动器20之间。在致动器20是双极步进马达的示例中,马达驱动电路160可以用来控制和驱动双极步进马达的一个绕组中的电流,并且包括可兼容的逻辑输入、电流传感器、单稳态以及具有内建的保护二极管的输出级。在某些其它布置中,马达驱动电路可以被省去或者建立到步进马达自身中。马达驱动电路160还可以包括确定驱动器速率的单独的内部计时器。还可以包括用于使致动器20微步进或者半步进的附加的控件,如果该设计需要这种专门的控件的话。In one aspect, actuator 20 may comprise a stepper motor. The stepper motor can divide the rotation required to adjust the throttle valve 111 from the fully closed position to the fully open position into several equal increments so that fine adjustment of the setting of the throttle valve 111 can be achieved. The position of the stepper motor can be commanded by the controller 110 to move and hold at any of these increments. In certain arrangements, a motor drive circuit 160 (see FIG. 24 ) may be included as part of the electronic throttle system 1000 and operably coupled between the controller 10 and the actuator 20 . In the example where actuator 20 is a bipolar stepper motor, motor drive circuit 160 may be used to control and drive current in one winding of the bipolar stepper motor and includes compatible logic inputs, current sensors, monostable state and an output stage with built-in protection diodes. In some other arrangements, the motor drive circuitry can be omitted or built into the stepper motor itself. The motor drive circuit 160 may also include a separate internal timer to determine the drive speed. Additional controls for micro-stepping or half-stepping the actuator 20 may also be included if the design requires such specialized controls.

在本文中提出的某些示例中,致动器20是马达移动被分成相等的4个马达步进增量的步进马达。单极步进马达的4个完整的步进还可以被看作马达的一个完整旋转。两个方向中的马达移动将被称为旋转。在一个这样的示例中,使用执行55个旋转的步进马达,以将节流阀111从完全关闭位置移动到完全开启位置。In some examples presented herein, the actuator 20 is a stepper motor in which the motor movement is divided into equal 4 motor step increments. Four complete steps of a unipolar stepper motor can also be considered as one complete revolution of the motor. Motor movement in both directions will be referred to as rotation. In one such example, a stepper motor performing 55 revolutions is used to move the throttle valve 111 from a fully closed position to a fully open position.

虽然步进马达被例示为合适的致动器20,但是致动器20可以是任何装置或组件,所述装置或组件可以将由控制器10生成的控制信号转换为节流阀111的物理操作,以调整它们的设置。例如,在其它布置中,致动器20可以采取电致动器、电磁致动器、压电致动器、气压致动器、液压活塞、中继器、梳状驱动器、热双压电晶体、数字微镜装置以及电活性聚合物的形式。这样的电致动器可以包括螺线管。Although a stepper motor is exemplified as a suitable actuator 20, the actuator 20 may be any device or component that can convert the control signal generated by the controller 10 into physical operation of the throttle valve 111, to adjust their settings. For example, in other arrangements, the actuator 20 may take the form of an electric actuator, an electromagnetic actuator, a piezoelectric actuator, a pneumatic actuator, a hydraulic piston, a relay, a comb drive, a thermal bimorph , digital micromirror devices, and electroactive polymers. Such electric actuators may include solenoids.

电子自动节流系统1000的第一温度传感器30被定位为测量表示内燃机100的温度的第一温度。正如所例示的,第一温度传感器30可以被安装到引擎缸体120以测量引擎缸体120自身的温度作为第一温度。正如本文中所使用的,术语“引擎缸体”概括地用于包括引擎曲轴箱123、汽缸体124以及汽缸头125(参见图21)。可替换地,第一温度传感器30可以被安装到足够靠近(或者与其热协作)引擎缸体120的另一结构,使得可以获取可靠的引擎缸体的温度测量。在其它系统中,第一温度传感器30可以被安装到或者邻近于引擎100的另一部件,并且可以测量在那个部件处或者附近的温度。The first temperature sensor 30 of the electronic throttle system 1000 is positioned to measure a first temperature representative of the temperature of the internal combustion engine 100 . As illustrated, the first temperature sensor 30 may be installed to the engine block 120 to measure the temperature of the engine block 120 itself as the first temperature. As used herein, the term "engine block" is used broadly to include engine crankcase 123, cylinder block 124, and cylinder head 125 (see FIG. 21). Alternatively, the first temperature sensor 30 may be mounted to another structure sufficiently close to (or thermally cooperating with) the engine block 120 that a reliable engine block temperature measurement may be obtained. In other systems, the first temperature sensor 30 may be mounted to or adjacent to another component of the engine 100 and may measure the temperature at or near that component.

在一个特定的布置中,第一温度传感器30可以在内燃机100的飞轮126附近的位置处被安装到引擎曲轴箱123本身(参见图21)。在其它布置中,第一温度传感器30可以被安装在引擎缸体120上的替换的位置处或者可以被安装在引擎缸体120附近且与其接触。在其它布置中,第一温度传感器30可以与和引擎缸体120热协作的部件接触,该部件可以以可测定的方式提供对应于引擎缸体120的温度的热读取。在以下更详细地讨论的一个示例性布置中,第一温度传感器30被安装到点火模块3000的层压叠片4070,其接着被固定到引擎曲轴箱123并因此与其热协作。In one particular arrangement, the first temperature sensor 30 may be mounted to the engine crankcase 123 itself at a location near the flywheel 126 of the internal combustion engine 100 (see FIG. 21 ). In other arrangements, the first temperature sensor 30 may be mounted at an alternate location on the engine block 120 or may be mounted near and in contact with the engine block 120 . In other arrangements, the first temperature sensor 30 may be in contact with a component in thermal cooperation with the engine block 120 that may provide a thermal reading corresponding to the temperature of the engine block 120 in a measurable manner. In one exemplary arrangement discussed in more detail below, the first temperature sensor 30 is mounted to the laminated lamination 4070 of the ignition module 3000 , which is then secured to the engine crankcase 123 and thus thermally cooperates therewith.

如上所述,第一温度传感器30可以测量引擎温度并且输出表示引擎温度的第一温度信号。正如以下更详细地讨论的,这个第一温度信号经由电连接/通信通道51被发送到控制器10,其中该信号被控制器用于确定节流阀111的起动位置和/或节流阀要被开启的速率。第一温度传感器30可以反复地或者连续地测量第一温度,使得向控制器10自动地提供表示引擎温度的第一温度信号。可替换地,第一温度传感器30可以在预定的时间段、在预定的引擎事件中和/或在预定的引擎状况下周期性地测量引擎温度,使得仅仅在某些期望的时间、在期望的引擎事件中、在期望的引擎状况下或者在推动时,向控制器10提供表示引擎温度的第一温度信号。As described above, the first temperature sensor 30 may measure the engine temperature and output a first temperature signal indicative of the engine temperature. As discussed in more detail below, this first temperature signal is sent via the electrical connection/communication channel 51 to the controller 10, where the signal is used by the controller to determine the starting position of the throttle valve 111 and/or the throttle valve to be activated. Turn on rate. The first temperature sensor 30 may repeatedly or continuously measure the first temperature so that the controller 10 is automatically provided with a first temperature signal representing the engine temperature. Alternatively, the first temperature sensor 30 may periodically measure the engine temperature at predetermined time periods, at predetermined engine events, and/or at predetermined engine conditions, such that only at certain desired times, at desired A first temperature signal representative of the engine temperature is provided to the controller 10 during an engine event, at a desired engine condition or while driving.

第一温度传感器30可以是电温度传感器。例如,第一温度传感器30可以包括一个或多个热敏电阻。在其它布置中,第一温度传感器30可以包括一个或多个热电偶、电阻式温度计、硅带隙温度传感器、恒温器、RTD和/或状态变化温度传感器。The first temperature sensor 30 may be an electrical temperature sensor. For example, the first temperature sensor 30 may include one or more thermistors. In other arrangements, the first temperature sensor 30 may include one or more thermocouples, resistance thermometers, silicon bandgap temperature sensors, thermostats, RTDs, and/or change-of-state temperature sensors.

电子自动节流系统1000的第二温度传感器40可以被定位为测量表示环境空气150的温度的第二温度。正如所例示的,第二温度传感器40被定位其中以测量其温度的环境空气150最终被吸入化油器110中,环境空气在化油器中用于生成经由燃料混合物管线115传送到燃烧室121的燃料混合物。然而,第二温度传感器40可以被定位在暴露于未被吸入化油器中的环境空气150的其它位置处。例如,第二温度传感器40可以位于气冷式引擎布置中的吹风机入口附近(参见图6)或者受到环境空气150影响的任何位置处。在另外的其它系统中,第二温度传感器40可以被定位为测量其它温度,例如单独的引擎部件温度或者空气(例如进气、排出气或者冷却空气)温度。The second temperature sensor 40 of the electronic throttle system 1000 may be positioned to measure a second temperature representative of the temperature of the ambient air 150 . As illustrated, the ambient air 150 in which the second temperature sensor 40 is positioned to measure its temperature is ultimately drawn into the carburetor 110 where it is used to generate fuel to the combustion chamber 121 via the fuel mixture line 115 fuel mixture. However, the second temperature sensor 40 may be positioned at other locations that are exposed to ambient air 150 that is not drawn into the carburetor. For example, the second temperature sensor 40 may be located near the blower inlet in an air-cooled engine arrangement (see FIG. 6 ) or anywhere that is affected by the ambient air 150 . In still other systems, the second temperature sensor 40 may be positioned to measure other temperatures, such as individual engine component temperatures or air (eg, intake, exhaust, or cooling air) temperatures.

第二温度传感器40测量环境气温并且输出表示环境气温的第二温度信号。正如以下更详细地讨论的,这个第二温度信号经由电连接/通信通道52被发送到控制器10,其中该第二温度信号被控制器10用于确定节流阀要被开启的速率。在其它布置中,第二温度信号还可以被控制器10(与第一温度信号结合)用于确定节流阀111的起动位置。The second temperature sensor 40 measures ambient air temperature and outputs a second temperature signal representing the ambient air temperature. As discussed in more detail below, this second temperature signal is sent to controller 10 via electrical connection/communication channel 52, where it is used by controller 10 to determine the rate at which the throttle valve is to be opened. In other arrangements, the second temperature signal may also be used by the controller 10 (in combination with the first temperature signal) to determine the actuation position of the throttle valve 111 .

第二温度传感器40可以反复地或者连续地测量第二温度,使得向控制器10自动地提供表示环境气温的第二温度信号。可替换地,第二温度传感器40可以在预定的时间段、在预定的引擎事件中和/或在预定的引擎状况下周期性地测量第二温度,使得仅仅在某些期望的时间、在期望的引擎事件中、在期望的引擎状况下或者在推动时,向控制器10提供表示环境气温的第二温度信号。The second temperature sensor 40 may repeatedly or continuously measure the second temperature, so that the controller 10 is automatically provided with a second temperature signal representing the ambient air temperature. Alternatively, the second temperature sensor 40 may periodically measure the second temperature at predetermined time periods, at predetermined engine events, and/or at predetermined engine conditions, such that only at certain desired times, at desired A second temperature signal representative of the ambient air temperature is provided to the controller 10 during engine events, under desired engine conditions, or while driving.

第二温度传感器40可以是电温度传感器。例如,第二温度传感器40可以包括一个或多个热敏电阻。在其它布置中,第二温度传感器40可以包括一个或多个热电偶、电阻式温度计和/或硅带隙温度传感器。在本发明的某些布置中,如果环境气温在确定节流阀的节流阀定位和/或移动速率的优化中不起作用,则可以省去第二温度传感器40。The second temperature sensor 40 may be an electrical temperature sensor. For example, the second temperature sensor 40 may include one or more thermistors. In other arrangements, the second temperature sensor 40 may comprise one or more thermocouples, resistance thermometers, and/or silicon bandgap temperature sensors. In certain arrangements of the invention, the second temperature sensor 40 may be omitted if ambient air temperature does not play a role in determining the optimization of the throttle valve positioning and/or travel rate of the throttle valve.

电子自动节流系统1000还包括引擎转速传感器60。引擎转速传感器60被配置为测量内燃机的转速。如上所述,引擎转速传感器60经由电通道55可操作地耦接到控制器10。正如以下更详细地讨论的,引擎转速传感器60测量内燃机的引擎转速并且将这个信息中继到控制器10,使得控制器可以在确定节流阀111的最优定位和/或开启节流阀111的速率中使用所测量的引擎转速。在一个布置(参见图21)中,引擎转速传感器60可以包括充电线圈,该充电线圈可以被认为是转动传感器,响应于飞轮上的磁体,该转动传感器由于形成在层压叠片中的磁路而生成电荷。在其它布置中,例如当不使用磁点火系统时,可以设置转动传感器,转动传感器是不同于充电线圈和/或除了充电线圈之外的部件,其可以通过机械、电学或者磁探测,潜在地通过与曲柄轴或者凸轮轴适当的耦接来检测引擎的旋转。The electronic throttle system 1000 also includes an engine speed sensor 60 . The engine speed sensor 60 is configured to measure the speed of the internal combustion engine. As mentioned above, engine speed sensor 60 is operatively coupled to controller 10 via electrical channel 55 . As discussed in more detail below, the engine speed sensor 60 measures the engine speed of the internal combustion engine and relays this information to the controller 10 so that the controller can determine the optimal position of the throttle valve 111 and/or open the throttle valve 111 The measured engine speed is used in the rate. In one arrangement (see FIG. 21 ), the engine speed sensor 60 may comprise a charge coil, which may be considered a rotational sensor, responsive to a magnet on the flywheel, due to the magnetic circuit formed in the laminated laminations. to generate charge. In other arrangements, such as when a magnetic ignition system is not used, a rotation sensor may be provided, a rotation sensor being a component other than and/or in addition to the charging coil, which may be detected mechanically, electrically or magnetically, potentially through Properly coupled to the crankshaft or camshaft to detect engine rotation.

引擎转速传感器60可以反复地或者连续地测量引擎转速,使得向控制器10自动地提供引擎转速测量。可替换地,引擎转速传感器60可以在预定的时间段、在预定的引擎事件中和/或在预定的引擎状况下周期性地测量引擎转速,使得仅仅在某些期望的时间、在期望的引擎事件中、在期望的引擎状况下或者在推动时,向控制器10提供引擎转速测量。Engine speed sensor 60 may repeatedly or continuously measure engine speed such that the engine speed measurement is automatically provided to controller 10 . Alternatively, engine speed sensor 60 may periodically measure engine speed at predetermined time periods, at predetermined engine events, and/or at predetermined engine conditions, such that only at certain desired times, at desired engine speeds, Engine speed measurements are provided to controller 10 in the event, under expected engine conditions, or while pushing.

在某些布置中,电子自动节流控制系统1000还可以包括附加传感器,使得在确定节流阀111的最优定位和/或开启节流阀111的最优速率中可以考虑到其它变量。例如,电子自动节流控制系统1000可以配置为在确定控制节流阀111开启的最优方案中考虑化油器中的空气燃料比、引擎负荷和/或废气特性。这可以通过提供用于测量期望的参数和/或状况的传感器或者其它机制并且将所测量的参数和/或状况提供给控制器10来实现。在这种布置中,节流阀111的位置和开启速率的确定以适当的方式被修改,以包括附加参数和/或状态作为确定节流阀111的控制方案中的变量。In certain arrangements, the electronic automatic throttle control system 1000 may also include additional sensors so that other variables may be considered in determining the optimal positioning of the throttle valve 111 and/or the optimal rate at which the throttle valve 111 is opened. For example, the electronic automatic throttle control system 1000 may be configured to consider the air-fuel ratio in the carburetor, engine load, and/or exhaust gas characteristics in determining an optimal scheme for controlling opening of the throttle valve 111 . This may be accomplished by providing sensors or other mechanisms for measuring desired parameters and/or conditions and providing the measured parameters and/or conditions to controller 10 . In this arrangement, the determination of the position and opening rate of the throttle valve 111 is modified in an appropriate manner to include additional parameters and/or states as variables in determining the control scheme for the throttle valve 111 .

在一个这种布置中,可以设置测量废气特性的废气传感器50,废气特性被发送到控制器10,用于考虑以确定引擎起动和/或关闭期间节流阀111的优化的控制方案。废气传感器50可操作地耦接到燃烧室121的排气管线122。废气传感器50测量废气的期望的特性。废气传感器50例如可以是测量特定的混合物或者废气流中的气体的浓度的浓度传感器,例如氧浓度传感器。In one such arrangement, an exhaust gas sensor 50 may be provided which measures exhaust gas characteristics which are sent to the controller 10 for consideration to determine an optimized control scheme for the throttle valve 111 during engine starting and/or shutting down. Exhaust gas sensor 50 is operatively coupled to exhaust line 122 of combustion chamber 121 . Exhaust gas sensor 50 measures a desired characteristic of the exhaust gas. The exhaust gas sensor 50 can be, for example, a concentration sensor that measures the concentration of a specific mixture or gas in the exhaust gas flow, such as an oxygen concentration sensor.

废气传感器50经由电连接/通信通道56生成表示所测量的废气特性的信号并且将该信号发送到控制器10用于处理。为此,关系数据表格的修改版本(或者其它计算或者算法)被存储在存储装置12中,其包括除了所测量的引擎温度、环境气温和/或引擎转速之外的所测量的废气特性作为变量。处理器11从存储装置12获取关系数据表格的修改版本,并且利用关系数据表格的修改版本来确定用于节流阀111的最佳控制方案。正如将更详细讨论的,在本发明的一个方面中,废气传感器50(或者配置为测量表示要在或者正在燃烧室中燃烧的空气燃料比的参数的其它传感器)可以可操作地耦接到控制器10以形成闭合的反馈环,在闭合的反馈环中,响应于由这种反馈传感器进行的测量,节流阀111的速率和/或位置在第二节流开启阶段COS2期间被动态地控制,这可以是基本上实时的。Exhaust gas sensor 50 generates a signal representative of the measured exhaust gas property via electrical connection/communication channel 56 and sends the signal to controller 10 for processing. To this end, a modified version of the relational data table (or other calculation or algorithm) is stored in the memory device 12, which includes as variables the measured exhaust gas properties in addition to the measured engine temperature, ambient air temperature and/or engine speed . The processor 11 retrieves the modified version of the relational data table from the storage device 12 and uses the modified version of the relational data table to determine an optimal control scheme for the throttle valve 111 . As will be discussed in more detail, in one aspect of the invention, the exhaust gas sensor 50 (or other sensor configured to measure a parameter indicative of the air-fuel ratio to be or being combusted in the combustion chamber) may be operably coupled to the control sensor 10 to form a closed feedback loop in which the rate and/or position of the throttle valve 111 is dynamically controlled during the second throttle opening phase COS2 in response to measurements made by such a feedback sensor , which can be substantially real-time.

现在同时参考图2A至2C和图3,将描述根据本发明的利用电子自动节流系统1000电子地控制节流阀111的方法200。正如以下更详细地讨论的,控制节流阀11的方法被例示为在节流阀111从初始位置移动到完全开启位置的引擎起动过程期间发生。节流阀开启处理可以大致被分成两个阶段,即,第一节流开启阶段COS1和第二节流开启阶段COS2。第一节流开启阶段COS1包括将节流阀111从初始位置移动到起动位置(以下关于图6至7讨论的,移动到降低的起动位置中的一个),而第二节流开启阶段COS2包括将节流阀111从起动位置(或者降低的起动位置中的一个)移动到完全开启位置。正如所例示的,第一节流开启阶段COS2包括根据起动坡道SR来开启节流阀111,而第二节流开启阶段COS2包括根据初始坡道IR、中间坡道MR以及最终坡道FR来开启节流阀111。在一些变型中,可以合并或者省去坡道中的一个或更多个。Referring now to FIGS. 2A to 2C and FIG. 3 concurrently, a method 200 of electronically controlling the throttle valve 111 utilizing the electronic automatic throttle system 1000 in accordance with the present invention will be described. As discussed in more detail below, the method of controlling the throttle valve 11 is illustrated as occurring during an engine start process in which the throttle valve 111 moves from an initial position to a fully open position. The throttle opening process can be roughly divided into two phases, namely, a first throttle opening phase COS1 and a second throttle opening phase COS2. The first throttle opening phase COS1 includes moving the throttle valve 111 from an initial position to a start position (to one of the lowered start positions discussed below with respect to FIGS. 6 to 7 ), while the second throttle opening phase COS2 includes The throttle valve 111 is moved from the start position (or one of the lowered start positions) to the fully open position. As illustrated, the first throttle opening stage COS2 includes opening the throttle valve 111 according to the starting ramp SR, while the second throttle opening stage COS2 includes opening the throttle valve 111 according to the initial ramp IR, the intermediate ramp MR and the final ramp FR. The throttle valve 111 is opened. In some variations, one or more of the ramps may be incorporated or omitted.

在决策步骤201,控制器10确定是否已经检测到“钥匙开启”情形。在这个阶段,节流阀111处于初始位置(参见图3)。正如所例示的,初始位置是在图3中例示为2%开启的部分开启位置(即,不是完全关闭位置)。当然,初始位置可以采取其它值并且在某些示例中可以是完全关闭位置(如果需要的话)。然而,将初始位置建立为部分开启位置可以具有优点在于:最小化和/或消除节流阀111在寒冷状况下的冷冻关闭的可能性。In decision step 201, the controller 10 determines whether a "key on" condition has been detected. At this stage, the throttle valve 111 is in the initial position (see FIG. 3 ). As illustrated, the initial position is a partially open position (ie, not a fully closed position) illustrated in FIG. 3 as 2% open. Of course, the initial position could take other values and in some examples could be a fully closed position if desired. However, establishing the initial position as a partially open position may have the advantage of minimizing and/or eliminating the possibility of freezing closure of the throttle valve 111 in cold conditions.

当点火电路被接通时(这可以例如通过钥匙的转动或者另一操作者操纵的装置的开动来实现),“钥匙开启”情形可以被控制器10检测到。如果没有检测到“钥匙开启”情形,则电子自动节流系统1000保持在睡眠或者关闭模式并且该方法返回到启动。如果检测到“钥匙开启”情形,则该方法进行到处理步骤202。A "key-on" condition may be detected by the controller 10 when the ignition circuit is turned on (this may be accomplished, for example, by the turning of a key or the actuation of another operator-operated device). If a "key-on" condition is not detected, the electronic throttle system 1000 remains in the sleep or off mode and the method returns to activation. If a “key on” condition is detected, the method proceeds to process step 202 .

在处理步骤202,第一温度传感器30测量引擎温度作为第一温度T1,而第二温度传感器40测量环境气温作为第二温度T2。控制器10可以促使第一和第二温度传感器30、40进行温度测量。一旦进行该测量,第一和第二温度T1、T2则被发送到控制器10用于处理,从而完成处理步骤202。在处理步骤203,控制器10接收:(1)来自第一温度传感器30的表示引擎温度的第一温度T1;以及(2)来自第二温度传感器40的表示环境气温的第二温度T2。在接收到第一和第二温度信号T1、T2时,控制器10的处理器11从存储装置12获取用于确定节流阀111的起动位置的关系数据表格,这至少基于所测量的第一温度T1。In process step 202 , the first temperature sensor 30 measures the engine temperature as the first temperature T1 , and the second temperature sensor 40 measures the ambient air temperature as the second temperature T2 . The controller 10 may cause the first and second temperature sensors 30, 40 to take temperature measurements. Once this measurement is taken, the first and second temperatures T1 , T2 are sent to the controller 10 for processing, completing processing step 202 . In processing step 203 , the controller 10 receives: (1) a first temperature T1 representing engine temperature from the first temperature sensor 30 ; and (2) a second temperature T2 representing ambient air temperature from the second temperature sensor 40 . Upon receipt of the first and second temperature signals T1, T2, the processor 11 of the controller 10 retrieves from the memory device 12 a relational data table for determining the starting position of the throttle valve 111 based at least on the measured first temperature T1.

图4中示出了(图5中图形地示出了)可以通过控制器10来确定节流阀111的起动位置的起动位置关系数据表格的示例。起动位置关系数据表格的值可以通过实验和/或校准来建立,使得为所测量的第一温度T1(即,所测量的引擎温度)来选择节流阀111的起动位置,这实现了提供给燃烧室121的混合物的最优空气燃料比。混合物的空气燃料比的优化可以包括减少排放物、改进引擎起动、减少熄火、提高燃料效率或者它们的组合。如图4所示,当第一温度T1被测量为是50°F(或者测量为处于四舍五入到50°F的数字)时,控制器10确定节流阀111的起动位置要被设置在7%开启,从而完成处理步骤203。An example of a start position relationship data table from which the start position of the throttle valve 111 may be determined by the controller 10 is shown in FIG. 4 (shown graphically in FIG. 5 ). The values of the starting position relationship data table can be established by experimentation and/or calibration, so that the starting position of the throttle valve 111 is selected for the measured first temperature T1 (ie, the measured engine temperature), which realizes the The optimum air-fuel ratio of the mixture in the combustion chamber 121. Optimization of the air-fuel ratio of the mixture may include reducing emissions, improving engine starting, reducing misfires, increasing fuel efficiency, or combinations thereof. As shown in FIG. 4, when the first temperature T1 is measured to be 50°F (or to be measured at a number rounded to 50°F), the controller 10 determines that the start position of the throttle valve 111 is to be set at 7% is turned on, thereby completing the processing step 203.

虽然在例示的方法中起动位置的确定与第二温度T2无关,但是在本发明的其它布置中起动位置可以基于第一和第二温度T1和T2两者。例如,在一个这种替换的布置中,起动位置可以基于第一温度T1和第二温度T2两者。在一个特定示例中,仅仅在第一和第二温度T1、T2之间的(绝对)差处于或者超出预定临界值时,第二温度T2可以对节流阀111的起动位置的确定有影响。Although in the illustrated method the starting position is determined independently of the second temperature T2, in other arrangements of the invention the starting position may be based on both the first and second temperatures T1 and T2. For example, in one such alternative arrangement, the starting position may be based on both the first temperature T1 and the second temperature T2. In a particular example, the second temperature T2 may have an influence on the determination of the starting position of the throttle valve 111 only if the (absolute) difference between the first and second temperatures T1, T2 is at or exceeds a predetermined threshold.

一旦步骤203被完成并且控制器已经确定节流阀的起动位置,控制器10生成适当的控制信号并经由电连接/通信通道53将该控制信号(以下关于图18至20更详细地讨论)发送到致动器20。在收到控制信号时,致动器20将节流阀111从初始位置(其在图3的示例中是2%开启)移动到起动位置(其在图3的示例中是7%开启),从而完成处理步骤204。在将节流阀111从初始位置开启到起动位置中,在一个布置中,控制器10将以对于致动器20来说可能的最快速率来开启节流阀111(参见图18)。因此,如图3图形地所示的,起动坡道SR的斜率处于可以通过致动器20所实现的最大值。Once step 203 is completed and the controller has determined the start position of the throttle valve, the controller 10 generates an appropriate control signal and sends this control signal via the electrical connection/communication channel 53 (discussed in more detail below with respect to FIGS. 18-20 ) to the actuator 20. Upon receipt of the control signal, the actuator 20 moves the throttle valve 111 from the initial position (which is 2% open in the example of FIG. 3 ) to the starting position (which is 7% open in the example of FIG. 3 ), Process step 204 is thus completed. In opening the throttle valve 111 from the initial position to the start position, in one arrangement the controller 10 will open the throttle valve 111 at the fastest rate possible for the actuator 20 (see Figure 18). Thus, as shown graphically in FIG. 3 , the slope of the start ramp SR is at a maximum value achievable by the actuator 20 .

一旦节流阀111处于起动位置,控制器10继续监测内燃机100的状态。具体地说,在处理步骤205,利用引擎转速传感器60测量来引擎的转速,而节流阀111被保持在起动位置。控制器10接收/检测所测量的引擎转速,从而完成处理步骤206。在接收到所测量的引擎转速时,控制器10确定所测量的引擎转速是否处于或者超出引擎曲轴摇转速度,从而执行决策步骤207。引擎曲轴摇转速度可以是存储在存储装置12中并且指示内燃机100正在转动的预定速度。例如,在一个特定布置中,引擎曲轴摇转速度可以设置为300转/分钟(RPM)。当然,可以使用其它数值作为引擎曲轴摇转速度。所使用的准确的数值可以依赖于包括引擎额定功率等的各种因素。Once the throttle valve 111 is in the start position, the controller 10 continues to monitor the status of the internal combustion engine 100 . Specifically, at process step 205, the engine speed is measured using the engine speed sensor 60 while the throttle valve 111 is held in the start position. Controller 10 receives/detects the measured engine speed, completing process step 206 . Upon receiving the measured engine speed, the controller 10 determines whether the measured engine speed is at or above the engine crank speed, thereby executing decision step 207 . The engine crank speed may be a predetermined speed that is stored in the memory device 12 and indicates that the internal combustion engine 100 is turning. For example, in one particular arrangement, the engine crank speed may be set at 300 revolutions per minute (RPM). Of course, other values may be used as the cranking speed of the engine. The exact numerical value used may depend on various factors including engine power rating and the like.

如果在执行决策步骤207时,控制器10确定所测量的速度没有处于或者超出(即低于)引擎曲轴摇转速度,则控制器10返回处理步骤205。然而,如果在执行决策步骤207时,控制器10确定所测量的速度处于或者超出引擎曲轴摇转速度,则控制器10进行到决策步骤208,其中控制器10接收来自引擎转速传感器60的新的引擎转速测量结果,并且估算新接收的引擎转速测量结果以确定是否已经发生故障的摇转事件。在确定故障的摇转事件是否已经发生时,控制器10将新接收的引擎转速测量结果与存储在存储装置12中的预定引擎转速进行比较,该预定引擎转速在某些示例中可以是引擎曲轴摇转速度。如果在执行决策步骤208中,确定故障的摇转事件没有发生,则控制器10进行到决策步骤209。图3例示了在引擎起动过程期间没有检测到故障的摇转事件的情形。If, when executing decision step 207 , controller 10 determines that the measured speed is not at or above (ie, below) the engine crank speed, then controller 10 returns to process step 205 . However, if, upon execution of decision step 207, controller 10 determines that the measured speed is at or above the engine crank speed, then controller 10 proceeds to decision step 208, where controller 10 receives a new speed from engine speed sensor 60. engine speed measurements, and evaluate newly received engine speed measurements to determine if a faulty cranking event has occurred. In determining whether a faulty cranking event has occurred, controller 10 compares the newly received engine speed measurement to a predetermined engine speed stored in memory device 12, which in some examples may be the engine crankshaft Rotation speed. If, in executing decision step 208 , it is determined that a faulty panning event has not occurred, then controller 10 proceeds to decision step 209 . Figure 3 illustrates a situation where no faulty cranking events are detected during the engine start process.

现在同时参考图2A和图6至7,如果在执行决策步骤208中确定故障的摇转事件已经发生,则控制器10进行到处理步骤210。在处理步骤210,控制器210使用于跟踪连续故障的摇转事件的数量的计数器增加(即增加1)。一旦处理步骤210结束,控制器10进行到决策步骤211,在该决策步骤211中,它分析计数器以确定由计数器所存储的连续故障的摇转事件的数量是否小于或等于预定数。在该示例中,这个数字被设置为4但是可以设置为其它数字(如果期望的话)。如果确定由计数器所存储的连续故障的摇转事件的数量小于预定数,则控制器10进行到处理步骤212。Referring now to FIGS. 2A and 6-7 concurrently, if it is determined in execution decision step 208 that a faulty cranking event has occurred, then controller 10 proceeds to process step 210 . At process step 210, the controller 210 increments (ie, increments by 1) a counter used to track the number of consecutive failed panning events. Once process step 210 ends, controller 10 proceeds to decision step 211 where it analyzes the counter to determine whether the number of consecutive faulty cranking events stored by the counter is less than or equal to a predetermined number. In this example, this number is set to 4 but could be set to other numbers if desired. If it is determined that the number of consecutive failed panning events stored by the counter is less than the predetermined number, the controller 10 proceeds to process step 212 .

在处理步骤212,控制器10使节流阀111关闭预定量,使得节流阀111从起动位置移动到第一降低的起动位置,控制器10然后返回到处理步骤205。通过使节流阀111关闭预定量(其在例示的实施例中是7%),空气和燃料的更富含燃料的混合物被引入燃烧室121中。如图6所示,单个故障的摇转事件在这个示例中被检测到并且节流阀111被关闭到第一降低的起动位置。在节流阀111处于第一降低的起动位置的情况下执行了步骤205-208时,控制器10在决策步骤208已经确定没有检测到故障的摇转事件并且控制器10移动到决策步骤209,从而开始(以下更详细地讨论的)第二节流开启阶段SOC2。在图6的示例中,第二节流开启阶段SOC2包括将节流阀111从第一降低的起动位置移动到完全开启位置,而第一节流开启阶段SOC1包括将节流阀111从初始位置移动到起动位置,然后从起动位置移动到第一降低的起动位置。At process step 212 , controller 10 closes throttle valve 111 by a predetermined amount such that throttle valve 111 moves from the start position to a first lowered start position, controller 10 then returns to process step 205 . A more fuel-rich mixture of air and fuel is introduced into the combustion chamber 121 by closing the throttle valve 111 by a predetermined amount, which in the illustrated embodiment is 7%. As shown in FIG. 6 , a single faulty crank event is detected in this example and the throttle valve 111 is closed to a first lowered start position. When steps 205-208 are performed with the throttle valve 111 in the first reduced start position, the controller 10 has determined at decision step 208 that no faulty cranking event has been detected and the controller 10 moves to decision step 209, The second throttle-on phase SOC2 (discussed in more detail below) thus begins. In the example of FIG. 6, the second throttle-opening phase SOC2 includes moving the throttle valve 111 from a first lowered starting position to a fully open position, while the first throttle-opening phase SOC1 includes moving the throttle valve 111 from an initial position to a fully open position. Move to the start position, and then move from the start position to the first lowered start position.

如图7所示,可以的是,在节流阀已经移动到第一降低的起动位置并且该处理返回到处理步骤205后,附加的连续故障的摇转事件可以在决策步骤208被检测到。在这样的事件中,每次都执行步骤210-212,直到在决策步骤211确定由计数器所存储的连续故障的摇转事件的数量不小于预定数为止。然而,每连续地在判定步骤208检测到故障的摇转事件,并且随后在决策步骤211确定由计数器所存储的连续故障的摇转事件的数量小于预定数,控制器10将继续将节流阀111关闭一段附加量。如图7例示的,这个发生第二次时,节流阀111的位置从第一降低的起动位置移动到第二降低的起动位置。这个发生第三次时,节流阀111的位置从第二降低的起动位置移动到第三降低的起动位置。然而,这个发生第四次时,节流阀111的位置从第三降低的起动位置移动到第四降低的起动位置,但是接下来在判定步骤211确定由计数器所存储的连续故障的摇转事件的数量不小于预定数。作为这个确定的结果,控制器10进行到处理步骤213并且控制器将节流阀移动到完全开启位置。在返回到步骤205时,控制器10实质上等待“熄火”信号,因为它陷入在永久的循环中。在检测到“熄火”信号时,该系统被重新设置(如图17所示)并且方法200再次开始。正如图7中例示的,控制器10关闭节流阀111的预定量在连续检测的摇转事件之间是相同的(在该示例中是7%)。然而,预定量在其它布置中可能不是相同的,相反地可以在连续故障的摇转事件之间变化。在某些示例中,正如本文中所使用的,术语“起动位置”可以包括以上讨论的“降低的起动位置”。As shown in FIG. 7 , it is possible that additional consecutive faulty cranking events may be detected at decision step 208 after the throttle valve has been moved to the first lowered start position and the process returns to process step 205 . In such an event, steps 210-212 are executed each time until it is determined at decision step 211 that the number of consecutive faulty cranking events stored by the counter is not less than a predetermined number. However, each successive faulty crank event detected at decision step 208, and subsequently determined at decision step 211 that the number of consecutive failed crank events stored by the counter is less than a predetermined number, the controller 10 will continue to throttle 111 closes an additional amount. As illustrated in FIG. 7 , the second time this occurs, the position of the throttle valve 111 is moved from a first lowered start position to a second lowered start position. The third time this occurs, the position of the throttle valve 111 is moved from the second lowered start position to the third lowered start position. However, the fourth time this occurs, the position of the throttle valve 111 moves from the third lowered start position to the fourth lowered start position, but then at decision step 211 it is determined that the successive faulty cranking events stored by the counter The quantity is not less than the predetermined number. As a result of this determination, the controller 10 proceeds to process step 213 and the controller moves the throttle valve to the fully open position. When returning to step 205, the controller 10 essentially waits for an "ignition off" signal as it is stuck in a perpetual loop. Upon detection of an "ignition off" signal, the system is reset (as shown in Figure 17) and the method 200 begins again. As illustrated in FIG. 7 , the predetermined amount by which the controller 10 closes the throttle valve 111 is the same between consecutive detected crank events (7% in this example). However, the predetermined amount may not be the same in other arrangements, but may instead vary between successive faulty cranking events. In some examples, as used herein, the term "start position" may include the "lowered start position" discussed above.

现在返回到图2A至2C和图3,在决策步骤214,控制器10确定所测量的引擎转速是否处于或者超出引擎运转速度。引擎运转速度可以是存储在存储装置12中的预定速度。在某些布置中,引擎运转速度可以指示内燃机100处于可接受的空转速度。例如,在一个特定的布置中,引擎运转速度可以设置在800RPM处。当然,可以使用其它数值作为引擎运转速度。所使用的准确的数值可以依赖于包括引擎额定功率等的各种因素。Returning now to FIGS. 2A-2C and FIG. 3 , at decision step 214 the controller 10 determines whether the measured engine speed is at or above the engine operating speed. The engine operating speed may be a predetermined speed stored in the storage device 12 . In some arrangements, the engine operating speed may indicate that the internal combustion engine 100 is at an acceptable idle speed. For example, in one particular arrangement, the engine operating speed may be set at 800 RPM. Of course, other values may be used as the engine operating speed. The exact numerical value used may depend on various factors including engine power rating and the like.

如果控制器10在决策步骤214期间确定所测量的引擎转速低于引擎运转速度,则控制器10返回到处理步骤205。然而,如果控制器在决策步骤214期间确定所测量的引擎转速处于或者超出引擎运转速度,则控制器10继续到处理步骤215。在处理步骤215,引擎转速传感器60在预定时间延迟(例如500ms)后重新测量引擎转速。引擎转速传感器60然后将重新测量的引擎转速发送到控制器10用于估算。控制器10接收重新测量的引擎转速,并且确定重新测量的速度是否处于或者超出引擎转速阈值(该引擎转速阈值可以是存储在存储装置中的预定经验值),从而完成判定步骤215。If the controller 10 determines during decision step 214 that the measured engine speed is lower than the engine operating speed, then the controller 10 returns to process step 205 . However, if the controller determines during decision step 214 that the measured engine speed is at or above the engine operating speed, then controller 10 continues to process step 215 . At process step 215, engine speed sensor 60 re-measures engine speed after a predetermined time delay (eg, 500 ms). The engine speed sensor 60 then sends the remeasured engine speed to the controller 10 for evaluation. The controller 10 receives the remeasured engine speed and determines whether the remeasured speed is at or above an engine speed threshold (which may be a predetermined empirical value stored in a memory device), thereby completing decision step 215 .

如果通过控制器10在决策步骤215确定重新测量的引擎转速低于引擎转速阈值,则控制器10进行到处理步骤216。在处理步骤216,控制器10获取并且使用存储在存储装置12中的低速协议,以确定第二节流开启阶段COS2的特性,该第二节流开启阶段COS2包括根据初始坡道IR、中间坡道MR以及最终坡道FR来开启节流阀111,其细节根据低速关系数据表格来确定。在图9中示出了以下更详细地描述的示例性的低速关系数据表格。一旦在处理步骤216中确定了用于节流阀111的初始坡道IR、中间坡道MR以及最终坡道FR以用于低速协议,控制器10根据利用低速关系数据表格所确定的初始坡道IR、中间坡道MR以及最终坡道FR来利用致动器20开启节流阀111,从而完成处理步骤217。一旦处理步骤217完成,控制器10进行到决策步骤218。If it is determined by the controller 10 at decision step 215 that the remeasured engine speed is below the engine speed threshold, then the controller 10 proceeds to process step 216 . At process step 216, the controller 10 retrieves and uses the low-speed protocol stored in the memory device 12 to determine the characteristics of the second throttle-on phase COS2, which includes the initial ramp IR, the intermediate ramp Throttle valve 111 is opened on ramp MR and finally ramp FR, the details of which are determined from the low speed relationship data table. An exemplary low-speed relational data table described in more detail below is shown in FIG. 9 . Once the initial ramp IR, the intermediate ramp MR, and the final ramp FR for the throttle valve 111 have been determined for the low speed protocol in process step 216, the controller 10 uses the low speed relationship data table to determine the initial ramp IR, intermediate ramp MR, and final ramp FR to open throttle valve 111 using actuator 20 , thereby completing process step 217 . Once processing step 217 is complete, controller 10 proceeds to decision step 218 .

然而,如果在决策步骤215通过控制器10确定重新测量的引擎转速处于或者超出引擎转速阈值,则控制器10进行到处理步骤219。在处理步骤219,控制器10获取并且使用存储在存储装置12中的高速协议,以确定第二节流开启阶段COS2的特性,该第二节流开启阶段COS2包括根据初始坡道IR、中间坡道MR以及最终坡道FR来开启节流阀111,其细节根据高速关系数据表格来确定。在图10中示出了以下更详细地描述的示例性的高速关系数据表格。一旦在处理步骤219中确定了用于节流阀111的初始坡道IR、中间坡道MR以及最终坡道FR以用于高速协议,控制器10根据利用高速关系数据表格所确定的初始坡道IR、中间坡道MR以及最终坡道FR来利用致动器20开启该节流阀111,从而完成处理步骤217。一旦处理步骤217完成,控制器10进行到决策步骤218。However, if at decision step 215 it is determined by controller 10 that the remeasured engine speed is at or above the engine speed threshold, then controller 10 proceeds to process step 219 . At process step 219, the controller 10 retrieves and uses the high-speed protocol stored in the memory device 12 to determine the characteristics of the second throttle-on phase COS2 comprising initial ramp IR, intermediate ramp Throttle valve 111 is opened on ramp MR and finally ramp FR, the details of which are determined from the high speed relational data table. An exemplary high-speed relational data table described in more detail below is shown in FIG. 10 . Once the initial ramp IR, the intermediate ramp MR, and the final ramp FR for the throttle valve 111 have been determined for the high-speed protocol in process step 219, the controller 10 uses the high-speed relationship data table to determine the initial ramp IR, intermediate ramp MR, and final ramp FR to open the throttle valve 111 using the actuator 20, thereby completing process step 217. Once processing step 217 is complete, controller 10 proceeds to decision step 218 .

在执行处理步骤216&217或者处理步骤219&217(该步骤的执行需要用于所测量的第一和第二温度T1、T2的值)中,控制器可以使用在处理步骤202-203获取的第一和第二温度T1、T2。然而,在某些布置中,紧靠在步骤216或者219的执行前或者在节流阀111处于起动位置时的一些其它时间期间,用于第一和第二温度T1、T2的新测量结果可以通过控制器10从第一和第二温度传感器30、40获取。获取新测量的第一和第二温度T1、T2是所期望的,因为一旦飞轮开始旋转,引擎温度就可能改变。此外,如果在吹送机壳体内的新空气(其先前在吹送机外壳的外部)处于与在初始起动测量期间最初在吹送机壳体内的空气基本不同的温度,则环境气温也可以不同。In performing process steps 216 & 217 or process steps 219 & 217 (execution of which requires values for the measured first and second temperatures T1, T2), the controller may use the first and second values obtained in process steps 202-203. Two temperatures T1, T2. However, in some arrangements, immediately before execution of steps 216 or 219 or during some other time when the throttle valve 111 is in the start position, the new measurements for the first and second temperatures T1, T2 may be Obtained by the controller 10 from the first and second temperature sensors 30 , 40 . Obtaining the newly measured first and second temperatures T1, T2 is desirable since the engine temperature may change once the flywheel starts spinning. Furthermore, the ambient air temperature may also be different if the new air in the blower housing (which was previously outside the blower housing) is at a substantially different temperature than the air originally in the blower housing during the initial start-up measurements.

正如从图2B可以看出,不管控制器10是否利用低速协议(步骤216&217)或者高速协议(步骤219&217)确定第二节流开启阶段COS2的特性,控制器10都到达处理步骤217,然后进行到决策步骤218。在决策步骤218,在根据所选择的高速或者低速协议的所确定的初始坡道IR、中间坡道MR以及最终坡道FR来完成节流阀111的开启时,控制器10确定节流阀111是否处于完全开启位置。如果确定节流阀111没有完全开启,则控制器10返回到处理步骤217,并且根据正如以上讨论的所选择的高速或者低速协议继续开启节流阀111直到节流阀111达到完全开启位置为止。然而,如果在决策步骤218确定节流阀111完全开启,则控制器进行到处理步骤222。在处理步骤222,通过使致动器20停止来中断节流阀的移动。As can be seen from FIG. 2B , regardless of whether the controller 10 utilizes the low-speed protocol (steps 216 & 217) or the high-speed protocol (steps 219 & 217) to determine the characteristics of the second throttle opening stage COS2, the controller 10 arrives at processing step 217 and proceeds to Decision Step 218. In decision step 218, controller 10 determines throttle valve 111 upon completion of opening of throttle valve 111 according to the determined initial ramp IR, intermediate ramp MR, and final ramp FR of the selected high-speed or low-speed protocol. Is it in the fully open position. If it is determined that the throttle valve 111 is not fully open, the controller 10 returns to process step 217 and continues to open the throttle valve 111 according to the selected high or low speed protocol as discussed above until the throttle valve 111 reaches the fully open position. However, if at decision step 218 it is determined that the throttle valve 111 is fully open, then the controller proceeds to process step 222 . At process step 222 , movement of the throttle valve is interrupted by stopping the actuator 20 .

在完成处理步骤222时,控制器10移动到决策步骤223,在该决策步骤223中,控制器10监视“引擎关闭”情形,同时引擎在节流阀111处于完全开启位置的情况下继续运行。“引擎关闭”情形可以采取控制器检测“钥匙关闭”事件(或者接通点火电路的其它操作者激活的事件)或者检测引擎转速处于零RPM的形式。如果控制器没有检测到“引擎关闭”情形,则控制器10继续监视“引擎关闭”情形,从而在决策步骤223处循环。然而,如果控制器在决策步骤223检测到“引擎关闭”情形,则控制器10在将节流阀111最终返回到初始位置的关闭处理期间执行处理步骤224-245。Upon completion of process step 222, controller 10 moves to decision step 223 in which controller 10 monitors for an "engine off" condition while the engine continues to run with throttle valve 111 in the fully open position. An "engine off" condition may take the form of the controller detecting a "key off" event (or other operator activated event that turns on the ignition circuit) or detecting that the engine speed is at zero RPM. If the controller does not detect an "engine off" condition, the controller 10 continues to monitor for an "engine off" condition, looping at decision step 223 . However, if the controller detects an "engine off" condition at decision step 223, the controller 10 executes process steps 224-245 during the closing process of eventually returning the throttle valve 111 to the initial position.

现在关于图2C和图17描述这个关闭处理。在处理步骤224,控制器将节流阀111从完全开启位置移动到完全关闭位置,从而完成处理步骤224。节流阀111的关闭在图17中图形地被示出为关闭坡道CR。在关闭坡道(即负斜率)期间,节流阀的移动速率可以是致动器20可以关闭节流阀111的最大速率。在时间延迟后,控制器10则将节流阀111开启到初始位置,从而完成处理步骤225。这个移动可以在引擎100关闭后发生,需要电力在控制器10处保持这个时间段。如上所述,初始位置可以是例如2%开启的部分开启位置。这将防止关于节流阀111在完全关闭中冷冻的任何可能的问题,这可以发生在节流阀111是可以冷冻到化油器主体的节流板的实施例中。该系统然后关闭并且等待另一“钥匙开启”信号。This shutdown process is now described with respect to FIGS. 2C and 17 . At process step 224 , the controller moves the throttle valve 111 from the fully open position to the fully closed position, thereby completing process step 224 . Closing of throttle valve 111 is shown graphically in FIG. 17 as closing ramp CR. During a closing ramp (ie, a negative slope), the rate of movement of the throttle valve may be the maximum rate at which the actuator 20 may close the throttle valve 111 . After a time delay, the controller 10 then opens the throttle valve 111 to the initial position, thereby completing the processing step 225 . This movement may occur after the engine 100 is turned off, requiring power to remain at the controller 10 for this period of time. As noted above, the initial position may be a partially open position, eg 2% open. This will prevent any possible problems with the throttle valve 111 freezing in full closure, which can occur in embodiments where the throttle valve 111 is a throttle plate that can freeze into the carburetor body. The system then shuts down and waits for another "key on" signal.

现在同时参考图8至9,现在讨论第二节流开启阶段COS2的进一步的细节,包括与确定节流阀111在开启期间遵循的初始坡道、中间坡道以及最终坡道的特性(例如持续时间和速率/斜率)的特性有关的细节。以下关于图8至9的数据组1(参见图8的钥匙开启)描述对初始坡道、中间坡道以及最终坡道的特性的确定,这是用于“冷”引擎的起动的节流阀控制,其中已经为第二节流开启阶段COS2选择了低速协议。然而,要理解的是,在使用高速协议时和/或在该起动是用于“热”引擎时,相同的原则适用于对初始坡道、中间坡道,最终坡道的特性的确定。Referring now to FIGS. 8-9 concurrently, further details of the second throttle opening phase COS2 will now be discussed, including those related to determining the characteristics of the initial, intermediate, and final ramps that the throttle valve 111 follows during opening (e.g., the duration Details about the characteristics of time and rate/slope). The following describes the determination of the characteristics of the initial ramp, the intermediate ramp and the final ramp with respect to data set 1 of FIGS. Control, where the low speed protocol has been selected for the second throttle-on phase COS2. However, it is to be understood that the same principles apply to the determination of initial ramp, intermediate ramp, final ramp characteristics when high speed protocols are used and/or when the start is for a "hot" engine.

正如例示的,初始坡道IR从起动位置延伸到第一中间位置。中间坡道MR从第一中间位置延伸到第二位置。最终坡道从第二中间位置延伸到完全开启位置。概念上,初始坡道IR可以被认为是第二节流开启阶段COS2的第一节流开启子阶段,中间坡道MR可以被认为是第二节流开启阶段COS2的第二节流开启子阶段,最终坡道FR可以被认为是第二节流开启阶段COS2的第三节流开启子阶段。As illustrated, the initial ramp IR extends from the starting position to a first intermediate position. The intermediate ramp MR extends from the first intermediate position to the second position. The final ramp extends from the second intermediate position to the fully open position. Conceptually, the initial ramp IR can be considered as the first throttle-on sub-phase of the second throttle-on phase COS2, and the intermediate ramp MR can be considered as the second throttle-on sub-phase of the second throttle-on phase COS2 , the final ramp FR can be considered as the third throttle-on sub-phase of the second throttle-on phase COS2.

正如图8中可以看到的(并且正如以上讨论的),基于所测量的第一温度T1(即所测量的引擎温度)确定节流阀111的起动位置。在数据组1的示例中,所测量的第一温度T1是10°F,并且所测量的第二温度T2是10°F。正如从图8的关系数据表格可以看到的,为了确定起动位置,控制器可以必须将所测量的第一温度T1四舍五入到其读数在关系数据表格中确定的最接近值。在这个示例中,不依赖于第二测量温度T2作出对起动位置的确定。然而,如上所述,在某些替换布置中,第二测量温度T2可以对起动位置的确定有影响。As can be seen in FIG. 8 (and as discussed above), the starting position of the throttle valve 111 is determined based on the measured first temperature T1 , ie the measured engine temperature. In the example of data set 1, the first measured temperature T1 is 10°F, and the second measured temperature T2 is 10°F. As can be seen from the relational data table of FIG. 8 , in order to determine the starting position, the controller may have to round the measured first temperature T1 to the nearest value whose reading is determined in the relational data table. In this example, the determination of the starting position is made independently of the second measured temperature T2. However, as mentioned above, in some alternative arrangements, the second measured temperature T2 may have an influence on the determination of the starting position.

在所测量的第一温度T1是10°F的当前示例中,控制器10确定节流阀10的起动位置是2%开启。然而,因为初始位置也设置为2%开启,所以控制器10不需要开启节流阀111以实现该起动位置(从而省去起动坡道)。因此,在这种情况下,初始位置和起动位置是相同的。In the present example where the measured first temperature T1 is 10°F, the controller 10 determines that the starting position of the throttle valve 10 is 2% open. However, since the initial position is also set to 2% open, the controller 10 does not need to open the throttle valve 111 to achieve this starting position (thereby eliminating the starting ramp). Therefore, in this case, the initial position and the starting position are the same.

在控制器已经确定低速协议要被使用(正如以上讨论的)后,控制器10使用图9的关系数据表格来确定初始坡道IR。对于10°F的所测量的第一温度,控制器10确定初始坡道IR具有0.25秒的持续时间。对于初始坡道IR,控制器10被配置为以预定速率(即以预定斜率)开启节流阀111。节流阀111在初始坡道IR期间被移动的预定速率可以存储在存储装置12中并且通过控制器10获取。节流阀111在初始坡道IR期间被移动的速率大于节流阀111在中间坡道MR期间被移动的速率。在例示的布置中,节流阀111在初始坡道IR期间被移动的预定速率是致动器20可以由控制器111驱动的最大速率。After the controller has determined that the low speed protocol is to be used (as discussed above), the controller 10 uses the relational data table of FIG. 9 to determine the initial ramp IR. For a first measured temperature of 10°F, the controller 10 determines that the initial ramp IR has a duration of 0.25 seconds. For the initial ramp IR, the controller 10 is configured to open the throttle valve 111 at a predetermined rate (ie, with a predetermined slope). The predetermined rate at which the throttle valve 111 is moved during the initial ramp IR may be stored in the memory device 12 and retrieved by the controller 10 . The rate at which throttle valve 111 is moved during initial ramp IR is greater than the rate at which throttle valve 111 is moved during intermediate ramp MR. In the illustrated arrangement, the predetermined rate at which throttle valve 111 is moved during initial ramp IR is the maximum rate at which actuator 20 may be driven by controller 111 .

因为节流阀111在初始坡道IR期间被移动的速率被预先确定,并且起动位置已经被建立,所以利用图9的关系数据表格确定初始坡道IR的持续时间固有地建立了在该示例中是38%开启的节流阀111的第一中间位置。如此,初始坡道IR基于测量的第一温度T1。更具体地说,在例示的布置中,初始坡道的持续时间依赖于第一测量温度T1,而节流阀111在初始坡道期间被开启的速率与第一测量温度T1无关。Because the rate at which the throttle valve 111 is moved during the initial ramp IR is predetermined, and the launch position has been established, determining the duration of the initial ramp IR using the relational data table of FIG. 9 inherently establishes that in this example is the first intermediate position of the throttle valve 111 which is 38% open. As such, the initial ramp IR is based on the measured first temperature T1. More specifically, in the illustrated arrangement, the duration of the initial ramp is dependent on the first measured temperature T1 , while the rate at which the throttle valve 111 is opened during the initial ramp is independent of the first measured temperature T1 .

已经建立初始坡道IR的特性,控制器10然后利用图9的关系数据表格确定中间坡道MR的特性。正如从图9可以看到,中间坡道MR的特性依赖于第一测量温度T1和第二测量温度T2两者。具体地说,中间坡道MR的持续时间依赖于第一测量温度T1和第二测量温度T2两者。更具体地说,中间坡道MR的持续时间具有对所测量的第一温度T1的第一级依赖,以及对所测量的第一温度T1和所测量的第二温度T1之间的绝对差(即|T1-T2|)的第二级依赖。在该示例中,具有10°F的所测量的第一温度T1和10°F的所测量的第二温度T2产生0°F的绝对差。因此,利用图9的关系数据表格,确定中间坡道MR具有55秒的持续时间。类似于初始坡道IR的速率,第二中间位置(即中间坡道MR的端点)也被预先确定并且存储在存储装置12中。在该示例中,第二中间位置在91%被建立。因此,由于中间坡道MR的开始和结束位置(即第一和第二中间位置)已经被知晓/建立,控制器根据图9的关系数据表格对中间坡道MR的持续时间的确定固有地确定节流阀111在中间坡道MR期间被开启的速率(即中间坡道MR的斜率)。虽然第二中间位置被例示为预置为91%开启,但是要理解的是可以使用其它值。另外,在某些布置中,第二中间位置可以设置在完全开启位置,从而除去了最终坡道。在这样的示例中,第二节流开启阶段COS2将由初始坡道和中间坡道IR、MR组成。Having established the characteristics of the initial ramp IR, the controller 10 then utilizes the relational data table of FIG. 9 to determine the characteristics of the intermediate ramp MR. As can be seen from FIG. 9 , the behavior of the intermediate ramp MR depends on both the first measured temperature T1 and the second measured temperature T2 . In particular, the duration of the intermediate ramp MR depends on both the first measured temperature T1 and the second measured temperature T2. More specifically, the duration of the intermediate ramp MR has a first-order dependence on the measured first temperature T1, as well as on the absolute difference between the measured first temperature T1 and the measured second temperature T1 ( That is, |T1-T2|) second-level dependence. In this example, having a measured first temperature T1 of 10°F and a measured second temperature T2 of 10°F yields an absolute difference of 0°F. Therefore, using the relational data table of FIG. 9, it is determined that the intermediate ramp MR has a duration of 55 seconds. Similar to the rate of the initial ramp IR, the second intermediate position (ie the end point of the intermediate ramp MR) is also predetermined and stored in the memory device 12 . In this example, the second intermediate position is established at 91%. Therefore, since the start and end positions of the intermediate ramp MR (i.e., the first and second intermediate positions) are already known/established, the controller's determination of the duration of the intermediate ramp MR from the relational data table of FIG. 9 is inherently determined The rate at which the throttle valve 111 is opened during the intermediate ramp MR (ie, the slope of the intermediate ramp MR). While the second intermediate position is illustrated as preset to 91% open, it is understood that other values may be used. Additionally, in some arrangements, the second intermediate position may be set in the fully open position, thereby eliminating the final ramp. In such an example, the second throttle-on phase COS2 would consist of an initial ramp and intermediate ramps IR, MR.

正如以上讨论的,已经确定初始坡道和中间坡道IR、MR的特性,控制器10然后使用图9的关系数据表格来确定最终坡道FR的特性。如图9所示,最终坡道FR的特性依赖于所测量的第一温度T1。在例示的布置中,最终坡道FR的特性不依赖于所测量的第二温度T2,但是在替换的布置中则依赖于所测量的第二温度。As discussed above, having determined the characteristics of the initial and intermediate ramps IR, MR, the controller 10 then uses the relational data table of FIG. 9 to determine the characteristics of the final ramp FR. As shown in FIG. 9 , the behavior of the final ramp FR depends on the measured first temperature T1 . In the illustrated arrangement the behavior of the final ramp FR does not depend on the measured second temperature T2, but in an alternative arrangement it does.

正如中间坡道MR一样,最终坡道FR的持续时间依赖于第一测量温度T1并且可以利用图9的关系数据表格来确定。对于该示例,最终坡道FR被确定为对于10°F的所测量的第一温度T1具有0.2125ms的持续时间。As with the intermediate ramp MR, the duration of the final ramp FR depends on the first measured temperature T1 and can be determined using the relational data table of FIG. 9 . For this example, the final ramp FR is determined to have a duration of 0.2125 ms for a measured first temperature T1 of 10°F.

因此,由于最终坡道FR的开始和结束位置(即第二和完全开启位置)已经被知晓/建立,控制器根据图9的关系数据表格对最终坡道FR的持续时间的确定固有地确定节流阀111在最终坡道FR期间被开启的速率(即最终坡道FR的斜率)。Therefore, the controller's determination of the duration of the final ramp FR from the relational data table of FIG. The rate at which the flow valve 111 is opened during the final ramp FR (ie the slope of the final ramp FR).

在图3、11至12以及15至16的例示的图中,节流阀111在起动坡道SR、初始坡道IR、中间坡道MR以及最终坡道FR中的每一个期间被开启的速率被显示为恒定速率。因此,起动坡道SR、初始坡道IR、中间坡道MR以及最终坡道FR中的每一个的斜率被示出为线性的。然而,在本发明的某些其它布置中,节流阀111在起动坡道SR、初始坡道IR、中间坡道MR和/或最终坡道FR中的每一个期间被开启的速率可以是可变的速率,使得该斜率将是非线性的,包括(不限于)弯曲的、台阶式等。实际上,正如以下关于图18至20将讨论的,虽然节流阀111在图3、11至12以及15至16的起动坡道SR、初始坡道IR、中间坡道MR以及最终坡道FR中的每一个期间被开启的速率被示出为是恒定速率,但是该速率实际上是可变的逐级速率。因此,图3、11至12以及15至16中所示出的是节流阀111在起动坡道SR、初始坡道IR、中间坡道MR以及最终坡道FR中的每一个期间被开启的有效速率。In the illustrated graphs of Figures 3, 11-12, and 15-16, the rate at which the throttle valve 111 is opened during each of the start ramp SR, initial ramp IR, intermediate ramp MR, and final ramp FR is shown as a constant rate. Accordingly, the slopes of each of the start ramp SR, initial ramp IR, intermediate ramp MR, and final ramp FR are shown to be linear. However, in certain other arrangements of the invention, the rate at which the throttle valve 111 is opened during each of the start ramp SR, initial ramp IR, intermediate ramp MR, and/or final ramp FR may be variable. The rate of change such that the slope will be non-linear, including (not limited to) curved, stepped, etc. In fact, as will be discussed below with respect to FIGS. The rate at which each period is turned on is shown as a constant rate, but the rate is actually a variable step rate. Thus, shown in Figures 3, 11-12 and 15-16 is the throttle valve 111 being opened during each of the start ramp SR, the initial ramp IR, the intermediate ramp MR and the final ramp FR effective rate.

现在同时参考图18至20,将描述控制器10驱动致动器20的移动以在各个速率下开启和关闭节流阀111的方法,致动器20在这种情况下是单极步进马达。步进马达的移动被分成四个马达步进的相等的增量,其中四个马达步进实现步进马达的一个完整旋转。对于一个特定的示例,步进马达被配置使得需要步进马达的55个转数(即220个马达步进)以将节流阀从完全关闭位置移动到完全开启位置。控制器10通过生成被发送到步进马达的脉冲来控制步进马达的移动(其接着以相应的方式移动节流阀),其中每一脉冲将步进马达移动单个马达步进。更具体地说,正如图18中可以看到的,控制器被配置为生成一组脉冲。在例示的布置中,控制器10生成一组四个脉冲。四脉冲的组在单脉冲上被选择,以使步进马达的旋转计算简单并且还确保步进马达在改变方向时不滑动。在例示的控制逻辑中,发送到步进马达的脉冲宽度被保持在恒定的2.5ms(这是最快的可能)。18 to 20 concurrently, the method by which the controller 10 drives the movement of the actuator 20, which in this case is a unipolar stepper motor, to open and close the throttle valve 111 at various rates will be described. . The movement of the stepper motor is divided into equal increments of four motor steps, where four motor steps make one full revolution of the stepper motor. For one specific example, the stepper motor is configured such that 55 revolutions of the stepper motor (ie, 220 motor steps) are required to move the throttle from a fully closed position to a fully open position. The controller 10 controls the movement of the stepper motor (which in turn moves the throttle in a corresponding manner) by generating pulses sent to the stepper motor, where each pulse moves the stepper motor by a single motor step. More specifically, as can be seen in Figure 18, the controller is configured to generate a set of pulses. In the illustrated arrangement, the controller 10 generates a set of four pulses. Groups of four pulses are chosen over a single pulse to make the stepper motor rotation calculation simple and also to ensure that the stepper motor does not slip when changing direction. In the illustrated control logic, the pulse width sent to the stepper motor is held at a constant 2.5ms (which is the fastest possible).

为了改变步进马达开启或者关闭节流阀111的速率,根据需要改变脉冲组之间的延迟。这通过比较图19和20的脉冲图来例示。如图19所示,第一和第二脉冲组之间的延迟被设置为尽可能小(即2.5ms)。因此,在使用图19的脉冲设置控制时,节流阀111将以第一速率被移动。相比较,第一和第二脉冲组之间的延迟在图20中被设置为更大(即5.0ms)。因此,在使用图20的脉冲设置控制时,节流阀111将以小于第一速率的第二速率被移动。To vary the rate at which the stepper motor opens or closes the throttle valve 111, the delay between pulse sets is varied as desired. This is illustrated by comparing the pulse diagrams of FIGS. 19 and 20 . As shown in Figure 19, the delay between the first and second pulse sets is set to be as small as possible (ie 2.5 ms). Thus, when using the pulse setting control of Figure 19, the throttle valve 111 will be moved at a first rate. In comparison, the delay between the first and second pulse sets is set to be larger (ie 5.0 ms) in FIG. 20 . Thus, when using the pulse setting control of FIG. 20, the throttle valve 111 will be moved at a second rate that is less than the first rate.

现在同时参考图8至12,将讨论对于相同的所测量的第一和第二温度T1、T2而言使用低速协议对比使用高速协议对第二节流开启阶段COS2的特性的影响。图11是利用数据组1的节流阀移动的图形表示,而图12是利用数据组2的节流阀移动的图形表示。正如可以看到,对于这个示例,对于数据组1和数据组2两者,所测量的第一温度是10°F并且所测量的第二温度是10°F。因此,对于数据组1和数据组2中的每一个,起动位置被确定是相同的(即在示例中是2%开启)。Referring now to FIGS. 8 to 12 simultaneously, the effect of using the low speed protocol versus using the high speed protocol on the behavior of the second throttle-on phase COS2 for the same measured first and second temperatures T1 , T2 will be discussed. FIG. 11 is a graphical representation of throttle movement using data set 1 , and FIG. 12 is a graphical representation of throttle movement using data set 2 . As can be seen, for this example, for both data set 1 and data set 2, the first measured temperature is 10°F and the second measured temperature is 10°F. Thus, for each of data set 1 and data set 2, the start position is determined to be the same (ie 2% open in the example).

然而,对于数据组1的余项(其指示图11中的第二节流开启阶段COS2的特性),值从图9的低速协议关系数据表格中获取。通过比较,对于数据组2的余项(其指示图12的第二节流开启阶段COS2的特性),值从图10的高速协议关系数据表格中获取。However, for the remainder of data group 1 (which indicates the characteristics of the second throttle-on phase COS2 in FIG. 11 ), the values are taken from the low-speed protocol relationship data table of FIG. 9 . By comparison, for the remainder of data group 2 (which indicates the characteristics of the second throttle-on phase COS2 of FIG. 12 ), the values are taken from the high-speed protocol relationship data table of FIG. 10 .

通过比较图11和12,可以看到,与低速协议相比使用高速协议时初始坡道IR的持续时间增加。因此,在节流阀处于起动位置时,初始坡道IR的持续时间依赖于所测量的引擎转速。然而,节流阀111在初始坡道IR期间被开启的速率对于高速和低速协议两者是相同的,正如以上讨论的,该高速和低速协议可以被预选择为致动器20可以开启节流阀111的最快速率。因此,在节流阀处于起动位置时,节流阀111在初始坡道IR期间被开启的速率与所测量的引擎转速无关。By comparing Figures 11 and 12, it can be seen that the duration of the initial ramp IR is increased when using the high-speed protocol compared to the low-speed protocol. Thus, the duration of the initial ramp IR is dependent on the measured engine speed when the throttle is in the starting position. However, the rate at which the throttle valve 111 is opened during the initial ramp IR is the same for both the high speed and low speed protocols which, as discussed above, can be preselected so that the actuator 20 can open the throttle. The fastest speed of valve 111. Thus, the rate at which the throttle valve 111 is opened during the initial ramp IR is independent of the measured engine speed when the throttle valve is in the start position.

此外,通过比较图11和图12,可以进一步看到,在节流阀111处于起动位置时,中间坡道MR的持续时间与所测量的引擎转速无关。然而,能够看出,在节流阀处于起动位置时,节流阀111在中间坡道MR期间被开启的速率依赖于所测量的引擎转速。关于最终坡道FR,能够看出,在节流阀处于起动位置时,持续时间和节流阀111在最终坡道FR期间被开启的速率两者均依赖于所测量的引擎转速。Furthermore, by comparing Figures 11 and 12, it can further be seen that the duration of the intermediate ramp MR is independent of the measured engine speed when the throttle valve 111 is in the starting position. However, it can be seen that the rate at which the throttle valve 111 is opened during the intermediate ramp MR is dependent on the measured engine speed when the throttle valve is in the start position. With regard to the final ramp FR, it can be seen that both the duration and the rate at which the throttle valve 111 is opened during the final ramp FR depend on the measured engine speed when the throttle valve is in the starting position.

最后,图11的第二节流阀开启阶段COS2(即低速协议)花费总时间t1来完成,而图12的第二节流阀开启阶段COS2(即高速协议)花费总时间t2来完成。在某些布置中,在第一和第二温度T1、T2相同时,t1可以等于t2,使得在节流阀111处于起动位置时第二节流阀开启阶段COS2的总时间与所测量的引擎转速无关。Finally, the second throttle open phase COS2 of FIG. 11 (ie, the low speed protocol) takes a total time t1 to complete, while the second throttle valve open phase COS2 of FIG. 12 (ie, the high speed protocol) takes a total time t2 to complete. In some arrangements, t1 may be equal to t2 when the first and second temperatures T1, T2 are the same, so that the total time of the second throttle opening phase COS2 with the throttle valve 111 in the starting position is related to the measured engine Speed is irrelevant.

现在同时参考图13至16,将讨论对于相同的所测量的引擎转速而言,不同的第一和第二温度T1、T2对第二节流开启阶段COS2的特性的影响。图15是利用数据组3的节流阀移动的图形表示,而图16是利用数据组4的节流阀移动的图形表示。正如可以看到的,对于这些示例,对于数据组3(即冷引擎起动)所测量的第一温度是10°F并且所测量的第二温度是10°F,而对于数据组4(即热引擎起动)所测量的第一温度是90°F并且所测量的第二是80°F。低速协议被认为已经针对这些情形中的每一个由控制器选择。因此,图14的低速关系数据表格被用于为冷引擎和热引擎起动两者确定第二节流开启阶段COS2的特性,以生成数据3和4的其余数值。Referring now to FIGS. 13 to 16 simultaneously, the influence of different first and second temperatures T1 , T2 on the behavior of the second throttle opening phase COS2 for the same measured engine speed will be discussed. FIG. 15 is a graphical representation of throttle movement using data set 3 and FIG. 16 is a graphical representation of throttle movement using data set 4 . As can be seen, for these examples, the first measured temperature is 10°F and the second measured temperature is 10°F for data set 3 (i.e., cold engine start), while for data set 4 (i.e., hot Engine Start) The first temperature measured was 90°F and the second measured was 80°F. The low speed protocol is considered to have been selected by the controller for each of these situations. Therefore, the low speed relationship data table of FIG. 14 is used to characterize the second throttle opening stage COS2 for both cold engine and hot engine starts to generate the remaining values of data 3 and 4 .

通过比较图15和图16可以看到的是,起动位置是不同的并因此依赖于所测量的第一温度T1(正如以上讨论的)。关于初始坡道IR,图16中的初始坡道IR的持续时间大于图15中的初始坡道IR的持续时间。因此,初始坡道IR的持续时间依赖于所测量的第一温度T1。然而,节流阀111在初始坡道IR期间被开启的速率对于图15和图16两者是相同的,其正如以上讨论的可以被预选择为致动器20可以开启节流阀111的最快速率。因此,节流阀111在初始坡道IR期间被开启的速率与所测量的第一和第二温度T1、T2无关。It can be seen by comparing Figures 15 and 16 that the starting position is different and therefore dependent on the measured first temperature T1 (as discussed above). Regarding the initial ramp IR, the duration of the initial ramp IR in FIG. 16 is longer than the duration of the initial ramp IR in FIG. 15 . Thus, the duration of the initial ramp IR depends on the measured first temperature T1. However, the rate at which the throttle valve 111 is opened during the initial ramp IR is the same for both FIGS. fast rate. Thus, the rate at which the throttle valve 111 is opened during the initial ramp IR is independent of the measured first and second temperatures T1 , T2 .

此外,通过比较图15和图16,进一步可以看到,中间坡道MR的持续时间依赖于所测量的第一和第二温度T1、T2两者(正如以上讨论的)。还可以看到,节流阀111在中间坡道MR期间被开启的速率依赖于所测量的第一和第二温度T1、T2的两者(正如以上讨论的)。关于最终坡道FR,能够看出,持续时间和节流阀111在最终坡道FR期间被开启的速率两者依赖于所测量的第一温度T1。Furthermore, by comparing Figures 15 and 16, it can further be seen that the duration of the intermediate ramp MR is dependent on both the measured first and second temperatures Tl, T2 (as discussed above). It can also be seen that the rate at which the throttle valve 111 is opened during the intermediate ramp MR is dependent on both the measured first and second temperatures T1, T2 (as discussed above). With regard to the final ramp FR, it can be seen that both the duration and the rate at which the throttle valve 111 is opened during the final ramp FR depend on the measured first temperature T1.

最后,图15的第二节流阀开启阶段COS2(即冷引擎起动)花费总时间t3来完成,而图16的第二节流阀开启阶段COS2(即热引擎起动)花费总时间t4来完成。能够看出,t4明显小于t4。因此,第二节流阀开启阶段COS2的总时间依赖于所测量的第一和第二温度T1、T2是相同的。Finally, the second throttle opening phase COS2 of FIG. 15 (i.e. cold engine start) takes a total time t3 to complete, while the second throttle opening phase COS2 of FIG. 16 (i.e. hot engine start) takes a total time t4 to complete . It can be seen that t4 is significantly smaller than t4. Thus, the total time of the second throttle opening phase COS2 is the same depending on the measured first and second temperatures T1 , T2 .

应当注意的是,图11至12和图15至16的图虽然准确地描绘了以上讨论的关系数据表格的数据,但是它们不是成比例的。正如从以上讨论的关系数据表格的数据值可以看到,如果他们是成比例的,则不可以合理地在单个页面中清楚地描绘坡道。It should be noted that while the graphs of FIGS. 11-12 and 15-16 accurately depict the data of the relational data tables discussed above, they are not to scale. As can be seen from the data values of the relational data tables discussed above, if they were proportional, ramps could not reasonably be clearly delineated in a single page.

现在同时参考图21至24,示出了根据本发明的安装在气冷式内燃机100上的集成点火和自动节流模块3000。集成点火和自动节流模块3000包括以上关于图1所描述的电子自动节流控制系统1000并且被配置为执行图2的方法。集成点火和自动节流模块3000的电子自动节流控制系统1000包括正如以上讨论的致动器20、控制器10(其包括处理器11和存储装置12)、第一温度传感器30、第二温度传感器40、马达驱动电路160以及电连接/通信通道51-54。集成点火和自动节流模块3000中的电子自动节流控制系统1000的功能和结构与如上所述的相同并因此不需要进一步描述。然而,应当注意的是,在某些布置中可以省去第二温度传感器40。Referring now to FIGS. 21 to 24 concurrently, there is shown an integrated ignition and automatic throttle module 3000 mounted on an air-cooled internal combustion engine 100 in accordance with the present invention. The integrated ignition and auto-throttle module 3000 includes the electronic auto-throttle control system 1000 described above with respect to FIG. 1 and is configured to perform the method of FIG. 2 . The electronic auto-throttle control system 1000 integrating the ignition and auto-throttle module 3000 includes the actuator 20, the controller 10 (which includes the processor 11 and the memory device 12), the first temperature sensor 30, the second temperature Sensor 40, motor drive circuit 160, and electrical connections/communication channels 51-54. The function and structure of the electronic auto-throttle control system 1000 in the integrated ignition and auto-throttle module 3000 is the same as described above and therefore no further description is required. It should be noted, however, that the second temperature sensor 40 may be omitted in certain arrangements.

集成模块和自动节流模块3000还包括点火电路4000(其通常包括充电线圈4010)、调节电路4020、储能装置4030、开关4040、点火线圈4050以及钢层压叠片4070。充电线圈4010、调节电路4020、储能装置4030、开关4040以及点火线圈4050彼此处于可操作的协作,并且经由电连接/通信通道56-60与控制器10处于可操作的协作。钢层压叠片4070正如如下所述的相对于充电线圈4010被可操作地设置。The integrated module and automatic throttle module 3000 also includes an ignition circuit 4000 (which generally includes a charge coil 4010 ), a regulation circuit 4020 , an energy storage device 4030 , a switch 4040 , an ignition coil 4050 and a steel laminate lamination 4070 . Charging coil 4010, regulating circuit 4020, energy storage device 4030, switch 4040, and ignition coil 4050 are in operable cooperation with each other and with controller 10 via electrical connections/communication channels 56-60. Steel laminate lamination 4070 is operatively positioned relative to charging coil 4010 as described below.

在例示的实施例中,充电线圈4010可以概念上被认为是引擎转速传感器,响应于飞轮126的磁体127,该引擎转速传感器由于在钢层压叠片4070中形成的磁路而产生电荷。具体地说,充电线圈4010围绕钢层压叠片4070的中心腿(不可见),并且当飞轮126上的磁体127切割钢层压叠片4070中的磁通时(当磁体通过磁通时),磁路形成在这个中心腿内,其接着在充电线圈4010中生成电荷。该感应电荷不仅将脉冲电荷提供给储能装置4030(其可以是高压电容器),而且还通过控制器10被接收/检测(在通过调节电路4020调节后)。基于由充电线圈4010生成的电脉冲的定时,控制器10确定引擎的转速。如电流框图所示,充电线圈的电脉冲被调节为提供处理器11可接受的信号。在其它布置中,例如当点火模块不是磁点火系统时,可以设置转动传感器,转动传感器是不同于充电线圈4010和/或除了充电线圈4010之外的部件,其可以通过机械、电学或者磁探测,潜在地通过与曲柄轴或者凸轮轴的适当耦接来检测引擎的旋转。In the illustrated embodiment, charging coil 4010 may be conceptually considered an engine speed sensor that generates an electrical charge due to a magnetic circuit formed in steel laminate laminations 4070 in response to magnet 127 of flywheel 126 . Specifically, the charging coil 4010 surrounds the center leg (not visible) of the steel lamination lamination 4070 and when the magnet 127 on the flywheel 126 cuts the magnetic flux in the steel lamination lamination 4070 (when the magnet passes the magnetic flux) , a magnetic circuit is formed within this center leg, which in turn generates charge in the charging coil 4010. This induced charge not only provides a pulsed charge to the energy storage device 4030 (which may be a high voltage capacitor), but is also received/detected by the controller 10 (after being regulated by the regulation circuit 4020). Based on the timing of the electrical pulses generated by the charging coil 4010, the controller 10 determines the rotational speed of the engine. As shown in the current block diagram, the electrical pulses of the charging coil are conditioned to provide a signal acceptable to the processor 11 . In other arrangements, such as when the ignition module is not a magnetic ignition system, a rotational sensor may be provided, which is a component other than and/or in addition to the charging coil 4010, which may be detected mechanically, electrically or magnetically, The rotation of the engine is detected potentially through an appropriate coupling to the crankshaft or camshaft.

电连接/通信通道56-60可以包括(不限于)电线、光导纤维、通信电缆、无线通信路径以及它们的组合。正如以下更详细地所述的,只要电连接/通信通道56-60中的每一个可以便于所耦接的元件/部件之间的期望的操作、发送、通信、供电和/或控制,电连接/通信通道56-60的准确的结构特性和布置就不是对本发明的限制。Electrical connections/communication channels 56-60 may include, without limitation, electrical wires, fiber optics, communication cables, wireless communication paths, and combinations thereof. As described in greater detail below, each of the electrical connections/communication channels 56-60 can facilitate desired operation, transmission, communication, power supply, and/or control between the coupled elements/components. The exact structural characteristics and arrangement of the /communication channels 56-60 are not limitations of the present invention.

集成点火和自动节流模块3000还包括壳体3010(在图21中示意性地示出),该壳体3010容纳除致动器20之外的点火电路4000和电子自动节流控制系统1000的所有元件/部件。从概念上说,与壳体3010结合的点火电路4000可以被认为是点火模块。正如所例示的,点火模块是磁点火系统。Integrated ignition and auto-throttle module 3000 also includes housing 3010 (shown schematically in FIG. All elements/parts. Conceptually, the ignition circuit 4000 combined with the housing 3010 can be considered as an ignition module. As illustrated, the ignition module is a magnetic ignition system.

正如本文中所描述的,通过将电子自动节流控制系统1000和点火电路4000设置在同一壳体3010内,可以安装到引擎缸体120(具体地说,安装到引擎曲轴箱123)的单个单元在单个步骤中被生成。在例示的布置中,集成点火和自动节流模块3000可以通过经由螺钉或者其它紧固件将钢层压叠片4070耦接于引擎缸体来安装到引擎缸体120。钢层压叠片4070接着耦接到壳体3010,从而便于整个集成模块3000安装到引擎缸体210。As described herein, by housing the electronic automatic throttle control system 1000 and the ignition circuit 4000 within the same housing 3010, a single unit that can be mounted to the engine block 120 (specifically, to the engine crankcase 123) are generated in a single step. In the illustrated arrangement, integrated ignition and auto throttle module 3000 may be mounted to engine block 120 by coupling steel laminate lamination 4070 to the engine block via screws or other fasteners. Steel laminate laminations 4070 are then coupled to housing 3010 , thereby facilitating installation of the entire integrated module 3000 to engine block 210 .

除了控制自动节流控制系统1000之外,控制器10可以配置为例如通过控制用于点燃火花塞4060的定时来控制点火电路4000。例如,控制器10可以在使引擎节流时调整引燃角(延迟点火)并且优化点火定时。壳体3010可以限定单个的内部空腔,或者可以包括将内部空腔划分为多个腔室的内壁。另外,壳体3010可以是全封闭式壳体或者具有至少一个开口侧的部分封闭式壳体。在例示的布置中,壳体3010包括将它的内部与封闭在其中的部件一起密封的灌注合成物4080。In addition to controlling automatic throttle control system 1000 , controller 10 may be configured to control ignition circuit 4000 , for example, by controlling the timing for igniting spark plug 4060 . For example, the controller 10 can adjust the ignition angle (retard the spark) and optimize the spark timing when the engine is throttled. Housing 3010 may define a single interior cavity, or may include interior walls that divide the interior cavity into a plurality of chambers. Additionally, the housing 3010 may be a fully enclosed housing or a partially enclosed housing having at least one open side. In the illustrated arrangement, housing 3010 includes a potting compound 4080 that seals its interior with the components enclosed therein.

正如所例示的,控制器10和马达驱动电路160完全设置在壳体3010的内部空腔内。然而,第一温度传感器30从壳体3010凸出。更具体地说,第一温度传感器30从壳体3010凸出,并且耦接到钢层压叠片4070以便与其热耦合。在一个布置中,第一温度传感器30可以嵌入在钢层压叠片4070中。作为耦接到(其包括嵌入)钢层压叠片4070的结果,第一温度传感器30测量钢层压叠片4070的温度,该钢层压叠片4070接着由于与其热协作而以对应于引擎缸体120的方式变热(并且冷却)。因而,第一温度传感器30测量引擎缸体温度。As illustrated, the controller 10 and the motor drive circuit 160 are disposed entirely within the interior cavity of the housing 3010 . However, the first temperature sensor 30 protrudes from the housing 3010 . More specifically, the first temperature sensor 30 protrudes from the housing 3010 and is coupled to the steel laminate stack 4070 for thermal coupling thereto. In one arrangement, the first temperature sensor 30 may be embedded in the steel laminate stack 4070 . As a result of being coupled to (which includes embedding) the steel lamination lamination 4070, the first temperature sensor 30 measures the temperature of the steel lamination lamination 4070, which in turn due to its thermal The way the cylinder 120 heats up (and cools down). Thus, the first temperature sensor 30 measures the engine block temperature.

第二温度传感器40也从壳体3010凸出,使得第二温度传感器40的至少一部分保持暴露于周围环境。这允许进入吹风机壳体500的环境空气150接触到第二温度传感器40。因此,尽管是点火模块的一部分,第二温度传感器40仍可以测量环境气流150的温度。在集成点火和自动节流模块3000的某些布置中,第二温度传感器40可以完全设置壳体3010的外部并且甚至可以省去。The second temperature sensor 40 also protrudes from the housing 3010 such that at least a portion of the second temperature sensor 40 remains exposed to the surrounding environment. This allows the ambient air 150 entering the blower housing 500 to contact the second temperature sensor 40 . Thus, despite being part of the ignition module, the second temperature sensor 40 can measure the temperature of the ambient airflow 150 . In certain arrangements of the integrated ignition and auto-throttle module 3000, the second temperature sensor 40 may be provided entirely outside of the housing 3010 and may even be omitted.

集成点火和自动节流模块3000被安装到飞轮126附近的引擎缸体120。具体地说,集成点火和自动节流模块3000例如通过如上所述的钢层压叠片4070被固定到飞轮126附近的引擎曲轴箱123。磁体127设置在飞轮126上。在飞轮126关于曲柄轴128的旋转期间,磁体127通过点火模块钢层压4070,切割磁力线并且在中心腿中生成磁场,这使充电线圈4010生成对可以是高压电容器的储能装置4030进行充电的高电压供给。可控半导体整流器的形式的开关4040将存储在储能装置4030中的能量传送到点火线圈4050的初级线圈4051,从而生成对点火线圈4050的次级线圈4052充电的磁场。作为次级线圈4052被充电的结果,火花塞4060被点燃/发出火花。The integrated ignition and auto throttle module 3000 is mounted to the engine block 120 near the flywheel 126 . Specifically, the integrated ignition and auto-throttle module 3000 is secured to the engine crankcase 123 adjacent the flywheel 126, such as by a steel laminate lamination 4070 as described above. A magnet 127 is provided on the flywheel 126 . During rotation of the flywheel 126 about the crankshaft 128, the magnet 127 passes through the ignition module steel lamination 4070, cutting the flux lines and generating a magnetic field in the center leg, which causes the charging coil 4010 to generate a charge coil 4010 that charges the energy storage device 4030, which may be a high voltage capacitor high voltage supply. A switch 4040 in the form of a controllable semiconductor rectifier transfers the energy stored in the energy storage device 4030 to the primary coil 4051 of the ignition coil 4050 to generate a magnetic field that charges the secondary coil 4052 of the ignition coil 4050 . As a result of the secondary coil 4052 being charged, the spark plug 4060 is ignited/sparked.

控制器10通过它对引擎的转速的和旋转定位的检测(经由例如引擎曲轴和/或凸轮轴的位置)使火花塞4060的火花与引擎转动同步。调节电路4020执行以下功能:(1)优化对于所有RPM范围的开关4040的栅电流;(2)对在传感器信号上出现的寄生放电进行滤波;和/或(3)确保正确的导前角。虽然点火电路4000被例示为电容性放电点火,但是要理解的是,各种类型的点火电路可以被合并在根据本发明的集成点火和自动节流模块3000中,例如感应的放电点火。另外,虽然例示了磁点火系统,但是集成点火和自动节流模块3000可以包括其它类型的点火系统,例如电池和线圈操作的点火、机械式定时点火以及电子点火。The controller 10 synchronizes the spark of the spark plug 4060 with engine rotation through its detection of the rotational speed and rotational position of the engine (via, for example, the position of the engine crankshaft and/or camshaft). The regulation circuit 4020 performs the following functions: (1) optimize the gate current of the switch 4040 for all RPM ranges; (2) filter parasitic discharges present on the sensor signal; and/or (3) ensure the correct lead angle. While ignition circuit 4000 is illustrated as capacitive discharge ignition, it is understood that various types of ignition circuits may be incorporated in integrated ignition and auto-throttle module 3000 according to the present invention, such as inductive discharge ignition. Additionally, while a magnetic ignition system is illustrated, the integrated ignition and auto-throttle module 3000 may include other types of ignition systems, such as battery and coil operated ignition, mechanically timed ignition, and electronic ignition.

正如图23至24中例示的,控制器10包括两个处理器11,这两个处理器11与马达驱动器160、开关4040、储能装置4030以及关闭终端4096一起安装到电路板4055。另外,还设置接地标签4090。接地标签4090耦接到钢层压叠片4070,钢层压叠片4070通过其与引擎缸体120的耦接作为接地。为了接收12V电力还设置了电力线4098。引线4097从壳体3010的灌注合成物4080凸出,用于连接到马达/DLA。类似地,高电压次级线圈引线4095也从壳体3010凸出,用于电耦接到火花塞引出罩和终端。As illustrated in FIGS. 23-24 , the controller 10 includes two processors 11 mounted to a circuit board 4055 along with a motor driver 160 , a switch 4040 , an energy storage device 4030 , and a shutdown terminal 4096 . Additionally, a ground tab 4090 is provided. The ground tab 4090 is coupled to the steel laminate lamination 4070 which acts as a ground through its coupling to the engine block 120 . A power line 4098 is also provided for receiving 12V power. Lead wires 4097 protrude from the potting compound 4080 of the housing 3010 for connection to the motor/DLA. Similarly, high voltage secondary coil leads 4095 also protrude from housing 3010 for electrical coupling to spark plug exit shields and terminals.

如上所述,图22中例示的内燃机100是气冷引擎并且从而包括从汽缸排124延伸的多个导热鳍129。此外,内燃机100被定位在包括吹风机501的吹送机壳体500内,该吹风机501吸入并且在内燃机100上(包括在第二温度传感器40上和到化油器110中)推动环境气流150。As mentioned above, the internal combustion engine 100 illustrated in FIG. 22 is an air-cooled engine and thus includes a plurality of heat transfer fins 129 extending from the cylinder bank 124 . Furthermore, the internal combustion engine 100 is positioned within a blower housing 500 that includes a blower 501 that draws in and pushes the ambient airflow 150 over the internal combustion engine 100 (including on the second temperature sensor 40 and into the carburetor 110 ).

现在参考图25,以示意图形式示出了根据本发明的集成点火和自动节流模块5000的第二布置。集成点火和自动节流模块5000与如上所述的集成点火和自动节流模块3000相似,除了以下:集成点火和自动节流模块5000的部件和组件容纳在第一壳体5010和第二壳体5020中,而不像集成点火和自动节流模块3000一样在单个壳体3010中。因此,以上的集成点火和自动节流模块3000的描述除了以下阐述的之外适用于集成点火和自动节流模块5000。虽然集成点火和自动节流模块5000的部件和组件正如所例示地在第一和第二壳体5010、5020之间展开,但是在控制器10除了控制用于点燃火花塞4060的定时之外还控制自动节流控制系统1000的意义上,集成点火和自动节流模块仍是集成的。Referring now to FIG. 25 , a second arrangement of an integrated ignition and auto-throttle module 5000 according to the present invention is shown in schematic form. The integrated ignition and auto-throttle module 5000 is similar to the integrated ignition and auto-throttle module 3000 described above, except for the following: The components and components of the integrated ignition and auto-throttle module 5000 are housed in the first housing 5010 and the second housing 5020 instead of in a single housing 3010 like the integrated ignition and auto throttle module 3000. Accordingly, the above description of the integrated ignition and auto-throttle module 3000 applies to the integrated ignition and auto-throttle module 5000 except as set forth below. While the components and assemblies of the integrated ignition and auto-throttle module 5000 are spread between the first and second housings 5010, 5020 as illustrated, in addition to controlling the timing for igniting the spark plug 4060, the controller 10 also controls The integrated ignition and auto-throttle modules are still integrated in the sense of the auto-throttle control system 1000 .

第二壳体5020容纳充电线圈4010。如上所述,层压叠片4070耦接到第二壳体5020并且可操作地被定位/与充电线圈4010耦接。第一温度传感器30也以凸出方式被第二壳体5020容纳,以便耦接到如上所述的钢层压叠片4070。第二壳体5020还容纳包括初级线圈和次级线圈4051、4052的点火线圈4050以及储能装置4030。然而,在某些其它布置中,储能装置4030可以与第壳体5010一起定位。第一壳体5010包括用于集成点火和自动节流模块3000的图25中例示并且如上所述的其余部件。The second housing 5020 accommodates the charging coil 4010 . As described above, the laminated lamination 4070 is coupled to the second housing 5020 and is operatively positioned/coupled with the charging coil 4010 . The first temperature sensor 30 is also received in a protruding manner by the second housing 5020 for coupling to the steel laminate lamination 4070 as described above. The second housing 5020 also accommodates an ignition coil 4050 including primary and secondary coils 4051 , 4052 and an energy storage device 4030 . However, in certain other arrangements, the energy storage device 4030 may be co-located with the first housing 5010 . The first housing 5010 includes the remaining components illustrated in FIG. 25 and described above for the integrated ignition and auto-throttle module 3000 .

在集成点火和自动节流模块5000的另一布置(其未示出)中,层压叠片4070可以耦接到第一壳体5010,同时充电线圈4010与第一温度传感器30一起再次由第一壳体5010容纳。在这些布置中,储能装置4030也可以由第一外罩5010容纳。因而,第二外罩5020将仅仅容纳点火线圈4050(其包括初级线圈和次级线圈4051,4052)。储能装置4030的电能经由外部线路传送到点火线圈4050。开关4040可以由第二壳体5020而不是第一壳体5010容纳。在多个火花塞需要在不同的引擎气缸(在不同的时期)被点燃的布置中,第二壳体5020可以容纳多个点火线圈4050,一个点火线圈用于需要被点燃的每一火花塞。In another arrangement of the integrated ignition and auto-throttle module 5000 (which is not shown), the laminated lamination 4070 may be coupled to the first housing 5010 while the charge coil 4010 is again supplied by the first temperature sensor 30 together with the first housing 5010. A casing 5010 accommodates. In these arrangements, the energy storage device 4030 may also be housed by the first housing 5010 . Thus, the second housing 5020 will house only the ignition coil 4050 (which includes the primary and secondary coils 4051, 4052). The electric energy of the energy storage device 4030 is transmitted to the ignition coil 4050 via an external circuit. The switch 4040 may be accommodated by the second case 5020 instead of the first case 5010 . In arrangements where multiple spark plugs need to be ignited in different engine cylinders (at different times), the second housing 5020 can house multiple ignition coils 4050, one for each spark plug that needs to be ignited.

在点火线圈4050与控制器包封分离的其它布置中,可以为每一点火线圈4050设置层压叠片以优化能量传送,因此它不必是外部的。在这样的条件下,可以使用线圈体内部的小叠片(类似于汽车线圈)。在此情况下,次级线圈4052可以被合并,使得次级线圈4052的两端连接到单独的汽缸火花塞并且该线圈以浪费火花模式点燃,使得尽管两个线圈点燃,但仅仅一个线圈在燃烧下的汽缸中燃烧。这种控制可以由控制器10实现。然而,如果该线圈通过电池而不是磁体被激励,则这个控制可以变得更简单,因为电池可以对线圈充电而不是对电容器充电。In other arrangements where the ignition coils 4050 are separate from the controller package, a laminated laminate may be provided for each ignition coil 4050 to optimize energy transfer so it need not be external. In such conditions, small laminations inside the coil body (similar to car coils) can be used. In this case, the secondary coil 4052 may be incorporated such that both ends of the secondary coil 4052 are connected to a single cylinder spark plug and the coil ignites in wasted spark mode such that although both coils ignite, only one coil is under fire combustion in the cylinder. This control can be realized by the controller 10 . However, this control can be made simpler if the coil is energized by a battery instead of a magnet, since the battery can charge the coil instead of a capacitor.

回到图1,所公开的是,在某些布置中,电子自动节流系统1000可以包括反馈传感器,该反馈传感器配置为,测量表示要在或者正在内燃机中燃烧的空气燃料混合物的空气燃料比的参数。正如以下更详细地讨论的,这个反馈传感器可以可操作地耦接到控制器10以形成闭合反馈环,节流阀111的速率和/或位置可以通过该闭合反馈环而在第二节流开启阶段COS2期间(响应于可以基本上实时的由反馈传感器进行的测量)动态地控制。在示出的示例中,反馈传感器被例示为废气传感器50,该废气传感器50可以是测量正在从燃烧室121排出的废气中的氧含量的氧浓度传感器。在其它布置中,反馈传感器可以是例如氧浓度传感器的适当的传感器,该传感器被定位于在燃烧室121中燃烧前的空气燃料混合物中(例如在化油器110内),或者定位于从化油器延伸到燃烧室121的空气燃料混合物供给通路中。在又一个布置中,反馈传感器可以是将确定入口中的燃料压力的化油器浮子中的气压传感器。在这样的布置中,如果移动减压阀,或者如果燃料压力改变同时该节流仍倾斜,则节流开启的速率可以动态地变化。如果该节流仍处于起始坡道或者中间坡道循环,则快速的节流阀改变可能导致冒烟问题。还可以使用油门位置传感器。Returning to FIG. 1 , it is disclosed that, in certain arrangements, electronic auto-throttle system 1000 may include a feedback sensor configured to measure an air-fuel ratio indicative of an air-fuel mixture that is to be or is being combusted in an internal combustion engine. parameters. As discussed in more detail below, this feedback sensor can be operatively coupled to controller 10 to form a closed feedback loop through which the speed and/or position of throttle valve 111 can be adjusted at the second throttle opening Dynamically controlled during phase COS2 (in response to measurements made by feedback sensors, which may be substantially real-time). In the example shown, the feedback sensor is illustrated as an exhaust gas sensor 50 , which may be an oxygen concentration sensor that measures the oxygen content in the exhaust gas being expelled from the combustion chamber 121 . In other arrangements, the feedback sensor may be a suitable sensor, such as an oxygen concentration sensor, positioned in the air-fuel mixture prior to combustion in the combustion chamber 121 (eg, in the carburetor 110), or positioned in the The air-fuel mixture supply passage of the combustion chamber 121 extends into the air-fuel mixture supply passage. In yet another arrangement, the feedback sensor may be an air pressure sensor in the carburetor float that will determine the fuel pressure in the inlet. In such an arrangement, the rate at which the throttle opens can be changed dynamically if the pressure relief valve is moved, or if fuel pressure changes while the throttle is still ramped. If the throttle is still on the start ramp or mid-ramp cycle, rapid throttle changes can cause smoke problems. A throttle position sensor can also be used.

在本发明的某些方面中,在使用这种反馈传感器时,节流阀111在第二节流开启阶段COS2期间的移动特性(例如速率和/或位置)依赖于反馈传感器的实时测量结果。在一个这样的布置中,节流阀111在第二节流开启阶段COS2期间的移动特性(例如速率和/或位置)可以与第一和第二温度T1、T2无关。因此,可以省去第一和第二温度传感器30、40。在其它布置中,除了由反馈传感器带来的测量结果之外,节流阀111在第二节流开启阶段COS2期间的移动特性(例如速率和/或位置)可以附加地依赖于反馈第一和第二温度T1、T2中的至少一个。In certain aspects of the invention, when such a feedback sensor is used, the movement characteristics (eg velocity and/or position) of the throttle valve 111 during the second throttle-on phase COS2 are dependent on the real-time measurements of the feedback sensor. In one such arrangement, the movement characteristics (eg velocity and/or position) of the throttle valve 111 during the second throttle opening phase COS2 may be independent of the first and second temperatures T1 , T2 . Thus, the first and second temperature sensors 30, 40 can be omitted. In other arrangements, the movement characteristics (eg speed and/or position) of the throttle valve 111 during the second throttle opening phase COS2 may additionally depend on the feedback first and At least one of the second temperatures T1, T2.

现在描述使用这种反馈传感器在引擎起动事件期间动态地控制节流阀111的开启的示例性方法。作为阈值问题,控制器10可以如上所述地执行第一节流阀开启阶段COS1,从而将节流阀111从初始位置移动到起动位置(假定初始和起动位置不相等)。起动位置可以在一个布置中正如以上讨论地依赖于第一温度T1,或者可以在另一布置中与第一和第二温度T1、T2无关。An exemplary method of using such a feedback sensor to dynamically control the opening of the throttle valve 111 during an engine start event is now described. As a matter of threshold, the controller 10 may execute the first throttle opening phase COS1 as described above, thereby moving the throttle valve 111 from the initial position to the starting position (assuming the initial and starting positions are not equal). The starting position may be dependent on the first temperature T1 as discussed above in one arrangement, or may be independent of the first and second temperatures T1 , T2 in another arrangement.

总之、一旦节流阀111处于起动位置(正如以上讨论的,其可以是降低的起动位置中的一个),控制器10开始第二节流开启阶段COS2。在第二节流开启阶段COS2的开始和在第二节流开启阶段COS2期间,控制器10反复地从反馈传感器接收表示所测量的参数的信号。这些信号可以在第二节流开启阶段COS2期间连续地被接收,并且可以是在节流阀111从起动位置朝着完全开启位置的移动期间进行的实时测量。在收到这些信号时,控制器10基于最近接收到的信号确定来节流阀111的移动的特性。换言之,节流阀111的移动的特性依赖于由反馈传感器进行的最近的测量。在一个方面中,控制器10基于来自反馈传感器的最近接收到的信号来确定节流阀111要朝着完全开启位置被移动的速率。节流阀111的移动的特性可以使用包括所测量的参数作为变量(类似于以上针对第一和第二温度T1、T2所讨论的)关系数据表格(或算法)通过控制器10确定。In summary, once the throttle valve 111 is in the starting position (which, as discussed above, may be one of the lowered starting positions), the controller 10 starts the second throttle opening phase COS2. At the beginning of and during the second throttle-on phase COS2, the controller 10 repeatedly receives a signal from the feedback sensor representing the measured parameter. These signals may be continuously received during the second throttle opening phase COS2 and may be real-time measurements taken during movement of the throttle valve 111 from the start position towards the fully open position. Upon receipt of these signals, the controller 10 determines the characteristics of the movement of the throttle valve 111 based on the most recently received signal. In other words, the nature of the movement of the throttle valve 111 depends on the most recent measurements made by the feedback sensor. In one aspect, the controller 10 determines the rate at which the throttle valve 111 is to be moved toward the fully open position based on the most recently received signal from the feedback sensor. The characteristics of the movement of the throttle valve 111 may be determined by the controller 10 using a relational data table (or algorithm) including the measured parameters as variables (similar to that discussed above for the first and second temperatures T1, T2).

使用致动器20,控制器10则根据由控制器10最近所确定的移动的特性将节流阀111朝着完全开启位置移动。在一个布置中,控制器10将节流阀111以最近已经确定的速率朝着完全开启位置移动。作为节流阀111在第二节流阀开启阶段COS2期间的移动(和移动的特性中的调整)的结果,由反馈传感器所测量的参数可以改变。然而,因为反馈传感器在第二节流阀开启阶段COS2的全部期间处于与控制器10的反馈回路中,所以控制器10基于最近所接收的测量结果动态地调整节流阀111的移动的特性。因此,可以做出对节流阀111的移动的特性的基本上实时的调整,以确保要被燃烧或者正在燃烧的空气燃料混合物的最佳的空气燃料比。因此,在这种情况下,第二节流阀开启阶段COS2可以被认为是动态节流开启阶段。Using the actuator 20, the controller 10 then moves the throttle valve 111 towards the fully open position according to the characteristics of the movement most recently determined by the controller 10. In one arrangement, the controller 10 moves the throttle valve 111 towards the fully open position at a rate that has recently been determined. As a result of the movement (and adjustments in the characteristics of the movement) of the throttle valve 111 during the second throttle opening phase COS2, the parameters measured by the feedback sensor may change. However, because the feedback sensor is in a feedback loop with the controller 10 throughout the second throttle opening phase COS2, the controller 10 dynamically adjusts the characteristics of the movement of the throttle valve 111 based on the most recently received measurements. Accordingly, substantially real-time adjustments to the nature of the movement of the throttle valve 111 may be made to ensure an optimum air-fuel ratio for the air-fuel mixture to be combusted or being combusted. Therefore, in this case, the second throttle opening phase COS2 can be considered as a dynamic throttle opening phase.

虽然前述的说明和附图表示本发明的示例性实施例,但是要理解的是,在不脱离正如所附的权利要求中所限定的本发明的精神和范围的情况下可以对其作出各种增加、改进以及替换。特别地,对于本领域技术人员清楚的是,在不脱离本发明精神或者基本特征的情况下,本发明可以以其它特定形式、结构、配置、比例、尺寸以及利用其它元件、材料以及部件来具体化。本领域技术人员将理解的是,本发明可以与许多结构、配置、比例、尺寸、材料以及部件的变型一起使用并且另外在本发明的实践中使用,其特别适合于在没有脱离本发明的原则的情况下的特定环境和操作的需求。目前公开的实施例从而在各个方面被认为是说明性的而不是限制性的,本发明的范围由所附的权利要求限定并且不限于前述说明或者实施例。While the foregoing description and drawings represent exemplary embodiments of the invention, it will be understood that various changes may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims. additions, improvements and substitutions. In particular, it is clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, configurations, proportions, dimensions and by using other elements, materials and components without departing from the spirit or essential characteristics of the present invention. change. Those skilled in the art will appreciate that the present invention may be employed with numerous variations in construction, configuration, proportions, dimensions, materials, and components, and otherwise in the practice of the invention, which are particularly suited for use without departing from the principles of the invention. case-specific environmental and operational requirements. The presently disclosed embodiments are thus to be considered in every respect as illustrative and not restrictive, the scope of the invention being defined by the appended claims and not limited to the foregoing description or embodiments.

Claims (32)

1.一种使用电子系统来控制内燃机的节流阀的方法,所述电子系统以可操作的协作方式包括:控制器、配置为测量表示引擎温度的第一温度的第一温度传感器、配置为测量表示环境气温的第二温度的第二温度传感器,以及配置为移动所述节流阀的致动器,所述方法包括:1. A method of controlling a throttle valve of an internal combustion engine using an electronic system, the electronic system comprising in operable cooperation a controller, a first temperature sensor configured to measure a first temperature indicative of engine temperature, configured to a second temperature sensor measuring a second temperature indicative of ambient air temperature, and an actuator configured to move the throttle valve, the method comprising: a)利用所述控制器确定依赖于所述第一温度的、用于所述节流阀的起动位置;a) determining, with said controller, an activation position for said throttle valve dependent on said first temperature; b)执行第一节流开启阶段,所述第一节流开启阶段包括利用所述致动器将所述节流阀从初始位置移动到所述起动位置;b) performing a first throttle opening phase, said first throttle opening phase comprising moving said throttle valve from an initial position to said starting position with said actuator; c)利用所述控制器确定用于开启所述节流阀的第一坡道,其中所述第一坡道的第一特性依赖于所述第一和第二温度;以及c) determining, with the controller, a first ramp for opening the throttle valve, wherein a first characteristic of the first ramp is dependent on the first and second temperatures; and d)在完成所述第一节流开启阶段后,执行第二节流开启阶段,所述第二节流开启阶段包括利用所述致动器根据所述第一坡道将所述节流阀朝着完全开启位置移动;d) after completion of said first throttle opening phase, a second throttle opening phase is performed, said second throttle opening phase comprising using said actuator to move said throttle valve according to said first ramp move towards the fully open position; 其中所述电子系统还包括引擎转速传感器,所述步骤b)包括:Wherein said electronic system also includes an engine speed sensor, and said step b) includes: b-1)利用所述引擎转速传感器测量所述内燃机的引擎转速,当所述节流阀处于所述起动位置时,所述引擎转速传感器可操作地耦接到所述控制器;b-1) measuring the engine speed of the internal combustion engine using the engine speed sensor, the engine speed sensor being operatively coupled to the controller when the throttle valve is in the starting position; b-2)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎曲轴摇转速度;以及b-2) using said controller to determine whether the measured engine speed is at or above engine crank speed; and b-3)在确定了所测量的引擎转速低于所述引擎曲轴摇转速度时,将所述节流阀关闭一定量并且返回到步骤b-2)。b-3) Upon determining that the measured engine speed is lower than the engine crank speed, closing the throttle valve by an amount and returning to step b-2). 2.如权利要求1所述的方法,其中在步骤c)中所确定的所述第一坡道的第一特性依赖于所述第一温度以及所述第一温度和所述第二温度之间的差。2. The method of claim 1, wherein the first characteristic of the first ramp determined in step c) is dependent on the first temperature and the difference between the first temperature and the second temperature difference between. 3.如权利要求1至2中的任一项所述的方法,其中所述第一特性是所述节流阀在所述第一坡道期间被移动的速率。3. A method as claimed in any one of claims 1 to 2, wherein the first characteristic is the rate at which the throttle is moved during the first ramp. 4.如权利要求3所述的方法,其中步骤c)还包括利用所述控制器确定用于开启所述节流阀的所述第一坡道,其中所述第一坡道的第二特性依赖于所述第一温度,其中所述第二特性是所述第一坡道的开始位置和结束位置。4. The method of claim 3, wherein step c) further comprises determining, with the controller, the first ramp for opening the throttle valve, wherein a second characteristic of the first ramp Dependent on said first temperature, wherein said second characteristic is a start position and an end position of said first ramp. 5.如权利要求1所述的方法,其中步骤b-3)还包括计算所测量的引擎转速连续地被确定为低于所述引擎曲轴摇转速度的次数;并且其中在所测量的引擎转速连续地被确定为低于所述引擎曲轴摇转速度的次数之上,将所述节流阀移动到所述完全开启位置。5. The method of claim 1, wherein step b-3) further comprises counting the number of times the measured engine speed is continuously determined to be lower than the engine crank speed; and wherein at the measured engine speed The throttle valve is moved to the fully open position more than the number of times in succession determined to be below the crankshaft speed of the engine. 6.如权利要求1至2中的任一项所述的方法,其中所述电子系统还包括引擎转速传感器,所述方法还包括:6. The method of any one of claims 1 to 2, wherein the electronic system further includes an engine speed sensor, the method further comprising: 其中步骤b)还包括:Wherein step b) also includes: b-1’)利用所述引擎转速传感器测量所述内燃机的引擎转速,当所述节流阀处于所述起动位置或者降低的起动位置时,所述引擎转速传感器可操作地耦接到所述控制器;b-1') Measuring the engine speed of the internal combustion engine with the engine speed sensor, which is operatively coupled to the controller; b-2’)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎起动速度;以及b-2') using the controller to determine whether the measured engine speed is at or above the engine cranking speed; and b-3’)在确定了所测量的引擎转速超出所述引擎起动速度时,利用所述引擎转速传感器在一时间段后重新测量引擎转速;以及b-3') upon determining that the measured engine speed exceeds the engine cranking speed, re-measuring the engine speed after a period of time using the engine speed sensor; and 其中步骤c)还包括利用所述控制器确定所述第一坡道,其中所述第一坡道的第一特性依赖于所述第一和第二温度以及重新测量的引擎转速。Wherein step c) further comprises determining, by the controller, the first ramp, wherein a first characteristic of the first ramp is dependent on the first and second temperatures and the re-measured engine speed. 7.如权利要求6所述的方法,其中在步骤c)中,对所述第一坡道的确定包括:7. The method of claim 6, wherein in step c), determining the first ramp comprises: 在重新测量的引擎转速被确定为处于或者超出引擎转速阈值时,使用高速协议来确定所述第一坡道的第一特性;以及determining a first characteristic of the first ramp using a high-speed protocol when the remeasured engine speed is determined to be at or above an engine speed threshold; and 在重新测量的引擎转速被确定为低于所述引擎转速阈值时,使用低速协议来确定所述第一坡道的第一特性。A low speed protocol is used to determine a first characteristic of the first ramp when the remeasured engine speed is determined to be below the engine speed threshold. 8.如权利要求1至2中的任一项所述的方法,其中所述第二节流开启阶段包括第一节流开启子阶段和第二节流开启子阶段,所述方法还包括:8. The method of any one of claims 1 to 2, wherein the second throttle-on phase comprises a first throttle-on sub-phase and a second throttle-on sub-phase, the method further comprising: 步骤c)还包括:利用所述控制器确定用于开启所述节流阀的第二坡道,其中所述第二坡道的第一特性依赖于所述第一温度;以及Step c) further comprises: determining, with the controller, a second ramp for opening the throttle valve, wherein a first characteristic of the second ramp is dependent on the first temperature; and 步骤d)还包括:Step d) also includes: d-1)根据所述第二坡道,在所述第一节流开启子阶段期间将所述节流阀移动到所述起动位置和所述完全开启位置之间的第一中间位置;以及d-1) moving said throttle valve to a first intermediate position between said starting position and said fully open position during said first throttle opening sub-phase according to said second ramp; and d-2)根据所述第一坡道,在所述第二节流开启子阶段期间将所述节流阀从所述第一中间位置朝着所述完全开启位置移动。d-2) Moving said throttle valve from said first intermediate position towards said fully open position during said second throttle opening sub-phase according to said first ramp. 9.如权利要求8所述的方法,其中所述第一坡道的第一特性是所述节流阀在所述第一坡道期间被移动的速率,并且所述第二坡道的第一特性是所述节流阀在所述第二坡道期间被移动的速率;以及其中所述节流阀在所述第一坡道期间被移动的速率小于所述节流阀在所述第二坡道期间被移动的速率。9. The method of claim 8, wherein the first characteristic of the first ramp is the rate at which the throttle valve is moved during the first ramp, and the first characteristic of the second ramp is A characteristic is the rate at which the throttle is moved during the second ramp; and wherein the rate at which the throttle is moved during the first ramp is less than the rate at which the throttle is moved during the first ramp. The rate at which the two ramps are moved. 10.如权利要求8所述的方法,其中所述第二节流开启阶段包括第三节流开启子阶段,所述方法还包括:10. The method of claim 8, wherein the second throttle-on phase comprises a third throttle-on sub-phase, the method further comprising: 步骤c)还包括:利用所述控制器确定用于开启所述节流阀的第三坡道,其中所述第三坡道的第一特性依赖于所述第一温度;以及Step c) further comprises: determining, with the controller, a third ramp for opening the throttle valve, wherein a first characteristic of the third ramp is dependent on the first temperature; and 其中步骤d)还包括:Wherein step d) also includes: d-3)根据所述第三坡道,在所述第三节流开启子阶段期间将所述节流阀从所述第二中间位置移动到所述完全开启位置。d-3) Moving said throttle valve from said second intermediate position to said fully open position during said third throttle opening sub-phase according to said third ramp. 11.如权利要求1至2中的任一项所述的方法,其中响应于钥匙开启信号开始步骤a)。11. A method as claimed in any one of claims 1 to 2, wherein step a) is initiated in response to a key-on signal. 12.如权利要求1至2中的任一项所述的方法,其中所述初始位置是部分开启位置。12. The method of any one of claims 1 to 2, wherein the initial position is a partially open position. 13.如权利要求1至2中的任一项所述的方法,还包括:13. The method of any one of claims 1 to 2, further comprising: e)在完成步骤d)后,在所述控制器确定引擎关闭状况时使用所述致动器将所述节流阀返回到所述初始位置。e) upon completion of step d), returning the throttle valve to the initial position using the actuator when the controller determines an engine off condition. 14.一种使用电子系统来控制内燃机的节流阀的方法,所述电子系统以可操作的协作方式包括控制器、配置为测量表示引擎温度的第一温度的第一温度传感器、配置为测量表示环境气温的第二温度的第二温度传感器,以及配置为移动所述节流阀的致动器,所述方法包括:14. A method of controlling a throttle valve of an internal combustion engine using an electronic system, the electronic system comprising in operable cooperation a controller, a first temperature sensor configured to measure a first temperature indicative of engine temperature, configured to measure a second temperature sensor indicative of a second temperature of ambient air temperature, and an actuator configured to move the throttle valve, the method comprising: a)利用所述控制器确定用于开启所述节流阀的第一坡道,其中所述第一坡道的第一特性依赖于所述第一温度以及所述第一温度和所述第二温度之间的差;以及a) using the controller to determine a first ramp for opening the throttle valve, wherein a first characteristic of the first ramp depends on the first temperature and the first temperature and the second the difference between the two temperatures; and b)使用所述致动器执行节流开启阶段,所述节流开启阶段包括利用所述致动器将所述节流阀根据所述第一坡道朝着完全开启位置移动;b) performing a throttle opening phase using said actuator, said throttle opening phase comprising using said actuator to move said throttle valve towards a fully open position according to said first ramp; 其中所述电子系统还包括引擎转速传感器,所述步骤b)包括:Wherein said electronic system also includes an engine speed sensor, and said step b) includes: b-1)利用所述引擎转速传感器测量所述内燃机的引擎转速,当所述节流阀处于依赖于所述第一温度的起动位置时,所述引擎转速传感器可操作地耦接到所述控制器;b-1) measuring the engine speed of the internal combustion engine with the engine speed sensor, which is operatively coupled to the controller; b-2)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎曲轴摇转速度;以及b-2) using said controller to determine whether the measured engine speed is at or above engine crank speed; and b-3)在确定了所测量的引擎转速低于所述引擎曲轴摇转速度时,将所述节流阀关闭一定量并且返回到步骤b-2)。b-3) Upon determining that the measured engine speed is lower than the engine crank speed, closing the throttle valve by an amount and returning to step b-2). 15.如权利要求14所述的方法,其中所述第一温度传感器被配置为,测量所述内燃机的曲轴箱或者所述内燃机的引擎缸体的温度作为所述第一温度。15. The method according to claim 14, wherein the first temperature sensor is configured to measure a temperature of a crankcase of the internal combustion engine or an engine block of the internal combustion engine as the first temperature. 16.如权利要求14至15中的任一项所述的方法,其中所述电子系统还包括引擎转速传感器,所述引擎转速传感器配置为测量所述内燃机的引擎转速,所述方法还包括:16. The method of any one of claims 14 to 15, wherein the electronic system further comprises an engine speed sensor configured to measure an engine speed of the internal combustion engine, the method further comprising: 其中步骤a)包括:Wherein step a) comprises: a-1)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎转速阈值;以及a-1) determining, with the controller, whether the measured engine speed is at or above an engine speed threshold; and a-2)在所测量的引擎转速被确定为处于或者超出所述引擎转速阈值时,使用高速协议确定所述第一坡道;而在所测量的引擎转速被确定为低于所述引擎转速阈值时,使用低速协议确定所述第一坡道;以及a-2) determining the first ramp using a high-speed protocol when the measured engine speed is determined to be at or above the engine speed threshold; and when the measured engine speed is determined to be below the engine speed threshold, determining said first ramp using a low-speed protocol; and 其中所述第一坡道的第一特性依赖于是所述高速协议还是所述低速协议被用于确定所述第一坡道。Wherein the first characteristic of the first ramp depends on whether the high speed protocol or the low speed protocol is used to determine the first ramp. 17.一种用于控制内燃机的节流阀的电子系统,所述电子系统包括:17. An electronic system for controlling a throttle valve of an internal combustion engine, said electronic system comprising: 第一温度传感器,所述第一温度传感器配置为测量表示引擎温度的第一温度;a first temperature sensor configured to measure a first temperature indicative of engine temperature; 第二温度传感器,所述第二温度传感器配置为测量表示环境气温的第二温度;a second temperature sensor configured to measure a second temperature indicative of ambient air temperature; 致动器,所述致动器可操作地耦接到所述节流阀以调整所述节流阀的位置,从而调整要在所述内燃机中燃烧的燃料混合物的燃料空气比;以及an actuator operatively coupled to the throttle valve to adjust the position of the throttle valve to adjust the fuel-air ratio of the fuel mixture to be combusted in the internal combustion engine; and 控制器,所述控制器可操作地耦接到所述致动器、所述第一温度传感器,以及所述第二温度传感器,所述控制器配置为:(1)基于所述第一温度确定用于所述节流阀的起动位置,并且操作所述致动器以在第一节流开启阶段期间将节流阀从初始位置移动到所述起动位置;以及(2)确定第一坡道,所述第一坡道具有依赖于所述第一和第二温度的特性,并且根据所述第一坡道操作所述致动器,以在第二节流开启阶段期间将节流阀朝着完全开启位置移动;a controller operatively coupled to the actuator, the first temperature sensor, and the second temperature sensor, the controller configured to: (1) based on the first temperature determining a starting position for the throttle valve, and operating the actuator to move the throttle valve from an initial position to the starting position during a first throttle opening phase; and (2) determining a first ramp The first ramp has a characteristic dependent on the first and second temperatures, and the actuator is operated according to the first ramp to move the throttle valve during the second throttle opening phase. move towards the fully open position; 其中所述电子系统还包括引擎转速传感器,所述控制器进一步配置为:Wherein the electronic system further includes an engine speed sensor, and the controller is further configured to: b-1)利用所述引擎转速传感器测量所述内燃机的引擎转速,当所述节流阀处于所述起动位置时,所述引擎转速传感器可操作地耦接到所述控制器;b-1) measuring the engine speed of the internal combustion engine using the engine speed sensor, the engine speed sensor being operatively coupled to the controller when the throttle valve is in the starting position; b-2)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎曲轴摇转速度;以及b-2) using said controller to determine whether the measured engine speed is at or above engine crank speed; and b-3)在确定了所测量的引擎转速低于所述引擎曲轴摇转速度时,将所述节流阀关闭一定量并且返回到b-2)。b-3) Upon determining that the measured engine speed is lower than the engine crank speed, closing the throttle valve by an amount and returning to b-2). 18.如权利要求17所述的电子系统,其中所述第一坡道的第一特性依赖于所述第一温度以及所述第一和第二温度之间的差。18. The electronic system of claim 17, wherein the first characteristic of the first ramp is dependent on the first temperature and a difference between the first and second temperatures. 19.如权利要求17至18中的任一项所述的电子系统,还包括可操作地耦接到所述控制器的引擎转速传感器,所述引擎转速传感器配置为测量所述内燃机的引擎转速;并且其中所述控制器还配置为:19. The electronic system of any one of claims 17 to 18, further comprising an engine speed sensor operatively coupled to the controller, the engine speed sensor configured to measure an engine speed of the internal combustion engine ; and wherein said controller is also configured to: (a)确定所测量的引擎转速是否处于或者超出引擎转速阈值;以及(a) determining whether the measured engine speed is at or above an engine speed threshold; and (b)在所测量的引擎转速被确定为处于或者超出所述引擎转速阈值时,使用高速协议确定所述第一坡道;而在所测量的引擎转速被确定为低于所述引擎转速阈值时,使用低速协议确定所述第一坡道,其中所述第一坡道的第一特性依赖于是所述高速协议还是所述低速协议被用于确定所述第一坡道。(b) determining the first ramp using a high-speed protocol when the measured engine speed is determined to be at or above the engine speed threshold; and when the measured engine speed is determined to be below the engine speed threshold , the first slope is determined using a low speed protocol, wherein the first characteristic of the first slope depends on whether the high speed protocol or the low speed protocol is used to determine the first slope. 20.如权利要求17至18中的任一项所述的电子系统,其中所述第一温度传感器被配置为测量所述内燃机的引擎缸体的温度作为所述第一温度。20. The electronic system according to any one of claims 17 to 18, wherein the first temperature sensor is configured to measure a temperature of an engine block of the internal combustion engine as the first temperature. 21.如权利要求17至18中的任一项所述的电子系统,还包括:21. The electronic system of any one of claims 17 to 18, further comprising: 点火模块,所述点火模块包括点火电路、所述第一温度传感器,以及集成到所述点火模块中的所述控制器;以及an ignition module comprising an ignition circuit, the first temperature sensor, and the controller integrated into the ignition module; and 壳体,所述壳体容纳所述第一温度传感器和所述点火电路,所述点火电路以可操作的协作方式包括点火线圈、充电线圈、储能装置以及开关;并且其中所述控制器可操作地耦接到所述点火电路。a housing housing the first temperature sensor and the ignition circuit comprising an ignition coil, a charging coil, an energy storage device, and a switch in operable cooperation; and wherein the controller may operatively coupled to the ignition circuit. 22.一种集成点火和电子自动节流模块,包括:22. An integrated ignition and electronic auto-throttle module comprising: 壳体,所述壳体配置为安装到飞轮附近的内燃机的引擎缸体;a housing configured to be mounted to an engine block of an internal combustion engine proximate a flywheel; 所述壳体容纳:The housing accommodates: 第一温度传感器,所述第一温度传感器用于测量表示引擎温度的第一温度;a first temperature sensor for measuring a first temperature indicative of engine temperature; 控制器,所述控制器可操作地耦接到所述第一温度传感器,所述控制器配置为:基于所述第一温度确定节流阀的起动位置;以及操作致动器,在第一节流开启阶段期间将所述节流阀移动到所述起动位置中;a controller operatively coupled to the first temperature sensor, the controller configured to: determine an actuation position of a throttle valve based on the first temperature; and operate an actuator at a first moving the throttle valve into the start position during a throttle opening phase; 点火电路;以及ignition circuits; and 引擎转速传感器,engine speed sensor, 其中所述控制器进一步配置为:Wherein said controller is further configured as: b-1)利用所述引擎转速传感器测量所述内燃机的引擎转速,当所述节流阀处于所述起动位置时,所述引擎转速传感器可操作地耦接到所述控制器;b-1) measuring the engine speed of the internal combustion engine using the engine speed sensor, the engine speed sensor being operatively coupled to the controller when the throttle valve is in the starting position; b-2)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎曲轴摇转速度;以及b-2) using said controller to determine whether the measured engine speed is at or above engine crank speed; and b-3)在确定了所测量的引擎转速低于所述引擎曲轴摇转速度时,将所述节流阀关闭一定量并且返回到b-2)。b-3) Upon determining that the measured engine speed is lower than the engine crank speed, closing the throttle valve by an amount and returning to b-2). 23.如权利要求22所述的集成点火和电子自动节流模块,其中所述点火电路以可操作的协作方式包括点火线圈、充电线圈、储能装置以及开关。23. The integrated ignition and electronic auto-throttle module of claim 22, wherein said ignition circuit includes an ignition coil, a charging coil, an energy storage device, and a switch in operable cooperation. 24.如权利要求23所述的模块,其中所述控制器可操作地耦接到所述充电线圈并且配置为确定所述内燃机的转速。24. The module of claim 23, wherein the controller is operatively coupled to the charging coil and configured to determine a rotational speed of the internal combustion engine. 25.如权利要求22至24中的任一项所述的模块,其中所述壳体还容纳用于测量表示环境气温的第二温度的第二温度传感器,所述第二温度传感器可操作地耦接到所述控制器;并且其中所述控制器还配置为基于所述第一和第二温度来确定具有第一特性的第一坡道,并且根据所述第一坡道操作所述致动器,以在第二节流开启阶段期间将所述节流阀朝着完全开启位置移动。25. The module of any one of claims 22 to 24, wherein the housing further houses a second temperature sensor for measuring a second temperature indicative of ambient air temperature, the second temperature sensor being operable to coupled to the controller; and wherein the controller is further configured to determine a first ramp having a first characteristic based on the first and second temperatures, and to operate the actuator in accordance with the first ramp and an actuator to move the throttle valve towards the fully open position during the second throttle opening phase. 26.一种使用电子系统来控制内燃机的节流阀的方法,所述电子系统以可操作的协作方式包括控制器、配置为测量参数的反馈传感器,以及配置为移动所述节流阀的致动器,所述参数表示要在或者正在所述内燃机中燃烧的空气燃料混合物的空气燃料比,所述方法包括:26. A method of controlling a throttle valve of an internal combustion engine using an electronic system comprising, in operable cooperation, a controller, a feedback sensor configured to measure a parameter, and an actuator configured to move the throttle valve actuator, said parameter representing the air-fuel ratio of an air-fuel mixture to be combusted or being combusted in said internal combustion engine, said method comprising: a)所述控制器反复地从所述反馈传感器接收信号,该信号表示在所述节流阀从起动位置朝着完全开启位置的移动期间所测量的参数;a) said controller repeatedly receives a signal from said feedback sensor representative of a parameter measured during movement of said throttle valve from an activated position towards a fully open position; b)基于来自所述反馈传感器的最近接收到的信号,利用所述控制器确定所述节流阀被朝着所述完全开启位置移动的速率;b) determining, with the controller, the rate at which the throttle valve is being moved towards the fully open position based on the most recently received signal from the feedback sensor; c)利用所述致动器,以在步骤b)期间最近所确定的速率将所述节流阀朝着所述完全开启位置移动;以及c) using said actuator, moving said throttle valve toward said fully open position at a rate most recently determined during step b); and d)循环到步骤a),直到利用控制器确定所述节流阀处于所述完全开启位置为止;d) looping to step a) until it is determined by the controller that the throttle valve is in the fully open position; 其中所述电子系统还包括第一温度传感器,所述第一温度传感器配置为测量表示引擎温度的第一温度,所述方法还包括,在步骤a)之前:Where the electronic system further comprises a first temperature sensor configured to measure a first temperature indicative of an engine temperature, the method further comprises, prior to step a): x)利用所述控制器确定依赖于所述第一温度的、用于所述节流阀的所述起动位置;以及x) determining, with said controller, said starting position for said throttle valve in dependence on said first temperature; and y)利用所述致动器将所述节流阀从初始位置移动到所述起动位置;y) using said actuator to move said throttle valve from an initial position to said start position; 其中所述电子系统还包括引擎转速传感器,所述步骤y)包括:Wherein said electronic system also includes an engine speed sensor, said step y) includes: y-1)利用所述引擎转速传感器测量所述内燃机的引擎转速,当所述节流阀处于所述起动位置时,所述引擎转速传感器可操作地耦接到所述控制器;y-1) measuring the engine speed of the internal combustion engine using the engine speed sensor, the engine speed sensor being operatively coupled to the controller when the throttle valve is in the start position; y-2)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎曲轴摇转速度;以及y-2) using said controller to determine whether the measured engine speed is at or above engine crank speed; and y-3)在确定了所测量的引擎转速低于所述引擎曲轴摇转速度时,将所述节流阀关闭一定量并且返回到步骤y-2)。y-3) Upon determining that the measured engine speed is lower than the engine crank speed, closing the throttle valve by an amount and returning to step y-2). 27.如权利要求26所述的方法,其中所述反馈传感器被配置为测量正在化油器中生成的空气燃料混合物的空气燃料比。27. The method of claim 26, wherein the feedback sensor is configured to measure an air-fuel ratio of an air-fuel mixture being generated in the carburetor. 28.如权利要求26所述的方法,其中所述反馈传感器被配置为测量废气特性。28. The method of claim 26, wherein the feedback sensor is configured to measure an exhaust gas characteristic. 29.如权利要求26至28中的任一项所述的方法,其中所述反馈传感器是氧浓度传感器。29. The method of any one of claims 26 to 28, wherein the feedback sensor is an oxygen concentration sensor. 30.如权利要求26至28中的任一项所述的方法,其中步骤a)到d)基本上实时地被执行。30. A method as claimed in any one of claims 26 to 28, wherein steps a) to d) are performed substantially in real time. 31.一种使用电子系统来控制内燃机的节流阀的方法,所述电子系统以可操作的协作方式包括控制器、配置为测量参数的反馈传感器,以及配置为移动所述节流阀的致动器,所述参数表示要在或者正在所述内燃机中燃烧的空气燃料混合物的空气燃料比,所述方法包括:31. A method of controlling a throttle valve of an internal combustion engine using an electronic system comprising in operable cooperation a controller, a feedback sensor configured to measure a parameter, and an actuator configured to move the throttle valve actuator, said parameter representing the air-fuel ratio of an air-fuel mixture to be combusted or being combusted in said internal combustion engine, said method comprising: a)执行动态节流开启阶段,所述动态节流开启阶段包括:根据形成在所述控制器、所述节流阀以及所述反馈传感器之间的反馈环,基于由所述反馈传感器进行的测量,利用所述致动器将所述节流阀从起动位置朝着完全开启位置移动;a) Executing a dynamic throttle opening phase, the dynamic throttle opening phase includes: according to the feedback loop formed between the controller, the throttle valve and the feedback sensor, based on the feedback sensor. measuring, using the actuator to move the throttle valve from the activated position towards the fully open position; 其中所述电子系统还包括第一温度传感器,所述第一温度传感器配置为测量表示引擎温度的第一温度,所述方法还包括,在步骤a)之前:Where the electronic system further comprises a first temperature sensor configured to measure a first temperature indicative of an engine temperature, the method further comprises, prior to step a): x)利用所述控制器确定依赖于所述第一温度的、用于所述节流阀的所述起动位置;以及x) determining, with said controller, said starting position for said throttle valve in dependence on said first temperature; and y)利用所述致动器将所述节流阀从初始位置移动到所述起动位置;y) using said actuator to move said throttle valve from an initial position to said start position; 其中所述电子系统还包括引擎转速传感器,所述步骤y)包括:Wherein said electronic system also includes an engine speed sensor, said step y) includes: y-1)利用所述引擎转速传感器测量所述内燃机的引擎转速,当所述节流阀处于所述起动位置时,所述引擎转速传感器可操作地耦接到所述控制器;y-1) measuring the engine speed of the internal combustion engine using the engine speed sensor, the engine speed sensor being operatively coupled to the controller when the throttle valve is in the start position; y-2)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎曲轴摇转速度;以及y-2) using said controller to determine whether the measured engine speed is at or above engine crank speed; and y-3)在确定了所测量的引擎转速低于所述引擎曲轴摇转速度时,将所述节流阀关闭一定量并且返回到步骤y-2)。y-3) Upon determining that the measured engine speed is lower than the engine crank speed, closing the throttle valve by an amount and returning to step y-2). 32.一种用于控制内燃机的节流阀的电子系统,所述电子系统包括:32. An electronic system for controlling a throttle valve of an internal combustion engine, the electronic system comprising: 配置为测量参数的反馈传感器,所述参数表示要在或者正在所述内燃机中燃烧的空气燃料混合物是否处于最佳空气燃料比的参数;a feedback sensor configured to measure a parameter indicative of whether the air-fuel mixture to be combusted or being combusted in said internal combustion engine is at an optimum air-fuel ratio; 致动器,所述致动器可操作地耦接到所述节流阀以调整所述节流阀的位置,从而调整所述燃料混合物中的燃料空气比;an actuator operably coupled to the throttle valve to adjust the position of the throttle valve to adjust the fuel-air ratio in the fuel mixture; 控制器,所述控制器可操作地耦接到所述致动器和所述反馈传感器以形成反馈环,所述控制器配置为,基于由所述反馈传感器进行的测量将所述节流阀从起动位置节流阀移动到完全开启位置;a controller operatively coupled to the actuator and the feedback sensor to form a feedback loop, the controller configured to switch the throttle valve based on measurements made by the feedback sensor Throttle valve movement from starting position to fully open position; 引擎转速传感器,engine speed sensor, 其中所述控制器进一步配置为:Wherein said controller is further configured as: b-1)利用所述引擎转速传感器测量所述内燃机的引擎转速,当所述节流阀处于所述起动位置时,所述引擎转速传感器可操作地耦接到所述控制器;b-1) measuring the engine speed of the internal combustion engine using the engine speed sensor, the engine speed sensor being operatively coupled to the controller when the throttle valve is in the starting position; b-2)利用所述控制器确定所测量的引擎转速是否处于或者超出引擎曲轴摇转速度;以及b-2) using said controller to determine whether the measured engine speed is at or above engine crank speed; and b-3)在确定了所测量的引擎转速低于所述引擎曲轴摇转速度时,将所述节流阀关闭一定量并且返回到b-2)。b-3) Upon determining that the measured engine speed is lower than the engine crank speed, closing the throttle valve by an amount and returning to b-2).
CN201480001412.5A 2013-08-15 2014-08-14 System and method for the fuel-air ratio that internal combustion engine is electronically controlled Active CN104884776B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361866485P 2013-08-15 2013-08-15
US61/866,485 2013-08-15
PCT/US2014/051135 WO2015023885A2 (en) 2013-08-15 2014-08-14 Systems and methods for electronically controlling fuel-to-air ratio for an internal combustion engine

Publications (2)

Publication Number Publication Date
CN104884776A CN104884776A (en) 2015-09-02
CN104884776B true CN104884776B (en) 2018-09-25

Family

ID=51539319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480001412.5A Active CN104884776B (en) 2013-08-15 2014-08-14 System and method for the fuel-air ratio that internal combustion engine is electronically controlled

Country Status (4)

Country Link
US (3) US9464588B2 (en)
EP (1) EP3033512A2 (en)
CN (1) CN104884776B (en)
WO (1) WO2015023885A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012771B1 (en) * 2013-11-04 2016-01-15 Continental Automotive France MOTOR SETTING PREVENTION METHOD USING ROTATION SPEED ESTIMATION OF SAID MOTOR
US9805618B2 (en) * 2015-02-06 2017-10-31 Caterpillar Inc. Real time evaluation and coaching system
JP6156431B2 (en) 2015-04-09 2017-07-05 トヨタ自動車株式会社 Engine control device
JP6288006B2 (en) 2015-08-25 2018-03-07 トヨタ自動車株式会社 Engine control device
US9930767B2 (en) * 2016-03-21 2018-03-27 Xiang Long Plasma-containing modular arc generator
US10634111B2 (en) 2016-12-12 2020-04-28 Kohler Co. Ignition module for internal combustion engine with integrated communication device
SE541417C2 (en) * 2017-06-12 2019-09-24 Husqvarna Ab A carburetor assembly start setting detection arrangement
US10787196B2 (en) * 2017-06-30 2020-09-29 Ford Global Technologies, Llc Methods and apparatus for controlling the ramp in of current to an electronic power assisted steering motor associated with an auto stop-start engine
DE102017008756A1 (en) * 2017-09-15 2019-03-21 Andreas Stihl Ag & Co. Kg Hand-guided implement with an internal combustion engine
US11105653B2 (en) 2019-02-05 2021-08-31 Caterpillar Inc. System for generating map with instructional tips
WO2021186461A1 (en) * 2020-03-14 2021-09-23 Tvs Motor Company Limited Emission control system for an internal combustion engine
CN111779583B (en) * 2020-07-06 2022-07-05 长春理工大学 An electronic throttle valve and control method suitable for HEV mild-hybrid vehicles

Family Cites Families (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684057A (en) 1949-04-01 1954-07-20 Borg Warner Electrically actuated automatic choke
US3534720A (en) 1967-05-10 1970-10-20 Outboard Marine Corp Solenoid operated choke
GB1334532A (en) 1970-01-17 1973-10-17 Lucas Industries Ltd Electrical control systems
US3732856A (en) 1970-08-27 1973-05-15 J Firey Gasoline engine choke delay devices
US3789815A (en) 1971-02-17 1974-02-05 Carter C Temperature responsive control device
FR215189A (en) 1971-08-04
US4083336A (en) 1971-08-10 1978-04-11 Texas Instruments Incorporated Condition responsive control device
JPS5432884B2 (en) 1971-10-25 1979-10-17
US4050424A (en) 1971-11-02 1977-09-27 Ford Motor Company Carburetor automatic choke construction
JPS5110306B2 (en) 1971-12-08 1976-04-02
JPS5529245B2 (en) 1971-12-28 1980-08-02
JPS5038780B2 (en) 1972-02-21 1975-12-12
JPS5118023B2 (en) 1972-04-14 1976-06-07
US3768453A (en) 1972-10-13 1973-10-30 Chrysler Corp Exhaust emission control for internal combustion engines utilizing anelectrically heated choke
US4009695A (en) 1972-11-14 1977-03-01 Ule Louis A Programmed valve system for internal combustion engine
US3752133A (en) 1972-11-15 1973-08-14 Ford Motor Co Multiple heat automatic choke
US3806854A (en) 1972-12-05 1974-04-23 Texas Instruments Inc Control for automotive choke
JPS5213271B2 (en) 1973-06-22 1977-04-13
FR2238054B1 (en) 1973-07-16 1980-04-11 Sibe
IT992760B (en) 1973-07-30 1975-09-30 Alfa Romeo Spa AUTOMATIC DEVICE FOR ADJUSTING THE FUEL REGULATION TO THE OPERATION OF THE ENGINE NOT YET THERMALLY REGIMATED
US3872847A (en) 1973-08-06 1975-03-25 Ford Motor Co Temperature supplemental pulldown mechanism for carburetor automatic choke
JPS5840015B2 (en) 1973-09-07 1983-09-02 本田技研工業株式会社 Kikakino Chiyokubenseigiyohouhou Oyobi Sonosouchi
US3897765A (en) 1974-01-04 1975-08-05 Ford Motor Co Carburetor cranking fuel flow rate control
JPS5326608B2 (en) 1974-03-15 1978-08-03
DE2507615C2 (en) 1974-03-19 1982-08-26 Société Industrielle de Brevets et d'Etudes S.I.B.E. S.A, 92200 Neuilly-sur-Seine Automatic device for controlling the choke valve in the carburettor for internal combustion engines
US3960130A (en) 1974-05-28 1976-06-01 The Bendix Corporation Start air control system
JPS517338A (en) 1974-07-05 1976-01-21 Honda Motor Co Ltd Kikakino chookubenseigyosochi
US3972311A (en) 1974-11-20 1976-08-03 Depetris Peter S Electronic choke control
FR2295241A1 (en) 1974-12-20 1976-07-16 Laprade Bernard AIR / FUEL MIXTURE CORRECTION DEVICE OF INTERNAL COMBUSTION ENGINES
GB1523512A (en) 1975-02-06 1978-09-06 Nissan Motor Closed loop air-fuel ratio control system for use with internal combustion engine
US4111010A (en) 1975-03-07 1978-09-05 Nissan Motor Company, Limited Automotive internal combustion engine
GB1490922A (en) 1975-04-11 1977-11-02 Honda Motor Co Ltd Automatic choke valve apparatus for an internal combustion engine
DE2523601A1 (en) 1975-05-28 1976-12-09 Bosch Gmbh Robert CARBURETOR
GB1488452A (en) 1975-06-03 1977-10-12 Honda Motor Co Ltd Automatic choke valve apparatus for an internal combustion engine
GB1483175A (en) 1975-06-03 1977-08-17 Honda Motor Co Ltd Automatic choke valve apparatus for an internal combustion engine
US4011844A (en) 1975-06-16 1977-03-15 Honda Giken Kogyo Kabushiki Kaisha Automatic choke valve apparatus in an internal combustion engine
US4005690A (en) 1975-06-23 1977-02-01 Honda Giken Kogyo Kabushiki Kaisha Automatic choke valve apparatus in an internal combustion engine
US4058097A (en) 1975-06-30 1977-11-15 Texas Instruments Incorporated Choke control
US4048964A (en) 1975-07-24 1977-09-20 Chrysler Corporation Fuel metering apparatus and method
US4027640A (en) 1975-08-15 1977-06-07 Honda Giken Kogyo Kabushiki Kaisha Automatic choke valve apparatus in an internal combustion engine
JPS5273237A (en) 1975-12-16 1977-06-18 Honda Motor Co Ltd Electric heating auto-choke system
JPS52153037A (en) 1976-06-15 1977-12-19 Honda Motor Co Ltd Carburetter with electric type auto-choke
US4118444A (en) 1976-10-08 1978-10-03 Abbey Harold Variable venturi carburetion system
US4114584A (en) 1977-01-26 1978-09-19 Ford Motor Company Carburetor choke positive closure mechanism
US4279230A (en) 1977-05-06 1981-07-21 Societe Industrielle De Brevets Et D'etudes S.I.B.E. Fuel control systems for internal combustion engines
JPS54124113A (en) 1978-03-20 1979-09-26 Mitsubishi Motors Corp Internal combusion engine auxiliary-suction generator
JPS5525518A (en) 1978-08-11 1980-02-23 Hitachi Ltd Electronic controlling device for carbureter
US4237077A (en) 1978-08-29 1980-12-02 Texas Instruments Incorporated Automatic choke system
US4292946A (en) 1978-11-15 1981-10-06 Nissan Motor Company, Limited Air-fuel ratio control system
JPS5939955B2 (en) 1978-12-07 1984-09-27 株式会社日立製作所 Integrated function digital signal receiver
JPS5591745A (en) * 1978-12-28 1980-07-11 Nissan Motor Co Ltd Controlling device for air-fuel ratio of internal conbustion engine
FR2447466A2 (en) 1979-01-24 1980-08-22 Sibe IMPROVEMENTS ON CARBURETORS PROVIDED WITH A COLD START AUXILIARY DEVICE
JPS55109752A (en) 1979-02-16 1980-08-23 Honda Motor Co Ltd Electronic control system for compensating air to fuel ratio in high altitude
JPS55128645A (en) 1979-03-28 1980-10-04 Fuji Heavy Ind Ltd Electronic control of carburettor in internal combustion engine
JPS55142952U (en) 1979-04-02 1980-10-14
JPS55134739A (en) 1979-04-05 1980-10-20 Hitachi Ltd Electronically controlled carburetor
JPS55142952A (en) 1979-04-23 1980-11-07 Hitachi Ltd Electronic carburetor
US4428349A (en) 1979-05-17 1984-01-31 Snow Thomas K Ignition and fuel control system for internal combustion engines
US4237078A (en) 1979-06-11 1980-12-02 Schmelzer Corporation Carburetor choke control
DE2927881C2 (en) 1979-07-11 1984-06-28 Bosch und Pierburg System oHG, 4040 Neuss Method and device for transitional enrichment in mixture formers
JPS5623545A (en) 1979-08-02 1981-03-05 Fuji Heavy Ind Ltd Air-fuel ratio controller
DE3028091C2 (en) 1979-08-02 1985-09-12 Fuji Jukogyo K.K., Tokio/Tokyo Air-to-fuel ratio control system for an internal combustion engine
JPS5848776Y2 (en) 1979-09-27 1983-11-08 タケダ理研工業株式会社 Contact for coaxial cable
FR2467985B1 (en) 1979-10-19 1985-06-07 Psa Gie Rech Dev ELECTRONIC CONTROLLER FOR REGULATING THE AIR / FUEL RATIO OF THE MIXTURE PROVIDED TO AN INTERNAL COMBUSTION ENGINE
JPS5666441A (en) 1979-11-02 1981-06-04 Hitachi Ltd Electronically controlled carburetor
IT1133227B (en) 1980-02-06 1986-07-09 Weber Spa IMPROVEMENTS IN COLD ENGINE STARTING AND OPERATING DEVICES FOR CARBURETORS
CA1150384A (en) 1980-02-26 1983-07-19 Charles F. Lloyd Remotely controlled servo device for controlling fluid flow
JPS5939955Y2 (en) 1980-03-25 1984-11-10 釜屋化学工業株式会社 Dispensing container saucer return prevention mechanism
US4321902A (en) 1980-04-11 1982-03-30 General Motors Corporation Engine control method
JPS5770939A (en) 1980-07-16 1982-05-01 Fuji Heavy Ind Ltd Air fuel ratio control unit
JPS5726236A (en) 1980-07-23 1982-02-12 Honda Motor Co Ltd Warming up detector for air to fuel ratio controller of internal combustion engine
JPS5741441A (en) 1980-08-27 1982-03-08 Hitachi Ltd Warming-up correcting device for air fuel ratio controller
JPS5762944A (en) 1980-09-02 1982-04-16 Honda Motor Co Ltd Fail-saft device for sensors for detecting states and conditions of internal combustion engine
JPS5770932A (en) 1980-10-07 1982-05-01 Honda Motor Co Ltd Warming-up detector for air fuel ratio controller of internal combustion engine
JPS5778747U (en) 1980-10-31 1982-05-15
US4331615A (en) 1980-11-06 1982-05-25 Texas Instruments Incorporated Fuel supply system with automatic choke
JPS57152446U (en) * 1981-03-23 1982-09-24
JPS57181955A (en) 1981-04-30 1982-11-09 Sanshin Ind Co Ltd Overheat preventer for engine
JPS57191436A (en) 1981-05-19 1982-11-25 Automob Antipollut & Saf Res Center Air-fuel ratio control device
JPS5848776B2 (en) 1981-08-11 1983-10-31 博 寺町 Linear ball pairing unit
JPS5848776A (en) 1981-09-18 1983-03-22 Toyota Motor Corp Internal combustion engine ignition timing control device
US4522177A (en) 1981-10-19 1985-06-11 Nippon Soken, Inc. Temperature compensated fuel injection system for internal combustion engines
US4393838A (en) 1981-10-23 1983-07-19 Muscatell Ralph P Thermal and vacuum tracking carburetor jet with electronic control
JPS5877150A (en) 1981-10-30 1983-05-10 Nissan Motor Co Ltd Air-fuel ratio controller of engine
US4344898A (en) 1981-12-10 1982-08-17 Aisan Kogyo Kabushiki Kaisha Carburetor controlling system
JPS58119950A (en) 1982-01-07 1983-07-16 Nissan Motor Co Ltd Exhaust pupifying unit of internal-combustion enging for car
JPS58119950U (en) 1982-02-09 1983-08-16 三菱重工業株式会社 Mold for horizontal continuous casting
IT1157433B (en) 1982-02-22 1987-02-11 Weber Spa CARBURETOR FOR INTERNAL COMBUSTION ENGINES, EQUIPPED WITH ELECTRONIC ACTING BODIES SUITABLE TO KEEP THE MINIMUM RPM OF THE ENGINE CONSTANT
JPS58155260A (en) 1982-03-10 1983-09-14 Hitachi Ltd Electronic control type fuel control device for auto-bicycle
JPS58155256A (en) 1982-03-12 1983-09-14 Honda Motor Co Ltd Mixed gas adjusting device in carburetor of internal-combustion engine
US4463723A (en) 1982-04-01 1984-08-07 Acf Industries, Incorporated Apparatus for controllably opening a carburetor choke valve
JPS58176454A (en) 1982-04-09 1983-10-15 Toyota Motor Corp Air-fuel ratio controlling apparatus for internal- combustion engine
JPS58176446A (en) 1982-04-09 1983-10-15 Toyota Motor Corp Air-fuel ratio control device when starting the engine
JPS58155256U (en) 1982-04-13 1983-10-17 凸版印刷株式会社 Lottery ticket
JPS58155260U (en) 1982-04-13 1983-10-17 日本写真印刷株式会社 multilayer concealment print
JPS58176454U (en) 1982-05-19 1983-11-25 アイホン株式会社 Intercom device with alarm function
JPS58176446U (en) 1982-05-20 1983-11-25 東亞特殊電機株式会社 channel selector
JPS58222957A (en) 1982-06-21 1983-12-24 Mikuni Kogyo Co Ltd Electronically controlled variable bench lily type vaporizer
JPS5939955A (en) 1982-08-31 1984-03-05 Honda Motor Co Ltd Idling speed controller of internal-combustion engine
JPS5963350A (en) 1982-10-05 1984-04-11 Honda Motor Co Ltd Choke valve and throttle valve controller in carburetor
JPS5963350U (en) 1982-10-19 1984-04-26 日東光学株式会社 Camera film electric winding device
US4496496A (en) 1982-11-01 1985-01-29 Texas Instruments Incorporated Fuel supply system with electric choke and control therefor
JPS5996465A (en) 1982-11-24 1984-06-02 Honda Motor Co Ltd Fuel feed controller for engine
JPS5996463A (en) 1982-11-24 1984-06-02 Mikuni Kogyo Co Ltd Electronic control type auto-choke valve
US4545345A (en) 1982-12-01 1985-10-08 Solex (U.K.) Limited Air/fuel induction system for a multi-cylinder internal combustion engine
CA1191233A (en) 1982-12-10 1985-07-30 Donald P. Petro Flow regulating system
IT1157490B (en) 1982-12-20 1987-02-11 Weber Spa CARBURETOR FOR INTERNAL COMBUSTION ENGINES EQUIPPED WITH ELECTRONIC ACTING BODIES SUITABLE TO MAINTAIN THE MINIMUM RPM OF THE ENGINE AND TO CHECK THE POSITION OF THE STARTING BUTTERFLY DURING THE ENGINE EFFICIENCY
JPS5996463U (en) 1982-12-20 1984-06-30 三菱重工業株式会社 Dovetail groove structure
FR2538856A1 (en) 1983-01-03 1984-07-06 Sibe CARBURETOR WITH ELECTROVALVE ENRICHMENT CONTROL
JPS59126958A (en) 1983-01-12 1984-07-21 Hitachi Ltd Measuring device of distribution of flow velocity
JPS59128958A (en) * 1983-01-12 1984-07-25 Hitachi Ltd Carburetor with choke mechanism
JPS59136526A (en) 1983-01-27 1984-08-06 Honda Motor Co Ltd Apparatus for controlling complete-combustion opening of throttle valve
JPS59136550A (en) 1983-01-27 1984-08-06 Honda Motor Co Ltd Mixture adjusting device for carburettor
JPS59147842A (en) 1983-02-10 1984-08-24 Honda Motor Co Ltd Air-fuel ratio control device for internal-combustion engine
JPS59128958U (en) 1983-02-21 1984-08-30 株式会社甲府明電舎 meshing mechanism
US4493303A (en) 1983-04-04 1985-01-15 Mack Trucks, Inc. Engine control
JPS59192853A (en) 1983-04-15 1984-11-01 Nippon Carbureter Co Ltd Method of starting engine with carburetor
JPS59192853U (en) 1983-06-10 1984-12-21 株式会社日立製作所 semiconductor element
US4498440A (en) 1984-04-02 1985-02-12 Honda Giken Kogyo Kabushiki Kaisha Mixture control apparatus for carburetor
JPS60222547A (en) 1984-04-20 1985-11-07 Honda Motor Co Ltd Air-fuel mixture regulating device for carburetor for internal-combustion engine
US4612770A (en) 1984-07-31 1986-09-23 Mazda Motor Corporation Turbocharged engine with exhaust purifier
FR2568631B1 (en) 1984-08-03 1987-01-16 Solex CARBURETOR WITH AUTOMATIC STARTING DEVICE
JPS61101659A (en) 1984-10-22 1986-05-20 Fuji Heavy Ind Ltd Autochoke device
US4576132A (en) * 1984-10-29 1986-03-18 Nissan Motor Company, Limited Engine starting air fuel ratio control system
EP0183879A1 (en) 1984-12-05 1986-06-11 317921 Alberta Ltd. Electronically controlled fluid flow regulating system
US4699738A (en) 1986-01-29 1987-10-13 Depetris Peter Electrically heated choke having improved control
JPS62267571A (en) 1986-05-14 1987-11-20 Aisan Ind Co Ltd Auxiliary fuel feeder
JPS62279259A (en) 1986-05-28 1987-12-04 Sanshin Ind Co Ltd Automatic choke device
JPS62288354A (en) 1986-06-09 1987-12-15 Nippon Carbureter Co Ltd High responsive electronically controlled carburetor
JPS62288355A (en) 1986-06-09 1987-12-15 Nippon Carbureter Co Ltd High responsive electronically controlled carburetor
FR2603948B1 (en) 1986-09-17 1991-01-11 Solex ELECTRICAL ASSISTANCE ON SHUTTER
JPS63167061A (en) 1986-12-27 1988-07-11 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JPS63243430A (en) 1987-03-27 1988-10-11 Nippon Carbureter Co Ltd Idling speed controlling method for engine
JPH01237346A (en) 1988-03-16 1989-09-21 Mikuni Makino Kogyo Kk Electronically controlled carburetor
JPH02211366A (en) 1989-02-09 1990-08-22 Nippon Carbureter Co Ltd Switching-feeding device for two-kinds of fuel for engine
DE3924353A1 (en) 1989-07-22 1991-02-14 Prufrex Elektro App CONTROL SYSTEM FOR THE CARBURETOR OF AN INTERNAL COMBUSTION ENGINE
US5012780A (en) 1990-01-05 1991-05-07 Coltec Industries Inc. Stand alone fuel injection system
US5136998A (en) * 1990-02-06 1992-08-11 Motorola, Inc. Automotive control unit with internal sensor
US5261382A (en) 1992-09-22 1993-11-16 Coltec Industries Inc. Fuel injection system
JP3203440B2 (en) 1992-10-08 2001-08-27 株式会社ユニシアジェックス Air-fuel ratio feedback control device for internal combustion engine
JP3543119B2 (en) 1993-09-08 2004-07-14 ヤマハマリン株式会社 Engine start control device
SE503517C2 (en) 1994-10-21 1996-07-01 Electrolux Ab Temperature compensated choke
JP3838675B2 (en) 1994-12-13 2006-10-25 株式会社ミクニ Piston valve type vaporizer
EP0810361B1 (en) 1994-12-26 2010-04-28 Hitachi, Ltd. Flow rate controller of internal combustion engine
US5476132A (en) 1995-03-30 1995-12-19 Jacobson; Jeff A. Cordless apparatus for operating blinds and shades
US5632248A (en) 1995-06-06 1997-05-27 Mikuni Corporation Electronically controlled type floatless carburetor
US5660765A (en) 1996-06-26 1997-08-26 Kohler Co. Thermostatic element for controlling a solenoid operated carburetor choke
CA2187499A1 (en) * 1996-10-09 1998-04-09 Sylvain Matte Electronic compensation system
US5832888A (en) 1997-01-07 1998-11-10 Brunswick Corporation Thermostatic override switch for an automatic choke in an internal combustion engine
CN2330795Y (en) 1997-12-10 1999-07-28 袁大宏 Caburettor type gasoline engine exhaust purifying device
US6012420A (en) 1997-12-30 2000-01-11 Briggs & Stratton Corporation Automatic air inlet control system for an engine
JP3790656B2 (en) 2000-03-15 2006-06-28 本田技研工業株式会社 Auto choke control device
US6560528B1 (en) 2000-03-24 2003-05-06 Internal Combustion Technologies, Inc. Programmable internal combustion engine controller
JP2002089370A (en) 2000-09-19 2002-03-27 Keihin Corp Automatic starter for vaporizer
RU2192557C2 (en) 2001-01-05 2002-11-10 Пищулин Михаил Викторович Carburetor for internal combustion engine
JP4116256B2 (en) 2001-01-10 2008-07-09 帝人株式会社 Medical oxygen cylinder
CA2437787A1 (en) * 2001-02-08 2002-08-15 Bombardier Inc. Systems and methods for automatic carburetor enrichment during cold start
ITMI20010701A1 (en) 2001-04-02 2002-10-02 Ducati Energia Spa METHOD AND EQUIPMENT FOR THE CONTROL OF HARMFUL EMISSIONS OF INTERNAL COMBUSTION ENGINES
US20030015175A1 (en) * 2001-07-18 2003-01-23 Andersson Martin N. Ignition timing control system for light duty combustion engines
US6536747B2 (en) 2001-07-20 2003-03-25 Walbro Corporation Carburetor vent control
JP3990358B2 (en) 2001-10-22 2007-10-10 ヤマハ発動機株式会社 Auto choke control device
DE60226694D1 (en) 2001-12-27 2008-07-03 Honda Motor Co Ltd Control system for the starter flap of a carburetor
US6752110B2 (en) 2002-09-20 2004-06-22 Briggs & Stratton Corporation Electromechanical choke system for an internal combustion engine
US6830023B2 (en) 2002-11-07 2004-12-14 Briggs & Stratton Corporation Electromagnetic choke system for an internal combustion engine
JP2004176634A (en) 2002-11-27 2004-06-24 Walbro Japan Inc Carburetor for stratified scavenging
US6990969B2 (en) 2003-07-30 2006-01-31 Briggs And Stratton Corporation Automatic choke for an engine
DE10335345B4 (en) 2003-08-01 2013-04-18 Andreas Stihl Ag & Co. Kg Method for operating a carburetor assembly for an internal combustion engine and carburetor assembly for its implementation
US7225793B2 (en) * 2003-08-14 2007-06-05 Electrojet, Inc. Engine timing control with intake air pressure sensor
WO2005026519A2 (en) 2003-09-10 2005-03-24 Pcrc Products Electronic fuel regulation system for small engines
US7798128B2 (en) 2003-09-10 2010-09-21 Pc/Rc Products, L.L.C. Apparatus and process for controlling operation of an internal combustion engine having an electronic fuel regulation system
TWI268309B (en) 2004-03-03 2006-12-11 Honda Motor Co Ltd Device for controlling choke valve of carburetor
TWI297372B (en) 2004-03-03 2008-06-01 Honda Motor Co Ltd Device for controlling choke valve of carburetor
JP4391275B2 (en) 2004-03-09 2009-12-24 三菱電機株式会社 Multi-cylinder engine operation control device
US7213555B2 (en) * 2004-03-12 2007-05-08 Honda Motor Co., Ltd. Automatic choke
US7284522B2 (en) * 2004-03-12 2007-10-23 Honda Motor Co., Ltd. Automatic choke
JP4199688B2 (en) 2004-03-18 2008-12-17 本田技研工業株式会社 Auto choke device
ES2405760T3 (en) 2004-07-26 2013-06-03 Honda Motor Co., Ltd. Automatic throttle system for carburetor
JP4405340B2 (en) 2004-08-18 2010-01-27 本田技研工業株式会社 Electronic controller for carburetor choke valve
DE602005007298D1 (en) 2004-08-18 2008-07-17 Honda Motor Co Ltd Electronic control system for carburettors
US7144000B2 (en) 2004-08-24 2006-12-05 Briggs & Stratton Corporation Automatic choke for an engine
JP4319111B2 (en) 2004-08-26 2009-08-26 本田技研工業株式会社 Electric choke device for vaporizer
US7525287B2 (en) 2004-10-08 2009-04-28 Husqvarna Zenoah Co., Ltd. Battery pack for driving electric motor of compact engine starting device, engine starting device driven by the battery pack, and manual working machine having the engine starting device
JP2006170191A (en) * 2004-11-18 2006-06-29 Walbro Japan Inc Automatic starting device of carburetor
US20070028881A1 (en) * 2004-11-18 2007-02-08 Walbro Engine Management, L.L.C. Supplementary fuel supply for a carbureted engine
JP4464849B2 (en) 2005-03-07 2010-05-19 本田技研工業株式会社 Ventilator throttle valve control device
JP4383387B2 (en) * 2005-05-27 2009-12-16 本田技研工業株式会社 Electronic governor device for general-purpose internal combustion engine
US7171947B2 (en) * 2005-05-27 2007-02-06 Honda Motor Co., Ltd. Electrically-actuated throttle device for general-purpose engine
TWI302962B (en) 2005-06-23 2008-11-11 Honda Motor Co Ltd Electronic control system for carburetor
JP2007023838A (en) 2005-07-13 2007-02-01 Honda Motor Co Ltd Auto-choke device of general-purpose internal combustion engine
JP4495044B2 (en) 2005-07-29 2010-06-30 本田技研工業株式会社 snowblower
CA2553589C (en) 2005-07-29 2014-05-06 Honda Motor Co., Ltd. Self-propelled snow remover
CA2553098C (en) 2005-07-29 2013-03-26 Honda Motor Co., Ltd. Self-propelled work machine
US7487608B2 (en) 2005-07-29 2009-02-10 Honda Motor Co., Ltd. Walk-behind self-propelled snow removing machine
PT1791134E (en) 2005-11-25 2009-04-24 Magneti Marelli Spa Choke device for an internal combustion engine intake system
JP4523543B2 (en) 2005-12-14 2010-08-11 本田技研工業株式会社 Engine carburetor automatic control device
ITMI20060483A1 (en) 2006-03-16 2007-09-17 Dellorto Spa ELECTRONIC CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINES SUPPLIED BY CARBURETOR AND WITH EXCLUDED EXCEPTION
US7665890B2 (en) * 2006-06-22 2010-02-23 Watlow Electric Manufacturing Company Temperature sensor assembly and method of manufacturing thereof
WO2008016916A2 (en) * 2006-08-01 2008-02-07 Pcrc Products Small engine operation components
US20080053746A1 (en) 2006-08-30 2008-03-06 Albert Roger W Noise reduction shroud
JP4868523B2 (en) * 2007-04-04 2012-02-01 京都電機器株式会社 Auto choke device in engine
JP2008255881A (en) 2007-04-04 2008-10-23 Kyoto Denkiki Kk Engine
GB2450719A (en) 2007-07-04 2009-01-07 Black & Decker Inc Power cutter with engine controller and sensor means
CN101113706A (en) 2007-07-04 2008-01-30 陈其安 Electric-controlled injection carburettor
US7536991B2 (en) 2007-07-09 2009-05-26 Magneti Marelli Powertrain Usa Fuel injection for small engines
JP4979490B2 (en) 2007-07-09 2012-07-18 株式会社ケーヒン Electronic controller for vaporizer
JP2009019535A (en) * 2007-07-11 2009-01-29 Walbro Japan Inc Starting fuel control device of engine
CN101482073A (en) 2007-08-13 2009-07-15 布里格斯斯特拉顿公司 Automatic choke for an engine
US8005603B2 (en) 2007-09-27 2011-08-23 Continental Controls Corporation Fuel control system and method for gas engines
US8036818B2 (en) 2008-04-25 2011-10-11 Honda Motor Co., Ltd. Control apparatus for general-purpose engine
US7854216B2 (en) 2008-04-25 2010-12-21 Honda Motor Co., Ltd. General purpose internal combustion engine
US8434444B2 (en) * 2008-05-27 2013-05-07 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US8261712B2 (en) 2008-06-05 2012-09-11 Kohler Co. Automatic choke system
US7628387B1 (en) 2008-07-03 2009-12-08 Briggs And Stratton Corporation Engine air/fuel mixing apparatus
CN201225209Y (en) 2008-07-31 2009-04-22 三阳工业股份有限公司 Air intake auxiliary system
CN201306223Y (en) 2008-10-09 2009-09-09 张和君 Electric control gasoline engine ECU and working system thereof
CN201280978Y (en) 2008-11-03 2009-07-29 湛江德利化油器有限公司 Small-sized engine electric-controlled system
CN201321902Y (en) 2008-12-15 2009-10-07 湛江德利化油器有限公司 Novel small engine electrical control system
JP4921515B2 (en) 2009-04-27 2012-04-25 本田技研工業株式会社 Control device for general-purpose internal combustion engine
US8448622B2 (en) 2009-08-04 2013-05-28 Briggs And Stratton Corporation Choke and priming system for an internal combustion engine
DE102009037294A1 (en) * 2009-08-14 2011-02-17 Fev Motorentechnik Gmbh Method for starting a direct-injection internal combustion engine and injection system
US7886716B1 (en) 2009-09-09 2011-02-15 Honda Motor Co., Ltd. Carburetor control system
US9163568B2 (en) * 2009-10-20 2015-10-20 GM Global Technology Operations LLC Cold start systems and methods
US8495995B2 (en) 2010-06-23 2013-07-30 Briggs And Stratton Corporation Automatic choke for an engine
WO2012002859A1 (en) * 2010-07-01 2012-01-05 Husqvarna Ab Method of delivering start-up fuel to an internal combustion engine
CN101922381B (en) 2010-07-23 2012-07-04 陈俭敏 Carburetor and choke valve control mechanism thereof
CN201747476U (en) * 2010-09-03 2011-02-16 重庆宗申通用动力机械有限公司 Automatic control device for carburetter choke
CN201810423U (en) 2010-09-29 2011-04-27 上海晨昌动力科技有限公司 Simple structure of electronic control choke valve switch
JP5318075B2 (en) 2010-11-16 2013-10-16 富士重工業株式会社 Auto choke device
DE102010051758B4 (en) 2010-11-17 2020-03-19 Andreas Stihl Ag & Co. Kg Hand-held tool with a control device for an electric heating element
JP5426529B2 (en) * 2010-12-28 2014-02-26 本田技研工業株式会社 Auto choke device for carburetor for general purpose engine
DE202011000519U1 (en) * 2011-03-09 2012-06-12 Makita Corporation Engine working device with an internal combustion engine
CN202402170U (en) 2012-01-12 2012-08-29 西安科技大学 Dual-valve electronic control system for carburetor of general small-size gasoline engine
CN202402169U (en) 2012-01-12 2012-08-29 西安科技大学 Single-valve electric control system for carburetor of universal small gasoline engine
JP2013151862A (en) 2012-01-24 2013-08-08 Hitachi Koki Co Ltd Engine working machine
US10215130B2 (en) 2012-02-10 2019-02-26 Briggs & Stratton Corporation Choke override for an engine

Also Published As

Publication number Publication date
US20160377009A1 (en) 2016-12-29
US9464588B2 (en) 2016-10-11
CN104884776A (en) 2015-09-02
US20150047609A1 (en) 2015-02-19
US10240543B2 (en) 2019-03-26
EP3033512A2 (en) 2016-06-22
US20190211766A1 (en) 2019-07-11
WO2015023885A2 (en) 2015-02-19
US10794313B2 (en) 2020-10-06
WO2015023885A3 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
CN104884776B (en) System and method for the fuel-air ratio that internal combustion engine is electronically controlled
US6863034B2 (en) Method of controlling a bi-fuel generator set
US10087815B2 (en) System and method for estimating a cylinder wall temperature and for controlling coolant flow through an engine based on the estimated cylinder wall temperature
RU2704544C2 (en) Method and system for mitigating consequences of throttle malfunction
US11313328B2 (en) Fuel supply system for engine warm-up
WO2016073811A1 (en) Engine control strategy
CN105143650B (en) It can conclude that the control device of the internal combustion engine of the temperature of internal combustion engine
CN104791124B (en) The method of work implement and the starting conditions for determining work implement
RU2706330C2 (en) Method for adjustment of ignition coil
JP6302822B2 (en) Control device for internal combustion engine
JP6154998B2 (en) Ignition control method for alternative fuel engine
JP2004036602A (en) Calculation method for cylinder suction amount of air and engine fuel control method and system utilizing the same
US9410487B2 (en) Control apparatus for general purpose machine
JP2014137059A (en) Mechanical governor
CN106194364B (en) System and method for determining exhaust gas temperature
JP7444767B2 (en) Starting failure judgment/detection device and starting failure judgment/detection method
JPS6240548B2 (en)
JPS623352B2 (en)
BRPI0902420A2 (en) vehicle controlled micro ignition control unit
JPS63285264A (en) Ignition control device for internal combustion engine
JPH03249341A (en) Electronic control unit for internal combustion engine
JPH0786346B2 (en) Ignition timing control device for internal combustion engine

Legal Events

Date Code Title Description
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20241218

Address after: Wisconsin

Patentee after: Discovery Energy LLC

Country or region after: U.S.A.

Address before: Wisconsin

Patentee before: Kohler Co.

Country or region before: U.S.A.