GB2484929A - An edible product including plant protein - Google Patents
An edible product including plant protein Download PDFInfo
- Publication number
- GB2484929A GB2484929A GB1018030.5A GB201018030A GB2484929A GB 2484929 A GB2484929 A GB 2484929A GB 201018030 A GB201018030 A GB 201018030A GB 2484929 A GB2484929 A GB 2484929A
- Authority
- GB
- United Kingdom
- Prior art keywords
- sugar
- protein
- edible product
- plant protein
- individual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108010064851 Plant Proteins Proteins 0.000 title claims abstract description 102
- 235000021118 plant-derived protein Nutrition 0.000 title claims abstract description 102
- 239000003765 sweetening agent Substances 0.000 claims abstract description 73
- 235000000346 sugar Nutrition 0.000 claims abstract description 65
- 235000021092 sugar substitutes Nutrition 0.000 claims abstract description 53
- 108010084695 Pea Proteins Proteins 0.000 claims abstract description 50
- 235000019702 pea protein Nutrition 0.000 claims abstract description 50
- 229930006000 Sucrose Natural products 0.000 claims abstract description 36
- 239000005720 sucrose Substances 0.000 claims abstract description 36
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims abstract description 35
- 239000004376 Sucralose Substances 0.000 claims abstract description 32
- 235000019408 sucralose Nutrition 0.000 claims abstract description 32
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 claims abstract description 32
- 230000036186 satiety Effects 0.000 claims abstract description 31
- 235000019627 satiety Nutrition 0.000 claims abstract description 31
- 230000007062 hydrolysis Effects 0.000 claims abstract description 24
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 24
- 208000008589 Obesity Diseases 0.000 claims abstract description 13
- 235000020824 obesity Nutrition 0.000 claims abstract description 13
- 108010011485 Aspartame Proteins 0.000 claims abstract description 11
- 239000000605 aspartame Substances 0.000 claims abstract description 11
- 235000010357 aspartame Nutrition 0.000 claims abstract description 11
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 claims abstract description 11
- 229960003438 aspartame Drugs 0.000 claims abstract description 11
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 claims abstract description 8
- 239000000619 acesulfame-K Substances 0.000 claims abstract description 8
- 241000209140 Triticum Species 0.000 claims abstract description 7
- 235000021307 Triticum Nutrition 0.000 claims abstract description 7
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 claims abstract description 5
- 108010073771 Soybean Proteins Proteins 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 43
- 235000018102 proteins Nutrition 0.000 claims description 37
- 102000004169 proteins and genes Human genes 0.000 claims description 37
- 108090000623 proteins and genes Proteins 0.000 claims description 36
- 230000001965 increasing effect Effects 0.000 claims description 26
- 235000013615 non-nutritive sweetener Nutrition 0.000 claims description 25
- 239000008123 high-intensity sweetener Substances 0.000 claims description 24
- 241000219843 Pisum Species 0.000 claims description 23
- 210000001198 duodenum Anatomy 0.000 claims description 21
- 241000196324 Embryophyta Species 0.000 claims description 14
- 239000002702 enteric coating Substances 0.000 claims description 11
- 238000009505 enteric coating Methods 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 10
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 8
- 235000019202 steviosides Nutrition 0.000 claims description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 7
- 239000008103 glucose Substances 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 6
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 claims description 6
- RPYRMTHVSUWHSV-CUZJHZIBSA-N rebaudioside D Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RPYRMTHVSUWHSV-CUZJHZIBSA-N 0.000 claims description 6
- QSRAJVGDWKFOGU-WBXIDTKBSA-N rebaudioside c Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O[C@H]1O[C@]1(CC[C@H]2[C@@]3(C)[C@@H]([C@](CCC3)(C)C(=O)O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)CC3)C(=C)C[C@]23C1 QSRAJVGDWKFOGU-WBXIDTKBSA-N 0.000 claims description 6
- 150000005846 sugar alcohols Chemical class 0.000 claims description 6
- 239000004383 Steviol glycoside Substances 0.000 claims description 5
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 5
- -1 neotarne Chemical compound 0.000 claims description 5
- 235000019411 steviol glycoside Nutrition 0.000 claims description 5
- 229930182488 steviol glycoside Natural products 0.000 claims description 5
- 150000008144 steviol glycosides Chemical class 0.000 claims description 5
- 239000005715 Fructose Substances 0.000 claims description 4
- 229930091371 Fructose Natural products 0.000 claims description 4
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 4
- 239000002537 cosmetic Substances 0.000 claims description 4
- RMLYXMMBIZLGAQ-UHFFFAOYSA-N (-)-monatin Natural products C1=CC=C2C(CC(O)(CC(N)C(O)=O)C(O)=O)=CNC2=C1 RMLYXMMBIZLGAQ-UHFFFAOYSA-N 0.000 claims description 3
- GHBNZZJYBXQAHG-KUVSNLSMSA-N (2r,3r,4s,5s,6r)-2-[[(2r,3s,4s,5r,6r)-6-[[(3s,8s,9r,10r,11r,13r,14s,17r)-17-[(2r,5r)-5-[(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H](O)[C@@H]1O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@H](CC[C@@H](C)[C@@H]1[C@]2(C[C@@H](O)[C@@]3(C)[C@H]4C(C([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]6[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O6)O)O5)O)CC4)(C)C)=CC[C@H]3[C@]2(C)CC1)C)C(C)(C)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O GHBNZZJYBXQAHG-KUVSNLSMSA-N 0.000 claims description 3
- RMLYXMMBIZLGAQ-HZMBPMFUSA-N (2s,4s)-4-amino-2-hydroxy-2-(1h-indol-3-ylmethyl)pentanedioic acid Chemical compound C1=CC=C2C(C[C@](O)(C[C@H](N)C(O)=O)C(O)=O)=CNC2=C1 RMLYXMMBIZLGAQ-HZMBPMFUSA-N 0.000 claims description 3
- YTKBWWKAVMSYHE-OALUTQOASA-N (3s)-3-[3-(3-hydroxy-4-methoxyphenyl)propylamino]-4-[[(2s)-1-methoxy-1-oxo-3-phenylpropan-2-yl]amino]-4-oxobutanoic acid Chemical compound C([C@@H](C(=O)OC)NC(=O)[C@H](CC(O)=O)NCCCC=1C=C(O)C(OC)=CC=1)C1=CC=CC=C1 YTKBWWKAVMSYHE-OALUTQOASA-N 0.000 claims description 3
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 claims description 3
- 239000004394 Advantame Substances 0.000 claims description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 3
- 239000004386 Erythritol Substances 0.000 claims description 3
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 claims description 3
- 239000001512 FEMA 4601 Substances 0.000 claims description 3
- 239000001776 FEMA 4720 Substances 0.000 claims description 3
- 239000004378 Glycyrrhizin Substances 0.000 claims description 3
- 229920002774 Maltodextrin Polymers 0.000 claims description 3
- 239000005913 Maltodextrin Substances 0.000 claims description 3
- 108050004114 Monellin Proteins 0.000 claims description 3
- 108010093901 N-(N-(3-(3-hydroxy-4-methoxyphenyl) propyl)-alpha-aspartyl)-L-phenylalanine 1-methyl ester Proteins 0.000 claims description 3
- 101000865553 Pentadiplandra brazzeana Defensin-like protein Proteins 0.000 claims description 3
- HELXLJCILKEWJH-SEAGSNCFSA-N Rebaudioside A Natural products O=C(O[C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1)[C@@]1(C)[C@@H]2[C@](C)([C@H]3[C@@]4(CC(=C)[C@@](O[C@H]5[C@H](O[C@H]6[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O6)[C@@H](O[C@H]6[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O6)[C@H](O)[C@@H](CO)O5)(C4)CC3)CC2)CCC1 HELXLJCILKEWJH-SEAGSNCFSA-N 0.000 claims description 3
- RLLCWNUIHGPAJY-RYBZXKSASA-N Rebaudioside E Natural products O=C(O[C@H]1[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O2)[C@@H](O)[C@@H](O)[C@H](CO)O1)[C@]1(C)[C@@H]2[C@@](C)([C@@H]3[C@@]4(CC(=C)[C@@](O[C@@H]5[C@@H](O[C@@H]6[C@@H](O)[C@H](O)[C@@H](O)[C@H](CO)O6)[C@H](O)[C@@H](O)[C@H](CO)O5)(C4)CC3)CC2)CCC1 RLLCWNUIHGPAJY-RYBZXKSASA-N 0.000 claims description 3
- QFVOYBUQQBFCRH-UHFFFAOYSA-N Steviol Natural products C1CC2(C3)CC(=C)C3(O)CCC2C2(C)C1C(C)(C(O)=O)CCC2 QFVOYBUQQBFCRH-UHFFFAOYSA-N 0.000 claims description 3
- UEDUENGHJMELGK-HYDKPPNVSA-N Stevioside Chemical group O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UEDUENGHJMELGK-HYDKPPNVSA-N 0.000 claims description 3
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 3
- 235000010358 acesulfame potassium Nutrition 0.000 claims description 3
- 235000019453 advantame Nutrition 0.000 claims description 3
- 229940109275 cyclamate Drugs 0.000 claims description 3
- HELXLJCILKEWJH-UHFFFAOYSA-N entered according to Sigma 01432 Natural products C1CC2C3(C)CCCC(C)(C(=O)OC4C(C(O)C(O)C(CO)O4)O)C3CCC2(C2)CC(=C)C21OC(C1OC2C(C(O)C(O)C(CO)O2)O)OC(CO)C(O)C1OC1OC(CO)C(O)C(O)C1O HELXLJCILKEWJH-UHFFFAOYSA-N 0.000 claims description 3
- 235000019414 erythritol Nutrition 0.000 claims description 3
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 claims description 3
- 229940009714 erythritol Drugs 0.000 claims description 3
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 claims description 3
- 229960004949 glycyrrhizic acid Drugs 0.000 claims description 3
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 claims description 3
- 235000019410 glycyrrhizin Nutrition 0.000 claims description 3
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 claims description 3
- 235000010439 isomalt Nutrition 0.000 claims description 3
- 239000000905 isomalt Substances 0.000 claims description 3
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 claims description 3
- 235000010448 lactitol Nutrition 0.000 claims description 3
- 239000000832 lactitol Substances 0.000 claims description 3
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 claims description 3
- 229960003451 lactitol Drugs 0.000 claims description 3
- 235000010449 maltitol Nutrition 0.000 claims description 3
- 239000000845 maltitol Substances 0.000 claims description 3
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 claims description 3
- 229940035436 maltitol Drugs 0.000 claims description 3
- 229940035034 maltodextrin Drugs 0.000 claims description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 3
- TVJXHJAWHUMLLG-UHFFFAOYSA-N mogroside V Natural products CC(CCC(OC1OC(COC2OC(CO)C(O)C(O)C2OC3OC(CO)C(O)C(O)C3O)C(O)C(O)C1O)C(C)(C)O)C4CCC5(C)C6CC=C7C(CCC(OC8OC(COC9OC(CO)C(O)C(O)C9O)C(O)C(O)C8O)C7(C)C)C6(C)C(O)CC45C TVJXHJAWHUMLLG-UHFFFAOYSA-N 0.000 claims description 3
- ITVGXXMINPYUHD-CUVHLRMHSA-N neohesperidin dihydrochalcone Chemical compound C1=C(O)C(OC)=CC=C1CCC(=O)C(C(=C1)O)=C(O)C=C1O[C@H]1[C@H](O[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 ITVGXXMINPYUHD-CUVHLRMHSA-N 0.000 claims description 3
- 235000019203 rebaudioside A Nutrition 0.000 claims description 3
- RLLCWNUIHGPAJY-SFUUMPFESA-N rebaudioside E Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RLLCWNUIHGPAJY-SFUUMPFESA-N 0.000 claims description 3
- 235000019204 saccharin Nutrition 0.000 claims description 3
- 229940081974 saccharin Drugs 0.000 claims description 3
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 claims description 3
- 235000010356 sorbitol Nutrition 0.000 claims description 3
- 239000000600 sorbitol Substances 0.000 claims description 3
- 229960002920 sorbitol Drugs 0.000 claims description 3
- QFVOYBUQQBFCRH-VQSWZGCSSA-N steviol Chemical compound C([C@@]1(O)C(=C)C[C@@]2(C1)CC1)C[C@H]2[C@@]2(C)[C@H]1[C@](C)(C(O)=O)CCC2 QFVOYBUQQBFCRH-VQSWZGCSSA-N 0.000 claims description 3
- 229940032084 steviol Drugs 0.000 claims description 3
- OHHNJQXIOPOJSC-UHFFFAOYSA-N stevioside Natural products CC1(CCCC2(C)C3(C)CCC4(CC3(CCC12C)CC4=C)OC5OC(CO)C(O)C(O)C5OC6OC(CO)C(O)C(O)C6O)C(=O)OC7OC(CO)C(O)C(O)C7O OHHNJQXIOPOJSC-UHFFFAOYSA-N 0.000 claims description 3
- 229940013618 stevioside Drugs 0.000 claims description 3
- 235000010436 thaumatin Nutrition 0.000 claims description 3
- 239000000892 thaumatin Substances 0.000 claims description 3
- 235000010447 xylitol Nutrition 0.000 claims description 3
- 239000000811 xylitol Substances 0.000 claims description 3
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 3
- 229960002675 xylitol Drugs 0.000 claims description 3
- NUFKRGBSZPCGQB-FLBSXDLDSA-N (3s)-3-amino-4-oxo-4-[[(2r)-1-oxo-1-[(2,2,4,4-tetramethylthietan-3-yl)amino]propan-2-yl]amino]butanoic acid;pentahydrate Chemical compound O.O.O.O.O.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C NUFKRGBSZPCGQB-FLBSXDLDSA-N 0.000 claims description 2
- 239000004377 Alitame Substances 0.000 claims description 2
- 235000019409 alitame Nutrition 0.000 claims description 2
- 108010009985 alitame Proteins 0.000 claims description 2
- 229940001941 soy protein Drugs 0.000 claims description 2
- 230000001225 therapeutic effect Effects 0.000 claims description 2
- 241000544066 Stevia Species 0.000 claims 1
- 241000894007 species Species 0.000 claims 1
- DRSKVOAJKLUMCL-MMUIXFKXSA-N u2n4xkx7hp Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(O)=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DRSKVOAJKLUMCL-MMUIXFKXSA-N 0.000 claims 1
- 229960004793 sucrose Drugs 0.000 abstract 1
- 239000000047 product Substances 0.000 description 60
- 239000000306 component Substances 0.000 description 47
- 239000003981 vehicle Substances 0.000 description 39
- 238000000576 coating method Methods 0.000 description 33
- 101800001982 Cholecystokinin Proteins 0.000 description 31
- 102100025841 Cholecystokinin Human genes 0.000 description 31
- 101500016415 Lophius americanus Glucagon-like peptide 1 Proteins 0.000 description 31
- 229940107137 cholecystokinin Drugs 0.000 description 31
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 31
- 239000002245 particle Substances 0.000 description 27
- 239000011248 coating agent Substances 0.000 description 26
- 235000010582 Pisum sativum Nutrition 0.000 description 23
- 235000003599 food sweetener Nutrition 0.000 description 20
- 239000000203 mixture Substances 0.000 description 20
- 210000002784 stomach Anatomy 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 19
- 229940088597 hormone Drugs 0.000 description 19
- 239000005556 hormone Substances 0.000 description 19
- 238000001574 biopsy Methods 0.000 description 18
- 239000013642 negative control Substances 0.000 description 15
- 235000013305 food Nutrition 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 14
- 241000282414 Homo sapiens Species 0.000 description 13
- 239000003814 drug Substances 0.000 description 13
- 230000002183 duodenal effect Effects 0.000 description 13
- 239000011859 microparticle Substances 0.000 description 12
- 210000000813 small intestine Anatomy 0.000 description 12
- 102100030511 Stanniocalcin-1 Human genes 0.000 description 11
- 101710142157 Stanniocalcin-1 Proteins 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 235000009508 confectionery Nutrition 0.000 description 10
- 239000000796 flavoring agent Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000028327 secretion Effects 0.000 description 10
- 235000019577 caloric intake Nutrition 0.000 description 8
- 235000019634 flavors Nutrition 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000003556 assay Methods 0.000 description 7
- 239000002775 capsule Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 235000012631 food intake Nutrition 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 240000004713 Pisum sativum Species 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 239000008199 coating composition Substances 0.000 description 6
- 235000003642 hunger Nutrition 0.000 description 6
- 235000012054 meals Nutrition 0.000 description 6
- 239000004014 plasticizer Substances 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 5
- 229930195725 Mannitol Natural products 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 235000013373 food additive Nutrition 0.000 description 5
- 239000002778 food additive Substances 0.000 description 5
- 230000037406 food intake Effects 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N lactose group Chemical group OC1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@@H](O)[C@H](O2)CO)[C@H](O1)CO GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 5
- 235000010355 mannitol Nutrition 0.000 description 5
- 239000000594 mannitol Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000008107 starch Substances 0.000 description 5
- 229940032147 starch Drugs 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- 239000012981 Hank's balanced salt solution Substances 0.000 description 4
- 206010033307 Overweight Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 235000013361 beverage Nutrition 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 159000000007 calcium salts Chemical class 0.000 description 4
- 239000000625 cyclamic acid and its Na and Ca salt Substances 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 235000019527 sweetened beverage Nutrition 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- 101001032756 Rattus norvegicus Granzyme-like protein 1 Proteins 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 239000008122 artificial sweetener Substances 0.000 description 3
- 235000021311 artificial sweeteners Nutrition 0.000 description 3
- 235000019219 chocolate Nutrition 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- 235000015872 dietary supplement Nutrition 0.000 description 3
- 239000007884 disintegrant Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 235000012041 food component Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- KVHQNWGLVVERFR-ACMTZBLWSA-N (3s)-3-amino-4-[[(2s)-1-methoxy-1-oxo-3-phenylpropan-2-yl]amino]-4-oxobutanoic acid;6-methyl-2,2-dioxooxathiazin-4-one Chemical compound CC1=CC(=O)[NH2+]S(=O)(=O)O1.[O-]C(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 KVHQNWGLVVERFR-ACMTZBLWSA-N 0.000 description 2
- 239000004385 Aspartame-acesulfame salt Substances 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108010076119 Caseins Proteins 0.000 description 2
- 229920002785 Croscarmellose sodium Polymers 0.000 description 2
- UDIPTWFVPPPURJ-UHFFFAOYSA-M Cyclamate Chemical compound [Na+].[O-]S(=O)(=O)NC1CCCCC1 UDIPTWFVPPPURJ-UHFFFAOYSA-M 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 239000004384 Neotame Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 244000228451 Stevia rebaudiana Species 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 241000473945 Theria <moth genus> Species 0.000 description 2
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 2
- 102000007544 Whey Proteins Human genes 0.000 description 2
- 108010046377 Whey Proteins Proteins 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 235000019789 appetite Nutrition 0.000 description 2
- 230000036528 appetite Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 235000019413 aspartame-acesulfame salt Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- YILGKTWKKDLHAF-DUXFSIBLSA-M chembl2368344 Chemical compound [Na+].O([C@@H]1[C@H](CO)O[C@H]([C@H]([C@H]1O)O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C([O-])=O)[C@@H]1O[C@@H](CO)[C@@H](O)[C@H](O)[C@@H]1O YILGKTWKKDLHAF-DUXFSIBLSA-M 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001688 coating polymer Polymers 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000037029 cross reaction Effects 0.000 description 2
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000007831 electrophysiology Effects 0.000 description 2
- 238000002001 electrophysiology Methods 0.000 description 2
- 210000003158 enteroendocrine cell Anatomy 0.000 description 2
- 238000011067 equilibration Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 239000005428 food component Substances 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 235000019412 neotame Nutrition 0.000 description 2
- HLIAVLHNDJUHFG-HOTGVXAUSA-N neotame Chemical compound CC(C)(C)CCN[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 HLIAVLHNDJUHFG-HOTGVXAUSA-N 0.000 description 2
- 108010070257 neotame Proteins 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000003531 protein hydrolysate Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 235000013618 yogurt Nutrition 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 101000883510 Bos taurus Chitinase-3-like protein 1 Proteins 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 125000002353 D-glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 102100028675 DNA polymerase subunit gamma-2, mitochondrial Human genes 0.000 description 1
- 239000004908 Emulsion polymer Substances 0.000 description 1
- 208000001976 Endocrine Gland Neoplasms Diseases 0.000 description 1
- 244000024675 Eruca sativa Species 0.000 description 1
- 235000014755 Eruca sativa Nutrition 0.000 description 1
- 229920003136 Eudragit® L polymer Polymers 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 102400000921 Gastrin Human genes 0.000 description 1
- 108010052343 Gastrins Proteins 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 102000051325 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 102400000326 Glucagon-like peptide 2 Human genes 0.000 description 1
- 101800000221 Glucagon-like peptide 2 Proteins 0.000 description 1
- 101000837415 Homo sapiens DNA polymerase subunit gamma-2, mitochondrial Proteins 0.000 description 1
- 101001021281 Homo sapiens Protein HEXIM1 Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000004407 Lactalbumin Human genes 0.000 description 1
- 108090000942 Lactalbumin Proteins 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 101000993459 Mus musculus Metal transporter CNNM1 Proteins 0.000 description 1
- 101100412856 Mus musculus Rhod gene Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102100036307 Protein HEXIM1 Human genes 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 101000965899 Simian virus 40 Large T antigen Proteins 0.000 description 1
- 101710185500 Small t antigen Proteins 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 238000001793 Wilcoxon signed-rank test Methods 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 235000019728 animal nutrition Nutrition 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 239000003911 antiadherent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 235000015155 buttermilk Nutrition 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 235000019543 dairy drink Nutrition 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000021196 dietary intervention Nutrition 0.000 description 1
- 235000021245 dietary protein Nutrition 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 201000011523 endocrine gland cancer Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- GDCRSXZBSIRSFR-UHFFFAOYSA-N ethyl prop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CCOC(=O)C=C GDCRSXZBSIRSFR-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229960003883 furosemide Drugs 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- TWSALRJGPBVBQU-PKQQPRCHSA-N glucagon-like peptide 2 Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O)[C@@H](C)CC)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=CC=C1 TWSALRJGPBVBQU-PKQQPRCHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 235000011868 grain product Nutrition 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 235000008085 high protein diet Nutrition 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 229920000639 hydroxypropylmethylcellulose acetate succinate Polymers 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 210000001630 jejunum Anatomy 0.000 description 1
- 230000003050 macronutrient Effects 0.000 description 1
- 235000008528 macronutrient intake Nutrition 0.000 description 1
- 235000021073 macronutrients Nutrition 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003232 mucoadhesive effect Effects 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 235000019533 nutritive sweetener Nutrition 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 238000012898 one-sample t-test Methods 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000014594 pastries Nutrition 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 235000010408 potassium alginate Nutrition 0.000 description 1
- 239000000737 potassium alginate Substances 0.000 description 1
- MZYRDLHIWXQJCQ-YZOKENDUSA-L potassium alginate Chemical compound [K+].[K+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O MZYRDLHIWXQJCQ-YZOKENDUSA-L 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 235000019553 satiation Nutrition 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- RMLUKZWYIKEASN-UHFFFAOYSA-M sodium;2-amino-9-(2-hydroxyethoxymethyl)purin-6-olate Chemical compound [Na+].O=C1[N-]C(N)=NC2=C1N=CN2COCCO RMLUKZWYIKEASN-UHFFFAOYSA-M 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000021055 solid food Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 238000012762 unpaired Student’s t-test Methods 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 230000037221 weight management Effects 0.000 description 1
- 235000021119 whey protein Nutrition 0.000 description 1
- 235000008939 whole milk Nutrition 0.000 description 1
- 235000021241 α-lactalbumin Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/60—Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/185—Vegetable proteins
-
- A23L1/3055—
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L21/00—Marmalades, jams, jellies or the like; Products from apiculture; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/30—Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/30—Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
- A23L29/35—Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/30—Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
- A23L29/37—Sugar alcohols
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/125—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/30—Dietetic or nutritional methods, e.g. for losing weight
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L9/00—Puddings; Cream substitutes; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23P—SHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
- A23P10/00—Shaping or working of foodstuffs characterised by the products
- A23P10/30—Encapsulation of particles, e.g. foodstuff additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/48—Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/64—Proteins; Peptides; Derivatives or degradation products thereof
- A61K8/645—Proteins of vegetable origin; Derivatives or degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/06—Preparations for care of the skin for countering cellulitis
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L7/00—Cereal-derived products; Malt products; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/92—Oral administration
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Birds (AREA)
- Alternative & Traditional Medicine (AREA)
- Biotechnology (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dermatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Child & Adolescent Psychology (AREA)
- Medicinal Preparation (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
An edible product comprises an intact plant protein, a sugar in an amount greater than two times the amount of intact plant protein by weight or a sugar substitute, and a delivery vehicle. The delivery vehicle is for at least partially protecting the plant protein from hydrolysis. The edible product may be used to induce or increase satiety in an individual, and may be used to treat clinical or non-clinical obesity. Preferably, the intact plant protein comprises wheat protein, soy and/or pea protein. The sugar may be sucrose, aspartame, acesulfame K, saccharine or sucralose.
Description
I
An Edible Product
Field of the Invention
The present invention relates to an edible product and, in particular, an edible product comprising a plant protein. The invention also relates to a method of inducing or increasing satiety in an individual and also to a method for treating clinical or non-clinical obesity.
Background of the Invention
Over the last few decades, the food consumption of individuals and, more specifically, the caloric intake of individuals have increased significantly. This development has occurred in most Western countries and also in many other countries worldwide. Such a change in diet has given risen to an increase in the number of overweight individuals and individuals who are obese, either in a clinical sense (Le. requiring medical attention) or in a non-clinical sense (i.e. for cosmetic reasons the individual would prefer to lose weight). As a consequence, there has been considerable interest in identifying products that reduce or alleviate feelings of hunger, that is to say products that induce or increase satiety in an individual so that individuals can more easily regulate their consumption of food and keep food consumption within healthy limits.
It is, of course, known that, generally speaking, the feeling of hunger in an individual recedes and satiety increases, after consuming food. The identification of products that induce or increase satiety in an individual has involved a greater understanding of the biochemical and physiological of food components in influencing feelings of hunger and satiety in individuals. In particular, it has been found that nutrient induced gut-to-brain signalling plays a major role in the control of the digestive function, appetite, and energy intake [1}. These effects are mediated by a number of interrelated factors, including the release of signalling peptides from enteroendocrine cells, such as cholecystokinin (CCK) and glucagon-like peptide I (GLP-1). Most of these hormones are secreted upon food intake, and contribute to the termination of the meal, Since overweight individuals and obesity have become a major health problem [2), several types of diets have focused on favourable macronutrient compositions in order to stimulate the release of these satiety hormones [3-8].
Of all diets tested, high-protein diets seem to have the largest effects on reducing food intake [9, 101. The effects of several protein hydrolysates on the release of CCK from the enteroendocrine STC-1 cell line have been determined [11]. It has been shown that all hydrolysates were able to induce elevated levels of CCK, but there were no differences between the hydrolysates. It has also been demonstrated that intact proteins are the most potent in stimulating CCK and GLP-1 release versus hydrolysates and specific peptides. Pea hydrolysate has been reported as most effective in suppressing hunger and stimulating satiety when compared with whole milk protein [12] It has been reported that some proteins (alpha-lactalbumin, gelatin, gelatin + TRP) are more satiating than other proteins (casein, soy, whey, whey-GMP) [411.
W020091053487 discloses that intact pea protein is particularly effective in increasing release of GLP-1 and is therefore believed to be effective in inducing or increasing satiety in humans. It is also reported therein that intact pea protein is suitable for reducing appetite andfor inducing or increasing satiety when brought into contact with receptors in the duodenum. W02009/053487 also discloses the provision of intact pea protein or intact wheat protein incorporated into a delivery vehicle so as to avoid hydrolysis of the protein in the stomach thereby ensuring that intact protein reaches the duodenum of an individual consuming the protein.
Over the past few years, not only food intake, but also consumption of soft drinks has increased [1 3. This high consumption of sugar-sweetened beverages has been linked with increased energy intake and obesity [141. It has been demonstrated that overweight subjects who consume large amounts of caloric-sweetened beverages increase energy intake, body weight, fat mass, and blood pressure after a 10 week intervention, whereas this is not observed in a similar group receiving artificial sweeteners [151. It has been suggested that intake of caloric sweetened beverages is linked to obesity, related to the potential mediating role of energy intake, e.g. that intake of caloric sweetened beverages brings less satiation, causing a higher amount of calories consumed at a given meal and thereby a higher daily energy intake [16, 17].
It has also been suggested that the intake of caloric sweetened beverages fails to trigger physiological satiety mechanisms, providing imprecise and incomplete energy compensation [18].
Accordingly, there remains a need to develop new products that induce or increase satiety in individuals. There is also a need for methods to treat or alleviate both clinical and non-clinical obesity.
S Summary of the Invention
According to one aspect of the present invention there is provided an edible product comprising: i) intact plant protein ii) a sugar or sugar substitute; and iii) a delivery vehicle for at least partially protecting the plant protein from hydrolysis, such as in the upper GI tract.
It is preferred that the sugar is not an inactive water soluble sugar. In particular, it is preferred that the sugar is not lactose, mannitol or tretalose.
lt is also preferred that the plant protein is an isolated plant protein, in this context, the term "isolated" means that the plant protein is separated from other components in it naturally occurring environment such as starch and fibers.
It is preferred that the sugar is provided in an amount greater than 2 times, preferably 2.5, 3, 4 or 5 times, the amount of plant protein, by weight.
Conveniently, the delivery vehicle comprises an enteric coating of at least the plant protein.
Preferably, the product comprises at least Sg of the plant protein, more preferably at least lOg of the plant protein.
Advantageously, the product comprises between 2mg and 100mg of the sugar Alternatively, the product comprises at least 5g of sugar, preferably at least lOg, lSg or 20g of sugar.
Conveniently, the product further comprises a delivery vehicle for at least partially protecting the sugar or sugar substitute from hydrolysis According to another aspect of the present invention there is provided a method of inducing or increasing satiety in an individual comprising the steps of: i) delivering an intact plant protein to the duodenum of the individual; and ii) delivering a sugar or sugar substitute to the duodenum of the individual! Preferably, the method is non-therapeutic, such as forming part of a weight management programme.
According to a further aspect of the present invention there is provided a method of treating obesity in or controlling weight of an individual comprising the steps of: i) delivering an intact plant protein to the duodenum of the individual; and ii) delivering a sugar or sugar substitute to the duodenum of the individual.
It is to be appreciated that the sugar or sugar substitute is provided in these methods for its effect in inducing or increasing satiety and/or treating obesity.
Advantageously, the method is a cosmetic method.
It is preferred that the sugar is provided in an amount greater than 2 times, preferably, 2.5, 3, 4 or 5 times, the amount of plant protein, by weight.
Conveniently1 the individual has a body mass index of greater than 25, preferably greater than 30.
Preferably, the intact plant protein comprises or consists of wheat protein, soy protein and/or pea protein.
Advantageously, the intact plant protein comprises or consists of a proteinaceous extract of a plant of the species Pisum sativum.
Preferably, the sugar substitute is a high intensity sweetener or a sugar alcohol.
Advantageously, the high intensity sweetener is a naturally occurring or non-naturally occurring high intensity sweetener.
Conveniently, the naturally occurring high intensity sweetener comprises a protein, preferably Thaumatin, Brazzein or Monellin.
Alternatively, the naturally occurring high intensity sweetener comprises Stevia, a Steviol glycoside, Mogroside V (Lo Han Guo), Monatin or Glycyrrhizin.
io Advantageously the Steviol glycoside is stevioside, steviol, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D or Rebaudioside E. Conveniently, the non-naturally occurring high intensity sweetener comprises a peptide, preferably aspartame (or a salt of aspartame-acesulfame), neotame, advantame oralitame.
Alternatively, the non-naturally occurring high intensity sweetener comprises a halosugar, preferably sucralose.
Alternatively, the non-naturally occurring high intensity sweetener comprises Acesulfame-K, Saccharin (or sodium, potassium or calcium salts thereof), Cyclamate (that is to say, the sodium salt of cyclamic acid although the high intensity sweetener may alternatively be cyclamic acid or its calcium salt) or neohesperidin DC.
Preferably, the sugar comprises sucrose, glucose or fructose.
Advantageously, the sugar alcohol comprises xylitol, sorbitol, maltitol, erythritol, isomalt or lactitol.
Alternatively, the sugar substitute comprises a precursor of a sugar or a sugar substitute. The precursor preferably comprises maltodextrin.
Conveniently, the method comprises administering to the individual an edible product in accordance with the invention.
Definitions As used herein, the term "delivery vehicle" means a physical product that protects the plant protein from hydrolysis in the stomach of an individual. Such protection may be only partial protection but a greater amount of the plant protein passes through the stomach of an individual without hydrolysis in the presence of the delivery vehicle compared with the absence of the delivery vehicle. In general terms, the delivery vehicle provides a physical barrier between the plant protein and acidic and/or proteolytic environments.
As used herein the term "edible product" means a product that can be safely eaten by humans when consumed in physiological amounts. lt includes products that comprise ingredients that are generally regarded as safe and ingredients that have specifically received regulatory approval. Edible products include foods such as cereal products and energy bars as well as beverages such as protein shakes.
As used herein the term "plant protein" means a proteinaceous extract from a plant.
That is to say a composition obtained from a plant that primarily (e.g. at least 90% by weight) comprises proteins from the plant. The proteins may be a mixture of plant proteins or may be a single plant protein.
As used herein the term "sugar" means any edible crystalline carbohydrate having a sweet flavour, for example sucrose, glucose and fructose.
As used herein, the term "sugar substitute" means a natural or synthetic food additive (aside from a sugar) that has a sweet flavour. The term "sugar substitute" also includes precursors of a sugar or one of the aforesaid food additives which are digested under physiological conditions into products having a sweet flavour. q4[e5
Figure 1 is a graphical representation of hormone release from STC-1 cells after 2h exposure to several sweeteners, pea protein, and combinations of pea protein with the sweeteners. STC-1 cells were exposed to different sweeteners, pea protein, and a combination of pea protein with sweeteners for 2 hours. After the incubation period, CCK (Figure 1A) and GLP-1 (Figure 1B) levels were measured in the supernatant.
Results are expressed as mean ± SEM. * indicates a result significantly different from the negative control, pcO.O5).
Figure 2 is a graphical representation of hormone release from human duodenal biopsies in Ussing chambers after 2h exposure to sucrose, sucralose, pea protein, and combinations of pea protein with the sucralose or sucrose. Duodenal biopsies of lean and obese subjects were exposed to sucrose, sucralose, pea protein, or a combination of pea protein with sucrose or sucralose. The levels of CCK (Figure 2A) and GLP-1 (Figure 2B) were measured in the supernatant of basolateral side of the biopsies in the Ussing Chambers after being exposed to proteins for 2h to the apical side. Results are expressed as mean ± SEM. * indicates results significantly different from negative control, pcO.05). $ indicates results significantly different from lean subjects
Detailed Description
In general terms, the present invention provides an edible product comprising plant protein; a sugar or sugar substitute (which may collectively be referred to as "sweeteners"); and a delivery vehicle for at least partially protecting the plant protein from hydrolysis.
Plant Protein The plant protein may be obtained from any plant. The plant protein is distinguished from naturally occurring sources of plant protein (e.g. raw plants) in that the plant protein is isolated from the other components of plants (e.g. starch and fibers) with which it is associated in its naturally occurring form. Thus, in some embodiments, the plant protein comprises at least 50%, 60%, 70%, 80%, 90%, 95% or 99% by weight protein.
The plant protein may be a single type of protein (i.e. a protein of a single amino acid sequence) but is more preferably a mixture of different proteins. The proteins may be obtained from a single plant species or variety or may be a mixture of protein extracts from different plant species or varieties.
It is preferred that the plant protein is obtained from a plant that is generally regarded as edible. Exemplary plants are pea plants, wheat, soy and potato. Examples of products comprising potato protein include SatietrollM and Slendeista®.
It is important for the efficacy of the present invention that the plant protein, or at least a significant proportion of the plant protein, is intact after being consumed by an individual and passing through the stomach of the individual. The term "intact plant protein" in this context is to be understood to mean non-hydrolysed pea protein. This means that the protein bonds in the intact plant protein fraction should be intact, i.e. a degree of hydrolysis (DH) of less than 5% or even 0%. The Degree of Hydrolysis (DH) may be determined using a rapid OPA test (Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved method for determining food protein degree of hydrolysis. Journal of Food Science 2001, 66, 642-646).
In the context of the present invention, the term intact plant protein is therefore to be interpreted to mean a preparation comprising at least I % non-hydrolysed plant protein, preferably more than 10%, more preferably over 20%, 30%, 40% or 50%, even more preferably over 60%, 70%, 80% or 90%, such as more than 92%, 94%, 96%, 97%, 98% or 99%. The invention therefore relates to an edible product as described above wherein the delivery vehicle comprises between 1 % and 100% intact plant protein as a fraction of the total protein content of the edible product. Intact plant protein may be obtained from commercial sources or freshly isolated from plants.
Pea Protein A preferred plant protein is pea protein. It is particularly preferred that the pea protein is an extract of a plant of the species Pisum sativum such as dried yellow or gold peas.
In principle, any of the available varieties of the species Pisum sativum may be used.
The amino acid profile of the pea protein is set out in Table 1.
Table 1
%fprotein Dry matter 867.0 Prot (N*6.25) 212.0 LYS 15.1 7.5 MET 2.1 1.0 CYS 3.2 1.6 MET+CYS 5.3 2.6 THR 1.8 3.9 TRP 1.9 0.9 ILE 8.1 4.3 ARO 18.7 9.3 PHE 10.0 5.0 HIS 5.3 2.6 LETJ 15.1 7.5 TYR 7.0 3.5 Phe+Tyr -8.4 VAL 9.8 4.9 ALA 9.3 4.6 ASP 24.8 12.3 GLU 35.4 17.5 GLY 9.3 4.6 PRO 8.5 4.2 SER 10.0 5.0 Sum_AA 202.0 100.0 CVB, 2000. [Feedstuf f-tables. Chemical composition, digestibility, and feeding value of feedstuffs.I central Bureau for Animal Nutrition, Lelystad, the Netherlands.
The pea protein may be obtained from commercial sources (such as Nutralys® F pea protein and Nutralys® S pea protein of Roquette, France) or freshly isolated from peas.
A typical process for obtaining pea protein is to harvest peas which are then dried and milled in order to produce a pea flour. The flour is then hydrated and starch and fibres are separated out and removed. The proteins are then flocculated and the pea protein is then purified and carefully dried in an atomiser.
Thus in embodiments of the present invention, the pea protein is isolated from the components with which it is associated in nature.
The pea protein is a particularly preferred plant protein for use in the present invention because it is readily available, is relatively inexpensive and does not have a strong flavour. Sugar
The sugar provided in embodiments of the invention may be any edible crystalline carbohydrate. Exemplary sugars are: sucrose, lactose, fructose, glucose and mixtures thereof. In preferred embodiments, the sugar is sucrose since it has been found that the combination of sucrose and pea protein is particularly effective in raising GLP-1 levels in individuals which is indicative of increasing or inducing satiety in individuals. It is generally preferred that the sugar is not an inactive water soluble sugar such as lactose, mannitol or tretalose.
As an alternative to sugar, embodiments of the present invention may instead comprise a sugar substitute or a mixture of one or more sugars and one or more sugar substitutes. The advantage of providing a sugar substitute is that in many cases the sugar substitute has little or no food energy thus the edible product not only increases or induces satiety in the individual but also does not give rise to significant caloric intake when consumed by the individual.
The sugar substitute may be any natural or synthetic food additive (aside from a sugar) that has a sweet flavour. One category of sugar substitute is sugar alcohols. Examples of sugar alcohols are xylitol, sorbitol, maltitol erythritol, isomalt and lactitol. The other category of sugar substitutes is the high intensity sweeteners which include both naturally occurring and non-naturally occurring high intensity sweeteners. The naturally occurring high intensity sweetener may be a protein such as Thaumatin, Brazzein or Monellin. Other suitable naturally occurring high intensity sweeteners include Stevia, a Steviol glycoside (such as stevioside, steviol, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D and Rebaudioside E), Mogroside V (Lo Han Guo), Monatin and Glycyrrhizin.
S
Alternatively, the high intensity sweetener may be non-naturally occurring such as a peptide (e.g. aspartame, neotame, advantame or alitame) or a halosugar (e.g. sucralose). Other exemplary non-naturally occurring high intensity sweeteners include Acesulfame-K, Saccharin (including sodium, potassium and calcium salts thereof), Cyclamate (that is to say the sodium salt of cyclamic acid, although cyclamic acid, itself, or the calcium salt thereof are other examples) and neohesperidin DC.
Another exemplary high intensity sweetener is a salt of aspartame acesulfame.
It is particularly preferred that sucralose is provided as part of the edible product since it has been found that the combination of sucralose and plant protein (more specifically pea protein) is particularly effective in raising levels of CCK and GLP-1 in individuals which is indicative of increasing or inducing satiety in individuals. Furthermore, sucralose is not hydrolyzed in the stomach after consumption and therefore does not require the provision of a delivery vehicle in order to deliver it to the duodenum where it is believed to have its satiety inducing and/or increasing effect in conjunction with the plant protein. Another preferred sugar substitute is Acesulfame K which has also been found to be very effective in raising GLP-1 levels in individuals when administered in combination with plant protein (more specifically pea protein).
ln further embodiments, the sugar substitute may comprise a precursor that is digested into a food additive having a sweet flavour in the stomach and/or duodenum of an individual. Thus in these embodiments, the sugar substitute, itself, may not have a sweet flavour but its digested product does have a sweet flavour. The digested product may be a natural or synthetic food additive, as described above, or may be a sugar.
An example of such a sugar substitute is maltodextrin which is a polysaccharide consisting of D-glucose units and which is easily digestible to give a relatively constant delivery of glucose.
Delivery Vehicle It has been reported in W02009/053487 that, while GCK and GLP-1 release is elevated after exposing duodenal tissue to intact pea protein this satiating effect is observed to a lesser extent when pea protein hydrolysates are used. Accordingly, it is necessary for an edible product of the present invention to comprise plant protein in a delivery vehicle that protects the plant protein from hydrolysis in the first part of the gastrointestinal tract, in particular the stomach. Furthermore, certain sugars and sugar substitutes are also be subject to hydrolysis in the stomach and may therefore be comprised in a delivery vehicle. For example, aspartame is normally broken down into its constituent amino acids (phenylalanine and aspartic acid) in the stomach and thus, in some embodiments in which the sugar substitute is aspartame, the aspartame is incorporated in a delivery vehicle.
It is believed that, without a delivery vehicle, about 90% of plant protein is hydrolyzed (depending on the food matrix) in the human stomach after consumption. Therefore, the delivery vehicle must protect the plant protein from hydrolysis to the extent that greater than 10% of the plant protein by weight consumed by an individual remains intact on reaching the duodenum of the individual. It is preferred that greater than 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% of the plant protein by weight consumed by an individual remains intact on reaching the duodenum of the individual.
The plant protein and optionally the sugar or sugar substitute, can be delivered intact to the human duodenum in several different ways. Suitable delivery vehicles include capsules, tablets or particles such as micropellets, microparticles or capsulated microparticles. Such delivery vehicles increase the resistance of the intact plant protein and optionally the sugar or sugar substitute (referred to hereafter as "the active components") against hydrolysis. The delivery vehicle may encapsulate, include, encompass and br contain the active components.
The delivery vehicle is a vehicle that is suitable for enteric delivery, i.e. it should be suitable to be swallowed by the individual and it should be capable of passing through the gastrointestinal tract of the subject without getting blocked. Such a vehicle is often referred to as a gastrointestinal delivery vehicle. In all cases, the intact active components in the vehicle need to overcome the acidic environment of the stomach.
One particularly advantageous way to achieve that goal is to provide the active components in a core with an outer enteric coating. Thus in some embodiments, the delivery vehicle comprises an enteric coating.
Suitable enteric coatings include pH-triggered coatings, pressure-sensitive coatings or time-released coatings. Such coatings are disclosed in Bodmeier, R., H. G. Chen, and 0. Paeratakul, A novel approach to the oral delivery of microparticles. Pharm Res, 1989. 6(5): p. 413-7; Dhaliwal, S., et al., Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation. Aaps J, 2008. 10(2): ID p. 322-30; Ichikawa, H. and Y. Fukumori, [Design of nanohydrogel-incorporated microcapsules for appropriate controlled-release of peptide drugs. Yakugaku Zasshi, 2007. 127(5): p. 813-23; Mustata, G. and S. M. Dinh, Approaches to oral drug delivery for challenging molecules. Crit Rev Ther Drug Carrier Syst, 2006. 23(2): p. 111-35; Clear1 N.J., etal., Evaluation of the lntelisite capsule to deliver theophylline and frusemide tablets to the small intestine and colon. Eur J Pharm Sci, 2001.
13(4): p. 375-84; and Malik, D. K., et al.1 Recent advances in protein and peptide drug delivery systems. Curr Drug DeNy, 2007. 4(2): p. 141 -51 each of which is incorporated herein by reference.
For duodenat delivery of relatively large amounts of the active components, a pH-sensitive coating (e.g. a polymer coating) used on particles such as micropellets or microparticles is highly suitable. Tablets or capsules are also feasible. Particles are preferred however because they are easier to mix with foodstuff and large amounts of active component may be administered in the form of particles whereas the swallowing of large amounts of capsules is often considered problematic and troublesome.
Moreover, the contact area of particles may be more advantageous resulting in a slower release of the active components. The use of compositions comprising the active components encapsulated into particles, such as micropellets or microparticles is thus preferred.
In some embodiments, there is provided an edible product as described above wherein the delivery vehicle is a particle. In another embodiment, there is provided an edible product as described above wherein the particles are micropellets or microparticles.
In one embodiment of the present invention, an orally administrable particle containing the active components is formed by encapsulating the active components with an enteric coating. As used herein the term "enteric coating", is used to mean a material such as a polymer material or materials which encases the core consisting of the active components. As such, the polymeric enteric coating material does not usually contain any of the active components. It is preferred that a substantial amount or the entire enteric polymer coating material is dissolved before the active components are released from the delivery vehicle, so as to achieve delayed dissolution of the active component core.
A suitable pH-sensitive polymer is one which dissolves with intestinal juices at the higher pH levels (such as pH greater than 4.5), such as found within the small intestine and therefore permit release of the pharmacologically active substance in the regions of the small intestine and not in the upper portion of the GI tract, such as the stomach.
The polymer coating material may be selected such that the active components are released when the delivery vehicle reaches the small intestine or a region in which the pH is higher, such as more than pH 4.5. Preferred coatings are pH-sensitive materials, which remain intact in the lower pH environs of the stomach, but which disintegrate or dissolve at the pH commonly found in the small intestine of the patient. A very suitable enteric polymer coating material begins to dissolve in an aqueous solution at pH between about 4.5 to about 5.5. The pH-solubility behaviour of the enteric polymers are usually such that significant dissolution of the enteric polymer coating does not occur until the delivery vehicle has emptied from the stomach. The pH of the small intestine graduafly increases from about 4.5 to about 6.5 in the duodenal bulb to about 7.2 in the distal portions of the small intestine (ileum). In order to provide predictable dissolution corresponding to the small intestine transit time of about 3 hours and permit reproducible release therein, the coating may begin to dissolve within the pH range of the duodenum and continue to dissolve at the pH range within the small intestine.
Therefore, the amount of enteric polymer coating may be such that it is substantially dissolved during the approximate three hour transit time within the small intestine.
There are means available in the art to form particles such as micropellets or microparticles from protein preparations.
An efficient way to produce such particles has been described in US6,224,910, which is incorporated herein by reference. The active components may accordingly be dispersed in an aqueous solution. The aqueous solution may also be sprayed onto nonpareils. Nonpareils are small, usually round particles of pharmaceutically inert materials. Generally, nonpareils that are formed from the combination of sucrose and starch are preferred. One such brand is Nupareils which is sold by Ingredient Technology Corporation. The preferred size is 500-595pm although sizes between 37pm and 4.76mm may be equally suited, depending on the specific intended use of the eventual particles, micropellets or microparticles.
Alternatively, particles such as micropellets, microparticles or microspheres (beads) may also be formed by any other conventional means, with or without the addition of filler substances. This allows for the formation of beads with a high load of active components. The active components should be capable of becoming somewhat sticky upon moistening or otherwise they should be mixed with minute amounts of suitable binders and optionally disintegrants. Hence, the delivery vehicle may also include one or more disintegrants or swelling agents in any practical amount. Conventionally, amounts within the range from about I % to about 4% by weight of the composition are preferred. Preferred disintegrants or swelling agents are sodium starch glycolate marketed under the trademark EXPLOTAB (Edward Mendell Co.), Ac-Di-Sol (cross-linked sodium carboxymethylcellulOse) (FMC Corp), croscarmellose sodium, corn starch, or cross linked polyvinylpyrrolidone.
A major portion of the active component blend may be wet massed extruded and spheronized as is conventionally performed in the art of bead formation whereas a minor portion of the blend may be used for dusting to prevent adhesion and sticking of the beads.
One or more binders may be present in the core in any practical amounts.
Conventionally, amounts within the range of from about 0 to about 10% are preferred, even more preferred are amounts of about I % by weight of the composition. Sodium carboxymethylcellulose is a preferred binder most suitable for use herein. Examples of other binders which may be used include Avicel. TM. PHIO1, Avicel.TM. RC 591 Avicel.TM. CL-61 I, (FMC Corp), Methocel.TM. E-5 (Dow Corp.), Starch 1500 (Colorcon, Ltd.), Hydroxypropyl Methylcellulose (HPMC) (Shin-Etsu Chemical Co., Ltd.), Polyvinylpyrrolidone, Potassium Alginate and Sodium Alginate.
Another component which can be added to the active components is a stabilizing agent. Stabilizing agents provide physical protection for the active components, in particular the plant protein. Exemplary stabilizing agents include sugars such as lactose, mannitol and trehalose although these are to be distinguished from the sugar or sugar substitute that confers satiety. These act to protect the intact plant protein during the coating process. One advantageous way to form orally administrable particles such as micropellets or microparticles or microcapsules for use in the present invention is the following. An aqueous solution of the active components and the optional stabilizing agent is formed. The aqueous solution may include generally from about 0.5 to about 20% by weight of the intact plant protein with about 4 -8% being preferred, from about 0.005% and 0.05% sugar or sugar substitute and from about 1 % to about 10% by weight of the stabilizing agent with about 5% being preferred.
If the protein solution is to be sprayed on a nonpareil and has a low viscosity, it may be desirable to add 1-10% of polyvinylpyrrolidone to bind the active components to the nonpareil.
The nonpareils may be coated with an amount of the aqueous active component solution to provide a coating such as for instance of 1 -10% plant protein by weight on a solids basis. Glatt brand powder coater granulators such as the GPCG-1, GPCG-5, or GPCG-60 fluid bed coaters are suitable for use in this application. Coating conditions and times vary depending on the apparatus and coating viscosity. However, generally coating steps are best conducted at less than SOt and preferably less than 37t to avoid denaturing the pea protein. Subsequently the particles are coated with a water emulsion of a polymer which upon solidification is acid resistant. This protects the active components as they pass through the stomach and releases them into the small intestines where they can act to induce satiety.
The particles or active component coated nonpareils are dried and subsequently coated with an acid stable polymer (enteric coating). Generally, the coating is applied in the same manner as the active components and with the same equipment. The coating composition is preferably a water based emulsion polymer. The preferred coating is an ethylacrylate methacrylic acid copolymer sold under the trademark Eudragit L 300 manufactured by Rhom Pharma. This has a molecular weight of about 250,000 and is generally applied as a 30% aqueous solution. An alternative coating is hydroxypropylmethyl cellulose acetate succinate.
Although Eudragit is the preferred coating polymer, the invention is not limited in this respect and other enteric coating polymers known in the art, such as hydroxypropyl methylcellulose phthalate HP50 (HPMCP-HP5O) (USP/NF 220824), HP55 (HPMCP-HP55) (USP/NF type 200731) and HP55S available from Shin Etsu Chemical, Coateric.TM. (polyvinyl acetate phthalate) (Colorcon Ltd.), Sureteric.TM. (polyvinyl acetate phthalate) (Colorcon, Ltd.), or Aquateric.TM. (cellulose acetate phthalate) (FMC Corp.) and the like may be employed instead.
In some embodiments, the coating composition is combined with a plasticizer to improve the continuity of the coating. Such plasticizers include triethyl citrate (Citroflex- 2), diethyl phthalate, triacetin, tributyl sebecate, and polyethylene glycol. Optionally an anti-adherent (anti-agglomerant) which is advantageously a hydrophobic material such as talc, magnesium stearate or fumed silica, with talc being referred, is applied after coating the beadlet or pellet. Thethylcitrate (TEC) sold by Moriley Inc. is a particularly preferred plasticizer. This can form about 1 -30% of the coating composition. Although plasticizers can be liquid, they are not considered to be solvents since they lodge within the coating altering its physical characteristics. It is preferred that the plasticizer does not act to dissolve the active components.
Talc (such as at 3.0% of coating composition) can also be added to prevent sticking between the particles if desired. Also, an antifoaming agent (such as for instance 0.0025% of coating composition) such as sorbitan sesquioleate (Nikko Chemicals Company Limited) or silicone may be added.
In some embodiments, particles comprising the active components and optional the stabilizing agents, are dried and are then coated with the enteric coating as previously described. The coating solution may be about 30% polymer, 0-30% plasticizer, 0 to 3% talc and 0 to 0.0025% antifoaming agent and water. It is desirable that there are no organic solvents including alcohols or even glycols present in the coating composition.
The presence of these solvents during coating application can denature the intact plant protein. The coating is conducted in the same equipment used to coat the nonpareils with intact protein. The temperature for this coating should be at an optimum to ensure proper coating and as little as possible denaturation of the intact plant protein i.e. a temperature between about 30'C and 50C is preferred.
In preferred embodiments, the coating is made from components which naturally exist in food products. For example, the coating may be a shell made from a combination of shellac, carbohydrates and fatty acids. A particular commercial example of such a coating is LiposphereTM which can be used to make ultra fine shell coatings on powered ingredients and can be engineered to allow constant release of the active components at the neutral pH of the small intestine.
Particles comprising the active components may have any size distribution. Usually the size distribution is determined by the intended use. Preferred is a minimum size of 0.01 mm or more such as 0.02, 0.03, 0.04, 0.05, 0.06, 0.07 0.08, 0.09, or 0.1 mm whereas the maximum diameter is determined by the ability of an individual to swallow the particles. A maximum diameter of 5 mm is preferred; however, less than 4, 3, or 2 mm, such as less than 1 mm is more preferred. Microparticles usually range in size between 1 and 100 pm. Micropellets consist of agglomerates of particles or microparticles and can have any size that is practically useful.
It is also to be noted that in some embodiments, the plant protein is provided in a first delivery vehicle and the sugar or sugar substitute is provided in a second delivery vehicle. For example, in one embodiment the plant protein is formed into a first set of enterically coated particles and the sugar or sugar substitute is formed into a second set of coated particles and the first and second sets of particles are mixed together.
The incorporation of sensitive proteins and the like into particles in order to protect the proteins from hydrolysis is known in the art. The term "a delivery vehicle for at least partially protecting the plant protein from hydrolysis" means that the vehicle such as particles are capable of increasing the resistance of the plant protein against hydrolysis such as enzymatic hydrolysis, e.g. by trypsin, chymotrypsin or pepsin or by acid hydrolysis under conditions comparable to a human stomach. Artificially, in a laboratory environment, a suitable test for determining the resistance of plant protein against hydrolysis is the incubation of the plant protein at a pH of approximately 1.5 as can be achieved by using more than 0.5N HCL, such as 1 N, 2N, or 4N for 10 minutes or more, such as 20 minutes, 30 minutes or 1 hour and then determining the degree of hydrolysis according to the method mentioned above. Increasing the resistance against hydrolysis in this context means an increase in the fraction of intact plant protein versus the fraction of hydrolysed plant protein when the plant protein is exposed to hydrolyzing conditions as outlined above. Such an increase should be measurable by determining the DH according to the methods as described above. Preferably, the increase should be 10 % or more, such as 20% 40%, 60%, 80 or more than 90%. An increase of resistance of 100% would mean that the amount of intact plant protein which is protected against hydrolysis is double the amount of intact plant protein which is not protected against hydrolysis.
Edible Product The plant protein, sugar or sugar substitute and delivery vehicle (hereinafter referred to as the prepared components") together form all or pad of an edible product such as any conventional food or feedstuff. The prepared components may be mixed with drinks, such as fruit or dairy drinks, for example yoghurt, milk, buttermilk, cream, pudding. Alternatively, the prepared components may be incorporated in more solid food such as bread, cake, pastry, cheese, chocolate, butter, sweets (candy), muesli or chocolate bars (candy bars).
In other embodiments, the edible product is a food supplement. The term "food supplement" means any food component which provides specific nutritional or medicinal components and does not provide the full energy value required (i.e. generally less than 2000 or 2500 kcal/day) for an individual and includes food supplements in the form of a powder or medicament, as well as health products, such as health drinks. An ingredient that can be added to food before consumption or a preparation that can be consumed as such is also encompassed within the term.
In embodiments where the edible product is a beverage or food product, the prepared components can be combined with any common food ingredient. The term "beverage" is meant to include cordials and syrups, as well as formulations of a dry powder to be dissolved in water or another liquid component for the preparation of instant drinks such as juices, soups, yog hurt and other dairy stuff.
In one specific embodiment, the prepared components are formulated as a dry powder for mixing by a consumer with water or milk in order to produce a protein shake. Other optional components of the dry powder include flavourings, and other proteins such as whey protein, casein protein, soy protein, egg-white protein, hemp seed and mixtures thereof.
In another specific embodiment, the prepared components are formulated as part of a food bar. Other optional components of the food bar are: flavourings, chocolate, cereals (such as rolled oats), nuts, honey, fruit, rice or mixtures thereof.
The prepared components may be placed in gel capsules for oral administration.
The preferred dosage range of the plant protein is between 0.1 and 1 g / kg bodyweight per day, with a range between 0.2 and 0.3 g/kg/day being preferred and 0.25 g/kg/day being particularly preferred. However, dosages outside this range are possible with lOg/kg/day being an effective upper limit. Other exemplary dosages of the plant protein are between 0.5 and 5 g/kg bodyweight per day preferably between 0.8 and 2 g/kg bodyweight per day, such as 0.9, 1.0, 1.2, 1.4, 1.6, andl.8 g/kg/day.
Accordingly, the plant protein is typically provided in an amount of between 5g and 30g in the edible product, more preferably between lOg and 20g and more preferably between 13g and 17g, such as 15g.
The dosage ranges of the sugar differ from those of the sugar substitute since sugar substitutes typically are much sweeter than sugar.
Sugar is typically provided in an amount at least 2 times greater than the amount of the plant protein, by weight. Thus the edible product may comprise between 5g and 30g sugar, for example, or between log and 20g sugar. However, in some embodiments, the edible product comprises 2.5, 3, 4 or 5 times greater amounts of sugar than plant protein, by weight.
The dosage range of the sugar substitute may be between 50 and 500mg per kg of total edible product, preferably between 100 and 300mg/kg such as 200mg/kg.
Alternatively, the dosage range of the sugar or sugar substitute may be between 50 and 500mg per I of total edible product in the case of a drink, preferably between 100 and 300mg/I such as 200mg/I.
Since the edible product typically has a mass of between 40 and 200g, exemplary proportions (weight by weight) of the plant protein in the edible product are between 1% and 75%, for example at least 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70% or 75% plant protein or even at least 80% or 90% in some cases, or less than 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70% or 75% plant protein. Exemplary amounts of sugar in the edible product are between 20% and 90% (weight by weight) for example, at least 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%. Exemplary amounts of sugar substitute in the edible product are between 2mg and 100mg. Exemplary proportions (weight by weight) of the sugar substitute are between 0.005% and 0.05% of the total edible product.
Medicament In some embodiments there is provided a medicament comprising intact plant protein and a sugar or sugar substitute. In these embodiments, the provision of a delivery vehicle for protecting the plant protein from hydrolysis is not essential since the medicament may be applied directly to the duodenum of an individual (i.e. bypassing the stomach). The invention therefore relates to a composition as described herein for use as a medicament.
In embodiments where a medicament is provided, intact plant protein and sugar or sugar substitute is administered alone or in a mixture with a pharmaceutically acceptable adjuvant, carrier, diluent or excipient, in suitable pharmaceutical formulations. Examples of said formulations, and suitable carriers, diluents and excipients are described in "Remington's Pharmaceutical Sciences Handbook", Mack Pub. Co., N.Y. U.S.A. For example, for oral administration tablets, capsules, syrups, and the like may be provided, whereas for parental administration suitable formulations are sterile solutions or suspensions in acceptable liquids, implants, etc. The exact dosages will depend on several factors such as type and seriousness of the pathological conditions to be treated, patient's weight and sex, etc. but are in principle the same as described above in relation to the edible product.
In some embodiments, the intact plant protein and the sugar or sugar substitute are administered separately, either simultaneously or sequentially.
Uses of the product The products described above, that is to say the edible product or medicament, are used as will now be described.
In some embodiments, the edible product is eaten or drunk by an individual in order to induce or increase satiety in the individual. More specifically, when feelings of hunger arise, the individual consumes the edible product. The plant protein (and optionally the sugar or sugar substitute) are protected by the delivery vehicle and so pass through the stomach to the duodenum of the individual where they are released. In embodiments where the sugar or sugar substitute is not incorporated into the delivery vehicle, the sugar or sugar substitute is such that it in any case passes through the stomach of the individual without being broken down, or at least, with a significant proportion remaining intact. When the combination of the intact plant protein and the sugar or sugar substitute comes into contact with the duodenum, levels of CCK and/ or GLP-1 increase in the bloodstream of the individual with the effect that feelings of hunger are reduced or eliminated in the individual, that is to say that satiety is induced or increased in the individual.
The edible product is typically consumed once per day but may be consumed two, three or more times per day in some embodiments such as before meals. What is important is that the individual receives the dosage of plant protein and sugar or sugar substitute as set out above. The edible product may be eaten as part of a meal or may be eaten as a snack between or before meals.
In alternative embodiments, the medicament described above is provided to an individual suffering from obesity. The obesity may be clinical in the sense of being a pathology or may be non-clinical in the sense of being unrelated to the health of the individual and being instead a cosmetic matter, such that the treatment merely controls the weight of the individual. The medicament may be consumed by the individual and, if so, is typically formulated as a syrup or as one or more pills or capsules.
Alternatively, the niedicament may be administered directly to the duodenum, for example, in conjunction with an endoscope.
The effect of the medicament is as described above in relation to the edible product except that after continued use, the repeated inducing or increasing of satiety in the patient results in the patient consuming less food (i.e. fewer calories per day) and thereby prevents weight gain or even causes weight loss in the patient thus treating or ameliorating obesity in the patient. In principle, the medicament may also be used for the therapy or prophylaxis of other conditions that are mediated by GLP-1 and/or CCK, such as diabetes, in particular type 2 diabetes.
It is particularly preferred that the methods described above are applied in relation to individuals who are overweight (i.e. have a BMI of greater than 25) or who are obese (i.e. have a BMI of greater than 30) since there is experimental evidence that indicates that the products of the invention have greater efficacy against such individuals. Exam
Example 1
This example tested the effect of sugars and sugar substitutes (hereafter "sweeteners") with and without pea protein on release of satiety hormones CCK and GLP-1 in vitro.
MATERIAL AND METHODS
Test products All sweeteners were dissolved in 300m1 of HBSS (200ml as volume for one coffee or tea consumption, and lOOmI as basal gastric juice volume). All sweeteners were dissolved accordingly to match the sweetness of the sugar dosages, according to its known sweetness equivalent relative to sucrose. Five different tastants were used, namely sucrose (6g, Sigma-Aldrich, St. Louis, MO, USA), aspartame (0.03g), acesulfame K (O.04g), saccharine (0.012g) (all from Supelco, Bellefonte, PA, USA), and sucralose (0.Olg, Tate&Lyle, London, UK). From previous studies it was shown that pea protein is a very potent protein to stimulate the release of CCK and GLP-1, and it also reduces food intake in male subjects, when infused intraduodenally (unpublished data). Pea protein (0.1mg/mi, Dutch Protein Services, Tiel, The Netherlands) was added to the sweeteners.
Cell culture conditions The STC-1 cell line is derived from an intestinal endocrine tumor that developed in a double-transgenic mouse expressing the rat insulin promotor linked to the simian virus 40 large T antigen and the polyoma small T antigen [201. STC-1 cells (kindly provided by Dr. D. Hanahan, University of California, San Francisco) were maintained in Dulbecco's Modified Eagles Medium (DMEM) with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 units mI-I penicillin, and 100 pg mI-I streptomycin as additional supplements, at 37°C in 5% C02/air humidity. All products were obtained from Invitrogen, Carlsbad, California, USA, unless stated otherwise.
Secretion of CCK and GLP-1 from STC-1 cells To determine the secretion of CCK and GLP-1 from STC-1 cells, suspensions of these cells were plated at 1.0 x 105 cells/well in 24-well plates (Costar) and assays were performed on cultures that reached at least 80% confluency. Before treatment with the test products, culture medium was removed and dishes were rinsed with HBSS. Cells were then incubated with HBSS (negative control), the sweeteners, and the combination of sweeteners with pea protein, and were incubated at 37°C for 2 hours.
The supernatant was collected for the measurement of CCK and GLP-1. All analysis was performed in triplicate, using three biological replicate samples..
Statistical Analyses The descriptive and statistical analyses were performed with SPSS, version 11.0. With regard to the cell culture results, the means of the secreted hormones were compared using the one-sample t-test. Means of the secreted hormones between groups were compared using an unpaired Student t-test. Means of the secreted hormones within a group was were compared using a paired Student t-test. All Student t-tests were corrected for multiple testing using the Bonferroni correction. The means of the variables are presented with their standard error (mean ± SEM). A P-value of less than 0.05 was considered statistically significant.
RESULTS
Hormone release from STC-1 cells The release of CCK and GLP-1 from the enteroendocrine STC-1 cells are presented in Figure 1. As can be seen in Figure 1A, CCK release was significantly increased after addition of aspartame, sucralose, sucrose, pea, and pea with sucralose, when compared to the negative control. The highest levels of CCK release were found after addition of the combination of pea with sucralose (82.5 pM ± 0.7). As can be seen in Figure 1 B, addition of all test products significantly increased the release of GLP-1 from the STC-1 cells when compared with the negative control (only HBSS buffer). Addition of acesulfame K, pea with acesulfame K, pea with sucrose, or pea with sucralose (2442.2 pM ± 60, 3039.5 pM ± 22, 4336.6 pM ± 93, and 4690.9 pM ± 38, respectively) induced the highest levels of GLP-1.
Example 2
The sweeteners that gave the best results in Example I in combination with pea protein were then tested in Ussing Chambers.
MATERIAL AND METHODS
Human Er vivo assay Subjects In this example, ten (five lean and five obese) healthy male subjects were recruited.
Selection took place according to health criteria (no diabetes, no gastrointestinal diseases, and no medical treatment) and body weight (BW) criteria (for lean subjects: body mass index (BMI) 18-25 kg/m2, and for obese subjects: BMk3O kglm2). Baseline characteristics of the subjects are presented in Table 2. The nature and risks of the experimental procedure were explained to the subjects, and all subjects gave their written informed consent. This study was conducted according to the guidelines laid down in the Declaration of Helsinki and the Medical Ethical Committee of the University Hospital Maastricht approved all procedures involving human subjects.
-Lean (n=5) Obese (n=5) -Age (years 27±5 37±10 BMI (kg/rn2) 24.2 ± 1 32.8±2* HbA1c (%) 4.6±a2 4.4±0.2 Basal glucase (rnmol/L) 4.9 ± 0.2 4.8 ± 0.2 Table 2. Subject characteristics. AU data are mean ± SEM. * Difference between lean and obese subjects (pcO.OS) Duodenal tissue sampling for ex vivo experiments All subjects received a standardized meal (9 g protein, 39.5 g carbohydrates, 16 g fat) for the evening prior to the test day to standardize macronutrient intake. After an overnight fast, eight mucosal tissue samples from the horizontal part of the duodenum were obtained by flexible gastroduodenoscopy using standard biopsy forceps. During this procedure, no sedatives were given to the subjects. The diameter of the biopsies varied from 2.0 mm to 2.2 mm. After sampling, the biopsies were placed in ice-cold Krebs-Ringer bicarbonate buffer (KRB) and arrived at the laboratory within is mm.
Ussing Chamber experiments Duodenal biopsies were mounted in modified Ussing Chambers (Harvard Apparatus Inc., Holliston, Mass., USA) with a 9-mm opening and reduced to an exposed tissue area of 1.76 mm2, using a technique previously described by Wallon et al [21, 22].
Mucosal compartments were filled with 1.Sml 10mM mannitol in KRB and the serosal compartments were filled with 10mM glucose in KRB. The chambers were kept at 37°C and continuously oxygenated with 95% 02 / 5% CO2 and circulated by gas flow. Before the experiments were started, tissues equilibrated for 40 mm in the chambers to achieve steady-state conditions in transepithelial potential difference (PD), with replacement of mannitol of glucose KRB at 20 mm. A four-electrode system was used, as described previously [231. One pair of Ag/Cl electrodes with 3M NaCI / 2% agar bridges was used for measurement of transepithelial PD and another pair of Ag/Cl electrodes was used to monitor current. The electrodes were coupled to an external 6-channel electronic unit with a voltage controlled current source. Data sampling was computer controlled via an AiD D/A board (Lab NB, National Instruments, USA) by a program developed in LabVIEW (National Instruments, USA) by Wikman-Larhed et al [24j. Every other minute, direct pulses of -3, 3, and 0 pA, with a duration of 2 seconds each, were sent across the tissue segments and the voltage response was measured.
In each measurement, the mean voltage response of 2 seconds was calculated. A linear-squares fit was performed on the current (I) -voltage (U) pair relationship: U = PD + TER x I. The TER was obtained from the slope of the I-U line and the PD from the intersection of the voltage.
After the equilibration period, the mucosal side of the biopsies were exposed to sucrose, sucralose, pea, pea with sucrose, and pea with sucralose. Serosal samples (1.25 ml) were collected the end of the experiment (after 2h) for CCK-and GLP-1 analysis.
Biopsies with PD less negafive than -0.5mV were excluded from all tested (n3) because of malfunction in the ability to uphold normal electrophysiology.
Electrical parameters were measured. These parameters are widely accepted for monitoring the viability and integrity of tissue in the Ussing Chambers. In general, PD reflects the voltage gradient generated by the tissue, TER reflects the tissue integrity, and Isc reflects the ionic fluxes across the epithelium [35-37]. Basal electrical parameters varied over a wide range. This variability has also been noticed in previous studies on human tissue samples from jejunum [38] and colon [39]. Moreover, the reported electrical parameters from investigators using different Ussing chambers on biopsy specimens from the same gastrointestinal region have been associated with a large variability. To correct for this variability, the areas under the curves have been calculated, after correcting for baseline values for each biopsy. The electrophysiology results from the study were comparable with those found in the literature, and showed that all biopsies used in this study were viable throughout the experiments. Addition of sweeteners, pea protein, or a combination of both did not affect the resistance of the tissue, but the lsc was significantly increased compared to the negative control. The lsc is a marker for transepithelial ion transport. Once food compounds stimulate enteroendocrine cells, Ca2+ will be transported into the cell, resulting in release of satiety hormones [40]. This influx may have been the cause of the increase in lsc.
Hormone assays CCK levels were determined using the RIA from Euria-CCK, Euro-Diagnostica AS, Malmo, Sweden. According to the manufacturer's instructions, the detection limit of this kit was 0.3 pmol/L. The intra-assay variation ranges from 2.0 to 5.5% and the inter-assay variation from 4,1 to 13,7%. Cross-reaction with gastrin is «= 0.5%. Total GLP-1 levels were determined using the RIA from Linco Research, Missouri, USA. The detection limit of this kit was 3 to 333 pM. The intra-assay variation ranges from 10 to 23% and the inter-assay variation from 22 to 38%. There is no cross-reaction with GLP-2 and glucagon (0.01% and 0.2%, respectively). GLP-1 samples were spiked with pM of GLP-1 to be within range of the detection limit. Both RIAs can be used for the analysis of both rat and human samples.
Statistical Analyses The same analyses and tests were used as in Example 1. With regard to the Ussing chambers, the electrophysiological parameters were compared using the Wilcoxon signed rank test.
RESULTS
Hormone release from Ussing chamber experiments In duodenal tissue of lean subjects basal CCK secretion levels of 6.4 pM ± 2 in lean subjects were observed, whereas basal CCK levels in obese subjects were 9.7 pM ± 4 (Figure 2A). After addition of pea, pea with sucrose, or pea with sucrose, the levels of CCK were significantly increased compared to the negative control, for both lean (27.1 pM ± 1, 22.6 pM ± 3, and 56.7 pM ± 1, respectively) and obese subjects (37.3 pM ± 2, 38.2 pM ± 3, and 74.7 pM ± 2, respectively). Also, addition of these compounds to the duodenal biopsies resulted in significantly increased CCK levels in obese subjects when compared with lean subjects. Addition of sucrose and sucralose alone did not affect CCK release when compared with the negative control.
GLP-1 secretion from duodenal biopsies is presented in Figure 2B. Basal GLP-1 secretions levels of 3.7 pM ± 0.4 from lean subjects and 4.1 pM ± 0.5 from obese subjects were observed. Addition of intact pea protein to the tuminal side significantly increased CLP-1 levels (8.4 pM ± 0.2 in lean subjects, and 9.3 pM ± 0.2 in obese subjects) when compared with negative control and with addition of sucrose. Also, addition of intact pea protein induced significantly higher levels of GLP-1 when compared with lean subjects. Addition of the combination of pea with sucrose or pea with sucralose also induces significant elevated levels of GLP-1 (14.4 pM ± 0.1 and 23.8 pM ± 1, respectively, for lean subjects, 16.6 pM ± 0.7 and 24.7 pM ± 1, respectively, for obese subjects), when compared with the negative control and addition of only sucrose.
S
Electrical Measurements The electrical parameters PD, lsc, and TER were followed over time. Basal electrical properties of all biopsies were measured. After an equilibration period of 40 mm, the mean PD of -1.4 mV ± 0.2 was observed. Overall, no changes in PD were observed in the following 120 minutes. A decrease in TER and an increase in lsc were observed.
The TER was significantly less decreased after addition of pea with sucrose (-29.2 O.crn2 ± 1), when compared with the negative control (-51.4 Q.cm2 ± 3) in obese subjects. All other products did not affect TER when compared with the negative control for both lean and obese subjects.
Addition of sucrose, sucralose, and pea with sucrose resulted in an increased lsc (242.7 D.cm2 ± 32, 246.9 O,cm2 ± 25, and 235.4 O.cm2 ± 26, respectively) when compared with the negative control (49.7 O.cm2 ± 19) in lean subjects. Also, addition of sucralose or pea with sucrose to biopsies from lean subjects resulted in increased lsc when compared with obese subjects. Addition of sucrose or pea with sucralose to the luminal side of biopsies from obese subjects resulted in an increased 1st (195.9 pAIcm2 ± 34 and 387.1 pNcm2 ± 32, respectively) when compared with the negative control (31.8 pAIcm2 ± 11).
DISCUSSION OF RESULTS FROM EXAMPLES I AND 2 In Examples I and 2, the effects of five sweeteners in the presence or absence of pea protein on satiety hormone release were investigated. It was demonstrated that the combination of pea protein with the artificial sweeteners sucralose and sucrose induce stronger effects on satiety hormone release compared with the compounds separately, both in vitro and ex vivo. It was also shown that addition of sucrose or sucralose to STC-1 cells stimulated the release of CCK and GLP-I, whereas addition of the sweeteners alone to human duodenal biopsies did not result in hormone release.
Carbohydrate is an adequate stimulus for secretion of GLP-1. Failure of non-nutritive sweeteners to elicit the release of such peptides could theoretically result in lower satiety and augment energy intake. It has previously been shown that sucralose induces GLP-1 secretion [19]. In contrast, aspartame does not stimulate GLP-l secretion [25]. Examples I and 2 demonstrate that most artificial sweeteners are able to induce CCK release, and that all sweeteners stimulate GLP-1 release from enteroendocrine SIC-i cells, but when human duodenal tissue is exposed to sucrose or sucralose, both CCK and GLP-i release is not affected. Overall, sucrose, sucralose, and aspartame were the most potent sweeteners to stimulate satiety hormone release from SIC-I cells. Since sucrose was the only caloric sweetener and the most commonly used, this sweetener was used in the Ussing chambers as a control in
Example 2.
Pea protein contains large amounts of arginine, asparagine, and glutamine, and is digested in the stomach for approximately 93% [28]. Unlike other common protein sources such as milk, soy, or wheat proteins, pea protein has a very low allergenic potential, which makes this protein more suitable for dietary interventions compared with wheat protein.
Examples I and 2 show that most sweeteners are able to induce secretion of CCK and GLP-I from SIC-I cells. However, combined with pea protein, the positive effects on the hormone release were diminished. Tested on human duodenal tissue, sucrose and sucralose did not affect hormone secretion when compared with the negative control.
Combining the sweeteners and in particular sucralose with pea protein, strongly activated hormone release.
In Example 2, both lean and obese subjects were tested. There are indications that obese subjects are less sensitive to satiety signals compared with lean subjects. The results from Example 2 indicate that obese subjects have higher release of CCK after exposure to the pea protein compared with lean subjects. Also, the combination of pea protein with either sucrose or sucralose resulted in higher levels of CCK in obese subjects. Indeed, combining pea protein with sucralose induced the strongest effects on CCK and GLP-I release by both SIC-i cells and human duodenal tissue samples.
References 1. Read, N., S. French, and K. Cunningham, The role of the gut in regulating food intake in man. Nutr Rev, 1994. 52(1): p. 1-10.
2. Obesity: preventing and managing the global epidemic. Report of a WHO consultant.
World Health Organ Tech Rep Ser, 2000. 894(i-xii): p. 1-253.
3. Adam, T.C., M.P. Lejeune, and MS. Westerterp-Plantenga, Nutrient-stimulated glucagon-like peptide 1 release after body-weight loss and weight maintenance in human subjects. Br J Nutr, 2006. 95(1): p. 160-7.
4. Anderson, OH. and SE. Moore, Dietary proteins in the regulation of food intake and body weight in humans. J Nutr, 2004. 134(4): p. 9748-95.
5. Blom, W.A., et al., Effect of a high-protein breakfast on the postprandial ghrelin response. Am J Clin Nutr, 2006. 83(2): p. 211-20.
6. Westerterp-Plantenga, MS. and M.P. Lejeune, Protein intake and body-weight regulation. Appetite, 2005. 45(2): p. 187-90.
7. Bernard, C., et al., Peptones stimulate intestinal cholecystokinin gene transcription via cyclic adenosine monophosphate response element-binding factors. Endocrinology, 2001. 142(2): p. 721-9.
8. Hall, W.L., et al., Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr, 2003. 89(2): p. 239-48.
9. Westerterp-Plantenga, MS., The significance of protein in food intake and body weight regulation. Curr Opin Clin Nutr Metab Care, 2003. 6(6): p. 635-8.
10. Saris, W.H. and M.A. Tarnopolsky, Controlling food intake and energy balance: which macronutrient should we select? Curr Opin Clin Nutr Metab Care, 2003. 6(6): p. 609-1 3.
11. Foltz, M., et al., Protein hydrolysates induce CCK release from enteroendocrine cells and act as partial agonists of the CCKI receptor. J Agric Food Chem, 2008. 56(3): p. 837-43.
12. Diepvens, K., 0. Haberer, and M. Westerterp-Plantenga, Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. lnt J Obes (Lond), 2008. 32(3): p. 510-8.
13. Popkin, B.M. and S.J. Nielsen, The sweetening of the world's diet. Obes Res, 2003.
11(11): p. 1325-32.
14. Ludwig, D.S., K.E. Peterson, and S.L. Gortmaker, Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet, 2001. 357(9255): p. 505-8.
15. Raben, A., et al., Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Olin Nutr, 2002. 76(4): p. 721-9.
16. Bawa, S., The role of the consumption of beverages in the obesity epidemic. J R Soc Promot Health, 2005. 125(3): p. 124-8.
17. Molgaard, C., et al., [The impact of sugar on health]. Ugeskr Laeger, 2003. 165(44): p.4207-10.
18. Almiron-Roig, E., Y. Chen, and A. Drewnowski, Liquid calories and the failure of satiety: how good is the evidence? Obes Rev, 2003. 4(4): p. 201-1 2.
19. Jang, H.J., et al., Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc NatI Acad Sci U S A, 2007. 104(38): p. 15069-74.
20. Rindi, 0., et al., Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression. Am J Pathol, 1990. 136(6): p. 1349-63.
21. Wallon, C., et al., Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scand J Gastroenterol, 2005. 40(5): p. 586-95.
22. Wallon, C., et al., corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro.
Gut, 2008. 57(1): p. 50-8.
23. Soderholm, J.D., et al., Integrity and metabolism of human ileal mucosa in vitro in the Ussing chamber. Acta Physiol Scand, 1998. 162(1): p. 47-56.
24. Wikman-Larhed, A. and A. P., Co-cultures of human intestinal goblet (HT29-H) and absorptive (Caco-2) cells for studies of drug and peptide absorption Eur J Pharm Sci, 1995. 3(3): p. 171-183.
25. HaIl, W.L., et al., Physiological mechanisms mediating aspartame-induced satiety.
Physiol Behav, 2003. 78(4-5): p. 557-62.
26. Fujita, Y., et al., lncretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am J Physiol Endocrinol Metab, 2009. 296(3): p. E473-9.
27. Tome, D., Protein, amino acids and the control of food intake. Br J Nutr, 2004. 92 Suppl 1: p. S27-30.
28. Eggum, B.O., I. Hansen, and T. Larsen, Protein quality and digestible energy of selected foods determined in balance trials with rats. Plant Foods Hum Nutr, 1989.
39(1): p. 13-21.
29. Cummings, D.E. and J. Overduin, Gastrointestinal regulation of food intake. J Gun Invest, 2007. 117(1): p. 13-23.
30. Stricker-Krongrad, A., et al., increased threshold concentrations of neuropeptide V for a stimulatory effect on food intake in obese Zucker rats--changes in the microstructure of the feeding behavior. Brain Res, 1994. 660(1): p. 162-6.
31. Lieverse, R.J., et al., Obese women are less sensitive for the satiety effects of bombesin than lean women. Eur J din Nutr, 1998. 52(3): p. 207-1 2.
32. Choi, S., et al., GPR93 Activation by Protein Hydrolysate induces CCK Transcription and Secretion in STC-i Cells. Am J Physiol Gastrointest Liver Physiol, 2007.
33. Cordier-Bussat, M., et al., Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene.
Diabetes, 1998. 47(7): p. 1038-45.
34. Geraedts, M.d., F.J. Troost, and W.H. Saris, Peptide-VY is Released by the Intestinal Cell Line SIC-i. J Food Sci, 2009. 74(2): p. H79-82.
35. Larsen, R., et al., Novel modified Ussing chamber for the study of absorption and secretion in human endoscopic biopsies. Acta Physiol Scand, 2001. 173(2): p. 21 3-22.
36. Grass, G.M. and S.A. Sweetana, In vitro measurement of gastrointestinal tissue permeability using a new diffusion cell. Pharm Res, 1988. 5(6): p. 372-6.
37. Reims, A., B. Strandvik, and H. Sjovall, Epithelial electrical resistance as a measure of permeability changes in pediatric duodenal biopsies. J Pediatr Gastroenterol Nutr, 2006. 43(5): p. 619-23.
38. Taylor, C.J., et al., Failure to induce secretion in jejunal biopsies from children with cystic fibrosis. Gut, 1988. 29(7): p. 957-62.
39 Tominaga, M., et al., ONO-1078 antagonizes diarrhea-causing changes in ion transport and smooth muscle contraction induced by peptidoleukotrienes in rat and human colon in vitro. J Pharmacol Exp Ther, 1996. 278(3): p. 1058-63.
40. Sternini, C., L. Anselmi, and E. Rozengurt, Enteroendocrine cells: a site of taste' in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes, 2008. 15(1): p. 73-8.
41. Veldhorst, M.A.B., et aL, A breakfast with aipha-lactalbumin, gelatin or gelatin + TRP lowers energy intake at lunch compared with a breakfast with casein, soy, whey or whey-GMP. Clinical Nutrition 28 (2009) 147-155.
Claims (25)
- CLAIMS: 1. An edible product comprising: i) intact plant protein; ii) a sugar in an amount greater than 2 times the amount of intact plant protein by weight or a sugar substitute; and iii) a delivery vehicle for at least partially protecting the plant protein from hydrolysis.
- 2. An edible product according to claim 1 wherein the delivery vehicle comprises an enteric coating of at least the plant protein.
- 3. An edible product according to claim 1 or 2 wherein the product comprises at least 5g of the plant protein, preferably at least lOg of the plant protein.
- 4. An edible product according to any one of the preceding claims wherein the sugar is in an amount of greater than 2.5 or 3 times the amount of intact plant protein by weight.
- 5. An edible product according to any one of the preceding claims wherein the product further comprises a delivery vehicle for at least partially protecting the sugar or
- 6. A method of inducing or increasing satiety in an individual comprising the steps of: i) delivering an intact plant protein to the duodenum of the individual; and ii) delivering a sugar in an amount greater than 2 times the amount of plant protein by weight or a sugar substitute to the duodenum of the individual.
- 7. A method according to claim 6 wherein the method is non-therapeutic.
- 8. A method of treating obesity in an individual comprising the steps of: i) delivering an intact pea protein to the duodenum of the individual; and ii) delivering a sugar in an amount greater than 2 times the amount of plant protein by weight or a sugar substitute to the duodenum of the individual.
- 9. A method according to claim B wherein the method is a cosmetic method.
- 10. A method according to any one of claims 6 to 9 wherein the individual has a body mass index of greater than 25, preferably greater than 30.
- 11. An edible product according to any one of claims 1 to 5 or a method according to any one of claims 6 to 10 wherein the intact plant protein comprises or consists of wheat protein, soy protein and/or pea protein.
- 12. An edible product or method according to claim 11 wherein the intact pea plant protein comprises or consists of a proteinaceous extract of a plant of the species of Pisum sativurn.
- 13. An edible product according to any one of claims Ito 5, 11 or 12 or a method according to any one of claims 6 to 12 wherein the sugar substitute is a high intensity sweetener or a sugar alcohol.
- 14. An edible product or method according to claim 13 wherein the high intensity sweetener is a naturally occurring or non-naturally occurring high intensity sweetener.
- 15. An edible product or a method according to claim 14, wherein the naturally occurring high intensity sweetener comprises a protein, preferably Thaumatin, Brazzein or Monellin.
- 16. An edible product or a method according to claim 14, wherein the naturally occurring high intensity sweetener comprises Stevia, a Steviol glycoside, Mogroside V (Lo Han Guo), Monatin or Glycyrrhizin.
- 17. An edible product or a method according to claim 16, wherein the Steviol glycoside is stevioside, steviol, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D or Rebaudioside E.
- 18. An edible product or a method according to claim 14, wherein the non-naturally occurring high intensity sweetener comprises a peptide, preferably aspartame, neotarne, advantame or alitame.
- 19. An edible product or a method according to claim 14, wherein the non-naturally occurring high intensity sweetener comprises a halosugar, preferably sucralose.
- 20. An edible product or a method according to claim 14, wherein the non-naturally occurring high intensity sweetener comprises Acesulfame-K, Saccharin, Cyclamate or neohesperidin DC.
- 21. An edible product according to any one of claims I to 5, 11 or 12 or a method according to any one of claims 6 to 12 wherein the sugar comprises sucrose, glucose or fructose.
- 22. An edible product or a method according to claim 13 wherein the sugar alcohol comprises xylitol, sorbitol, maltitol, erythritol, isomalt or lactitol.
- 23. An edible product according to any one of claims I to 5, 11 or 12 or a method according to any one of claims 6 to 12 wherein the sugar substitute comprises a precursor of a sugar or a sugar substitute.
- 24. An edible product or a method according to claim 23 wherein the precursor comprises maltodextrin.
- 25. A method according to any one of claims 6 to 10 comprising administering to the individual an edible product according to any one of claims 1 to 5 and 11 to 24.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1018030.5A GB2484929A (en) | 2010-10-25 | 2010-10-25 | An edible product including plant protein |
PCT/EP2011/005599 WO2012055577A1 (en) | 2010-10-25 | 2011-10-24 | An edible product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1018030.5A GB2484929A (en) | 2010-10-25 | 2010-10-25 | An edible product including plant protein |
Publications (2)
Publication Number | Publication Date |
---|---|
GB201018030D0 GB201018030D0 (en) | 2010-12-08 |
GB2484929A true GB2484929A (en) | 2012-05-02 |
Family
ID=43365503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB1018030.5A Withdrawn GB2484929A (en) | 2010-10-25 | 2010-10-25 | An edible product including plant protein |
Country Status (2)
Country | Link |
---|---|
GB (1) | GB2484929A (en) |
WO (1) | WO2012055577A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108387672A (en) * | 2018-02-01 | 2018-08-10 | 山东省食品药品检验研究院 | The ultra performance liquid chromatography tandem mass spectrum detection method of Advantest sweet tea content in a kind of fluid milk |
WO2019165309A1 (en) * | 2018-02-23 | 2019-08-29 | Ambra Bioscience Llc | Compositions and methods for hunger control and weight management |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016205701A1 (en) | 2015-06-19 | 2016-12-22 | University Of Southern California | Enteral fast access tract platform system |
WO2016205754A1 (en) * | 2015-06-19 | 2016-12-22 | University Of Southern California | Compositions and methods for modified nutrient delivery |
WO2019170840A1 (en) * | 2018-03-07 | 2019-09-12 | Anabio Technologies Ltd. | A composition for type ii diabetics and for use in providing sustained energy release over time |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004016720A2 (en) * | 2002-08-14 | 2004-02-26 | E.I. Du Pont De Nemours And Company | Coated polyunsaturated fatty acid-containing particles and coated liquid pharmaceutical-containing particles |
WO2004105505A1 (en) * | 2003-05-28 | 2004-12-09 | Unilever N.V. | Satiety enhancing food products |
WO2009053487A2 (en) * | 2007-10-26 | 2009-04-30 | Universiteit Maastricht | Proteins that stimulate the secretion of satiety hormones |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA69413C2 (en) | 1998-05-22 | 2004-09-15 | Брістол-Майерс Сквібб Компані | Enteric coated pharmaceutical composition, pharmaceutical composition in form of spheroid beads, method for manufacturing pharmaceutical composition |
-
2010
- 2010-10-25 GB GB1018030.5A patent/GB2484929A/en not_active Withdrawn
-
2011
- 2011-10-24 WO PCT/EP2011/005599 patent/WO2012055577A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004016720A2 (en) * | 2002-08-14 | 2004-02-26 | E.I. Du Pont De Nemours And Company | Coated polyunsaturated fatty acid-containing particles and coated liquid pharmaceutical-containing particles |
WO2004105505A1 (en) * | 2003-05-28 | 2004-12-09 | Unilever N.V. | Satiety enhancing food products |
WO2009053487A2 (en) * | 2007-10-26 | 2009-04-30 | Universiteit Maastricht | Proteins that stimulate the secretion of satiety hormones |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108387672A (en) * | 2018-02-01 | 2018-08-10 | 山东省食品药品检验研究院 | The ultra performance liquid chromatography tandem mass spectrum detection method of Advantest sweet tea content in a kind of fluid milk |
CN108387672B (en) * | 2018-02-01 | 2021-03-26 | 山东省食品药品检验研究院 | A kind of ultra-high performance liquid chromatography tandem mass spectrometry detection method of Advansin content |
WO2019165309A1 (en) * | 2018-02-23 | 2019-08-29 | Ambra Bioscience Llc | Compositions and methods for hunger control and weight management |
Also Published As
Publication number | Publication date |
---|---|
GB201018030D0 (en) | 2010-12-08 |
WO2012055577A1 (en) | 2012-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104812254B (en) | Dietary fiber for the gastrointestinal side-effect for treating nutrients or medicament | |
US20180369177A1 (en) | Compositions and methods for inducing satiety and treating non-insulin dependent diabetes mellitus, pre-diabetic symptoms, insulin resistance and related disease states and conditions | |
Oseguera-Toledo et al. | Proteins and bioactive peptides: mechanisms of action on diabetes management | |
CA2471766C (en) | Compositions for improving lipid metabolism | |
US20110217380A1 (en) | Proteins that stimulate the secretion of satiety hormones | |
WO2012055577A1 (en) | An edible product | |
Sukkar et al. | Appetite control and gastrointestinal hormonal behavior (CCK, GLP-1, PYY 1–36) following low doses of a whey protein-rich nutraceutic | |
Foisy Sauvé et al. | Glycomacropeptide: A bioactive milk derivative to alleviate metabolic syndrome outcomes | |
Moran et al. | Nutrient sensing of gut luminal environment | |
Geraedts et al. | Addition of sucralose enhances the release of satiety hormones in combination with pea protein | |
Bruen et al. | The effects of food components on hormonal signalling in gastrointestinal enteroendocrine cells | |
US20120040048A1 (en) | Composition and Method for Control of Diabetes | |
AU2018227125A1 (en) | GLP-1 secretagogue and composition | |
ES2328835T3 (en) | HYDROLYZED PROTEINS WITH ANTIDIABETIC EFFECT. | |
EP3916006A1 (en) | Peptides capable of inducing anorexic hormones, compositions and uses thereof | |
JP7177696B2 (en) | Activity reduction inhibitor of bioactive peptide or bioactive protein | |
JP7462983B2 (en) | Composition for improving, preventing or treating sarcopenia, comprising whey protein hydrolysate as an active ingredient | |
US20240382569A1 (en) | Fungal enzyme mixtures and uses thereof | |
Fukuda et al. | Aspartame-acesulfame K-containing low-energy erythritol sweetener markedly suppresses postprandial hyperglycemia in mild and borderline diabetics | |
JP4559380B2 (en) | Liver disease treatment | |
Przeor et al. | Morus alba L. leaves modulate sweet (TAS1R) and bitter (TAS2R) taste in the studies on human receptors–is it a new perspectives of white mulberry leaves utilization in food production? | |
Jahandideh et al. | Applications in medicine: hypoglycemic peptides | |
Sayder et al. | TPN cholestasis in neonates: Results of randomized, double-blind study of amino acid composition | |
TW202402190A (en) | Composition for promoting growth comprising peptide from whey protein | |
Esteves de Oliveira et al. | Impacto de diferentes fuentes proteicas en la respuesta glucémica e insulinémica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |