DE469446C - Process for the decomposition of coke oven gas or other gas mixtures with components of different boiling points by partial condensation - Google Patents

Process for the decomposition of coke oven gas or other gas mixtures with components of different boiling points by partial condensation

Info

Publication number
DE469446C
DE469446C DEG69282D DEG0069282D DE469446C DE 469446 C DE469446 C DE 469446C DE G69282 D DEG69282 D DE G69282D DE G0069282 D DEG0069282 D DE G0069282D DE 469446 C DE469446 C DE 469446C
Authority
DE
Germany
Prior art keywords
gas
nitrogen
components
pressure
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEG69282D
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Gesellschaft fuer Lindes Eismaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gesellschaft fuer Lindes Eismaschinen AG filed Critical Gesellschaft fuer Lindes Eismaschinen AG
Priority to DEG69282D priority Critical patent/DE469446C/en
Application granted granted Critical
Publication of DE469446C publication Critical patent/DE469446C/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0655Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0276Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/N2 mixtures, i.e. of ammonia synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/062Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/064Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/14Coke-ovens gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Verfahren zur Zerlegung von Koksofengas oder anderen Gasgemischen mit Bestandteilen verschiedenen Siedepunkts durch partielle Kondensation Bei der Zerlegung von Gasgemischen durch partielle Kondensation bei tiefer Temperatur ist es wesentlich, die Verdampfungswärme der ausgeschiedenen Bestandteile zur Abkühlung und Kondensation entsprechender Anteile aus dem Frischgas möglichst vollständig auszunutzen, da anderenfalls der Kältebedarf und damit der Energieverbrauch zu groß wird. Diese Ausnutzung der Verdampfungswärme ist nur für diejenigen" Anteile der Kondensate möglich, welche bei einer niedrigeren Temperatur verdampft werden als der, bei welcher sie ausgeschieden wurden. Es kann also nur derjenige Teil der `@Terdampfungswärrne vollständig ausgenutzt werden, welcher der Differenz zwischen dem P artialdruck des betreffenden Bestandteils im ursprünglichen Gas und dem Verdampfungsdruck entspricht; derjenige Teil, welcher dein Unterschied zwischen dem Verdampfungsdruck und denn Endpartialdruck am Schlug der Kondensation entspricht, läßt .ich nicht ohne weiteres ausnutzen. Handelt es sich z. B. um die Abscheidung von Wasserstoff aus Wassergas mit 40"" CO-Gehalt unter einem Arbeitsdruck von 25 at, so beträgt der Partialdruck p" des Kohlenoxyds im Ausgangsgas io at, der im resultierenden Wasserstoff p, o,5 at, falls man in diesem eine Verunreinigung von. 2°/o CO zuläßt. Wird, wie es aus praktischen Gründen meist ausgeführt wird, die Verdampfung unter Atmosphärendruck (p,, - t at) vorgenommen, so beträgt der Bruchteil der ausnutzbaren Verdampfungcwärme der nicht aasnutzbare Bruchteil letzterer spielt also eine untergeordnete Rolle. Ganz anders liegen die Verhältnisse, wenn einerseits der Partialdruck p," im Ausgangsgas klein ist, andererseits auch der im Produkt noch zulässige Partialdruck p,. ebenfalls sehr klein sein soll. Dann wird x sehr klein: ein großer Teil der Verdampfungswärme kann also nicht ausgenutzt werden und tritt als Kälteverlust in die Erscheinung, so daß die Ausführung des Verfahren wirtschaftlich unmöglich werden kann.- Die Abhilfe, daß man den Verdampfungsdruck sehr niedrig wählt, den Bestandteil also unter Vakuum absaugt, versagt in den meisten Fällen, weil, abgesehen von dem Energieverbrauch für die Absaugung des Gases, der Wärmeaustausch der unter niedrigem Druck abziehenden Gase bekanntlich Schwierigkeiten verursacht. Ein solcher Fall liegt z. B. vor, wenn Koksofengas unter einem mäßigen Druck @ an beispielsweise io at zerlegt werden :oll. Fiir das Methan als einen der Hauptbestandteile des Gases ist bei a 5 o/o CH,- Gehalt p, - 2,5; p, muß jedoch, wenn es sich um die Abscheidung von Wasserstoff bzw. die Gewinnung von Wasserstoff-Stickstoff-Gemisch für die Ammoniaksynthese handelt, praktisch gleich Null sein. Erfolgt 'die Verdampfung des Methans wieder bei p" 4o°/" der Verdampfungswärme des Methans gehen verloren; ähnliches gilt auch für die anderen Bestandteile.Process for the decomposition of coke oven gas or other gas mixtures with constituents of different boiling points through partial condensation When decomposing gas mixtures through partial condensation at low temperatures, it is essential to use the heat of evaporation of the separated constituents for cooling and condensation of the corresponding proportions from the fresh gas as completely as possible, otherwise the cooling requirement and thus the energy consumption becomes too great. This use of the heat of evaporation is only possible for those "parts of the condensates which are evaporated at a lower temperature than the one at which they were excreted. Only that part of the heat of vaporization can be fully used which is the difference between the P partial pressure of the constituent in question in the original gas and the evaporation pressure; that part which corresponds to the difference between the evaporation pressure and the final partial pressure at the end of the condensation cannot be used without further ado from water gas with 40 "" CO content under a working pressure of 25 at, the partial pressure p "of the carbon oxide in the starting gas is io at, that in the resulting hydrogen is p, 0.5 at, if there is an impurity of. 2 ° / o CO admitted. If, as is usually done for practical reasons, the evaporation is carried out under atmospheric pressure (p 1 - t at), then the fraction of the usable heat of evaporation is the unusable fraction the latter therefore plays a subordinate role. The situation is quite different if, on the one hand, the partial pressure p, "in the starting gas is small, and on the other hand the partial pressure p," which is still permissible in the product should also be very small. Then x becomes very small: a large part of the heat of vaporization cannot be used and occurs as a loss of cold, so that the execution of the process can become economically impossible Energy consumption for the extraction of the gas, the heat exchange of the gases withdrawn under low pressure is known to cause difficulties.This is the case, for example, when coke oven gas is decomposed under a moderate pressure of, for example, io at: oll. For the methane as one The main constituent of the gas is at a 5 o / o CH, - content p, - 2.5; p, but must if it is about the separation of water r material or the production of a hydrogen-nitrogen mixture for ammonia synthesis is practically zero. If the methane is evaporated again at p " 40% of the heat of vaporization of the methane is lost; the same applies to the other components.

Bisher war eine technische Zerlegung des Koksofengases nur möglich unter Anwendung eines Druckes von 2o bis 3o at sowie des in anderer Hinsicht mit Nachteilen. behafteten Kälteerzeugungsverfahrens durch Entspannung des Wasserstoffes in einer Expansionsmaschine. Vorliegende Erfindung hat zum Ziel, die Zerlegung von Gasgemischen wie Koksofengas bei beliebig niedrigen Drukken zu ermöglichen unter gleichzeitiger Gewinnung des wasserstoffreichen Anteils unter dem gleichen Druck, wobei älso der für die eigentliche Zerlegung erforderliche Energieaufwand eine sehr starke Verminderung erfährt. Dieses Ziel wird dadurch erreicht, daß ein besonderer Kälteübertragungsprozeß unter Benutzung eines Hilfsgases, z. B. Stickstoff, durchgeführt wird, welches sich in dem zu verdampfenden Bestandteil (Methan) bei verhältnismäßig hoher Temperatur unter entsprechendem Druck kondensiert und nach Entspannung bei beliebig tiefer Temperatur wieder verdampft und hierbei nahezu ebensoviel Kälte zu leisten vermag, wie der Verdampfung des Methans entspricht.So far, a technical breakdown of the coke oven gas was only possible using a pressure of 2o to 3o at as well as that in other respects with Disadvantages. afflicted refrigeration process by relaxation of the hydrogen in an expansion machine. The present invention aims at the decomposition of To allow gas mixtures such as coke oven gas at any low pressure under simultaneous extraction of the hydrogen-rich portion under the same pressure, whereas the energy expenditure required for the actual dismantling is a very important factor experiences strong reduction. This goal is achieved by a special Cold transfer process using an auxiliary gas, e.g. B. nitrogen performed is, which is in the component to be evaporated (methane) at proportionate condenses at high temperature under appropriate pressure and after relaxation at evaporates again at any lower temperature and almost as much cold able to do as corresponds to the evaporation of methane.

Das Verfahren werde an Hand der Abbildungen i und 2 für die Zerlegung von Koksofengas als Beispiel erläutert. Das auf einen Druck von beispielsweise io at komprimierte, von Kohlensäure, Sch*efelwasserstoff und Wasserdampf befreite Kolcsofengas tritt bei i in den Gegenstromwärmeaustauscher i o ein, in welchem es durch die entgegenströmenden Gase bis auf eine Temperatur gekühlt wird, welche jedoch so hoch liegt, daß eine Kondensation größerer Mengen Methan aus dem Koksofengas, abgesehen von den verhältnismäßig geringen, in den höher siedenden Bestandteilen Äthylen, Athan usw. gelösten Anteilen, noch nicht stattfindet. Die eigentliche Kondensation des Methans beginnt erst in der im Behälter q. liegenden Kühlspirale 3 und wird in der Spirale 5 des Behälters 6 zu Ende geführt, in welchem ein zusätzliches Kühlmittel von tiefer Temperatur (z. B. unter i at siedender Stickstoff) vorhanden ist. Wie vorher auseinandergesetzt, kann im Behälter q. nur ein Bruchteil (günstigstenfalls 6o %) des verflüssigten Methans, das durch Ventil 8 aus dem Abscheider 7 entspannt wird, verdampft werden. Um nun eine vollständige Verdampfung des Methans zu ermöglichen, wird bei i i gasförmiger komprimierter Stickstoff eingeführt, durch den Gegenströmer io vorgekühlt und in der Spirale 12 verflüssigt. Der Druck, unter welchem dieser Stickstoff steht, muß dementsprechend den Verflüssigungsdruck bei der Temperatur des siedenden Methans, in unserem Beispiel also 16 at, übersteigen. Die Menge des Stickstoffs wird so bemessen, daß der gesamte Überschuß von flüssigem Methan zur Verdampfung gebracht wird. Der verflüssigte Stickstoff wird durch Ventil 13 auf Atmosphärendruck entspannt und kann nunmehr im Behälter 6 die vorher beschriebene Kühlung des Koksofengases zur vollständigen Kondensation von Methan sowie der Hauptmengen GO bewirken, so daß bei 9 ein sehr wasserstoffreiches Gas, das frei von Methan ist, entweicht, das im Gegenströmer 1o, ebenso wie alle übrigen Zerlegungsprodukte, seine Kälte an neu eintretendes Gas wieder abgibt. Der Druck des austretenden Wasserstoffes ist praktisch gleich dem des eintretenden Koksofengases.The procedure will be based on Figures i and 2 for the decomposition of coke oven gas as an example. That on a pressure of, for example, io at compressed kolksofen gas freed from carbonic acid, hydrogen sulphide and water vapor enters the countercurrent heat exchanger i o at i, in which it passes through the countercurrent Gases is cooled down to a temperature which is so high that a Condensation of larger amounts of methane from the coke oven gas, apart from the proportionate small amounts dissolved in the higher-boiling components ethylene, athan, etc., not yet taking place. The actual condensation of methane only begins in the one in the container q. lying cooling coil 3 and is in the spiral 5 of the container 6 completed, in which an additional coolant of low temperature (e.g. under i at boiling nitrogen) is present. As explained before can in container q. only a fraction (at best 60%) of the liquefied Methane, which is expanded through valve 8 from separator 7, can be evaporated. In order to enable complete evaporation of the methane, i i becomes more gaseous compressed nitrogen introduced, precooled by the countercurrent io and in the spiral 12 is liquefied. The pressure under which this nitrogen is, must accordingly the liquefaction pressure at the temperature of the boiling methane, in our example therefore exceed 16 at. The amount of nitrogen is calculated in such a way that that the entire excess of liquid methane is made to evaporate. Of the Liquefied nitrogen is expanded through valve 13 to atmospheric pressure and can now in the container 6 to the previously described cooling of the coke oven gas cause complete condensation of methane and the main quantities of GO, so that at 9 a very hydrogen-rich gas that is free of methane escapes, which is in the Countercurrent 1o, like all other decomposition products, its coldness on new releases incoming gas again. The pressure of the exiting hydrogen is practical equal to that of the entering coke oven gas.

Wenn aus dem Koksoferigas ein Wasserstoff-Stickstoff-Gemisch abgeschieden werden soll, das außer von Methan auch von Kohlenoxyd weitgehend befreit ist, wie es für die Zwecke der Ammoniaksynthese im großen Maßstabe Verwendung findet, so ist der aus dem Abscheider 9 austretende Wasserstoff noch einer Nachbehandlung zu unterwerfen, wofür sich die Waschung mit flüssigem Stickstoff bei tiefer Temperatur als besonders wirksam erwiesen hat. Das vorliegende Verfahren läßt sich nun mit dem Verfahren der Waschung in besonders einfacher und zweckmäßiger Weise vereinigen, indem man den gleichen Stickstoff, der nach vorliegender Erfindung für die Übertragung der Kälte der verflüssigten Anteile auf tiefe Temperatur verwendet wird, zur Waschung und Reinigung des Gases verwendet. Zu diesem Zweck. wird das Koksofengas nach der beschriebenen Vorbehandlung, also nach Kondensation des :Methans usw., aus dem Abscheider bei 9 noch in eine Säule unten eingeleitet, in welcher es durch Waschung mit flüssigem Stickstoff von den letzten Resten Kohlenoxyd und Methan befreit wird, und vom Kopf derselben durch den Gegenströmer io wieder zurückgeführt. Der in der Spirale 12 verflüssigte Stickstoff wird nach Entspannung auf den in der Säule herrschenden Druck statt unmittelbar in den Behälter 6 zunächst in die Säule eingeführt, und erst die am unteren Ende der Säule abgenommene, durch Kohlenoxyd verunreinigte Flüssigkeit wird in den Behälter 6 eingeleitet. Diese Arbeitsweise ist durch Abb. 2 dargestellt, in der noch einige weitere Abweichungen dargestellt worden sind. Zunächst ist darin ein Abscheider 7, vorgesehen, welcher das im Methangefäß Kondensierte unmittelbar durch das Ventil 8a in dieses Gefäß zurück entspannt. Ferner ist ein Gegenstromwärmeaustauscher i ; v0igesehen, in welchem die vom Abscheider f kommende Flüssigkeit zur weiteren Abkühlung des in der Spirale 12 kondensierten Stickstoffs verwendet wird. Diese Anordnung ermöglicht, einen Teil der Kälte der bei tiefer Temperatur ausgeschiedenen Flüssigkeit auch bei tiefer Temperatur auszunutzen. Der flüssige Stickstoff wird ferner in einer im Stickstoffbehälter 6 liegenden Spirale auf die Siedetemperatur dieses unreinen Stickstoffs unterkühlt, auf welche auch das durch die Spirale 5 strömende Koksofengas gekühlt wird. Durch die Regelung des Druckes bzw. der Temperatur in dem Verdampfungsgefäß ti wird in einfacher Weise die Zusammensetzung des aus der Waschsäule 16 oben hei 2o abziehenden Wasserstoff-Getnisches geregelt: der Wasserstoffpartialdruck bleibt beim Durchgang des Gases durch die Waschsäule im wesentlichen ungeändert, wofür die vorherige Unterkühlung des Waschstickstoffs wesentlich ist. Dadurch, daß man den Stickstoff unter höherem Druck anwendet. erreicht tnan sowohl eine wirksame Verdampfung des Methans im Behälter .4 a.is auch eine weitgehende Unterkühlung der auf die Waschsäule aufgegebenen Flüssigkeit im Behälter 6.When a hydrogen-nitrogen mixture is deposited from the coke oven gas is to be, which is largely freed of carbon oxide in addition to methane, as it is used on a large scale for the purpose of ammonia synthesis, so the hydrogen emerging from the separator 9 is still to be subjected to an after-treatment subject to what is washing with liquid nitrogen at low temperature has proven particularly effective. The present procedure can now be done with combine the washing process in a particularly simple and expedient manner, by using the same nitrogen that is used in the present invention for transfer the cold of the liquefied parts at low temperature is used for washing and purification of the gas used. To this end. the coke oven gas after the pre-treatment described, i.e. after condensation of: methane, etc., from the separator at 9 still introduced into a column below, in which it is washed with liquid Nitrogen is freed from the last remains of carbon oxide and methane, and from the head the same returned by the countercurrent io. The one in the spiral 12 Liquefied nitrogen is after relaxation on the prevailing in the column Pressure is first introduced into the column instead of directly into the container 6, and only the liquid that was taken from the lower end of the column and contaminated with carbon dioxide is placed in the container 6 initiated. This way of working is through Fig. 2, in which a few other deviations have been shown. First, a separator 7 is provided therein, which condenses in the methane vessel relaxed back into this vessel immediately through the valve 8a. Furthermore is a Counterflow heat exchanger i; see in which the coming from the separator f Liquid for further cooling of the nitrogen condensed in the spiral 12 is used. This arrangement allows some of the coldness of the deeper Temperature to use the excreted liquid even at low temperatures. Of the Liquid nitrogen is also in a spiral lying in the nitrogen container 6 subcooled to the boiling temperature of this impure nitrogen, which also the coke oven gas flowing through the spiral 5 is cooled. By regulating the The pressure or the temperature in the evaporation vessel is ti in a simple manner the composition of the hydrogen mixture withdrawn from the washing column 16 at the top at the top regulated: the hydrogen partial pressure remains when the gas passes through the Washing column essentially unchanged, for which the previous supercooling of the washing nitrogen is essential. By using the nitrogen under higher pressure. achieved tnan both an effective evaporation of the methane in the container .4 a.is as well as a extensive subcooling of the liquid applied to the washing column in the container 6th

Für die Durchführung des Verfahrens ist mit Rücksicht auf die verhältnismäßig großen Abmessungen der kalten Teile und die praktischen Unvollkommenheiten des Wärmeaustausches ein -nicht unerheblicher Zusatz an Kälte erforderlich, der mit den bekannten 'litteln der Kältetechnik aufzubringen ist. Auch hier ergibt sich wieder eine besonders zweckmäßige Arbeitsweise, wenn man das Hochdruckkreislaufverfähren C. v. L i n d e ' s (Patent 88 82d.) unter Verwendung von Stickstoff als Kreislaufgas ausführt und einen Teil desselben Stickstoffs für die Durchführung des Kältetnaschinenprozesses und des Waschvorgangs benutzt. Der Stickstoff wird also auf hohen Druck komprimiert und nach Durchlaufen eines Gegenstromwärrneaustauschers auf einen mittleren Druck abgedross s elt, wobei er sich in bekannter Weise abkühlt. Der größere Teil des Stickstoffs wird unter dem mittleren Druck zum Kompressor zurückgeleitet, der andere Teil zur Durchführung des v orbeschriebenen Kältemaschinenprozesses und des Waschvorganges verwendet und zusammen mit dem Anteil, der durch die Entspannung von hohem Druck verflüssigt erhalten wird, auf Atmosphärendruck entspannt. Zur Durchführung dieser Arbeitsweise «-ird noch ein Gegenstromwärmeaustauscher 21 für den bei 22 eintretenden Hochdruckstickstoff angeordnet, welch letzterer durch das Ventil 23 auf einen mittleren Druck, der zwischen 20 und 6o at liegen kann, entspannt wird. Der größere Teil des Mitteldruckstickstoffs geht durch den Austauscher -2i bei 24. zum Kompressor zurück, der Rest wird an Stelle des bei der vorl;eschriebenen Anordnung durch den Gegenströmer io eintretenden Stickstoffs in die Spirale 12 eingeführt.For the implementation of the method, considering the relatively large dimensions of the cold parts and the practical imperfections of the heat exchange, a not inconsiderable addition of cold is required, which can be applied with the known 'means of refrigeration technology. Here, too, there is again a particularly expedient way of working if one uses the high pressure cycle method C. v. L inde 's (patent 88 82d.) Using nitrogen as the cycle gas and using a portion of the same nitrogen to carry out the refrigerating machine process and the washing process. The nitrogen is thus compressed to high pressure and, after passing through a countercurrent heat exchanger, throttled down to a medium pressure, where it cools down in a known manner. The greater part of the nitrogen is returned to the compressor under medium pressure, the other part is used to carry out the above-described refrigeration machine process and the washing process and, together with the part that is obtained liquefied by the expansion of high pressure, is expanded to atmospheric pressure. To carry out this mode of operation, a countercurrent heat exchanger 21 is also arranged for the high-pressure nitrogen entering at 22, the latter being expanded through the valve 23 to a mean pressure which can be between 20 and 60 atmospheres. The greater part of the medium-pressure nitrogen goes back through the exchanger -2i at 24 to the compressor;

Da bei der letztbeschriebenen Anordnung die durch den Gegenstromwärmeaustauscher io austretende Gasmenge um den Betrag des in den Koksofengasteil entspannten Stickstoffs größer ist als die Menge des eintretenden komprimierten Gases, kann letzteres die gesamte Kälte des austretenden Restgases nicht aufnehmen. Um dem abzuhelfen, läßt man einen Teil des komprimierten Stickstoffs durch das Rohr 25 des Gegenströmers i o hindurchgehen. Den gleichen Zweck kann man natürlich auch erreichen, wenn man eine entsprechende Menge der Zerlegungsprodukte des Koksofengases durch den Wärmeaustauscher 21 hindurch austreten läßt. Die Regelung dieser Mengen erfolgt in jedem Fall so, daß die Temperaturdifferenzen der ein- und austretenden Gase in den Gegentrömern io und 21 ein Minimum werden.Since in the last-described arrangement, the counterflow heat exchanger OK amount of gas escaping by the amount of nitrogen released into the coke oven gas part is greater than the amount of incoming compressed gas, the latter can the Do not absorb the entire cold of the escaping residual gas. To remedy this, lets part of the compressed nitrogen through tube 25 of the countercurrent flow i o go through it. You can of course achieve the same purpose if you a corresponding amount of the decomposition products of the coke oven gas through the heat exchanger 21 can exit through. The regulation of these quantities takes place in each case in such a way that that the temperature differences between the incoming and outgoing gases in the counter-currents io and 21 become a minimum.

s s In der vorstehenden Erläuterung ist die Zerlegung von Koksofengas lediglich als Beispiel behandelt worden. Das Verfahren ist in gleicher Weise auf beliebige Gasgemische anwendbar, welche Bestandteile mit verschiedenen Siedepunkten enthalten; an die Stelle von Stickstoff kann auch ein anderes Gas treten, dessen Siedepunkt tiefer liegt als der der ausgeschiedenen Bestandteile und dessen Anwesenheit in den zu gewinnenden Zerlegungsprodukten zulässig ist.s s In the above explanation is the decomposition of coke oven gas has only been treated as an example. The procedure is similar to that any gas mixture applicable, which components with different boiling points contain; Another gas can take the place of nitrogen, its Boiling point is lower than that of the excreted components and their presence is permissible in the decomposition products to be extracted.

Claims (3)

PATENTANSPRÜCHE: i. Verfahren zur Zerlegung von Koksofengas oder anderen Gasgemischen mit Bestandteilen verschiedenen Siedepunkts durch partielle Kondensation unter Nutzbarmachung der bei cler Wiederverdampfung verflüssigter Gasbestandteile erzielbaren Kälte, dadurch gekennzeichnet, daß ein gasförmig unter Druck in einem Wärmeaustauscher eingeführter niedrig siedender Hilfsstoff (Stickstoff) aus den Zerlegungsprodukten Kälte aufnimmt, wobei er sich selbst abkühlt und wenigstens zum Teil verflüssigt, und daß er nach Entspannung in einem zweiten Austauscher' bei tieferer Temperatur Kälte an das zu zerlegende Gasgemisch abgibt und dadurch aus demselben Bestandteile verflüssigt. PATENT CLAIMS: i. Process for the decomposition of coke oven gas or others Gas mixtures with components of different boiling points through partial condensation utilizing the gas components liquefied during re-evaporation achievable cold, characterized in that a gaseous under pressure in one Low-boiling auxiliary substance (nitrogen) imported from the heat exchanger Decomposition products absorbs cold, whereby it cools itself and at least partially liquefied, and that he after relaxation in a second Exchanger 'releases cold to the gas mixture to be broken down at a lower temperature and thereby liquefied from the same constituents. 2. Verfahren nach Anspruch z, dadurch gekennzeichnet, daß der unter Druck stehende Kälteträger (Stickstoff) nach seiner Kondensation ganz oder teilweise verwendet wird zur Auswaschung der in dem verarbeiteten Gasgemisch nach dessen Abkühlung auf diejenige Temperatur, die zur Erreichung der endgültig gewünschten Zusammensetzung erforderlich ist, noch enthaltenen Verunreinigungen. 2. The method according to claim z, characterized in that the pressurized refrigerant (nitrogen) after its condensation is used in whole or in part to wash out the in the processed gas mixture after it has been cooled to the temperature required for Achieving the final desired composition is required still contained Impurities. 3. Verfahren nach Anspruch z bzw. 2, dadurch gekennzeichnet, daß der verflüssigte Stickstoff vor seiner Entspannung durch die bei der tiefsten Temperatur aus dem zu zerlegenden Gasgemisch flüssig ausgeschiedenen Bestandteile oder auch durch aus der Waschsäule austretende Flüssigkeit nacfi deren Entspannung weitgehend unterkühlt wird. q.. Verfahren nach Anspruch z, 2 und 3, dadurch gekennzeichnet, daß zur Dekkung des Kältebedarfes der Gaszerlegung der gleiche Kälteträger (Stickstoff) auf höheren Druck gefördert und vor seiner Verwendung zur Kälteübertragung und Waschung entspannt wird und gegebenenfalls ein Kreislauf des Kälteträgers zwischen einem hohen und einem mittleren Druck ausgeführt wird.3. The method according to claim z or 2, characterized in that the liquefied nitrogen before its expansion by the at the lowest temperature Components that are separated out in liquid form from the gas mixture to be broken down or else largely due to the liquid emerging from the washing column is hypothermic. q .. Method according to claim z, 2 and 3, characterized in that that the same refrigerant (nitrogen) is used to cover the refrigeration requirement for gas separation promoted to higher pressure and before its use for cold transfer and washing is relaxed and optionally a circuit of the coolant between a high and medium pressure.
DEG69282D 1927-01-24 1927-01-25 Process for the decomposition of coke oven gas or other gas mixtures with components of different boiling points by partial condensation Expired DE469446C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEG69282D DE469446C (en) 1927-01-24 1927-01-25 Process for the decomposition of coke oven gas or other gas mixtures with components of different boiling points by partial condensation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE284213X 1927-01-24
DEG69282D DE469446C (en) 1927-01-24 1927-01-25 Process for the decomposition of coke oven gas or other gas mixtures with components of different boiling points by partial condensation

Publications (1)

Publication Number Publication Date
DE469446C true DE469446C (en) 1928-12-13

Family

ID=25775854

Family Applications (1)

Application Number Title Priority Date Filing Date
DEG69282D Expired DE469446C (en) 1927-01-24 1927-01-25 Process for the decomposition of coke oven gas or other gas mixtures with components of different boiling points by partial condensation

Country Status (1)

Country Link
DE (1) DE469446C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE956501C (en) * 1951-10-06 1957-01-17 Basf Ag Process for separating the reaction products formed in the production of acrylonitrile from acetylene and hydrocyanic acid from unconverted acetylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE956501C (en) * 1951-10-06 1957-01-17 Basf Ag Process for separating the reaction products formed in the production of acrylonitrile from acetylene and hydrocyanic acid from unconverted acetylene

Similar Documents

Publication Publication Date Title
EP0100923B1 (en) Process and apparatus for separating a gas mixture
DE1501695A1 (en) Process for the liquefaction of a volatile gas
DE1282038B (en) Method for separating a gas mixture
DE1254656B (en) Process for the production of liquid parahydrogen
DE3528374A1 (en) METHOD AND DEVICE FOR PRODUCING NITROGEN WITH OVER-ATMOSPHERIC PRESSURE
DE2323410A1 (en) METHOD FOR PRODUCING CARBON MONOXIDE BY GAS SEPARATION
DE19940371A1 (en) Method and device for extracting carbon dioxide from exhaust gases
DE1042620B (en) Process for generating or recovering cold by evaporating a liquid with a very low evaporation temperature
DE469446C (en) Process for the decomposition of coke oven gas or other gas mixtures with components of different boiling points by partial condensation
EP0256413A2 (en) Gas stream purification process by nitrogen washing
DE2325422A1 (en) METHOD AND DEVICE FOR DISASSEMBLING RAW ARGON
DE1626323B1 (en) Method and apparatus for the production of low-carbon, nitrogen-containing hydrogen
DE1284974B (en) Method for separating a gas mixture
DE513234C (en) Deep freezing process for the decomposition of coke oven gas, luminous gas or other combustible gas mixtures
DE725157C (en) Process for the production of a low-boiling gas, in particular for the production of hydrogen from coke oven gas
DE551358C (en) Process for the decomposition of coke oven gas or similar combustible gas mixtures by liquefying its components
DE554706C (en) Process for the separation of air or other gas mixtures
DE1083287B (en) Process and device for separating components from gas mixtures
DE1282623B (en) Process for the separation of ammonia from a gaseous mixture of ammonia and carbonic acid
DE621453C (en) Process for separating gas mixtures, such as coke oven gas
DE1940623A1 (en) Separation of gas mixtures esp carbon dioxide and - nitrogen from natural gas
DE339490C (en) Process for the decomposition of gases which liquefy at very different temperatures
AT204017B (en) Process for the separation of coke oven gas by means of deep freezing
DE745667C (en) Process for the separation of difficult-to-condense gas mixtures
DE692169C (en) Process for the separation of acetylene hydrocarbons from gas mixtures containing them