GB2400613B - Plasma deposition method - Google Patents
Plasma deposition methodInfo
- Publication number
- GB2400613B GB2400613B GB0408257A GB0408257A GB2400613B GB 2400613 B GB2400613 B GB 2400613B GB 0408257 A GB0408257 A GB 0408257A GB 0408257 A GB0408257 A GB 0408257A GB 2400613 B GB2400613 B GB 2400613B
- Authority
- GB
- United Kingdom
- Prior art keywords
- deposition method
- plasma deposition
- plasma
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000151 deposition Methods 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/515—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/517—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H01L21/205—
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10317208A DE10317208A1 (en) | 2003-04-15 | 2003-04-15 | Plasma deposition process |
Publications (3)
Publication Number | Publication Date |
---|---|
GB0408257D0 GB0408257D0 (en) | 2004-05-19 |
GB2400613A GB2400613A (en) | 2004-10-20 |
GB2400613B true GB2400613B (en) | 2006-01-25 |
Family
ID=32319161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB0408257A Expired - Fee Related GB2400613B (en) | 2003-04-15 | 2004-04-13 | Plasma deposition method |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10317208A1 (en) |
GB (1) | GB2400613B (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7842355B2 (en) | 2005-11-01 | 2010-11-30 | Applied Materials, Inc. | System and method for modulation of power and power related functions of PECVD discharge sources to achieve new film properties |
US9767988B2 (en) | 2010-08-29 | 2017-09-19 | Advanced Energy Industries, Inc. | Method of controlling the switched mode ion energy distribution system |
US9435029B2 (en) | 2010-08-29 | 2016-09-06 | Advanced Energy Industries, Inc. | Wafer chucking system for advanced plasma ion energy processing systems |
US11615941B2 (en) | 2009-05-01 | 2023-03-28 | Advanced Energy Industries, Inc. | System, method, and apparatus for controlling ion energy distribution in plasma processing systems |
US9287086B2 (en) * | 2010-04-26 | 2016-03-15 | Advanced Energy Industries, Inc. | System, method and apparatus for controlling ion energy distribution |
US9287092B2 (en) | 2009-05-01 | 2016-03-15 | Advanced Energy Industries, Inc. | Method and apparatus for controlling ion energy distribution |
US9309594B2 (en) | 2010-04-26 | 2016-04-12 | Advanced Energy Industries, Inc. | System, method and apparatus for controlling ion energy distribution of a projected plasma |
US9362089B2 (en) | 2010-08-29 | 2016-06-07 | Advanced Energy Industries, Inc. | Method of controlling the switched mode ion energy distribution system |
US9685297B2 (en) | 2012-08-28 | 2017-06-20 | Advanced Energy Industries, Inc. | Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system |
US9210790B2 (en) | 2012-08-28 | 2015-12-08 | Advanced Energy Industries, Inc. | Systems and methods for calibrating a switched mode ion energy distribution system |
KR102085496B1 (en) | 2012-08-28 | 2020-03-05 | 에이이에스 글로벌 홀딩스 피티이 리미티드 | Wide dynamic range ion energy bias control; fast ion energy switching; ion energy control and pulsed bias supply; and a virtual front panel |
US11270871B2 (en) | 2017-05-21 | 2022-03-08 | Jiangsu Favored Nanotechnology Co., LTD | Multi-layer protective coating |
CN107177835B (en) * | 2017-05-21 | 2018-06-19 | 江苏菲沃泰纳米科技有限公司 | A kind of method for recycling big space rate pulsed discharge and preparing multi-functional nano protecting coating |
US10002746B1 (en) * | 2017-09-13 | 2018-06-19 | Lam Research Corporation | Multi regime plasma wafer processing to increase directionality of ions |
TWI767088B (en) | 2017-11-17 | 2022-06-11 | 新加坡商Aes全球公司 | Plasma processing system, control method for modulating supplies therein and related plasma processing control system |
TWI744566B (en) | 2017-11-17 | 2021-11-01 | 新加坡商Aes全球公司 | Systems and methods for spatially and temporally controlling plasma processing on substrates and related computer-readable medium |
EP4231328A1 (en) | 2017-11-17 | 2023-08-23 | AES Global Holdings, Pte. Ltd. | Synchronized pulsing of plasma processing source and substrate bias |
US11437221B2 (en) | 2017-11-17 | 2022-09-06 | Advanced Energy Industries, Inc. | Spatial monitoring and control of plasma processing environments |
JP7603649B2 (en) | 2019-07-12 | 2024-12-20 | エーイーエス グローバル ホールディングス, プライベート リミテッド | Bias supply with single controlled switch - Patents.com |
US12125674B2 (en) | 2020-05-11 | 2024-10-22 | Advanced Energy Industries, Inc. | Surface charge and power feedback and control using a switch mode bias system |
US11670487B1 (en) | 2022-01-26 | 2023-06-06 | Advanced Energy Industries, Inc. | Bias supply control and data processing |
US12046448B2 (en) | 2022-01-26 | 2024-07-23 | Advanced Energy Industries, Inc. | Active switch on time control for bias supply |
US11942309B2 (en) | 2022-01-26 | 2024-03-26 | Advanced Energy Industries, Inc. | Bias supply with resonant switching |
US11978613B2 (en) | 2022-09-01 | 2024-05-07 | Advanced Energy Industries, Inc. | Transition control in a bias supply |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539098A (en) * | 1984-06-22 | 1985-09-03 | Phillips Petroleum Company | Upgrading carbonaceous materials |
US4837185A (en) * | 1988-10-26 | 1989-06-06 | Intel Corporation | Pulsed dual radio frequency CVD process |
US5041201A (en) * | 1988-09-16 | 1991-08-20 | Semiconductor Energy Laboratory Co., Ltd. | Plasma processing method and apparatus |
EP0578010A1 (en) * | 1992-06-24 | 1994-01-12 | Texas Instruments Incorporated | Multi-zone plasma processing method |
US6059935A (en) * | 1995-06-19 | 2000-05-09 | The University Of Tennessee Research Corporation | Discharge method and apparatus for generating plasmas |
US6660656B2 (en) * | 1998-02-11 | 2003-12-09 | Applied Materials Inc. | Plasma processes for depositing low dielectric constant films |
-
2003
- 2003-04-15 DE DE10317208A patent/DE10317208A1/en not_active Ceased
-
2004
- 2004-04-13 GB GB0408257A patent/GB2400613B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539098A (en) * | 1984-06-22 | 1985-09-03 | Phillips Petroleum Company | Upgrading carbonaceous materials |
US5041201A (en) * | 1988-09-16 | 1991-08-20 | Semiconductor Energy Laboratory Co., Ltd. | Plasma processing method and apparatus |
US4837185A (en) * | 1988-10-26 | 1989-06-06 | Intel Corporation | Pulsed dual radio frequency CVD process |
EP0578010A1 (en) * | 1992-06-24 | 1994-01-12 | Texas Instruments Incorporated | Multi-zone plasma processing method |
US6059935A (en) * | 1995-06-19 | 2000-05-09 | The University Of Tennessee Research Corporation | Discharge method and apparatus for generating plasmas |
US6660656B2 (en) * | 1998-02-11 | 2003-12-09 | Applied Materials Inc. | Plasma processes for depositing low dielectric constant films |
Non-Patent Citations (1)
Title |
---|
Deposition rate in modulated radio-frequency silane plasmas, Biebericher A et al, Applied Physics Letter, Vol 76 (15) pp 2002-2004, 10 April 2000 * |
Also Published As
Publication number | Publication date |
---|---|
GB2400613A (en) | 2004-10-20 |
DE10317208A1 (en) | 2004-11-04 |
GB0408257D0 (en) | 2004-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2400613B (en) | Plasma deposition method | |
AU2003236309A8 (en) | Plasma etching method | |
AU158409S (en) | Showerhead | |
GB0323671D0 (en) | Vapour deposition method | |
EP1675596A4 (en) | Method | |
GB0304726D0 (en) | New Process | |
GB0301117D0 (en) | Method | |
GB2414693B (en) | Method for electrostatic coating | |
EP1699274A4 (en) | Plasma discharger | |
GB2404886B (en) | Coating method | |
SI1445242T1 (en) | Coating for facades | |
AU2003255391A1 (en) | Mechanical deposition process | |
GB0308852D0 (en) | Method | |
EP1477580A3 (en) | Deposition method using multiple deposition chambers | |
GB0325055D0 (en) | New process | |
GB0307329D0 (en) | Method | |
GB0308696D0 (en) | New process | |
TWI318587B (en) | Film-forming method | |
GB0304632D0 (en) | Method | |
EP1612264A4 (en) | Organ-forming method | |
GB0303536D0 (en) | Method | |
AU2003906600A0 (en) | Method for multiple blasting | |
GB0302401D0 (en) | Alloy deposition | |
HU0304011D0 (en) | New process | |
GB0325051D0 (en) | New process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 20160413 |