EP2926623B1 - Heating element and process heater - Google Patents
Heating element and process heater Download PDFInfo
- Publication number
- EP2926623B1 EP2926623B1 EP15705240.8A EP15705240A EP2926623B1 EP 2926623 B1 EP2926623 B1 EP 2926623B1 EP 15705240 A EP15705240 A EP 15705240A EP 2926623 B1 EP2926623 B1 EP 2926623B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heating
- tube
- heating element
- element according
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 172
- 238000000034 method Methods 0.000 title claims description 22
- 238000012546 transfer Methods 0.000 claims description 8
- 238000012856 packing Methods 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 2
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 claims 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims 1
- 239000007789 gas Substances 0.000 description 42
- 238000013021 overheating Methods 0.000 description 4
- 239000012671 ceramic insulating material Substances 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- -1 iron-chromium-aluminum Chemical compound 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/48—Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/44—Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/002—Air heaters using electric energy supply
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/003—Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/014—Heaters using resistive wires or cables not provided for in H05B3/54
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/022—Heaters specially adapted for heating gaseous material
Definitions
- the present invention relates to a heating element for heating gases to high temperatures, comprising at least one pipe 1 designed for the flow of hot gas and an electric heating wire in the pipe, which is used to transfer heat to gas flowing past the heating wire is designed.
- the present invention also relates to a process heater having a housing with a gas supply and a gas outlet, a heating space between gas supply and gas outlet for receiving a heating element and electrical connections for at least one heating element, corresponding heating elements have long been known. They consist, as already mentioned, of at least one gas to be flowed through pipe, which is open on both sides for the purpose of flow, wherein in the tube, a heating wire is arranged, at which the gas flows past and heated by the direct contact with the heating wire.
- heating wires helically wound, fine wires whose cross-section is much smaller than the pipe cross-section and are traversed by electricity and thereby heat.
- the electrical energy converted into heat by the heating wire naturally depends on the available electrical voltage and the resistance of corresponding heating wires, whereby the length of a coiled wire can be adapted to achieve desired resistance values or several corresponding heating wires can be connected in parallel or in series.
- the heat energy transferred to the gas flowing along the heating wire depends on the maximum temperature reached by the heating wire, on the flow velocity and on the surface available for heat exchange as well as on the exact flow conditions in the heating element.
- the maximum gas temperatures which can be reached regularly in continuous operation with such process heaters in practice, are in the order of 700 ° C.
- heating wire typically contains aluminum in small amounts, contact with oxygen initially results in the formation of a protective aluminum oxide layer around the wire.
- a large surface-to-volume ratio of the heating wires is considered advantageous for an effective transmission of the heat energy generated in the heating wire on the gas flowing past, so far the short life of such heating elements is accepted when gas temperatures in the range of 900 ° C or above.
- Process heaters and heating elements that generate gas temperatures of 900 ° C or even more, but have for the aforementioned reasons regularly only a service life of a few hours.
- the present invention has the object to provide a process heater and a corresponding heating element, which allow a generation of gas temperatures up to 1000 ° C or even above, so that extremely large amounts of energy can transfer to the gas and still have a relatively long life , which is at least 10 times the life of conventional heating coils in the generation of gas temperatures up to 1000 ° C usually.
- the heating wire is formed as extending along the tube axis heating rod whose maximum clear distance to the inner wall of the tube over at least 80% of the circumference and / or at least 80% of the overlap length of the tube and heater a value of 10 mm does not exceed.
- the heating wire is not a coiled wire whose material cross-section is substantially smaller than that of the tube, but rather a rod, for which in turn one can define a corresponding longitudinal axis which extends substantially along or parallel to the axis of the tube and while the tube fills so far that between heating element and tube wall only a relatively small, clear distance remains, which is at most 10 mm and preferably still significantly less, even if he punctually, ie in areas which account for less than 20% of the overlap length of tube and heater bar or less than 20% of the heater rod circumference.
- the term "heating wire” is therefore used in the present description as a generic term for both relatively thin coiled wires and for heating rods according to the present invention, wherein the different thickness is not the primary distinguishing criterion.
- the maximum clear distance between the heating element and the tube is in many practical cases between 1 and 2 mm, slightly above or even below, down to minimum values of 0.02 mm.
- the maximum diameter of the heating element is rarely over 10 mm, because even larger diameters, the efficiency of energy transfer due to a relatively large volume / surface ratio of the heating significantly decreases, which can only be partially compensated by a larger pipe and Schustabus. In principle, however, the use of heating elements with larger diameters is possible, although not preferred.
- a diameter range for heating rods apparently favorable in practice for the purposes of the present invention is between 0.5 mm and 5 mm.
- tube is to be interpreted broadly in the context of the present invention and ultimately defines only one cavity with an inlet and an outlet opening, which allow a flow to be heated with gas. Not even the cross section across the length of the pipe must be constant, although this is of course preferred in order to produce a largely constant gap, in particular a constant annular gap, between the heating element and the pipe wall by simple means.
- the annular gap can be interrupted by elevations, which are distributed over the circumference on the Schustabober Diagram or on the inner surface of the tube, to allow a centering of the heating rod and to ensure a homogeneous heat transfer.
- tubes for example, through holes are considered in a solid block, such a block may have a plurality of parallel holes.
- the heating rods according to the present invention are relatively thick compared to the coiled wires in respective tubes of conventional heaters, they can heat better internally transferred and distributed, which helps prevent local overheating, and they have already for this reason at high thermal load or high heating rod temperatures beyond 1000 ° C a significantly longer life and durability or allow only the heating of gases to over 1000 ° C. with metallic electric heating elements.
- An alternative condition instead of the maximum clear distance between the heating element and the tube can be expressed by a minimum ratio of the cross-sectional area of the heating element to the free inner cross section of the tube.
- the heater should, at least as far as it extends within the pipe, have a cross-sectional area which is at least 30% and more preferably at least 50% of the free pipe cross-section.
- this aspect ratio was about 80%, wherein the maximum clear distance was 0.2 to 0.5 mm and a correspondingly uniform annular gap between the heating element and the tube wall about 0.1 to 0.25 mm amounted to.
- the preferred proportions between the cross section of the heating element and the inner cross section of the tube are expediently in the range of 0.2 to about 0.95.
- a cross-sectional ratio of 0.2 results, for example, in a very thin heating rod diameter of 0.2 mm and a tube diameter of 0.45 mm ,.
- a cross-sectional ratio of 0.9 is obtained, for example, with a heater rod diameter of about 4.75 mm in a tube with 5 mm inner diameter, wherein it does not matter in terms of the cross-sectional ratios on the unit or on the absolute dimensions, as long as the Edelstab screenmesser within the above and below ranges.
- a preferred range of cross-sectional ratios is between 0.3 and 0.8, corresponding to a diameter ratio between about 0.5 and 0.9 with absolute diameters of the heating rods between 0.5 and 5 mm.
- the heat transfer between the heating element and the gas flowing through is surprisingly effective, so that with such a heating element readily Process gas temperatures of up to 1200 ° C or even more, while the lifetime of these process heaters and in particular the heating rods is a multiple of the life of conventional process heaters or heating wires, which are designed for the generation of gas temperatures of 900 ° C or more.
- the annular gap along the circumference of the heating element also does not necessarily have to have a constant width, but can vary between 0 (contact) and the maximum value (in the case of circular cross sections, ie twice the uniform gap width.
- the absolute pipe diameter and Wienstab preparedmesser can vary widely, for example between an inner diameter of the tube from 1 mm to 20 mm or more, z. B. 60 mm, again depending on the other dimensions, such. the length of tube and heater, the desired width of the annular gap, the gas flow rate and the electrical resistance of the heater and the available voltage.
- the heating rod has a correspondingly smaller diameter for small pipe diameters, and in an extreme case also 0.5 mm or less, e.g. May be 0.2 mm. He is so compared to conventional helical wires or Schufilraitn but still significantly thicker and especially not coiled, but extends parallel to the tube axis and along the tube axis.
- heating element of a heating element according to the present invention is usually also thicker than the heating wires in conventional heating elements with the same tube cross-section and a heating element in the overall comparable heating element according to the prior art.
- the heating element is arranged as accurately as possible in the center of the tube, wherein the outer cross section of the heating element substantially coincides with the shape of the inner cross section of the tube, resulting in the result that the annular gap between the heating element and the inner wall of the tube has a substantially constant width.
- the inner surface of the tube and / or the outer surface of the heating element could also be structured, i. For example, have a running in the longitudinal direction of the rod and the tube rib or groove structure, which may also have a small helix angle.
- Such superficial structures may, for a given annular gap width, expand the laminar flow region to larger gas flow rates if desired.
- the concrete width of the annular gap always represents a compromise between maximum heat energy transfer and pressure loss at the desired gas flow rate. That is, the narrower the annular gap, the more effective is the heat transfer from the heating element to the gas flowing between the heating element and the tube, with a narrow gap but also limits the gas flow and / or requires a large pressure difference between inlet and outlet.
- the reasonable width of the annular gap but also depends on the length of the tube and also from the converted in the heating element electric heating power.
- the average width of the annular gap is about 0.1 mm, in another example, 0.2 mm but it is not always possible to really concentrically arrange the heating element in a tube, so that the annular gap width at least at some axial positions in the circumferential direction can vary between zero and twice the average annular gap width.
- spacers are therefore provided at some positions along the circumference and / or over the length, which center the heating element in the tube.
- the spacers may be integrally formed with the heating element or the tube and are in particular designed so that they impede the gas flow between the heating element and the pipe as little as possible.
- the spacers are preferably made of heat-resistant ceramic and are ideally realized via the tube geometry.
- heating rod and tube are arranged coaxially with each other, d. H. their axes collapse.
- the heating element and the tube but by no means have a circular cross section, they could for example also have the cross section of a preferably equilateral polygon and it could, for example, a pipe with hexagonal or octagonal cross-section or outer contour, which receives a cylindrical heating element.
- a square or hexagonal outer contour of the tubes allows a very compact arrangement of the tube bundle and a resulting minimal bypass flow between the tubes.
- a plurality of parallel tubes are combined to form a tube package and the heating element, more precisely the heating rods of the individual tubes of the tube package have the shape of a meandering passed through the heating wire, which is inserted at the end of a tube and from the outlet side
- a tube package can consist of several groups of tubes, which are each traversed by a single continuous heating wire. Should it be the electrical Required connection performance, a division into several electrical zones has proven, which allow a connection in delta or star connection.
- a tight packing of such tubes is arranged in a common housing, wherein between the housing wall and the outside of the dense packing of individual tubes additionally insulating material is arranged.
- the insulating material is preferably a high temperature resistant, ceramic material which has sufficient stability for the production of dimensionally stable tubes. Between a plurality of parallel tubes bundled together, a high-temperature resistant ceramic insulating material such as sold by the applicant under the trade name "Fibrothal" can be disposed.
- the tubes should consist of an insulating and high-temperature-resistant ceramic, which in particular aluminum oxide (Al2O3) comes into consideration.
- Al2O3 aluminum oxide
- the heating element is preferably made of an iron-chromium-aluminum alloy or of a nickel-chromium-iron alloy.
- a thicker heating rod in turn consist of a bundle of parallel, possibly also twisted together individual rods or wires, in such an embodiment, the above-defined clearance by the clearance of an envelope of the bundle of rods or wires to the inner wall of the tube is defined.
- the heating element may have a diameter in the range of 0.2 to 50 mm, preferably between 0.5 and 10 mm.
- FIG. 1 a dense packing of tubes 1 in a hexagonal arrangement, through which heating rods 2 are passed.
- the tubes 1 are made of alumina ceramic and have an inner diameter of about 1.7 mm, and an outer diameter of about 2.7 to 2.8 mm, resulting in a wall thickness of the tubes 1 of about 0.5 to 0.55 mm results.
- the heating elements are formed here by a continuous heating wire with a diameter of about 1.5 mm, which is passed alternately in opposite directions through a plurality of tubes of this tube package, wherein the heating element marked 2a, the insertion side of the heating wire in the tube 1 a marked, which is then returned through the pipe 1 b again, reintroduced into the tube 1 c and in this way passed through a plurality of tubes and substantially parallel to the axis until finally the end of the wire in the form of the heating element 2 z through the Tube 1 z exits again.
- thermocouples or other thermometers serve, while the central tube may have, for example, a centering 4, with the aid of which from the tube package and the passed heating wire existing heating element 10 can be centered in the housing of a process heater.
- FIG. 2 is a side view of the package or the hexagonal packing of tubes according to FIG. 1 ,
- the length I of the tubes 1 is, for example, between 150 and 500 mm, while the length L of the entire heating element 10 (without the protruding terminal ends 2a and 2z) is greater by approximately 4-5 mm for the dimensions of tubes 1 and heating rods 2 indicated here ,
- FIG. 3 shows a complete process heater 100 with a tubular housing 6, a gas supply pipe 7, a gas outlet nozzle 9 with outlet pipe 8 and a mounting flange 13, which in turn is mounted on a power supply flange 14.
- the gas supply pipe 7 opens into a cylindrical cavity 18, through which extend two parallel power supply pipes 16, of which in the side view of FIG. 3 only one is recognizable.
- the power supply tubes form a passage for the connection of the wire ends 2a and 2z with electrical connection contacts on the electrical connection flange 14.
- the heating element 10, which consists of a tube package, for example according to FIGS. 1 and 2 is located in the center of the tubular housing 6, wherein between the inner wall of the tubular housing 6 and the heating element 10, a high temperature resistant, ceramic insulating material 17 is arranged, which typically consists of two heating elements 10 from opposite sides enclosing half shells 17a, 17b (see FIG. 5 ), whose inner contour of the outer contour of the heating element 10 is adjusted.
- the half shells can also together form a simple cylindrical tube, in which case the remaining spaces between the heating element 10 are stuffed with present in loose fiber composite insulating material, which also fills the spaces between the tubes 1, 3 otherwise.
- the gas inlet side of the heating element 10 could also have a corresponding perforated, circular cover, the diameter of which corresponds to the maximum outer diameter of the tube assembly of the heating element 10 and which has holes only at the position of the tubes or pipe openings and thus the Cover the entire face of the pipe pack, except for the holes, before passing the heating wire through the pipes.
- a cover plate could consist of the same ceramic insulating material, as it is also used for the half-shells 17a, 17b between the housing and heating element 10 and which is sold by the applicant under the brand name "Fibrothal".
- the ends 2a and 2z of the heating wire (s) 2 are connected by the insulating connecting pipes 16 to external electrical terminals 12 which are mounted to the supply flange 14 via a compression fitting 11.
- the variant of a process heater shown here is designed for a Schustab- or- Walkerdraht designedmesser of about 1, 5 mm for a heating power of 3.5 kW, the clear inner tube diameter between about 1.7 and 2.2 mm can be and the heating wire or rods consist of an iron-chromium-aluminum alloy. Suitable heating wires are sold by the applicant, inter alia, under the trade name "NICROTHAL". It goes without saying that corresponding process heaters can be dimensioned arbitrarily so that the power range can extend between a few watts or a few 100 watts and 100 or more kilowatts.
- the gas to be heated is supplied through the connection 7 and arrives in a substantially cylindrical antechamber 18, which is otherwise still separated from the two insulating tubes 16 of FIG Power connection is traversed and flows into the open annular gaps 5 between the tubes 1 and the heating wires 2 in and through the tubes, and then exit through the nozzle 9 and the outlet tube 8 from the process heater.
- FIG. 4 is finally after a frontal view of the process heater after FIG. 3 from the left, which in turn recognizes the nozzle 9 with the outlet end 8, as well as the housing 6, the gas supply pipe 7 and the connecting flange thirteenth
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Resistance Heating (AREA)
Description
Die vorliegende Erfindung betrifft ein Heizelement zum Erhitzen von Gasen auf hohe Temperaturen, mit mindestens einem für die Durchströmung von heißem bzw. zu erhitzendem Gas ausgelegten Rohr 1 und einem elektrischen Heizdraht in dem Rohr, welcher für die Übertragung von Wärme auf an dem Heizdraht vorbeiströmendes Gas ausgelegt ist.
Ebenso betrifft vorliegende Erfindung auch einen Prozessheizer mit einem Gehäuse mit einer Gaszufuhr und einem Gasauslass, einem Heizraum zwischen Gaszufuhr und Gasauslass zur Aufnahme eines Heizelementes und elektrischen Anschlüssen für mindestens ein Heizelement, Entsprechende Heizelemente sind seit langem bekannt. Sie bestehen, wie bereits erwähnt, aus mindestens einem von Gas zu durchströmenden Rohr, das zum Zwecke der Durchströmung beidseitig offen ist, wobei in dem Rohr ein Heizdraht angeordnet ist, an welchem das Gas vorbeiströmt und sich durch den direkten Kontakt mit dem Heizdraht erhitzt.The present invention relates to a heating element for heating gases to high temperatures, comprising at least one
Likewise, the present invention also relates to a process heater having a housing with a gas supply and a gas outlet, a heating space between gas supply and gas outlet for receiving a heating element and electrical connections for at least one heating element, corresponding heating elements have long been known. They consist, as already mentioned, of at least one gas to be flowed through pipe, which is open on both sides for the purpose of flow, wherein in the tube, a heating wire is arranged, at which the gas flows past and heated by the direct contact with the heating wire.
Das Dokument
Üblicherweise werden als Heizdrähte wendelförmig aufgewickelte, feine Drähte verwendet, deren Querschnitt sehr viel kleiner als der Rohrquerschnitt ist und die von Strom durchflossen werden und sich dadurch erhitzen. Die durch den Heizdraht in Wärme umgesetzte elektrische Energie hängt selbstverständlich ab von der zur Verfügung stehenden elektrischen Spannung und dem Widerstand entsprechender Heizdrähte, wobei man zur Erzielung gewünschte Widerstandswerte die Länge eines gewendelten Drahtes entsprechend anpassen oder mehrere entsprechende Heizdrahte parallel oder auch in Reihe schalten kann. Die auf das an dem Heizdraht entlangströmende Gas übertragene Wärmeenergie hängt dabei selbstverständlich ab von der maximalen Temperatur, welche der Heizdraht erreicht, von der Strömungsgeschwindigkeit und von der zum Wärmeaustausch zur Verfügung stehenden Oberfläche sowie auch den genauen Strömungsverhältnissen in dem Heizelement. Die maximalen Gastemperaturen, die man im Dauerbetrieb mit derartigen Prozessheizern in der Praxis regelmäßig erreichen kann, liegen in der Größenordnung von 700 °C.
Es werden zwar vereinzelt auch Heizelemente bzw. Prozessheizer angeboten, die eine Erzeugung von höheren Gastemperaturen bis zu etwa 900 °C erlauben, jedoch haben diese nur äußerst kurze Standzeiten. Bei den für viele Prozesse erforderlichen Gasströmungsraten hat der Heizdraht selbst notwendigerweise immer eine mehr oder weniger deutlich über der Gastemperatur liegende Temperatur, wobei bereits kleinste Inhomogenitäten in dem Heizdraht bzw. in dessen Querschnitt oder auch allein ungünstige lokale Strömungsbedingungen und Turbulenzen dazu führen können, dass sich einige Abschnitte des Heizdrahtes stärker erhitzen als der übrige Teil, was dann schnell zum Bruch und Versagen der Heizdrahte führt. Da der Heizdraht typischerweise in kleinen Mengen Aluminium enthält, führt der Kontakt mit Sauerstoff zunächst zur Ausbildung einer schützenden Aluminiumoxidschicht um den Draht. Nach Verbrauch des Aluminium-Anteils, reagieren jedoch andere Legierungsbestandteile wie Eisen und Chrom mit dem Sauerstoff, was im Allgemeinen das Ende der Lebensdauer des Heizdrahtes bedeutet. Sonstige chemische Reaktionen des zu erhitzenden oder heißen Prozessgases mit dem Material des Heizdrahtes können das Versagen bzw. Brechen der Heizdrähte noch beschleunigt. Kleine Unregelmäßigkeiten in dem Material oder Querschnitt des Heizdrahtes aufgrund chemischer Veränderungen führen schnell zu einem lokalen Überhitzen des Heizdrahtes und zum Bruch. Da auch die Stabilität der sehr dünnen, gewendelten Heizdrähte insbesondere bei hohen Temperaturen relativ gering ist, können die Heizwendeln in einem vertikalen Rohr leicht in sich zusammensacken, wodurch Kurzschlüsse auftreten, die ebenfalls die Lebensdauer solcher Wendeldrähte herabsetzen. Ein solches Versagen durch Überhitzen, vor allem lokales Überhitzen, tritt umso leichter auf, je kleiner der Querschnitt bzw. Durchmesser der Heizdrähte ist. Andererseits wird aber ein großes Oberfläche-zu-Volumen-Verhältnis der Heizdrähte als vorteilhaft für eine effektive Übertragung der in dem Heizdraht erzeugten Wärmenergie auf das vorbeiströmende Gas angesehen, so dass man bisher die kurze Standzeit solcher Heizelemente in Kauf nimmt, wenn man Gastemperaturen im Bereich von 900°C oder darüber erreichen will.Usually used as heating wires helically wound, fine wires whose cross-section is much smaller than the pipe cross-section and are traversed by electricity and thereby heat. The electrical energy converted into heat by the heating wire naturally depends on the available electrical voltage and the resistance of corresponding heating wires, whereby the length of a coiled wire can be adapted to achieve desired resistance values or several corresponding heating wires can be connected in parallel or in series. Of course, the heat energy transferred to the gas flowing along the heating wire depends on the maximum temperature reached by the heating wire, on the flow velocity and on the surface available for heat exchange as well as on the exact flow conditions in the heating element. The maximum gas temperatures, which can be reached regularly in continuous operation with such process heaters in practice, are in the order of 700 ° C.
Although occasionally also heating elements or process heaters are offered, which allow the production of higher gas temperatures up to about 900 ° C, but they have only extremely short lives. At the gas flow rates required for many processes, the Heating wire itself necessarily always a more or less significantly above the gas temperature temperature, even the smallest inhomogeneities in the heating wire or in its cross section or even unfavorable local flow conditions and turbulence can cause some sections of the heating wire heat up more than the rest Part, which then quickly leads to breakage and failure of the heating wires. Since the heating wire typically contains aluminum in small amounts, contact with oxygen initially results in the formation of a protective aluminum oxide layer around the wire. However, after consuming the aluminum portion, other alloying components such as iron and chromium react with the oxygen, which generally means the end of the life of the heating wire. Other chemical reactions of the heated or hot process gas with the material of the heating wire can accelerate the failure or breakage of the heating wires. Small irregularities in the material or cross-section of the heating wire due to chemical changes quickly lead to local overheating of the heating wire and breakage. Since the stability of the very thin, coiled heating wires is relatively low, especially at high temperatures, the heating coils can easily collapse in a vertical tube, causing short circuits, which also reduce the life of such helical wires. Such a failure by overheating, especially local overheating, occurs the easier the smaller the cross section or diameter of the heating wires. On the other hand, however, a large surface-to-volume ratio of the heating wires is considered advantageous for an effective transmission of the heat energy generated in the heating wire on the gas flowing past, so far the short life of such heating elements is accepted when gas temperatures in the range of 900 ° C or above.
Prozessheizer und Heizelemente, die Gastemperaturen von 900 °C oder auch noch darüber erzeugen, haben aber aus den vorgenannten Gründen regelmäßig nur eine Standzeit von wenigen Stunden.Process heaters and heating elements that generate gas temperatures of 900 ° C or even more, but have for the aforementioned reasons regularly only a service life of a few hours.
Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Prozessheizer und ein entsprechendes Heizelement bereitzustellen, die eine Erzeugung von Gastemperaturen bis zu 1000 °C oder auch darüber erlauben, damit extrem große Energiemengen auf das Gas übertragen können und dennoch eine relativ lange Standzeit haben, die bei der Erzeugung von Gastemperaturen bis 1000°C in der Regel mindestens das 10-fache der Lebensdauer herkömmlicher Heizwendeln beträgt.Against this background, the present invention has the object to provide a process heater and a corresponding heating element, which allow a generation of gas temperatures up to 1000 ° C or even above, so that extremely large amounts of energy can transfer to the gas and still have a relatively long life , which is at least 10 times the life of conventional heating coils in the generation of gas temperatures up to 1000 ° C usually.
Diese Aufgabe wird dadurch gelöst, dass der Heizdraht als sich entlang der Rohrachse erstreckender Heizstab ausgebildet ist, dessen maximaler lichter Abstand zu der Innenwand des Rohres über mindestens 80 % des Umfanges und/oder mindestens 80 % der Überlappungslänge von Rohr und Heizstab einen Wert von 10 mm nicht übersteigt.This object is achieved in that the heating wire is formed as extending along the tube axis heating rod whose maximum clear distance to the inner wall of the tube over at least 80% of the circumference and / or at least 80% of the overlap length of the tube and heater a value of 10 mm does not exceed.
Mit anderen Worten ist der Heizdraht kein gewendelter Draht, dessen Materialquerschnitt wesentlich kleiner ist als der des Rohres, sondern vielmehr ein Stab, für den man seinerseits eine entsprechende Längsachse definieren kann, die sich im Wesentlichen entlang der oder parallel zu der Achse des Rohres erstreckt und dabei das Rohr soweit ausfüllt, dass zwischen Heizstab und Rohrwand nur ein relativ kleiner, lichter Abstand verbleibt, der maximal 10 mm und vorzugsweise noch deutlich weniger beträgt, auch wenn er punktuell, d.h. in Bereichen, die weniger als 20% der Überlappungslänge von Rohr und Heizstab oder aber weniger als 20% des Umfangs des Heizstabes ausmachen, größer sein kann. Der Begriff "Heizdraht" wird daher im Rahmen der vorliegenden Beschreibung als Oberbegriff sowohl für relativ dünne gewendelte Drähte als auch für Heizstäbe gemäß der vorliegenden Erfindung verwendet, wobei die unterschiedliche Dicke nicht das primäre Unterscheidungskriterium ist.In other words, the heating wire is not a coiled wire whose material cross-section is substantially smaller than that of the tube, but rather a rod, for which in turn one can define a corresponding longitudinal axis which extends substantially along or parallel to the axis of the tube and while the tube fills so far that between heating element and tube wall only a relatively small, clear distance remains, which is at most 10 mm and preferably still significantly less, even if he punctually, ie in areas which account for less than 20% of the overlap length of tube and heater bar or less than 20% of the heater rod circumference. The term "heating wire" is therefore used in the present description as a generic term for both relatively thin coiled wires and for heating rods according to the present invention, wherein the different thickness is not the primary distinguishing criterion.
Der maximale lichte Abstand zwischen Heizstab und Rohr liegt in vielen praktischen Fällen zwischen 1 und 2 mm, etwas darüber oder auch darunter bis herab zu Minimalwerten von 0, 02 mm. Der Maximaldurchmesser des Heizstabs liegt selten über 10 mm, weil bei noch größeren Durchmessern die Effizienz der Energieübertragung wegen eines relativ großen Volumen/Oberfläche-Verhältnisses des Heizstabes erheblich nachlässt, was nur teilweise durch eine größere Rohr- und Heizstablänge kompensiert werden kann. Grundsätzlich ist aber dennoch die Verwendung von Heizstäben mit größeren Durchmessern möglich, wenn auch nicht bevorzugt. Ein in der Praxis offenbar günstiger Durchmesserbereich für Heizstäbe im Sinne der vorliegenden Erfindung liegt zwischen 0,5 mm und 5 mm..The maximum clear distance between the heating element and the tube is in many practical cases between 1 and 2 mm, slightly above or even below, down to minimum values of 0.02 mm. The maximum diameter of the heating element is rarely over 10 mm, because even larger diameters, the efficiency of energy transfer due to a relatively large volume / surface ratio of the heating significantly decreases, which can only be partially compensated by a larger pipe and Heizstablänge. In principle, however, the use of heating elements with larger diameters is possible, although not preferred. A diameter range for heating rods apparently favorable in practice for the purposes of the present invention is between 0.5 mm and 5 mm.
Der Begriff "Rohr" ist im Sinne der vorliegenden Erfindung weit auszulegen und definiert letztlich nur einen Hohlraum mit einer Eintritts und einer Austrittsöffnung, die ein Durchströmen mit zu erhitzendem Gas erlauben. Dabei muss nicht einmal der Querschnitt über die Länge des Rohres hinweg konstant sein, auch wenn dies selbstverständlich bevorzugt ist, um mit einfachen Mitteln einen weitgehend konstanten Spalt, insbesondere einen konstanten Ringspalt, zwischen Heizstab und Rohrwand zu erzeugen. Der Ringspalt kann durch Erhöhungen, welche über den Umfang verteilt auf der Heizstaboberfläche oder auf der Innenfläche des Rohres angeordnet sind, unterbrochen werden, um eine Zentrierung des Heizstabes zu ermöglichen und eine homogene Wärmeübertragung zu gewährleisten.The term "tube" is to be interpreted broadly in the context of the present invention and ultimately defines only one cavity with an inlet and an outlet opening, which allow a flow to be heated with gas. Not even the cross section across the length of the pipe must be constant, although this is of course preferred in order to produce a largely constant gap, in particular a constant annular gap, between the heating element and the pipe wall by simple means. The annular gap can be interrupted by elevations, which are distributed over the circumference on the Heizstaboberfläche or on the inner surface of the tube, to allow a centering of the heating rod and to ensure a homogeneous heat transfer.
Als Rohre werden beispielsweis auch durchgehende Bohrungen in einem massiven Block angesehen, wobei ein solcher Block eine Vielzahl paralleler Bohrungen aufweisen kann.As tubes, for example, through holes are considered in a solid block, such a block may have a plurality of parallel holes.
Da die Heizstäbe gemäß der vorliegenden Erfindung im Vergleich zu den gewendelten Drähten in entsprechenden Rohren herkömmlicher Heizer relativ dick sind, können sie Wärme intern besser übertragen und verteilen, was eine lokale Überhitzung vermeiden hilft, und sie haben schon aus diesem Grund bei hoher thermischer Belastung bzw. hohen Heizstabtemperaturen jenseits von 1000 °C eine deutlich längere Lebensdauer und Standzeit bzw. ermöglichen erst das Erhitzen von Gasen auf über 1000 °C mit metallischen elektrischen Heizelementen.Since the heating rods according to the present invention are relatively thick compared to the coiled wires in respective tubes of conventional heaters, they can heat better internally transferred and distributed, which helps prevent local overheating, and they have already for this reason at high thermal load or high heating rod temperatures beyond 1000 ° C a significantly longer life and durability or allow only the heating of gases to over 1000 ° C. with metallic electric heating elements.
Eine alternative Bedingung anstelle des maximalen lichten Abstandes zwischen Heizstab und Rohr lässt sich durch ein Mindestverhältnis der Querschnittsfläche des Heizstabes zur dem freien Innenquerschnitt des Rohres ausdrücken. Demnach sollte der Heizstab, zumindest soweit er innerhalb des Rohres verläuft, eine Querschnittsfläche haben, die mindestens 30 % und noch bevorzugter mindestens 50% des freien Rohrquerschnitts beträgt. Bei konkreten Ausführungsformen, die mit positiven Ergebnissen getestet wurden, lag dieses Querschnittsverhältnis bei etwa 80 % wobei der maximale lichte Abstand 0,2 bis 0,5 mm betrug und ein entsprechend gleichmäßiger Ringspalt zwischen Heizstab und Rohrwand etwa 0,1 bis 0,25 mm betrug.An alternative condition instead of the maximum clear distance between the heating element and the tube can be expressed by a minimum ratio of the cross-sectional area of the heating element to the free inner cross section of the tube. Accordingly, the heater should, at least as far as it extends within the pipe, have a cross-sectional area which is at least 30% and more preferably at least 50% of the free pipe cross-section. In specific embodiments, which were tested with positive results, this aspect ratio was about 80%, wherein the maximum clear distance was 0.2 to 0.5 mm and a correspondingly uniform annular gap between the heating element and the tube wall about 0.1 to 0.25 mm amounted to.
Allgemein gesprochen liegen die bevorzugten Maßverhältnisse zwischen dem Querschnitt des Heizstabes und dem Innenquerschnitt des Rohres zweckmäßigerweise im Bereich von 0,2 bis etwa 0,95. Ein Querschnittsverhältnis von 0,2 ergibt sich zum Beispiel in etwa bei einem sehr dünnen Heizstabdurchmesser von 0,2 mm und einem Rohrdurchmesser von 0,45 mm,. Ein Querschnittsverhältnis von 0,9 ergibt sich zum Beispiel bei einem Heizstabdurchmesser von etwa 4,75 mm in einem Rohr mit 5 mm Innendurchmesser, wobei es hinsichtlich der Querschnittsverhältnisse auf die Maßeinheit bzw. auf die Absolutmaße nicht ankommt, solange der Heizstabdurchmesser innerhalb der oben und nachstehend angegebenen Bereiche liegt. Ein bevorzugter Bereich von Querschnittsverhältnissen liegt zwischen 0,3 und 0,8, entsprechend einem Durchmesserverhältnis zwischen etwa 0,5 und 0,9 mit absoluten Durchmessern der Heizstäbe zwischen 0,5 und 5 mm.Generally speaking, the preferred proportions between the cross section of the heating element and the inner cross section of the tube are expediently in the range of 0.2 to about 0.95. A cross-sectional ratio of 0.2 results, for example, in a very thin heating rod diameter of 0.2 mm and a tube diameter of 0.45 mm ,. A cross-sectional ratio of 0.9 is obtained, for example, with a heater rod diameter of about 4.75 mm in a tube with 5 mm inner diameter, wherein it does not matter in terms of the cross-sectional ratios on the unit or on the absolute dimensions, as long as the Heizstabdurchmesser within the above and below ranges. A preferred range of cross-sectional ratios is between 0.3 and 0.8, corresponding to a diameter ratio between about 0.5 and 0.9 with absolute diameters of the heating rods between 0.5 and 5 mm.
Gleichzeitig hat sich herausgestellt, dass bei einer im Wesentlichen laminaren Strömung von Gas durch einen Ringspalt zwischen einem stabförmigen, entlang der Rohrachse verlaufenden Heizstab und der Innenwand des Rohres die Wärmeübertragung zwischen Heizstab und hindurchströmendem Gas überraschend effektiv ist, sodass man mit einem solchen Heizelement ohne Weiteres Prozessgastemperaturen von bis zu 1200 °C oder auch noch darüber erreichen kann, während die Lebensdauer dieser Prozessheizer und insbesondere der Heizstäbe ein Vielfaches der Lebensdauer von herkömmlichen Prozessheizern bzw. Heizdrähten beträgt, die für die Erzeugung von Gastemperaturen von 900 °C oder mehr ausgelegt sind. Dabei muss der Ringspalt entlang des Umfangs des Heizstabs auch nicht notwendigerweise eine konstante Breite haben, sondern kann zwischen 0 (Berührung) und dem Maximalwert (bei kreisförmigen Querschnitten also dem Doppelten der gleichmäßigen Spaltbreite variieren.At the same time it has been found that with a substantially laminar flow of gas through an annular gap between a rod-shaped heating rod extending along the tube axis and the inner wall of the tube, the heat transfer between the heating element and the gas flowing through is surprisingly effective, so that with such a heating element readily Process gas temperatures of up to 1200 ° C or even more, while the lifetime of these process heaters and in particular the heating rods is a multiple of the life of conventional process heaters or heating wires, which are designed for the generation of gas temperatures of 900 ° C or more. The annular gap along the circumference of the heating element also does not necessarily have to have a constant width, but can vary between 0 (contact) and the maximum value (in the case of circular cross sections, ie twice the uniform gap width.
Die absoluten Rohrdurchmesser und Heizstabdurchmesser können in weiten Bereichen variieren, beispielsweise zwischen einem Innendurchmesser des Rohres von 1 mm bis 20 mm oder auch mehr, z. B. 60 mm, wiederum abhängig von den sonstigen Maßen, wie z.B. der Länge von Rohr und Heizstab, der gewünschten Breite des Ringspaltes, der Gasstromrate und dem elektrischen Widerstand des Heizstabes sowie der zur Verfügung stehenden Spannung.The absolute pipe diameter and Heizstabdurchmesser can vary widely, for example between an inner diameter of the tube from 1 mm to 20 mm or more, z. B. 60 mm, again depending on the other dimensions, such. the length of tube and heater, the desired width of the annular gap, the gas flow rate and the electrical resistance of the heater and the available voltage.
Der Heizstab hat bei kleinen Rohrdurchmessern selbstverständlich einen entsprechend kleineren Durchmesser, der im Extremfall auch 0,5 mm oder weniger, z.B. 0,2 mm betragen kann. Er ist damit gegenüber herkömmlichen Wendeldrähten oder Heizfilamenten aber immer noch deutlich dicker und vor allem nicht gewendelt, sondern erstreckt sich parallel zu der Rohrachse und entlang der Rohrachse. Der Unterschied zwischen dem "Heizdraht" nach dem Stand der Technik und dem "Heizstab" gemäß der vorliegenden Erfindung liegt also primär nicht (bzw. nicht nur) in der unterschiedlichen Dicke, sondern vielmehr in der definierten Längserstreckung und vergleichsweise stabilen Form des Heizstabes, der sich, soweit praktisch machbar, genau entlang der Achse des Rohres erstreckt, so dass seine Länge innerhalb des Rohres genau der Länge des Rohres entspricht und der Heizstab somit nicht entlang eines künstlich verlängerten Weges im Rohr verläuft. Gleichwohl ist der Heizstab eines Heizelementes gemäß der vorliegenden Erfindung in aller Regel auch dicker als die Heizdrähte bei herkömmlichen Heizelementen mit gleichem Rohrquerschnitt und bei einem in der Heizleistung insgesamt vergleichbaren Heizelement nach dem Stand der Technik.Of course, the heating rod has a correspondingly smaller diameter for small pipe diameters, and in an extreme case also 0.5 mm or less, e.g. May be 0.2 mm. He is so compared to conventional helical wires or Heizfilamenten but still significantly thicker and especially not coiled, but extends parallel to the tube axis and along the tube axis. The difference between the "heating wire" according to the prior art and the "heating element" according to the present invention is thus not primarily (or not only) in the different thickness, but rather in the defined longitudinal extent and relatively stable shape of the heating rod, the extends, as far as practicable, exactly along the axis of the tube, so that its length within the tube corresponds exactly to the length of the tube and thus the heating element does not run along an artificially extended path in the tube. Nevertheless, the heating element of a heating element according to the present invention is usually also thicker than the heating wires in conventional heating elements with the same tube cross-section and a heating element in the overall comparable heating element according to the prior art.
Idealerweise ist der Heizstab möglichst genau im Zentrum des Rohres angeordnet, wobei der Außenquerschnitt des Heizstabes mit der Form des Innenquerschnitts des Rohres im Wesentlichen übereinstimmt, was im Ergebnis dazu führt, dass der Ringspalt zwischen Heizstab und Innenwand des Rohres eine im wesentlichen konstante Breite hat. Eventuell könnten aber die Innenfläche des Rohres und/oder die Außenfläche des Heizstabes auch strukturiert sein, d.h. beispielsweise eine in Längsrichtung des Stabes und des Rohres verlaufende Rippen- oder Rillenstruktur aufweisen, die auch einen kleinen Drallwinkel aufweisen kann. Solche oberflächliche Strukturen können bei gegebener Ringspaltbreite den Bereich der laminaren Strömung gegebenenfalls zu größeren Gasstromraten hin erweitern.Ideally, the heating element is arranged as accurately as possible in the center of the tube, wherein the outer cross section of the heating element substantially coincides with the shape of the inner cross section of the tube, resulting in the result that the annular gap between the heating element and the inner wall of the tube has a substantially constant width. Possibly, however, the inner surface of the tube and / or the outer surface of the heating element could also be structured, i. For example, have a running in the longitudinal direction of the rod and the tube rib or groove structure, which may also have a small helix angle. Such superficial structures may, for a given annular gap width, expand the laminar flow region to larger gas flow rates if desired.
Die konkrete Breite des Ringspaltes stellt dabei immer einen Kompromiss zwischen maximaler Wärmeenergieübertragung und Druckverlust bei gewünschter Gasstromrate dar. Das heißt, je enger der Ringspalt ist, desto effektiver ist die Wärmeübertragung von dem Heizstab auf das zwischen Heizstab und Rohr strömende Gas, wobei ein enger Spalt jedoch auch den Gasstrom begrenzt und/oder eine große Druckdifferenz zwischen Einlass und Auslass erfordert.The concrete width of the annular gap always represents a compromise between maximum heat energy transfer and pressure loss at the desired gas flow rate. That is, the narrower the annular gap, the more effective is the heat transfer from the heating element to the gas flowing between the heating element and the tube, with a narrow gap but also limits the gas flow and / or requires a large pressure difference between inlet and outlet.
Darüber hinaus hängt die sinnvolle Breite des Ringspaltes aber auch von der Länge des Rohres und auch von der im Heizstab umgesetzten elektrischen Heizleistung ab.In addition, the reasonable width of the annular gap but also depends on the length of the tube and also from the converted in the heating element electric heating power.
In einer konkreten Ausführungsform beträgt die durchschnittliche Breite des Ringspaltes etwa 0,1 mm, in einem anderen Beispiel 0,2 mm wobei es aber nicht immer gelingt, den Heizstab wirklich konzentrisch in einem Rohr anzuordnen, sodass die Ringspaltbreite zumindest an einigen axialen Positionen in Umfangsrichtung zwischen Null und dem Doppelten der durchschnittlichen Ringspaltbreite variieren kann.In a specific embodiment, the average width of the annular gap is about 0.1 mm, in another example, 0.2 mm but it is not always possible to really concentrically arrange the heating element in a tube, so that the annular gap width at least at some axial positions in the circumferential direction can vary between zero and twice the average annular gap width.
In einer Ausführungsform sind deshalb an einigen Positionen entlang des Umfanges und/oder über die Länge verteilt Abstandhalter vorgesehen, die den Heizstab in dem Rohr zentrieren. Die Abstandhalter können mit dem Heizstab oder dem Rohr einstückig ausgebildet sein und sind insbesondere so gestaltet, dass sie den Gasstrom zwischen Heizstab und Rohr möglichst wenig behindern. Die Abstandhalter bestehen vorzugsweise aus hitzebeständiger Keramik und sind idealerweise über die Rohrgeometrie realisiert.In one embodiment, spacers are therefore provided at some positions along the circumference and / or over the length, which center the heating element in the tube. The spacers may be integrally formed with the heating element or the tube and are in particular designed so that they impede the gas flow between the heating element and the pipe as little as possible. The spacers are preferably made of heat-resistant ceramic and are ideally realized via the tube geometry.
Idealerweise werden Heizstab und Rohr koaxial zueinander angeordnet, d. h. ihre Achsen fallen zusammen.Ideally, heating rod and tube are arranged coaxially with each other, d. H. their axes collapse.
Dabei müssen der Heizstab und das Rohr aber keineswegs einen kreisförmigen Querschnitt haben, sie könnten beispielsweise auch den Querschnitt eines vorzugsweise gleichseitigen Polygons haben und es könnte beispielsweise auch ein Rohr mit sechseckigem oder achteckigem Querschnitt oder Außenkontur, das einen zylindrischen Heizstab aufnimmt. Insbesondere eine quadratische oder sechseckige Außenkontur der Rohre ermöglicht eine sehr kompakte Anordnung des Rohrbündels und einen dadurch resultierende minimale Bypass-Strömung zwischen den Rohren.In this case, the heating element and the tube but by no means have a circular cross section, they could for example also have the cross section of a preferably equilateral polygon and it could, for example, a pipe with hexagonal or octagonal cross-section or outer contour, which receives a cylindrical heating element. In particular, a square or hexagonal outer contour of the tubes allows a very compact arrangement of the tube bundle and a resulting minimal bypass flow between the tubes.
In einer Ausführungsform der Erfindung ist eine Mehrzahl von parallelen Rohren zu einem Rohrpaket zusammengefasst und der Heizstab, genauer gesagt die Heizstäbe der einzelnen Rohre des Rohrpaketes haben die Form eines mäanderförmig durch die Rohre hindurchgeführten Heizdrahtes, der am Ende eines Rohres eingeführt wird und von der Austrittseite dieses Rohres durch ein benachbartes Rohr wieder zurückgeführt wird usw. Dabei ist die Anzahl der Rohre, durch die ein einzelner Heizdraht als Heizstab hindurchgeführt ist, vorzugsweise gerade, sodass der Heizstab in Form eines durch die Vielzahl von Rohren hin-und her-verlaufenden Drahtes auf der gleichen Seite wie das Eintrittsende parallel zu diesem austritt und somit an einem Ende des Rohrpaketes mit entsprechenden elektrischen Anschlusskontakten verbunden werden kann. Es versteht sich, dass ein Rohrpaket aus mehreren Gruppen von Rohren bestehen kann, die jeweils von einem einzigen zusammenhängenden Heizdraht durchzogen werden. Sollte es die elektrische Anschlussleistung erfordern, hat sich eine Aufteilung in mehrere elektrische Zonen bewährt, welche eine Konnektierung in Dreieck- oder Sternschaltung ermöglichen.In one embodiment of the invention, a plurality of parallel tubes are combined to form a tube package and the heating element, more precisely the heating rods of the individual tubes of the tube package have the shape of a meandering passed through the heating wire, which is inserted at the end of a tube and from the outlet side In this case, the number of tubes through which a single heating wire is passed as a heating rod, preferably straight, so that the heating element in the form of a back-and-forth through the plurality of tubes wire on the same side as the inlet end parallel to this exits and thus can be connected at one end of the tube package with corresponding electrical connection contacts. It is understood that a tube package can consist of several groups of tubes, which are each traversed by a single continuous heating wire. Should it be the electrical Required connection performance, a division into several electrical zones has proven, which allow a connection in delta or star connection.
Zweckmäßigerweise ist eine dichte Packung solcher Rohre in einem gemeinsamen Gehäuse angeordnet, wobei zwischen der Gehäusewand und der Außenseite der dichten Packung aus einzelnen Rohren zusätzlich noch Isolationsmaterial angeordnet ist.Appropriately, a tight packing of such tubes is arranged in a common housing, wherein between the housing wall and the outside of the dense packing of individual tubes additionally insulating material is arranged.
Das Isoliermaterial ist vorzugsweise ein hochtemperaturbeständiges, keramisches Material, das eine ausreichende Stabilität zur Herstellung von formstabilen Rohren aufweist. Zwischen mehreren parallelen Rohren, die zu einem Paket zusammengefasst sind, kann ein hochtemperaturbeständiges keramisches Isoliermaterial angeordnet werden, wie es von der Anmelderin unter der Markenbezeichnung "Fibrothal" vertrieben wird.The insulating material is preferably a high temperature resistant, ceramic material which has sufficient stability for the production of dimensionally stable tubes. Between a plurality of parallel tubes bundled together, a high-temperature resistant ceramic insulating material such as sold by the applicant under the trade name "Fibrothal" can be disposed.
Statt nebeneinander können auch mehrere der erfindungsgemäßen Heizelemente und entsprechende Pakete aus Heizelementen axial hintereinander angeordnet werden.Instead of side by side also several of the heating elements according to the invention and corresponding packages of heating elements can be arranged axially one behind the other.
Die Rohre sollten aus einer isolierenden und hochtemperaturbeständigen Keramik bestehen, wofür insbesondere Aluminiumoxid (Al2O3) in Betracht kommt.The tubes should consist of an insulating and high-temperature-resistant ceramic, which in particular aluminum oxide (Al2O3) comes into consideration.
Der Heizstab besteht vorzugsweise aus einer Eisen-Chrom-Aluminiumlegierung oder aus einer Nickel-Chrom-Eisen-Legierung. Gegebenenfalls könnte insbesondere ein dickerer Heizstab auch seinerseits aus einem Bündel paralleler, gegebenenfalls auch miteinander verdrillter Einzelstäbe bzw. Drähte bestehen, wobei bei einer solchen Ausführungsform der oben definierte lichte Abstand durch den lichten Abstand einer Einhüllenden des Bündels aus Stäben oder Drähten zu der Innenwand des Rohres definiert ist.The heating element is preferably made of an iron-chromium-aluminum alloy or of a nickel-chromium-iron alloy. Optionally, in particular, a thicker heating rod in turn consist of a bundle of parallel, possibly also twisted together individual rods or wires, in such an embodiment, the above-defined clearance by the clearance of an envelope of the bundle of rods or wires to the inner wall of the tube is defined.
Der Heizstab kann einen Durchmesser im Bereich von 0,2 bis 50 mm, vorzugsweise zwischen 0,5 und 10 mm haben.The heating element may have a diameter in the range of 0.2 to 50 mm, preferably between 0.5 and 10 mm.
Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung werden deutlich anhand der folgenden Beschreibung einer bevorzugten Ausführungsform und der dazugehörigen Figuren.Further advantages, features and possible applications of the present invention will become apparent from the following description of a preferred embodiment and the associated figures.
Es zeigen:
Figur 1- eine stirnseitige Draufsicht auf ein Heizelement, welches aus einem Bündel von Rohren mit hindurchgeführten Heizstäben besteht.
Figur 2- eine Seitenansicht des Heizelementes nach
Figur 1 , Figur 3- eine Schnittansicht mit einem Schnitt entlang der Längsachse eines kompletten Prozessheizers mit einem erfindungsgemäßen Heizelement und einem Gehäuse mit Anschlüssen für Gas und Strom sowie einer Isolierung,
Figur 4- eine Stirnansicht von links auf den
Prozessheizer nach Figur 3 . Figur 5- einen Schnitt durch ein
Heizelement gemäß Figur 1 und 2 und Figur 6- nochmals schematisch einen Prozessheizer mit der Lage der Schnittlinie der
Figur 5
- FIG. 1
- a frontal plan view of a heating element, which consists of a bundle of tubes with passed heating rods.
- FIG. 2
- a side view of the heating element after
FIG. 1 . - FIG. 3
- 3 is a sectional view with a section along the longitudinal axis of a complete process heater with a heating element according to the invention and a housing with connections for gas and electricity and an insulation,
- FIG. 4
- a front view from the left on the process heater after
FIG. 3 , - FIG. 5
- a section through a heating element according to
FIGS. 1 and 2 and - FIG. 6
- again schematically a process heater with the position of the intersection of the
FIG. 5
Man erkennt in
Einige der Rohre sind Leerrohre 3, welche z. B. der Aufnahme von Thermoelementen oder sonstigen Thermometern dienen, während das zentrale Rohr beispielsweise eine Zentrierung 4 aufweisen kann, mit deren Hilfe das aus dem Rohrpaket und dem hindurchgeführten Heizdraht bestehende Heizelement 10 in dem Gehäuse eines Prozessheizers zentriert werden kann.Some of the tubes are
Die Länge I der Rohre 1 beträgt beispielsweise zwischen 150 und 500 mm, während die Länge L des gesamten Heizelementes 10 (ohne die überstehenden Anschlussenden 2a und 2z) bei den hier angegebenen Maßen von Rohren 1 und Heizstäben 2 um etwa 4-5 mm größer ist.The length I of the
Das Gaszufuhrrohr 7 mündet in einen zylindrischen Hohlraum 18, durch den sich auch zwei parallele Stromanschlussrohre 16 erstrecken, von denen in der Seitenansicht der
Alternativ können die Halbschalen auch gemeinsam ein einfaches zylindrisches Rohr bilden, wobei dann die verbleibenden Zwischenräume zwischen dem Heizelement 10 mit in loser Faserverbundform vorliegenden Isoliermaterial ausgestopft werden, welches im Übrigen auch die Zwischenräume zwischen den Rohren 1, 3 ausfüllt.Alternatively, the half shells can also together form a simple cylindrical tube, in which case the remaining spaces between the
Als Alternative zu dem Stopfen der Rohrzwischenräume könnte die Gaseintrittsseite des Heizelementes 10 auch eine entsprechende gelochte, kreisförmige Abdeckscheibe aufweisen, deren Durchmesser dem maximalen Außendurchmesser des Rohrpaketes des Heizelementes 10 entspricht und welche Bohrungen nur an der Position der Rohre bzw. der Rohröffnungen aufweist und damit die gesamte Stirnseite der Rohrpackung mit Ausnahme der Bohrungen abdeckt, bevor der Heizdraht durch die Rohre hindurchgeführt wird. Eine solche Abdeckscheibe könnte aus demselben keramischen Isoliermaterial bestehen, wie es auch für die Halbschalen 17a, 17b zwischen Gehäuse und Heizelement 10 verwendet wird und welches von der Anmelderin unter dem Markennamen "Fibrothal" vertrieben wird. Die Enden 2a und 2z des Heizdrahtes bzw. der Heizstäbe 2 werden durch die isolierenden Verbindungsrohre 16 mit äußeren elektrischen Anschlüssen 12 verbunden, die über eine Klemmringverschraubung 11 an dem Zufuhrflansch 14 montiert sind.As an alternative to the plug of the tube interspaces, the gas inlet side of the
Die hier dargestellte Variante eines Prozessheizers ist bei einem Heizstab- bzw- Heizdrahtdurchmesser von ca. 1, 5 mm für eine Heizleistung von 3,5 kW ausgelegt, wobei der lichte innere Rohrdurchmesser zwischen etwa 1,7 und 2,2 mm liegen kann und wobei der Heizdraht bzw. die Heizstäbe aus einer Eisen-Chrom-Aluminium-Legierung bestehen. Geeignete Heizdrähte werden von der Anmelderin unter anderem unter der Markenbezeichnung "NICROTHAL" vertrieben. Es versteht sich, dass man entsprechende Prozessheizer beliebig dimensionieren kann, sodass sich der Leistungsbereich zwischen einigen Watt oder einigen 100 Watt und 100 oder mehr Kilowatt erstrecken kann.The variant of a process heater shown here is designed for a Heizstab- or- Heizdrahtdurchmesser of about 1, 5 mm for a heating power of 3.5 kW, the clear inner tube diameter between about 1.7 and 2.2 mm can be and the heating wire or rods consist of an iron-chromium-aluminum alloy. Suitable heating wires are sold by the applicant, inter alia, under the trade name "NICROTHAL". It goes without saying that corresponding process heaters can be dimensioned arbitrarily so that the power range can extend between a few watts or a few 100 watts and 100 or more kilowatts.
Das zu erhitzende Gas wird durch den Anschluss 7 zugeführt und gelangt in einem im Wesentlichen zylindrischen Vorraum 18, der ansonsten noch von den beiden isolierenden Rohren 16 der Stromverbindung durchzogen ist und strömt in die offenen Ringspalte 5 zwischen den Rohren 1 und den Heizdrähten 2 hinein und durch die Rohre hindurch, um dann über die Düse 9 und das Austrittsrohr 8 aus dem Prozessheizer auszutreten.The gas to be heated is supplied through the
Es versteht, sich, dass man mehrere Heizelemente bzw. Prozessheizer auch axial hintereinander schalten kann.It goes without saying that you can also switch several heating elements or process heaters axially one behind the other.
- 11
- Rohrpipe
- 22
- Heizstäbe, HeizdrahtHeating rods, heating wire
- 2a, 2z2a, 2z
- Enden des Heizdrahtes bzw. der HeizstäbeEnds of the heating wire or the heating rods
- 33
- Leerrohrconduit
- 44
- Zentrierungcentering
- 55
- Ringspalteannular gaps
- 66
- Gehäusecasing
- 77
- GaszufuhrrohrGas supply pipe
- 88th
- Austrittsrohroutlet pipe
- 99
- Düsejet
- 1010
- Heizelementheating element
- 1111
- Klemmringverschraubungcompression fittings
- 1212
- elektrische Anschlüsseelectrical connections
- 1313
- Befestigungsflanschmounting flange
- 1414
- Zufuhrflanschdelivery flange
- 1616
- Stromanschlussrohre/VerbindungsrohrePower supply pipes / connecting pipes
- 17a, 17b17a, 17b
- Halbschalenshells
- 1818
- Vorraumanteroom
Claims (15)
- Heating element for heating gas to high temperatures and comprising at least one tube (1) designed for the through-flow of gas to be heated and an electrical heating wire within said tube, which is designed for the transfer of heat to the gas passing along the heating wire, characterized in that the heating wire is formed as a heating rod (2) extending along the tube axis, the maximum clearance of which to the inner wall of the tube does not exceed an amount of 10 mm for at least 80 % of the extent and/or at least 80 % of the overlapping length of the tube and the heating rod.
- Heating element according to one of the preceding claims, characterized in that the heating rod has a diameter in the range of between 0.2 and 50 mm, preferably between 0.5 and 10 mm.
- Heating element according to one of the preceding claims, characterized in that the ratio of the diameter of the heating rod to the inner diameter of the tube is in the range of between 0.04 and 0.95 and preferably between 0.3 and 0.8.
- Heating element according to one of the preceding claims, characterized in that the maximum clearance between the heating rod and the inner wall of tube is between 0.02 and 5 mm.
- Heating element according to one of the preceding claims, characterized in that the clearance between the heating rod and the inner wall of the tube is defined by an annular gap which is in general constant over the overlapping length and the extent.
- Heating element according to one of the preceding claims, characterized in that the clearance or the width, respectively, of the annular gap is in the range of between 0.05 and 1 mm, preferably in the range of between 0.1 and 0.5 mm.
- Heating element according to one of the preceding claims, characterized in that the heating rod extends through a plurality of parallel tubes as a continuous massive heating wire.
- Heating element according to one of the preceding claims, characterized in that it comprises a plurality of parallel tubes having heating wires, which are preferably arranged in a close packing next to each other.
- Heating element according to one of the preceding claims, characterized in that the at least one tube consists of aluminium oxide.
- Heating element according to one of the preceding claims, characterized in that the heating rod consists of an iron chromium aluminium alloy or a nickel chromium alloy.
- Heating element according to one of the preceding claims, characterized in that the heating rod itself consists of a bundle of parallel single rods or wires, respectively, optionally twisted with each other, wherein the clearance is defined by the clearance of the envelope surface of the bundle to the inner wall of the tube.
- Heating element according to one of the preceding claims, characterized in that spacers are provided between the heating rod and the tube wall, which preferably result from the tube geometry.
- Heating element according to one of the preceding claims, characterized in that the inner surface of the tube is structured.
- Heating element according to one of the preceding claims, characterized in that the space between a plurality of tubes and between the tubes and the housing is filled in and sealed by a high-temperature resistant ceramic fibre material.
- Process heater having a housing, which comprises a gas supply and a gas discharge, a heating chamber between the gas supply and the gas outlet and electrical connections for at least one electrical heating element, characterized in that the heating chamber comprises at least one heating element according to one of claims 1 to 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL15705240T PL2926623T5 (en) | 2014-02-25 | 2015-02-10 | Heating element and process heater |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014102474.5A DE102014102474A1 (en) | 2014-02-25 | 2014-02-25 | Heating element and process heater |
PCT/EP2015/052712 WO2015128183A1 (en) | 2014-02-25 | 2015-02-10 | Heating element and process heater |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2926623A1 EP2926623A1 (en) | 2015-10-07 |
EP2926623B1 true EP2926623B1 (en) | 2016-06-15 |
EP2926623B2 EP2926623B2 (en) | 2019-05-01 |
Family
ID=52484457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15705240.8A Active EP2926623B2 (en) | 2014-02-25 | 2015-02-10 | Heating element and process heater |
Country Status (12)
Country | Link |
---|---|
US (2) | US9867232B2 (en) |
EP (1) | EP2926623B2 (en) |
JP (2) | JP6194115B2 (en) |
KR (2) | KR20170054576A (en) |
CN (2) | CN108489087A (en) |
CA (1) | CA2936372C (en) |
DE (1) | DE102014102474A1 (en) |
DK (1) | DK2926623T4 (en) |
ES (1) | ES2586472T5 (en) |
PL (1) | PL2926623T5 (en) |
RU (1) | RU2669589C1 (en) |
WO (1) | WO2015128183A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019048236A1 (en) | 2017-09-08 | 2019-03-14 | Karlsruher Institut für Technologie | Conversion reactor and management of method |
EP4456668A1 (en) | 2023-04-25 | 2024-10-30 | COBES GmbH | A device for generating hot gas and a method for operating the same |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014102474A1 (en) * | 2014-02-25 | 2015-08-27 | Sandvik Materials Technology Deutschland Gmbh | Heating element and process heater |
KR101737049B1 (en) * | 2016-01-26 | 2017-05-17 | 조수홍 | Nitrogen heating apparatus of compact type |
EP4235025A3 (en) | 2017-08-28 | 2023-09-20 | Watlow Electric Manufacturing Company | Continuous helical baffle heat exchanger |
WO2019110799A1 (en) | 2017-12-08 | 2019-06-13 | Sandvik Materials Technology Deutschland Gmbh | Electric fluid flow heater with stabilisation brace |
CN111448430B (en) * | 2017-12-08 | 2022-02-01 | 康泰尔有限公司 | Fluid flow electric heater with heating element support member |
JP2019154555A (en) * | 2018-03-08 | 2019-09-19 | 株式会社三洋物産 | Game machine |
JP2019154556A (en) * | 2018-03-08 | 2019-09-19 | 株式会社三洋物産 | Game machine |
JP2019154554A (en) * | 2018-03-08 | 2019-09-19 | 株式会社三洋物産 | Game machine |
DE102018109643A1 (en) * | 2018-04-23 | 2019-10-24 | Eisenmann Se | Apparatus and method for heating gas for a high temperature furnace |
US20220178584A1 (en) * | 2019-03-25 | 2022-06-09 | Kanthal Gmbh | Electric fluid flow heater with heating elements stabilization fins |
CN110068137B (en) * | 2019-04-26 | 2020-05-15 | 西安交通大学 | Direct liquid metal sodium high-power heating system and heating method |
CN110617377A (en) * | 2019-09-30 | 2019-12-27 | 无锡英普朗科技有限公司 | Transmission unit for preventing plasma gas deposition |
WO2021107832A1 (en) * | 2019-10-01 | 2021-06-03 | Kanthal Ab | An electric gas heater device and a system of electric gas heater devices |
US11940146B2 (en) * | 2019-10-08 | 2024-03-26 | Mhi Health Devices, Inc. | Superheated steam and efficient thermal plasma combined generation for high temperature reactions apparatus and method |
EP3873173B1 (en) * | 2020-02-26 | 2022-01-12 | SunFire GmbH | Gas heater heating element manufacturing method and gas heater heating element |
EP3895795B1 (en) * | 2020-04-18 | 2024-04-17 | Gianluca Pauletto | A reactor with an electrically heated structured ceramic catalyst |
SE546054C2 (en) * | 2020-06-11 | 2024-04-30 | Kanthal Ab | Electric Gas Heater and a Method for Heating a gas |
KR20230074567A (en) * | 2020-09-25 | 2023-05-30 | 와틀로 일렉트릭 매뉴팩츄어링 컴파니 | Coupling Box Hairpin Replacement for High Voltage Heating Elements |
EP3981859A1 (en) | 2020-10-09 | 2022-04-13 | Gianluca Pauletto | Electric reactor for steam cracking |
EP4013187A1 (en) | 2020-12-10 | 2022-06-15 | SunFire GmbH | Electric gas flow heater and gas flow heater manufacturing method |
CN112797625A (en) * | 2021-03-01 | 2021-05-14 | 西安慧金科技有限公司 | A high temperature gas heating device |
JP7623236B2 (en) | 2021-06-25 | 2025-01-28 | エスペック株式会社 | Temperature-controlled air supply device |
DE102021208923A1 (en) | 2021-08-13 | 2023-02-16 | Ineratec Gmbh | PLATE ELEMENT FOR REACTION MODULES OR SYSTEMS |
CN118284776A (en) * | 2021-12-07 | 2024-07-02 | 康泰尔有限公司 | Electric heater and electric heating system |
CN114636313B (en) * | 2022-02-23 | 2024-04-12 | 大连海事大学 | Heating and heat-preserving equipment for high-temperature pulsating heat pipe and design method thereof |
GB202205797D0 (en) * | 2022-04-21 | 2022-06-08 | Cryolec Ltd | An induction heater |
BE1030687B1 (en) | 2022-07-01 | 2024-01-29 | Thyssenkrupp Ind Solutions Ag | CO2-free production of artificial pozzolans, especially from clays |
DE102022206778A1 (en) | 2022-07-01 | 2024-01-04 | Thyssenkrupp Ag | CO2-free production of artificial pozzolans, especially from clays |
WO2024002927A1 (en) | 2022-07-01 | 2024-01-04 | thyssenkrupp Polysius GmbH | Co2-free production of artificial pozzolans, in particular from clay |
DE102022214304A1 (en) | 2022-12-22 | 2024-06-27 | Robert Bosch Gesellschaft mit beschränkter Haftung | Preheater for an electrolysis device |
DE102022214300A1 (en) | 2022-12-22 | 2024-06-27 | Robert Bosch Gesellschaft mit beschränkter Haftung | Preheater for an electrolysis device |
WO2024258191A1 (en) * | 2023-06-12 | 2024-12-19 | 주식회사 엘지화학 | Electric heating reactor |
EP4498016A1 (en) * | 2023-07-25 | 2025-01-29 | Hyperheat GmbH | High-temperature heating apparatus |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1727584A (en) | 1927-08-23 | 1929-09-10 | Robert A Carleton | High-temperature fluid-heating apparatus |
DE735982C (en) | 1937-03-03 | 1943-06-04 | Dr Walter Schottky | Arrangement for the electrical heating of flowing air or gases to high temperatures |
DE1615278A1 (en) | 1967-06-30 | 1970-07-23 | Gefi Ges F Industriewaerme Mbh | Electric resistance furnace, especially for heating gaseous media |
US3828161A (en) | 1971-07-20 | 1974-08-06 | Cleland E | For heating fluids by means of gas permeable heat generating members |
US4877990A (en) | 1984-12-19 | 1989-10-31 | Fiorenzano Jr Alintor | Sterilization system by means of high thermal gradient ducts |
US5380987A (en) | 1993-11-12 | 1995-01-10 | Uop | Electric heater cold pin insulation |
DE19613411C1 (en) | 1996-04-03 | 1997-08-21 | Steag Micro Tech Gmbh | Through-flow fluid heating device |
EP2134143A1 (en) | 2008-06-09 | 2009-12-16 | Leister Process Technologies | Electric resistance heat element for a heating device for heating a flowing gaseous medium |
US20120141100A1 (en) | 2007-11-01 | 2012-06-07 | Robert Evans | Inter-Axial Inline Fluid Heater |
CN102811514A (en) | 2012-07-23 | 2012-12-05 | 镇江威斯康电器有限公司 | Electric heating element and pipeline electric heater |
KR101314531B1 (en) | 2013-02-01 | 2013-10-04 | 주식회사 유니웜 | Multiplex heating pipe using conductive heating wire |
US20130264326A1 (en) | 2012-04-04 | 2013-10-10 | Gaumer Company, Inc. | High Velocity Fluid Flow Electric Heater |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3594544A (en) * | 1968-08-30 | 1971-07-20 | Atlantic Richfield Co | Fluid reactor preheater |
US3783236A (en) * | 1973-03-02 | 1974-01-01 | Gte Sylvania Inc | Electrically operated steam heater |
US4085308A (en) * | 1976-11-26 | 1978-04-18 | Rex Veech Youngquist | Electric water heater for showers |
US4179603A (en) * | 1977-11-21 | 1979-12-18 | The Electric Furnace Company | Radial blade heating device |
US4395618A (en) * | 1980-03-03 | 1983-07-26 | Emerson Electric Co. | Electric circulation heater for heating fluids such as oil |
US5134684A (en) * | 1990-05-21 | 1992-07-28 | Gte Products Corporation | Electric air or gas heater utilizing a plurality or serpentine heating elements |
US5400432A (en) * | 1993-05-27 | 1995-03-21 | Sterling, Inc. | Apparatus for heating or cooling of fluid including heating or cooling elements in a pair of counterflow fluid flow passages |
AU687581B2 (en) * | 1994-10-27 | 1998-02-26 | Watkins Manufacturing Corporation | Cartridge heater system |
WO1997018001A1 (en) * | 1995-11-13 | 1997-05-22 | Fisher & Paykel Limited | Heated respiratory conduit |
US6289177B1 (en) * | 1998-06-29 | 2001-09-11 | John W. Finger | Encapsulated heating element fluid heater |
US6456785B1 (en) * | 1999-06-01 | 2002-09-24 | Robert Evans | Resistance heating element |
JP3587249B2 (en) | 2000-03-30 | 2004-11-10 | 東芝セラミックス株式会社 | Fluid heating device |
DE50110692D1 (en) * | 2001-01-24 | 2006-09-21 | Leister Process Tech | Hot air device |
US6621985B1 (en) * | 2002-05-07 | 2003-09-16 | Sherwood-Templeton Coal Company, Inc. | Electric water heater |
SE525477C2 (en) * | 2003-07-10 | 2005-03-01 | Sandvik Ab | Electric heating element with radiation tube |
US7162149B2 (en) * | 2004-04-26 | 2007-01-09 | Robert Evans | Gaseous fluid generation system |
WO2008124475A1 (en) * | 2007-04-03 | 2008-10-16 | Global Heating Solutions, Inc. | Spa having heat pump system |
RU2379858C1 (en) * | 2008-06-16 | 2010-01-20 | Государственное образовательное учреждение высшего профессионального образования Московский государственный университет дизайна и технологии (МГУДТ) | Device to heat gas flow by wire electic heater |
DE102012218941A1 (en) * | 2012-10-17 | 2014-04-17 | Wacker Chemie Ag | Reactor and method for endothermic gas phase reaction in a reactor |
CN203163236U (en) * | 2013-02-19 | 2013-08-28 | 杭州中亚机械股份有限公司 | Electric heating device for heating gas |
DE102014102474A1 (en) * | 2014-02-25 | 2015-08-27 | Sandvik Materials Technology Deutschland Gmbh | Heating element and process heater |
-
2014
- 2014-02-25 DE DE102014102474.5A patent/DE102014102474A1/en not_active Withdrawn
-
2015
- 2015-02-10 KR KR1020177012509A patent/KR20170054576A/en not_active Application Discontinuation
- 2015-02-10 EP EP15705240.8A patent/EP2926623B2/en active Active
- 2015-02-10 US US15/035,678 patent/US9867232B2/en active Active
- 2015-02-10 ES ES15705240T patent/ES2586472T5/en active Active
- 2015-02-10 PL PL15705240T patent/PL2926623T5/en unknown
- 2015-02-10 DK DK15705240.8T patent/DK2926623T4/en active
- 2015-02-10 JP JP2016533061A patent/JP6194115B2/en active Active
- 2015-02-10 KR KR1020167018289A patent/KR101735817B1/en active IP Right Grant
- 2015-02-10 WO PCT/EP2015/052712 patent/WO2015128183A1/en active Application Filing
- 2015-02-10 CA CA2936372A patent/CA2936372C/en active Active
- 2015-02-10 CN CN201810062814.6A patent/CN108489087A/en not_active Withdrawn
- 2015-02-10 RU RU2016123605A patent/RU2669589C1/en active
- 2015-02-10 CN CN201580003492.2A patent/CN105874878B/en active Active
-
2017
- 2017-08-09 JP JP2017154413A patent/JP2018041722A/en active Pending
- 2017-12-05 US US15/831,957 patent/US20180098385A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1727584A (en) | 1927-08-23 | 1929-09-10 | Robert A Carleton | High-temperature fluid-heating apparatus |
DE735982C (en) | 1937-03-03 | 1943-06-04 | Dr Walter Schottky | Arrangement for the electrical heating of flowing air or gases to high temperatures |
DE1615278A1 (en) | 1967-06-30 | 1970-07-23 | Gefi Ges F Industriewaerme Mbh | Electric resistance furnace, especially for heating gaseous media |
US3828161A (en) | 1971-07-20 | 1974-08-06 | Cleland E | For heating fluids by means of gas permeable heat generating members |
US4877990A (en) | 1984-12-19 | 1989-10-31 | Fiorenzano Jr Alintor | Sterilization system by means of high thermal gradient ducts |
US5380987A (en) | 1993-11-12 | 1995-01-10 | Uop | Electric heater cold pin insulation |
DE19613411C1 (en) | 1996-04-03 | 1997-08-21 | Steag Micro Tech Gmbh | Through-flow fluid heating device |
US20120141100A1 (en) | 2007-11-01 | 2012-06-07 | Robert Evans | Inter-Axial Inline Fluid Heater |
EP2134143A1 (en) | 2008-06-09 | 2009-12-16 | Leister Process Technologies | Electric resistance heat element for a heating device for heating a flowing gaseous medium |
US20130264326A1 (en) | 2012-04-04 | 2013-10-10 | Gaumer Company, Inc. | High Velocity Fluid Flow Electric Heater |
CN102811514A (en) | 2012-07-23 | 2012-12-05 | 镇江威斯康电器有限公司 | Electric heating element and pipeline electric heater |
KR101314531B1 (en) | 2013-02-01 | 2013-10-04 | 주식회사 유니웜 | Multiplex heating pipe using conductive heating wire |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019048236A1 (en) | 2017-09-08 | 2019-03-14 | Karlsruher Institut für Technologie | Conversion reactor and management of method |
EP4456668A1 (en) | 2023-04-25 | 2024-10-30 | COBES GmbH | A device for generating hot gas and a method for operating the same |
WO2024223076A1 (en) | 2023-04-25 | 2024-10-31 | Cobes Gmbh | A device for producing a hot medium, and method for operating the device |
Also Published As
Publication number | Publication date |
---|---|
PL2926623T3 (en) | 2017-08-31 |
ES2586472T5 (en) | 2019-11-27 |
ES2586472T3 (en) | 2016-10-14 |
CN108489087A (en) | 2018-09-04 |
EP2926623B2 (en) | 2019-05-01 |
JP2017510021A (en) | 2017-04-06 |
RU2669589C1 (en) | 2018-10-12 |
EP2926623A1 (en) | 2015-10-07 |
US9867232B2 (en) | 2018-01-09 |
US20180098385A1 (en) | 2018-04-05 |
JP2018041722A (en) | 2018-03-15 |
WO2015128183A1 (en) | 2015-09-03 |
CA2936372A1 (en) | 2015-09-02 |
KR20160085921A (en) | 2016-07-18 |
CN105874878A (en) | 2016-08-17 |
CN105874878B (en) | 2018-02-27 |
DK2926623T3 (en) | 2016-09-26 |
PL2926623T5 (en) | 2019-09-30 |
DE102014102474A1 (en) | 2015-08-27 |
JP6194115B2 (en) | 2017-09-06 |
KR101735817B1 (en) | 2017-05-15 |
DK2926623T4 (en) | 2019-07-01 |
RU2016123605A (en) | 2017-12-20 |
US20170094725A1 (en) | 2017-03-30 |
KR20170054576A (en) | 2017-05-17 |
CA2936372C (en) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2926623B1 (en) | Heating element and process heater | |
EP3301378B1 (en) | Heat exchanger tube and heating boiler having such a heat exchanger tube | |
EP3841334A1 (en) | Heating device for heating air | |
EP3494294B1 (en) | Electrically heatable honeycomb body for exhaust gas treatment having a plurality of heating elements | |
DE2149536A1 (en) | Method for heating a heat transfer liquid | |
AT521541B1 (en) | Process for heating a medium | |
DE102011115866A1 (en) | Metal pipe; Use of a metal tube as a structural component; Method for producing a metal pipe; metallic structural component; divertor | |
DE1802729C3 (en) | Device for heating liquids or gases | |
EP2462334B1 (en) | Preheating device for preheating liquid and/or gaseous fuel for an internal combustion engine | |
EP0175949A1 (en) | Heat generator for heating fluids | |
DE952171C (en) | Thermal machine with preheating device | |
DE2808210A1 (en) | Air flow heating appts. - has sloping heating elements spaced apart on vertical supports with spacings in direction of flow | |
EP3728964A1 (en) | Solar receiver for receiving solar rays and for heating a medium | |
DE2322509A1 (en) | ELECTRIC TUBULAR RADIATOR AND METHOD OF ITS MANUFACTURING | |
DE1074779B (en) | Electric hot water device | |
DE1751347A1 (en) | Extruded hollow profiles without longitudinal weld seams on the pressure-carrying cross-sections for the production of tightly welded heating or cooling surfaces | |
DE202010010779U1 (en) | Heater | |
EP1715272A1 (en) | Air heat exchanger | |
DE1297252B (en) | Electric gas heater | |
DE10044320B4 (en) | Heizölvorwärmer | |
DE2406768C2 (en) | Electric heating element for heating static or moving liquids or gases, especially under potentially explosive conditions | |
DE886645C (en) | Coil for coreless induction ovens | |
DE19820217A1 (en) | Water heating device | |
DE102012212351A1 (en) | Heating device for use in e.g. dishwasher, has heating element applied to support that is made of glass ceramic where heating element is formed as thin layer heating element from heating conductor material using thin-film technology | |
DE1081983B (en) | Electrically heated furnace with tubular heating elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150608 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160127 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
INTG | Intention to grant announced |
Effective date: 20160502 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 807072 Country of ref document: AT Kind code of ref document: T Effective date: 20160715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015000058 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20160615 Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2586472 Country of ref document: ES Kind code of ref document: T3 Effective date: 20161014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160916 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161017 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502015000058 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: VON WESTERNHAGEN, TILO Effective date: 20170315 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AELC |
|
27A | Patent maintained in amended form |
Effective date: 20190501 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502015000058 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150210 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T4 Effective date: 20190624 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: TB2 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2586472 Country of ref document: ES Kind code of ref document: T5 Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502015000058 Country of ref document: DE Owner name: KANTHAL GMBH, DE Free format text: FORMER OWNER: SANDVIK MATERIALS TECHNOLOGY DEUTSCHLAND GMBH, 40549 DUESSELDORF, DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: PD Owner name: KANTHAL GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SANDVIK MATERIALS TECHNOLOGY DEUTSCHLAND GMBH Effective date: 20211105 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20220124 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20220110 Year of fee payment: 8 Ref country code: FI Payment date: 20220209 Year of fee payment: 8 Ref country code: DK Payment date: 20220209 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 807072 Country of ref document: AT Kind code of ref document: T Owner name: KANTHAL GMBH, DE Effective date: 20220411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IS Payment date: 20220105 Year of fee payment: 8 Ref country code: TR Payment date: 20220209 Year of fee payment: 8 Ref country code: NO Payment date: 20220208 Year of fee payment: 8 Ref country code: MC Payment date: 20220128 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502015000058 Country of ref document: DE Owner name: KANTHAL GMBH, DE Free format text: FORMER OWNER: KANTHAL GMBH, 40549 DUESSELDORF, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220714 AND 20220720 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: KANTHAL GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SANDVIK MATERIALS TECHNOLOGY DEUTSCHLAND GMBH Effective date: 20221220 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: KANTHAL GMBH Effective date: 20230306 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP Ref country code: DK Ref legal event code: EBP Effective date: 20230228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230210 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230210 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230210 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240116 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240305 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240125 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240116 Year of fee payment: 10 Ref country code: CZ Payment date: 20240125 Year of fee payment: 10 Ref country code: CH Payment date: 20240301 Year of fee payment: 10 Ref country code: GB Payment date: 20240104 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240110 Year of fee payment: 10 Ref country code: PL Payment date: 20240112 Year of fee payment: 10 Ref country code: IT Payment date: 20240111 Year of fee payment: 10 Ref country code: FR Payment date: 20240123 Year of fee payment: 10 Ref country code: BE Payment date: 20240119 Year of fee payment: 10 |