EP0731260A1 - Control method for a cooling circuit of an internal combustion engine - Google Patents

Control method for a cooling circuit of an internal combustion engine Download PDF

Info

Publication number
EP0731260A1
EP0731260A1 EP96100636A EP96100636A EP0731260A1 EP 0731260 A1 EP0731260 A1 EP 0731260A1 EP 96100636 A EP96100636 A EP 96100636A EP 96100636 A EP96100636 A EP 96100636A EP 0731260 A1 EP0731260 A1 EP 0731260A1
Authority
EP
European Patent Office
Prior art keywords
coolant
temperature
flow
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96100636A
Other languages
German (de)
French (fr)
Other versions
EP0731260B1 (en
Inventor
Karsten Dipl.-Ing. Michels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP0731260A1 publication Critical patent/EP0731260A1/en
Application granted granted Critical
Publication of EP0731260B1 publication Critical patent/EP0731260B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/30Cooling after the engine is stopped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Definitions

  • the invention relates to a method for regulating a cooling circuit of an internal combustion engine, in particular for motor vehicles, with at least one coolant pump for setting a coolant flow, a cooler module in which heat exchange takes place between an air flow that can be set by means of a blower and the coolant, and possibly a temperature-dependent valve for setting a mixing ratio between the coolant flow led via the cooler module and a coolant flow led via a second flow branch and a control device which controls at least the coolant flow generated by the coolant pump and the air flow generated by the fan.
  • German published patent application DE 44 08 078 A1 describes a device for controlling the cooling of an internal combustion engine, which has a coolant pump for generating the flow of coolant in a coolant circuit guided via the internal combustion engine and a cooler, a blower for generating an air flow through the cooler and a control device which controls the air flow generated by the fan as a function of a temperature setpoint of the coolant.
  • the coolant pump is driven by an organ of the internal combustion engine and thus generates a coolant flow which is dependent on the speed of the internal combustion engine and which, particularly in the warm-up phase after the start of the internal combustion engine, requires too much energy and unnecessarily extends the warm-up phase of the internal combustion engine.
  • the coolant pump driven by an electric motor is controlled as a function of a temperature setpoint in addition to the blowers that generate the air flow through the cooler, but the temperature setpoint is dependent on the Engine load and engine speed specified, so that here too, the warm-up phase is unnecessarily extended by the operating point-dependent control of the coolant pump and the fan.
  • the object of the invention is therefore to provide a method for regulating a cooling circuit for an internal combustion engine, in which the power consumption of the coolant pump and the fan producing the air flow through the cooler module is kept low and the warm-up phase of the internal combustion engine by generating an excessively high coolant flow is not extended unnecessarily.
  • a temperature limit value of the coolant by specifying a temperature limit value of the coolant, a distinction is made between the warm-up phase after the start of the internal combustion engine and an operation of the internal combustion engine at operating temperature.
  • both the coolant flow generated by the coolant pump and the air flow generated by the blower are regulated by the cooler module as a function of a differential temperature setpoint.
  • the coolant pump and the blower are regulated depending on the differential temperature setpoint and a temperature setpoint of the coolant at the engine outlet.
  • a further shortening of the warm-up phase is achieved if neither a coolant flow from the coolant pump nor an air flow from the blower is generated below a coolant start temperature that is lower than the temperature limit value and a defined period of time after the internal combustion engine is started.
  • the time period in which neither the coolant pump nor the blower are controlled is determined so that no hot spots can occur on the internal combustion engine.
  • the control of the coolant pump and / or the fan producing the air flow is dependent of the heat flow into the coolant. This is done by forwarding the control signals generated by the control unit to the coolant pump and / or the blower with a delay. The size of the delay is chosen so that the time behavior of the coolant pump and the fan corresponds to the dynamic behavior of the heat flow of the coolant.
  • the coolant flow generated by the coolant pump and the air flow adjustable by the blower are controlled as a function of a time comparison of the efficiencies of the coolant pump and blower for heat dissipation from the cooler module for a minimal use of energy.
  • the temperature setpoint of the coolant for the control of at least the coolant pump and the blower is preferably determined as a function of an optimal engine temperature for each operating point of the internal combustion engine.
  • the heat flow predetermined at least by the operating point of the internal combustion engine and by the coolant flow is stored as a map in the control unit.
  • the coolant circuit shown in FIG. 1 for an internal combustion engine 2 of a motor vehicle consists of several line branches a to f, the opening cross sections of which are controlled by a temperature-dependent valve 6 (thermostat).
  • the direction of rotation of the coolant flow, which is driven by the coolant pump 3, is indicated by arrows.
  • the line branch a is guided via a cooler module 1 for cooling the coolant emerging from the internal combustion engine 2. Air is drawn in from outside the motor vehicle by the fan 4 arranged behind the radiator module 1. When flowing through the cooler module 1, a heat exchange takes place between the air flow ⁇ l adjustable by the fan 4 and the coolant flow ⁇ w .
  • a line branch b is provided, the cross section of which can be controlled by the temperature-dependent valve 6 in order to influence the coolant temperature.
  • the line branch c has an expansion tank 7 and serves to regulate the pressure in the entire coolant circuit.
  • a heat exchanger 8 for the interior heating of the motor vehicle and a cooler 9 and 10 for cooling the engine oil and the transmission oil are arranged in the additional line branches d to f. These line branches d to f are optional.
  • the corresponding cooling or heating functions can also be solved in other ways.
  • the coolant circuit includes a control unit 5, for example the control unit of the internal combustion engine, which receives the output signal S sen of a coolant temperature ⁇ w as an input signal, temperature sensor 11 which is detected at the engine outlet and, via the output signals S pump , S air and S therm, both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.
  • a control unit 5 for example the control unit of the internal combustion engine, which receives the output signal S sen of a coolant temperature ⁇ w as an input signal, temperature sensor 11 which is detected at the engine outlet and, via the output signals S pump , S air and S therm, both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.
  • FIGS. 2 to 4 show flow diagrams of this control method for explanation.
  • the warm-up V1 of the internal combustion engine As illustrated in FIG. 2, three cases are distinguished in the method according to the invention; the warm-up V1 of the internal combustion engine, the driving mode V2 at the operating temperature of the coolant and the run-on V3.
  • the first step A1 it is checked whether the internal combustion engine 2 was started., This is the case, a comparison is made of the coolant temperature ⁇ w, (output signal S sen of the temperature sensor 11) at the engine outlet to a termination of the warm-up phase ⁇ V1 characterizing temperature limit value w , warm. At a coolant temperature ⁇ w, below this temperature limit, warm-up V1 is detected. If the coolant temperature ⁇ w, the temperature limit ⁇ w, warml has been reached, the coolant circuit is controlled according to the algorithm for driving mode V2 at operating temperature.
  • the coolant circuit is controlled using an algorithm for the run-on V3. If the coolant temperature ⁇ w is below the temperature limit ⁇ w, the control stops after the internal combustion engine 2 is restarted.
  • the coolant temperature ⁇ w is compared in a first method step , is at the engine outlet with a coolant start temperature ⁇ w, start . If the coolant temperature is below the coolant start value ⁇ w, start , the coolant pump 3 starts with a delay of the time period t start in order to keep the heat flow from components of the internal combustion engine 2 into the coolant as low as possible and thus to achieve a faster heating of the components .
  • the coolant flow ⁇ w generated by the coolant pump 3 is continuously increased until, for the first time, the minimum coolant flow ⁇ w , min for maintaining the differential temperature setpoint ⁇ w, Mot, should between engine and outlet is reached.
  • the control signal S pump, min for the coolant pump 3 is calculated in the control unit 5 from the minimum coolant flow ⁇ w, min .
  • the coolant pump 3 is regulated to maintain the differential temperature setpoint ⁇ w, Mot, coolant with a control signal S pump, warml .
  • the differential temperature actual value ⁇ w, Mot, required for the control results from the heat flow Q ⁇ Mot from the internal combustion engine into the coolant, which in turn is calculated from the current coolant flow ⁇ w , the current engine load L Mot and the engine speed n.
  • the heat flow Q ⁇ Mot is preferably stored as a map in the control unit 5 for the special internal combustion engine 2.
  • the reaction of the coolant pump 3 to short-term engine load and speed changes should be prevented. Since, due to the thermal inertia of the internal combustion engine 2, brief changes in the engine load L Mot and the engine speed n play no role for the heat flow Q ⁇ Mot in the coolant, carrying the speed of the coolant pump 3 would represent unnecessary energy consumption.
  • the control signal S pump for the coolant pump is therefore assigned a dynamic transmission behavior, the time constant T stg of which is selected such that the time behavior of the coolant pump roughly corresponds to the behavior of the heat flow Q ⁇ Mot from the internal combustion engine into the coolant. It follows that the speed change of the coolant pump 3 follows the change in the heat flow Qestr Mot in the coolant.
  • the blower 4 is not activated during the warm-up phase V1, ie no airflow ⁇ l is generated by the cooler module 1.
  • the warm-up phase V1 has ended when the current coolant temperature ⁇ w, the temperature limit value den w, warml is reached for the first time.
  • the coolant temperature is also controlled as a function of a temperature setpoint ⁇ w, according to the algorithm for driving mode V2 at operating temperature instead.
  • the temperature setpoint ⁇ w, set is first calculated. For this purpose, there is a map in the control unit 5 in which the optimum temperature setpoint ⁇ w, for the specified engine temperature with variable engine load L Mot , engine speed n and coolant flow ⁇ w , is stored.
  • the control temperature ⁇ w, therm for the temperature-dependent valve 6 results, from which the control signal S therm for the temperature-dependent valve 6 is determined.
  • the valve 6 regulates the coolant temperature ⁇ w via the coolant flow conditions between the line branch a led via the cooler module 1 and the line branch b.
  • the minimum coolant flow ⁇ w, min the required minimum speed of the coolant pump 3 and thus the optimal control signal S pump, min . If the current coolant temperature exceeds ⁇ w, the temperature setpoint is ⁇ w, and if the engine outlet is hot by a difference value ⁇ w, either the speed of the coolant pump 3 and thus the coolant flow ⁇ w or the speed of the fan 4 and thus the air flow ⁇ l increased. Whether it makes more sense in terms of energy to change the speed of the coolant pump 3 or of the blower 4 is determined by comparing their efficiency for heat dissipation at the cooler module 1 over time.
  • the coolant circuit is simultaneously used to cool the engine oil via a cooler 9, the current oil temperature ⁇ oil can be monitored with a sensor (not shown). Exceeds the current oil temperature ⁇ oil has a temperature limit value ⁇ oil, cross so gradually the coolant temperature ⁇ w is reduced until the oil temperature ⁇ oil drops below this limit temperature value again. The coolant temperature required for the selected engine temperature is then set again.
  • the dynamic behavior of the control in the event of brief changes in the engine load L Mot and the engine speed n is different for compliance with the differential temperature setpoint ⁇ w, Mot, setpoint and the temperature setpoint ⁇ w, setpoint.
  • the control according to the differential temperature setpoint ⁇ w, Mot, soll corresponds in dynamics to that of warm-up V1.
  • the regulation according to the temperature setpoint ⁇ w should be done faster by varying the valve current S term and the speeds of the coolant pump 3 and blower 4.
  • a compromise must be found between an energetic optimum and the temperature constancy of the components of the internal combustion engine 2. For energy purposes, it makes sense to allow brief temperature changes in the components, such as those that occur during the overtaking process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The regulation system has a control device (5) for adjusting the revs of the coolant circulation pump (3) and the fan (4) directing air through the radiator, in dependence on the required temp of the engine coolant. The heating-up phase for the engine is shortened by reducing the output of the circulation pump and the fan after starting the engine until the engine coolant reaches a given temp threshold, above which the regulation for maintaining the required coolant temp is brought into operation.

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors, insbesondere für Kraftfahrzeuge, mit mindestens einer Kühlmittelpumpe zur Einstellung eines Kühlmittelstromes, einem Kühlermodul, in dem ein Wärmeaustausch zwischen einem mittels einem Gebläses einstellbaren Luftstrom und dem Kühlmittel erfolgt, eventuell einem temperaturabhängigen Ventil zum Einstellen eines Mischungsverhältnisses zwischen dem über das Kühlermodul geführten Kühlmittelstrom und einem über einen zweiten Strömungszweig geführten Kühlmittelstrom und einem Steuergerät, das mindestens den von der Kühlmittelpumpe erzeugten Kühlmittelstrom und den von dem Gebläse erzeugten Luftstrom steuert.The invention relates to a method for regulating a cooling circuit of an internal combustion engine, in particular for motor vehicles, with at least one coolant pump for setting a coolant flow, a cooler module in which heat exchange takes place between an air flow that can be set by means of a blower and the coolant, and possibly a temperature-dependent valve for setting a mixing ratio between the coolant flow led via the cooler module and a coolant flow led via a second flow branch and a control device which controls at least the coolant flow generated by the coolant pump and the air flow generated by the fan.

In der deutschen Offenlegungsschrift DE 44 08 078 A1 ist eine Vorrichtung zur Regelung der Kühlung eines Verbrennungskraftmotors beschrieben, die eine Kühlmittelpumpe zur Erzeugung der Strömung des Kühlmittels in einem über den Verbrennungskraftmotor und einen Kühler geführten Kühlmittelkreislauf, ein Gebläse zum Erzeugen eines Luftstroms durch den Kühler und eine Steuerungseinrichtung, die in Abhängigkeit eines Temperatursollwertes des Kühlmittels den von dem Gebläse erzeugten Luftstrom steuert, beinhaltet. Die Kühlmittelpumpe wird von einem Organ des Verbrennungskraftmotors angetrieben und damit eine von der Drehzahl des Verbrennungskraftmotors abhängige Kühlmittelströmung erzeugt, die insbesondere in der Warmlaufphase nach dem Start des Verbrennungskraftmotors einen zu hohen Energiebedarf erfordert und die Warmlaufphase des Verbrennungskraftmotors unnötig verlängert.German published patent application DE 44 08 078 A1 describes a device for controlling the cooling of an internal combustion engine, which has a coolant pump for generating the flow of coolant in a coolant circuit guided via the internal combustion engine and a cooler, a blower for generating an air flow through the cooler and a control device which controls the air flow generated by the fan as a function of a temperature setpoint of the coolant. The coolant pump is driven by an organ of the internal combustion engine and thus generates a coolant flow which is dependent on the speed of the internal combustion engine and which, particularly in the warm-up phase after the start of the internal combustion engine, requires too much energy and unnecessarily extends the warm-up phase of the internal combustion engine.

Bei der in der deutschen Offenlegungsschrift DE 38 10 174 A1 beschriebenen Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine wird zwar neben den den Luftstrom durch den Kühler erzeugenden Gebläse auch die von einem Elektromotor angetriebene Kühlmittelpumpe in Abhängigkeit eines Temperatursollwertes gesteuert, der Temperatursollwert wird jedoch in Abhängigkeit der Motorlast und der Motordrehzahl vorgegeben, so daß auch hier die Warmlaufphase durch die betriebspunktabhängige Regelung der Kühlmittelpumpe und des Gebläses unnötig verlängert wird.In the device for regulating the coolant temperature of an internal combustion engine described in German Offenlegungsschrift DE 38 10 174 A1, the coolant pump driven by an electric motor is controlled as a function of a temperature setpoint in addition to the blowers that generate the air flow through the cooler, but the temperature setpoint is dependent on the Engine load and engine speed specified, so that here too, the warm-up phase is unnecessarily extended by the operating point-dependent control of the coolant pump and the fan.

Die Aufgabe der Erfindung besteht somit darin, ein Verfahren zur Regelung eines Kühlkreislaufes für einen Verbrennungskraftmotor zu schaffen, bei dem die Leistungsaufnahme der Kühlmittelpumpe und des den Luftstrom durch das Kühlermodul erzeugenden Gebläses gering gehalten wird und die Warmlaufphase des Verbrennungskraftmotor durch die Erzeugung eines zu hohen Kühlmittelstroms nicht unnötig verlängert wird.The object of the invention is therefore to provide a method for regulating a cooling circuit for an internal combustion engine, in which the power consumption of the coolant pump and the fan producing the air flow through the cooler module is kept low and the warm-up phase of the internal combustion engine by generating an excessively high coolant flow is not extended unnecessarily.

Die Aufgabe wird durch die Merkmale des Patentanspruchs gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den Unteransprüchen dargestellt.The object is achieved by the features of the patent claim. Advantageous refinements and developments are presented in the subclaims.

Gemäß der Erfindung wird durch Vorgabe eines Temperaturgrenzwertes des Kühlmittels zwischen der Warmlaufphase nach dem Start des Verbrennungskraftmotors und eines Betriebes des Verbrennungskraftmotors mit Betriebstemperatur unterschieden. Unterhalb des Temperaturgrenzwertes wird sowohl der von der Kühlmittelpumpe erzeugte Kühlmittelstrom und der vom Gebläse erzeugte Luftstrom durch das Kühlermodul in Abhängigkeit eines Differenztemperatur-Sollwertes geregelt. Nach Erreichen des Temperaturgrenzwertes erfolgt die Regelung der Kühlmittelpumpe und des Gebläses sowohl in Abhängigkeit des Differenztemperatur-Sollwertes als auch eines Temperatur-Sollwertes des Kühlmittels am Motoraustritt.According to the invention, by specifying a temperature limit value of the coolant, a distinction is made between the warm-up phase after the start of the internal combustion engine and an operation of the internal combustion engine at operating temperature. Below the temperature limit, both the coolant flow generated by the coolant pump and the air flow generated by the blower are regulated by the cooler module as a function of a differential temperature setpoint. After the temperature limit has been reached, the coolant pump and the blower are regulated depending on the differential temperature setpoint and a temperature setpoint of the coolant at the engine outlet.

Mit Hilfe der Erfindung wird somit ein schnelles Aufheizen des Verbrennungskraftmotors und eine Verkürzung der Warmlaufphase erreicht, wobei jedoch durch die Einhaltung des Differenztemperatur-Sollwertes zwischen Motoreintritt und Motoraustritt keine Heißpunkte an einzelnen Bauteilen des Verbrennungskraftmotors entstehen können.With the help of the invention, a rapid heating of the internal combustion engine and a shortening of the warm-up phase are thus achieved, but no hot spots can arise on individual components of the internal combustion engine by maintaining the target temperature difference between the engine inlet and the engine outlet.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, unterhalb des Temperaturgrenzwertes nur den von der Kühlmittelpumpe erzeugten Kühlmittelstrom in Abhängigkeit der Differenztemperatur zu regeln, jedoch keinen Luftstrom durch das Kühlermodul zu erzeugen.According to an advantageous development of the invention, it is provided that only the coolant flow generated by the coolant pump is regulated as a function of the differential temperature below the temperature limit, but no air flow is generated by the cooler module.

Eine weitere Verkürzung der Warmlaufphase wird erreicht, wenn unterhalb einer Kühlmittelanfangstemperatur, die geringer ist als der Temperaturgrenzwert, und einer definierten Zeitdauer nach dem Starten des Verbrennungskraftmotors weder ein Kühlmittelstrom von der Kühlmittelpumpe noch ein Luftstrom vom Gebläse erzeugt wird. Die Zeitdauer, in der weder die Kühlmittelpumpe noch das Gebläse angesteuert werden, wird so festgelegt, daß keine Heißpunkte am Verbrennungskraftmotor entstehen können.A further shortening of the warm-up phase is achieved if neither a coolant flow from the coolant pump nor an air flow from the blower is generated below a coolant start temperature that is lower than the temperature limit value and a defined period of time after the internal combustion engine is started. The time period in which neither the coolant pump nor the blower are controlled is determined so that no hot spots can occur on the internal combustion engine.

Da aufgrund der thermischen Trägheit des Verbrennungskraftmotors kurzzeitige Änderungen der Motorlast und der Motordrehzahl für den Wärmestrom vom Verbrennungskraftmotor in das Kühlmittel keine Rolle spielen, ist nach einer weiteren Ausbildung der Erfindung vorgesehen, daß die Ansteuerung der Kühlmittelpumpe und/oder des den Luftstrom erzeugenden Gebläses in Abhängigkeit des Wärmestroms in das Kühlmittel erfolgt. Das geschieht, indem die vom Steuergerät erzeugten Ansteuersignale mit einer Verzögerung an die Kühlmittelpumpe und/oder das Gebläse weitergeleitet werden. Die Größe der Verzögerung ist jeweils so gewählt, daß das Zeitverhalten der Kühlmittelpumpe und des Gebläses dem dynamischen Verhalten des Wärmestroms des Kühlmittels entspricht.Since, due to the thermal inertia of the internal combustion engine, short-term changes in the engine load and the engine speed are irrelevant for the heat flow from the internal combustion engine into the coolant, it is provided according to a further embodiment of the invention that the control of the coolant pump and / or the fan producing the air flow is dependent of the heat flow into the coolant. This is done by forwarding the control signals generated by the control unit to the coolant pump and / or the blower with a delay. The size of the delay is chosen so that the time behavior of the coolant pump and the fan corresponds to the dynamic behavior of the heat flow of the coolant.

Nach dem Erreichen des Temperaturgrenzwertes wird für einen minimalen Energieeinsatz nach einer Ausbildung der Erfindung der durch die Kühlmittelpumpe erzeugte Kühlmittelstrom und der durch das Gebläse einstellbare Luftstrom in Abhängigkeit eines zeitlichen Vergleiches der Wirkungsgrade von Kühlmittelpumpe und Gebläse für die Wärmeabfuhr vom Kühlermodul gesteuert.After the temperature limit value has been reached, the coolant flow generated by the coolant pump and the air flow adjustable by the blower are controlled as a function of a time comparison of the efficiencies of the coolant pump and blower for heat dissipation from the cooler module for a minimal use of energy.

Der Temperatur-Sollwertes des Kühlmittels für die Regelung mindestens der Kühlmittelpumpe und des Gebläses wird bevorzugt in Abhängigkeit einer für jeden Betriebspunkt des Verbrennungskraftmotors optimalen Motortemperatur ermittelt.The temperature setpoint of the coolant for the control of at least the coolant pump and the blower is preferably determined as a function of an optimal engine temperature for each operating point of the internal combustion engine.

Gemäß einer vorteilhaften Ausbildung ist weiterhin vorgesehen, den für die Regelung in Abhängigkeit des Differenztemperatur-Sollwertes notwendigen Differenztemperatur-Istwert aus dem Wärmestrom vom Verbrennungskraftmotor in das Kühlmittel und dem Kühlmittelstrom zu ermitteln. Der mindestens vom Betriebspunkt des Verbrennungskraftmotors und vom Kühlmittelstrom vorbestimmte Wärmestrom ist dafür als Kennfeld im Steuergerät abgelegt.According to an advantageous embodiment, provision is further made to determine the actual differential temperature value required for the control as a function of the differential temperature setpoint from the heat flow from the internal combustion engine into the coolant and the coolant flow. The heat flow predetermined at least by the operating point of the internal combustion engine and by the coolant flow is stored as a map in the control unit.

Nachfolgend soll die Erfindung anhand eines Ausführungsbeispiels näher beschrieben werden. Die zugehörigen Zeichnungen zeigen:

Figur 1
eine schematische Darstellung eines Kühlmittelkreislaufes,
Figur 2
ein Ablaufdiagramm für das gesamte Regelverfahren,
Figur 3
ein Ablaufdiagramm für die Regelung in der Warmlaufphase des Verbrennungskraftmotors und
Figur 4
ein Ablaufdiagramm für die Regelung der Betriebstemperatur.
The invention will be described in more detail below using an exemplary embodiment. The associated drawings show:
Figure 1
1 shows a schematic illustration of a coolant circuit,
Figure 2
a flow diagram for the entire control process,
Figure 3
a flowchart for the control in the warm-up phase of the internal combustion engine and
Figure 4
a flow chart for the regulation of the operating temperature.

Der in Figur 1 gezeigte Kühlmittelkreislauf für einen Verbrennungskraftmotor 2 eines Kraftfahrzeuges besteht aus mehreren Leitungszweigen a bis f, deren Öffnungsquerschnitte über ein temperaturabhängiges Ventil 6 (Thermostat) gesteuert werden. Die Umlaufrichtung des Kühlmittelstromes, der über die Kühlmittelpumpe 3 angetrieben wird, ist mit Hilfe von Pfeilen gekennzeichnet. Der Leitungszweig a ist zur Kühlung des aus dem Verbrennungskraftmotors 2 austretenden Kühlmittels über ein Kühlermodul 1 geführt. Durch das hinter dem Kühlermodul 1 angeordnete Gebläse 4 wird von außerhalb des Kraftfahrzeugs Luft angezogen. Beim Durchströmen des Kühlermoduls 1 findet ein Wärmeaustausch zwischen dem durch das Gebläse 4 einstellbaren Luftstrom l und dem Kühlmittelstrom w statt. Weiterhin ist ein Leitungszweig b vorgesehen, dessen Querschnitt zur Beeinflussung der Kühlmitteltemperatur vom temperaturabhängigen Ventil 6 steuerbar ist. Der Leitungszweig c weist einen Ausgleichsbehälter 7 auf und dient zur Druckregulierung im gesamten Kühlmittelkreislauf. In den zusätzlichen Leitungszweigen d bis f sind ein Wärmetauscher 8 für die Innenraumheizung des Kraftfahrzeuges und jeweils ein Kühler 9 und 10 zur Kühlung des Motoröls und des Getriebeöls angeordnet. Diese Leitungszweige d bis f sind fakultativ vorgesehen. Die entsprechenden Kühl- bzw. Heizfunktionen können auch auf anderem Wege gelöst werden. Weiterhin beinhaltet der Kühlmittelkreislauf ein Steuergerät 5, beispielsweise das Steuergerät des Verbrennungskraftmotors, das als Eingangssignal das Ausgangssignal Ssen eines die Kühlmitteltemperatur ϑw,ist am Motoraustritt erfassenden Temperatursensors 11 erhält und über die Ausgangssignale Spump, Sluft und Stherm sowohl die Drehzahl der Kühlmittelpumpe 3 und des Gebläses 4 als auch das temperaturabhängige Ventil 6 steuert.The coolant circuit shown in FIG. 1 for an internal combustion engine 2 of a motor vehicle consists of several line branches a to f, the opening cross sections of which are controlled by a temperature-dependent valve 6 (thermostat). The direction of rotation of the coolant flow, which is driven by the coolant pump 3, is indicated by arrows. The line branch a is guided via a cooler module 1 for cooling the coolant emerging from the internal combustion engine 2. Air is drawn in from outside the motor vehicle by the fan 4 arranged behind the radiator module 1. When flowing through the cooler module 1, a heat exchange takes place between the air flow l adjustable by the fan 4 and the coolant flow w . Furthermore, a line branch b is provided, the cross section of which can be controlled by the temperature-dependent valve 6 in order to influence the coolant temperature. The line branch c has an expansion tank 7 and serves to regulate the pressure in the entire coolant circuit. A heat exchanger 8 for the interior heating of the motor vehicle and a cooler 9 and 10 for cooling the engine oil and the transmission oil are arranged in the additional line branches d to f. These line branches d to f are optional. The corresponding cooling or heating functions can also be solved in other ways. Furthermore, the coolant circuit includes a control unit 5, for example the control unit of the internal combustion engine, which receives the output signal S sen of a coolant temperature ϑ w as an input signal, temperature sensor 11 which is detected at the engine outlet and, via the output signals S pump , S air and S therm, both the speed of the Coolant pump 3 and the fan 4 and the temperature-dependent valve 6 controls.

Im Weiteren sollen das vom Steuergerät 5 durchzuführende Regelverfahren des Kühlmittelkreislaufes näher beschrieben werden. Die Figuren 2 bis 4 zeigen zur Erläuterung Ablaufdiagramme dieses Regelverfahrens.The control method of the coolant circuit to be carried out by the control unit 5 will be described in more detail below. FIGS. 2 to 4 show flow diagrams of this control method for explanation.

Wie in Figur 2 verdeutlicht, werden im erfindungsgemäßen Verfahren drei Fälle unterschieden; der Warmlauf V1 des Verbrennungskraftmotors, der Fahrbetrieb V2 bei Betriebstemperatur des Kühlmittels und der Nachlauf V3. Im ersten Verfahrensschritt A1 wird überprüft, ob der Verbrennungskraftmotor 2 gestartet wurde., ist dies der Fall, erfolgt ein Vergleich der Kühlmitteltemperatur ϑw,ist (Ausgangssignal Ssen des Temperatursensors 11) am Motoraustritt mit einem die Beendigung der Warmlaufphase V1 kennzeichnenden Temperaturgrenzwert ϑw,warml. Bei einer Kühlmitteltemperatur ϑw,ist unterhalb dieses Temperaturgrenzwertes wird auf Warmlauf V1 erkannt. Hat die Kühlmitteltemperatur ϑw,ist den Temperaturgrenzwert ϑw,warml erreicht, wird der Kühlmittelkreislauf nach dem Algorithmus für den Fahrbetrieb V2 bei Betriebstemperatur gesteuert.As illustrated in FIG. 2, three cases are distinguished in the method according to the invention; the warm-up V1 of the internal combustion engine, the driving mode V2 at the operating temperature of the coolant and the run-on V3. In the first step A1, it is checked whether the internal combustion engine 2 was started., This is the case, a comparison is made of the coolant temperature θ w, (output signal S sen of the temperature sensor 11) at the engine outlet to a termination of the warm-up phase θ V1 characterizing temperature limit value w , warm. At a coolant temperature ϑ w, below this temperature limit, warm-up V1 is detected. If the coolant temperature ϑ w, the temperature limit ϑ w, warml has been reached, the coolant circuit is controlled according to the algorithm for driving mode V2 at operating temperature.

Ist der Verbrennungskraftmotor 2 nicht gestartet, wird überprüft, ob die Kühlmitteltemperatur ϑw,ist einen Temperaturgrenzwert ϑw,nach überschreitet, d. h. der Verbrennungskraftmotor 2 muß weiter gekühlt werden. In diesem Fall erfolgt die Regelung des Kühlmittelkreislaufs mit einem Algorithmus für den Nachlauf V3. Liegt die Kühlmitteltemperatur ϑw,ist unterhalb des Temperaturgrenzwertes ϑw,nach stoppt die Regelung bis zum erneuten Starten des Verbrennungskraftmotors 2.If the internal combustion engine 2 is not started, it is checked whether the coolant temperature θ w, is a temperature limit value θ w, exceeds by, that the internal combustion engine 2 has to be further cooled. In this case, the coolant circuit is controlled using an algorithm for the run-on V3. If the coolant temperature ϑ w is below the temperature limit ϑ w, the control stops after the internal combustion engine 2 is restarted.

In der Warmlaufphase V1, deren Ablauf in Figur 3 dargestellt ist, erfolgt in einem ersten Verfahrensschritt der Vergleich der Kühlmitteltemperatur ϑw,ist am Motoraustritt mit einer Kühlmittelanfangstemperatur ϑw,start. Wenn die Kühlmitteltemperatur unterhalb des Kühlmittelanfangswertes ϑw,start liegt, startet die Kühlmittelpumpe 3 mit einer Verzögerung der Zeitdauer tstart, um den Wärmestrom von Bauteilen des Verbrennungskraftmotors 2 in das Kühlmittel so gering wie möglich zu halten und damit ein schnelleres Aufheizen der Bauteile zu erreichen. Nach Ablauf der Zeitdauer tstart oder dem Erreichen des Temperaturanfangswertes ϑw,start wird der durch die Kühlmittelpumpe 3 erzeugte Kühlmittelstrom w kontinuierlich vergrößert, bis erstmalig der minimale Kühlmittelstrom w ,min für die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll zwischen Motoren- und austritt erreicht ist. Aus dem minimalen Kühlmittelstrom w, min wird im Steuergerät 5 das Ansteuersignal Spump,min für die Kühlmittelpumpe 3 berechnet. Ab dem erstmaligen Erreichen des minimalen Kühlmittelstroms w ,min wird die Kühlmittelpumpe 3 auf die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll des Kühlmittels mit einem Ansteuersignal Spump,warml geregelt. Der für die Regelung notwendige Differenztemperatur-Istwert Δϑw,Mot,ist ergibt sich aus dem Wärmestrom Mot vom Verbrennungskraftmotor in das Kühlmittel, der sich wiederum aus dem momentanen Kühlmittelstrom w , der momentanen Motorlast LMot und der Motordrehzahl n errechnet. Vorzugsweise ist der Wärmestrom Mot als Kennfeld im Steuergerät 5 für den speziellen Verbrennungskraftmotor 2 abgelegt.In the warm-up phase V1, the sequence of which is shown in FIG. 3, the coolant temperature ϑ w is compared in a first method step , is at the engine outlet with a coolant start temperature ϑ w, start . If the coolant temperature is below the coolant start value ϑ w, start , the coolant pump 3 starts with a delay of the time period t start in order to keep the heat flow from components of the internal combustion engine 2 into the coolant as low as possible and thus to achieve a faster heating of the components . After the time period t start or when the temperature start value ϑ w, start has been reached, the coolant flow w generated by the coolant pump 3 is continuously increased until, for the first time, the minimum coolant flow w , min for maintaining the differential temperature setpoint Δϑ w, Mot, should between engine and outlet is reached. The control signal S pump, min for the coolant pump 3 is calculated in the control unit 5 from the minimum coolant flow w, min . When the minimum coolant flow w , min is reached for the first time, the coolant pump 3 is regulated to maintain the differential temperature setpoint Δϑ w, Mot, coolant with a control signal S pump, warml . The differential temperature actual value Δϑ w, Mot, required for the control results from the heat flow Mot from the internal combustion engine into the coolant, which in turn is calculated from the current coolant flow w , the current engine load L Mot and the engine speed n. The heat flow Mot is preferably stored as a map in the control unit 5 for the special internal combustion engine 2.

Nach dem Erreichen des minimalen Kühlmittelstroms w ,min sollte das Reagieren der Kühlmittelpumpe 3 auf kurzfristige Motorlast- und Drehzahländerungen verhindert werden. Da aufgrund der thermischen Trägheit des Verbrennungskraftmotors 2 kurzzeitige Änderungen der Motorlast LMot und der Motordrehzahl n für den Wärmestrom Mot in das Kühlmittel keine Rolle spielen, würde das Mitführen der Drehzahl der Kühlmittelpumpe 3 einen unnötigen Energieverbrauch darstellen. Das Ansteuersignal Spump für die Kühlmittelpumpe wird daher mit einem dynamischen Übertragungsverhalten belegt, dessen Zeitkonstanten Tstg so gewählt ist, daß das Zeitverhalten der Kühlmittelpumpe etwa dem Verhalten des Wärmestroms Mot vom Verbrennungskraftmotor in das Kühlmittel. Hieraus ergibt sich, daß die Drehzahländerung der Kühlmittelpumpe 3 der Änderung des Wärmestroms Mot in das Kühlmittel folgt.After the minimum coolant flow w , min has been reached , the reaction of the coolant pump 3 to short-term engine load and speed changes should be prevented. Since, due to the thermal inertia of the internal combustion engine 2, brief changes in the engine load L Mot and the engine speed n play no role for the heat flow Mot in the coolant, carrying the speed of the coolant pump 3 would represent unnecessary energy consumption. The control signal S pump for the coolant pump is therefore assigned a dynamic transmission behavior, the time constant T stg of which is selected such that the time behavior of the coolant pump roughly corresponds to the behavior of the heat flow Mot from the internal combustion engine into the coolant. It follows that the speed change of the coolant pump 3 follows the change in the heat flow Qestr Mot in the coolant.

Während der Warmlaufphase V1 wird das Gebläse 4 nicht angesteuert, d. h. es wird kein Luftstrom l durch das Kühlermodul 1 erzeugt. Die Warmlaufphase V1 ist beendet, wenn erstmalig die momentane Kühlmitteltemperatur ϑw,ist den Temperaturgrenzwert ϑw,warml erreicht.The blower 4 is not activated during the warm-up phase V1, ie no airflow l is generated by the cooler module 1. The warm-up phase V1 has ended when the current coolant temperature ϑ w, the temperature limit value den w, warml is reached for the first time.

Beim Erreichen des Temperaturgrenzwertes ϑw,warml (Figur 4) findet neben der Regelung in Abhängigkeit des Differenztemperatur-Sollwertes Δϑw,Mot,soll auch eine Regelung der Kühlmitteltemperatur in Abhängigkeit eines Temperatur-Sollwertes ϑw,soll nach dem Algorithmus für den Fahrbetrieb V2 bei Betriebstemperatur statt. Hierfür wird zunächst der Temperatur-Sollwert ϑw,soll errechnet. Dazu liegt im Steuergerät 5 ein Kennfeld vor, in dem der optimale Temperatur-Sollwert ϑw,soll für die vorgegebene Motortemperatur bei variabler Motorlast LMot, Motordrehzahl n und Kühlmittelstrom w abgelegt ist. Aus diesem variablen Temperatur-Sollwert ϑw,soll am Motoraustritt, dem Kühlmittelstrom w und dem Wärmestrom Mot vom Verbrennungskraftmotor 2 in das Kühlmittel ergibt sich die Regeltemperatur ϑw,therm für das temperaturabhängige Ventil 6, aus der das Ansteuersignal Stherm für das temperaturabhängige Ventil 6 ermittelt wird. Wie auch in einem herkömmlichen Kühlkreislauf regelt das Ventil 6 über die Kühlmittelströmungsverhältnisse zwischen dem über das Kühlermodul 1 geführten Leitungszweig a und dem Leitungszweig b die Kühlmitteltemperatur ϑw,ist.When the temperature limit value ϑ w, warml (FIG. 4) is reached, in addition to the control as a function of the differential temperature setpoint Δϑ w, Mot, the coolant temperature is also controlled as a function of a temperature setpoint ϑ w, according to the algorithm for driving mode V2 at operating temperature instead. To do this, the temperature setpoint ϑ w, set is first calculated. For this purpose, there is a map in the control unit 5 in which the optimum temperature setpoint ϑ w, for the specified engine temperature with variable engine load L Mot , engine speed n and coolant flow w , is stored. From this variable temperature setpoint ϑ w, at the engine outlet, the coolant flow w and the heat flow Mot from the internal combustion engine 2 into the coolant, the control temperature ϑ w, therm for the temperature-dependent valve 6 results, from which the control signal S therm for the temperature-dependent valve 6 is determined. As in a conventional cooling circuit, the valve 6 regulates the coolant temperature ϑ w via the coolant flow conditions between the line branch a led via the cooler module 1 and the line branch b.

Aus der Berechnung des minimalen Kühlmittelstromes w, min ergibt sich die erforderliche Mindestdrehzahl der Kühlmittelpumpe 3 und damit das optimale Ansteuersignal Spump, min. Überschreitet die momentane Kühlmitteltemperatur ϑw,ist den Temperatursollwert ϑw,soll am Motoraustritt um einen Differenzwert Δϑw,heiß, so wird entweder die Drehzahl der Kühlmittelpumpe 3 und damit der Kühlmittelstrom w oder die Drehzahl des Gebläses 4 und damit der Luftstrom l gesteigert. Ob es energetisch sinnvoller ist, Drehzahl der Kühlmittelpumpe 3 oder des Gebläses 4 zu verändern, wird einem zeitlichen Vergleich ihrer Wirkungsgrade für die Wärmeabfuhr am Kühlermodul 1 entnommen. Die Wärmeabfuhr bzw. der Wärmestrom w,k am Kühlermodul 1 hängt vom Wärmedurchgangskoeffizienten k ab, der sich aus den Wärmeübergangskoeffizienten Kühlmittel-Kühlermodul und Kühlermodul-Luft ergibt und nach der Formel: k = 1 A k · m ̇ l · m ̇ w 0,8 a k · m ̇ w 0,8 + b k · m ̇ l 0,8 + c k m ̇ l · m ̇ w 0,8

Figure imgb0001
berechnet wird, wobei Ak die Fläche am Kühlermodul 1 und ak, bk und ck Konstanten für die Berechnung des Wärmedurchgangskoeffizienten sind.From the calculation of the minimum coolant flow w, min , the required minimum speed of the coolant pump 3 and thus the optimal control signal S pump, min . If the current coolant temperature exceeds ϑ w, the temperature setpoint is ϑ w, and if the engine outlet is hot by a difference value Δϑ w, either the speed of the coolant pump 3 and thus the coolant flow w or the speed of the fan 4 and thus the air flow l increased. Whether it makes more sense in terms of energy to change the speed of the coolant pump 3 or of the blower 4 is determined by comparing their efficiency for heat dissipation at the cooler module 1 over time. The heat dissipation or the heat flow w, k at the cooler module 1 depends on the heat transfer coefficient k, which results from the heat transfer coefficients coolant-cooler module and cooler module-air and according to the formula: k = 1 A k · m ̇ l · m ̇ w 0.8 a k · m ̇ w 0.8 + b k · m ̇ l 0.8 + c k m ̇ l · m ̇ w 0.8
Figure imgb0001
is calculated, where A k is the area on the cooler module 1 and a k , b k and c k are constants for the calculation of the heat transfer coefficient.

Um die Effektivität der Veränderung des Luftstroms l und des Kühlmittelstroms w zu beurteilen werden die partiellen Ableitungen gebildet: ϑ k · A k ϑ m ̇ l = 0,8· m ̇ l -0,2 a k + b k m ̇ w 0,8 + c k · m ̇ l 0,8 2 k , l ϑ k · A k ϑ m ̇ w = 0,8· m ̇ w -0,2 b k + a k m ̇ l 0,8 + c k · m ̇ w 0,8 2 = η wapu

Figure imgb0002
In order to assess the effectiveness of the change in the air flow Kühl l and the coolant flow die w , the partial derivatives are formed: ϑ k · A k ϑ m ̇ l = 0.8 m ̇ l -0.2 a k + b k m ̇ w 0.8 + c k · m ̇ l 0.8 2nd = η k , l ϑ k · A k ϑ m ̇ w = 0.8 m ̇ w -0.2 b k + a k m ̇ l 0.8 + c k · m ̇ w 0.8 2nd = η wapu
Figure imgb0002

Für jeden Betriebspunkt des Kühlermoduls ergibt sich damit die Größe der Wärmeabfuhrsteigerung pro Masseneinheit der beteiligten Stoffe. Setzt man diese Werte jetzt im Bezug zum Energieeinsatz PL, Pwapu, den man für die Bereitstellung des Kühlmittelstroms bzw. Luftstroms benötigt, erhält man einen Vergleichswert Kη zur Beurteilung der günstigsten Betriebspunktänderung. Kη = η k , l · 1 P L η k , wapu · 1 P wapu

Figure imgb0003
For each operating point of the cooler module, the size of the increase in heat dissipation per unit mass of the substances involved is obtained. If these values ​​are now related to the energy input P L , P wapu , which is required for the provision of the coolant flow or air flow, a comparison value K η is obtained to assess the most favorable change in the operating point. Kη = η k , l · 1 P L η k , wapu · 1 P wapu
Figure imgb0003

Ist der Kennwert Kη > 1 ist es Wirkungsgrad günstiger den Luftstrom l zu steigern. Für Kη < 1 sollte der Kühlmittelstrom w erhöht werden.If the characteristic value Kη> 1, it is more efficient to increase the air flow l . The coolant flow w should be increased for K η <1.

Wenn der Kühlmittelkreislauf, wie in Figur 1 gezeigt, über einen Kühler 9 gleichzeitig zur Kühlung des Motoröls verwendet wird, kann mit einem nicht dargestellten Sensor die momentane Öltemperatur ϑÖl überwacht werden. Überschreitet die momentane Öltemperatur ϑÖl einen Grenztemperaturwert ϑÖl,grenz so wird schrittweise die Kühlmitteltemperatur ϑw,ist gesenkt, bis die Öltemperatur ϑÖl wieder unter diesen Grenztemperaturwert sinkt. Danach wird wieder die für die gewählte Motortemperatur benötigte Kühlmitteltemperatur eingestellt.If, as shown in FIG. 1, the coolant circuit is simultaneously used to cool the engine oil via a cooler 9, the current oil temperature ϑ oil can be monitored with a sensor (not shown). Exceeds the current oil temperature θ oil has a temperature limit value θ oil, cross so gradually the coolant temperature ϑ w is reduced until the oil temperature ϑ oil drops below this limit temperature value again. The coolant temperature required for the selected engine temperature is then set again.

Das dynamische Verhalten der Regelung bei kurzzeitigen Veränderungen der Motorlast LMot und der Motordrehzahl n ist für die Einhaltung des Differenztemperatur-Sollwertes Δϑw,Mot,soll und des Temperatur-Sollwertes ϑw,soll unterschiedlich. Die Regelung nach dem Differenztemperatur-Sollwert Δϑw,Mot,soll entspricht in ihrer Dynamik der des Warmlaufs V1. Die Regelung nach dem Temperatur-Sollwert ϑw,soll mittels Variation des Ventilstroms Sterm sowie der Drehzahlen von Kühlmittelpumpe 3 und Gebläse 4 muß schneller erfolgen. Bei der Auslegung muß ein Kompromiß gefunden werden zwischen einem energetischen Optimum und der Temperaturkonstanz der Bauteile des Verbrennungskraftmotors 2. Für die Energiebetrachtung ist es sinnvoll, kurzzeitige Temperaturänderungen der Bauteile, wie sie zum Beispiel beim Überholvorgang entstehen, zuzulassen. Optimiert man in Richtung Temperaturkonstanz der Bauteile des Verbrennungskraftmotors, so kann man durch die Reaktion auf Veränderungen der Motorlast eine Vorsteuerung gegenüber der Veränderung der Kühlmitteltemperatur ϑw,ist bzw. des Wärmestroms Mot in das Kühlmittel erreichten. Wird ein Motorbetriebspunkt eingestellt, der einen erhöhten Wärmestrom Mot in das Kühlmittel zur Folge hätte, so kann man durch Steuerung des temperaturabhängigen Ventils 6 kälteres Kühlmittel in den Verbrennungskraftmotor pumpen, was einen höheren Wärmestrom Mot in das Kühlmittel und damit geringere Bauteiltemperaturschwankungen zur Folge hätte. Weiterhin kann im Vorgriff der Kühlmittelstrom w oder der Luftstrom l erhöht werden. Dies empfiehlt sich insbesondere, wenn das Ventil 6 aufgrund seiner Bauart nicht in der Lage ist, schnellen Änderungen zu folgen.The dynamic behavior of the control in the event of brief changes in the engine load L Mot and the engine speed n is different for compliance with the differential temperature setpoint Δϑ w, Mot, setpoint and the temperature setpoint ϑ w, setpoint. The control according to the differential temperature setpoint Δϑ w, Mot, soll corresponds in dynamics to that of warm-up V1. The regulation according to the temperature setpoint ϑ w, should be done faster by varying the valve current S term and the speeds of the coolant pump 3 and blower 4. When designing, a compromise must be found between an energetic optimum and the temperature constancy of the components of the internal combustion engine 2. For energy purposes, it makes sense to allow brief temperature changes in the components, such as those that occur during the overtaking process. If one optimizes in the direction of constant temperature of the components of the internal combustion engine, then by reacting to changes in the engine load, a precontrol against the change in the coolant temperature ϑ w, ist or the heat flow Mot into the coolant can be achieved. If an engine operating point is set that would result in an increased heat flow Mot into the coolant, 6 coolant coolant can be pumped into the internal combustion engine by controlling the temperature-dependent valve, which would result in a higher heat flow Mot in the coolant and thus lower component temperature fluctuations . Furthermore, the coolant flow w or the air flow l can be increased in advance. This is particularly recommended if the valve 6 is not able to follow rapid changes due to its design.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
KühlermodulCooler module
22nd
VerbrennungskraftmotorInternal combustion engine
33rd
KühlmittelpumpeCoolant pump
44th
Gebläsefan
55
SteuergerätControl unit
66
temperaturabhängiges Ventiltemperature dependent valve
77
Ausgleichsbehältersurge tank
88th
WärmetauscherHeat exchanger
99
Kühlercooler
1010th
Kühlercooler
1111
TemperatursensorTemperature sensor
a-fa-f
LeitungszweigeLine branches
w , min w , min
minimaler Kühlmittelstromminimal coolant flow
ww
KühlmittelstromCoolant flow
ll
LuftstromAirflow
ϑw,warml ϑ w, warm
Temperaturgrenzwert für den WarmlaufTemperature limit for warm-up
Δϑw,Mot,ist Δϑ w, Mot, is
Differenztemperatur-IstwertDifferential temperature actual value
Δϑw,Mot,soll Δϑ w, Mot, should
Differenztemperatur-SollwertDifferential temperature setpoint
ϑw,soll ϑ w, should
TemperatursollwertTemperature setpoint
ϑw,nach ϑ w, after
Temperaturgrenzwert für den NachlaufTemperature limit for the wake
tstart t start
Zeitdauer der VerzögerungDuration of the delay
ϑw,start ϑ w, start
TemperaturanfangswertInitial temperature value
ϑw,therm ϑ w, therm
Regeltemperatur des temperaturabhängigen VentilsControl temperature of the temperature-dependent valve
Δϑw,heiß Δϑ w, hot
DifferenzwertDifference value
ϑw,ist ϑ w, is
momentane Temperatur des Kühlmittels am MotoraustrittCurrent temperature of the coolant at the engine outlet
LMot L Mot
MotorlastEngine load
nn
MotordrehzahlEngine speed
w,kw, k
Wärmestrom am KühlermodulHeat flow at the cooler module
MotMot
WärmestromHeat flow
V1V1
WarmlaufWarm up
V2V2
Fahrbetrieb bei BetriebstemperaturDriving operation at operating temperature
V3V3
Nachlauftrailing
Ssen S sen
Ausgangssignal des TemperatursensorsOutput signal of the temperature sensor
Spump S pump
Ansteuersignal für die KühlmittelpumpeControl signal for the coolant pump
Spump,min S pump, min
Ansteuersignal für den minimalen KühlmittelstromControl signal for the minimum coolant flow
Spump,warml S pump, warm
Ansteuersignal für die Kühlmittelpumpe in der WarmlaufphaseControl signal for the coolant pump in the warm-up phase
Stherm S therm
Ansteuersignal für das VentilControl signal for the valve
Sluft S air
Ansteuersignal für das GebläseControl signal for the fan
Tstg T stg
ZeitkonstanteTime constant
ϑÖl ϑ oil
ÖltemperaturOil temperature
ϑÖl,Grenz ϑ oil, limit
GrenztemperaturwertLimit temperature value
kk
WärmedurchgangskoeffizientHeat transfer coefficient
Ak A k
Fläche am KühlermodulSurface on the cooler module
ak, bk, ck a k , b k , c k
KonstantenConstants
PL P L
Energieeinsatz für das GebläseEnergy use for the blower
Pwapu P wapu
Energieeinsatz für die KühlmittelpumpeUse of energy for the coolant pump
Kη K η
VergleichswertComparative value
ηk,wapu η k, wapu
Wirkungsgrad der KühlmittelpumpeEfficiency of the coolant pump
ηk,l η k, l
Wirkungsgrad des GebläsesFan efficiency

Claims (11)

Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors, insbesondere eines Kraftfahrzeuges, mit mindestens einer Kühlmittelpumpe zur Einstellung eines Kühlmittelstromes, einem Kühlermodul, in dem ein Wärmeaustausch zwischen einem mittels eines Gebläses einstellbaren Luftstromes und dem Kühlmittel erfolgt, eventuell einem temperaturabhängigen Ventil zum Einstellen eines Mischungsverhältnisses zwischen dem über das Kühlermodul geführten Kühlmittelstrom und einem über einen zweiten Strömungszweig geführten Kühlmittelstrom, und einem Steuergerät, das mindestens den von der Kühlmittelpumpe erzeugten Kühlmittelstrom und den von dem Gebläse erzeugten Luftstrom steuert,
dadurch gekennzeichnet, daß der von der Kühlmittelpumpe (3) erzeugte Kühlmittelstrom ( w ) und der von dem Gebläse (4) erzeugte Luftstrom ( l ) durch das Kühlermodul (1) unterhalb eines Temperaturgrenzwertes (ϑw,warml) des Kühlmittels in Abhängigkeit eines Differenz-Sollwertes (Δϑw,Mot,soll) des Kühlmittels zwischen dem Motoreintritt und dem Motoraustritt und nach Erreichen des Temperaturgrenzwertes (ϑw,warml) in Abhängigkeit sowohl des Differenztemperatur-Sollwertes (Δϑw,Mot,soll) als auch eines Temperatur-Sollwertes (ϑw,soll) geregelt wird.
Method for regulating a cooling circuit of an internal combustion engine, in particular a motor vehicle, with at least one coolant pump for setting a coolant flow, a cooler module in which heat exchange takes place between an air flow which can be set by means of a blower and the coolant, possibly a temperature-dependent valve for setting a mixing ratio between the two coolant flow led via the cooler module and a coolant flow led via a second flow branch, and a control device which controls at least the coolant flow generated by the coolant pump and the air flow generated by the fan,
characterized in that the coolant flow ( w ) generated by the coolant pump (3) and the air flow ( l ) generated by the blower (4) through the cooler module (1) as a function of a temperature limit valuew, warml ) of the coolant a differential setpoint (Δϑ w, Mot, set ) of the coolant between the engine inlet and the engine outlet and after reaching the temperature limitw, warml ) depending on both the differential temperature setpoint (Δϑ w, Mot, set ) and a temperature Setpoint (ϑ w, should ) is regulated.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Differenztemperatur-Sollwert (Δϑw,Mot,soll) und/oder der Temperatur-Sollwert (ϑw,soll) von dem Betriebspunkt (LMot,n) des Verbrennungskraftmotors (2) abhängig sind.Method according to claim 1, characterized in that the differential temperature setpoint (Δϑ w, Mot, set ) and / or the temperature setpoint (ϑ w, set ) are dependent on the operating point (L Mot, n ) of the internal combustion engine (2) . Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Temperaturgrenzwert (ϑw,warml) das Ende der Warmlaufphase (V1) des Verbrennungskraftmotors (2) kennzeichnet.Method according to Claim 1 or 2, characterized in that the temperature limit valuew, warml ) indicates the end of the warm-up phase (V1) of the internal combustion engine (2). Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß unterhalb des Temperaturgrenzwertes (ϑw,warml) nur der durch die Kühlmittelpumpe (3) erzeugte Kühlmittelstrom ( w ) in Abhängigkeit der Differenztemperatur (Δϑw,Mot,soll) geregelt wird, jedoch kein Luftstrom ( l )vom Gebläse (4) erzeugt wird.Method according to one of claims 1 to 3, characterized in that below the temperature limit value (θ w, warml) only the flow of coolant generated by the coolant pump (3) (M w) in dependence of the temperature difference (w Δθ, Mot, soll) is controlled , but no air flow ( l ) is generated by the fan (4). Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nach dem Starten des Verbrennungskraftmotors (2) unterhalb einer Kühlmittelanfangstemperatur (ϑw,start), die kleiner ist als der Temperaturgrenzwert (ϑw,warml) und während einer vorgegebenen Zeitdauer (tstart) weder ein Kühlmittelstrom ( w ) von der Kühlmittelpumpe (3) noch ein Luftstrom ( l ) vom Gebläse (4) erzeugt wird.Method according to one of claims 1 to 4, characterized in that after starting the internal combustion engine (2) below a coolant start temperature (ϑ w, start ) which is less than the temperature limitw, warml ) and for a predetermined period of time (t start ) neither a coolant flow ( w ) from the coolant pump (3) nor an air flow ( l ) from the fan (4) is generated. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Länge der vorgebbaren Zeitdauer (tstart) in Abhängigkeit der seit dem Start der Brennkraftmaschine vorgekommenen Betriebspunkte definiert wird.Method according to Claim 5, characterized in that the length of the predeterminable time period (t start ) is defined as a function of the operating points which have occurred since the start of the internal combustion engine. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Ansteuerung der Kühlmittelpumpe (3) und/oder des Gebläses (4) mit einer Verzögerung erfolgt, deren Zeitkonstanten (Tstg,wapu; Tstg,l) so gewählt sind, daß das Zeitverhalten der Kühlmittelpumpe (3) und/oder des Gebläses (4) dem Verhalten des Wärmestromes ( Mot ) vom Verbrennungskraftmotor (2) Lin das Kühlmittel bei hohen Motordrehzahlen (n) entspricht.Method according to one of claims 1 to 6, characterized in that the control of the coolant pump (3) and / or the blower (4) takes place with a delay, the time constants (T stg, wapu; T stg, l ) are selected so that that the time behavior of the coolant pump (3) and / or the fan (4) corresponds to the behavior of the heat flow ( Mot ) from the internal combustion engine (2) L into the coolant at high engine speeds (n). Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß nach Erreichen des Temperaturgrenzwertes (ϑw,warml) und der durch die Kühlmittelpumpe (3) erzeugte Kühlmittelstrom ( w ) und der durch das Gebläse (4) entstellbare Luftstrom ( l ) in Abhängigkeit eines zeitlichen Vergleiches der Wirkungsgrade (ηk,wapu;k,l) von Kühlmittelpumpe und Gebläse für die Wärmeabfuhr am Kühlermodul (1) gesteuert werden.Method according to one of claims 1 to 7, characterized in that after reaching the temperature limitw, warml ) and the coolant flow ( w ) generated by the coolant pump (3) and the air flow ( l ) are controlled as a function of a time comparison of the efficiencies (η k, wapu; k, l ) of the coolant pump and fan for heat dissipation on the cooler module (1). Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Temperatursollwert (ϑw,soll) in Abhängigkeit einer für jeden Betriebspunkt (LMot,n) des Verbrennungskraftmotors (2) optimalen Motortemperatur ermittelt wird.Method according to one of claims 1 to 8, characterized in that the temperature setpoint (ϑ w, set ) is determined as a function of an optimum engine temperature for each operating point (L Mot, n ) of the internal combustion engine (2). Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß ein für die Regelung in Abhängigkeit des Differenztemperatur-Sollwerts (Δϑw,Mot,soll) notwendiger Differenztemperatur-Istwert (Δϑw,Mot,ist) aus dem Wärmestrom ( Mot ) vom Verbrennungskraftmotor (2) in das Kühlmittel und dem Kühlmittelstrom ( w ) ermittelt wird.Method according to one of claims 1 to 9, characterized in that an actual differential temperature value (Δϑ w, Mot, ist ) required for the control as a function of the differential temperature setpoint (Δϑ w, Mot, soll ) from the heat flow ( Mot ) is determined by the internal combustion engine (2) into the coolant and the coolant flow ( w ). Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Wärmestrom ( Mot ) vom Verbrennungskraftmotor (2) in das Kühlmittel vom Betriebspunkt (LMot,n) des Verbrennungskraftmotors (2) und vom Kühlmittelstrom ( w ) abhängig im Steuergerät (5) abgelegt ist.A method according to claim 10, characterized in that the heat flow ( Mot ) from the internal combustion engine (2) into the coolant from the operating point (L Mot, n ) of the internal combustion engine (2) and the coolant flow ( w ) is stored in the control unit (5) is.
EP96100636A 1995-03-08 1996-01-18 Control method for a cooling circuit of an internal combustion engine Expired - Lifetime EP0731260B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19508104A DE19508104C2 (en) 1995-03-08 1995-03-08 Method for regulating a cooling circuit of an internal combustion engine
DE19508104 1995-03-08

Publications (2)

Publication Number Publication Date
EP0731260A1 true EP0731260A1 (en) 1996-09-11
EP0731260B1 EP0731260B1 (en) 2000-06-07

Family

ID=7755955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96100636A Expired - Lifetime EP0731260B1 (en) 1995-03-08 1996-01-18 Control method for a cooling circuit of an internal combustion engine

Country Status (4)

Country Link
US (1) US5724924A (en)
EP (1) EP0731260B1 (en)
DE (2) DE19508104C2 (en)
ES (1) ES2148598T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752016A1 (en) * 1996-07-31 1998-02-06 Renault COOLING DEVICE OF AN INTERNAL COMBUSTION ENGINE
EP0952315A1 (en) * 1998-04-24 1999-10-27 GATE S.p.A. A control system for minimizing electricity consumption in a cooling system of an internal combustion engine
WO2000015952A1 (en) * 1998-09-11 2000-03-23 Müller-BBM GmbH Cooling system, especially for railway vehicles
WO2001012964A1 (en) * 1999-08-18 2001-02-22 Robert Bosch Gmbh Method for regulating the temperature of the coolant of an internal combustion engine using an electrically operated coolant pump
EP3211194A1 (en) * 2011-12-01 2017-08-30 Paccar Inc Systems and methods for controlling a variable speed water pump

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660149A (en) * 1995-12-21 1997-08-26 Siemens Electric Limited Total cooling assembly for I.C. engine-powered vehicles
JP3473398B2 (en) * 1998-05-01 2003-12-02 株式会社日立製作所 Map application system and map display control method
US6178928B1 (en) 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
US6142110A (en) * 1999-01-21 2000-11-07 Caterpillar Inc. Engine having hydraulic and fan drive systems using a single high pressure pump
FR2793842B1 (en) * 1999-05-17 2002-06-14 Valeo Thermique Moteur Sa ELECTRONIC DEVICE FOR REGULATING THE COOLING OF A MOTOR VEHICLE HEAT ENGINE
FR2796987B1 (en) 1999-07-30 2002-09-20 Valeo Thermique Moteur Sa DEVICE FOR REGULATING THE COOLING OF A MOTOR VEHICLE HEAT ENGINE
US6394044B1 (en) * 2000-01-31 2002-05-28 General Electric Company Locomotive engine temperature control
FR2808304B1 (en) * 2000-04-27 2002-11-15 Valeo Thermique Moteur Sa COOLING DEVICE AT THE STOP OF A MOTOR VEHICLE HEAT ENGINE
KR100348588B1 (en) * 2000-07-07 2002-08-14 국방과학연구소 Cooling system for vehicles
US6374780B1 (en) * 2000-07-07 2002-04-23 Visteon Global Technologies, Inc. Electric waterpump, fluid control valve and electric cooling fan strategy
DE60223188T2 (en) * 2001-03-06 2008-02-14 Calsonic Kansei Corp. Cooling system for a water-cooled internal combustion engine and control method therefor
DE10123444B4 (en) * 2001-05-14 2006-11-09 Siemens Ag Control system for controlling the coolant temperature of an internal combustion engine
DE10153486A1 (en) * 2001-10-22 2003-05-08 Bosch Gmbh Robert Method, computer program and control and / or regulating device for operating an internal combustion engine, and internal combustion engine
DE10154091A1 (en) 2001-11-02 2003-05-15 Bayerische Motoren Werke Ag Method and device for controlling a cooling system of an internal combustion engine
JP4023176B2 (en) * 2002-02-13 2007-12-19 トヨタ自動車株式会社 Cooling device for internal combustion engine
DE10224063A1 (en) 2002-05-31 2003-12-11 Daimler Chrysler Ag Method for heat regulation of an internal combustion engine for vehicles
US6802335B2 (en) * 2003-01-23 2004-10-12 Masco Corporation Of Indiana Faucet handle retainer
DE102004008170B4 (en) * 2004-02-19 2015-04-30 Robert Bosch Gmbh Method and device for controlling the cooling circuit of an internal combustion engine
FR2869355B1 (en) * 2004-04-22 2010-09-10 Valeo Thermique Moteur Sa PREDICTIVE MODEL THERMAL CONTROL METHOD FOR AN ENGINE COOLING CIRCUIT
JP4631652B2 (en) * 2005-10-25 2011-02-16 トヨタ自動車株式会社 COOLING SYSTEM, ITS CONTROL METHOD, AND AUTOMOBILE
US7421983B1 (en) * 2007-03-26 2008-09-09 Brunswick Corporation Marine propulsion system having a cooling system that utilizes nucleate boiling
DE102008000907A1 (en) 2008-04-01 2009-10-08 Robert Bosch Gmbh Solenoid valve with multipart anchor without armature guide
DE102009001706A1 (en) 2009-03-20 2010-09-23 Robert Bosch Gmbh Residual air gap disc
US8215381B2 (en) * 2009-04-10 2012-07-10 Ford Global Technologies, Llc Method for controlling heat exchanger fluid flow
DE102009026522A1 (en) 2009-05-28 2010-12-02 Robert Bosch Gmbh Pressure-balanced solenoid valve for actuation of fuel injector of common rail injection system of internal combustion engine, has valve member provided with excess/forward stroke and excess stroke stop, which limits movement of anchor
US8452459B2 (en) * 2009-08-31 2013-05-28 Fisher-Rosemount Systems, Inc. Heat exchange network heat recovery optimization in a process plant
US20120067332A1 (en) * 2010-09-17 2012-03-22 Gm Global Technology Operations, Inc. Integrated exhaust gas recirculation and charge cooling system
US8683854B2 (en) 2012-03-30 2014-04-01 Ford Global Technologies, Llc Engine cooling system control
US9341105B2 (en) 2012-03-30 2016-05-17 Ford Global Technologies, Llc Engine cooling system control
US8689617B2 (en) * 2012-03-30 2014-04-08 Ford Global Technologies, Llc Engine cooling system control
US9022647B2 (en) 2012-03-30 2015-05-05 Ford Global Technologies, Llc Engine cooling system control
US8922033B2 (en) 2013-03-04 2014-12-30 General Electric Company System for cooling power generation system
US9523306B2 (en) * 2014-05-13 2016-12-20 International Engine Intellectual Property Company, Llc. Engine cooling fan control strategy
JP6123741B2 (en) * 2014-06-20 2017-05-10 トヨタ自動車株式会社 Cooler
US10480391B2 (en) 2014-08-13 2019-11-19 GM Global Technology Operations LLC Coolant control systems and methods to prevent coolant boiling
US9957875B2 (en) 2014-08-13 2018-05-01 GM Global Technology Operations LLC Coolant pump control systems and methods for backpressure compensation
DE102015006302A1 (en) 2015-05-16 2016-11-17 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Cooling system with a coolant pump for an internal combustion engine
DE102015006303A1 (en) * 2015-05-16 2016-11-17 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Cooling system with a coolant pump for an internal combustion engine
KR101694012B1 (en) 2015-06-18 2017-01-06 현대자동차주식회사 A method for controlling water pump of vehicle and an apparatus therefor
JP6384409B2 (en) * 2015-06-24 2018-09-05 トヨタ自動車株式会社 Waste heat recovery unit structure
US10006335B2 (en) * 2015-11-04 2018-06-26 GM Global Technology Operations LLC Coolant temperature correction systems and methods
US10215080B2 (en) 2016-11-01 2019-02-26 Ford Global Technologies, Llc Systems and methods for rapid engine coolant warmup
JP6863228B2 (en) * 2017-10-26 2021-04-21 トヨタ自動車株式会社 Cooling system
CN108644003A (en) * 2018-07-18 2018-10-12 龙城电装(常州)有限公司 A kind of water-cooled engine Intelligent heat management system
CN111520227B (en) * 2020-05-08 2021-03-16 蜂巢动力系统(江苏)有限公司 Control method of electronic water pump of engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2384106A1 (en) * 1977-03-16 1978-10-13 Sev Marchal IC engine cooling system - has pump driven by electric motor with control circuit receiving constant voltage input and variable input from temp. transducer
JPS5874824A (en) * 1981-10-29 1983-05-06 Nissan Motor Co Ltd Cooling device of engine
WO1984000578A1 (en) * 1982-08-05 1984-02-16 Marchal Equip Auto Cooling device for an internal combustion engine
EP0557113A2 (en) * 1992-02-19 1993-08-25 Honda Giken Kogyo Kabushiki Kaisha Engine cooling system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024209A1 (en) * 1979-07-02 1981-01-22 Guenter Dr Rinnerthaler Liq. cooling system for automobile engine with electronic control - regulating circulation pump or variable selective blocking element and by=pass line
FR2495687B1 (en) * 1980-12-10 1985-11-29 Peugeot Aciers Et Outillage SAFETY CIRCUIT FOR A DEVICE FOR CONTROLLING THE TEMPERATURE OF A COOLING FLUID OF AN INTERNAL COMBUSTION ENGINE
FR2554165B1 (en) * 1983-10-28 1988-01-15 Marchal Equip Auto METHOD FOR CONTROLLING THE TEMPERATURE OF THE COOLING LIQUID OF AN INTERNAL COMBUSTION ENGINE AND DEVICE FOR IMPLEMENTING IT
DE3810174C2 (en) * 1988-03-25 1996-09-19 Hella Kg Hueck & Co Device for regulating the coolant temperature of an internal combustion engine, in particular in motor vehicles
DE4238364A1 (en) * 1992-11-13 1994-05-26 Behr Gmbh & Co Device for cooling drive components and for heating a passenger compartment of an electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2384106A1 (en) * 1977-03-16 1978-10-13 Sev Marchal IC engine cooling system - has pump driven by electric motor with control circuit receiving constant voltage input and variable input from temp. transducer
JPS5874824A (en) * 1981-10-29 1983-05-06 Nissan Motor Co Ltd Cooling device of engine
WO1984000578A1 (en) * 1982-08-05 1984-02-16 Marchal Equip Auto Cooling device for an internal combustion engine
EP0557113A2 (en) * 1992-02-19 1993-08-25 Honda Giken Kogyo Kabushiki Kaisha Engine cooling system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 169 (M - 231) 26 July 1958 (1958-07-26) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752016A1 (en) * 1996-07-31 1998-02-06 Renault COOLING DEVICE OF AN INTERNAL COMBUSTION ENGINE
EP0952315A1 (en) * 1998-04-24 1999-10-27 GATE S.p.A. A control system for minimizing electricity consumption in a cooling system of an internal combustion engine
US6213061B1 (en) 1998-04-24 2001-04-10 Gate S.P.A. Control system for minimizing electricity consumption in a cooling system of an internal combustion engine
WO2000015952A1 (en) * 1998-09-11 2000-03-23 Müller-BBM GmbH Cooling system, especially for railway vehicles
WO2001012964A1 (en) * 1999-08-18 2001-02-22 Robert Bosch Gmbh Method for regulating the temperature of the coolant of an internal combustion engine using an electrically operated coolant pump
US6662761B1 (en) 1999-08-18 2003-12-16 Robert Bosch Gmbh Method for regulating the temperature of the coolant in an internal combustion engine using an electrically operated coolant pump
EP3211194A1 (en) * 2011-12-01 2017-08-30 Paccar Inc Systems and methods for controlling a variable speed water pump
US10119453B2 (en) 2011-12-01 2018-11-06 Paccar Inc Systems and methods for controlling a variable speed water pump
AU2017201730B2 (en) * 2011-12-01 2019-03-28 Paccar Inc. Systems and methods for controlling a variable speed water pump
US10914227B2 (en) 2011-12-01 2021-02-09 Paccar Inc Systems and methods for controlling a variable speed water pump

Also Published As

Publication number Publication date
US5724924A (en) 1998-03-10
ES2148598T3 (en) 2000-10-16
DE19508104A1 (en) 1996-09-12
EP0731260B1 (en) 2000-06-07
DE59605375D1 (en) 2000-07-13
DE19508104C2 (en) 2000-05-25

Similar Documents

Publication Publication Date Title
EP0731260B1 (en) Control method for a cooling circuit of an internal combustion engine
EP0731261B1 (en) Control method of a cooling circuit of an internal combustion engine, especially for motor vehicles
EP1509687B1 (en) Method for regulating the heat of an internal combustion engine for vehicles
DE60317125T2 (en) Cooling system for an internal combustion engine
DE19719792B4 (en) Method and device for regulating the temperature of a medium
DE3601532C2 (en)
EP1940636B1 (en) Control device for an engine-independent heater, heating system, and method for controlling an engine-independent heater
EP0372171B1 (en) Air conditioning system
DE10134678A1 (en) Arrangement for cooling and heating motor vehicle, has at least one bypass line with bypass valve associated with and arranged in parallel with at least one auxiliary radiator segment
DE19540591C2 (en) Method for regulating the volume flow distribution in a coolant circuit for motor vehicles with an engine and device for carrying out the method
DE10016435B4 (en) Ventilation device for an agricultural vehicle
DE102018127409A1 (en) STRATEGY / METHOD FOR CONTROLLING AN EQUATION-BASED COOLING SYSTEM
DE102013206499A1 (en) Apparatus and method for controlling the coolant temperature of a fuel cell system
EP0777585B1 (en) Motor vehicle heat exchanger
EP1399656B1 (en) Method for monitoring a coolant circuit of an internal combustion engine
DE19818030C2 (en) Method and device for operating a coolant circuit of an internal combustion engine
DE10260260B4 (en) Engine cooling system
DE4331142C2 (en) Method for regulating the temperature of an interior, in particular for a motor vehicle
DE60013082T2 (en) Cooling control device of a vehicle internal combustion engine during a hot start
DE2806708C2 (en) Device for regulating the temperature of a cooling system of an internal combustion engine, in particular for motor vehicles
DE3430397C2 (en) Internal combustion engine with evaporative cooling
EP1523612B1 (en) Method and device for regulating the temperature of a coolant in an internal combustion engine
EP1140532B1 (en) Heating system for the interior of a vehicle
EP1375213A2 (en) Method for operating a cooling- and heating circuit of a motor vehicle
DE19728026A1 (en) Heating device e.g. for motor vehicle interior

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB

17P Request for examination filed

Effective date: 19970311

17Q First examination report despatched

Effective date: 19990203

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REF Corresponds to:

Ref document number: 59605375

Country of ref document: DE

Date of ref document: 20000713

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000905

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2148598

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040129

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120131

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59605375

Country of ref document: DE

Effective date: 20130801