DK169900B1 - Method and apparatus for detecting corrosion in pipes - Google Patents
Method and apparatus for detecting corrosion in pipes Download PDFInfo
- Publication number
- DK169900B1 DK169900B1 DK104791A DK104791A DK169900B1 DK 169900 B1 DK169900 B1 DK 169900B1 DK 104791 A DK104791 A DK 104791A DK 104791 A DK104791 A DK 104791A DK 169900 B1 DK169900 B1 DK 169900B1
- Authority
- DK
- Denmark
- Prior art keywords
- measuring probe
- ultrasonic
- chamber
- tubular
- probe
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/221—Arrangements for directing or focusing the acoustical waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
- G01B17/02—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02854—Length, thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
DK 169900 B1DK 169900 B1
Opfindelsen angår en fremgangsmåde til inspektion af rørformede dele, især til måling af vægtykkelsen af en rørformet del, omfattende en indføring af en målesonde med en ultralydtransducer til udsendelse af en ultralydimpuls til væggen af 5 den rørformede del og til detektion af de af inder- og ydersiden af rørvæggen reflekterede ultralydimpulser, hvilken målesonde omfatter et roterbart styreorgan, fortrinsvis et roterbart skråtstillet spejl til styring af den af transduceren udsendte ultralyd i form af en stråle med henblik på skan-10 dering af den rørformede del efter en i hovedsagen spiralformet bane under sondens fremføring, hvilket styreorgan anbringes i et kammer og bringes til at rotere ved hjælp af en elektrisk motor, idet der under skanderingen tilføres en ultralyd-' transmitterende væske til mellemrummet imellem målesonden og 15 den rørformede del.The invention relates to a method for inspecting tubular members, in particular for measuring the wall thickness of a tubular member, comprising introducing a measuring probe with an ultrasonic transducer for emitting an ultrasonic pulse to the wall of the tubular member and for detecting those of the inner and outer members. the outside of the tubular wall reflects ultrasonic pulses, which measuring probe comprises a rotatable guide means, preferably a rotatably inclined mirror for controlling the ultrasound emitted by the transducer in the form of a beam for scanning the tubular portion along a generally helical path of the probe. a guide, which is placed in a chamber and caused to rotate by means of an electric motor, during which an ultrasonic transmitting fluid is fed to the space between the measuring probe and the tubular part.
Fra US patentskrift nr. 4.361.044 er det kendt at rotere et skråtstillet spejl, der sammen med en ultralydtransducer er anbragt i et kammer af en målesonde, der kan indføres i et rør, der skal undersøges. Spejlet roteres ved hjælp af et 20 motordrev i kammeret, der øjensynligt kun indeholder luft. En ulempe ved denne målesonde er, at en stor del af ultralydstrålen vil blive reflekteret som følge af den manglende akustiske kobling, I den målesonde, der kendes fra europæisk patentansøgning nr.From U.S. Patent No. 4,361,044, it is known to rotate an inclined mirror which, together with an ultrasonic transducer, is placed in a chamber of a measuring probe which can be inserted into a tube to be examined. The mirror is rotated by means of a 20 motor drive in the chamber, which apparently contains only air. A disadvantage of this measuring probe is that a large part of the ultrasound beam will be reflected due to the lack of acoustic coupling, in the measuring probe known from European patent application no.
25 12.474, er den væske, der under skanderingen tilføres til mel lemrummet mellem målesonden og den rørformede del samtidigt anvendt til at sætte det skråtstillede spejl i rotation, idet spejlet er understøttet af en vanddrevet turbine, der roterer på en aksel parallelt med sondens længdeakse. Derved opnås en 30 bedre akustisk kobling imellem ultralydtransduceren og den væske, der omgiver sonden. En ulempe ved en sådan vanddrevet turbine er imidlertid, at nøjagtigheden ikke bliver særlig stor som følge af, at rotationshastigheden ikke er særlig præcis. Dertil kommer, at rotationsbevægelsen giver en vis 35 turbulens, således at medførte luftbobler vil kunne forstyrre DK 169900 B1 2 målingen. Begge de nævnte ulemper begrænser den hastighed, hvormed der vil kunne skanderes.25 12,474, the liquid supplied during scanning to the gap between the measuring probe and the tubular member is simultaneously used to rotate the inclined mirror, the mirror being supported by a water-driven turbine rotating on a shaft parallel to the longitudinal axis of the probe. Thereby, a better acoustic coupling is obtained between the ultrasonic transducer and the fluid surrounding the probe. However, one disadvantage of such a water-powered turbine is that the accuracy does not become very high as a result of the rotational speed being not very accurate. In addition, the rotational movement causes a certain turbulence, so that the resulting air bubbles can interfere with the measurement. Both of the aforementioned drawbacks limit the speed at which it can be scanned.
**
Et tilsvarende apparat til inspektion af rør ved hjælp af ultralyd kendes fra JP 62-285.060. Ved dette apparat føres 5 vandet ind i en detektor, hvor det tjener til at rotere et skråtstillet spejl.A similar apparatus for the inspection of pipes by ultrasound is known from JP 62-285.060. In this apparatus, the water is fed into a detector where it serves to rotate an inclined mirror.
Formålet med opfindelsen er at anvise en fremgangsmåde af den indledningsvis nævnte art til skandering af rørformede dele, og som muliggør en større skanderingshastighed end hidtil 10 kendt.The object of the invention is to provide a method of the kind mentioned above for scanning tubular parts and which allows a higher scanning speed than hitherto known.
Fremgangsmåden er ifølge opfindelsen ejendommelig ved, at inspektionen af den rørformede del foretages ved, at det roterende styreorgan anbringes i et fortrinsvis lukket, væskefyldt kammer, der bringes til at rotere sammen med styreorganet, i 15 hvilket kammer der findes et ultralydvindue for den udsendte ultralydstråle. Derved undgås turbulens i det vand, der tilføres. Risikoen for at medførte luftbobler vil kunne forstyrre ultralydtransmissionen og derigennem målingen, er derved reduceret væsentligt, og derigennem muliggøres en større skande-20 ringshastighed.The method according to the invention is characterized in that the inspection of the tubular part is carried out by placing the rotary control member in a preferably closed, liquid-filled chamber which is caused to rotate together with the control means, in which chamber there is an ultrasonic window for the emitted ultrasound beam. . This avoids turbulence in the water supplied. The risk of entrained air bubbles could interfere with the ultrasonic transmission and thereby the measurement is thereby substantially reduced, thereby enabling a greater scanning speed.
Det anvendte roterbare væskefyldte kammers yderside kan desuden have form som et i hovedsagen rotationssymmetrisk legeme med en frembringerkurve, som er en monoton funktion således, at eventuelle luftbobler under kammerets rotation søger mod 25 den indsnævrede ende til eventuel bortledning via eventuelle afgangsåbninger. Risikoen for at luftbobler vil kunne forstyrre målingen, er derved reduceret yderligere.In addition, the exterior of the rotatable liquid-filled chamber used may take the form of a generally rotationally symmetrical body with a generating curve, which is a monotonous function such that any air bubbles during rotation of the chamber seek towards the constricted end for possible discharge through any outlet openings. The risk that air bubbles may interfere with the measurement has been further reduced.
Det anvendte spejl kan ifølge opfindelsen roteres ved hjælp af mindst én jævnstrømsmotor, der er anbragt i et væsketæt hulrum 30 i målesonden. Rotationshastigheden af en sådan motor kan regu-leres meget nøjagtigt, hvorved opløsningsevnen forbedres, og derigennem muliggøres en større skanderingshastighed.According to the invention, the mirror used can be rotated by at least one direct current motor disposed in a liquid-tight cavity 30 in the measuring probe. The speed of rotation of such an engine can be controlled very accurately, thereby improving the solubility, thereby enabling a greater scanning speed.
DK 169900 B1 3 Jævnstrømsmotorens drivaksel kan ifølge opfindelsen være tætnet i forhold til det hulrum, hvori motoren er anbragt, ved hjælp af et leje med jernholdigt smøremiddel i forbindelse med en eller flere kraftige ringformede magneter. Derved opnås et 5 væsketæt leje.According to the invention, the drive shaft of the DC motor can be sealed in relation to the cavity in which the motor is placed, by means of a bearing of ferrous lubricant in connection with one or more powerful annular magnets. Thereby a liquid-tight bed is obtained.
Den anvendte målesonde med det væskefyldte kammer kan ifølge opfindelsen centreres ved hjælp af en eller flere udvendige fjedrende elementer, der er rundtgående og delvis spærrende for vand. Et sådant fjedrende element kan f.eks. udgøres af et 10 fjedrende metalbånd med en ombukning på langs og et passende antal tværgående opslidsninger.According to the invention, the measuring probe used with the liquid-filled chamber can be centered by one or more external resilient elements which are circumferentially and partially obstructed by water. Such a resilient element may e.g. consists of a 10 resilient metal band with a longitudinal bend and a suitable number of transverse slits.
Opfindelsen angår også et apparat til udøvelse af fremgangsmåden ifølge opfindelsen til inspektion af rørformede dele, især måling af vægtykkelsen af en rørformet del, omfattende en 15 målesonde til udsendelse af en ultralydimpuls til væggen af den rørformede del og til detektion af de af inder- og ydersiden af rørvæggen reflekterende ultralydimpulser, hvilken målesonde omfatter et roterbart styreorgan fortrinsvis et roterbart skråtstillet spejl til styring af den af transduce-20 ren udsendte ultralyd, fortrinsvis i form af en stråle, med henblik på skandering af den rørformede del efter en i hovedsagen spiralformet bane, hvilket roterbare styreorgan er anbragt i et kammer og kan bringes til at rotere ved hjælp af en elektrisk motor, idet der under skanderingen tilføres en ul-25 trat ransmitterende væske til mellemrummet imellem målesonden og den rørformede del. Ifølge opfindelsen er det roterbare styreorgan anbragt i et væskefyldt kammer, der kan roteres sammen med styreorganet, og hvori der findes et ultralydvindue for den udsendte ultralydstråle. Derved opnås et særlig hen-30 sigtsmæssigt apparat til hurtig inspektion af rørformede dele.The invention also relates to an apparatus for carrying out the method according to the invention for inspecting tubular parts, in particular measuring the wall thickness of a tubular part, comprising a measuring probe for transmitting an ultrasonic pulse to the wall of the tubular part and for detecting the outside of the tubular wall reflecting ultrasonic pulses, which measuring probe comprises a rotatable control means preferably a rotatably inclined mirror for controlling the ultrasound emitted by the transducer, preferably in the form of a beam, for scanning the tubular portion for a substantially helical bore which rotatable control means is placed in a chamber and can be caused to rotate by means of an electric motor, during the scanning of which an ultratransmit transmitting liquid is supplied to the space between the measuring probe and the tubular part. According to the invention, the rotatable control means is arranged in a liquid-filled chamber which can be rotated together with the control means and in which there is an ultrasonic window for the emitted ultrasound beam. Thereby, a particularly convenient apparatus for rapid inspection of tubular parts is obtained.
Ifølge opfindelsen kan rotationen med fordel være tilvejebragt ved hjælp af mindst én jævnstrømsmotor, der er anbragt i et lukket hulrum af målesonden. En jævnstrømsmotor kan rotere med •en rotationshastighed, der er meget nøjagtig, hvorved der DK 169900 B1 4 « opnås en bedre opløsningsevne under skanderingen.According to the invention, the rotation may advantageously be provided by at least one direct current motor disposed in a closed cavity of the measuring probe. A DC motor can rotate at a • very accurate rotational speed, thereby providing a better resolution capability during scanning.
Motorens drivaksel kan med fordel være tætnet i forhold til * det lukkede hulrum, hvori motoren er anbragt, ved hjælp af et leje med et jernholdigt smøremiddel i forbindelse med en eller 5 flere kraftige ringformede magneter. Magneterne holder på smøremidlet og giver derigennem den ønskede væsketætning.The drive shaft of the motor may advantageously be sealed with respect to the closed cavity in which the motor is placed by means of a bearing with an ferrous lubricant in connection with one or more powerful annular magnets. The magnets hold on to the lubricant and thereby provide the desired fluid seal.
Opfindelsen skal nærmere forklares i det følgende under henvisning til tegningen, hvorThe invention will be explained in more detail below with reference to the drawing, wherein
Fig. 1A og IB viser en målesonde til indføring i rørformede 10 dele med henblik på inspektion af disse, fig. 2 et centreringsorgan for målesonden og fig. 3 målesonden i en alternativ udformning.FIG. Figures 1A and 1B show a measuring probe for insertion into tubular parts for inspection thereof; 2 shows a centering means for the probe and FIG. 3 shows the probe in an alternate configuration.
Det i fig. 1A og IB viste apparat til inspektion af rørformede dele, især måling af vægtykkelsen af de rørformede dele om-15 fatter en målesonde, der kan indføres i en rørformet del. Målesonden består af et rørformet hus 2, hvori der er monteret en eller flere elektromotorer 4 afhængigt af det ønskede drejningsmoment. Hvis der er flere motorer 4, er disses drivak-seler forbundet indbyrdes via ikke stive koblinger. Den udra-20 gende drivaksel af den forreste motor 4 er via en akselkobling 6 ført gennem en fastsiddende primærvikling af en transformer og er fast forbundet med sekundærviklingen 8, der kan rotere i forhold til primærviklingen 7. Sekundærviklingen 8 er fastgjort til enden af en hul aksel 10, hvorigennem der er ført 25 tilledninger til en ultralydtransducer 12, der er monteret ved den anden ende af akselen 10. Tæt ved sekundærviklingen 8 er den hule aksel 10 monteret i et leje, fortrinsvis et i røret fastsiddende kugleleje 13. Efter kuglelejet 13 sidder der en magnetisk tætning 15 i form af et leje med et jernholdigt 30 smøremiddel i forbindelse med kraftige ringformede magneter. *The FIG. 1A and 1B, the apparatus for inspecting tubular parts, in particular measuring the wall thickness of the tubular parts, comprises a measuring probe which can be inserted into a tubular part. The measuring probe consists of a tubular housing 2 in which one or more electric motors 4 are mounted depending on the desired torque. If there are several motors 4, their drive shafts are interconnected via non-rigid couplings. The protruding drive shaft of the front motor 4 is passed through a shaft coupling 6 through a fixed primary winding of a transformer and is fixedly connected to the secondary winding 8 which can rotate relative to the primary winding 7. The secondary winding 8 is attached to the end of a hole. shaft 10, through which 25 leads to an ultrasonic transducer 12 mounted at the other end of shaft 10. Close to secondary winding 8, hollow shaft 10 is mounted in a bearing, preferably a ball bearing 13, which is fixed to the tube. there is a magnetic seal 15 in the form of a bearing with an ferrous lubricant in connection with powerful annular magnets. *
Magneterne holder på det jernholdige smøremiddel, selv om DK 169900 B1 5 lejet udsættes for væsketryk, og giver derigennem en væsketætning. Efter den magnetiske tætning 15 er der endnu et fastsiddende kugleleje 17, hvori den hule aksel 10 er lejret. Den derfra udragende hule aksel 10 er fastgjort til en cylindrisk 5 og aksialt monteret ultralydtransducer 12. Ultralydtransduceren 12 er forbundet til de i akselen 10 førte tilledninger og aktiveres ved hjælp af en signal spænding, der tilføres via transformeren 7, 8 med roterbar sekundærvikling 8. Primærviklingen 7 tilføres en spænding af en frekvens på ca.The magnets hold on to the ferrous lubricant, even though the DK 169900 B1 5 bearing is subjected to fluid pressure, thereby providing a fluid seal. After the magnetic seal 15, there is another fixed ball bearing 17 in which the hollow shaft 10 is mounted. The hollow shaft protruding therefrom is attached to a cylindrical 5 and axially mounted ultrasonic transducer 12. The ultrasonic transducer 12 is connected to the leads provided in the shaft 10 and is activated by a signal voltage supplied via the transformer 7, 8 with rotatable secondary winding 8. The primary winding 7 is supplied with a voltage of a frequency of approx.
10 5-15 MHz fra en forforstærker 19 anbragt bag ved elektromoto ren 4 i et væsketæt hulrum. I samme væsketætte hulrum og på samme kredsløbskort findes desuden et styrekredsløb for elektromotoren 4. Styrekredsløbet tjener til at sikre, at motoren 4 roterer med den ønskede rotationshastighed, der skal være 15 konstant. Motoren 4 er en jævnstrømsmotor, idet en sådan motor kan fremstilles i meget små dimensioner.10 5-15 MHz from a preamplifier 19 located behind the electric motor 4 in a liquid-tight cavity. In addition, in the same liquid-tight cavity and on the same circuit board there is a control circuit for the electric motor 4. The control circuit serves to ensure that the motor 4 rotates at the desired rotational speed, which must be constant. The motor 4 is a direct current motor in that such a motor can be manufactured in very small dimensions.
Foran den cylindriske og aksialt monterede ultralydtransducer 12 er der et væskefyldt kammer 20, hvori der er monteret et styreorgan i form af en skråtstillet ultralydreflekterende 20 plade 22. Denne plade 22 danner fortrinsvis en vinkel på ca.In front of the cylindrical and axially mounted ultrasonic transducer 12 there is a liquid-filled chamber 20 in which is mounted a guide member in the form of an oblique ultrasonic reflecting 20 plate 22. This plate 22 preferably forms an angle of approx.
45° med rørets 2 akse. Den af pladen 22 reflekterede og via et ultralydvindue i kammeret 20 udsendte ultralydstråle beskriver derved en spiralformet bane, hvis transduceren 12 og spejlet 22 roterer med en konstant rotationshastighed, og målesonden 25 samtidigt bevæges med en konstant fremføringshastighed i f.eks. et rør.45 ° with the 2 axis of the pipe. The ultrasound beam reflected by the plate 22 and transmitted via an ultrasonic window in the chamber 20 thus describes a helical path if the transducer 12 and the mirror 22 rotate at a constant rotational speed and the measuring probe 25 is simultaneously moved at a constant advance speed in e.g. a tube.
Til centrering af målesonden i røret er der uden på det rørformede hus 2 af målesonden indrettet nogle centreringsorganer 23 i form af fjedrende elementer, der er rundtgående og samti-30 digt gennemtrængelige for vand - se fig. 2. Det enkelte fjedrende element udgøres af et bånd af fjedrende metal, der er bukket i længderetningen og et passende antal steder er opslidset på tværs. Båndet lægges omkring det rørformede hus 2.For centering the measuring probe in the tube, some centering means 23 are arranged outside the tubular housing 2 of the measuring probe in the form of resilient elements which are perpendicular and simultaneously permeable to water - see fig. 2. The individual resilient member is constituted by a longitudinal bend of resilient metal and a suitable number of places slit transversely. The tape is laid around the tubular housing 2.
Den ene kant af båndet fastgøres til huset 2, medens den anden 35 kant kan forskydes i afhængighed af den nødvendige diameter af v 6 DK 169900 B1 det rør, der skal inspiceres. Opslidsningen giver, ud over den ønskede centrering, også en delvis spærring for vand. Centreringsorganet 23 behøver ikke nødvendigvis at være fremstillet af fjedrende metalplade. Det kan også være fremstillet af an-5 det fjedrende plademateriale.One edge of the tape is attached to the housing 2, while the other edge can be displaced depending on the required diameter of the pipe to be inspected. In addition to the desired centering, the slit also provides a partial barrier to water. The centering means 23 need not necessarily be made of resilient metal plate. It may also be made of other resilient sheet material.
Til opnåelse af den bedst mulige ultralydkobling er der under en ultralydskandering tilført vand til mellemrummet mellem ultralydsonden og det rør, der skal undersøges. Vandet tilføres via en til sonden ført slange 25 og afgives via to udløb 26 10 fra sonden til mellemrummet mellem sonden og røret, som skal undersøges.To obtain the best possible ultrasonic coupling, during an ultrasonic scan, water is supplied to the gap between the ultrasound probe and the tube to be examined. The water is supplied via a tube 25 to the probe and is delivered via two outlets 26 10 from the probe to the gap between the probe and the tube to be examined.
For enden af det væskefyldte kammer 20, hvori det skråtstillede spejl 22 er monteret, sidder der en stopskive 27, der i nogen grad bremser vandgennemstrømningen og derigennem sikrer, 15 at mellemrummet mellem røret og det væskefyldte kammer 20 er fyldt med vand.At the end of the liquid-filled chamber 20 in which the inclined mirror 22 is mounted, there is a stop disc 27 which somewhat slows down the flow of water and thereby ensures that the space between the tube and the liquid-filled chamber 20 is filled with water.
I en særlig hensigtsmæssig udførelsesform - se fig. 3 - har det væskefyldte kammer form som et i hovedsagen rotationssymmetrisk legeme med en monoton frembringerkurve og er fortrins-20 vis konisk således, at eventuelle medførte luftbobler ved centrifugalkraftens indvirkning automatisk opsamles ved den indsnævrede ende af den koniske overflade, hvor stopskiven 27 findes. Hvis der desuden i stopskiven 27 er indrettet nogle huller 28 for afgivelse af opsamlede luftbobler, vil disse 25 ikke kunne påvirke ultralydtransmissionen under målingen.In a particularly convenient embodiment - see fig. 3 - the liquid-filled chamber has the shape of a substantially rotationally symmetrical body with a monotonous generating curve and is preferably conical such that any entrained air bubbles, by the action of centrifugal force, are automatically collected at the narrowed end of the conical surface where the stop disk 27 is located. In addition, if some holes 28 are provided for dispensing of collected air bubbles in the stop disk 27, these 25 will not be able to affect the ultrasonic transmission during the measurement.
Den anvendte metode for vægtykkelsesmålingen er baseret på puls-ekko-teknikken. Målesonden bevæges aksialt i røret. Transduceren 12 udsender en ultralydimpuls i retning af rørets aksel. Pulsen af bøj es ca. 90° af det roterende spejl 22 og 30 rammer indersiden af det rør, der skal undersøges. Som følge af spejlets 22 rotation vil indersiden af røret blive skanderet efter en skruelinieformet bane. En del af ultralydenergien * reflekteres af indersiden af rørvæggen. Den resterende del afThe method used for the wall thickness measurement is based on the pulse-echo technique. The measuring probe moves axially in the tube. The transducer 12 emits an ultrasonic pulse in the direction of the tube shaft. The pulse of bend is approx. 90 ° of the rotating mirror 22 and 30 strike the inside of the tube to be examined. Due to the rotation of the mirror 22, the inside of the tube will be scanned for a helical path. Part of the ultrasonic energy * is reflected by the inside of the tube wall. The remaining part of
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK104791A DK169900B1 (en) | 1991-05-31 | 1991-05-31 | Method and apparatus for detecting corrosion in pipes |
PCT/DK1992/000174 WO1992021965A1 (en) | 1991-05-31 | 1992-05-29 | A method and an apparatus for the dectection of corrosion in pipes |
AU19012/92A AU1901292A (en) | 1991-05-31 | 1992-05-29 | A method and an apparatus for the dectection of corrosion in pipes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK104791 | 1991-05-31 | ||
DK104791A DK169900B1 (en) | 1991-05-31 | 1991-05-31 | Method and apparatus for detecting corrosion in pipes |
Publications (3)
Publication Number | Publication Date |
---|---|
DK104791D0 DK104791D0 (en) | 1991-05-31 |
DK104791A DK104791A (en) | 1992-12-01 |
DK169900B1 true DK169900B1 (en) | 1995-03-27 |
Family
ID=8100385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK104791A DK169900B1 (en) | 1991-05-31 | 1991-05-31 | Method and apparatus for detecting corrosion in pipes |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU1901292A (en) |
DK (1) | DK169900B1 (en) |
WO (1) | WO1992021965A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726642B1 (en) * | 1994-11-03 | 1996-12-13 | Lyonnaise Eaux Eclairage | METHOD FOR ULTRASONIC MEASUREMENT OF THE THICKNESS OF A WATER PIPELINE AND DEVICE FOR CARRYING OUT SAID METHOD |
NL1026538C2 (en) * | 2004-07-01 | 2006-01-03 | Roentgen Tech Dienst Bv | A method and assembly for detecting a crack in a pipeline from an inside of the pipeline. |
US8167809B2 (en) | 2007-12-20 | 2012-05-01 | Silicon Valley Medical Instruments, Inc. | Imaging probe housing with fluid flushing |
GB2468301B (en) * | 2009-03-03 | 2013-06-12 | Jd7 Ltd | Water mains inspection and servicing |
US9521990B2 (en) | 2011-05-11 | 2016-12-20 | Acist Medical Systems, Inc. | Variable-stiffness imaging window and production method thereof |
US10905851B2 (en) | 2012-03-23 | 2021-02-02 | Acist Medical Systems, Inc. | Catheter sheath and methods thereof |
US11666309B2 (en) | 2013-12-19 | 2023-06-06 | Acist Medical Systems, Inc. | Catheter sheath system and method |
EP3193725A1 (en) * | 2014-08-11 | 2017-07-26 | Eye-life AS | Ultrasonic scanner with a magnetic coupling between a motor and a mirror |
CN114246547A (en) * | 2020-09-21 | 2022-03-29 | 无锡微奥科技有限公司 | Probe for increasing MEMS-OCT scanning imaging field angle |
CN115308308B (en) * | 2022-10-10 | 2022-12-13 | 山东广悦化工有限公司 | Diesel pipeline corrosion prevention detection device and application method thereof |
CN116642959B (en) * | 2023-07-26 | 2023-09-26 | 山东泰阳特种设备检测科技有限公司 | Pipeline electromagnetic ultrasonic detection device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4008603A (en) * | 1975-12-29 | 1977-02-22 | Shell Oil Company | Ultrasonic method and apparatus for measuring wall thickness of tubular members |
US4084582A (en) * | 1976-03-11 | 1978-04-18 | New York Institute Of Technology | Ultrasonic imaging system |
US4212207A (en) * | 1978-12-14 | 1980-07-15 | Shell Oil Company | Ultrasonic tube inspection |
US4361044A (en) * | 1980-12-09 | 1982-11-30 | The United States Of America As Represented By The United States Department Of Energy | Scanning ultrasonic probe |
DE3131883A1 (en) * | 1981-08-12 | 1983-03-03 | Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft in Bonn, dieser vertreten durch den Präsidenten der Bundesanstalt für Materialprüfung (BAM), 1000 Berlin | Tube-internal test probe in accordance with the ultrasonic pulse echo method for measuring wall thickness on grainy surfaces, preferably for verifying corrosion in tubes |
GB8317247D0 (en) * | 1983-06-24 | 1983-07-27 | Atomic Energy Authority Uk | Ultrasonic scanning probe |
US4597294A (en) * | 1984-06-25 | 1986-07-01 | Westinghouse Electric Corp. | Ultrasonic nondestructive tubing inspection system |
US4674515A (en) * | 1984-10-26 | 1987-06-23 | Olympus Optical Co., Ltd. | Ultrasonic endoscope |
US4824122A (en) * | 1987-03-02 | 1989-04-25 | Ferrofluidics Corporation | Compact magnetic fluid low pressure seal |
-
1991
- 1991-05-31 DK DK104791A patent/DK169900B1/en not_active IP Right Cessation
-
1992
- 1992-05-29 AU AU19012/92A patent/AU1901292A/en not_active Abandoned
- 1992-05-29 WO PCT/DK1992/000174 patent/WO1992021965A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DK104791D0 (en) | 1991-05-31 |
WO1992021965A1 (en) | 1992-12-10 |
AU1901292A (en) | 1993-01-08 |
DK104791A (en) | 1992-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK169900B1 (en) | Method and apparatus for detecting corrosion in pipes | |
US3960006A (en) | Non-destructive test apparatus and method for a material having a cavity therein | |
US8397575B2 (en) | Oblique flaw detection using ultrasonic transducers | |
JPS6133121B2 (en) | ||
US3628375A (en) | Apparatus for ultrasonic inspection of a length of test material | |
US5333502A (en) | Method and apparatus for monitoring the environment of a vessel | |
JPH0584865B2 (en) | ||
US4052887A (en) | Ultrasonic testing device and method | |
US3777552A (en) | Ultrasonic scanning system for in-place inspection of brazed tube joints | |
US3508436A (en) | Apparatus for ultrasonic testing with rotating probe means located inside a tubular test object | |
JP6039599B2 (en) | Tube ultrasonic inspection equipment | |
JPH07333202A (en) | Flaw detector of piping | |
JPS5818623B2 (en) | Oyobi Sonotamenosouchi | |
US3417609A (en) | Ultrasonic inspection transducer | |
KR100201501B1 (en) | Tube testing apparatus | |
KR20200061419A (en) | Automatic rotating ultrasonic inspection system using brushless | |
JP3759050B2 (en) | Ultrasonic probe holder, ultrasonic flaw detector, and ultrasonic flaw detection method for tubular body | |
JP3352653B2 (en) | Ultrasonic flaw detector for pipes | |
JPS594663B2 (en) | Non-destructive material inspection method for fin tubes using ultrasound | |
JPS6159458B2 (en) | ||
KR101885756B1 (en) | Ultrasonic sensor module structure of ultrasonic inspection device for performing non-destructive test | |
JPH05126803A (en) | Automatic ultrasonic flaw detecting apparatus | |
JPH01140056A (en) | Ultrasonic flaw detector for tube | |
JPH10153582A (en) | Ultrasonic probe to be inserted into tube | |
JPS6258467B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B1 | Patent granted (law 1993) | ||
PBP | Patent lapsed |