DK141606B - Process for reforming a hydrocarbon and composite catalyst intended to carry out the process. - Google Patents

Process for reforming a hydrocarbon and composite catalyst intended to carry out the process. Download PDF

Info

Publication number
DK141606B
DK141606B DK223769AA DK223769A DK141606B DK 141606 B DK141606 B DK 141606B DK 223769A A DK223769A A DK 223769AA DK 223769 A DK223769 A DK 223769A DK 141606 B DK141606 B DK 141606B
Authority
DK
Denmark
Prior art keywords
catalyst
approx
reforming
weight
component
Prior art date
Application number
DK223769AA
Other languages
Danish (da)
Other versions
DK141606C (en
Inventor
Ernest Leo Pollitzer
Original Assignee
Universal Oil Prod Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Prod Co filed Critical Universal Oil Prod Co
Publication of DK141606B publication Critical patent/DK141606B/en
Application granted granted Critical
Publication of DK141606C publication Critical patent/DK141606C/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/2705Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/271Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with inorganic acids; with salts or anhydrides of acids
    • C07C5/2713Acids of sulfur; Salts thereof; Sulfur oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/271Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with inorganic acids; with salts or anhydrides of acids
    • C07C5/2718Acids of halogen; Salts thereof; complexes thereof with organic compounds
    • C07C5/2721Metal halides; Complexes thereof with organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/2724Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2772Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2778Catalytic processes with inorganic acids; with salts or anhydrides of acids
    • C07C5/2781Acids of sulfur; Salts thereof; Sulfur oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2778Catalytic processes with inorganic acids; with salts or anhydrides of acids
    • C07C5/2786Acids of halogen; Salts thereof
    • C07C5/2789Metal halides; Complexes thereof with organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2791Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/656Manganese, technetium or rhenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

(11) FREMLÆGGELSESSKRIFT 1U1606 MÉ2(11) PRESENTATION 1U1606 MÉ2

1 ohI1 ohI

\RB\ RB

DANMARK lnt c' 3 c 10 8 35/09 §(21) Ansøgning nr. 2237/(¾ (22) Indleveret dan 23· 3PF · 1 S&9 (23) Løbødøg 23. apr. 19^9DENMARK lnt c '3 c 10 8 35/09 § (21) Application No. 2237 / (¾ (22) Filed dan 23 · 3PF · 1 S & 9 (23) Running days Apr 23, 19 ^ 9

(44) Ansøgningen fremlagt øg Q(44) The application presented increase Q

fremlsaggelseeakriftet øffentUggJort den 5· maj 19^0 DIREKTORATET FOR , , ^ t PATENT-OG VAREMÆRKEVÆSENET (30> Pnøiitet begasret fra denpromulgation issued on May 5, 19 ^ 0 THE DIRECTORATE OF THE PATENT AND TRADEMARKET (30> Precision gassed from the

24. apr. 1968* 7?3886, USApr 24 1968 * 7? 3886, US

<71> UNIVERSAL OIL PRODUCTS COMPANY, 30 Algonquin Road, Des Plaines, 1111= nois, US.<71> UNIVERSAL OIL PRODUCTS COMPANY, 30 Algonquin Road, Des Plaines, 1111 = nois, US.

(73) Opfinder: Ernest Leo Pollitzer, 9655 fiarlov Avenue, Skokie, 1111= nois, US.(73) Inventor: Ernest Leo Pollitzer, 9655 Fiarlov Avenue, Skokie, 1111 = nois, US.

(74) Fuldmægtig under sagens behandling:(74) Plenipotentiary in the proceedings:

Ingeniørfirmaet Budde, Schou & Co.The engineering company Budde, Schou & Co.

(54) Fremgangsmåde til reforming af et carbonhydrid og sammensat kataly= sator bestemt til udøvelse af fremgangsmåden.(54) Process for reforming a hydrocarbon and composite catalyst for carrying out the process.

Den foreliggende opfindelse angår en hidtil ukendt fremgangsmåde til reforming af et carbonhydrid samt en hidtil ukendt sammensat katalysator omfattende aluminiumoxid og bestemt til udøvelse af fremgangsmåden. Denne sammensatte katalysator har vist sig at have en enestående aktivitet og modstandsdygtighed mod desaktivering, når den anvendes i en carbonhydridreformingproces, som kræver en katalysator, der har en hydrogenerings-dehydroge-nerings-funktion koblet med en kraknings-funktion.The present invention relates to a novel process for reforming a hydrocarbon as well as to a novel composite catalyst comprising alumina and intended for carrying out the process. This composite catalyst has been found to have exceptional activity and resistance to deactivation when used in a hydrocarbon reforming process which requires a catalyst having a hydrogenation dehydrogenation function coupled with a cracking function.

2 1616062 161606

Sammensatte materialer, der har en hydrogenerings-dehydro-generings-funktion og en krakningsfunktion, anvendes i stor udstrækning i dag som katalysatorer i mange industrier, såsom jordolieindustrien og den petrokemiske industri, til accelerering af en mængde forskellige carbonhydridomdannelsesreaktioner. Almindeligvis antages krakningsfunktionen at være forbundet med et surtvirkende materiale af den porøse, adsorberende, tungt smeltelige oxid-type, som typisk anvendes som bærer eller bærestof for en tungmetalkomponent, såsom metaller eller forbindelser af metallerne i gruppe V til og med gruppe VIII i det periodiske system. Bydrogenerings-dehydrogenerings-funk-tionen tilskrives almindeligvis denne metalkomponent.Composite materials having a hydrogenation dehydrogenation function and a cracking function are widely used today as catalysts in many industries, such as the petroleum and petrochemical industries, to accelerate a variety of hydrocarbon conversion reactions. Generally, the cracking function is believed to be associated with an acidic material of the porous, adsorbent, heavy-meltable oxide type typically used as a carrier or carrier for a heavy metal component, such as metals or compounds of the metals of Group V through Group VIII of the Periodic Table. system. The hydrogenation dehydrogenation function is usually attributed to this metal component.

Disse sammensatte katalysatorer anvendes til accelerering af en mængde forskellige carbonhydridomdannelsesreaktioner, f.eks. hydro-krakning, isomerisering, dehydrogenering, hydrogenering, afsvovling, ringslutning, alkylering, polymerisation, krakning og hydroisomering.These composite catalysts are used to accelerate a variety of hydrocarbon conversion reactions, e.g. hydrocracking, isomerization, dehydrogenation, hydrogenation, desulfurization, cyclization, alkylation, polymerization, cracking and hydroisomerization.

I mange tilfælde er de kommercielle anvendelser af disse katalysatorer i processer, hvor mere end én af disse reaktioner foregår samtidigt.In many cases, the commercial uses of these catalysts are in processes where more than one of these reactions takes place simultaneously.

Et eksempel på denne type proces er reforming, hvori en carbonhydrid-fødestrøm, der indeholder paraffiner og naphthener, underkastes betingelser, som fremskynder dehydrogenering af naphthener til aromater, dehydroringslutning af paraffiner til aromatiske forbindelser, isome-risering af paraffiner og naphthener, hydrokrakning af naphthener og paraffiner og lignende reaktioner, til frembringelse af en produkt--strøm med højt octantal eller rig på aromatiske forbindelser. Et andet eksempel er en hydrokrakningsproces, hvori katalysatorer af denne type udnyttes til at bevirke selektiv hydrogenering og krakning af umættede materialer med høj molekylvægt, selektiv hydrokrakning af materialer med høj molekylvægt og andre lignende reaktioner til frembringelse af en almindeligvis lavere kogende, mere værdifuld produktstrøm. Et yderligere eksempel er en isomeriseringsproces, hvori f.eks. en carbonhydrid-fraktion, som er relativ rig på uforgrenede paraffinkomponenter, bringes i kontakt med en katalysator med dobbelt funktion til frembringelse af en produktstrøm, der er rig på isoparaffinfor-bindelser.An example of this type of process is reform in which a hydrocarbon feed stream containing paraffins and naphthenes is subjected to conditions which accelerate dehydrogenation of naphthenes to aromatics, dehydration of paraffins to aromatic compounds, isomerization of paraffins and naphthenes, hydrocracking of naphthenes and paraffins and similar reactions, to produce a product - high octane stream or rich in aromatic compounds. Another example is a hydrocracking process in which catalysts of this type are utilized to effect selective hydrogenation and cracking of high molecular weight unsaturated materials, selective hydrocracking of high molecular weight materials and other similar reactions to produce a generally lower boiling, more valuable product stream. A further example is an isomerization process in which e.g. a hydrocarbon fraction relatively rich in unbranched paraffin components is contacted with a dual-function catalyst to produce a product stream rich in isoparaffin compounds.

Uanset den involverede reaktion eller den specielle fremgangsmåde, der er involveret, er det af afgørende vigtighed, at katalysatoren med dobbelt funktion ikke kun udviser evne til at udføre sine fastsatte funktioner i begyndelsen, men også at den har evnen til at udføre dem tilfredsstillende i langvarige tidsrum. De analytiske enheder, der anvendes i teknikken for at måle, hvor godt en bestemt 5 141606 katalysator udfører sine tilsigtede funktioner ved en bestemt carbon-hydridreaktion, er aktivitet, selektivitet og stabilitet. Porsåvidt angår diskussionen her, defineres disse udtryk som følger: (l) "aktivitet" er et mål for katalysatorens evne til at omdanne carbonhydrid-reaktanter til produkter ved et givet strenghedsniveau, hvor "streng-hedsniveau" betyder de anvendte betingelser, d.v.s. temperaturen, trykket, kontakttiden og tilstedeværelsen af fortyndingsmidler, såsom Hg} (2) "selektivitet" refererer til den vægtprocent af reaktanterne, som omdannes til det ønskede produkt og/eller de ønskede produkter} og (3) "stabilitet" refererer til den hastighed, hvormed aktiviteten og selektiviteten ændres} det er.indlysende, at mindre hastighed betyder en mere stabil katalysator. Ved en reforming-proces refererer aktivitet f.eks. sædvanligvis til den omdannelse, der finder sted for et givet chargemateriale ved et givet strenghedsniveau, og måles typisk ved octantallet af C^+-produktstrømmen} selektivitet refererer til det C,-+-udbytte, der opnås ved det bestemte strenghedsniveau. Stabilitet sættes undertiden lig med den hastighed, hvormed aktiviteten ændres med tiden, og i selektivitet med tiden. Almindeligvis styres en kontinuerlig reformingproces imidlertid til frembringelse af et C^+-pro-dukt med konstant octantal, idet strenghedsniveauet uafbrudt Justeres til at opnå dette resultat. Endvidere varieres strenghedsniveauet ved denne proces sædvanligvis ved indstilling af omdannelsestemperaturen i reaktionszonen, således at den hastighed, hvormed aktiviteten ændres, faktisk genspejles i den hastighed, hvormed omdannelsestemperaturen ændres. Som følge deraf tages ændringer i denne sidste parameter ofte som udtryk for aktivitetsstabilitet.Regardless of the reaction involved or the particular process involved, it is essential that the dual-function catalyst not only exhibits its ability to perform its predetermined functions initially, but also has the ability to perform them satisfactorily for long-term period of time. The analytical units used in the art to measure how well a particular catalyst performs its intended functions in a particular hydrocarbon reaction are activity, selectivity and stability. As far as the discussion herein is concerned, these terms are defined as follows: (l) "activity" is a measure of the catalyst's ability to convert hydrocarbon reactants into products at a given severity level, where "severity level" means the conditions used, i.e. the temperature, pressure, contact time and presence of diluents such as Hg} (2) "selectivity" refers to the weight percent of the reactants which are converted to the desired product and / or products} and (3) "stability" refers to that rate. by which activity and selectivity change} it is obvious that less velocity means a more stable catalyst. In a reforming process, activity refers e.g. usually to the conversion that takes place for a given batch material at a given level of severity, and is typically measured by the octane number of the C + + product stream} selectivity refers to the C + - yield obtained at that particular level of severity. Stability is sometimes set equal to the rate at which the activity changes over time and to selectivity over time. Generally, however, a continuous reforming process is controlled to produce a C + + product with a constant octane number, the level of rigidity being continuously adjusted to achieve this result. Furthermore, the severity level of this process is usually varied by setting the conversion temperature in the reaction zone, so that the rate at which the activity changes is actually reflected at the rate at which the conversion temperature changes. As a result, changes to this last parameter are often taken as an expression of activity stability.

Som det er kendt af fagfolk, er hovedårsagen til observeret desaktivering, eller ustabilitet, af disse katalysatorer med dobbelt funktion, når de anvendes ved en carbonhydridomdannelsesreaktion, forbundet med det faktum, at der dannes koks på overfladen af katalysatoren under forløbet af reaktionen. Mere specifikt udtrykt resulterer de betingelser, som anvendes ved disse carbonhydridomdannelsesreaktioner, typisk i dannelsen af tungt, sort, fast eller halv-fast, car-bonholdigt materiale med høj molekylvægt, som dækker overfladen af katalysatoren, og reducerer dens aktivitet ved at afskærme dens aktive centre fra reaktanterne. Med andre ord, ydeevnen af denne katalysator med dobbelt funktion er følsom over for tilstedeværelsen af carbonholdige aflejringer på katalysatoroverfladen, I overensstemmelse hermed, er det hovedproblem, der møder forskere på dette område af teknikken, udviklingen af mere aktive og selektive sammensatte katalysatorer, som 4 141606 ikke er så følsomme over for tilstedeværelsen af disse carbonholdige materialer og/eller har evnen til at undertrykke dannelseshastigheden for disse carbonholdige materialer på katalysatoren. tJdtrykt ved ydeevneparametre er problemet at udvikle en katalysator med dobbelt funktion, der har overlegen aktivitet, selektivitet og stabilitet. Især for en reformingproces angives problemet typisk som forskydning og stabilisering af udbytte-octantal-sammenhængen for C,-+-produktet, idet udbyttet er udtryk for selektiviteten, og octantallet er proportionalt med aktiviteten.As is known to those skilled in the art, the main cause of observed deactivation, or instability, of these dual-function catalysts when used in a hydrocarbon conversion reaction is associated with the fact that coke is formed on the surface of the catalyst during the course of the reaction. More specifically, the conditions used in these hydrocarbon conversion reactions typically result in the formation of heavy, black, solid or semi-solid, high molecular weight carbonaceous material which covers the surface of the catalyst and reduces its activity by shielding its active centers from the reactants. In other words, the performance of this dual function catalyst is sensitive to the presence of carbonaceous deposits on the catalyst surface. Accordingly, the main problem encountered by researchers in this field is the development of more active and selective composite catalysts, such as 4 141606 are not as sensitive to the presence of these carbonaceous materials and / or have the ability to suppress the rate of formation of these carbonaceous materials on the catalyst. Expressed by performance parameters, the problem is to develop a dual-function catalyst that has superior activity, selectivity and stability. In particular, for a reforming process, the problem is typically referred to as displacement and stabilization of the yield-octane number relationship for the C, - + - product, with the yield expressing the selectivity and the octane number being proportional to the activity.

Der er nu blevet udviklet en sammensat katalysator med dobbelt funktion, som er i besiddelse af forbedret aktivitet, selektivitet og stabilitet, når den anvendes i sådanne carbonhydrid-omdannelsesprocesser som f.eks. isomerisering, hydroisomerisering dehydrogenering, hydrogenering, alkylering, dealkylering, ring-slutning, dehydroringslutningr krakning, hydrokrakning og reforming. Specielt er det blevet bestemt, at en synergistisk kombination af en metallisk komponent fra platingruppen og en rheniumkomponent ved sammensætning med en halogenholdig aluminiumoxidbærer gør det muligt væsentligt at forbedre ydeevnen af carbonhydridomdannel-sesprocesser, der normalt gør brug af katalysatorer med dobbelt funktion. Når der specielt er tale om en reformingproces, tillader denne hidtil ukendte katalysator ved kobling med et i det væsentlige vandfrit reformingmiljø desuden, at stabiliteten af processen bliver endnu mere udpræget forbedret.A dual-function composite catalyst has now been developed which possesses enhanced activity, selectivity and stability when used in such hydrocarbon conversion processes as e.g. isomerization, hydroisomerization dehydrogenation, hydrogenation, alkylation, dealkylation, ring closure, dehydration closure cracking, hydro cracking and reforming. In particular, it has been determined that a synergistic combination of a platinum group metallic component and a rhenium component by composition with a halogen-containing alumina support significantly improves the performance of hydrocarbon conversion processes that normally use dual-function catalysts. In addition, in the case of a reforming process, this novel catalyst by coupling with a substantially anhydrous reforming environment also allows the stability of the process to be even more markedly improved.

I overensstemmelse hermed tilvejebringer den foreliggende opfindelse en sammensat katalysator omfattende aluminiumoxid og bestemt til udøvelse af den her omhandlede fremgangsmåde til reforming af et carbonhydrid, hvilken katalysator er ejendommelig ved, at aluminiumoxidet er kombineret med en metallisk komponent fra platingruppen, en halogenkomponent og en rheniumkomponent, idet de nævnte komponenter er til stede i mængder, som i den sammensatte katalysator, på grundstofbasis, tilvejebringer fra ca.Accordingly, the present invention provides a composite catalyst comprising alumina and intended for practicing the process of reforming a hydrocarbon which is characterized in that the alumina is combined with a metallic component of the plate group, a halogen component and a rhenium component. said components being present in amounts which, in the composite catalyst, on an elemental basis, provide from ca.

0,1 til ca. 1,5 vægtprocent halogen, fra ca. 0,05 til ca. 1,0 vægtprocent platingruppemetal og fra ca. 0,05 til ca. 1,0 vægtprocent rhenium.0.1 to approx. 1.5% by weight of halogen, from approx. 0.05 to approx. 1.0% by weight plate group metal and from approx. 0.05 to approx. 1.0% by weight of rhenium.

Det foretrækkes ifølge opfindelsen, at den sammensatte katalysator er blevet reduceret under praktisk taget vandfrie betingelser forud for dens anvendelse ved reformingen af carbonhyd-rider.It is preferred according to the invention that the composite catalyst has been reduced under virtually anhydrous conditions prior to its use in the reforming of hydrocarbons.

5 1416065 141606

Det foretrækkes endvidere ifølge opfindelsen, at den præreducerede, sammensatte katalysator tillige indeholder en svovlkomponent i en mængde på fra ca. 0,05 til ca. 0,5 vægtprocent af det sammensatte materiale.It is further preferred according to the invention that the pre-reduced composite catalyst also contains a sulfur component in an amount of from 0.05 to approx. 0.5% by weight of the composite material.

Den her omhandlede fremgangsmåde til reforming af et carbonhydrid er i overensstemmelse med det ovenfor anførte af den art, ved hvilken carbonhydridet ved forhøjet temperatur og tryk i nærværelse af hydrogen bringes 1 kontakt med en sammensat katalysator, og den er ifølge opfindelsen ejendommelig ved, at der anvendes en katalysator, som omfatter aluminiumoxid, en metallisk komponent fra platingruppen, en halogenkomponent og en rheniumkomponent, idet de nævnte komponenter er til stede i mængder, som i den sammensatte katalysator, på grundstofbasis, tilvejebringer fra ca. 0,1 til ca. 1,5 vægtprocent halogen, fra ca. 0,05 til ca. 1,0 vægtprocent platingruppemetal og fra ca. 0,05 til ca. 1,0 vægtprocent rhenium.The present process for reforming a hydrocarbon is in accordance with the above, in the manner in which the hydrocarbon is brought into contact with a composite catalyst at elevated temperature and pressure in the presence of hydrogen, and is characterized in that: For example, a catalyst comprising alumina, a metallic component of the plate group, a halogen component and a rhenium component is used, said components being present in amounts which, in the composite catalyst, on an elemental basis, provide from ca. 0.1 to approx. 1.5% by weight of halogen, from approx. 0.05 to approx. 1.0% by weight plate group metal and from approx. 0.05 to approx. 1.0% by weight of rhenium.

Når den her omhandlede fremgangsmåde anvendes til reforming af en benzinfraktion, sker dette hensigtsmæssigt ved, at benzinfraktionerne bringes i kontakt med den her omhandlede katalysator ved reformingbetingelser, der omfatter et i det væsentlige vandfrit miljø, og i nærværelse af hydrogen, idet der derved dannes et reformat med højt oétantal.Conveniently, when the process of the present invention is used to reform a gasoline fraction, the gasoline fractions are contacted with the catalyst of the present invention under reforming conditions comprising a substantially anhydrous environment and in the presence of hydrogen, thereby forming a high number of reforms.

Andre udførelsesformer for den foreliggende opfindelse angår foretrukne katalytiske bestanddele og koncentrationen af komponenter i katalysatoren, driftsbetingelser til anvendelse ved carbonhydridreformingprocesserne og andre enkeltheder, som fremgår af den efterfølgende detaljerede omtale.Other embodiments of the present invention relate to preferred catalytic components and the concentration of components of the catalyst, operating conditions for use in the hydrocarbon reforming processes, and other details as will be apparent from the following detailed description.

Som anført ovenfor omfatter katalysatoren ifølge opfindelsen aluminiumoxid, hvormed en platingruppekomponent, en rheniumkomponent og en halogenkomponent er forbundet. Idet først det ved den foreliggende opfindelse anvendte aluminiumoxid betragtes, foretrækkes det, at aluminiumoxidmaterialet er en porøs, adsorberende bærer, der har et overfladeareal på fra ca. 25 til ca. 500 m /g eller derover. Egnede aluminiumoxidmaterialer er de krystallinske aluminiumoxider, der er kendt som gamma-, eta-og theta-aluminiumoxid, hvor gamma-aluminiumoxid giver de bedste resultater. Aluminiumoxidbæreren kan desuden inde- 141606 6 holde mindre mængder af andre kendte, tungt smeltelige, uorganiske oxider, f.eks. siliciumoxid, zirconiumoxid og magnesiumoxid. Den foretrukne bærer er imidlertid praktisk taget rent gamma-aluminiumoxid.As stated above, the catalyst of the invention comprises alumina to which a platinum group component, a rhenium component and a halogen component are joined. Considering first the alumina used in the present invention, it is preferred that the alumina material is a porous adsorbent carrier having a surface area of from ca. 25 to approx. 500 m / g or more. Suitable alumina materials are the crystalline alumina known as gamma, eta and theta alumina, with gamma alumina providing the best results. In addition, the alumina carrier may contain minor amounts of other known, highly fusible, inorganic oxides, e.g. silica, zirconia and magnesium oxide. However, the preferred carrier is practically pure gamma alumina.

I virkeligheden har en særlig foretrukket bærer en tilsyneladende rumvægt i løst mål på fra 0,30 g/cirP til ca. 0,70 g/cit? og sådanne overflade« arealkarakteristika, at den gennemsnitlige porediameter er fra ca. 20 til ca, 300 Å, porerumfanget er fra ca. 0,10 til ca. 1,0 ml/g, og over- Λ fladearealet er fra ca. 100 til ca. 500 m /g.In fact, a particularly preferred carrier has an apparent bulk weight in the bulk of from 0.30 g / cirP to ca. 0.70 g / cit? and such surface area characteristics that the average pore diameter is from ca. 20 to about 300 Å, the pore volume is from approx. 0.10 to approx. 1.0 ml / g and the surface area is from approx. 100 to approx. 500 m / g.

Aluminiumoxidbæreren kan være fremstillet syntetisk på hvilken som helst egnet måde eller kan være naturligt forekommende. Hvilken type aluminiumoxid der end benyttes, kan det aktiveres forud for anvendelsen ved én eller flere behandlinger, herunder f.eks. tørring, kal« cinering og behandling med vanddamp, og det kan foreligge i en form, der er kendt som aktiveret aluminiumoxid, aktiveret, kommercielt aluminiumoxid, porøst aluminiumoxid, aluminiumoxid-gel, etc. Aluminiumoxidbæreren kan f.eks. fremstille^ ved at et egnet alkalisk reagens, såsom ammoniumhydroxid, sættes til et aluminiumsalt, f.eks, aluminiumchlorid og aluminiumnitrat, i en mængde, som danner en aluminiumhydroxidgel, som efter tørring og kalcinering omdannes til aluminiumoxid. Alumini-umoxidet kan formes i hvilken som helst ønsket form, såsom kugler, piller, kager, ekstrudater, pulvere eller granuler. Til den foreliggende opfindelses formål er kuglen en særlig foretrukketfcrm for aluminium-oxidet. Aluminiumoxidkugler kan fremstilles kontinuerligt ved den kendte oliedråbemetode, som omfatter dannelse af en aluminiumoxidhydrosol ved en hvilken som helst af de metoder, der er kendt i teknikken, og fortrinsvis ved omsætning af metallisk aluminium med saltsyre, forening af hydrosolen med en egnet geldanner og drypning af den resulterende blanding til et oliebad opretholdt ved forhøjede temperaturer. De små dråber af blandingen forbliver i oliebadet, indtil de stivner og danner hydrogelkugler. Kuglerne fjernes derefter kontinuerligt fra oliebadet og underkastes typisk særlige ældningsbehandlinger i olie og en ammoniakalsk opløsning for yderligere at forbedre deres fysiske egen- 7 141606 skaber. De resulterende, ældede og gelatinerede partikler vaskes og tørres derefter ved en relativ lav temperatur på fra ca. l49°C til ca. 204°C og underkastes en kalcinering ved en temperatur på fra ca.The alumina support may be synthetically produced in any suitable manner or may be naturally occurring. Whatever type of alumina is used, it can be activated prior to use in one or more treatments, including e.g. drying, calcining and water vapor treatment, and it may be in a form known as activated alumina, activated alumina, porous alumina, alumina gel, etc. The alumina carrier may e.g. can be prepared by adding a suitable alkaline reagent such as ammonium hydroxide to an aluminum salt, for example, aluminum chloride and aluminum nitrate, in an amount which forms an aluminum hydroxide gel which, after drying and calcining, is converted to alumina. The aluminum oxide can be formed in any desired form, such as balls, pills, cakes, extrudates, powders or granules. For the purposes of the present invention, the sphere is a particularly preferred form of the aluminum oxide. Aluminum oxide beads can be prepared continuously by the known oil drop method which comprises forming an alumina hydrosol by any of the methods known in the art, and preferably by reacting metallic aluminum with hydrochloric acid, combining the hydrosol with a suitable gelling agent, and dripping. the resulting mixture to an oil bath maintained at elevated temperatures. The small droplets of the mixture remain in the oil bath until they solidify and form hydrogel balls. The spheres are then continuously removed from the oil bath and typically subjected to special aging treatments in oil and an ammonia solution to further improve their physical properties. The resultant, aged and gelatinous particles are washed and then dried at a relatively low temperature of from ca. 14 ° C to approx. 204 ° C and subjected to calcination at a temperature of from ca.

454°C til ca. 704°C i et tidsrum på fra ca. 1 til ca, 20 timer. Denne behandling bevirker omdannelse af aluminiumoxidhydrogelen til det tilsvarende krystallinske gamma-aluminiumoxid.454 ° C to approx. 704 ° C for a period of approx. 1 to about 20 hours. This treatment causes the conversion of the alumina hydrogel to the corresponding crystalline gamma-alumina.

En essentiel bestanddel af katalysatoren ifølge opfindelsen er en halogenkomponent. Skønt den nøjagtige kemi i forbindelse med associeringen af halogenkomponenten med aluminiumoxidbæreren ikke kendes fuldstændigt, er det sædvanligt i teknikken at henvise til halogenkomponenten som værende forbundet med aluminiumoxidbæreren eller med de andre bestanddele af katalysatoren. Dette bundne halogen kan være enten fluor, chlor, iod, brom, eller blandinger deraf. Til den foreliggende opfindelses formål foretrækkes af disse fluor og især chlor. Halogenet kan sættes til aluminiumoxidbæreren på hvilken som helst egnet måde, enten under fremstillingen af bæreren eller før eller efter tilsætningen af de katalytisk aktive, metalliske komponenter. Halogenet kan f.eks. som en vandig opløsning af en syre, f.eks, hydrogenfluorid, hydrogenchlorid eller hydrogeribromid sættes til på et hvilket som helst trin af fremstillingen af bæreren, eller til den kalcinerede bærer. Halogenkomponenten, eller en del deraf, kan sammensættes med aluminiumoxidet under imprægneringen af dette sidstnævnte med platin-gruppekomponenten, f.eks. ved anvendelse af en blanding af chlorplatin-syre og hydrogenchlorid. I en anden situation kan den aluminiumoxid-hydrosol, som typisk anvendes til dannelse af aluminiumoxidkomponenten, indeholde halogen og således tilføre i det mindste en del af halogenkomponenten til det færdig^ sammensatte materiale, I alle tilfælde vil halogenet blive sammensat med aluminiumoxidbæreren på en sådan måde, at det resulterer i et færdigt, sammensat materiale, som indeholder fra ca. 0,1# til ca. 1,5# og fortrinsvis fra ca. 0,4 til ca. 0,9 vægt-# halogen, beregnet på grundstofbasis.An essential component of the catalyst of the invention is a halogen component. Although the exact chemistry associated with the association of the halogen component with the alumina carrier is not fully known, it is customary in the art to refer to the halogen component as being associated with the alumina carrier or with the other components of the catalyst. This bonded halogen can be either fluorine, chlorine, iodine, bromine, or mixtures thereof. For the purposes of the present invention, these are fluorine and especially chlorine. The halogen may be added to the alumina support in any suitable manner, either during the preparation of the support or before or after the addition of the catalytically active metallic components. The halogen may e.g. as an aqueous solution of an acid, for example, hydrogen fluoride, hydrogen chloride or hydrogeribromide is added at any stage of preparation of the carrier, or to the calcined carrier. The halogen component, or a portion thereof, may be combined with the alumina during impregnation of the latter with the platinum group component, e.g. using a mixture of chloroplatinic acid and hydrogen chloride. In another situation, the alumina hydrosol typically used to form the alumina component may contain halogen and thus supply at least a portion of the halogen component to the finished composition, in any case the halogen will be composed with the alumina carrier in such a manner. that results in a finished composite material containing from approx. 0.1 # to approx. And preferably from about 1.5 #. 0.4 to approx. 0.9% by weight halogen, calculated on an elemental basis.

Som anført ovenfor indeholder katalysatoren ifølge opfindelsen tillige en metallisk komponent fra platingruppen. Skønt den foreliggende opfindelse specielt er rettet på en sammensat katalysator, der indeholder platin, (og på en fremgangsmåde til anvendelse af.denne) skal den forstås som omfattende andre platingruppemetaller, f.eks. palladium, rhodium og ruthenium. Den metalliske komponent fra platingruppen, såsom platin, kan forefindes inden i den færdige, sammensatte katalysator som en forbindelse, f.eks. et oxid, sulfid eller halogenid, eller i fri tilstand. Almindeligvis er mængden af den metalliske komponent 8 141606 fra platingruppen, der er til stede i den færdige katalysator, lille sammenlignet med mængderne af de andre komponenter, som er forbundet dermed. Faktisk udgør den metalliske komponent fra platingruppen almindeligvis fra ca, 0,05 til ca. 1,0 vægt-$ af den færdige, sammensatte katalysator, beregnet på grundstofbasis. Fortrinlige resultater opnås, når katalysatoren indeholder fra ca. 0,5 til ca. 0,9 vægt-^ af platingruppemetallet.As noted above, the catalyst of the invention also contains a metallic component of the plate group. Although the present invention is specifically directed to a composite catalyst containing platinum (and to a method of using it), it is to be understood as comprising other platinum group metals, e.g. palladium, rhodium and ruthenium. The metallic component of the platinum group, such as platinum, may be present within the finished composite catalyst as a compound, e.g. an oxide, sulfide or halide, or in the free state. Generally, the amount of the metallic component 8 141606 from the plate group present in the final catalyst is small compared to the amounts of the other components associated therewith. In fact, the metallic component of the plate group is usually from about 0.05 to ca. 1.0 wt- $ of the finished composite catalyst, calculated on an elemental basis. Excellent results are obtained when the catalyst contains from ca. 0.5 to approx. 0.9 weight percent of the plate group metal.

Platingruppemetallet kan inkorporeres i den sammensatte katalysator på hvilken som helst egnet måde, såsom ved samudfældning eller samgelatinering med aluminiumoxidbæreren. ionbytning med aluminium-oxidbæreren og/eller aluminiumoxidhydrogelen, eller ved imprægnering af aluminiumoxidbæreren og/eller aluminiumoxidhydrogelen på et hvilket som helst trin af dens fremstilling og enten efter eller før kalcine-ring af aluminiumoxidhydrogelen. Den foretrukne fremgangsmåde til fremstilling af katalysatoren indebærer anvendelse af en vandopløselig forbindelse af platingruppemetallet til imprægnering af aluminiumoxidbæreren. F.eks« kan platin sættes til bæreren ved.blanding af den sidstnævnte med en vandig opløsning af ehlorplatinsyre. Andre vandopløselige platinforbindelser kan anvendes som imprægneringsopløsninger, herunder f.eks, ammoniumchlorplatinat, platinchlorid og dinitrodiamino-platin. Anvendelse af en platin-chlor-forbindelse, såsom chlorplatin-syre, foretrækkes, da det letter inkorporeringen af både platinkomponenten og i det mindste en mindre mængde af halogenkomponenten i et enkelt trin. Hydrogenchlorid sættes sædvanligvis også til imprægneringsopløsningen for yderligere at lette inkorporeringen af halogenkomponenten. Desuden foretrækkes det almindeligvis at imprægnere bæreren, efter den er blevet kalcineret, for at gøre risikoen for at bortvaske de værdifulde platinmetalforbindelser så lille som mulig. I nogle tilfælde kan det imidlertid være fordelagtigt at imprægnere bæreren, når den er i en gelatineret tilstand. Efter imprægneringen tørres den resulterende, imprægnerede bærer og underkastes en højtempera-turkalcinerings- eller -oxidationsbehandling, som er identisk med den, der er beskrevet ovenfor i forbindelse med beskrivelsen af fremstillingen af aluminiumoxidbæreren.The plate group metal can be incorporated into the composite catalyst in any suitable manner, such as by co-precipitation or co-gelatinization with the alumina support. ion exchange with the alumina carrier and / or alumina hydrogel, or by impregnating the alumina carrier and / or alumina hydrogel at any stage of its preparation and either after or before calcining the alumina hydrogel. The preferred process for preparing the catalyst involves the use of a water-soluble compound of the plate group metal for impregnating the alumina support. For example, platinum can be added to the carrier by mixing the latter with an aqueous solution of ehloroplatinic acid. Other water-soluble platinum compounds can be used as impregnation solutions, including, for example, ammonium chloroplatinate, platinum chloride and dinitrodiamino-platinum. Use of a platinum-chloro compound, such as chloroplatinic acid, is preferred as it facilitates the incorporation of both the platinum component and at least a minor amount of the halogen component in a single step. Hydrogen chloride is also usually added to the impregnation solution to further facilitate the incorporation of the halogen component. In addition, it is generally preferred to impregnate the carrier after it has been calcined to minimize the risk of washing away the valuable platinum metal compounds. However, in some cases, it may be advantageous to impregnate the carrier when in a gelatinized state. Following the impregnation, the resulting impregnated support is dried and subjected to a high temperature calcination or oxidation treatment identical to that described above for the description of the alumina carrier preparation.

En anden essentiel bestanddel af katalysatoren ifølge opfindelsen er rheniumkomponenten. Denne komponent kan være til stede som et frit metal, som en kemisk forbindelse, såsom oxidet, sulfidet eller halogenidet, eller i en fysisk eller kemisk associering med aluminiumoxidbæreren og/eller de andre komponenter i katalysatoren. Almindeligvis anvendes rheniumkomponenten i en mængde, som resulterer i en færdig, 9 141606 sammensat katalysator, der indeholder fra ca. 0,05 til ca. 1,0 vægt-# rhenium, beregnet som et frit metal. Rheniumkamponenten kan inkorporeres i den sammensatte katalysator på en hvilken som helst egnet måde og på et hvilket som helst trin i fremstillingen af katalysatoren.Another essential component of the catalyst of the invention is the rhenium component. This component may be present as a free metal, as a chemical compound such as the oxide, sulfide or halide, or in a physical or chemical association with the alumina carrier and / or the other components of the catalyst. Generally, the rhenium component is used in an amount which results in a final catalyst containing from 0.05 to approx. 1.0 weight-rhenium, calculated as a free metal. The rhenium component can be incorporated into the composite catalyst in any suitable manner and at any stage in the preparation of the catalyst.

Som en generel regel gælder, at det er tilrådeligt at indføre rheniumet på et senere trin af fremstillingen, for at det kostbare metal ikke skal gå tabt på grund af efterfølgende bearbejdning, der indebærer vaskning og rensningsbehandlinger. Metoden til inkorporering af rhe-niumkomponenten kan indebære imprægnering af aluminiumoxidbæreren, enten før, under eller efter at de andre komponenter, der er omtalt ovenfor, er tilsat. Imprægneringsopløsningen kan i nogle tilfælde være en vandig opløsning af et egnet rheniumsalt, såsom ammonium-perrhenat, natrium-perrhenat, kalium-perrhenat og lignende salte. Desuden kan en vandig opløsning af rheniumhalogenider, såsom chloridet, om ønsket anvendes. Den foretrukne imprægneringsopløsning er imidlertid en vandig opløsning af perrheniumsyre. I almindelighed kan rheniumkomponenten imprægneres, enten forud for, samtidigt med eller efter at den metalliske komponent fra platingruppen sættes til bæreren. Imidlertid har det vist sig, at de bedste resultater opnås, når rheniumkomponenten imprægneres samtidigt med platingruppekomponenten. En foretrukket imprægneringsopløsning indeholder derfor chlorplatinsyre, hydrogenchlorid og perrheniumsyre.As a general rule, it is advisable to introduce the rhenium at a later stage of manufacture so that the precious metal will not be lost due to subsequent machining involving washing and purification treatments. The method of incorporating the rhenium component may involve impregnating the alumina support either before, during or after the other components mentioned above are added. The impregnation solution may in some cases be an aqueous solution of a suitable rhenium salt such as ammonium perrhenate, sodium perrhenate, potassium perrhenate and similar salts. In addition, an aqueous solution of rhenium halides, such as the chloride, can be used if desired. However, the preferred impregnation solution is an aqueous solution of perrhenic acid. In general, the rhenium component can be impregnated either before, simultaneously with or after the metallic component of the plate group is added to the support. However, it has been found that the best results are achieved when the rhenium component is impregnated simultaneously with the platinum group component. Therefore, a preferred impregnation solution contains chloroplatinic acid, hydrogen chloride and perrhenic acid.

En særlig foretrukket, sammensat katalysator fremkommer, når vægtforholdet mellem rheniumkomponent og platingruppekomponent (beregnet på grundstofbasis) ligger mellem ca. 0,05:1 og ca. 2,75:1· Dette gælder især, når den samlede vægt af rheniumkomponenten plus platingruppekomponenten i den sammensatte katalysator ligger mellem ca.A particularly preferred composite catalyst is obtained when the weight ratio of rhenium component to platinum group component (calculated on an elemental basis) is between approx. 0.05: 1 and approx. 2.75: 1 · This is especially true when the total weight of the rhenium component plus the platinum group component of the composite catalyst is between approx.

0,2 og ca. 1,5 vægt-#, fortrinsvis mellem ca. 0,4 og ca. 1,0 vægt-#, beregnet på grundstofbasis. I overensstemmelse hermed er eksempler på særlig foretrukne, sammensatte katalysatorer sådanne^ som indeholder: 0,1 vægt-# Re + 0,65 vægt-# Pt, 0,2 vægt-# Re + 0,55 vægt-# Pt, 0,575 vægt—# Re + 0,575 vægt-# Pt, 0,55 vægt-# Re + 0,20 vægt-# Pt, og 0,65 vægt-# Re + 0,10 vægt-# Pt.0.2 and approx. 1.5 wt. #, Preferably between ca. 0.4 and approx. 1.0 weight- #, calculated on an elemental basis. Accordingly, examples of particularly preferred composite catalysts are those containing: 0.1 wt # Re + 0.65 wt # Pt, 0.2 wt # Re + 0.55 wt # Pt, 0.575 wt - # Re + 0.575 wt # Pt, 0.55 wt # Re + 0.20 wt # Pt, and 0.65 wt # Re + 0.10 wt # Pt.

Uanset hvordan komponenterne i katalysatoren sammensættes med aluminiumoxidbæreren, vil den færdige katalysator almindeligvis blive tørret ved en temperatur på fra ca. 95°C til ca. 5l6°C i et tidsrum på fra ca. 2 til 24 timer eller mere og sluttelig kalcineret ved en temperatur på fra ca. 571°C til ca. 595°C i et tidsrum på fra ca. 0,5 til 10 timer, fortrinsvis fra ca. 1 til ca. 5 timer.Regardless of how the components of the catalyst are combined with the alumina support, the finished catalyst will generally be dried at a temperature of from 95 ° C to approx. 5 ° C for a period of from about 2 to 24 hours or more and finally calcined at a temperature of approx. 571 ° C to approx. 595 ° C for a period of approx. 0.5 to 10 hours, preferably from ca. 1 to approx. 5 hours.

10 U160610 U1606

Det foretrækkes, at den resulterende, kalcinerede, sammensatte katalysator underkastes en praktisk taget vandfri reduktion forud for dens anvendelse ved omdannelsen af carbonhydrider. Dette trin er udtænkt til sikring af en ensartet og findelt dispersion af de metalliske komponenter gennem hele aluminiumoxidbæreren. I dette trin anvendes der som reduktionsmiddel fortrinsvis praktisk taget rent og tørt hydrogen (dvs. indeholdende under 5 dpm E^O efter rumfang). Reduktionsmidlet bringes i kontakt med den kalcinerede katalysator ved en temperatur på fra oa. 427°C til ca. 649°0 og i et tidsrum fra ca. 0,5 til 10 timer eller derover og under alle omstændigheder i et tidsrum, som er effektivt til praktisk taget fuldstændig reduktion af begge metalliske komponenter til deres elementære tilstand. Denne reduktionsbehandling kan gennemføres in situ som en del af igangsætningen (dvs. i det reaktionskammer, hvor den skal anvendes), hvis der træffes foranstaltninger til forudgående tørring af anlægget til en praktisk taget vandfri tilstand, og hvis der anvendes praktisk taget vandfrit hydrogen.It is preferred that the resulting calcined composite catalyst be subjected to a practically anhydrous reduction prior to its use in the conversion of hydrocarbons. This step is designed to ensure a uniform and finely dispersed dispersion of the metallic components throughout the alumina support. In this step, as the reducing agent, preferably pure and dry hydrogen (i.e. containing less than 5 ppm E 2 O by volume) is used. The reducing agent is contacted with the calcined catalyst at a temperature of, among other things. 427 ° C to approx. 649 ° 0 and for a period of approx. 0.5 to 10 hours or more and, in any case, for a period of time effective for practically complete reduction of both metallic components to their elemental state. This reduction treatment can be carried out in situ as part of the commissioning (i.e., in the reaction chamber where it is to be used) if measures are taken to pre-dry the plant to a practically anhydrous state and if practically anhydrous hydrogen is used.

Skønt dette ikke er essentielt, kan den resulterende, reducerede, sammensatte katalysator i visse tilfælde med fordel underkastes en præsulf idering, som er beregnet på inkorporering i den sammensatte katalysator af fra ca. 0,05 til ca. 0,50 vægtprocent svovl, beregnet som grundstof. Denne præsulfideringsbehandling sker fortrinsvis i nærværelse af hydrogen og en egnet, svovlholdig forbindelse, f o eks. hydrogensulfid, en mercaptan med lille molekylvægt eller et organisk sulfid. Denne proces omfatter behandling af den reducerede katalysator med en sulfiderende gas, såsom en blanding af hydrogen og hydrogensulfid, indeholdende ca. 10 mol hydrogen pr. mol hydrogensulfid ved betingelser, som bevirker den ønskede inkorporering af svovl, og som almindeligvis omfatter en temperatur, som varierer fra ca. 10°C op til ca. 595°C eller derover.Although not essential, the resulting reduced composite catalyst may in some cases advantageously be subjected to a precipitation which is intended for incorporation into the composite catalyst of from 0.05 to approx. 0.50% by weight of sulfur, calculated as elemental. This presulfidation treatment is preferably carried out in the presence of hydrogen and a suitable sulfur-containing compound, for example hydrogen sulfide, a low molecular weight mercaptan or an organic sulfide. This process comprises treating the reduced catalyst with a sulfiding gas, such as a mixture of hydrogen and hydrogen sulfide, containing approx. 10 moles of hydrogen per moles of hydrogen sulfide under conditions which effect the desired incorporation of sulfur and which generally comprise a temperature which varies from ca. 10 ° C up to approx. 595 ° C or higher.

Ifølge den foreliggende opfindelse bringes en earbonhydrid-chargeblanding og hydrogen i kontakt med en katalysator af den ovenfor beskrevne type i en carbonhydridomdannelseszone. Denne kontakt kan opnås ved anvendelse af katalysatoren i et system med fikseret masse, et system med en masse, som bevæger sig, et system med fluidi-seret masse eller ved drift af den portionsvise type. I betragtning af faren for tab af den værdifulde katalvsator som følge af slid og i betragtning af velkendte driftsfordele foretrækkes det imidlertid 11 U16Q6 at anvende et system med fikseret masse. I dette system forvarmes en hydrogenrig gas og chargeblandingen ved hjælp af et vilkårligt, egnet opvarmningsorgan til den ønskede reaktionstemperatur og ledes derefter ind i en omdannelseszone indeholdende en fikseret masse af den ovenfor karakteriserede katalysatortype. Det vil forstås, at omdannelseszonen kan omfatte en eller flere adskilte reaktorer med egnede organer derimellem, som sikrer, at den ønskede omdannelsestemperatur opretholdes ved tilgangen til hver enkelt reaktor. Reaktanterne kan bringes i kontakt med katalysatormassen i enten opadgående, nedadgående eller radial strømning, idet dette sidstnævnte foretrækkes. Desuden kan reaktanterne være i flydende fase, en blandet væske-damp-fase eller dampfase, når de kommer i kontakt med katalysatoren, idet dog de bedste resultater opnås i dampfasen.According to the present invention, an hydrocarbon charge mixture and hydrogen are contacted with a catalyst of the type described above in a hydrocarbon conversion zone. This contact can be achieved by using the catalyst in a system of fixed mass, a system of moving mass, a system of fluidized mass or of operation of the batch type. However, given the danger of loss of the valuable catalyst due to wear and tear and well known operating advantages, it is preferred to use a fixed mass system. In this system, a hydrogen-rich gas and the charge mixture are preheated by any suitable heating means to the desired reaction temperature and then passed into a conversion zone containing a fixed mass of the above-described catalyst type. It will be appreciated that the conversion zone may comprise one or more separate reactors with suitable means therebetween, ensuring that the desired conversion temperature is maintained at the access to each reactor. The reactants can be contacted with the catalyst mass in either upward, downward or radial flow, the latter being preferred. In addition, the reactants may be in the liquid phase, a mixed liquid-vapor phase, or vapor phase when they come into contact with the catalyst, however the best results are obtained in the vapor phase.

Når katalysatoren ifølge opfindelsen anvendes ved reforming, vil reformingssystemet omfatte en reformingszone indeholdende en fikseret masse af den ovenfor karakteriserede katalysatortype.When the catalyst of the invention is used in reforming, the reforming system will comprise a reforming zone containing a fixed mass of the above-described catalyst type.

Denne reformingszone kan være én eller flere adskilte reaktorer med egnede opvarmningsorganer derindimellem 12. kompensation for den en-doterme natur af de reaktioner, som finder sted i hver enkelt katalysatormasse. Den carbonhydridfødestrøm, som chargeres til reformingssystemet, vil omfatte carbonhydridfraktioner indeholdende naphthener og paraffiner, som koger i benzinintervallet. De foretrukne chargeblandinger er dem, som i det væsentlige består af naphthener og paraffiner, skønt der i visse tilfælde også kan være aromatiske forbindelser og/eller olefiner til stede. En foretrukket gruppe chargeblandinger omfatter "straight run”-benziner, naturligt forekommende benziner, syntetiske benziner og lignende. På den anden side er det ofte fordelagtigt at chargere termisk eller katalytisk krakkede benziner eller højere kogende fraktioner deraf, betegnet tunge naphtha-er. Blandinger af "straight run"- og krakkede benziner kan også med fordel anvendes. Benzinchargeblandingen kan være en benzin med fuldt kogeinterval med et begyndelseskogepunkt på fra ca. 10°C til ca. 66°C og et slutkogepunkt på mellem ca. 163°C og ca. 219°CJ, eller den kan være en udvalgt fraktion deraf, som almindeligvis vil være en høje-rekogende fraktion, almindeligt betegnet som'en tung naphtha, f.eks. en naphtha, som koger i intervallet fra 0^ til 204°C. I visse tilfælde er det også fordelagtigt at chargere rene carbonhydrider eller blandinger af carbonhydrider, som er blevet ekstraheret fra carbon- 12 141606 liydrid.de stillat er - f.eks. en ligekædet paraffin - som skal omdannes til aromatiske forbindelser. Det foretrækkes, at disse chargeblandinger om nødvendigt behandles ved konventionelle forbehandlingsmetoder til fjernelse af praktisk taget alle svovlholdige, nitrogen-holdige og vandafgivende urenheder derfra.This reforming zone may be one or more separate reactors with suitable heating means therebetween, in compensation for the endothermic nature of the reactions taking place in each catalyst mass. The hydrocarbon feed stream charged to the reforming system will include hydrocarbon fractions containing naphthenes and paraffins boiling in the gasoline range. The preferred charge mixtures are those consisting essentially of naphthenes and paraffins, although in some cases aromatic compounds and / or olefins may also be present. A preferred group of charge mixtures include straight run gasoline, naturally occurring gasoline, synthetic gasoline, etc. On the other hand, it is often advantageous to charge thermally or catalytically cracked gasoline or higher boiling fractions thereof, termed heavy naphtha. "straight run" and cracked gasoline can also be used advantageously. The gasoline charge mixture can be a full-boil gasoline having an initial boiling point of from about 10 ° C to about 66 ° C and a final boiling point of between about 163 ° C and about 219 ° C, or it may be a selected fraction thereof, which will generally be a high-boiling fraction, commonly referred to as a heavy naphtha, for example a naphtha boiling in the range of 0 ° to 204 ° C. In some cases, it is also advantageous to charge pure hydrocarbons or mixtures of hydrocarbons which have been extracted from hydrocarbons which are, for example, a straight-chain paraffin, which must be converted to aromatic compounds. It is preferred that these charge mixtures, if necessary, be treated by conventional pretreatment methods to remove virtually all sulfur-containing, nitrogen-containing and water-releasing impurities therefrom.

Yed andre udførelsesformer for carbonhydridomdannelse vil chargeblandingen være af den konventionelle type, som sædvanligvis anvendes til den specielle slags carbonhydridomdannelse, som gennemføres. Yed f.eks. en isomerisering kan chargeblandingen være en pa-raffinisk blanding, som er rig på normale paraffiner med 4-8 carbon-atomer, eller en n-butanrig blanding eller en n-hexanrig blanding osv. Yed hydro krakning kan chargeblandingen være en gasolie, f.eks. tung Hstraight run"-gasolie eller tung, krakket eyclusolie. Desuden kan alkylaromatiske forbindelser hensigtsmæssigt isomeriseres ved anvendelse af den her omhandlede katalysator. På samme måde kan rene, eller praktisk taget rene, carbonhydrider omdannes til mere værdifulde produkter ved anvendelse af den her omhandlede katalysator ved en vilkårlig af de carbonhydridomdannelsesprocesser, som fremmes ved hjælp af en katalysator med dobbelt funktion.In other embodiments of hydrocarbon conversion, the charge mixture will be of the conventional type usually used for the particular kind of hydrocarbon conversion being carried out. Yed e.g. in an isomerization, the charge mixture may be a paraffinic mixture rich in normal paraffins of 4-8 carbon atoms, or an n-butane-rich mixture or an n-hexane-rich mixture, etc. eg. heavy Hstraight run gas oil or heavy cracked eyclus oil. In addition, alkyl aromatic compounds can be conveniently isomerized using the present catalyst. Similarly, pure, or practically pure, hydrocarbons can be converted into more valuable products using the present catalyst. by any of the hydrocarbon conversion processes promoted by a dual function catalyst.

Kår fremgangsmåden ifølge opfindelsen anvendes ved en reforming, er det et essentielt træk, at den sammensatte katalysator anvendes i et praktisk taget vandfrit miljø. Det er vigtigt, at den samlede vandmængde, som kommer ind i reformingszonen fra en vilkårlig kilde, holdes på et niveau på ikke over 50 dele pr. million (dpm) efter vægt udtrykt som vægten af ækvivalent vand i chargeblandingen. Yed udtrykket "ækvivalentvand” skal forstås vand, som er til stede som vand, plus det vand, som kan dannes ud fra vandprecursorer, som er til stede i chargeblandingen. Almindeligvis kan dette opnås ved omhyggelig regulering af det vand, som findes i chargeblandingen og i hydrogenstrømmen. Chargeblandingen kan tørres ved anvendelse af vilkårlige, egnede tørreorganer, såsom en konventionel, fast adsorbent med høj selektivitet for vand, f.eks. krystallinske natriumeller calciumaluminiumsilicater, silicagel, aktiveret aluminiumoxid, molekylsigter, vandfrit calciumsulfat, natrium med højt overfladeareal og lignende adsorbenter. På samme måde kan vandindholdet af chargeblandingen indstilles ved hjælp af egnede afdrivninger i f.eks. en fraktioneringskolonne. I visse tilfælde kan en kombination af adsorbenttørring og destillationstørring anvendes med fordel til 15 141606 gennemførelse af næsten fuldstændig fjernelse af vand fra chargeblan-dingen. ChargeblancLingen tørres fortrinsvis til et niveau svarende til under 20 dpm. ækvivalentvand* Almindeligvis foretrækkes det at tørre den hydrogenstrøm, som kommer ind i hydrogenomdannelseszonen, til et niveau på ca. 10 dpm..vand efter rumfang eller derunder. Det-te kan hensigtsmæssigt opnås, ved at hydrogenstrømmen bringes i kontakt med et egnet tørremiddel, f.eks. de ovenfor nævnte.If the process of the invention is used in a reforming, it is an essential feature that the composite catalyst is used in a practically anhydrous environment. It is important that the total volume of water entering the reform zone from any source is kept at a level not exceeding 50 parts per square meter. million (ppm) by weight expressed as the weight of equivalent water in the charge mixture. By the term "equivalent water" is meant water which is present as water, plus the water which can be formed from water precursors present in the charge mixture. This can usually be achieved by careful regulation of the water contained in the charge mixture and The charge mixture can be dried using any suitable drying means, such as a conventional solid adsorbent with high selectivity for water, for example crystalline sodium or calcium aluminum silicates, silica gel, activated alumina, molecular sieves, anhydrous calcium sulfate, high surface area sodium and the like. Similarly, the water content of the charge mixture can be adjusted by suitable stripping in, for example, a fractionation column, in some cases a combination of adsorbent drying and distillation drying can be used advantageously to accomplish almost complete removal of water from the charge mixture. The charge blend is preferably dried to a level eau equivalent to less than 20 ppm. equivalent water * Generally, it is preferable to dry the hydrogen stream entering the hydrogen conversion zone to a level of approx. 10 ppm..water by volume or less. This can conveniently be achieved by contacting the hydrogen stream with a suitable desiccant, e.g. those mentioned above.

Yed reforming udtages en afgangsstrøm fra reformingszonen, hvilken afgangsstrøm ledes gennem en kondensator til en adskillelseszone, som typisk holdes på ca. 10°0, og hvori en hydrogenrig gas skilles fra et væskeprodukt med højt ootantalj almindeligvis betegnet et reformat. Fortrinsvis ledes i det mindste en del af den hydrogenrige gas gennem en adsorptionszone indeholdende en adsorbent, som er selektiv for vand. Den resulterende, praktisk taget vandfrie hydrogenstrøm recirkuleres derefter ved hjælp af en egnet kompressor tilbage til reformingszonen. Væskefasen fra adskillelseszonen behandles almindeligvis i et fraktioneringssystem til indstilling af dens butankoncentration og således regulere flygtigheden i det resulterende reformat.During reforming, a discharge current is withdrawn from the reforming zone, which discharge current is passed through a capacitor to a separation zone which is typically maintained at approx. 10 ° 0, wherein a hydrogen-rich gas is separated from a liquid product with a high oot number, commonly referred to as a reformate. Preferably, at least a portion of the hydrogen-rich gas is passed through an adsorption zone containing an adsorbent which is selective to water. The resulting virtually anhydrous hydrogen stream is then recycled back to the reforming zone by a suitable compressor. The liquid phase from the separation zone is generally treated in a fractionation system to adjust its butane concentration and thus regulate the volatility of the resulting reformate.

De betingelser, som anvendes i de talrige andre carbonhy-dridomdannelser, som falder inden for rammerne af den foreliggende opfindelse, er dem, som sædvanligvis anvendes til den specielle reaktion eller kombination af reaktioner, som skal gennemføres. F.eks. omfatter betingelser for isomerisering af alkylaromatiske carbonhy-drider en temperatur på fra.ca. 0°0 til ca. 538°C, et tryk på fra atmosfæretryk til ca. 102 ato, et molforhold mellem hydrogen og car-bonhydrid på fra.ca. 0,5:1 til ca. 20:1 og en væskestrømningshastighed (VSH) - beregnet som det væskerumfang af chargeblandingen, som pr. time kommer i kontakt med katalysatoren, divideret med det rumfang katalysator, som findes i omdannelseszonen - på fra ca. 0,5 til 20 rumfang/rumfang/time. Få samme måde omfatter hydrokrakningsbetln-gelser et tryk på fra ca. 34 ato til ca. 204 ato, en temperatur på fra ca. 204°0 til ca. 482°C, en VSH på fra ca. 0,1 til ca. 10 rum-f ang/rumf ang/time og en hydrogencirkulationsmængde på fra 178 til 7 1780 nr pr. kiloliter charge.The conditions used in the numerous other hydrocarbon conversions which fall within the scope of the present invention are those usually used for the particular reaction or combination of reactions to be performed. Eg. conditions for isomerization of alkyl aromatic hydrocarbons include a temperature of about 0 ° 0 to approx. 538 ° C, a pressure of from atmospheric pressure to approx. 102 ato, a molar ratio of hydrogen to hydrocarbon of fra.ca. 0.5: 1 to approx. 20: 1 and a liquid flow rate (VSH) - calculated as the liquid volume of the charge mixture, as per hour comes into contact with the catalyst, divided by the volume of catalyst found in the conversion zone - from approx. 0.5 to 20 volumes / volume / hour. In just the same way, hydrocracking conditions comprise a pressure of from approx. 34 ato to approx. 204 ato, a temperature of approx. 204 ° 0 to approx. 482 ° C, a VSH of approx. 0.1 to approx. 10 rpm / rpm / hour and a hydrogen circulation amount of 178 to 7,1780 Nos. kiloliters of charge.

Ved reforming ifølge opfindelsen vælges det anvendte tryk i området fra ca. 3,4 ato til ca. 68 ato, idet det foretrukne tryk er fra ca. 6,8 ato til ca. 40,8 ato. Det er en særlig fordel ved reformingprocessen ifølge opfindelsen, at den tillader stabil drift 14 141606 ved lavere tryk, end der tidligere er blevet anvendt med godt resultat i såkaldte "kontinuerlige" reformingssystemer, dvs. reforming i perioder på fra ca. 5,25 til ca. 70 kiloliter charge eller derover pr. kg katalysator uden regenerering. Med andre ord tillader katalysatoren ifølge opfindelsen, når den kobles med et praktisk taget vandfrit reformingmiljø, at driften af et kontinuerligt reformings-system gennemføres ved et lavere tryk, dvs. 6,8-23»8 ato, med omtrent samme eller længere katalysatorlevetid før regenerering, end det tidligere er blevet realiseret med konventionelle katalysatorer ved højere tryk, dvs. 27,2-40,8 ato. På den anden side muliggør den foreliggende opfindelses stabilitetstræk, at reforming gennemføres ved tryk på 27,2-40,8 ato under opnåelse af væsentlig forøget katalysatorlevetid før regenerering.In reforming the invention, the applied pressure in the range of approx. 3.4 ato to approx. 68 ato, the preferred pressure being from approx. 6.8 ato to approx. 40.8 ato. It is a particular advantage of the reforming process of the invention that it permits stable operation at lower pressures than has been used previously with good results in so-called "continuous" reforming systems, i.e. reform in periods of approx. 5.25 to approx. 70 kiloliter charge or more per kg of catalyst without regeneration. In other words, the catalyst of the invention, when coupled with a practically anhydrous reforming environment, allows the operation of a continuous reforming system to be carried out at a lower pressure, i.e. 6.8-23 »8 ato, with approximately the same or longer catalyst life before regeneration than has previously been realized with conventional higher pressure catalysts, i.e. 27.2-40.8 ato. On the other hand, the stability feature of the present invention enables reforming to be carried out at pressures of 27.2-40.8 ato to achieve substantially increased catalyst life before regeneration.

På samme måde er den temperatur, som er nødvendig til optimal reforming, almindeligvis lavere end den, som er nødvendig til en lignende reforming under anvendelse af en kendt katalysator af høj kvalitet. Penne væsentlige og ønskelige ejendommelighed ved den foreliggende opfindelse er en konsekvens af den her omhandlede katalysators forbedrede selektivitet for de octantalforbedrende reaktioner, som fortrinsvis induceres ved en typisk reforming. Som følge heraf kræver den foreliggende opfindelse til optimal reforming en temperatur på mellem ca. 427°0 og ca. 593°C, fortrinsvis på mellem ca. 482°0 og ca. 566°0. Det indledende valg af temperatur inden for dette brede interval foretages primært som en funktion af det ønskede octantal i reformatproduktet, idet chargeblandingens og katalysatorens karakteristika tages i betragtning. Derefter forøges temperaturen langsomt under driften til kompensation for den uundgåelige desaktivering, som indtræder, til tilvejebringelse af et produkt med konstant octantal. Det er en fordel ved den foreliggende opfindelse, at den hastighed, hvormed temperaturen skal forøges til opretholdelse af et produkt med konstant octantal, er væsentlig lavere for den her omhandlede katalysator end for en reformingkataly-sator af høj kvalitet, som fremstilles på nøjagtig samme måde som katalysatoren ifølge opfindelsen, bortset fra at rheniumkomponenten udelades. Ved anvendelse af katalysatoren ifølge opfindelsen er tabet al 05+-udbytte for en given temperaturforøgelse desuden væsentlig lavere end for en kendt reformingkatalysator af høj kvalitet.Similarly, the temperature required for optimal reforming is generally lower than that required for similar reforming using a known high quality catalyst. The substantial and desirable properties of the present invention are a consequence of the improved selectivity of the present catalyst for the octane number enhancing reactions which are preferably induced by a typical reforming. As a result, the present invention requires for optimum reforming a temperature of between approx. 427 ° 0 and approx. 593 ° C, preferably between about 482 ° 0 and approx. 566 ° 0th The initial choice of temperature within this wide range is made primarily as a function of the desired octane number in the reformate product, taking into account the characteristics of the charge mix and catalyst. Then, during operation, the temperature is slowly increased to compensate for the inevitable deactivation that occurs to provide a constant octane number product. It is an advantage of the present invention that the rate at which the temperature is to be increased to maintain a constant octane product is substantially lower for the present catalyst than for a high quality reforming catalyst prepared in exactly the same manner. as the catalyst of the invention, except that the rhenium component is omitted. Moreover, when using the catalyst of the invention, the loss of all 05 + yield for a given temperature increase is substantially lower than that of a known high quality reforming catalyst.

Ifølge den her omhandlede reformingproces tilføres der 15 141606 tilstrækkeligt hydrogen til tilvejebringelse af fra ca. 2,0 til ca.According to the reforming process in question, sufficient hydrogen is supplied to provide from ca. 2.0 to approx.

20 mol hydrogen pr. mol carbonhydrid, som kommer ind i reformings-zonen, idet fortrinlige resultater opnås, når fra ca. 7 til ca. 10 mol hydrogen tilføres pr. mol carbonhydrid. På samme måde vælges den ved reforming anvendte VSH i området fra ca. 0,1 til ca. 10,0 rumfang/rumfang/time, idet en værdi på mellem ca. 1,0 og ca. 5,0 rumfang/rumfang/time foretrækkes. I virkeligheden er det en yderligere fordel ved den foreliggende opfindelse, at den for samme streng-hedsniveau tillader, at driften udføres ved højere YSH end den, som normalt kan opnås ved en stabil, kontinuerlig reformingproces med en kendt reformingkatalysator af høj kvalitet. Denne uventede egenskab ved katalysatoren ifølge opfindelsen antages at være en følge af dens usædvanlige reaktion på temperaturvariationer. Ved anvendelse af konventionelle reformingkatalysatorer ved et specificeret strenghedsniveau er det sædvanligvis nødvendigt at arbejde ved lav temperatur og lav YSH, fordi katalysatorens reaktion på hørere temperatur er en stærkt forøget hydrokrakning med ledsagende nedgang i C5 +-udbytte. Katalysatoren ifølge opfindelsen reagerer imidlertid ikke på højere temperaturer på den ventede måde, da den mængde hydrokrakning, som man kommer ud for ved samme temperatur, er væsentlig lavere sammenlignet med den, som man kommer ud for med konventionelle reformingkatalysatorer. I overensstemmelse hermed tillader den her omhandlede katalysator, at et givet strenghedsni-veau opnås ved drift ved højere temperatulr og højere YSH end den, som tidligere har været mulig ved en kontinuerlig reformingproces. Denne sidste fordel er af umådelig økonomisk betydning, da den tillader, at en kontinuerlig reformingproces drives ved samme udbytteniveau med en katalysatorbeholdning, som er mindre end den, som tidligere var nødvendig med konventionelle reformingkatalysatorer, og uden at det går ud over katalysatorlevetiden før regenerering.20 moles of hydrogen per moles of hydrocarbon entering the reforming zone, with excellent results being obtained from approx. 7 to approx. 10 moles of hydrogen are added per day. moles of hydrocarbon. Similarly, the VSH used in reforming is selected in the range from approx. 0.1 to approx. 10.0 volume / volume / hour, with a value of between approx. 1.0 and approx. 5.0 volume / volume / hour is preferred. In fact, it is a further advantage of the present invention that, for the same severity level, it allows the operation to be carried out at higher YSH than can normally be achieved by a stable, continuous reforming process with a known high quality reforming catalyst. This unexpected property of the catalyst of the invention is believed to be due to its unusual reaction to temperature variations. When using conventional reforming catalysts at a specified severity level, it is usually necessary to operate at low temperature and low YSH because the reaction of the catalyst to higher temperature is a greatly increased hydrocracking with accompanying decrease in C5 + yield. However, the catalyst of the invention does not react to higher temperatures in the expected manner, as the amount of hydrocracking experienced at the same temperature is substantially lower compared to that experienced with conventional reforming catalysts. Accordingly, the catalyst of the present invention permits a given level of severity to be achieved by operation at higher temperatures and higher YSH than has previously been possible by a continuous reforming process. This latter advantage is of immense economic importance as it permits a continuous reforming process to be run at the same yield level with a catalyst stock smaller than that previously required with conventional reforming catalysts and without exceeding the catalyst lifetime before regeneration.

De efterfølgende eksempler er medtaget til yderligere illustration af fremstillingen af den sammensatte katalysator ifølge opfindelsen og dennes anvendelse ved omdannelsen af carbonhydrider.The following examples are included for further illustration of the preparation of the composite catalyst of the invention and its use in the conversion of hydrocarbons.

16 14160616 141606

Eksempel 1Example 1

Dette eksempel viser de fordele, som er forbundet med det foretrukne, tørre præreduktionstrin, som anvendes ved fremstilling af katalysatoren ifølge opfindelsen, idet de resultater, som er opnået med tør reduktion og med .våd reduktion, er stillet i kontrast. Denne sidstnævnte situation er, som det vil 'være fagfolk velkendt, typisk for den situation, som man kommer ud for, når en carbonhy-dridomdannelseskatalysator sættes i gang kommercielt uden noget forsøg på regulering af vandmængden i omdannelsesanlægget.This example illustrates the advantages associated with the preferred dry prune reduction step used in preparing the catalyst of the invention, the results obtained with dry reduction and with wet reduction being contrasted. This latter situation, as will be well known to those skilled in the art, is typical of the situation encountered when a hydrocarbon conversion catalyst is commercially launched without any attempt to regulate the amount of water in the conversion plant.

Et aluminiumoxidbæremateriale omfattende 1,6 mm kugler fremstilles ved dannelse af en aluminiumhydroxylchlorids ol , ved at aluminiumhagl opløses i saltsyre, tilsætning af hexamethylentetra-min til solen, gelatinering af den resulterende opløsning, ved at den dryppes ud i et oliebad til dannelse af partikler af en alumi-niumoxidhydrogel, ældning og vaskning af de resulterende partikler og til sidst tørring og kalcinering af de ældede og vaskede partikler til dannelse af gamma-aluminiumoxidpartikler indeholdende ca.An alumina support material comprising 1.6 mm spheres is prepared by forming an aluminum hydroxyl chloride, etc., by dissolving aluminum hail in hydrochloric acid, adding hexamethylenetetramine to the sun, gelatinizing the resulting solution by dropping it into an oil bath to form particles of an alumina hydrogel, aging and washing the resulting particles, and finally drying and calcining the aged and washed particles to form gamma alumina particles containing ca.

0,3 vægtprocent bundet chlorid. Yderligere detaljer om denne metode findes i USA-patentskrift nr. 2.620.314.0.3% by weight of bound chloride. Further details of this method can be found in U.S. Patent No. 2,620,314.

De resulterende gamma-aluminiumoxidpartikler bringes derefter i kontakt med en imprasgneringsopløsning indeholdende chlorpla-. tinsyre, hydrogenchlorid og perrheniumsyre i mængder, som giver et færdigt, sammensat materiale indeholdende 0,60 vægtprocent platin, 0,2 vægtprocent rhenium og 0,85 vægtprocent bundet chlorid, alt beregnet som grundstof. Dernæst tørres de imprægnerede kugler ved en temperatur på 149°C i ca. 1 time og ialcineres i en luftatmosfære ved en temperatur på ca. 524°0 i ca. 1 time.The resulting gamma alumina particles are then contacted with an impregnation solution containing chloroplast. Tinic acid, hydrogen chloride and perrhenic acid in quantities giving a finished composite material containing 0.60% by weight platinum, 0.2% by weight rhenium and 0.85% by weight bound chloride, all calculated as elemental. Next, the impregnated balls are dried at a temperature of 149 ° C for approx. 1 hour and alicinated in an air atmosphere at a temperature of approx. 524 ° 0 for approx. 1 hour.

De resulterende, imprægnerede partikler deles derefter i to grupper, A og B. Dernæst underkastes gruppe. A en våd reduktionsforbehandling, ved at den bringes i kontakt med en hydrogenstrøm indeholdende ca. 500 dpm H^O efter rumfang ved en temperatur på ca. 549°C, et tryk på lidt over atmosfæretryk og en hydrogenstrømningshastighed gennem katalysatorpartikleme, som giver en gas strømningshastighed (GSH) på ca. 720 rumfang/rumfang/time. Denne kontakt fortsættes i ca. 1 time. En prøve af denne katalysator viser sig, når den underkastes røntgenstråleanalyse, at indeholde metalliske krystalliter med en gennemsnitlig størrelse på 200 Å. Den resulterende katalysator betegnes katalysator A.The resulting impregnated particles are then divided into two groups, A and B. Next, the group is subjected. A a wet reduction pretreatment by contacting it with a hydrogen stream containing approx. 500 ppm H 2 O by volume at a temperature of approx. 549 ° C, a pressure slightly above atmospheric pressure and a hydrogen flow rate through the catalyst particles, giving a gas flow rate (GSH) of approx. 720 volume / volume / hour. This contact is continued for approx. 1 hour. A sample of this catalyst, when subjected to X-ray analysis, appears to contain metallic crystallites with an average size of 200 Å. The resulting catalyst is referred to as Catalyst A.

17 14160617 141606

Dernæst reduceres partiklerne fra gruppe B ved hjælp af en praktisk taget vandfri hydrogenstrøm (dvs. indeholdende under 1 dpm H20 efter rumfang) ved betingelser, som er Identiske med de ovenfor anførte. Den resulterende katalysator betegnes katalysator B. Røntgenstråleanalyse af en prøve af denne katalysator viser, at den indeholder metalliske krystalliter af en gennemsnitlig størrelse på under ca. 50 1.Next, the Group B particles are reduced by a practically anhydrous hydrogen stream (i.e. containing less than 1 ppm H 2 O by volume) under conditions identical to those listed above. The resulting catalyst is referred to as Catalyst B. X-ray analysis of a sample of this catalyst shows that it contains metallic crystallites of an average size of less than ca. 50 1.

Derpå underkastes katalysatorerne A og B hver for sig en bedømmelsesprøve af høj strenghed, hvilken prøve er udtænkt til bestemmelse af deres relative aktivitet, selektivitet og stabilitet til omdannelsen af carbonhydrider. Denne prøve består i, at en chargeblanding med et kogepunktsinterval på fra ca. 93°C til 204°C og et lavt octantal på ca. 50 E-l clear (ASIM-test method nr. D908-65) i nærværelse af hydrogen bringes i kontakt med katalysatoren i et reforminganlæg i laboratorieskala, hvilket anlæg omfatter en reaktor indeholdende katalysatoren, en hydrogenfraskillelseszone, en debutanisatorkolonne og egnede opvarmnings-, kondensations- og pum-peorganer osv.Thereafter, catalysts A and B are each subjected to a high-severity assessment sample designed to determine their relative activity, selectivity and stability to the conversion of hydrocarbons. This test consists of a charge mixture with a boiling range of approx. 93 ° C to 204 ° C and a low octane count of approx. 50 El clear (ASIM test method no. D908-65) in the presence of hydrogen is contacted with the catalyst in a laboratory scale reforming plant, which includes a reactor containing the catalyst, a hydrogen separation zone, a debut analyzer column and suitable heating, condensation and pumping means, etc.

I anlægget blandes en hydrogenrecirkulationsstrøm og chargeblandingen, og blandingen opvarmes til den ønskede omdannelsestemperatur. Den resulterende blanding ledes derefter nedad gennem en reaktor indeholdende katalysatoren som en fikseret masse. En afgangsstrøm udtages derpå fra bunden af reaktoren, afkøles til ca. 13°C og ledes til fraskillelseszonen, hvori en hydrogenrig, gasfor-mig fase adskilles fra en væskefase. En del. af den gasformige fase recirkuleres kontinuerligt til opretholdelse af det ønskede molforhold mellem hydrogen og carbonhydrid, og overskuddet fjernes svarende til anlæggets tryk og udvindes som overskydende separatorgas. Den væskefase, som udtages fra fraskillelseszonen, ledes til debuta-nisatorkolonnen, hvori lette produkter fjernes via toppen, og enIn the plant, a hydrogen recycle stream and the charge mixture are mixed and the mixture is heated to the desired conversion temperature. The resulting mixture is then passed down through a reactor containing the catalyst as a fixed mass. A discharge stream is then withdrawn from the bottom of the reactor, cooled to approx. 13 ° C and conducted to the separation zone, in which a hydrogen-rich, gaseous phase is separated from a liquid phase. Part. of the gaseous phase is continuously recycled to maintain the desired molar ratio of hydrogen to hydrocarbon and the excess is removed in accordance with the pressure of the plant and recovered as excess separator gas. The liquid phase withdrawn from the separation zone is directed to the debutizer column, in which light products are removed via the top, and a

Cc+-strøm udvindes som bundprodukt. De betingelser, som anvendes J o ved begge forsøg, er en tilgangstemperatur til reaktoren på 510 0, et afgangstryk fra reaktoren på 6,8 ato, en YSH på 1,5 rumfang/rum-fang/time og et molforhold mellem hydrogen og carbonhydrid ved tilgangen til reaktoren på 10:1. Efter en "line-outn-periode på 4 timer opnås de i tabel I viste resultater ved et 20 timers forsøg.Cc + current is recovered as a base product. The conditions used in both experiments are an inlet temperature of the reactor of 510 0, a discharge pressure of the reactor of 6.8 ato, a YSH of 1.5 vol / vol / hr and a molar ratio of hydrogen to hydrocarbon. at the 10: 1 reactor access. After a 4 hour line-out period, the results shown in Table I are obtained by a 20 hour experiment.

18 14160618 141606

gat) el Ihole) or I

Resultater af reformingsammenligningsforsøgResults of Reform Comparison Trials

Katalysator A BCatalyst A B

0 c tantal af produkt, P-l clear 90,3 101,40 c tantalum of product, P-l clear 90.3 101.4

Aromatiske forbindelser, rumf af fødeblanding 42,0 60,0 0^+ , rumfaf fødeblanding 70,2 76,1Aromatic compounds, volume of feed mixture 42.0 60.0 0 +, space feed 70.2 76.1

Hydrogen, m^/kl af fødeblanding 231 267Hydrogen, m 2 / hr of feed mix 231 267

Ud fra disse data fremgår de gavnlige virkninger af den tørre reduktion som en bemærkelsesværdig forbedring i aktivitet for katalysator B som målt ved produktets octantal og ved en væsentlig forbedring i selektivitet som målt ved C^+-udbyttet og ved hydrogenproduktionen. På samme måde viser katalysatorernes relative produktion af aromatiske forbindelser større dehydroringslutning for katalysator B.From these data, the beneficial effects of the dry reduction appear as a remarkable improvement in activity of catalyst B as measured by the octane number of the product and by a significant improvement in selectivity as measured by the C₂ + yield and hydrogen production. Similarly, the relative production of the aromatics by the catalysts shows greater dehydration slope for catalyst B.

Eksempel 2Example 2

Bette eksempel viser resultaterne af en række bedømmelsesforsøg ved stor strenghed, hvilke forsøg er gennemført med katalysatoren ifølge opfindelsen og med en katalysator, som er fremstillet på nøjagtig samme måde, bortset fra at rhenium ikke var medtaget i den sidstnævnte katalysator. Bisse forsøg er udtænkt således, at katalysatoren udsættes for betingelser, som skulle fremskynde alle ustabilitetsforskelle, som de måtte have.Better examples show the results of a series of high-severity evaluation experiments conducted with the catalyst of the invention and with a catalyst prepared in exactly the same way, except that rhenium was not included in the latter catalyst. These experiments have been conceived to expose the catalyst to conditions that would accelerate any instability differences they might have.

En række katalysatorer fremstilles på den i eksempel 1 beskrevne måde. Koncentrationen af de forskellige komponenter i imprægneringsopløsningen varieres imidlertid til indstilling af koncentrationen af de metalliske komponenter i de færdige katalysatorer på de værdier, som er anført i tabel II. Alle katalysatorerne blev underkastet det i eksempel 1 beskrevne, tørre pisereduktions-trin.A number of catalysts are prepared in the manner described in Example 1. However, the concentration of the various components of the impregnation solution is varied to adjust the concentration of the metallic components of the finished catalysts to the values given in Table II. All the catalysts were subjected to the dry piss reduction step described in Example 1.

label IIlabel II

Sammensætning af katalysatorer - vægt -$Catalyst composition - weight - $

Katalysator Pt Re Cl C 0,75 0 0,85 B 0,75 · 0,1 0,84 E 0,75 0,2 0,83 S 0,55 0,2 0,81 19 141606Catalyst Pt Re Cl C 0.75 0.85 B 0.75 · 0.1 0.84 E 0.75 0.2 0.83 S 0.55 0.2 0.81 19 141606

Katalysator C er repræsentativ for kendte katalysatorer af høj kvalitet og med dobbelt funktion og er her medtaget til sammenligningsformål. De andre katalysatorer repræsenterer katalysatorer ifølge opfindelsen.Catalyst C is representative of known high-quality and dual-function catalysts and is included here for comparison purposes. The other catalysts represent catalysts of the invention.

Disse katalysatorer underkastes hver for sig et reforming-forsøg med en tung Kuwaitnaphtha med de i tabel III viste egenskaber.These catalysts are individually subjected to a heavy Kuwait naphtha reforming experiment with the characteristics shown in Table III.

fabel IIIfable III

Analyse af tung Kuwaitnaphtha Vægtfylde (15,6°C/15,6°C) 0,7375Analysis of Heavy Kuwaitnaphtha Density (15.6 ° C / 15.6 ° C) 0.7375

Begyndelseskogepunkt, °0 84 10 # kogepunkt, °C 96 50 # kogepunkt, °C 124 90 # kogepunkt, °0 161Initial boiling point, ° 0 84 10 # boiling point, ° C 96 50 # boiling point, ° C 124 90 # boiling point, ° 0 161

Slutkogepunkt, °C 182Final boiling point, ° C 182

Svovl, dpm efter vægt- 0,5Sulfur, ppm by weight 0.5

Nitrogen, dpm efter vægt 0,1Nitrogen, ppm by weight 0.1

Aromatiske forbindelser, rumf.-# 8Aromatic Compounds, Spacecraft- # 8

Paraffiner, rumf.-# 71Paraffins, space.- # 71

Naphthener, rumf.-# 21Naphthenes, space.- # 21

Vand, dpm 5,9Water, ppm 5.9

Octantal, F-l Clear 40,0Octantal, F-l Clear 40.0

Alle disse forsøg gennemføres i et reformingssystem, som både i strømningsskema og struktur er praktisk taget identisk med det i eksempel 1 beskrevne, idet der dog er den undtagelse, at der her anvendes en natriumadsorbent med højt overfladeareal på hydrogenrecirkulationsledningen til fjernelse af praktisk taget alt vand derfra. Alle disse forsøg gennemføres således med et indhold af ækvivalent vand på ca. 5,9 dpm HgO ved tilgangen til reformingszonen, hvilket indhold er baseret på den dertil chargerede naphtha.All of these experiments are carried out in a reforming system which, in both flow scheme and structure, is practically identical to that described in Example 1, with the exception, however, that a high surface area sodium adsorbent is used on the hydrogen recycle line to remove virtually all water. from there. Thus, all these tests are carried out with an equivalent water content of approx. 5.9 ppm HgO at the approach to the reform zone, which content is based on the naphtha charged thereto.

Desuden foretages alle forsøg véd et tryk på 6,8 ato under anvendelse af hydrogen i en mængde på 10 mol pr. mol carbonhydrid i naphthafødeblandingen og ved en VSH på 1,5 rumfang/rumfang/time.In addition, all tests are carried out at a pressure of 6.8 ato using hydrogen at an amount of 10 moles per liter. moles of hydrocarbon in the naphtha feed mixture and at a VSH of 1.5 volume / volume / hour.

I overensstemmelse med standardpraksis for kontinuerlige reformings-systemer udvælgeB der et tilsigtet octantal på 100 P-l-clear, og omdannelsestemperaturen i reformingszonen indstilles kontinuerligt for alle forsøg til opnåelse af dette octantal.In accordance with standard practices for continuous reforming systems, B selects an intended octane number of 100 P-l clear, and the conversion temperature in the reforming zone is continuously adjusted for all attempts to obtain this octane number.

Hvert enkelt forsøg bestod af en periode til etablering af jævn drift efterfulgt af seks forsøgsperioder på 24 timer. Resultaterne af forsøgene er anført i tabel IV.Each trial consisted of a period for establishing smooth operation followed by six 24-hour trial periods. The results of the experiments are listed in Table IV.

20 141606 + ΙΑ Ο20 141606 + ΙΑ Ο

VSVS

ft (D I _ _ft (D I _ _

A · O -si- H O LA OA · O -si- H O LA O

in-ii'M·**·»·»·*·* O >3 E U3 ΙΑ IA f Ifi A A P c— t-— t— C"— t-— t— cd ft p 02 ft—' r*3in-ii'M · ** · »·» · * · * O> 3 E U3 ΙΑ IA f Ifi AAP c— t-— t— C "- t-— t— cd ft p 02 ft— 'r * 3

HH

cd "v A a cd ftcd "v A and cd ft

ώ .go t- CM VO OS H fAgo .go t- CM VO OS H fA

QJO ft CM CM CM LA LAQJO ft CM CM CM LA LA

Eh I LA LA LA LA LA LAEh I LA LA LA LA LA LA LA

&D +& D +

ft. LAft. LA

02 O02 O

Sh O VS&Sh O VS &

Oh . Η Φ I ^ _Oh. Φ Φ I ^ _

02 JJ OD O LA N O !A02 JJ OD O LA N O! A

p A ft a, a* a> a» a* a, φ Ο >=E IA LD VO VO ^- A D ί3 t— - t— t"— t— t— t— -Η ΐί Ό f) H W ft'-' •H t>3 A H.p A ft a, a * a> a »a * a, φ Ο> = E IA LD VO VO ^ - AD ί3 t— - t— t" - t— t— t— -Η ΐί Ό f) HW ft '-' • H t> 3 A H.

cd cd ·» -P A - 02 Cd ft „cd cd · »-P A - 02 Cd ft„

i4 SO 4 CO Ol LO OVi4 SO 4 CO Ol LO OV

02 C&3 Η H CM CM CM CM02 C & 3 Η H CM CM CM CM

ft eh la la la lA la LAft eh la la la lA la LA

φ u Φ ?H +φ u Φ? H +

02 LA02 LA

Η OΗ Oh

φ o ^ O ft CD I _ cd -P · H OV CM Ο H 0\ ·**»»> ·* ft O hS VOLA^-ff-ft·^ cd a A p C— C— -b— t— t— t—φ o ^ O ft CD I _ cd -P · H OV CM Ο H 0 \ · ** »»>> * * ft O hS VOLA ^ -ff-ft · ^ cd a A p C— C— -b— t - t— t—

Cd ft PCd ft P

p m ft^ Φ 5¾ «Ρ rH .p m ft ^ Φ 5¾ «Ρ rH.

cd cd ·»cd cd · »

A AA A

H cd ft d M EO LA A N O CVlH cd ft d M EO LA A N O CVl

m (DO r-L H CM CM ΙΑ IAm (DO r-L H CM CM ΙΑ IA

<D EH LA LA LA LA LA LA<D EH LA LA LA LA LA LA LA

Pi ! +Pi! +

> LA> LA

Η OΗ Oh

I—II-I

<D Ο Φ 1 _ „ A A · LA LA LA O VO 00 (d p A ft av a> av ai av ai<D Ο Φ 1 _ „A A · LA LA LA O VO 00 (d p A ft av a> av ai av ai

Eh O i?)E VO lA Ht A CM PEh O i?) E VO lA Ht A CM P

A A p t— t- C—- C— t-A A p t— t— C—— C— t—

cd ft Ucd ft u

02 ft w >3 r-! cd ·> A · cd ft02 ft w> 3 r-! cd ·> A · cd ft

ώ SO t— t- H LA t- Hώ SO t— t- H LA t- H

(DO H CVI A A A Ht(DO H CVI A A A Ht

Eh LA LA LA LA LA LAEh LA LA LA LA LA LA LA

Φ ft O · H Sh fid rl (Μ ΙΛ 4 invo Φ ft 21 141606O ft O · H Sh fid rl (Μ ΙΛ 4 invo Φ ft 21 141606

Som forklaret ovenfor er den temperatur, som er nødvendig til opnåelse af det tilsigtede octantal ved konstante betingelser for samme chargeblanding, et godt mål for katalysatorens reelle aktivitet. I overensstemmelse med denne sondring kan det ses, at katalysatorerne D, E og F alle er mere aktive gennem hele forsøget end katalysator C. F.eks. er katalysator E 3*0°C mere aktiv ved forsøgets påbegyndelse, 9,0°C mere aktiv ved afslutningen af 2. periode, 9,0°C mere aktiv ved afslutningen af 3· periode, 11,0°C mere aktiv ved afslutningen af 4. periode, 11,0°C mere aktiv ved afslutningen af 5· periode og 12,0°C mere aktiv ved afslutningen af 6. periode.As explained above, the temperature required to obtain the intended octane at constant conditions for the same charge mixture is a good measure of the catalyst's real activity. In accordance with this distinction, it can be seen that catalysts D, E and F are all more active throughout the experiment than catalyst C. For example. catalyst E is 3 * 0 ° C more active at the start of the experiment, 9.0 ° C more active at the end of the 2nd period, 9.0 ° C more active at the end of the 3 · period, 11.0 ° C more active at the end the end of the 4th period, 11.0 ° C more active at the end of the 5 · period and 12.0 ° C more active at the end of the 6th period.

På samme måde er C^+-udbyttet i rumfangsprocent ved samme octantal en førsteklasses indikator for katalysatorselektiviteten til reformingreaktioner. Her viser katalysatorerne D, E og P, katalysatorerne ifølge opfindelsen, væsentlig bedre gennemsnitsudbytte over den totale forsøgsperiode. F.eks. viser katalysator E et gennemsnitligt CL+-udbytte på ca. 76,0 rumfangsprocent for hele forti søgsperioden i kontrast til den gennemsnitlige udbytte med katalysator C, kontrolkatalysatoren, på ca. 74,0 rumfangsprocent.Similarly, the C + + yield in volume at the same octane number is a prime indicator of catalyst selectivity for reforming reactions. Here, the catalysts D, E and P, the catalysts of the invention, show substantially better average yield over the total test period. Eg. Catalyst E shows an average CL + yield of approx. 76.0% by volume for the entire recovery period, in contrast to the average yield of catalyst C, the control catalyst, of approx. 74.0 by volume.

Som nævnt ovenfor genspejler stabiliteten af en reforming-katalysator, som anvendes til opnåelse af et produkt med konstant octantal, sig i temperaturændringshastigheden og C^+-udbyttet pr. tidsenhed. Tabel V viser disse værdier for katalysatorerne C, D, E og F tillige med den carbonmængde i vægtprocent, som blev fundet på katalysatorerne efter forsøgene.As mentioned above, the stability of a reforming catalyst used to obtain a product with a constant octane reflects in the rate of change of temperature and the C unit of time. Table V shows these values for catalysts C, D, E and F as well as the amount of carbon in weight found on the catalysts after the experiments.

Tabel V - OennemsnitsstabilitetsdataTable V - Average stability data

Katalysator AT, °C/kl/kg K AC,-+, rumf. -#/kl/kg Vægt-# carbon C 163,6 -12,9 4,90 D 147,7 - 6,3 6,50 E +4l,2 + 2,9 6,53 P +44,5 - 8,6 4,95 x kl/kg = kiloliter naphtha chargeret pr. kilogram katalysatorCatalyst AT, ° C / kg / kg K AC, - +, vol. - # / kl / kg Weight # carbon C 163.6 -12.9 4.90 D 147.7 - 6.3 6.50 E + 4.1, 2 + 2.9 6.53 P +44.5 - 8.6 4.95 x kl / kg = kiloliters of naphtha charged per kilogram of catalyst

Det vil forstås, at størrelserne af disse tal ikke er repræsentative for de tal, som ville blive opnået ved det lavere strenghedsniveau, som er kommerciel praksis, idet de snarere genspejler de strenge betingelser, som er anvendt ved det foreliggende forsøg. Af tabel V kan det ses, at katalysatorerne ifølge 22 141606 opfindelsen alle er væsentlig mere stabile end kontrollen, både med hensyn til temperatur og til C,_+-udbytte. I virkeligheden viste katalysator E sig at have en positiv hældning for C^+-udbyttet over den relativt korte forsøgsperiode. Ud fra disse data er de her omhandlede katalysatorers overlegne stabilitet umiddelbart indlysende.It will be appreciated that the magnitudes of these figures are not representative of the figures that would be obtained at the lower level of stringency which is commercial practice, rather reflecting the strict conditions used in the present experiment. From Table V, it can be seen that the catalysts of the invention are all substantially more stable than the control, both in temperature and in C + + yield. In fact, catalyst E was found to have a positive slope for the C 2+ yield over the relatively short experimental period. From this data, the superior stability of the catalysts in question is immediately evident.

De anførte data for carbonmængden i vægtprocent på katalysatoren viser, at katalysatorerne ifølge opfindelsen tilsyneladende ikke virker til undertrykkelse af koksdannelsen på katalysatoren i nogen væsentlig grad, og det ser ud til, at det væsentlige træk snarere er, at deres ydeevne er langt mindre følsom for tilstedeværelsen af koks på katalysatoren, end det er tilfældet for konventionelle reformingkatalysatorer.The data given for the amount of carbon by weight of the catalyst shows that the catalysts of the invention do not appear to act to suppress the coke formation on the catalyst and it appears that the essential feature is rather that their performance is far less sensitive to the presence of coke on the catalyst than is the case for conventional reforming catalysts.

Eksempel 5Example 5

Dette eksempel viser de uheldige virkninger af tilstedeværelsen af vand under en reforming med katalysatoren ifølge opfindelsen.This example shows the adverse effects of the presence of water during a reforming with the catalyst of the invention.

De ved alle forsøg anvendte katalysatorer er identiske med den i eksempel 2 anvendte katalysator E.The catalysts used in all experiments are identical to the catalyst E. used in Example 2

Forsøgene gennemføres alle i et anlæg, som har identisk strømskema, og som anvender samme betingelser, som blev anvendt 1 eksempel 2, herunder anvendelsen af natrium med højt overfladeareal til tørring af recirkulationshydrogenet. I overensstemmelse hermed er chargeblandingen den eneste kilde til vand i systemet.The tests are all conducted in a plant having identical flow chart and using the same conditions used in Example 2, including the use of high surface area sodium for drying the recycle hydrogen. Accordingly, the charge mixture is the only source of water in the system.

Til den i eksempel 2 beskrevne Kuwaitnaphtha sættes tertiær butyl-alkohol til tilvejebringelse af de vandmængder, som for hvert enkelt forsøg er vist i tabel VI.To the Kuwait naphtha described in Example 2, tertiary butyl alcohol is added to provide the amounts of water shown for each test in Table VI.

Hvert forsøg bestod af en "line-out"-periode efterfulgt af en 24 timers forsøgsperiode. Resultaterne af forsøgene er anført i tabel VI.Each trial consisted of a "line-out" period followed by a 24 hour trial period. The results of the experiments are listed in Table VI.

Tabel VI - Resultater af vandstudierTable VI - Results of water studies

For- Dpm. H20 Temperaturer nødvendige søg i charge (vægt) til ønsket octantal, PC C4.+, rumf.-^ 15 514 75,8 2 25 502 74,1 5 50 519 75,0 4 100 525 68,0 5 150 552 65,2 6 500 541 51,2 ' 23 141606Pre-Dpm. H20 Temperatures search in charge (weight) for the desired octane number, PC C4 +, space- ^ 15 514 75.8 2 25 502 74.1 5 50 519 75.0 4 100 525 68.0 5 150 552 65, 2 6 500 541 51.2 '23 141606

Af denne tabel kan det ses, at C^+-udbyttet ved vandmængder over 50 dpm. går skarpt ned, og at den temperatur, som er nødvendig til opnåelse af et octantal på 100 F-l Clear, stiger temmelig hurtigt. Øjensynligt er de her omhandlede katalysatorers hydrokrakningsfunktion yderst følsom for tilstedeværelsen af vand, og ved et vandindhold over ca. 50 dpm. (ækvivalentvand) i fødeblandingen begynder katalysatorens hydrokrakningsaktivitet at dominere og bevirker en skarp forringelse i' katalysatorens samlede ydeevne med henblik på reforming. Denne effekt af vand kan imidlertid være af den yderste vigtighed, når den her omhandlede katalysator anvendes ved en hydro-krakning.From this table it can be seen that the C + + yield at water volumes above 50 ppm. goes down sharply and the temperature needed to achieve an octane of 100 F-l Clear rises fairly rapidly. Apparently, the hydrocracking function of the catalysts herein is highly sensitive to the presence of water, and at a water content above ca. 50 ppm. (equivalent water) in the feed mixture, the hydrocracking activity of the catalyst begins to dominate and causes a sharp deterioration in the overall performance of the catalyst for reforming. However, this effect of water may be of the utmost importance when the catalyst of the present invention is used in a hydro cracking.

Eksempel 4Example 4

En sammensat katalysator fremstilles i overensstemmelse med den almene metode ifølge eksempel 1. Den resulterende, sammensatte katalysator underkastes det tørre præreduktionstrin, som er beskrevet i eksempel 1. Det resulterende, reducerede, sammensatte materiale præsulfideres derefter, ved at det bringes i kontakt med en gasformig blanding indeholdende et molforhold mellem Hg og HgS på ca. 10:1 ved en temperatur på ca. 550°C, et tryk lidt over atmosfæretryk og en gasstrømningshastighed (GSH) på ca. 700 rumfang/rum-fang/time. Kontakten fortsættes i ca. 1 time. Analyse af den resulterende, præreducerede og præsulfiderede katalysator viser, at den indeholder 0,75 vægtprocent platin, 0,2 vægtprocent rhenium, 0,85 vægtprocent chlorid og 0,1 vægtprocent svovl, alle beregnet som grundstof.A composite catalyst is prepared in accordance with the general method of Example 1. The resulting composite catalyst is subjected to the dry prairie reduction step described in Example 1. The resulting reduced composite material is then presulfated by contacting it with a gaseous mixture containing a molar ratio of Hg to HgS of approx. 10: 1 at a temperature of approx. 550 ° C, a pressure slightly above atmospheric pressure and a gas flow rate (GSH) of approx. 700 volumes / room-catch / hour. Contact will continue for approx. 1 hour. Analysis of the resulting pre-reduced and presulfated catalyst shows that it contains 0.75 wt% platinum, 0.2 wt% rhenium, 0.85 wt% chloride and 0.1 wt% sulfur, all calculated as elemental.

Den resulterende katalysator anvendes i et reforminganlæg i forsøgsanlægsstørrelse til reforming af en let Kuwaitchargeblanding med de i tabel VII viste egenskaber.The resulting catalyst is used in a test plant size reforming plant to reform a light Kuwait Charge mixture with the properties shown in Table VII.

Tabel VII - Egenskaber af let KuwaitchargeblandingTable VII - Lightweight Kuwaiti Charge Blend Properties

Destillation ASTM Test Method nr. D-86Distillation ASTM Test Method No. D-86

Begyndelseskogepunkt 82-8j5°CInitial boiling point 82-8j5 ° C

10$ destilleret 92-95°C10 $ distilled 92-95 ° C

50$ destilleret 97-98°C50 $ distilled 97-98 ° C

50$ destilleret 101-102°C50 $ distilled 101-102 ° C

70$ destilleret 107-108°C70 $ distilled 107-108 ° C

90$ destilleret 117-ll8°C90 $ distilled 117-118 ° C

Slutkogepunkt 151-153¾ 24 1A1606 tabel YIX (fortsat) Vægtfylde, (15,6°c/l5,6°c) o,7200-0,Tl8lFinal Boiling Point 151-153¾ 24 1A1606 Table YIX (continued) Density, (15.6 ° C / 155.6 ° C) o, 7200-0, T18l

Paraffiner, rumf.-$ 76Paraffins, Spacecraft- $ 76

Naphthener, rumf.-$ 18Naphthens, spacecraft .- $ 18

Aromatiske forbindelser, _ . rumf.-$ 6Aromatic compounds, _. spacious- $ 6

Vand, dpm (vægt) <1Water, ppm (weight) <1

Svovl, dpm (vægt) <1Sulfur, ppm (weight) <1

Det i dette anlæg anvendte strømningsskema er i det væsentlige det samme som det, der er beskrevet i eksempel 1, dog med den undtagelse, at der anvendes tørremidler med højt overfladeareal til tørring af såvel chargeblandingen som hydrogenstrømmen, før de chargeres til anlægget.The flow chart used in this plant is essentially the same as that described in Example 1, except that high surface area drying agents are used to dry both the charge mixture and the hydrogen stream before being charged to the plant.

De til dette forsøg anvendte betingelser omfatter et tilsigtet octantal på 96,0 F-l Clear, en VSH på 1,0 rumfang/rumfang/time indtil en katalysator levetid på 1,9 kl/kg og en VSH på 2,0 rumfang/rum-fang/time derefter, et tryk på 13,6 ato og et molforhold mellem hydrogen og earbonhydrid på 7,0.The conditions used for this experiment include an intended octane number of 96.0 Fl Clear, a VSH of 1.0 volume / volume / hour until a catalyst lifetime of 1.9 kI / kg, and a VSH of 2.0 volume / volume. catch / hour thereafter, a pressure of 13.6 ato and a molar ratio of hydrogen to hydrocarbon of 7.0.

Resultaterne af dette forsøg er vist i tabel VIII i form af C^+-udbytte i rumfangsprocent, H^-udbytte og omdannelsestemperatur, som var nødvendig til opnåelse af det ønskede octantal, som en funktion af katalysatorlevetid målt i kiloliter charge pr. kilogram katalysator (kl/kg).The results of this experiment are shown in Table VIII in the form of C₂ + yield in volume percentage, H₂ yield and conversion temperature necessary to obtain the desired octane as a function of catalyst lifetime measured in kiloliters of charge per kilogram. kilogram of catalyst (kl / kg).

Tabel VIII - Resultater af forsøgsanlægstudier 3Table VIII - Results of experimental plant studies 3

Katalysator- C(-+-udbytte, mmf.-fo H2-udbytte, nr pr.Catalyst - C (- + - yield, mmf.-fo H2 yield, no.

levetid, kl/kg Temp., °C af charge_ kl charge_ 0,07 482 74,0 ' 188 0,35 486 73,0 184 0. 7 490 73,9 180 1, -05 493 73,5 179 1,4 496 73,0 178 1,75 497 72,8 177 VSH forøget til 2.0 2,1 517 73,8 178 2,45 518 73,7 178 2,8 520 73,3 178 3,15 521 73,0 178 25 141606lifetime, kl / kg Temp, ° C of charge_cl charge_ 0.07 482 74.0 '188 0.35 486 73.0 184 0. 7 490 73.9 180 1, -05 493 73.5 179 1, 4 496 73.0 178 1.75 497 72.8 177 VSH increased to 2.0 2.1 517 73.8 178 2.45 518 73.7 178 2.8 520 73.3 178 3.15 521 73.0 178 25 141606

Resultaterne af dette forsøg viser den bemærkelsesværdige stabilitet af katalysatoren ifølge opfindelsen. Særlig signifikant er den iagttagne, gennemsnitlige C,_+-nedgang på ca. 0,71 rumfangs-procent/kl/kg og en temperaturforøgelse på ca. 8,9°C/kl/kg for katalysatorlevetiden op til 1,9 kl/kg, hvilket står i kontrast til den forventede nedgang på ca. -5,5^ rumfangsprocent/kl/kg og forøgelse på ca. 9,5°C/kl/kg for en katalysator fremstillet på nøjagtig samme måde, som blev anvendt her, bortset fra at rheniumkomponenten ikke blev medtaget.The results of this experiment show the remarkable stability of the catalyst of the invention. Particularly significant is the observed average C, + decrease of approx. 0.71 volume percent / kg / kg and a temperature increase of approx. 8.9 ° C / kg / kg for the catalyst life up to 1.9 kl / kg, which contrasts with the expected decline of approx. -5.5 ^ by volume / kg / kg and increase of approx. 9.5 ° C / kg / kg for a catalyst prepared in exactly the same manner as used herein except that the rhenium component was not included.

Endnu mere overraskende er de resultater, som fremkommer, når VSH fordobles ved en katalysatorlevetid på 1,9 kl/kg. Katalysatoren ifølge opfindelsen udviste forbedret udbytte- og temperaturstabilitet under disse betingelser, hvilket står i skarp kontrast til den kraftige nedgang i C,_+-udbytte med ledsagende, accelereret katalysatorustabilitet, som man tidligere har mødt med en konventionel, platinholdig reformingkatalysator.Even more surprising are the results that emerge when VSH doubles at a catalyst lifetime of 1.9 kl / kg. The catalyst of the invention exhibited improved yield and temperature stability under these conditions, which is in sharp contrast to the sharp decline in C, + yield with accompanying accelerated catalyst instability previously encountered with a conventional platinum-containing reforming catalyst.

Claims (5)

26 141606 P a t e n t k r a v.26 141606 P a t e n t k r a v. 1. Fremgangsmåde til reformning af et carbonhydrid, ved hvilken carbonhydridet ved forhøjet temperatur og tryk og i nærværelse af hydrogen bringes i kontakt med en sammensat katalysator, kendetegnet ved, at der anvendes en katalysator, som omfatter aluminiumoxid, en metallisk komponent fra platingruppen, en halogenkomponent og en rheniumkomponent, idet de nævnte komponenter er til stede i mængder, som i den sammensatte katalysator på grundstofbasis tilvejebringer fra ca. 0,1 til ca. 1,5 vægtprocent halogen, fra ca. 0,05 til ca. 1,0 vægtprocent platingruppemetal og fra ca. 0,05 til ca. 1,0 vægtprocent rhenium.A process for reforming a hydrocarbon in which the hydrocarbon is contacted at elevated temperature and pressure and in the presence of hydrogen by a composite catalyst, characterized in that a catalyst comprising alumina, a metallic component of the plate group, is used. a halogen component and a rhenium component, said components being present in amounts which in the composite catalyst on the elemental basis provide from ca. 0.1 to approx. 1.5% by weight of halogen, from approx. 0.05 to approx. 1.0% by weight plate group metal and from approx. 0.05 to approx. 1.0% by weight of rhenium. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at den sammensatte katalysator tillige indeholder en svovlkomponent i en mængde på mellem ca. 0,05 og 0,5 vægtprocent af den sammensatte katalysator, beregnet som grundstof.Process according to claim 1, characterized in that the composite catalyst also contains a sulfur component in an amount of between approx. 0.05 and 0.5% by weight of the composite catalyst, calculated as elemental. 3. Sammensat katalysator omfattende aluminiumoxid og bestemt til udøvelse af fremgangsmåden ifølge krav 1 eller 2, kendetegnet ved, at aluminiumoxidet er kombineret med en metallisk komponent fra platingruppen, en halogenkomponent og en rheniumkomponent, idet de nævnte komponenter er til stede i mængder, som i den sammensatte katalysator, på grundstofbasis, tilvejebringer fra ca. 0,1 til ca. 1,5 vægtprocent halogen, fra ca. 0,05 til ca. 1,0 vægtprocent platingruppemetal og fra ca. 0,05 til ca. 1,0 vægtprocent rhenium.Composite catalyst comprising alumina and intended for carrying out the process according to claim 1 or 2, characterized in that the alumina is combined with a metallic component of the plate group, a halogen component and a rhenium component, said components being present in amounts as in the composite catalyst, on an elemental basis, provides from ca. 0.1 to approx. 1.5% by weight of halogen, from approx. 0.05 to approx. 1.0% by weight plate group metal and from approx. 0.05 to approx. 1.0% by weight of rhenium. 4. Sammensat katalysator ifølge krav 3, kendetegnet ved, at den tillige indeholder en svovlkomponent i en mængde på fra ca. 0,05 til ca. 0,5 vægtprocent af katalysatorens vægt.Composite catalyst according to claim 3, characterized in that it also contains a sulfur component in an amount of from approx. 0.05 to approx. 0.5% by weight of the catalyst weight. 5. Sammensat katalysator ifølge krav 3 eller 4, kendetegnet ved, at den kombinerede vægt af rhe-niumkomponenten og den metalliske komponent fra platingruppen er fra ca. 0,2 til ca. 1,5 vægtprocent af katalysatorens vægt, beregnet på grundstofbasis.Composite catalyst according to claim 3 or 4, characterized in that the combined weight of the rhenium component and the metallic component of the plate group is from approx. 0.2 to approx. 1.5% by weight of the catalyst weight, calculated on an elemental basis.
DK223769AA 1968-04-24 1969-04-23 Process for reforming a hydrocarbon and composite catalyst intended to carry out the process. DK141606B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72388668A 1968-04-24 1968-04-24
US72388668 1968-04-24

Publications (2)

Publication Number Publication Date
DK141606B true DK141606B (en) 1980-05-05
DK141606C DK141606C (en) 1980-10-06

Family

ID=24908110

Family Applications (1)

Application Number Title Priority Date Filing Date
DK223769AA DK141606B (en) 1968-04-24 1969-04-23 Process for reforming a hydrocarbon and composite catalyst intended to carry out the process.

Country Status (25)

Country Link
US (1) US3903191A (en)
JP (1) JPS5116201B1 (en)
AT (1) AT304741B (en)
BE (1) BE731909A (en)
CA (1) CA1015298A (en)
CH (1) CH528300A (en)
CS (1) CS153038B2 (en)
DE (1) DE1919698A1 (en)
DK (1) DK141606B (en)
DO (1) DOP1969001735A (en)
ES (2) ES366381A1 (en)
FI (1) FI55006C (en)
FR (1) FR2006803A1 (en)
GB (1) GB1256000A (en)
IE (1) IE33051B1 (en)
IL (1) IL32038A (en)
LU (1) LU58466A1 (en)
MY (1) MY7400121A (en)
NL (1) NL6906318A (en)
NO (1) NO127901B (en)
OA (1) OA03046A (en)
PL (1) PL79529B1 (en)
SE (2) SE356758B (en)
SU (1) SU448651A3 (en)
YU (2) YU33983B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA949544A (en) * 1970-02-13 1974-06-18 Henry Erickson Rhenium and platinum series metal-containing catalysts
US4104317A (en) * 1976-05-10 1978-08-01 Uop Inc. Dehydrogenation method
AU537495B2 (en) * 1978-04-10 1984-06-28 Engelhard Corporation Catalytic reforming with rhenium-platinum catalyst
US4292207A (en) * 1979-04-30 1981-09-29 Uop Inc. Nonacidic superactive multimetallic catalytic composite for use in hydrocarbon dehydrogenation
US4520223A (en) * 1982-05-19 1985-05-28 Mcginnis Roger N Dehydrogenation process
US4409417A (en) * 1982-07-26 1983-10-11 Texaco Inc. Process of dehydrogenation of hydrocarbons
US5365011A (en) * 1992-05-29 1994-11-15 The Boc Group, Inc. Method of producing unsaturated hydrocarbons and separating the same from saturated hydrocarbons
FR2692169B1 (en) * 1992-06-11 1995-01-27 Inst Francais Du Petrole Catalyst for the dehydrogenation of aliphatic hydrocarbons saturated in olefinic hydrocarbons.
US5852350A (en) * 1997-09-08 1998-12-22 Safetran Systems Corporation Railroad crossing gate control system including a separate maintenance relay
FR2800639B1 (en) 1999-11-10 2002-01-18 Inst Francais Du Petrole BIMETALLIC CATALYST COMPRISING FLUORINE AND ITS USE FOR THE HYDROGENATION OF AROMATIC COMPOUNDS IN THE PRESENCE OF SULFUR COMPOUNDS
FR2800638B1 (en) * 1999-11-10 2002-01-18 Inst Francais Du Petrole FLUORINATED CATALYST COMPRISING A GROUP VIII ELEMENT AND A GROUP VIIB ELEMENT AND ITS USE FOR THE HYDROGENATION OF AROMATIC COMPOUNDS IN THE PRESENCE OF SULFUR COMPOUNDS
ES2274771T3 (en) 1999-11-10 2007-06-01 Institut Francais Du Petrole CHLORIZED AND FLUORATED CATALYST THAT INCLUDES A GROUP VIII METAL AND AN ADDITIONAL METAL AND ITS USE IN THE HYDROGENATION OF AROMATIC COMPOSITIONS.
US6982305B2 (en) * 2004-01-26 2006-01-03 Equistar Chemicals, Lp Olefin polymerization in the presence of a dehydrogenation catalyst
FR2924363B1 (en) 2007-11-29 2010-10-15 Inst Francais Du Petrole PROCESS FOR PREPARING A REFORMING CATALYST COMPRISING A SUPPORT, A GROUP VIIIB METAL AND A GROUP VIIB METAL
US8575409B2 (en) 2007-12-20 2013-11-05 Syntroleum Corporation Method for the removal of phosphorus
US8231804B2 (en) 2008-12-10 2012-07-31 Syntroleum Corporation Even carbon number paraffin composition and method of manufacturing same
US9328303B2 (en) 2013-03-13 2016-05-03 Reg Synthetic Fuels, Llc Reducing pressure drop buildup in bio-oil hydroprocessing reactors
US8969259B2 (en) 2013-04-05 2015-03-03 Reg Synthetic Fuels, Llc Bio-based synthetic fluids
US20220203340A1 (en) * 2020-12-30 2022-06-30 Uop Llc Light paraffin dehydrogenation catalysts and their application in fluidized bed dehydrogenation processes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415737A (en) * 1966-06-24 1968-12-10 Chevron Res Reforming a sulfur-free naphtha with a platinum-rhenium catalyst
US3535402A (en) * 1968-08-19 1970-10-20 Chevron Res Dehydrogenation over pt-re catalyst

Also Published As

Publication number Publication date
US3903191A (en) 1975-09-02
NO127901B (en) 1973-09-03
SE356758B (en) 1973-06-04
DK141606C (en) 1980-10-06
IE33051L (en) 1969-10-24
NL6906318A (en) 1969-10-28
YU36873B (en) 1984-08-31
FR2006803B1 (en) 1973-07-13
LU58466A1 (en) 1969-07-22
DOP1969001735A (en) 1975-07-23
OA03046A (en) 1970-12-15
IL32038A (en) 1972-07-26
FR2006803A1 (en) 1970-01-02
ES369157A1 (en) 1971-06-01
PL79529B1 (en) 1975-06-30
DE1919698A1 (en) 1970-04-16
AT304741B (en) 1973-01-25
FI55006B (en) 1979-01-31
MY7400121A (en) 1974-12-31
BE731909A (en) 1969-10-01
JPS5116201B1 (en) 1976-05-22
CH528300A (en) 1972-09-30
IL32038A0 (en) 1969-06-25
YU168474A (en) 1982-02-25
SU448651A3 (en) 1974-10-30
FI55006C (en) 1979-05-10
SE375461B (en) 1975-04-21
YU33983B (en) 1978-09-08
CS153038B2 (en) 1974-02-22
YU100769A (en) 1978-02-28
GB1256000A (en) 1971-12-08
CA1015298A (en) 1977-08-09
IE33051B1 (en) 1974-03-06
ES366381A1 (en) 1971-02-01

Similar Documents

Publication Publication Date Title
DK141606B (en) Process for reforming a hydrocarbon and composite catalyst intended to carry out the process.
US3878131A (en) Multicomponent dehydrogenation catalyst
US3790473A (en) Tetrametallic hydrocarbon conversion catalyst and uses thereof
US3702294A (en) Trimetallic hydrocarbon conversion catalyst and uses thereof
NO753726L (en)
US3740328A (en) Hydrocarbon conversion process and catalyst therefor
US4134823A (en) Catalyst and hydrocarbon conversion process
US3578584A (en) Hydrocarbon conversion process and platinum-germanium catalytic composite for use therein
US3801498A (en) Tetrametallic hydrocarbon conversion catalyst and uses thereof
US3898154A (en) Hydrocarbon conversion with a multimetallic catalytic composite
US3523914A (en) Hydrocarbon conversion process and catalyst therefor
US3796654A (en) Hydrocarbon conversion with a multicomponent catalyst
US3806446A (en) Reforming of hydrocarbons with a platinum-tungsten-germanium catalyst
US3846282A (en) Trimetallic catalytic composite and uses thereof
NO760005L (en)
US3928177A (en) Hydrocarbon conversion with a multimetallic catalytic composite
US3748260A (en) Reforming a sulfur-free gasoline fraction with a platinum-germanium catalyst
US3775300A (en) Hydrocarbon conversion with a catalytic composite of platinum iron and germanium
US3839192A (en) Hydrocarbon conversion with a catalytic composite of palladium, iridium and halogen
US4082651A (en) Hydrocarbon conversion with a sulfided acidic multimetallic catalytic composite
DK146008B (en) PROCEDURE FOR SELECTIVE LPG PREPARATION
US4048099A (en) Hydrocarbon conversion with an acidic trimetallic catalytic composite
US3960709A (en) Hydrocarbon conversion with a trimetallic catalytic composite
US3936369A (en) Hydrocarbon conversion with a sulfided catalytic composite
US3915846A (en) Hydrocarbon conversion with a trimetallic catalytic composite

Legal Events

Date Code Title Description
PBP Patent lapsed