EP3775127B1 - Cleaning composition - Google Patents
Cleaning composition Download PDFInfo
- Publication number
- EP3775127B1 EP3775127B1 EP19722150.0A EP19722150A EP3775127B1 EP 3775127 B1 EP3775127 B1 EP 3775127B1 EP 19722150 A EP19722150 A EP 19722150A EP 3775127 B1 EP3775127 B1 EP 3775127B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- surfactant
- cleaning composition
- fluid cleaning
- rhamnolipid
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 121
- 238000004140 cleaning Methods 0.000 title claims description 44
- 229920000642 polymer Polymers 0.000 claims description 48
- 239000004094 surface-active agent Substances 0.000 claims description 47
- 239000012530 fluid Substances 0.000 claims description 39
- -1 alkyl sulphates Chemical class 0.000 claims description 38
- FCBUKWWQSZQDDI-UHFFFAOYSA-N rhamnolipid Chemical compound CCCCCCCC(CC(O)=O)OC(=O)CC(CCCCCCC)OC1OC(C)C(O)C(O)C1OC1C(O)C(O)C(O)C(C)O1 FCBUKWWQSZQDDI-UHFFFAOYSA-N 0.000 claims description 26
- 239000003945 anionic surfactant Substances 0.000 claims description 21
- 229920000728 polyester Polymers 0.000 claims description 21
- 239000002736 nonionic surfactant Substances 0.000 claims description 20
- 239000002689 soil Substances 0.000 claims description 18
- 229920000768 polyamine Polymers 0.000 claims description 16
- 239000002304 perfume Substances 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 239000003876 biosurfactant Substances 0.000 claims description 13
- 239000003599 detergent Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000002888 zwitterionic surfactant Substances 0.000 claims description 10
- 229920002873 Polyethylenimine Polymers 0.000 claims description 9
- 125000000129 anionic group Chemical group 0.000 claims description 9
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims description 7
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical group C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 claims description 7
- 229960003237 betaine Drugs 0.000 claims description 7
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 238000007046 ethoxylation reaction Methods 0.000 claims description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 2
- 125000003158 alcohol group Chemical group 0.000 claims description 2
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 claims 1
- 239000000975 dye Substances 0.000 description 32
- 102000004190 Enzymes Human genes 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 18
- 229940088598 enzyme Drugs 0.000 description 18
- 102000035195 Peptidases Human genes 0.000 description 15
- 108091005804 Peptidases Proteins 0.000 description 15
- 238000009472 formulation Methods 0.000 description 13
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 239000004365 Protease Substances 0.000 description 11
- 102000004882 Lipase Human genes 0.000 description 10
- 108090001060 Lipase Proteins 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 241000283986 Lepus Species 0.000 description 9
- 239000004367 Lipase Substances 0.000 description 9
- 108090000787 Subtilisin Proteins 0.000 description 9
- 235000019421 lipase Nutrition 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 229910052708 sodium Inorganic materials 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- 102000005575 Cellulases Human genes 0.000 description 8
- 108010084185 Cellulases Proteins 0.000 description 8
- 108010056079 Subtilisins Proteins 0.000 description 8
- 102000005158 Subtilisins Human genes 0.000 description 8
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 8
- VRVDFJOCCWSFLI-UHFFFAOYSA-K trisodium 3-[[4-[(6-anilino-1-hydroxy-3-sulfonatonaphthalen-2-yl)diazenyl]-5-methoxy-2-methylphenyl]diazenyl]naphthalene-1,5-disulfonate Chemical compound [Na+].[Na+].[Na+].COc1cc(N=Nc2cc(c3cccc(c3c2)S([O-])(=O)=O)S([O-])(=O)=O)c(C)cc1N=Nc1c(O)c2ccc(Nc3ccccc3)cc2cc1S([O-])(=O)=O VRVDFJOCCWSFLI-UHFFFAOYSA-K 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000003352 sequestering agent Substances 0.000 description 7
- 241000193830 Bacillus <bacterium> Species 0.000 description 6
- 108700020962 Peroxidase Proteins 0.000 description 6
- 102000003992 Peroxidases Human genes 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000987 azo dye Substances 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000002538 fungal effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 101100313763 Arabidopsis thaliana TIM22-2 gene Proteins 0.000 description 5
- 101150040913 DUT gene Proteins 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 5
- PPMPLIBYTIWXPG-MSJADDGSSA-N L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid Chemical group CCCCCCCC(CC(O)=O)OC(=O)CC(CCCCCCC)O[C@@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O PPMPLIBYTIWXPG-MSJADDGSSA-N 0.000 description 5
- 101150098384 NEC2 gene Proteins 0.000 description 5
- 108010064785 Phospholipases Proteins 0.000 description 5
- 102000015439 Phospholipases Human genes 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 102000012479 Serine Proteases Human genes 0.000 description 5
- 108010022999 Serine Proteases Proteins 0.000 description 5
- 101710135785 Subtilisin-like protease Proteins 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 235000019419 proteases Nutrition 0.000 description 5
- 230000008719 thickening Effects 0.000 description 5
- 241001328119 Bacillus gibsonii Species 0.000 description 4
- 241000193422 Bacillus lentus Species 0.000 description 4
- 241000194103 Bacillus pumilus Species 0.000 description 4
- 235000014469 Bacillus subtilis Nutrition 0.000 description 4
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 4
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 4
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 108090000637 alpha-Amylases Proteins 0.000 description 4
- 102000004139 alpha-Amylases Human genes 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 108010005400 cutinase Proteins 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 108010020132 microbial serine proteinases Proteins 0.000 description 4
- 229910021653 sulphate ion Inorganic materials 0.000 description 4
- 229930192474 thiophene Natural products 0.000 description 4
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 3
- 241000194108 Bacillus licheniformis Species 0.000 description 3
- 108020002496 Lysophospholipase Proteins 0.000 description 3
- 102000004316 Oxidoreductases Human genes 0.000 description 3
- 108090000854 Oxidoreductases Proteins 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- 241000589516 Pseudomonas Species 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- 229940025131 amylases Drugs 0.000 description 3
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 3
- 150000004056 anthraquinones Chemical class 0.000 description 3
- 239000007844 bleaching agent Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 150000002892 organic cations Chemical class 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000000518 rheometry Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 2
- SZHQPBJEOCHCKM-UHFFFAOYSA-N 2-phosphonobutane-1,2,4-tricarboxylic acid Chemical compound OC(=O)CCC(P(O)(O)=O)(C(O)=O)CC(O)=O SZHQPBJEOCHCKM-UHFFFAOYSA-N 0.000 description 2
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 2
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- 102100032487 Beta-mannosidase Human genes 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- 241000223218 Fusarium Species 0.000 description 2
- 241000223198 Humicola Species 0.000 description 2
- 241001480714 Humicola insolens Species 0.000 description 2
- 102100037611 Lysophospholipase Human genes 0.000 description 2
- 241000579835 Merops Species 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 241000223258 Thermomyces lanuginosus Species 0.000 description 2
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 2
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 2
- 108010055059 beta-Mannosidase Proteins 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- MRUAUOIMASANKQ-UHFFFAOYSA-O carboxymethyl-[3-(dodecanoylamino)propyl]-dimethylazanium Chemical group CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(O)=O MRUAUOIMASANKQ-UHFFFAOYSA-O 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 2
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 125000001924 fatty-acyl group Chemical group 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 108010087558 pectate lyase Proteins 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- VXWBQOJISHAKKM-UHFFFAOYSA-N (4-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=C(C=O)C=C1 VXWBQOJISHAKKM-UHFFFAOYSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- ZMLPKJYZRQZLDA-UHFFFAOYSA-N 1-(2-phenylethenyl)-4-[4-(2-phenylethenyl)phenyl]benzene Chemical group C=1C=CC=CC=1C=CC(C=C1)=CC=C1C(C=C1)=CC=C1C=CC1=CC=CC=C1 ZMLPKJYZRQZLDA-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 description 1
- UWOFGIXNNCPENM-UHFFFAOYSA-N 3,3-difluoropentan-2-one Chemical compound CCC(F)(F)C(C)=O UWOFGIXNNCPENM-UHFFFAOYSA-N 0.000 description 1
- IWLKYLCPNSDERJ-OKQRZWICSA-N 4-hydroxy-2-(1-hydroxyoctyl)-3-oxo-2-[(3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]dodecanoic acid Chemical compound CCCCCCCCC(O)C(=O)C(C(O)CCCCCCC)(C(O)=O)C1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O IWLKYLCPNSDERJ-OKQRZWICSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 1
- 108091005502 Aspartic proteases Proteins 0.000 description 1
- 102000035101 Aspartic proteases Human genes 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010062877 Bacteriocins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 241000222511 Coprinus Species 0.000 description 1
- 244000251987 Coprinus macrorhizus Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- 102000016559 DNA Primase Human genes 0.000 description 1
- 108010092681 DNA Primase Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004908 Emulsion polymer Substances 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 108091005503 Glutamic proteases Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical group CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- 101710172072 Kexin Proteins 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- 102000011720 Lysophospholipase Human genes 0.000 description 1
- 102100035200 Phospholipase A and acyltransferase 4 Human genes 0.000 description 1
- 102000011420 Phospholipase D Human genes 0.000 description 1
- 108090000553 Phospholipase D Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 229920002504 Poly(2-vinylpyridine-N-oxide) Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 241000168225 Pseudomonas alcaligenes Species 0.000 description 1
- 241001646398 Pseudomonas chlororaphis Species 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589630 Pseudomonas pseudoalcaligenes Species 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 241000577556 Pseudomonas wisconsinensis Species 0.000 description 1
- 101710081551 Pyrolysin Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000223257 Thermomyces Species 0.000 description 1
- 241001313536 Thermothelomyces thermophila Species 0.000 description 1
- 241001494489 Thielavia Species 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- 108091005501 Threonine proteases Proteins 0.000 description 1
- 102000035100 Threonine proteases Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- LSHAYDSMEYHKPF-ZBIONFEVSA-N [(3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl] 4-hydroxy-2-(1-hydroxyoctyl)-3-oxo-2-[(3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]dodecanoate Chemical compound C1([C@@H]([C@H](O)[C@@H](O)[C@H](C)O1)O)OC(=O)C(C(O)CCCCCCC)(C(=O)C(O)CCCCCCCC)C1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O LSHAYDSMEYHKPF-ZBIONFEVSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- NJPXFJXCALXJCX-UHFFFAOYSA-L disodium 7-anilino-3-[[4-[(2,4-dimethyl-6-sulfonatophenyl)diazenyl]-2,5-dimethylphenyl]diazenyl]-4-hydroxynaphthalene-2-sulfonate Chemical compound [Na+].[Na+].Cc1cc(C)c(N=Nc2cc(C)c(cc2C)N=Nc2c(O)c3ccc(Nc4ccccc4)cc3cc2S([O-])(=O)=O)c(c1)S([O-])(=O)=O NJPXFJXCALXJCX-UHFFFAOYSA-L 0.000 description 1
- LARMRMCFZNGNNX-UHFFFAOYSA-L disodium 7-anilino-3-[[4-[(2,4-dimethyl-6-sulfonatophenyl)diazenyl]-2-methoxy-5-methylphenyl]diazenyl]-4-hydroxynaphthalene-2-sulfonate Chemical compound [Na+].[Na+].COc1cc(N=Nc2c(C)cc(C)cc2S([O-])(=O)=O)c(C)cc1N=Nc1c(O)c2ccc(Nc3ccccc3)cc2cc1S([O-])(=O)=O LARMRMCFZNGNNX-UHFFFAOYSA-L 0.000 description 1
- PMPJQLCPEQFEJW-HPKCLRQXSA-L disodium;2-[(e)-2-[4-[4-[(e)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C\C1=CC=C(C=2C=CC(\C=C\C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-HPKCLRQXSA-L 0.000 description 1
- VUJGKADZTYCLIL-YHPRVSEPSA-L disodium;5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S([O-])(=O)=O)C(S(=O)(=O)[O-])=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 VUJGKADZTYCLIL-YHPRVSEPSA-L 0.000 description 1
- OKBJQVCCZCGZHD-UHFFFAOYSA-M disodium;9-amino-5-anilino-7-phenylbenzo[a]phenazin-7-ium-4,10-disulfonate Chemical compound [Na+].[Na+].C12=CC(NC=3C=CC=CC=3)=C3C(S([O-])(=O)=O)=CC=CC3=C2N=C2C=C(S([O-])(=O)=O)C(N)=CC2=[N+]1C1=CC=CC=C1 OKBJQVCCZCGZHD-UHFFFAOYSA-M 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 150000002190 fatty acyls Chemical group 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 108010009355 microbial metalloproteinases Proteins 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002988 phenazines Chemical class 0.000 description 1
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical class OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- DAPMZWDGZVFZMK-UHFFFAOYSA-N sodium;2-[2-[4-[4-[2-(2-sulfophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonic acid Chemical group [Na].[Na].OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=C(C=2C=CC(C=CC=3C(=CC=CC=3)S(O)(=O)=O)=CC=2)C=C1 DAPMZWDGZVFZMK-UHFFFAOYSA-N 0.000 description 1
- AXMCIYLNKNGNOT-UHFFFAOYSA-N sodium;3-[[4-[(4-dimethylazaniumylidenecyclohexa-2,5-dien-1-ylidene)-[4-[ethyl-[(3-sulfophenyl)methyl]amino]phenyl]methyl]-n-ethylanilino]methyl]benzenesulfonate Chemical compound [Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 AXMCIYLNKNGNOT-UHFFFAOYSA-N 0.000 description 1
- RBYJOOWYRXEJAM-UHFFFAOYSA-M sodium;5,9-dianilino-7-phenylbenzo[a]phenazin-7-ium-4,10-disulfonate Chemical compound [Na+].C=1C=CC=CC=1[N+]1=C2C=C(NC=3C=CC=CC=3)C(S(=O)(=O)[O-])=CC2=NC(C2=CC=CC(=C22)S([O-])(=O)=O)=C1C=C2NC1=CC=CC=C1 RBYJOOWYRXEJAM-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
- C11D1/94—Mixtures with anionic, cationic or non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3715—Polyesters or polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3723—Polyamines or polyalkyleneimines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/662—Carbohydrates or derivatives
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/667—Neutral esters, e.g. sorbitan esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
- C11D1/90—Betaines
Definitions
- the present invention relates to a fluid cleaning composition.
- the invention relates to fluid cleaning compositions in the form of liquid laundry detergent compositions.
- fluid cleaning compositions in particular laundry liquid detergent compositions desirably contain cleaning polymers.
- cleaning polymers in particular alkoxylated polyamines and polyester-based soil release polymers are desirable to include because they provide weight efficient cleaning to the formulation.
- alkoxylated polyamines and polyester-based soil release polymers are desirable to include because they provide weight efficient cleaning to the formulation.
- there is a problem with the inclusion of these polymers because they reduce the viscosity of the composition.
- the rheology of many fluid cleaning compositions could be improved in the eyes of the consumer. Consumers dislike fluid cleaning compositions that have a too low viscosity, there can be a perception that these compositions are not thick enough to provide adequate cleaning.
- One way of improving the viscosity is to include a further polymer, a thickening polymer such as a so-called HASE polymer (hydrophobically modified alkali soluble emulsion polymer).
- a thickening polymer such as a so-called HASE polymer (hydrophobically modified alkali soluble emulsion polymer).
- HASE polymer hydrophobically modified alkali soluble emulsion polymer
- US 2018/0044614 discloses in the claims and examples various formulations in the examples that include (a) a surfactant combination (rhamnolipid and other surfactant); (b) one or more viscosity modifiers; (c) EPEI; and (d) perfume.
- the viscosity modifiers are essential to the compositions of US 2018/0044614 , which are most preferentially pH greater than 7 to 13.
- the invention provides a fluid cleaning composition comprising:
- the invention provides the use of a surfactant combination comprising a rhamnolipid biosurfactant and a zwitterionic surfactant to increase the viscosity of a fluid cleaning composition at a pH of from 4.5 to 5.5.
- the rhamnolipid biosurfactant comprises at least 70 wt.% di-rhamnolipid, preferably at least 80 wt.% di-rhamnolipid, preferably of formula: Rha2C 8 - 12 C 8-12 , where the alkyl chains may be saturated or unsaturated.
- the fluid cleaning composition comprises from 5 to 70 wt.% of a surfactant system.
- the fluid cleaning composition comprises from 5 to 60 wt.%, more preferably from 5 to 50 wt.%, even more preferably from 7.5 to 30 wt.%, most preferably from 7.5 to 25 wt.%, for example from 8 to 25 wt.%, or even from 8 to 20 wt.% of a surfactant system.
- the surfactant system comprises at least one anionic or nonionic surfactant and a rhamnolipid biosurfactant which is present at a level in the range of from 1 to 95 wt.% of the total surfactant in said surfactant system.
- the rhamnolipid is present at a level in the range of from 1 to 50 wt.% of the total surfactant in said surfactant system, more preferably from 2.5 to 50 wt.%, most preferably from 5 to 25 wt.%, for example from 7.5 to 25 wt.% of the total surfactant in said surfactant system.
- the fluid cleaning compositions comprise water.
- Water is usually the balancing agent in the formulation, and may make up all or the bulk of the non-surfactant wt.% in the composition.
- Typical water inclusion levels may be from 50 to 90 wt.%, preferably from 60 to 90 wt.%, more preferably from 65 to 88 wt.%.
- the composition comprises a rhamnolipid biosurfactant.
- Mono-rhamnolipids have a single rhamnose sugar ring.
- Di-rhamnolipids have two rhamnose sugar rings.
- R1 is mono-rhamnolipid and R2 is di-rhamnolipid.
- the mono-rhamnolipid may be L-rhamnosyl- ⁇ -hydroxydecanoyl- ⁇ -hydroxydecanoate (RhaC 10 C 10 with a formula of C 26 H 48 O 9 ) produced by P. aeruginosa.
- Atypical di-rhamnolipid is L-rhamnosyl-L-rhamnosyl- ⁇ -hydroxydecanoyl- ⁇ -hydroxydecanoate (Rha2C 10 C 10 with a formula of C 32 H 58 O 13 ).
- rhamnolipids are sources of mono- and di- rhamnolipids encompassed within the invention (C12:1, C14:1 indicates fatty acyl chains with double bonds):
- the rhamnolipid comprises at least 50 wt.% di-rhamnolipid, more preferably at least 60 wt.% di-rhamnolipid, even more preferably 70 wt.% di-rhamnolipid, most preferably at least 80 wt.% di-rhamnolipid.
- the rhamnolipid is a di-rhamnolipid of formula: Rha2C 8 - 12 C 8-12 .
- the preferred alkyl chain length is from C 8 to C 12 , the alkyl chain may be saturated or unsaturated.
- the fluid cleaning composition comprises at least one anionic and/or non-ionic surfactant.
- the composition may comprises a single anionic surfactant, or a mixture of anionic surfactants, or a single nonionic surfactant, or a mixture of nonionic surfactant, or a mixture of one or more anionic surfactants with one or more nonionic surfactants.
- Suitable nonionic and anionic surfactants may be chosen from the surfactants described " Surface Active Agents” Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of " McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 or in Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1996 ).
- Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, Alkyl ether carboxylic acids; sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
- the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; alkyl ether carboxylates, and mixtures thereof.
- More preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
- the alkyl ether sulphate is a C 12 -C 14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
- Sodium lauryl ether sulphate is particularly preferred (SLES).
- the linear alkyl benzene sulphonate is a sodium C 11 to C 15 alkyl benzene sulphonates.
- the alkyl sulphates is a linear or branched sodium C 12 to C 18 alkyl sulphates.
- Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
- the anionic surfactant comprises linear alkyl benzene sulphonates and/or alkyl ether sulphates.
- two or more anionic surfactants are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
- composition may comprise anionic and/or non-ionic surfactants.
- the weight fraction of non-ionic surfactant to anionic surfactant is from 0 to 0.3. This means that non-ionic surfactant can be present (or it may be absent if the weight fraction is 0), but if non-ionic surfactant is present, then the weight fraction of the non-ionic surfactant is preferably at most 30% of the total weight of anionic surfactant + non-ionic surfactant.
- Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
- Specific nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
- the non-ionic surfactant is an alcohol ethoxylate, more preferably a C 10 -C 18 alcohol ethoxylate having an average of 3-10 moles of ethylene oxide, most preferably a C 12 -C 15 alcohol ethoxylate having an average of 5-9 moles of ethylene oxide.
- surfactants used are saturated.
- the surfactant system comprises from 0.5 to 10 wt.% of a zwitterionic surfactant.
- the composition comprises from 0.5 to 10 wt.%, preferably from 0.75 to 5 wt.%, most preferably from 1 to 4 wt.% of the zwitterionic surfactant, said surfactant being counted as part of the surfactant system.
- the zwitterionic surfactant is preferably a betaine surfactant.
- the composition comprises from 0.5 to 10 wt.%, preferably from 0.75 to 5 wt.%, most preferably from 1 to 4 wt.% of a betaine surfactant, said surfactant being counted as part of the surfactant system.
- a preferred betaine surfactant is cocoamidopropyl betaine.
- a preferred fluid cleaning composition is a liquid laundry detergent composition.
- a preferred laundry detergent composition comprises:
- the fluid cleaning compositions have a pH of from 4 to 5.5, preferably from 4.5 to 5.5.
- the composition comprises from 0.1 to 15 wt.%, preferably from 0.1 to 10 wt.% of a polymer selected from the group consisting of: an alkoxylated polyamine, a polyester soil release polymer and mixtures thereof.
- the composition may comprise from 0.05 to 6 wt.%, preferably from 0.1 to 5 wt.% of one or more polyester soil release polymer(s). Suitable polyester based soil release polymers are described in WO 2014/029479 and WO 2016/005338 .
- polyester based soil release polymer is a polyester according to the following formula (I) wherein
- polyester provided as an active blend comprising:
- active blend is meant that it is preformed and added to the remainder of the fluid cleaning composition, or to components which ultimately form the fluid cleaning composition.
- the composition may and preferably does comprise of an alkoxylated polyamine.
- Suitable inclusion levels for the polymer are from 0.25 to 8 wt.%, preferably from 0.5 to 6 wt.% of an alkoxylated polyamine. Another preferred level is from 1 to 4 wt.%.
- a preferred alkoxylated polyamine comprises an alkoxylated polyethylenimine, and/or alkoxylated polypropylenimine.
- the polyamine may be linear or branched. It may be branched to the extent that it is a dendrimer.
- the alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both. Where a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25.
- a preferred material is ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30 preferably from 15 to 25, where a nitrogen atom is ethoxylated.
- the composition comprises a sodium chloride or magnesium sulfate salt.
- the composition preferably comprises a perfume.
- the perfume is preferably present in the range from 0.001 to 3 wt.%, more preferably 0.05 to 0.5 wt.%, even more preferably from 0.1 to 2 wt.%, most preferably 0.1 to 1 wt.%.
- the perfume can be provided as a free oil, or may in encapsulated form.
- the composition comprises an ionic salt.
- the salt preferably comprises any organic or inorganic cation, including without limitation cations of alkali metals Cs, Na, K, Ca, Mg etc., with anions including halide anions, more preferably Cl.
- Other preferred salts compise organic cations e.g. amides (- + NH-R ) or ammonium cations or substituted forms thereof e.g. triethylammonium.
- Anions for organic cations may comprise any akyl, aryl, arylalkyl moiety which may be short, medium, long, branched, cyclic or linear.
- the composition comprises from 0.01 - 5wt.% by weight of the salt.
- the level is in the range 0.5 - 2 wt.%
- Fluid cleaning compositions may, depending on their end use further comprise any of the following as a single ingredient, or a mixture thereof: polymers, sequestrants, hydrotropes (such as glycerol or monoproylene glycol), opacifiers, preservatives, colorants (e.g.
- enzymes for example proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof
- further surfactants such as cationic surfactants, fatty acids, softeners, polymers for anti redeposition of soil, bleach, bleach activators and bleach catalysts, antioxidants, pH adjusting agents (such as citric acid and NaOH), pH control agents and buffers.
- pH adjusting agents such as citric acid and NaOH
- pH control agents and buffers can suitably be used with the preferred fluid cleaning composition, namely a laundry liquid detergent composition.
- the composition preferably comprises a fluorescent agent (optical brightener).
- fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
- Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
- Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
- Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
- Pyrazoline compounds e.g. Blankophor SN.
- Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulophonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
- the total amount of the fluorescent agent or agents used in the composition is preferably from 0.0001 to 0.5 wt.%, more preferably 0.005 to 2 wt.%, most preferably 0.05 to 0.25 wt.%.
- the aqueous solution used in the method preferably has a fluorescer present.
- the fluorescer is preferably present in the aqueous solution used in the method in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
- One or more enzymes are preferably present in the laundry composition of the invention and when practicing a method of the invention.
- the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
- Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
- Contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
- the enzyme is selected from: proteases, alpha-amylases; cellulases and lipases.
- Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
- lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 .
- Lipolase TM and Lipolase Ultra TM Lipex TM and Lipoclean TM (Novozymes A/S).
- the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
- phospholipase is an enzyme which has activity towards phospholipids.
- Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
- Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
- phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
- lysophospholipase or phospholipase B
- Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
- proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
- suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk). Serine proteases are preferred. Subtilase type serine proteases are more preferred.
- the term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng.
- Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
- the subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
- subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO 89/06279 and protease PD138 described in ( WO 93/18140 ).
- proteases may be those described in WO 92/175177 , WO 01/016285 , WO 02/026024 and WO 02/016547 .
- trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 , WO 94/25583 and WO 05/040372 , and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146 .
- protease is a subtilisins (EC 3.4.21.62).
- subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
- the subsilisin is derived from Bacillus, preferably Bacillus lentus, B.
- subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
- Suitable commercially available protease enzymes include those sold under the trade names names Alcalase ® , Blaze ® ; DuralaseTm, DurazymTm, Relase ® , Relase ® Ultra, Savinase ® , Savinase ® Ultra, Primase ® , Polarzyme ® , Kannase ® , Liquanase ® , Liquanase ® Ultra, Ovozyme ® , Coronase ® , Coronase ® Ultra, Neutrase ® , Everlase ® , Esperase ® and Carnival ® , all could be sold as Ultra ® or Evity ® (Novozymes A/S).
- the invention may be use cutinase, classified in EC 3.1.1.74.
- the cutinase used according to the invention may be of any origin.
- Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
- amylases are Duramyl TM , Termamyl TM , Termamyl Ultra TM , Natalase TM , Stainzyme TM , Fungamyl TM and BAN TM (Novozymes A/S), Rapidase TM and Purastar TM (from Genencor International Inc.).
- Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
- Celluzyme TM Commercially available cellulases include Celluzyme TM , Carezyme TM , Celluclean TM , Endolase TM , Renozyme TM (Novozymes A/S), Clazinase TM and Puradax HA TM (Genencor International Inc.), and KAC-500(B) TM (Kao Corporation).
- Celluclean TM is preferred.
- Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C . cinereus, and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include Guardzyme TM and Novozym TM 51004 (Novozymes A/S).
- the aqueous solution used in the method preferably has an enzyme present.
- the enzyme is preferably present in the aqueous solution used in the method at a concentration in the range from 0.01 to 10ppm, preferably 0.05 to 1ppm.
- Suitable enzymes may be included as a blend or 2 or more enzymes.
- Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
- a polyol such as propylene glycol or glycerol
- a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
- the composition comprises from 0.1 to 5 wt.%, preferably from 0.25 wt.% to 4 wt.%, more preferably from 0.5 to 2.5 wt.% of a sequestrant.
- Preferred sequestrants include phosphonic acids or salts thereof.
- the phosphonic acid (or salt thereof) sequestrant is preferably selected from the group consisting of: 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP); Diethylenetriaminepenta(methylenephosphonic acid) (DTPMP); Hexamethylenediaminetetra(methylenephosphonic acid) (HDTMP); Aminotris(methylenephosphonic acid) (ATMP); Ethylenediaminetetra(methylenephosphonic acid) (EDTMP); Tetramethylenediaminetetra(methylenephosphonic acid) (TDTMP); and, Phosphonobutanetricarboxylic acid (PBTC).
- HEDP 1-Hydroxyethylidene-1,1-diphosphonic acid
- DTPMP Diethylenetriaminepenta(methylenephosphonic acid)
- HDTMP Hexamethylenediaminetetra(methylenephosphonic acid)
- AMP Aminotris(methylenephosphonic acid)
- the sequestrant is preferably in acid form. This means that it is a phosphonic acid.
- the preferred phosphonic acid sequestrant is 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP).
- composition may preferably comprise one or more polymers.
- Example polymers are carboxymethylcellulose, poly(ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
- Polymers present to prevent dye deposition may be present, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).
- Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zurich, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
- Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
- the dyes are blue or violet in colour.
- the composition comprises a shading dye.
- the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
- Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
- Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
- Azine preferably carry a net anionic or cationic charge.
- Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280.
- the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
- Shading dyes are discussed in WO 2005/003274 , WO 2006/032327(Unilever ), WO 2006/032397(Unilever ), WO 2006/045275(Unilever ), WO 2006/027086(Unilever ), WO 2008/017570(Unilever ), WO 2008/141880 (Unilever ), WO 2009/132870(Unilever ), WO 2009/141173 (Unilever ), WO 2010/099997(Unilever ), WO 2010/102861 (Unilever ), WO 2010/148624(Unilever ), WO 2008/087497 (P&G ), WO 2011/011799 (P&G ), WO 2012/054820 (P&G ), WO 2013/142495 (P&G ) and WO 2013/151970 (P&G ).
- Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
- Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497 . Preferred examples of thiophene dyes are shown below: and,
- Bis-azo dyes are preferably sulphonated bis-azo dyes.
- Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906 .
- alkoxylated bis-azo dye is :
- Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
- Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5 , acid blue 59, and the phenazine dye selected from: wherein:
- the shading dye is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
- a mixture of shading dyes may be used.
- the shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine.
- the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
- 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
- the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
- An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
- composition may comprise from 0.001 to 3 wt.% of a perfume, preferably from 0.1 to 2 wt.% perfume. This suitably may be present as a free perfume oil or as an encapsulated perfume.
- alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
- the alkyl groups are preferably linear or branched, most preferably linear.
- indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
- Laundry liquid formulation Ingredient A wt.% B wt.% C wt.% D wt.% Demin water to 100 to 100 to 100 to 100 Tinopal 5BM-GX 0.14 0.14 0.14 0.14 Neodol 25-7EO 3.06 3.06 3.06 3.06 3.06 Acusol WR (HASE thickening polymer) 0.55-0.85 0.55-0.85 0.55-0.85 0.55-0.85 TEA 6.30 6.30 6.30 6.30 LAS acid 4.07 4.07 4.07 4.07 Palmera B1231 0.60 0.60 0.60 0.60 Dequest 2010 1.05 1.05 1.05 1.05 1.05 SLES 3EO 3.06 3.06 3.06 3.06 3.06 HP20 (alkoxylated polyethyleneimine - - 2.17 2.17 BIT 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
- Formulation A has neither the polyester soil release polymer (Texcare UL50), nor the alkoxylated polyamine (HP20); formulations B and C have one or the other; formulation D has both polymers.
- the viscosity was measured using the Anton Paar ASC rheometer - using a Bob set-up and reporting the viscosity measured at a shear rate of 23s -1 based upon HASE thickening polymer inclusion levels (Acusol WR) of from 0.55 to 0.85.
- Formulation E has neither the polyester soil release polymer (Texcare UL50), nor the alkoxylated polyamine (HP20), nor the rhamnolipid; formulation 1 has both polymers and rhamnolipid (R2 rhamnolipid at inclusion level of 10% of total surfactant.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Description
- The present invention relates to a fluid cleaning composition. In particular, the invention relates to fluid cleaning compositions in the form of liquid laundry detergent compositions.
- Many fluid cleaning compositions, in particular laundry liquid detergent compositions desirably contain cleaning polymers. These cleaning polymers, in particular alkoxylated polyamines and polyester-based soil release polymers are desirable to include because they provide weight efficient cleaning to the formulation. However, there is a problem with the inclusion of these polymers because they reduce the viscosity of the composition. The rheology of many fluid cleaning compositions could be improved in the eyes of the consumer. Consumers dislike fluid cleaning compositions that have a too low viscosity, there can be a perception that these compositions are not thick enough to provide adequate cleaning. Thus, there is a problem of how to improve the viscosity of fluid cleaning compositions.
- One way of improving the viscosity is to include a further polymer, a thickening polymer such as a so-called HASE polymer (hydrophobically modified alkali soluble emulsion polymer). This thickening polymer boosts the rheology, especially the viscosity of the formulation.
-
US 2018/0044614 discloses in the claims and examples various formulations in the examples that include (a) a surfactant combination (rhamnolipid and other surfactant); (b) one or more viscosity modifiers; (c) EPEI; and (d) perfume. The viscosity modifiers are essential to the compositions ofUS 2018/0044614 , which are most preferentially pH greater than 7 to 13. - However, there is a need to improve the viscosity of the fluid cleaning composition, in particular laundry liquid detergent compositions to remove the need for additional thickening polymers.
- We have found that by adding rhamnolipid biosurfactant to a fluid cleaning composition, along with a betaine surfactant and by having a pH in the range in the range of from 4 to 5.5, improved rheology in terms of higher viscosity can be achieved.
- In a first aspect the invention provides a fluid cleaning composition comprising:
- a) from 5 to 70 wt.% of a surfactant system comprising:
- i) at least one anionic and/or nonionic surfactant; and
- ii) a rhamnolipid biosurfactant which is present at a level in the range of from 1 to 95 wt.%, preferably from 1 to 50 wt.%, more preferably from 2.5 to 50 wt.%, most preferably from 5 to 25 wt.% of the total surfactant in said surfactant system; and
- iii) from 0.5 to 10 wt.% of a zwitterionic surfactant; and
- b) water; and
- c) from 0.1 to 15 wt.%, preferably from 0.1 to 10 wt.% of a polymer selected from the group consisting of: an alkoxylated polyamine, a polyester soil release polymer and mixtures thereof;
- In a second aspect, the invention provides the use of a surfactant combination comprising a rhamnolipid biosurfactant and a zwitterionic surfactant to increase the viscosity of a fluid cleaning composition at a pH of from 4.5 to 5.5.
- Preferably in the use of the second aspect, the rhamnolipid biosurfactant comprises at least 70 wt.% di-rhamnolipid, preferably at least 80 wt.% di-rhamnolipid, preferably of formula: Rha2C8-12C8-12, where the alkyl chains may be saturated or unsaturated.
- Where viscosities are measured herein, unless otherwise stated, they are measured on an Anton Paar ASC Rheometer at 25°C.
- The fluid cleaning composition comprises from 5 to 70 wt.% of a surfactant system.
- Preferably the fluid cleaning composition comprises from 5 to 60 wt.%, more preferably from 5 to 50 wt.%, even more preferably from 7.5 to 30 wt.%, most preferably from 7.5 to 25 wt.%, for example from 8 to 25 wt.%, or even from 8 to 20 wt.% of a surfactant system.
- The surfactant system comprises at least one anionic or nonionic surfactant and a rhamnolipid biosurfactant which is present at a level in the range of from 1 to 95 wt.% of the total surfactant in said surfactant system.
- Preferably the rhamnolipid is present at a level in the range of from 1 to 50 wt.% of the total surfactant in said surfactant system, more preferably from 2.5 to 50 wt.%, most preferably from 5 to 25 wt.%, for example from 7.5 to 25 wt.% of the total surfactant in said surfactant system.
- The fluid cleaning compositions comprise water. Water is usually the balancing agent in the formulation, and may make up all or the bulk of the non-surfactant wt.% in the composition. Typical water inclusion levels may be from 50 to 90 wt.%, preferably from 60 to 90 wt.%, more preferably from 65 to 88 wt.%.
- The composition comprises a rhamnolipid biosurfactant.
- Mono-rhamnolipids have a single rhamnose sugar ring.
- Di-rhamnolipids have two rhamnose sugar rings.
- In the case of rhamnolipids, throughout this patent specification, the prefixes mono- and di-are used to indicate respectively mono-rhamnolipids (having a single rhamnose sugar ring) and di-rhamnolipids (having two rhamnose sugar rings) respectively. If abbreviations are used R1 is mono-rhamnolipid and R2 is di-rhamnolipid.
- The mono-rhamnolipid may be L-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate (RhaC10C10 with a formula of C26H48O9) produced by P. aeruginosa.
- Atypical di-rhamnolipid is L-rhamnosyl-L-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha2C10C10 with a formula of C32H58O13).
- In practice a variety of other minor components with different alkyl chain length combinations, depending upon carbon source and bacterial strain, exist in combination with the above more common rhamnolipids. The ratio of mono-rhamnolipid and di-rhamnolipid may be controlled by the production method. Some bacteria only produce mono-rhamnolipid, see
US5767090 : Example 1, some enzymes can convert mono-rhamnolipid to di-rhamnolipid. - The following rhamnolipids are sources of mono- and di- rhamnolipids encompassed within the invention (C12:1, C14:1 indicates fatty acyl chains with double bonds):
- Rhamnolipids produced by P. aeruginosa (mono-rhamnolipids):
Rha-C8-C10, Rha-C10-C8, Rha-C10-C10, Rha-C10-C12, Rha-C10-C12:1, Rha-C12-C10, Rha-C12:1-C10 - Rhamnolipids produced by P. chlororaphis (mono-rhamnolipids only):
Rha-C10-C8, Rha-C10-C10, Rha-C12-C10, Rha-C12:1-C10, Rha-C12-C12, Rha-C12:1-C12, Rha-C14-C10, Rha-C14:1-C10. - Mono-rhamnolipids may also be produced from P.putida by introduction of genes rhIA and rhIB from Psuedomonas aeruginosa [Cha et al. in Bioresour Technol. 2008. 99(7):2192-9 ]
- Rhamnolipids produced by P. aeruginosa (di-rhamnolipids):
Rha-Rha-C8-C10, Rha-Rha-C8-C12:1, Rha-Rha-C10-C8, Rha-Rha-C10-C10, Rha-Rha-C10-C12:1, Rha-Rha-C10-C12, Rha-Rha-C12-C10, Rha-Rha-C12:1-C12, Rha-Rha-C10-C14:1 - Rhamnolipids produced by Burkholdera pseudomallei (di-rhamnolipids only):
Rha-Rha-C14-C14. - Rhamnolipids produced by Burkholdera (Pseudomonas) plantarii (di-rhamnolipids only):
Rha-Rha-C14-C14. - Rhamnolipids produced by P. aeruginosa which are initially unidentified as either mono- or di-rhamnolipids:
C8-C8, C8-C10, C10-C8, C8-C12:1, C12:1-C8, C10-C10, C12-C10, C12:1-C10, C12-C12, C12:1-C12, C14-C10, C14:1-C10, C14-C14. - Preferably, the rhamnolipid comprises at least 50 wt.% di-rhamnolipid, more preferably at least 60 wt.% di-rhamnolipid, even more preferably 70 wt.% di-rhamnolipid, most preferably at least 80 wt.% di-rhamnolipid.
- Preferably the rhamnolipid is a di-rhamnolipid of formula: Rha2C8-12C8-12. The preferred alkyl chain length is from C8 to C12, the alkyl chain may be saturated or unsaturated.
- The fluid cleaning composition comprises at least one anionic and/or non-ionic surfactant. This means that the composition may comprises a single anionic surfactant, or a mixture of anionic surfactants, or a single nonionic surfactant, or a mixture of nonionic surfactant, or a mixture of one or more anionic surfactants with one or more nonionic surfactants.
- Suitable nonionic and anionic surfactants may be chosen from the surfactants described "Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 or in Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1996).
- Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
- Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, Alkyl ether carboxylic acids; sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
- The anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; alkyl ether carboxylates, and mixtures thereof.
- More preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof. Preferably the alkyl ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units. Sodium lauryl ether sulphate is particularly preferred (SLES). Preferably the linear alkyl benzene sulphonate is a sodium C11 to C15 alkyl benzene sulphonates. Preferably the alkyl sulphates is a linear or branched sodium C12 to C18 alkyl sulphates. Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
- Preferably the anionic surfactant comprises linear alkyl benzene sulphonates and/or alkyl ether sulphates.
- Preferably two or more anionic surfactants are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
- The composition may comprise anionic and/or non-ionic surfactants.
- Preferably the weight fraction of non-ionic surfactant to anionic surfactant is from 0 to 0.3. This means that non-ionic surfactant can be present (or it may be absent if the weight fraction is 0), but if non-ionic surfactant is present, then the weight fraction of the non-ionic surfactant is preferably at most 30% of the total weight of anionic surfactant + non-ionic surfactant.
- Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with ethylene oxide.
- If a non-ionic surfactant is present, then most preferably the non-ionic surfactant is an alcohol ethoxylate, more preferably a C10-C18 alcohol ethoxylate having an average of 3-10 moles of ethylene oxide, most preferably a C12-C15 alcohol ethoxylate having an average of 5-9 moles of ethylene oxide.
- Preferably the surfactants used are saturated.
- The surfactant system comprises from 0.5 to 10 wt.% of a zwitterionic surfactant. Preferably the composition comprises from 0.5 to 10 wt.%, preferably from 0.75 to 5 wt.%, most preferably from 1 to 4 wt.% of the zwitterionic surfactant, said surfactant being counted as part of the surfactant system.
- The zwitterionic surfactant is preferably a betaine surfactant. Preferably the composition comprises from 0.5 to 10 wt.%, preferably from 0.75 to 5 wt.%, most preferably from 1 to 4 wt.% of a betaine surfactant, said surfactant being counted as part of the surfactant system. A preferred betaine surfactant is cocoamidopropyl betaine.
- A preferred fluid cleaning composition is a liquid laundry detergent composition.
- A preferred laundry detergent composition comprises:
- a) from 5 to 50 wt.% of a surfactant system comprising:
- i) at least one anionic and/or nonionic surfactant; and
- ii) a rhamnolipid biosurfactant which is present at a level in the range of from 1 to 95 wt.%, preferably from 1 to 50 wt.%, more preferably from 2.5 to 50 wt.%, most preferably from 5 to 25 wt.% of the total surfactant in said surfactant system; and
- iii) from 0.5 to 10 wt.% of a betaine surfactant;
- b) water;
- c) from 0.1 to 15 wt.%, preferably from 0.1 to 10 wt.% of a polymer selected from the group consisting of: an alkoxylated polyamine, a polyester soil release polymer and mixtures thereof;
- d) from 0.1 to 2 wt.% of a perfume
- The fluid cleaning compositions have a pH of from 4 to 5.5, preferably from 4.5 to 5.5.
- The composition comprises from 0.1 to 15 wt.%, preferably from 0.1 to 10 wt.% of a polymer selected from the group consisting of: an alkoxylated polyamine, a polyester soil release polymer and mixtures thereof.
- The composition may comprise from 0.05 to 6 wt.%, preferably from 0.1 to 5 wt.% of one or more polyester soil release polymer(s). Suitable polyester based soil release polymers are described in
WO 2014/029479 andWO 2016/005338 . -
- R1 and R2
- independently of one another are X-(OC2H4)n-(OC3H6)m wherein X is C1-4 alkyl and preferably methyl, the -(OC2H4) groups and the -(OC3H6) groups are arranged blockwise and the block consisting of the -(OC3H6) groups is bound to a COO group or are HO-(C3H6), and preferably are independently of one another X-(OC2H4)n-(OC3H6)m,
- n
- is based on a molar average number of from 12 to 120 and preferably of from 40 to 50,
- m
- is based on a molar average number of from 1 to 10 and preferably of from 1 to 7, and
- a
- is based on a molar average number of from 4 to 9.
- Preferably the polyester provided as an active blend comprising:
- A) from 45 to 55 % by weight of the active blend of one or more polyesters according to the following formula (I)
- R1 and R2
- independently of one another are X-(OC2H4)n-(OC3H6)m wherein X is C1-4 alkyl and preferably methyl, the -(OC2H4) groups and the -(OC3H6) groups are arranged blockwise and the block consisting of the -(OC3H6) groups is bound to a COO group or are HO-(C3H6), and preferably are independently of one another X-(OC2H4)n-(OC3H6)m,
- n
- is based on a molar average number of from 12 to 120 and preferably of from 40 to 50,
- m
- is based on a molar average number of from 1 to 10 and preferably of from 1 to 7, and
- a
- is based on a molar average number of from 4 to 9 and
- B) from 10 to 30 % by weight of the active blend of one or more alcohols selected from the group consisting of ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol and butyl glycol and
- C) from 24 to 42 % by weight of the active blend of water.
- By active blend is meant that it is preformed and added to the remainder of the fluid cleaning composition, or to components which ultimately form the fluid cleaning composition.
- The composition may and preferably does comprise of an alkoxylated polyamine. Suitable inclusion levels for the polymer are from 0.25 to 8 wt.%, preferably from 0.5 to 6 wt.% of an alkoxylated polyamine. Another preferred level is from 1 to 4 wt.%.
- A preferred alkoxylated polyamine comprises an alkoxylated polyethylenimine, and/or alkoxylated polypropylenimine. The polyamine may be linear or branched. It may be branched to the extent that it is a dendrimer. The alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both. Where a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25. A preferred material is ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30 preferably from 15 to 25, where a nitrogen atom is ethoxylated.
- Preferably the composition comprises a sodium chloride or magnesium sulfate salt.
- The composition preferably comprises a perfume. The perfume is preferably present in the range from 0.001 to 3 wt.%, more preferably 0.05 to 0.5 wt.%, even more preferably from 0.1 to 2 wt.%, most preferably 0.1 to 1 wt.%.
- Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
- The perfume can be provided as a free oil, or may in encapsulated form.
- Preferably the composition comprises an ionic salt. The salt preferably comprises any organic or inorganic cation, including without limitation cations of alkali metals Cs, Na, K, Ca, Mg etc., with anions including halide anions, more preferably Cl. Other preferred salts compise organic cations e.g. amides (- +NH-R ) or ammonium cations or substituted forms thereof e.g. triethylammonium. Anions for organic cations may comprise any akyl, aryl, arylalkyl moiety which may be short, medium, long, branched, cyclic or linear.
- Preferably the composition comprises from 0.01 - 5wt.% by weight of the salt. In the case of NaCl, preferably the level is in the range 0.5 - 2 wt.%
- Fluid cleaning compositions may, depending on their end use further comprise any of the following as a single ingredient, or a mixture thereof: polymers, sequestrants, hydrotropes (such as glycerol or monoproylene glycol), opacifiers, preservatives, colorants (e.g. dyes and pigments), enzymes (for example proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof), further surfactants such as cationic surfactants, fatty acids, softeners, polymers for anti redeposition of soil, bleach, bleach activators and bleach catalysts, antioxidants, pH adjusting agents (such as citric acid and NaOH), pH control agents and buffers. Such other ingredients can suitably be used with the preferred fluid cleaning composition, namely a laundry liquid detergent composition.
- The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
- Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
- Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino}stilbene-2-2' disulophonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino} stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
- The total amount of the fluorescent agent or agents used in the composition is preferably from 0.0001 to 0.5 wt.%, more preferably 0.005 to 2 wt.%, most preferably 0.05 to 0.25 wt.%.
- The aqueous solution used in the method preferably has a fluorescer present. The fluorescer is preferably present in the aqueous solution used in the method in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
- One or more enzymes are preferably present in the laundry composition of the invention and when practicing a method of the invention.
- If present, then the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
- Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
- Contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
- Preferably the enzyme is selected from: proteases, alpha-amylases; cellulases and lipases.
- Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in
EP 258 068 EP 305 216 WO 96/13580 EP 218 272 EP 331 376 GB 1,372,034 WO 95/06720 WO 96/27002 WO 96/12012 JP 64/744992 WO 91/16422 WO 92/05249 WO 94/01541 EP 407 225 EP 260 105 WO 95/35381 WO 96/00292 WO 95/30744 WO 94/25578 WO 95/14783 WO 95/22615 WO 97/04079 WO 97/07202 WO 00/60063 - Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ and Lipoclean ™ (Novozymes A/S).
- The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids.
- Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
- Protease enzymes hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains. Examples of suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk). Serine proteases are preferred. Subtilase type serine proteases are more preferred. The term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523. Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate. The subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
- Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in;
US7262042 andWO09/021867 WO 89/06279 WO 93/18140 WO 92/175177 WO 01/016285 WO 02/026024 WO 02/016547 WO 89/06270 WO 94/25583 WO 05/040372 WO 05/052161 WO 05/052146 - Most preferably the protease is a subtilisins (EC 3.4.21.62).
- Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in;
US7262042 andWO09/021867 WO89/06279 WO93/18140 US 6,312,936 B1 ,US 5,679,630 ,US 4,760,025 ,US7,262,042 andWO 09/021867 - Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase®, Esperase® and Carnival®, all could be sold as Ultra® or Evity® (Novozymes A/S).
- The invention may be use cutinase, classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of
B. licheniformis, described in more detail inGB 1,296,839 WO 95/026397 WO 00/060060 - Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in
US 4,435,307 ,US 5,648,263 ,US 5,691,178 ,US 5,776,757 ,WO 89/09259 WO 96/029397 WO 98/012307 - Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in
WO 93/24618 WO 95/10602 WO 98/15257 - Further enzymes suitable for use are discussed in
WO 2009/087524 ,WO 2009/090576 ,WO 2009/107091 ,WO 2009/111258 andWO 2009/148983 . - The aqueous solution used in the method preferably has an enzyme present. The enzyme is preferably present in the aqueous solution used in the method at a concentration in the range from 0.01 to 10ppm, preferably 0.05 to 1ppm.
- Suitable enzymes may be included as a blend or 2 or more enzymes.
- Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g.
WO 92/19709 WO 92/19708 - Preferably the composition comprises from 0.1 to 5 wt.%, preferably from 0.25 wt.% to 4 wt.%, more preferably from 0.5 to 2.5 wt.% of a sequestrant.
- Preferred sequestrants include phosphonic acids or salts thereof.
- The phosphonic acid (or salt thereof) sequestrant is preferably selected from the group consisting of: 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP); Diethylenetriaminepenta(methylenephosphonic acid) (DTPMP); Hexamethylenediaminetetra(methylenephosphonic acid) (HDTMP); Aminotris(methylenephosphonic acid) (ATMP); Ethylenediaminetetra(methylenephosphonic acid) (EDTMP); Tetramethylenediaminetetra(methylenephosphonic acid) (TDTMP); and, Phosphonobutanetricarboxylic acid (PBTC).
- The sequestrant is preferably in acid form. This means that it is a phosphonic acid.
- The preferred phosphonic acid sequestrant is 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP).
- The composition may preferably comprise one or more polymers. Example polymers are carboxymethylcellulose, poly(ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
- Polymers present to prevent dye deposition may be present, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).
- Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zurich, 2003) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003).
- Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol-1 cm-1, preferably greater than 10000 L mol-1 cm-1. The dyes are blue or violet in colour.
- Preferably the composition comprises a shading dye. Preferably the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
- Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
- Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged. Azine preferably carry a net anionic or cationic charge. Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280. The white cloth used in this test is bleached non-mercerised woven cotton sheeting.
- Shading dyes are discussed in
WO 2005/003274 ,WO 2006/032327(Unilever ),WO 2006/032397(Unilever ),WO 2006/045275(Unilever ),WO 2006/027086(Unilever ),WO 2008/017570(Unilever ),WO 2008/141880 (Unilever ),WO 2009/132870(Unilever ),WO 2009/141173 (Unilever ),WO 2010/099997(Unilever ),WO 2010/102861 (Unilever ),WO 2010/148624(Unilever ),WO 2008/087497 (P&G ),WO 2011/011799 (P&G ),WO 2012/054820 (P&G ),WO 2013/142495 (P&G ) andWO 2013/151970 (P&G ). - Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes. The mono-azo dyes are preferably alkoxylated and are preferably uncharged or anionically charged at pH=7. Alkoxylated thiophene dyes are discussed in
WO/2013/142495 andWO/2008/087497 . Preferred examples of thiophene dyes are shown below: - Bis-azo dyes are preferably sulphonated bis-azo dyes. Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in
WO2012/054058 andWO2010/151906 . -
- Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
-
- X3 is selected from: -H; -F; -CH3; -C2H5; -OCH3; and, -OC2H5;
- X4 is selected from: -H; -CH3; -C2H5; -OCH3; and, -OC2H5;
- Y2 is selected from: -OH; -OCH2CH2OH; -CH(OH)CH2OH; -OC(O)CH3; and, C(O)OCH3.
- The shading dye is present is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
- A mixture of shading dyes may be used.
- The shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine. The alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation. Preferably 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation. Preferably the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
-
- The composition may comprise from 0.001 to 3 wt.% of a perfume, preferably from 0.1 to 2 wt.% perfume. This suitably may be present as a free perfume oil or as an encapsulated perfume.
- Where alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains. The alkyl groups are preferably linear or branched, most preferably linear.
- The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.
- The examples below are intended to illustrate the invention in detail without, however, limiting it thereto. Examples denoted by a letter are comparative, examples denoted by a number are according to the invention.
- This example shows the detrimental effect of the addition of the alkoxylated polyamine and polyester based soil release polymer to a fluid cleaning composition (laundry liquid), and the need to include a HASE polymer to overcome the detrimental effect on viscosity.
Table 1: Laundry liquid formulation Ingredient A wt.% B wt.% C wt.% D wt.% Demin water to 100 to 100 to 100 to 100 Tinopal 5BM-GX 0.14 0.14 0.14 0.14 Neodol 25-7EO 3.06 3.06 3.06 3.06 Acusol WR (HASE thickening polymer) 0.55-0.85 0.55-0.85 0.55-0.85 0.55-0.85 TEA 6.30 6.30 6.30 6.30 LAS acid 4.07 4.07 4.07 4.07 Palmera B1231 0.60 0.60 0.60 0.60 Dequest 2010 1.05 1.05 1.05 1.05 SLES 3EO 3.06 3.06 3.06 3.06 HP20 (alkoxylated polyethyleneimine - - 2.17 2.17 BIT 0.04 0.04 0.04 0.04 Perfume 0.80 0.80 0.80 0.80 Salt 0.60 0.60 0.60 0.60 Citric Acid 0.70 0.70 0.70 0.70 Texcare UL50 (Polyester soil release polymer) - 0.70 - 0.70 - Formulation A has neither the polyester soil release polymer (Texcare UL50), nor the alkoxylated polyamine (HP20); formulations B and C have one or the other; formulation D has both polymers. The viscosity was measured using the Anton Paar ASC rheometer - using a Bob set-up and reporting the viscosity measured at a shear rate of 23s-1 based upon HASE thickening polymer inclusion levels (Acusol WR) of from 0.55 to 0.85.
Table 2: HASE polymer 0.55 wt.% HASE polymer 0.65 wt.% HASE polymer 0.75 wt.% HASE polymer 0.85 wt.% A 350 420 515 605 B 255 308 385 460 C 200 230 300 330 D 175 205 260 298 - This data shows the detriment to viscosity by inclusion of the polyester soil release polymer (Texcare UL50), and the alkoxylated polyamine (HP20). It shows the HASE polymer is used to boost the viscosity.
- This example shows the improved viscosity build using rhamnolipid at low pH
Table 3: Laundry liquid formulation Ingredient E (wt.%) 1 (wt.%) Demin water to 100 to 100 Tinopal CBS-X 0.03 0.03 Sodium Hydroxide (47%) 0.30 0.30 TEA 0.89 0.89 Citric Acid (50%) 0.24 0.24 LAS acid 2.35 2.35 SLES 3EO 7.05 7.05 Cocoamidopropyl betaine 2.00 2.00 R2 - Rhamnolipid - 1.27 HP20 (alkoxylated polyethyleneimine - 1.00 Texcare UL50 (Polyester soil release polymer) - 0.13 BIT 0.02 0.02 MIT 0.10 0.10 Salt 1.00 1.00 Perfume 0.45 0.45 - Formulation E has neither the polyester soil release polymer (Texcare UL50), nor the alkoxylated polyamine (HP20), nor the rhamnolipid; formulation 1 has both polymers and rhamnolipid (R2 rhamnolipid at inclusion level of 10% of total surfactant. The viscosity was measured using the Anton Paar ASC rheometer- using a Bob set-up and reporting the viscosity measured at a shear rate of 23s-1 at different pH from pH ~3 to ~6 by addition of citric acid
Table 4 - Formulation E (Control) - Viscosity of E in Cps at a shear rate of 23s-1 Formulation E (0% Rhamnolipid) pH Viscosity (Cps) 6.93 333 5.28 64.3 4.78 55.9 4.28 50.6 3.75 48.4 Table 5 - Formulation 1 (Invention) - Viscosity of 1 in Cps at a shear rate of 23s-1 Formulation 1 (10% Rhamnolipid replacement) pH Viscosity (Cps) 6.94 56.5 6.04 188 5.53 377 4.92 606 4.50 633 4.01 604 - This data shows the improvement in viscosity (a higher viscosity) seen by addition of rhamnolipid biosurfactant to the surfactant system at low pH (pH 4 to 5.5).
wherein the rhamnolipid biosurfactant comprises at least 70 wt.% di-rhamnolipid, preferably at least 80 wt.% di-rhamnolipid, preferably of formula: Rha2C8-12C8-12, where the alkyl chains may be saturated or unsaturated.
Claims (15)
- A fluid cleaning composition comprising:a) from 5 to 70 wt.% of a surfactant system comprising:i) at least one anionic and/or nonionic surfactant; andii) a rhamnolipid biosurfactant which is present at a level in the range of from 1 to 95 wt.%, preferably from 1 to 50 wt.%, more preferably from 2.5 to 50 wt.%, most preferably from 5 to 25 wt.% of the total surfactant in said surfactant system; andiii) from 0.5 to 10 wt.% of a zwitterionic surfactant; andb) water; andc) from 0.1 to 15 wt.% of a polymer selected from the group consisting of: an alkoxylated polyamine, a polyester soil release polymer and mixtures thereof;wherein the composition has a pH of from 4 to 5.5.
- A fluid cleaning composition according to claim 1, wherein the composition comprises from 0.75 to 5 wt.%, most preferably from 1 to 4 wt.% of the zwitterionic surfactant, preferably the zwitterionic surfactant is a betaine, more preferably cocoamidopropyl betaine, said surfactant being counted as part of the surfactant system.
- A fluid cleaning composition according to claim 1 or claim 2, comprising an anionic surfactant, wherein the anionic surfactant is selected from: linear alkyl benzene sulphonates; alkyl sulphates; alkyl ether sulphates; alkyl ether carboxylates, and mixtures thereof.
- A fluid cleaning composition according to any preceding claim, wherein the anionic surfactant comprises linear alkyl benzene sulphonates and/or alkyl ether sulphates.
- A fluid cleaning composition according to any preceding claim, comprising a non-ionic surfactant, wherein the non-ionic surfactant is an alcohol ethoxylate, preferably a C10-C18 alcohol ethoxylate having an average of 3-10 moles of ethylene oxide, more preferably a C12-C15 alcohol ethoxylate having an average of 5-9 moles of ethylene oxide.
- A fluid cleaning composition according to any preceding claim, wherein the fluid cleaning composition comprises from 5 to 60 wt.%, preferably from 5 to 50 wt.%, more preferably from 7.5 to 30 wt.%, even more preferably from 7.5 to 25 wt.%, most preferably from 8 to 25 wt.%, for example from 8 to 20 wt.% of a surfactant system.
- A fluid cleaning composition according to any one of the preceding claims, wherein the composition has a pH of from 4.5 to 5.5.
- A fluid cleaning composition according to any one of the preceding claims, wherein the rhamnolipid comprises at least 50 wt.% di-rhamnolipid, preferably at least 60 wt.% di-rhamnolipid, more preferably at least 70 wt.% di-rhamnolipid, most preferably at least 80 wt.% di-rhamnolipid
- A fluid cleaning composition according to claim 8, wherein the rhamnolipid comprises di-rhamnolipid of formula: Rha2C8-12C8-12, where the alkyl chains may be saturated or unsaturated.
- A fluid cleaning composition according to any preceding claim, wherein the composition comprises a sodium chloride or magnesium sulfate salt.
- A fluid cleaning composition according to any preceding claim, comprising:a) from 5 to 50 wt.% of a surfactant system comprising:i) at least one anionic and/or nonionic surfactant; andii) a rhamnolipid biosurfactant which is present at a level in the range of from 1 to 95 wt.%, preferably from 1 to 50 wt.%, more preferably from 2.5 to 50 wt.%, most preferably from 5 to 25 wt.% of the total surfactant in said surfactant system; andiii) from 0.5 to 10 wt.% of a betaine surfactant;b) water;c) from 0.1 to 15 wt.%, preferably from 0.1 to 10 wt.% of a polymer selected from the group consisting of: an alkoxylated polyamine, a polyester soil release polymer and mixtures thereof;d) from 0.1 to 2 wt.% of a perfumewherein the composition has a pH of from 4 to 5.5;wherein the rhamnolipid biosurfactant comprises at least 70 wt.% di-rhamnolipid, preferably at least 80 wt.% di-rhamnolipid, preferably of formula: Rha2C8-12C8-12, where the alkyl chains may be saturated or unsaturated; andwherein the fluid cleaning composition is a liquid laundry detergent composition.
- A fluid cleaning composition according to any preceding claim, wherein the polyester based soil release polymer is a polyester according to the following formula (I)R1 and R2 independently of one another are X-(OC2H4)n-(OC3H6)m wherein X is C1-4 alkyl and preferably methyl, the -(OC2H4) groups and the -(OC3H6) groups are arranged blockwise and the block consisting of the -(OC3H6) groups is bound to a COO group or are HO-(C3H6), and preferably are independently of one another X-(OC2H4)n-(OC3H6)m,n is based on a molar average number of from 12 to 120 and preferably of from 40 to 50,m is based on a molar average number of from 1 to 10 and preferably of from 1 to 7, anda is based on a molar average number of from 4 to 9.
- A fluid cleaning composition according to any preceding claim, wherein the alkoxylated polyamine comprises an alkoxylated polyethylenimine, and/or alkoxylated polypropylenimine, preferably the alkoxylation is ethoxylation or propoxylation or a mixture of both.
- A fluid cleaning composition according to any one of preceding claims 1 to 10, 12 and 13, wherein the fluid cleaning composition is a liquid laundry detergent composition.
- Use of a surfactant combination comprising a rhamnolipid biosurfactant and a zwitterionic surfactant to increase the viscosity of a fluid cleaning composition at a pH of from 4.5 to 5.5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18172880 | 2018-05-17 | ||
PCT/EP2019/062050 WO2019219531A1 (en) | 2018-05-17 | 2019-05-10 | Cleaning composition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3775127A1 EP3775127A1 (en) | 2021-02-17 |
EP3775127B1 true EP3775127B1 (en) | 2022-07-20 |
Family
ID=62196466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19722150.0A Active EP3775127B1 (en) | 2018-05-17 | 2019-05-10 | Cleaning composition |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3775127B1 (en) |
CN (1) | CN112119147B (en) |
AR (1) | AR117430A1 (en) |
BR (1) | BR112020023083A2 (en) |
WO (1) | WO2019219531A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4263771B1 (en) * | 2020-12-17 | 2025-02-12 | Unilever IP Holdings B.V. | Use of a cleaning composition to improve cold cleaning performance |
CN119193248A (en) * | 2024-11-28 | 2024-12-27 | 万华化学集团股份有限公司 | Viscosity modifier and its use in regulating viscosity of daily chemicals |
Family Cites Families (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1296839A (en) | 1969-05-29 | 1972-11-22 | ||
GB1372034A (en) | 1970-12-31 | 1974-10-30 | Unilever Ltd | Detergent compositions |
DK187280A (en) | 1980-04-30 | 1981-10-31 | Novo Industri As | RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY |
US4760025A (en) | 1984-05-29 | 1988-07-26 | Genencor, Inc. | Modified enzymes and methods for making same |
DE3684398D1 (en) | 1985-08-09 | 1992-04-23 | Gist Brocades Nv | LIPOLYTIC ENZYMES AND THEIR USE IN DETERGENTS. |
ES2058119T3 (en) | 1986-08-29 | 1994-11-01 | Novo Nordisk As | ENZYMATIC DETERGENT ADDITIVE. |
NZ221627A (en) | 1986-09-09 | 1993-04-28 | Genencor Inc | Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios |
ATE125865T1 (en) | 1987-08-28 | 1995-08-15 | Novo Nordisk As | RECOMBINANT HUMICOLA LIPASE AND METHOD FOR PRODUCING RECOMBINANT HUMICOLA LIPASES. |
DK6488D0 (en) | 1988-01-07 | 1988-01-07 | Novo Industri As | ENZYMES |
ATE129523T1 (en) | 1988-01-07 | 1995-11-15 | Novo Nordisk As | SPECIFIC PROTEASES. |
JP3079276B2 (en) | 1988-02-28 | 2000-08-21 | 天野製薬株式会社 | Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
GB8915658D0 (en) | 1989-07-07 | 1989-08-23 | Unilever Plc | Enzymes,their production and use |
WO1991016422A1 (en) | 1990-04-14 | 1991-10-31 | Kali-Chemie Aktiengesellschaft | Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases |
EP0548228B1 (en) | 1990-09-13 | 1998-08-12 | Novo Nordisk A/S | Lipase variants |
US5292796A (en) | 1991-04-02 | 1994-03-08 | Minnesota Mining And Manufacturing Company | Urea-aldehyde condensates and melamine derivatives comprising fluorochemical oligomers |
EP0511456A1 (en) | 1991-04-30 | 1992-11-04 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
ES2085024T3 (en) | 1991-04-30 | 1996-05-16 | Procter & Gamble | LIQUID DETERGENTS REINFORCED WITH BORICO-POLYOL ACID COMPLEX TO INHIBIT THE PROTEOLYTIC ENZYME. |
DK28792D0 (en) | 1992-03-04 | 1992-03-04 | Novo Nordisk As | NEW ENZYM |
DK72992D0 (en) | 1992-06-01 | 1992-06-01 | Novo Nordisk As | ENZYME |
DK88892D0 (en) | 1992-07-06 | 1992-07-06 | Novo Nordisk As | CONNECTION |
DE69434242T2 (en) | 1993-04-27 | 2006-01-12 | Genencor International, Inc., Palo Alto | Novel lipase variants for use in detergents |
DK52393D0 (en) | 1993-05-05 | 1993-05-05 | Novo Nordisk As | |
JP2859520B2 (en) | 1993-08-30 | 1999-02-17 | ノボ ノルディスク アクティーゼルスカブ | Lipase, microorganism producing the same, method for producing lipase, and detergent composition containing lipase |
AU7853194A (en) | 1993-10-13 | 1995-05-04 | Novo Nordisk A/S | H2o2-stable peroxidase variants |
DE69434962T2 (en) | 1993-10-14 | 2008-01-17 | The Procter & Gamble Company, Cincinnati | PROTEASE-CONTAINING DETERGENTS |
JPH07143883A (en) | 1993-11-24 | 1995-06-06 | Showa Denko Kk | Lipase gene and mutant lipase |
KR970701264A (en) | 1994-02-22 | 1997-03-17 | 안네 제케르 | A METHOD OF PREPARING A VIRIANT OF A LIPOLYTIC ENZYME |
ATE510010T1 (en) | 1994-03-29 | 2011-06-15 | Novozymes As | ALKALINE AMYLASE FROM BACILLUS |
EP0755442B1 (en) | 1994-05-04 | 2002-10-09 | Genencor International, Inc. | Lipases with improved surfactant resistance |
WO1995035381A1 (en) | 1994-06-20 | 1995-12-28 | Unilever N.V. | Modified pseudomonas lipases and their use |
AU2884695A (en) | 1994-06-23 | 1996-01-19 | Unilever Plc | Modified pseudomonas lipases and their use |
BE1008998A3 (en) | 1994-10-14 | 1996-10-01 | Solvay | Lipase, microorganism producing the preparation process for the lipase and uses thereof. |
CA2203398A1 (en) | 1994-10-26 | 1996-05-09 | Thomas Sandal | An enzyme with lipolytic activity |
JPH08228778A (en) | 1995-02-27 | 1996-09-10 | Showa Denko Kk | New lipase gene and production of lipase using the same |
EP2431462A3 (en) | 1995-03-17 | 2012-05-23 | Novozymes A/S | Novel endoglucanases |
ATE282087T1 (en) | 1995-07-14 | 2004-11-15 | Novozymes As | MODIFIED ENZYME WITH LIPOLYTIC ACTIVITY |
EP0851913B1 (en) | 1995-08-11 | 2004-05-19 | Novozymes A/S | Novel lipolytic enzymes |
US5767090A (en) | 1996-01-17 | 1998-06-16 | Arizona Board Of Regents, On Behalf Of The University Of Arizona | Microbially produced rhamnolipids (biosurfactants) for the control of plant pathogenic zoosporic fungi |
EP1726644A1 (en) | 1996-09-17 | 2006-11-29 | Novozymes A/S | Cellulase variants |
CN1232384A (en) | 1996-10-08 | 1999-10-20 | 诺沃挪第克公司 | Diaminobenzoic acid derivatives as dye precursors |
AR015977A1 (en) | 1997-10-23 | 2001-05-30 | Genencor Int | PROTEASA VARIANTS MULTIPLY SUBSTITUTED WITH ALTERED NET LOAD FOR USE IN DETERGENTS |
JP4745503B2 (en) | 1999-03-31 | 2011-08-10 | ノボザイムス アクティーゼルスカブ | Polypeptides having alkaline α-amylase activity and nucleic acids encoding them |
JP4523178B2 (en) | 1999-03-31 | 2010-08-11 | ノボザイムス アクティーゼルスカブ | Lipase mutant |
EP2336331A1 (en) | 1999-08-31 | 2011-06-22 | Novozymes A/S | Novel proteases and variants thereof |
CN1337553A (en) | 2000-08-05 | 2002-02-27 | 李海泉 | Underground sightseeing amusement park |
CA2419896C (en) | 2000-08-21 | 2014-12-09 | Novozymes A/S | Subtilase enzymes |
DE10162728A1 (en) | 2001-12-20 | 2003-07-10 | Henkel Kgaa | New alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning agents containing this new alkaline protease |
GB0314210D0 (en) | 2003-06-18 | 2003-07-23 | Unilever Plc | Laundry treatment compositions |
JP4880469B2 (en) | 2003-10-23 | 2012-02-22 | ノボザイムス アクティーゼルスカブ | Protease with improved stability in detergents |
KR101482015B1 (en) | 2003-11-19 | 2015-01-23 | 다니스코 유에스 인크. | Serine proteases, nucleic acids encoding serine enzymes, vectors incorporating them, and host cells |
GB0420203D0 (en) | 2004-09-11 | 2004-10-13 | Unilever Plc | Laundry treatment compositions |
GB0421145D0 (en) | 2004-09-23 | 2004-10-27 | Unilever Plc | Laundry treatment compositions |
EP2133409A3 (en) | 2004-09-23 | 2010-03-03 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Shading Fabric Conditioner |
DE102004052007B4 (en) | 2004-10-25 | 2007-12-06 | Müller Weingarten AG | Drive system of a forming press |
US7902139B2 (en) | 2006-08-10 | 2011-03-08 | Conopco Inc. | Shading composition |
ATE486927T1 (en) | 2007-01-19 | 2010-11-15 | Procter & Gamble | LAUNDRY CARE WITH WHITE TONER FOR CELLULOSE-CONTAINING SUBSTRATES |
MX2009012393A (en) | 2007-05-18 | 2009-12-01 | Unilever Nv | Triphenodioxazine dyes. |
DE102007038031A1 (en) | 2007-08-10 | 2009-06-04 | Henkel Ag & Co. Kgaa | Agents containing proteases |
ES2412683T5 (en) | 2008-01-04 | 2020-11-13 | Procter & Gamble | Compositions containing enzyme and fabric tinting agent |
EP2085070A1 (en) | 2008-01-11 | 2009-08-05 | Procter & Gamble International Operations SA. | Cleaning and/or treatment compositions |
EP2247720A2 (en) | 2008-02-29 | 2010-11-10 | The Procter & Gamble Company | Detergent composition comprising lipase |
WO2009111258A2 (en) | 2008-02-29 | 2009-09-11 | The Procter & Gamble Company | Detergent composition comprising lipase |
MY153627A (en) | 2008-05-02 | 2015-02-27 | Unilever Plc | Reduced spotting granules |
US8062382B2 (en) | 2008-05-20 | 2011-11-22 | Conopco Inc. | Shading composition |
MX2010013276A (en) | 2008-06-06 | 2010-12-21 | Procter & Gamble | DETERGENT COMPOSITION THAT INCLUDES A VARIANTE OF A FAMILY XYLOGLUCANASA 44. |
WO2010099997A1 (en) | 2009-03-05 | 2010-09-10 | Unilever Plc | Dye radical initiators |
CN102348769A (en) | 2009-03-12 | 2012-02-08 | 荷兰联合利华有限公司 | Dye-polymers formulations |
WO2010148624A1 (en) | 2009-06-26 | 2010-12-29 | Unilever Plc | Dye polymers |
US20120101018A1 (en) | 2010-10-22 | 2012-04-26 | Gregory Scot Miracle | Bis-azo colorants for use as bluing agents |
EP2630197B1 (en) | 2010-10-22 | 2019-03-06 | Milliken & Company | Bis-azo colorants for use as bluing agents |
WO2012054058A1 (en) | 2010-10-22 | 2012-04-26 | The Procter & Gamble Company | Bis-azo colorants for use as bluing agents |
CN103210073B (en) | 2010-11-12 | 2016-06-08 | 宝洁公司 | Thiophene azo dye and the laundry care composition comprising them |
DE102011090030A1 (en) * | 2011-12-28 | 2013-07-04 | Evonik Industries Ag | Aqueous hair and skin cleansing compositions containing biosurfactants |
IN2014DN07573A (en) | 2012-03-19 | 2015-04-24 | Procter & Gamble | |
EP2834340B1 (en) | 2012-04-03 | 2016-06-29 | The Procter and Gamble Company | Laundry detergent composition comprising water-soluble phthalocyanine compound |
DE102012016462A1 (en) | 2012-08-18 | 2014-02-20 | Clariant International Ltd. | Use of polyesters in detergents and cleaners |
EP2786742A1 (en) * | 2013-04-02 | 2014-10-08 | Evonik Industries AG | Cosmetics containing rhamnolipids |
DE102013206314A1 (en) * | 2013-04-10 | 2014-10-16 | Evonik Industries Ag | Cosmetic formulation containing copolymer as well as sulfosuccinate and / or biosurfactant |
EP2966160A1 (en) | 2014-07-09 | 2016-01-13 | Clariant International Ltd. | Storage-stable compositions comprising soil release polymers |
EP3061442A1 (en) * | 2015-02-27 | 2016-08-31 | Evonik Degussa GmbH | Composition comprising rhamnolipid and siloxane |
US10487294B2 (en) * | 2015-03-02 | 2019-11-26 | Conopco, Inc. | Compositions with reduced dye-transfer properties |
WO2016139133A1 (en) * | 2015-03-02 | 2016-09-09 | Unilever Plc | Perfumed fluid cleaning fluids |
US11606963B2 (en) * | 2016-10-07 | 2023-03-21 | Evonik Operations Gmbh | Composition containing glycolipids and preservatives |
-
2019
- 2019-05-10 EP EP19722150.0A patent/EP3775127B1/en active Active
- 2019-05-10 WO PCT/EP2019/062050 patent/WO2019219531A1/en unknown
- 2019-05-10 BR BR112020023083-9A patent/BR112020023083A2/en unknown
- 2019-05-10 CN CN201980032774.3A patent/CN112119147B/en active Active
- 2019-05-15 AR ARP190101293A patent/AR117430A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
CN112119147B (en) | 2023-09-29 |
WO2019219531A1 (en) | 2019-11-21 |
EP3775127A1 (en) | 2021-02-17 |
BR112020023083A2 (en) | 2021-02-02 |
CN112119147A (en) | 2020-12-22 |
AR117430A1 (en) | 2021-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2534237B1 (en) | Laundry treatment composition comprising bis-azo shading dyes | |
EP4263773B1 (en) | Cleaning composition | |
EP3440170B1 (en) | Laundry detergent composition | |
EP2992054B1 (en) | Alkoxylated bis azo dyes | |
EP2714878B2 (en) | Liquid laundry composition | |
US20210283036A1 (en) | Use of a rhamnolipid in a surfactant system | |
EP3433346B1 (en) | Laundry detergent composition | |
EP3775127B1 (en) | Cleaning composition | |
EP3119865B1 (en) | Domestic method of treating a textile with an azo-dye | |
EP2714985B1 (en) | Liquid detergent composition containing dye polymer | |
EP3717616B1 (en) | Detergent composition comprising protease | |
EP3555255B1 (en) | Laundry detergent composition | |
US10501709B2 (en) | Laundry liquid composition | |
EP3303535B1 (en) | Laundry detergent composition | |
EP3417040B1 (en) | Whitening composition | |
EP3417039B1 (en) | Whitening composition | |
EP3303537B1 (en) | Laundry detergent composition | |
US10487296B2 (en) | Laundry liquid composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201105 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER GLOBAL IP LIMITED Owner name: UNILEVER IP HOLDINGS B.V. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER GLOBAL IP LIMITED Owner name: UNILEVER IP HOLDINGS B.V. |
|
INTG | Intention to grant announced |
Effective date: 20220218 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STEVENSON, PAUL, SIMON Inventor name: JONES, CLARE, ANN |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019017216 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1505549 Country of ref document: AT Kind code of ref document: T Effective date: 20220815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221121 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221020 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1505549 Country of ref document: AT Kind code of ref document: T Effective date: 20220720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221120 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221021 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019017216 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230428 |
|
26N | No opposition filed |
Effective date: 20230421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230510 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240527 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240503 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 |