DK169900B1 - Method and apparatus for detecting corrosion in pipes - Google Patents

Method and apparatus for detecting corrosion in pipes Download PDF

Info

Publication number
DK169900B1
DK169900B1 DK104791A DK104791A DK169900B1 DK 169900 B1 DK169900 B1 DK 169900B1 DK 104791 A DK104791 A DK 104791A DK 104791 A DK104791 A DK 104791A DK 169900 B1 DK169900 B1 DK 169900B1
Authority
DK
Denmark
Prior art keywords
measuring probe
ultrasonic
chamber
tubular
probe
Prior art date
Application number
DK104791A
Other languages
Danish (da)
Other versions
DK104791D0 (en
DK104791A (en
Inventor
Allan Northeved
Michael Svan
Original Assignee
Force Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Force Inst filed Critical Force Inst
Priority to DK104791A priority Critical patent/DK169900B1/en
Publication of DK104791D0 publication Critical patent/DK104791D0/en
Priority to PCT/DK1992/000174 priority patent/WO1992021965A1/en
Priority to AU19012/92A priority patent/AU1901292A/en
Publication of DK104791A publication Critical patent/DK104791A/en
Application granted granted Critical
Publication of DK169900B1 publication Critical patent/DK169900B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

DK 169900 B1DK 169900 B1

Opfindelsen angår en fremgangsmåde til inspektion af rørformede dele, især til måling af vægtykkelsen af en rørformet del, omfattende en indføring af en målesonde med en ultralydtransducer til udsendelse af en ultralydimpuls til væggen af 5 den rørformede del og til detektion af de af inder- og ydersiden af rørvæggen reflekterede ultralydimpulser, hvilken målesonde omfatter et roterbart styreorgan, fortrinsvis et roterbart skråtstillet spejl til styring af den af transduceren udsendte ultralyd i form af en stråle med henblik på skan-10 dering af den rørformede del efter en i hovedsagen spiralformet bane under sondens fremføring, hvilket styreorgan anbringes i et kammer og bringes til at rotere ved hjælp af en elektrisk motor, idet der under skanderingen tilføres en ultralyd-' transmitterende væske til mellemrummet imellem målesonden og 15 den rørformede del.The invention relates to a method for inspecting tubular members, in particular for measuring the wall thickness of a tubular member, comprising introducing a measuring probe with an ultrasonic transducer for emitting an ultrasonic pulse to the wall of the tubular member and for detecting those of the inner and outer members. the outside of the tubular wall reflects ultrasonic pulses, which measuring probe comprises a rotatable guide means, preferably a rotatably inclined mirror for controlling the ultrasound emitted by the transducer in the form of a beam for scanning the tubular portion along a generally helical path of the probe. a guide, which is placed in a chamber and caused to rotate by means of an electric motor, during which an ultrasonic transmitting fluid is fed to the space between the measuring probe and the tubular part.

Fra US patentskrift nr. 4.361.044 er det kendt at rotere et skråtstillet spejl, der sammen med en ultralydtransducer er anbragt i et kammer af en målesonde, der kan indføres i et rør, der skal undersøges. Spejlet roteres ved hjælp af et 20 motordrev i kammeret, der øjensynligt kun indeholder luft. En ulempe ved denne målesonde er, at en stor del af ultralydstrålen vil blive reflekteret som følge af den manglende akustiske kobling, I den målesonde, der kendes fra europæisk patentansøgning nr.From U.S. Patent No. 4,361,044, it is known to rotate an inclined mirror which, together with an ultrasonic transducer, is placed in a chamber of a measuring probe which can be inserted into a tube to be examined. The mirror is rotated by means of a 20 motor drive in the chamber, which apparently contains only air. A disadvantage of this measuring probe is that a large part of the ultrasound beam will be reflected due to the lack of acoustic coupling, in the measuring probe known from European patent application no.

25 12.474, er den væske, der under skanderingen tilføres til mel lemrummet mellem målesonden og den rørformede del samtidigt anvendt til at sætte det skråtstillede spejl i rotation, idet spejlet er understøttet af en vanddrevet turbine, der roterer på en aksel parallelt med sondens længdeakse. Derved opnås en 30 bedre akustisk kobling imellem ultralydtransduceren og den væske, der omgiver sonden. En ulempe ved en sådan vanddrevet turbine er imidlertid, at nøjagtigheden ikke bliver særlig stor som følge af, at rotationshastigheden ikke er særlig præcis. Dertil kommer, at rotationsbevægelsen giver en vis 35 turbulens, således at medførte luftbobler vil kunne forstyrre DK 169900 B1 2 målingen. Begge de nævnte ulemper begrænser den hastighed, hvormed der vil kunne skanderes.25 12,474, the liquid supplied during scanning to the gap between the measuring probe and the tubular member is simultaneously used to rotate the inclined mirror, the mirror being supported by a water-driven turbine rotating on a shaft parallel to the longitudinal axis of the probe. Thereby, a better acoustic coupling is obtained between the ultrasonic transducer and the fluid surrounding the probe. However, one disadvantage of such a water-powered turbine is that the accuracy does not become very high as a result of the rotational speed being not very accurate. In addition, the rotational movement causes a certain turbulence, so that the resulting air bubbles can interfere with the measurement. Both of the aforementioned drawbacks limit the speed at which it can be scanned.

**

Et tilsvarende apparat til inspektion af rør ved hjælp af ultralyd kendes fra JP 62-285.060. Ved dette apparat føres 5 vandet ind i en detektor, hvor det tjener til at rotere et skråtstillet spejl.A similar apparatus for the inspection of pipes by ultrasound is known from JP 62-285.060. In this apparatus, the water is fed into a detector where it serves to rotate an inclined mirror.

Formålet med opfindelsen er at anvise en fremgangsmåde af den indledningsvis nævnte art til skandering af rørformede dele, og som muliggør en større skanderingshastighed end hidtil 10 kendt.The object of the invention is to provide a method of the kind mentioned above for scanning tubular parts and which allows a higher scanning speed than hitherto known.

Fremgangsmåden er ifølge opfindelsen ejendommelig ved, at inspektionen af den rørformede del foretages ved, at det roterende styreorgan anbringes i et fortrinsvis lukket, væskefyldt kammer, der bringes til at rotere sammen med styreorganet, i 15 hvilket kammer der findes et ultralydvindue for den udsendte ultralydstråle. Derved undgås turbulens i det vand, der tilføres. Risikoen for at medførte luftbobler vil kunne forstyrre ultralydtransmissionen og derigennem målingen, er derved reduceret væsentligt, og derigennem muliggøres en større skande-20 ringshastighed.The method according to the invention is characterized in that the inspection of the tubular part is carried out by placing the rotary control member in a preferably closed, liquid-filled chamber which is caused to rotate together with the control means, in which chamber there is an ultrasonic window for the emitted ultrasound beam. . This avoids turbulence in the water supplied. The risk of entrained air bubbles could interfere with the ultrasonic transmission and thereby the measurement is thereby substantially reduced, thereby enabling a greater scanning speed.

Det anvendte roterbare væskefyldte kammers yderside kan desuden have form som et i hovedsagen rotationssymmetrisk legeme med en frembringerkurve, som er en monoton funktion således, at eventuelle luftbobler under kammerets rotation søger mod 25 den indsnævrede ende til eventuel bortledning via eventuelle afgangsåbninger. Risikoen for at luftbobler vil kunne forstyrre målingen, er derved reduceret yderligere.In addition, the exterior of the rotatable liquid-filled chamber used may take the form of a generally rotationally symmetrical body with a generating curve, which is a monotonous function such that any air bubbles during rotation of the chamber seek towards the constricted end for possible discharge through any outlet openings. The risk that air bubbles may interfere with the measurement has been further reduced.

Det anvendte spejl kan ifølge opfindelsen roteres ved hjælp af mindst én jævnstrømsmotor, der er anbragt i et væsketæt hulrum 30 i målesonden. Rotationshastigheden af en sådan motor kan regu-leres meget nøjagtigt, hvorved opløsningsevnen forbedres, og derigennem muliggøres en større skanderingshastighed.According to the invention, the mirror used can be rotated by at least one direct current motor disposed in a liquid-tight cavity 30 in the measuring probe. The speed of rotation of such an engine can be controlled very accurately, thereby improving the solubility, thereby enabling a greater scanning speed.

DK 169900 B1 3 Jævnstrømsmotorens drivaksel kan ifølge opfindelsen være tætnet i forhold til det hulrum, hvori motoren er anbragt, ved hjælp af et leje med jernholdigt smøremiddel i forbindelse med en eller flere kraftige ringformede magneter. Derved opnås et 5 væsketæt leje.According to the invention, the drive shaft of the DC motor can be sealed in relation to the cavity in which the motor is placed, by means of a bearing of ferrous lubricant in connection with one or more powerful annular magnets. Thereby a liquid-tight bed is obtained.

Den anvendte målesonde med det væskefyldte kammer kan ifølge opfindelsen centreres ved hjælp af en eller flere udvendige fjedrende elementer, der er rundtgående og delvis spærrende for vand. Et sådant fjedrende element kan f.eks. udgøres af et 10 fjedrende metalbånd med en ombukning på langs og et passende antal tværgående opslidsninger.According to the invention, the measuring probe used with the liquid-filled chamber can be centered by one or more external resilient elements which are circumferentially and partially obstructed by water. Such a resilient element may e.g. consists of a 10 resilient metal band with a longitudinal bend and a suitable number of transverse slits.

Opfindelsen angår også et apparat til udøvelse af fremgangsmåden ifølge opfindelsen til inspektion af rørformede dele, især måling af vægtykkelsen af en rørformet del, omfattende en 15 målesonde til udsendelse af en ultralydimpuls til væggen af den rørformede del og til detektion af de af inder- og ydersiden af rørvæggen reflekterende ultralydimpulser, hvilken målesonde omfatter et roterbart styreorgan fortrinsvis et roterbart skråtstillet spejl til styring af den af transduce-20 ren udsendte ultralyd, fortrinsvis i form af en stråle, med henblik på skandering af den rørformede del efter en i hovedsagen spiralformet bane, hvilket roterbare styreorgan er anbragt i et kammer og kan bringes til at rotere ved hjælp af en elektrisk motor, idet der under skanderingen tilføres en ul-25 trat ransmitterende væske til mellemrummet imellem målesonden og den rørformede del. Ifølge opfindelsen er det roterbare styreorgan anbragt i et væskefyldt kammer, der kan roteres sammen med styreorganet, og hvori der findes et ultralydvindue for den udsendte ultralydstråle. Derved opnås et særlig hen-30 sigtsmæssigt apparat til hurtig inspektion af rørformede dele.The invention also relates to an apparatus for carrying out the method according to the invention for inspecting tubular parts, in particular measuring the wall thickness of a tubular part, comprising a measuring probe for transmitting an ultrasonic pulse to the wall of the tubular part and for detecting the outside of the tubular wall reflecting ultrasonic pulses, which measuring probe comprises a rotatable control means preferably a rotatably inclined mirror for controlling the ultrasound emitted by the transducer, preferably in the form of a beam, for scanning the tubular portion for a substantially helical bore which rotatable control means is placed in a chamber and can be caused to rotate by means of an electric motor, during the scanning of which an ultratransmit transmitting liquid is supplied to the space between the measuring probe and the tubular part. According to the invention, the rotatable control means is arranged in a liquid-filled chamber which can be rotated together with the control means and in which there is an ultrasonic window for the emitted ultrasound beam. Thereby, a particularly convenient apparatus for rapid inspection of tubular parts is obtained.

Ifølge opfindelsen kan rotationen med fordel være tilvejebragt ved hjælp af mindst én jævnstrømsmotor, der er anbragt i et lukket hulrum af målesonden. En jævnstrømsmotor kan rotere med •en rotationshastighed, der er meget nøjagtig, hvorved der DK 169900 B1 4 « opnås en bedre opløsningsevne under skanderingen.According to the invention, the rotation may advantageously be provided by at least one direct current motor disposed in a closed cavity of the measuring probe. A DC motor can rotate at a • very accurate rotational speed, thereby providing a better resolution capability during scanning.

Motorens drivaksel kan med fordel være tætnet i forhold til * det lukkede hulrum, hvori motoren er anbragt, ved hjælp af et leje med et jernholdigt smøremiddel i forbindelse med en eller 5 flere kraftige ringformede magneter. Magneterne holder på smøremidlet og giver derigennem den ønskede væsketætning.The drive shaft of the motor may advantageously be sealed with respect to the closed cavity in which the motor is placed by means of a bearing with an ferrous lubricant in connection with one or more powerful annular magnets. The magnets hold on to the lubricant and thereby provide the desired fluid seal.

Opfindelsen skal nærmere forklares i det følgende under henvisning til tegningen, hvorThe invention will be explained in more detail below with reference to the drawing, wherein

Fig. 1A og IB viser en målesonde til indføring i rørformede 10 dele med henblik på inspektion af disse, fig. 2 et centreringsorgan for målesonden og fig. 3 målesonden i en alternativ udformning.FIG. Figures 1A and 1B show a measuring probe for insertion into tubular parts for inspection thereof; 2 shows a centering means for the probe and FIG. 3 shows the probe in an alternate configuration.

Det i fig. 1A og IB viste apparat til inspektion af rørformede dele, især måling af vægtykkelsen af de rørformede dele om-15 fatter en målesonde, der kan indføres i en rørformet del. Målesonden består af et rørformet hus 2, hvori der er monteret en eller flere elektromotorer 4 afhængigt af det ønskede drejningsmoment. Hvis der er flere motorer 4, er disses drivak-seler forbundet indbyrdes via ikke stive koblinger. Den udra-20 gende drivaksel af den forreste motor 4 er via en akselkobling 6 ført gennem en fastsiddende primærvikling af en transformer og er fast forbundet med sekundærviklingen 8, der kan rotere i forhold til primærviklingen 7. Sekundærviklingen 8 er fastgjort til enden af en hul aksel 10, hvorigennem der er ført 25 tilledninger til en ultralydtransducer 12, der er monteret ved den anden ende af akselen 10. Tæt ved sekundærviklingen 8 er den hule aksel 10 monteret i et leje, fortrinsvis et i røret fastsiddende kugleleje 13. Efter kuglelejet 13 sidder der en magnetisk tætning 15 i form af et leje med et jernholdigt 30 smøremiddel i forbindelse med kraftige ringformede magneter. *The FIG. 1A and 1B, the apparatus for inspecting tubular parts, in particular measuring the wall thickness of the tubular parts, comprises a measuring probe which can be inserted into a tubular part. The measuring probe consists of a tubular housing 2 in which one or more electric motors 4 are mounted depending on the desired torque. If there are several motors 4, their drive shafts are interconnected via non-rigid couplings. The protruding drive shaft of the front motor 4 is passed through a shaft coupling 6 through a fixed primary winding of a transformer and is fixedly connected to the secondary winding 8 which can rotate relative to the primary winding 7. The secondary winding 8 is attached to the end of a hole. shaft 10, through which 25 leads to an ultrasonic transducer 12 mounted at the other end of shaft 10. Close to secondary winding 8, hollow shaft 10 is mounted in a bearing, preferably a ball bearing 13, which is fixed to the tube. there is a magnetic seal 15 in the form of a bearing with an ferrous lubricant in connection with powerful annular magnets. *

Magneterne holder på det jernholdige smøremiddel, selv om DK 169900 B1 5 lejet udsættes for væsketryk, og giver derigennem en væsketætning. Efter den magnetiske tætning 15 er der endnu et fastsiddende kugleleje 17, hvori den hule aksel 10 er lejret. Den derfra udragende hule aksel 10 er fastgjort til en cylindrisk 5 og aksialt monteret ultralydtransducer 12. Ultralydtransduceren 12 er forbundet til de i akselen 10 førte tilledninger og aktiveres ved hjælp af en signal spænding, der tilføres via transformeren 7, 8 med roterbar sekundærvikling 8. Primærviklingen 7 tilføres en spænding af en frekvens på ca.The magnets hold on to the ferrous lubricant, even though the DK 169900 B1 5 bearing is subjected to fluid pressure, thereby providing a fluid seal. After the magnetic seal 15, there is another fixed ball bearing 17 in which the hollow shaft 10 is mounted. The hollow shaft protruding therefrom is attached to a cylindrical 5 and axially mounted ultrasonic transducer 12. The ultrasonic transducer 12 is connected to the leads provided in the shaft 10 and is activated by a signal voltage supplied via the transformer 7, 8 with rotatable secondary winding 8. The primary winding 7 is supplied with a voltage of a frequency of approx.

10 5-15 MHz fra en forforstærker 19 anbragt bag ved elektromoto ren 4 i et væsketæt hulrum. I samme væsketætte hulrum og på samme kredsløbskort findes desuden et styrekredsløb for elektromotoren 4. Styrekredsløbet tjener til at sikre, at motoren 4 roterer med den ønskede rotationshastighed, der skal være 15 konstant. Motoren 4 er en jævnstrømsmotor, idet en sådan motor kan fremstilles i meget små dimensioner.10 5-15 MHz from a preamplifier 19 located behind the electric motor 4 in a liquid-tight cavity. In addition, in the same liquid-tight cavity and on the same circuit board there is a control circuit for the electric motor 4. The control circuit serves to ensure that the motor 4 rotates at the desired rotational speed, which must be constant. The motor 4 is a direct current motor in that such a motor can be manufactured in very small dimensions.

Foran den cylindriske og aksialt monterede ultralydtransducer 12 er der et væskefyldt kammer 20, hvori der er monteret et styreorgan i form af en skråtstillet ultralydreflekterende 20 plade 22. Denne plade 22 danner fortrinsvis en vinkel på ca.In front of the cylindrical and axially mounted ultrasonic transducer 12 there is a liquid-filled chamber 20 in which is mounted a guide member in the form of an oblique ultrasonic reflecting 20 plate 22. This plate 22 preferably forms an angle of approx.

45° med rørets 2 akse. Den af pladen 22 reflekterede og via et ultralydvindue i kammeret 20 udsendte ultralydstråle beskriver derved en spiralformet bane, hvis transduceren 12 og spejlet 22 roterer med en konstant rotationshastighed, og målesonden 25 samtidigt bevæges med en konstant fremføringshastighed i f.eks. et rør.45 ° with the 2 axis of the pipe. The ultrasound beam reflected by the plate 22 and transmitted via an ultrasonic window in the chamber 20 thus describes a helical path if the transducer 12 and the mirror 22 rotate at a constant rotational speed and the measuring probe 25 is simultaneously moved at a constant advance speed in e.g. a tube.

Til centrering af målesonden i røret er der uden på det rørformede hus 2 af målesonden indrettet nogle centreringsorganer 23 i form af fjedrende elementer, der er rundtgående og samti-30 digt gennemtrængelige for vand - se fig. 2. Det enkelte fjedrende element udgøres af et bånd af fjedrende metal, der er bukket i længderetningen og et passende antal steder er opslidset på tværs. Båndet lægges omkring det rørformede hus 2.For centering the measuring probe in the tube, some centering means 23 are arranged outside the tubular housing 2 of the measuring probe in the form of resilient elements which are perpendicular and simultaneously permeable to water - see fig. 2. The individual resilient member is constituted by a longitudinal bend of resilient metal and a suitable number of places slit transversely. The tape is laid around the tubular housing 2.

Den ene kant af båndet fastgøres til huset 2, medens den anden 35 kant kan forskydes i afhængighed af den nødvendige diameter af v 6 DK 169900 B1 det rør, der skal inspiceres. Opslidsningen giver, ud over den ønskede centrering, også en delvis spærring for vand. Centreringsorganet 23 behøver ikke nødvendigvis at være fremstillet af fjedrende metalplade. Det kan også være fremstillet af an-5 det fjedrende plademateriale.One edge of the tape is attached to the housing 2, while the other edge can be displaced depending on the required diameter of the pipe to be inspected. In addition to the desired centering, the slit also provides a partial barrier to water. The centering means 23 need not necessarily be made of resilient metal plate. It may also be made of other resilient sheet material.

Til opnåelse af den bedst mulige ultralydkobling er der under en ultralydskandering tilført vand til mellemrummet mellem ultralydsonden og det rør, der skal undersøges. Vandet tilføres via en til sonden ført slange 25 og afgives via to udløb 26 10 fra sonden til mellemrummet mellem sonden og røret, som skal undersøges.To obtain the best possible ultrasonic coupling, during an ultrasonic scan, water is supplied to the gap between the ultrasound probe and the tube to be examined. The water is supplied via a tube 25 to the probe and is delivered via two outlets 26 10 from the probe to the gap between the probe and the tube to be examined.

For enden af det væskefyldte kammer 20, hvori det skråtstillede spejl 22 er monteret, sidder der en stopskive 27, der i nogen grad bremser vandgennemstrømningen og derigennem sikrer, 15 at mellemrummet mellem røret og det væskefyldte kammer 20 er fyldt med vand.At the end of the liquid-filled chamber 20 in which the inclined mirror 22 is mounted, there is a stop disc 27 which somewhat slows down the flow of water and thereby ensures that the space between the tube and the liquid-filled chamber 20 is filled with water.

I en særlig hensigtsmæssig udførelsesform - se fig. 3 - har det væskefyldte kammer form som et i hovedsagen rotationssymmetrisk legeme med en monoton frembringerkurve og er fortrins-20 vis konisk således, at eventuelle medførte luftbobler ved centrifugalkraftens indvirkning automatisk opsamles ved den indsnævrede ende af den koniske overflade, hvor stopskiven 27 findes. Hvis der desuden i stopskiven 27 er indrettet nogle huller 28 for afgivelse af opsamlede luftbobler, vil disse 25 ikke kunne påvirke ultralydtransmissionen under målingen.In a particularly convenient embodiment - see fig. 3 - the liquid-filled chamber has the shape of a substantially rotationally symmetrical body with a monotonous generating curve and is preferably conical such that any entrained air bubbles, by the action of centrifugal force, are automatically collected at the narrowed end of the conical surface where the stop disk 27 is located. In addition, if some holes 28 are provided for dispensing of collected air bubbles in the stop disk 27, these 25 will not be able to affect the ultrasonic transmission during the measurement.

Den anvendte metode for vægtykkelsesmålingen er baseret på puls-ekko-teknikken. Målesonden bevæges aksialt i røret. Transduceren 12 udsender en ultralydimpuls i retning af rørets aksel. Pulsen af bøj es ca. 90° af det roterende spejl 22 og 30 rammer indersiden af det rør, der skal undersøges. Som følge af spejlets 22 rotation vil indersiden af røret blive skanderet efter en skruelinieformet bane. En del af ultralydenergien * reflekteres af indersiden af rørvæggen. Den resterende del afThe method used for the wall thickness measurement is based on the pulse-echo technique. The measuring probe moves axially in the tube. The transducer 12 emits an ultrasonic pulse in the direction of the tube shaft. The pulse of bend is approx. 90 ° of the rotating mirror 22 and 30 strike the inside of the tube to be examined. Due to the rotation of the mirror 22, the inside of the tube will be scanned for a helical path. Part of the ultrasonic energy * is reflected by the inside of the tube wall. The remaining part of

Claims (10)

1. Fremgangsmåde til inspektion af rørformede dele, især til måling af vægtykkelsen af en rørformet del, omfattende en indføring af en målesonde med en ultralydtransducer (12) til udsendelse af en ultralydimpuls til væggen af den rørformede del 30 og til detektion af de af inder- og ydersiden af rørvæggen reflekterede ultralydimpulser, hvilken målesonde omfatter et ro-terbart styreorgan, fortrinsvis et roterbart skråtstillet DK 169900 B1 8 Ψ spejl (22) til styring af den af transduceren (12) udsendte ultralyd i form af en stråle med henblik på skandering af den rørformede del efter en i hovedsagen spiralformet bane under sondens fremføring, hvilket styreorgan (22) anbringes i et 5 kammer og bringes til at rotere ved hjælp af en elektrisk motor, idet der under skanderingen tilføres en ultralydtransmitterende væske til mellemrummet imellem målesonden og den rørformede del, kendetegnet ved, at inspektionen af den rørformede del foretages ved, at det roterende styreorgan 10 (22) anbringes i et fortrinsvis lukket væskefyldt kammer (20), der bringes til at rotere sammen med styreorganet (22), i hvilket kammer (20) der findes et ultralydvindue for den udsendte ultralydstråle.A method for inspecting tubular members, in particular for measuring the wall thickness of a tubular member, comprising introducing a measuring probe with an ultrasonic transducer (12) for transmitting an ultrasonic pulse to the wall of the tubular member 30 and for detecting those of the inner - and the outside of the tube wall reflected ultrasonic pulses, which measuring probe comprises a rotatable control means, preferably a rotatably inclined mirror (22) for controlling the ultrasound transmitted by the transducer (12) in the form of a beam for scanning of the tubular portion following a generally helical path during the probe advance, which guide member (22) is placed in a chamber and rotated by an electric motor, during scanning an ultrasonic transmitting fluid is applied to the gap between the probe and the probe. tubular part, characterized in that the inspection of the tubular part is carried out by bullet 10 (22) is placed in a preferably closed liquid-filled chamber (20) which is rotated with the guide (22), in which chamber (20) is provided an ultrasonic window for the emitted ultrasound beam. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, 15 at den anvendte ultralydtransducer (12) er anbragt i det væskefyldte kammer (20).Method according to claim 1, characterized in that the ultrasonic transducer (12) used is arranged in the liquid-filled chamber (20). 3. Fremgangsmåde ifølge krav 1 eller 2, kendetegnet ved, at den anvendte ultralydtransducer (12) står i forbindelse med den øvrige del af målesonden via en transformer, 20 hvis sekundærvikling (8) kan rotere i forhold til primærviklingen (7) .Method according to claim 1 or 2, characterized in that the ultrasonic transducer (12) used is in communication with the other part of the measuring probe via a transformer, whose secondary winding (8) can rotate with respect to the primary winding (7). 4. Fremgangsmåde ifølge krav 1-3, kendetegnet ved, at det anvendte spejl (22) roteres ved hjælp af mindst én jævnstrømsmotor (4), der er anbragt i et væsketæt hulrum i må- 25 lesonden.Method according to claims 1-3, characterized in that the mirror (22) used is rotated by at least one DC motor (4) arranged in a liquid-tight cavity in the measuring probe. 5. Fremgangsmåde ifølge krav 4, kendetegnet ved, at den anvendte motors (4) drivaksel (10) er tætnet i forhold til det hulrum, hvori motoren (4) er anbragt, ved hjælp af et leje (15) med et jernholdigt smøremiddel i forbindelse med en r 30 el- ler flere kraftige ringformede magneter.Method according to claim 4, characterized in that the drive shaft (10) of the engine (4) used is sealed with respect to the cavity in which the motor (4) is arranged, by means of a bearing (15) with an ferrous lubricant. connection with an R 30 or several powerful annular magnets. 6. Fremgangsmåde ifølge krav 1-5, kendetegnet ved, * at den anvendte målesonde med det væskefyldte kammer (20) een- DK 169900 B1 9 treres ved hjælp af en eller flere udvendige fjedrende elementer (23), der er rundtgående og delvis spærrende for vand.Method according to claims 1-5, characterized in that the measuring probe used with the liquid-filled chamber (20) is extracted by means of one or more external resilient elements (23) which are circumferential and partially blocking. for water. 7. Fremgangsmåde ifølge krav l, kendetegnet ved, at det anvendte roterbare væskefyldte kammers (20) yderside 5 har form som et i hovedsagen rotationssymmetrisk legeme med en frembringerkurve, som er en monoton funktion således, at eventuelle luftbobler under kammerets rotation søger mod den indsnævrede ende til eventuel bortledning via eventuelle afgangs-åbninger (28).Method according to claim 1, characterized in that the outer surface 5 of the rotatable liquid-filled chamber (20) is in the form of a generally rotationally symmetrical body with a generating curve which is a monotonous function such that any air bubbles during the rotation of the chamber seek against the constricted end to any discharge through any outlet openings (28). 8. Apparat til udøvelse af fremgangsmåden ifølge et eller flere af kravene 1-7 til inspektion af rørformede dele, især til måling af vægtykkelsen af en rørformet del, omfattende en målesonde til udsendelse af en ultralydimpuls til væggen af den rørformede del og til detektion af de af inder- og yder-15 siden af rørvæggen reflekterede ultralydimpulser, hvilken målesonde omfatter et roterbart styreorgan, fortrinsvis et ro-terbart skråtstillet spejl (22) til styring af den af transduceren (12) udsendte ultralyd, fortrinsvis i form af en stråle, med henblik på skandering af den rørformede del efter en i 20 hovedsagen spiralformet bane, hvilket styreorgan (22) er anbragt i et kammer og kan bringes til at rotere ved hjælp af en elektrisk motor, idet der under skanderingen tilføres en ultralydtransmitterende væske til mellemrummet imellem målesonden og den rørformede del, kendetegnet ved, at sty-25 reorganet (22) er anbragt i et væskefyldt kammer (20) , der kan rotere sammen med styreorganet (22), i hvilket kammer der findes et ultralydvindue for den udsendte ultralydstråle.Apparatus for carrying out the method according to one or more of claims 1-7 for inspecting tubular parts, in particular for measuring the wall thickness of a tubular part, comprising a measuring probe for transmitting an ultrasonic pulse to the wall of the tubular part and for detecting the ultrasonic pulses reflected by the inner and outer sides of the tube wall, the measuring probe comprising a rotatable control means, preferably a rotatably inclined mirror (22) for controlling the ultrasound emitted by the transducer (12), preferably in the form of a beam, for scanning the tubular portion according to a generally helical path, which guide member (22) is arranged in a chamber and can be rotated by an electric motor, during scanning an ultrasonic transmitting fluid is fed to the space between the measuring probe and the tubular part, characterized in that the control means (22) is arranged in a liquid-filled chamber (20) which can rotate together with the control means (22), in which chamber is an ultrasonic window for the emitted ultrasound beam. 9. Apparat ifølge krav 8, kendetegnet ved, at kammerets (20) rotationsbevægelse er tilvejebragt ved hjælp af 30 mindst én jævnstrømsmotor (4), der er anbragt i et lukket hulrum af målesonden.Apparatus according to claim 8, characterized in that the rotational movement of the chamber (20) is provided by at least one dc motor (4) arranged in a closed cavity of the measuring probe. 10. Apparat ifølge krav 9, kendetegnet ved, at jævnstrømsmotorens (4) drivaksel (10) er tætnet i forhold til DK 169900 B1 10 det lukkede hulrum ved hjælp af et leje (15) med et jernholdigt smøremiddel i forbindelse med en eller flere kraftige ringformede magneter. * li. Apparat ifølge krav 8-10, kendetegnet ved, at 5 der til centrering af målesonden i den rørformede del er indrettet nogle udvendige fjedrende elementer (23), der er rundt-gående og delvis spærrende for vand.Apparatus according to claim 9, characterized in that the drive shaft (10) of the DC motor (4) is sealed with respect to DK 169900 B1 10 by means of a bearing (15) with an ferrous lubricant in connection with one or more powerful annular magnets. * li. Apparatus according to claims 8-10, characterized in that for the centering of the measuring probe in the tubular part some external resilient elements (23) are arranged, which are circumferential and partially blocking water.
DK104791A 1991-05-31 1991-05-31 Method and apparatus for detecting corrosion in pipes DK169900B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK104791A DK169900B1 (en) 1991-05-31 1991-05-31 Method and apparatus for detecting corrosion in pipes
PCT/DK1992/000174 WO1992021965A1 (en) 1991-05-31 1992-05-29 A method and an apparatus for the dectection of corrosion in pipes
AU19012/92A AU1901292A (en) 1991-05-31 1992-05-29 A method and an apparatus for the dectection of corrosion in pipes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK104791 1991-05-31
DK104791A DK169900B1 (en) 1991-05-31 1991-05-31 Method and apparatus for detecting corrosion in pipes

Publications (3)

Publication Number Publication Date
DK104791D0 DK104791D0 (en) 1991-05-31
DK104791A DK104791A (en) 1992-12-01
DK169900B1 true DK169900B1 (en) 1995-03-27

Family

ID=8100385

Family Applications (1)

Application Number Title Priority Date Filing Date
DK104791A DK169900B1 (en) 1991-05-31 1991-05-31 Method and apparatus for detecting corrosion in pipes

Country Status (3)

Country Link
AU (1) AU1901292A (en)
DK (1) DK169900B1 (en)
WO (1) WO1992021965A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726642B1 (en) * 1994-11-03 1996-12-13 Lyonnaise Eaux Eclairage METHOD FOR ULTRASONIC MEASUREMENT OF THE THICKNESS OF A WATER PIPELINE AND DEVICE FOR CARRYING OUT SAID METHOD
NL1026538C2 (en) * 2004-07-01 2006-01-03 Roentgen Tech Dienst Bv A method and assembly for detecting a crack in a pipeline from an inside of the pipeline.
US8167809B2 (en) 2007-12-20 2012-05-01 Silicon Valley Medical Instruments, Inc. Imaging probe housing with fluid flushing
GB2468301B (en) * 2009-03-03 2013-06-12 Jd7 Ltd Water mains inspection and servicing
US9521990B2 (en) 2011-05-11 2016-12-20 Acist Medical Systems, Inc. Variable-stiffness imaging window and production method thereof
US10905851B2 (en) 2012-03-23 2021-02-02 Acist Medical Systems, Inc. Catheter sheath and methods thereof
US11666309B2 (en) 2013-12-19 2023-06-06 Acist Medical Systems, Inc. Catheter sheath system and method
EP3193725A1 (en) * 2014-08-11 2017-07-26 Eye-life AS Ultrasonic scanner with a magnetic coupling between a motor and a mirror
CN114246547A (en) * 2020-09-21 2022-03-29 无锡微奥科技有限公司 Probe for increasing MEMS-OCT scanning imaging field angle
CN115308308B (en) * 2022-10-10 2022-12-13 山东广悦化工有限公司 Diesel pipeline corrosion prevention detection device and application method thereof
CN116642959B (en) * 2023-07-26 2023-09-26 山东泰阳特种设备检测科技有限公司 Pipeline electromagnetic ultrasonic detection device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008603A (en) * 1975-12-29 1977-02-22 Shell Oil Company Ultrasonic method and apparatus for measuring wall thickness of tubular members
US4084582A (en) * 1976-03-11 1978-04-18 New York Institute Of Technology Ultrasonic imaging system
US4212207A (en) * 1978-12-14 1980-07-15 Shell Oil Company Ultrasonic tube inspection
US4361044A (en) * 1980-12-09 1982-11-30 The United States Of America As Represented By The United States Department Of Energy Scanning ultrasonic probe
DE3131883A1 (en) * 1981-08-12 1983-03-03 Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft in Bonn, dieser vertreten durch den Präsidenten der Bundesanstalt für Materialprüfung (BAM), 1000 Berlin Tube-internal test probe in accordance with the ultrasonic pulse echo method for measuring wall thickness on grainy surfaces, preferably for verifying corrosion in tubes
GB8317247D0 (en) * 1983-06-24 1983-07-27 Atomic Energy Authority Uk Ultrasonic scanning probe
US4597294A (en) * 1984-06-25 1986-07-01 Westinghouse Electric Corp. Ultrasonic nondestructive tubing inspection system
US4674515A (en) * 1984-10-26 1987-06-23 Olympus Optical Co., Ltd. Ultrasonic endoscope
US4824122A (en) * 1987-03-02 1989-04-25 Ferrofluidics Corporation Compact magnetic fluid low pressure seal

Also Published As

Publication number Publication date
DK104791D0 (en) 1991-05-31
WO1992021965A1 (en) 1992-12-10
AU1901292A (en) 1993-01-08
DK104791A (en) 1992-12-01

Similar Documents

Publication Publication Date Title
DK169900B1 (en) Method and apparatus for detecting corrosion in pipes
US3960006A (en) Non-destructive test apparatus and method for a material having a cavity therein
US8397575B2 (en) Oblique flaw detection using ultrasonic transducers
JPS6133121B2 (en)
US3628375A (en) Apparatus for ultrasonic inspection of a length of test material
US5333502A (en) Method and apparatus for monitoring the environment of a vessel
JPH0584865B2 (en)
US4052887A (en) Ultrasonic testing device and method
US3777552A (en) Ultrasonic scanning system for in-place inspection of brazed tube joints
US3508436A (en) Apparatus for ultrasonic testing with rotating probe means located inside a tubular test object
JP6039599B2 (en) Tube ultrasonic inspection equipment
JPH07333202A (en) Flaw detector of piping
JPS5818623B2 (en) Oyobi Sonotamenosouchi
US3417609A (en) Ultrasonic inspection transducer
KR100201501B1 (en) Tube testing apparatus
KR20200061419A (en) Automatic rotating ultrasonic inspection system using brushless
JP3759050B2 (en) Ultrasonic probe holder, ultrasonic flaw detector, and ultrasonic flaw detection method for tubular body
JP3352653B2 (en) Ultrasonic flaw detector for pipes
JPS594663B2 (en) Non-destructive material inspection method for fin tubes using ultrasound
JPS6159458B2 (en)
KR101885756B1 (en) Ultrasonic sensor module structure of ultrasonic inspection device for performing non-destructive test
JPH05126803A (en) Automatic ultrasonic flaw detecting apparatus
JPH01140056A (en) Ultrasonic flaw detector for tube
JPH10153582A (en) Ultrasonic probe to be inserted into tube
JPS6258467B2 (en)

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed